
Parallelizing dynamic sequential programs using polyhedral process
networks
Nadezhkin, D.

Citation
Nadezhkin, D. (2012, December 20). Parallelizing dynamic sequential programs using
polyhedral process networks. Retrieved from https://hdl.handle.net/1887/20357

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/20357

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/20357

Cover Page

The handle http://hdl.handle.net/1887/20357 holds various files of this Leiden University
dissertation.

Author: Nadezhkin, Dmitry
Title: Parallelizing dynamic sequential programs using polyhedral process networks
Issue Date: 2012-12-20

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/20357
https://openaccess.leidenuniv.nl/handle/1887/1�

Parallelizing Dynamic
Sequential Programs using

Polyhedral Process Networks

Dmitry Nadezhkin

Parallelizing Dynamic Sequential Programs
using Polyhedral Process Networks.

PROEFSCHRIFT

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,

op gezag van de Rector Magnificus prof. mr. P.F. van der Heijden,
volgens besluit van het College voor Promoties
te verdedigen op donderdag 20 december 2012

klokke 10:00 uur

door

Dmitry Nadezhkin
geboren te Arzamas-16, USSR

in 1981

Samenstelling promotiecommissie:

promotor Prof.dr.ir. Ed F. Deprettere Universiteit Leiden
co-promotor Dr.ir. Todor Stefanov Universiteit Leiden

overige leden: Prof.dr. Albert Cohen INRIA, Paris, France
Prof.dr. Marco Bekooij Universiteit van Twente
Dr. Andy D. Pimentel Universiteit van Amsterdam
Prof.dr. Joost Kok Universiteit Leiden
Prof.dr. Harry Wijshoff Universiteit Leiden

Parallelizing Dynamic Sequential Programs using Polyhedral Process Networks
Dmitry Nadezhkin. -
Thesis Universiteit Leiden. - With ref. - With summary in Dutch
ISBN 978-90-9027264-1

Copyright © 2012 by Dmitry Nadezhkin, Leiden, The Netherlands.
All rights reserved. No part of the material protected by this copyright notice may
be reproduced or utilized in any form or by any means, electronic or mechanical, in-
cluding photocopying, recording or by any information storage and retrieval system,
without permission from the author.

Printed in the Netherlands

To my parents Maria Alexandrovna and Alexander Trofimovich;
and my Masha

Contents

1 Introduction 1

1.1 Automatic Derivation of Polyhedral Process Networks 3

1.1.1 Dependence Analysis . 4

1.1.2 Linearization . 7

1.2 Problem statement . 9

1.3 Motivation and challenges . 11

1.4 Research Contributions . 14

1.5 Related Work . 14

1.6 Dissertation Outline . 17

2 Background 19

2.1 Preliminaries . 20

2.1.1 Polyhedral Model . 20

2.2 The ProgramModel . 22

2.3 Polyhedral Process Networks . 24

2.4 Exact Array Dataflow Analysis . 26

2.5 Fuzzy Array Dataflow Analysis . 28

2.6 Communication model identification in PPNs derived from static pro-
grams . 32

3 Automated Generation of Polyhedral Process Networks from
Affine Nested-Loop Programs with Dynamic Loop Bounds 35

viii Contents

3.1 Solution Overview . 36

3.2 Step 1 (Dynloop-to-WDP) . 37

3.3 Step 2 (FADA analysis) . 38

3.3.1 Initial dSAC . 39

3.4 Step 3 (Control arrays) . 40

3.4.1 Local control arrays . 41

3.4.2 Global control arrays . 42

3.5 Step 4 (PPN generation) . 43

3.5.1 Topology creation of a PPN (substep 1) 44

3.5.2 Internal code structure generation (substep 2) 44

3.5.3 Linearization (substep 3) . 45

3.6 Calculation of deadlock-free buffer sizes 46

3.7 Overhead Analysis . 49

3.8 Discussion and Summary . 52

4 Automated Generation of Polyhedral Process Networks from
Affine Nested-Loop Programs with While-loops 55

4.1 Motivating example . 56

4.2 Solution Overview . 57

4.3 Step 1 (FADA analysis) . 59

4.4 Step 2 (Initial dSAC) . 60

4.5 Step 3 (Control variables) . 62

4.5.1 Additional control variables . 63

4.6 Step 4 (PPN generation) . 64

4.6.1 Substep 1: Topology creation of a PPN 65

4.6.2 Substep 2: Code generation . 66

4.6.3 Substep 3: Linearization . 67

4.6.4 Substep 4: Implementation of a while-loop’s iterator w 68

4.7 Discussion and Summary . 69

5 Identifying Communication Models in Polyhedral Process Networks de-
rived from Dynamic Programs 71

Contents ix

5.1 Rationale . 72

5.2 Solution Approach . 73

5.2.1 Parameterized mapping functions 75

5.3 Discussion and Summary . 78

6 Experimental Studies 79

6.1 Low Speed Obstacle Detection . 79

6.2 Discussion and Summary . 86

7 Summary and Conclusions 87

Bibliography 91

Index 97

Acknowledgments 99

Samenvatting 101

Curriculum Vitae 103

List of Publications 105

Chapter 1
Introduction

In the work entitled “Dialectics of Nature” Friedrich Engels (1883) formulated the
law which can describe the universal law of nature, the material world and human
society. According to the law the quantitative changes in a system eventually pass
into qualitative changes. Not surprisingly, this law could also explain the advances
that have been taking places during the last decade in the computer industry.

The quantitative advances in the computer industry were predicted and formalized
by the Moore’s law. The law predicted the doubling of transistor densities every 18
to 24 months. Coupled with the increase of processor frequencies these led man-
ufacturers to produce faster and more powerful processors every year. But these
advances inevitably came to their end at some point in time. Growing disparity of
speed between the CPU and the memory could not further improve the speed of
computation. Additionally, increasing density of transistors leads to prohibitively
high levels of power consumption, heat and power leakage. This is a prove that
quantitative advances in hardware technologies could not be further a driving force
in the computer industry.

To overcome these problems chip manufacturers have moved from single proces-
sor systems to multiprocessor or parallel systems. This allows to run processors on
lower frequencies and combine general purpose processors with dedicated proces-
sors leading to heterogeneous systems with more optimized usage of transistors.
The world of computers moved from sequential computing to parallel computing,
or, in other words, the quantitative advances have been transformed into qualitative
advances.

Although, we are witnessing the emergence of parallel (multi-core and multi-pro-
cessor) systems in all markets: from general-purpose computing to embedded sys-
tems, e.g., multimedia systems, game consoles and all sorts of mobile devices, the
transition from sequential to parallel computing is far from trivial. To satisfy emerg-
ing applications requirements, the multiprocessor embedded systems must be pro-

2 CHAPTER 1. INTRODUCTION

grammed in a way that the available parallelism is revealed and exploited efficiently.
However, the programming of amultiprocessor system is a challenging, error-prone,
and time consuming task as it involves the partitioning of programs, and conse-
quently, synchronization of different program partitions.

In recent years, a lot of attention has been paid to the design of parallel systems.
However, insufficient attention has been paid to the development of concepts, me-
thodologies, and tools for efficient programming of such systems. Therefore, the
programming still remains a major difficulty and challenge [1]. Today, system de-
signers experience significant difficulties in programming parallel systems because
the way an application is specified by an application developer, typically as a sequen-
tial program using a sequentialmodel of computation (MoC), does not match the way
multiprocessor systems operate, i.e., multiple cores run (possibly) in parallel.

If an application is specified using a parallel MoC, then the mapping of this applica-
tion onto a multiprocessor system can be done in a systematic and transparent way
by using a disciplined approach [2]. Using a parallel MoC facilitates the program-
ming of parallel multiprocessor systems because a parallel MoC makes the paral-
lelism available in an application and the communication between the application
tasks explicit. Unfortunately, specifying an application using a parallel MoC is very
difficult as the application developers i) have to be familiar with a particular parallel
MoC; ii) have to study the application in order to identify possible parallelism that
is available and to reveal it by using the parallel model.

To relieve the designer from all these difficulties, the pn compiler [3] was introduced.
It implements techniques for automated parallelization of static affine nested loop
programs (SANLP) written in a subset of C-language equivalent to the program
model presented in [4] into input-output equivalent Polyhedral Process Network
(PPN) descriptions. In the pn partitioning strategy, a process is created for every
statement and function call found in the top-level of the program. In this way, the
designers have control over the granularity of the created partitions.

1 parameter N 10 100;

2 for j = 1 to 6*N-3,

3 A[j] = Func1()

4 endfor

5 for j = 0 to N,

6 for i = j to 3*j-2,

7 if(i+j < 4*N-6)

8 A[i] = Func2(A[2*i-1], A[2*i+1])

9 endif

10 Func3(A[i])

11 endfor

12 endfor

Figure 1.1: Pseudo code of a SANLP.

An example of a SANLP is given in Figure 1.1. In this and following figures in this
dissertation, the examples will be given in pseudo code which semantics is equiva-
lent to the semantics of the program model presented in [4]. We decided to use the
pseudo code syntax instead of C-language syntax in order to avoid syntax clutter

1.1 Automatic Derivation of Polyhedral Process Networks 3

of C-language and emphasize that input programs considered in this dissertation
are not language specific. A SANLP in Figure 1.1 consists of a set of statements
and function calls, each possibly enclosed in loops and/or guarded by conditions.
The loops do not have to be perfectly nested. All lower and upper bounds of the
loops as well as all expressions in conditions and array accesses have to be affine
functions of enclosing loop iterators and static parameters. The parameters are sym-
bolic constants, i.e., their values can not change during the execution of the program.
Rather, parameter values determine different program instances. In addition, data
communication between function calls must be explicit. For example, see function
Func2() at line 8 which accepts 2 elements of array A as input arguments. Providing
just a pointer to array A in this case is not allowed. The above restrictions allow
a compact mathematical representation of a SANLP using the well-known polyhe-
dral model [5]. The SANLPs can be converted in an automated way into Polyhedral
Process Networks [3].

The target Polyhedral Process Networks (PPNs) [6] is a special case of the Kahn
Process Networks (KPNs) [7] model of computation. A PPN consists of concur-
rent autonomous processes that communicate data in a point-to-point fashion over
bounded FIFO channels using a blocking read/write on an empty/full FIFO as syn-
chronization mechanism. In addition, everything about the execution of a PPN is
known at compile-time. The latter enables techniques for modeling, analysis, and
SW/HW synthesis in a systematic and automated way, and allows the calculation
of buffer sizes that guarantee deadlock-free execution. In comparison, computing
buffer sizes is not possible for the more general KPN model. We are interested in
the process network model because it provides a sound formalism, well suited for
capturing and modeling of data-flow dominated applications in the realm of multi-
media, imaging, and signal processing, that naturally contain tasks communicating
via streams of data. Moreover, it has been already shown that process networks
allow effective and efficient mappings of streaming applications to certain parallel
execution platforms [8–13].

1.1 Automatic Derivation of Polyhedral ProcessNetworks

In this section we briefly recall the systematic parallelization approach [14] used to
derive Polyhedral Process Network from static sequential programs. This overview
will help to understand the contributions of this dissertation.

The approach is illustrated in Figure 1.2(b). It starts with an application written as
a sequential program similar to the one depicted in Figure 1.1. In many cases com-
pletely sequential execution can be relaxed without compromising the correctness
of the execution. That is, the order of the program statements can be rearranged
without changing the program functionality under the ordering constraints. In fact,
the possibility to rearrange statements is actually the possibility to execute them in
parallel. Ordering constraints are dictated by the data dependency relations exist-
ing in the sequential program. Therefore, the first main step of the parallelization

4 CHAPTER 1. INTRODUCTION

1 parameter M 1 10

2 parameter N 1 10

3 for k = 1 to M,

S1: y[k] = F1()

5 endfor

6 for i = 1 to N,

7 for j = i to M,

8 if j <= 2,

S2: y[j] = F2()

10 endif

S3: [] = F3(y[j])

12 endfor

13 endfor

(a) SANLP Program

step1

step2

PRDG/SAC

Dependence Analysis

Linearization

Polyhedral Process Network

Sequential
program

(b) Parallelization approach

y_1[] y_2[,]

P1

P3

P2

(c) PRDG

p1
p2

p3

p4

P3

P1

IOM IO

P2

(d) PPN

Figure 1.2: An example of a Static Affine Nested Loop Program, approach that trans-
lates SANLPs into PPNs, intermediate representation Polyhedral Reduced Depen-
dence Graph and resulting PPN.

approach depicted in Figure 1.2(b) is to perform data dependence analysis between
evaluations of statements. The analysis helps to extract the dependent memory
accesses and present an initial program in a form where data dependencies are
made explicit. Thus, the initial program is translated into the Single Assignment
Code (SAC) [4] form or its analogous form called Polyhedral Reduced Dependence
Graph (PRDG) [15] which is a compact mathematical representation of the depen-
dency relations in terms of polyhedra. In PRDG the nodes represent statements of
the initial program and the edges represent data dependencies. The PRDG model
still exploits (multi-)dimensional arrays for data communication. However, the tar-
get model, Polyhedral Process Networks, requires FIFO channels as communication
medium. Therefore, another step is needed that converts multi-dimensional mem-
ory accesses into managed dataflow over FIFO queues. This step called Linearization
constitutes the second main step of the approach shown in Figure 1.2(b). In the fol-
lowing, we give more detailed overview of these steps.

1.1.1 Dependence Analysis

The goal of the Dependence Analysis step is to determine if evaluation of a statement
depends on evaluation of other statements and to find these evaluations. For exam-
ple, in the SANLP program depicted in Figure 1.2(a), the purpose of the dependence
analysis is to find whether statement S3 depends on statements S1 or S2 via array y
and at which particular iterations. Or in other words, for every element of array y
read at a given iteration of statement S3, the dependence analysis finds which state-
ment, S1 or S2, and at which iteration it writes data to the given array element. The
most relevant algorithm to perform the analysis is the Exact Array Dataflow Anal-

1.1 PPN derivation 5

ysis (EADA) [4]. This algorithm considers all pairs of statements where one writes
and the other reads from possibly the same memory addresses. For each pair a spe-
cial system of linear (in)equalities is built. This system defines in an affine form the
conditions when two statements are data dependent. The formal definition of this
system of linear (in)equalities will be given in Chapter 2. For example, Table 1.1
depicts two systems of linear inequalities QS1S3((i3, j3)) and QS2S3((i3, j3)) for pairs
S1S3 and S2S3, respectively. Note that with (i3, j3), iteration vector (i, j) of statement
S3 is denoted. Similarly, with (i2, j2) and k iteration vectors of statements S1 and S3
are denoted, respectively.

Themeanings of constraints (c1)–(c3) are the following. The first constraint (c1) states
that the source iteration has to exist, i.e., it has to belong to the iteration domain of a
potential source statement. The constraint (c2) specifies that if there is a dependency
between evaluation of two statements, both have to access the same array element.
The (c3) constraint determines an order of operations, i.e., writing to the array cell
in one statement should be performed before reading from the same array cell in the
other statement. The order of operations is defined by the sequential order of the
initial program.

QS1S3((i3, j3)) QS2S3((i3, j3))

1 ≤ k ≤ M 1 ≤ i2 ≤ N ∧ i2 ≤ j2 ≤ M∧ (c1)

j2 ≤ 2

k = j3 j2 = j3 (c2)

true 〈S2, (i2, j2)〉 ≺ 〈S3, (i3, j3)〉 (c3)

Table 1.1: Systems used in dependence analysis between statements S1S3 and S2S3
in the program shown in Figure 1.2(a).

Having these systems formulated, the data dependence algorithm finds the lexico-
graphical maximum between all vectors satisfying the systems. Finding a lexico-
graphical maximummeans to solve the Parametric Integer Linear Problems (PILPs),
where objective is the lexmax function subjected to conditions stated by systems
Q(). The solution to find the maximum point for a given convex domain defined
by the systems is based on the dual simplex method [16] that is implemented in
open-source libraries such as isl [17], Parma Polyhedral Library [18], and PIPLib [19].
Finally, the source operation for the data read by statement S3 is:

if j3 ≤ 2 then 〈S2, (i3, j3)〉

else 〈S1, (j3)〉.
(1.1)

The solution above shows that the source of the data for statement S3 of the pro-
gram in Figure 1.2(a) can be from two different statements. The source is statement

6 CHAPTER 1. INTRODUCTION

S1 when the iterator j of S3 is greater than 2. Otherwise, the source is statement
S2. The result of the analysis forms the dependency relations between iterations of
statements writing/reading to/from the array.

1 for k = 1 to 4,

S1: y_1[k] = F1()

3 end

4 for i = 1 to 4,

5 for j = i to 4,

6 if j <= 2,

S2: y_2[i,j] = F2()

8 end

9 if j <= 2,

10 in_0 = y_2[i,j]

11 else

12 in_0 = y_1[j]

13 end

S3: [] = F3(in_0)

15 end

16 end

(a) SAC code

1

2

4

3

1 2 3 4

1

2

4

3

1 2 3 4

S3

S1

j

k

i i

S2

j

1 2 3 4

2

3

4

6

7 9

8

10

5

11

2 5 IO

IOM

(b) Data dependencies

Figure 1.3: Single Assignment Code form and data dependencies relations in the
program depicted in Figure 1.2(a).

For illustrative purposes, the same result can be depicted in a graphical form as
shown in Figure 1.3(b). In the figure the dependencies are found for values of pro-
gram’s parameters M and N equal to 4. The coordinate systems show the iteration
domain of statements S1, S2 and S3. The points on the coordinate systems designate
the evaluations of statements S1, S2 and S3, and the arrows reflect the data depen-
dency relations.

Based on the results of the dependence analysis, the initial sequential program can be
translated into the Single Assignment Code (SAC) form which is introduced in [4].
The SAC program is functionally equivalent to the initial program, with the dif-
ference that every variable is written exactly once. The latter ensures that all data
dependencies are explicitly revealed and respected. The SAC form of the initial pro-
gram shown in Figure 1.2(a) is illustrated in Figure 1.3(a). In this SAC program,
the original array y[] is substituted with multi-dimensional dedicated arrays y_1[]
and y_2[,], and control at lines 6 and 9 is added in order to respect the original
data dependency relations. The SAC form of the initial program is easily convertible
to the Polyhedral Reduced Dependence Graph (PRDG) [15]. The PRDG is a graph
where nodes represent computation and edges represent communication. Nodes
communicate point-to-point via unique dedicated multi-dimensional arrays that re-
spect the original data dependencies. An example of a PRDG derived from the pro-
gram shown in Figure 1.2(a) is illustrated in Figure 1.2(c). It consists of three pro-
cesses that correspond to the statements of the SAC program shown in Figure 1.3(a),
and two arrays that correspond to the arrays y_1[] and y_2[,] of the same pro-
gram. It is important to note that rather than introducing a node for each iteration
of a statement in a SAC, in PRDG, a node specifies a regular set of all iterations of a
statement in a SAC program. This regular set is defined in terms of polyhedra. The
definition of polyhedra and its relation to affine nested loop programs will be given

1.1 PPN derivation 7

j

i

k
Producer Consumer

1

2

3

4

1

2

3

4

(a) In-order (IO)

ConsumerProducer

j

i

k

3

4

2

1

109

1

2

3

4

5

6

7

8

(b) In-order with multiplicity
(IOM)

j

i

k
ConsumerProducer

4

3

2

1

4

3

2

1

(c) Out-of-order (OO)

j

i

k
Producer Consumer

2

1

3

4
4 7 9 10

863

2 5

1

(d) Out-of-order with multiplic-
ity (OOM)

Figure 1.4: Types of communication models in a PPN.

in Chapter 2.

To summarize, the Data Dependence step of the parallelization approach shown in
Figure 1.2(b) translates the initial sequential program into its functionally equiva-
lent PRDG which specifies a program in terms of topology, behavior and geometry.
The geometrical polyhedral specification makes this model useful for different trans-
formations [20]. The explicit separation between communication, computation and
geometrical characterization allows for translation from communication via shared
memory to FIFO channels which constitutes the Linearization step of the paralleliza-
tion approach.

1.1.2 Linearization

In a PRDG, the storage structure of the initial program is transformed such that
each Producer/Consumer (P/C) pair of nodes communicates over dedicated multi-
dimensional memory arrays as shown in Figure 1.2(c). However, in the target PPN
model, communication is required to be done via FIFO channels instead of multi-
dimensional arrays because, for example, such communication allows for simple
implementation of data streams in software and hardware. The Linearization step of
the parallelization approach replaces all such multi-dimensional arrays with FIFO
channels.

8 CHAPTER 1. INTRODUCTION

However, due to the particular way the data flows from a Producer node to a Con-
sumer node, mapping array communication onto FIFO channels requires complex
address generators, especially if the arrays have multiple dimensions. Therefore,
the Linearization also solves the Communication Model Identification (CMI) prob-
lem, which investigates communication characteristics of each P/C pair of nodes in
a PRDG. The CMI problem is an optimization problem that allows to identify com-
munication behavior of a FIFO channel that is cheaper for realization. We explain
this in the following example.

Every FIFO channel implemented as a point-to-point communication has one Pro-
ducer and one Consumer node or processes, thereby forming a Producer/Consumer
pair (P/C pair). An example of two P/C pairs P1/P3 and P2/P3 is shown in Fig-
ure 1.2(d).

In any point-to-point communication, the firings of the Producer process generate
data tokens in a certain order. We call it the production order. The tokens are sent to
the Consumer process over the FIFO channel. In order to fire, the Consumer process
needs the data tokens in a certain order. We call it the consumption order. When the
production and consumption orders are the same, we say that the P/C pair commu-
nication is in-order. Otherwise, the P/C pair communication is out-of order. Consider,
for example, Figure 1.4(a). It depicts the Producer and Consumer processes, where
the points on the coordinate systems designate the firings of the processes and the
arrows reflect the data dependencies between firings. The numbers at the points
show the production/consumption orders. Figure 1.4(a) shows that the production
order of the Producer process coincideswith the consumption order of the Consumer
process. This is an example of in-order communication in a P/C pair. Similarly, Fig-
ure 1.4(c) illustrates that the consumption order of the Consumer is reversed to the
production order of the Producer process. This is an example of out-of-order commu-
nication.

In a P/C pair, it may occur that the Consumer process may need to reuse in future
firings a token that has just been received from the Producer process. In such case
we say that the P/C pair communication has a multiplicity. For example, consider
the firing of the Producer and Consumer depicted in Figure 1.4(b). The produc-
tion and consumption orders are the same, thus, the P/C pair communication is
in-order. Additionally, we may notice, for example, that the data token needed for
firing 3 of the Consumer process, will be needed on firings 6 and 8. Thus, the P/C
pair communication has a multiplicity. Likewise, a P/C pair communication may be
out-of-order and has a multiplicity. An example of such P/C pair communication is
depicted in Figure 1.4(d). The four different types of P/C pair communication de-
scribed above, determine four communication models between processes. They are:
in-order (IO), out-of-order (OO), in-order with multiplicity (IOM) and out-of-order with
multiplicity (OOM). The communication of a P/C pair belongs to one of these four
types only.

According to the explanations given above, the communication models between
nodes formed by statements S1/S3 and S2/S3 in Figure 1.3(b) are IOM and IO, re-
spectively.

1.2 Problem statement 9

1 parameter M 1 10;

2 parameter N 1 10

3 for k = 1 to M,

S1: y[k] = F1()

5 endfor

6 for i = 1 to N,

7 for j = i to M,

C: if y[j] <= 2,

S2: y[j] = F2()

10 endif

S3: [] = F3(y[j])

12 endfor

13 endfor

(a) Weakly Dynamic Pro-
gram (WDP).

1 parameter M 1 10;

2 parameter N 1 10

3 for k = 1 to M,

S1: y[k] = F1()

5 endfor

6 for j = 1 to N,

7 for i = 1 to f(...),

S1: y[i] = F1()

9 endfor

10 endfor

S2: [...] = F2(y[5])

(b) Affine program with dy-
namic loop bounds (Dynloop).

1 parameter M 1 10;

2 parameter N 1 10

3 for k = 1 to M,

S1: y[k] = F1()

5 endfor

6 for i = 1 to N,

S1: y[i] = F1()

8 while (...),

S2: y[i] = F2()

10 endwhile

S3: [] = F3(y[i])

12 endfor

(c) Affine programwith while-
loop (WLAP)

Figure 1.5: Examples of WDP, Dynloop and WLAP programs. The differences are
that in WDP program, there is a dynamic if-condition at line C; in Dynloop, the
upper bound of for-loop i at line 7 is data-dependent; in WLAP program, the second
loop at line 8 is a while-loop.

In order to implement a PPN, all communication models have to be realized over a
FIFO channel. The in-order models can be implemented with a FIFO in a straight-
forward way, as the order of writing into the FIFO channel and the order of reading
from it are the same. The out-of-order models would require a FIFO channel aug-
mented with a controller implementing the reordering. In a similar manner, the
models with multiplicity would require a FIFO channel with additional memory to
store the tokens which will be reused later.

The difference in realization puts the communication models into a hierarchy. The
realization of the OOM model is the most general, as it is built of all components
present in the realizations of the other models. In other words, all P/C pair com-
munication models can be implemented with the realization of the OOM model.
However, the more general a realization is, the more resources it needs and more
run-time overhead is introduced. More importantly, the IO,OO and IOM communi-
cation models might be implemented with simpler realization.

Thus, we see that in order to parallelize a sequential application two important steps,
Dependence Analysis and Linearization, should be addressed.

1.2 Problem statement

Many scientific, matrix computation, and signal processing applications can be spec-
ified as static affine nested loop programs (SANLPs), and therefore, the pn com-
piler [3], briefly described in Section 1.1, can be used to derive equivalent parallel
PPN specifications. However, many multimedia applications such as MPEG coder-
s/decoders, Smart Cameras, adaptive filters, iterative algorithms, etc. have adaptive

10 CHAPTER 1. INTRODUCTION

and dynamic behavior which can not be expressed as static programs as SANLPs.

In order to handle such dynamic applications, in this dissertation we address an
important question: whether some of the static restrictions of the SANLPs can be
relaxed while keeping the ability to perform compile-time analysis and to derive
PPNs in an automated way. Achieving this will significantly extend the range of
applications that can be parallelized in an automated way.

By studying different dynamic applications we distinguished three relaxations to
SANLP programs that would allow one to specify dynamic applications as sequen-
tial programs.

The first relaxation:

I. dynamic if-conditions are allowed in a program.

An example of an application with this relaxation is depicted in Figure 1.5(a). Note,
that the if-statement at line C has a dynamic condition “y[j] <= 2”. This condition
is dynamic because it depends on the variable y[j]whose value is determined dur-
ing program execution. As a real-life example of an application that contains such
relaxation, the Motion JPEG (M-JPEG) encoder [21–23] can be considered.

The second relaxation:

II. for-loops with dynamic bounds are allowed in a program.

An example of an application with this relaxation is depicted in Figure 1.5(b). Note,
that the upper bound of for-loop i at line 7 is an arbitrary function f(...). As
an example of a real-life application containing for-loops with dynamic bounds an
application from the smart cameras domain called Low Speed Obstacle Detection
(LSOD) [24] can be considered. The detailed analysis of this applicationwill be given
in Chapter 6.

The third relaxation:

III. while-loops are allowed in a program.

An example of an application with this relaxation is depicted in Figure 1.5(c). Note,
that the loop at line 8 is a while-loop. An example of a real-life application containing
while loop is the application from the signal processing domain called Adaptive
Beamforming (AB) [25].

In the rest of this dissertation, a program that contains either of these three relaxation
will be called a dynamic program.

In [21], the first relaxation has been considered, i.e., how to translate affine nested-
loop programs with dynamic if-conditions into input-output equivalent PPNs in

1.3 Motivation and challenges 11

1

2

4

3

1 2 3 4

1

2

4

3

1 2 3 4

1 2 3 4

2

1

3

9

8

1074

6

5 2

1

3

9

8

1074

6

5

j

i

j

i

S2 S3

S1

k

(a) eval(C)=true

j

k

j

i i

S3

S1
3 41 2

10974

6 83

52

1

10974

6 83

52

1

S2

(b) eval(C)=false

S3

S1

j

k

i i

S2

j

1 2 3 4

1

2

3

4

5

6

7 9

8

10

1

2

3

4

5

6

7 9 10

8

(c) eval(C)=unknown

Figure 1.6: Dependency relations in a dynamic program.

an automated way. In this dissertation, we consider the other two more difficult
relaxations. Finally, we formulate the problem which is solved in this dissertation:

to develop an automated procedure for translation of affine programs with relaxations II and
III into input-output equivalent Polyhedral Process Networks.

1.3 Motivation and challenges

The overall challenge of deriving a PPN from a dynamic program is how to deal
with uncertainties introduced by the relaxations presented in Section 1.2. Below, we
demonstrate that: 1) an exact data dependence analysis (EADA) and exact commu-
nication model identification (CMI) in PPNs derived from dynamic programs are
not possible at compile-time; 2) the existing approach used for PPN derivation pre-
sented in Section 1.1 cannot be used to identify communication models and translate
dynamic programs into PPNs; 3) nevertheless, at compile-time, for any P/C pair it
is possible to identify the most general communication model which can be used to
realize all possible data dependency patterns that may occur in different instances of
the dynamic program.

12 CHAPTER 1. INTRODUCTION

Consider, for example, the dynamic program shown in Figure 1.5(a) which contains
dynamic relaxation I. The program has a dynamic condition at line C evaluating
some run-time data. Depending on the evaluation of the if-condition, either state-
ment S1 or S2 produces the data for every firing of statement S3.

Figure 1.6 depicts data dependency relations between statements S1, S2 and S3 in
three instances of this program for M = N = 4, where an instance of a dynamic
program is an evaluation of the program with a particular input dataset. Figure 1.6
illustrates iteration domains of statements S1, S2 and S3, where the points on the
coordinate systems designate the evaluations of statements and the arrows reflect
the data dependencies between evaluations. The numbers at the points show the
lexicographical order of statement evaluations.

Assume, first, that the condition at line C always evaluates to true, and, thus, all the
data needed by statement S3 is produced by statement S2 only (see Figure 1.6(a)).
The opposite case is when the condition at line C always evaluates to false. Depicted
in Figure 1.6(b), this time, relations exist between statement S1 and S3 only. In gen-
eral, however, the result of condition evaluation at line C is arbitrary and unknown
at compile-time. An example of this case is shown in Figure 1.6(c). In this case, on
some firings, the data needed by statement S3 is produced by statement S1, on other
firings by statement S2.

The three examples of data dependency relations illustrated in Figure 1.6 show the
difference of dependency patterns between dynamic and static programs. In static
programs, different instances of a program correspond to one and the same single
dependency pattern which is known at compile-time. In dynamic programs, data
dependency patterns correspond to different instances of a dynamic program, and
are unknown at compile time. This also means that data dependency patterns in a
dynamic program cannot be determined at compile-time by the exact array depen-
dence analysis.

We can illustrate the same idea by using the description of the exact dependence
analysis presented in Section 1.1.1. Recall, that this analysis constitutes Step 1 of
the parallelization approach depicted in Figure 1.2(b). In order to determine data
dependency patterns at compile-time the data dependence analysis has to be per-
formed on a initial program. The dependence analysis algorithm builds a system
of linear inequalities similar to one shown in Table 1.1. Consider, for example, the
dynamic program in Figure 1.5(a), and let us build the system for pair S2S3:

Then, the data dependence algorithm finds the lexicographical maximum between
all vectors satisfying the systems by solving Parametric Integer Linear Problems
problem. However, in the system shown in Table 1.2 constraint (c1) which speci-
fies the domain of the source iteration is not a convex domain as it contains dynamic
if-condition y[j] <= 2. Therefore, the exact data dependence analysis presented in
Section 1.1.1 cannot be applicable to dynamic programs.

The same reasoning applies to the dynamic programs with the other two relaxations
II and III. Overall, this shows that the approach presented in Section 1.1 cannot han-
dle the dynamic programs shown in Figure 1.5.

1.3 Motivation and challenges 13

QS2S3((i3, j3))

1 ≤ i2 ≤ N ∧ i2 ≤ j2 ≤ M∧ (c1)

y[j2] ≤ 2

j2 = j3 (c2)

〈S2, (i2, j2)〉 ≺ 〈S3, (i3, j3)〉 (c3)

Table 1.2: The system used to perform exact dependence analysis between state-
ments S2S3 in the program shown in Figure 1.5(a).

The inability to determine the exact data dependency relations in a program makes
the exact communication model identification impossible. Nevertheless, still we can
analytically identify at compile-time the communication models of a P/C pair in all
possible instances of a dynamic program. Based on this information, we can real-
ize the communication of a P/C pair with the most general communication model
which implements all possible data dependency relations. For example, we may
observe in Figure 1.6 that the production/consumption orders in S1/S3 and S2/S3
pairs are the same. Thus, the communication in all P/C pairs is in-order. Moreover, in
some program instances a multiplicity in the communication is possible and, accord-
ing to the realization hierarchy of communication models, the most general model
for S1/S3 and S2/S3 pairs is IOM. Therefore, we can implement the communication
in S1/S3 and S2/S3 pairs as IOMmodel.

In order to solve the problem addressed in this dissertation and formulated in Sec-
tion 1.2, we split the problem in 2 issues. The first issue is formulated as follows:

• Issue I: dynamic programswith the relaxations presented in Section 1.2 require
different parallelization approach in translating them into PPNs compared to
the approach presented in Section 1.1. Loop iteration domains and the overall
dataflow is unknown at compile-time in dynamic programs. [21] considered
relaxation I, i.e., how to translate affine nested-loop programs with dynamic
if-conditions into input-output equivalent PPNs in an automated way. The
main research topic of this dissertation is how to translate dynamic programs
with relaxation II and III into PPNs.

The first issue calls for a novel parallelization approach for dynamic programs. The
second issue below addresses a novel approach for implementing a PPN.

• Issue II: we demonstrated that an exact communication model identification in
PPNs derived from dynamic programs is not possible at compile-time. There-
fore, we address the problem of communication model identification in PPNs
derived fromdynamic programs. This issue is an important optimization prob-
lem as it allows to identify communication models with simpler realization.

14 CHAPTER 1. INTRODUCTION

1.4 Research Contributions

The work presented in this dissertation focuses on the derivation of Polyhedral Pro-
cess Networks specifications from dynamic programs. Below, we list the contribu-
tions delivered by this dissertation.

• Contribution I [26, 27]: a first approach for automated translation of affine
nested-loop programs with dynamic loop bounds (Dynloop) into input-output
equivalent Polyhedral Process Networks. In addition, we present a method
for analyzing the execution overhead introduced in the PPNs derived from
programs with dynamic loop bounds.

• Contribution II [28]: a first approach for automated translation of affine nested-
loop programs with while-loops (WLAP) into input-output equivalent Polyhe-
dral Process Networks.

• Contribution III [29]: we present a formal procedure for communication mod-
els identification in Polyhedral Process Networks derived from the dynamic
programs introduced in Section 1.2.

To address the first issue defined in Section 1.3, Contributions I and II of this disser-
tation devise a compile-time automated procedure that can be used to derive a PPN
from dynamic programs with relaxations II and III presented in Section 1.2. By our
third contribution we address the second issue: we introduce a novel procedure for
Communication Model Identification in PPNs derived from dynamic programs.

1.5 Related Work

The work presented in this dissertation is directly related to previous works on
systematic and automated derivation of process networks from affine nested loops
programs initiated by Rijpkema et al. [15, 30]. Further, Turjan et al. [31] proposed
an automated derivation of process networks from static affine nested loop pro-
grams (SANLPs). In SANLPs the memory array subscripts, loop bounds and condi-
tional control structures are affine constructs of surrounding loop iterators, program
parameters and constants. Stefanov [21] further developed a procedure of process
network derivation from more relaxed class of affine nested loop programs called
Weakly Dynamic Programs (WDPs). In this class of affine nested loops programs, the
conditions in control structures might be dependent on some information that is un-
known at compile-time and may change at run-time. In contrast, this dissertation
deals with more general class of applications, i.e., affine nested loop programs with
loop bounds (Dynloop) that unknown at compile-rime and determined at run-time,
and applications containing while-loops (WLAP).

In the context of automatic parallelization of sequential programs research has been
done on approaches to convert a nested loop program to an equivalent program

1.5 RelatedWork 15

which is in a single-assignment form, i.e., a program in which every memory cell
is written at most once. Such program is easier to be analyzed and parallelized ef-
ficiently. The work of Knobe and Sarkar [32], Feautrier et al. [33] and the work of
Griebl, Lengauer and Collard [34–36] on this topic are directly related to the first
step of our approaches presented in Chapters 3 and 4 of this dissertation. This is
because in this step we propose an approach to convert dynamic programs into a
single-assignment form which we call dynamic Single Assignment Code (dSAC).
The relations are explained below.

Knobe and Sarkar [32] proposed an approach to convert a nested loop program
to a single-assignment form that they call Array Static Single Assignment (ASSA).
Their approach is more general than our approach in the sense that the class of
nested loop programs which they can convert to their ASSA includes classes of dy-
namic programs considered in this dissertation which we can convert to our dSAC.
However, when Dynloop and WLAP programs are considered, our approach is
more efficient compared to their approach in the sense that dSAC is a more efficient
single-assignment form in terms of code lines and memory usage compared to their
ASSA form. This is because in our approach a dependence analysis is performed at
compile-time before the corresponding dSAC is generated. This compile-time de-
pendence analysis, called fuzzy array data-flow analysis (FADA) [37, 38], allows an
efficient code generation. The approach of Knobe and Sarkar does not perform any
dependence analysis at compile-time. Instead, the dependence analysis is performed
at run-time by placing a special code called φ functions and @ arrays in their ASSA,
thereby making their approach more general. The φ functions and @ arrays intro-
duce significant code overhead because in many cases unnecessary φ functions and
@ arrays are placed in the ASSA, thereby making the ASSA form very inefficient in
terms of code lines and memory usage compared to our dSAC.

The work of Feautrier et al. in the context of the PAF parallelizer [39] describes an
approach to convert nested loop programs similar to our dynamic programs into a
single-assignment form called SA. Their approach is based on performing a fuzzy
array data-flow analysis (FADA) at compile-time before generating the SA. The re-
sult of this FADA analysis is implemented by φ functions placed in their SA during
code generation. The φ functions depend on parameters whose values have to be set
dynamically at run-time in order to preserve the original data-flowwhen the control
flow cannot be predicted at compile-time. The work of Feautrier et al. lacks a general
approach to set the values of the parameters at run-time. The work described above
relates to our approach for converting dynamic programs to a dSAC in the sense that
we also perform a FADA analysis at compile-time and we also place a code with pa-
rameters in our dSAC similar to the φ functions but our code is more efficient. Also,
the difference is that we have developed a very simple general approach to set the
values of the parameters at run-time. This approach is presented in Chapter 3.

Griebl, Lengauer and Collard [34–36] addressed the problem of parallelization of
while-loops similar to ourwork. Similar to our approach, they perform array dataflow
analysis to expose data dependencies in an explicit way. Subsequently, they use
space-time restructuring techniques to generate the code for speculative execution

16 CHAPTER 1. INTRODUCTION

or software pipelining. Generally unscannable execution space that a while-loop
provides, they scan with the help of run-time computable predicates, that are also
used for detection of while-loops’ termination. Besides introducing an overhead at
run-time, these predicates limit the applicability of their approach to sharedmemory
systems. In contrast, our parallelization approach targets multiprocessor systems
with distributed memory.

Apart from the idea to convert a nested loop program to an equivalent program
in a single-assignment form, in the context of automatic parallelization of dynamic
sequential programs, there are a number of other efforts that were made.

Raman et al. [40] devise the Parallel-StageDecoupled Software Pipelining (PS-DSWP)
multi-threading technique to extract pipeline parallelism from codes with irregular,
pointer-based memory accesses and arbitrary control flow, which generally include
while-loops. A parallel-stage allows to obtain pipeline parallelism from some stages
executed in a DOALL fashion. In contrast, our approach supports also task- and
data-level parallelism besides the pipeline- and iteration-level parallelism. More-
over, we can generate parallel code for multi-processor systems with distributed
memory.

The LooPo compiler [41] deals with parallelization of more general class of nested
loop program than the class we consider in this dissertation. It includes nested loop
programs with unscannable execution spaces which boundaries are determined at
run-time. The proposed parallelization procedure is based on run-time detection of
executed statements as well as detection of program termination [42]. In contrast
to [41], we use FADA and perform approximated dependence analysis at compile-
time. Moreover, we do as much as possible analysis at compile-time, thereby reduc-
ing the run-time overhead significantly.

A different approach is taken by Benabderrahmane et al. [43] where they embed the
control and exit predicates to the general data-dependent control-flow programs.
This predicates are used instead of data dependent control structures and while-
loops as first-class citizens of the algebraic representation. Subsequently, a polyhe-
dral representation is derived and code generation is performed from static program
analysis. In this approach, hiding all dynamism (dynamic loop bounds, while-loops)
in algebraic representations also diminishes the parallelism available in the initial
program as less information is visible for analysis. By contrast, our technique ex-
poses and utilizes all available parallelism.

Rauchwerger et al. [44] focused on parallelizing while-loops that are defined by one
or more recurrences that can be detected at compile-time; a reminder that can be
either analyzed statically or is unknown at compile-time; and one or more termi-
nation conditions. Although, they were able to parallelize a while-loop involving
linked lists traversal, it is not shown how they would tackle more general while-
loops, which we consider in this dissertation.

Bijlsma [45, 46] and Geuns [47] approach the problem of while-loops parallelization
by considering an initial program with while-loops being in the local single assign-
ment (LSA) form where all data dependencies are explicit. They implement the ex-

1.6 Dissertation Outline 17

plicit data dependencies using circular buffers with overlapped read and write win-
dows. Specifying a program in a LSA form can be very time consuming and error
prone process because the system designer has to do the dependence analysis man-
ually. We find this a very a limitation of their work. By contrast, our approach uses
an automatic data-dependence analysis procedure which relieves the designer from
the very difficult task to do the manual dependence analysis.

In the context of communication model identification in Process Networks, to the
best of our knowledge, not much attention has been devoted to the problem of
automatic communication model identification. An automatic procedure exists for
communication model identification while translating static affine nested loop pro-
grams (SANLP) into functionally equivalent PPNs [31]. In this dissertation, we
develop an extension to this procedure which identifies communication models in
Polyhedral Process Networks derived from the dynamic programs introduced in
Section 1.2.

1.6 Dissertation Outline

The remaining part of this dissertation is organized a follows. In Chapter 2, we
first introduce notations and terminology that will be used throughout the disser-
tation. Further, we present theory describing the Polyhedral Model and show how
this model can be extracted from applications considered in this dissertation.

In Chapter 3, we present a first approach for automated translation of affine nested
loop programs with dynamic loop bounds (Dynloop) into input-output equivalent
Polyhedral Process Networks. The chapter describes in great details the models,
methods, and techniques we have developed and used in the approach. First, we
describe the techniques and procedures involved in the conversion of a Dynloop to
our dynamic Single Assignment Code (dSAC). Second, we demonstrate how the free
parameters introduced by FADA analysis are assigned in dSAC using control arrays.
Third, we show how the topology of the corresponding PPN is derived, as well as
the code executed in each process. Moreover, we demonstrate how the buffer sizes
of FIFO channels are computed that guarantee a deadlock-free execution of a PPN.

In Chapter 4, we present a first approach for translation of affine nested loop programs
with while-loops (WLAP) into input-output equivalent PPNs. In this chapter we
describes in great details the models, methods, and techniques we have developed
and used in the approach.

In Chapter 5, we present a formal procedure for identifying communication models
in process networks derived from the dynamic programs introduced in Section 1.2.
We formulate two problems from integer linear problems domain that allow us to
identify the communication models presented in Section 1.1.2.

In Chapter 6, we present a case study that we conducted in order to validate and
evaluate our approach presented in Chapter 3. This case study presents a real-life
industrially relevant application. We will present a comprehensive analysis and re-

18 CHAPTER 1. INTRODUCTION

port the results we obtained in this case study.

Finally, we conclude this dissertation in Chapter 7 with a summary of the presented
research work along with some concluding remarks.

Chapter 2
Background

In order to comprehend the next chapters, this chapter contains some basic mate-
rial from the theory of integer linear algebra. Besides introduction of notations and
definitions, this chapter deals with models of computation and compiler techniques
used for parallelizing sequential programs.

Further, this chapter is organized as follows. Section 2.1 gives some notations and
definitions used throughout the dissertation. We present the Polyhedral Model and
show how this model can be extracted from SANLPs. Section 2.2 presents the formal
definitions of the program models of dynamic applications introduced in Chapter 1.
The parallelization approach presented in this dissertation deals with this type of
dynamic programs only. Section 2.3 presents the definition of Polyhedral Process
Networks model of computation which is used as a target parallel model of compu-
tation.

For better understanding of the solution approaches presented in the following Chap-
ters, we give a brief overview of the two state-of-the-art techniques used to an-
alyze sequential programs. The first one, called Exact Array Dataflow Analysis
(EADA) [4], is used to analyze static programs, namely SANLPs. Recall, that EADA
is implemented in the pn [48] compiler for the translation of SANLPs to PPN. We
present EADA in Section 2.4.

The second technique, which we present in Section 2.5, allows for the analysis of pro-
grams with more relaxed constraints than SANLPs. That is, we consider the Fuzzy
Array Dataflow Analysis (FADA) introduced in [37, 38]. FADA is an enhanced ver-
sion of EADA and it is used to analyze programs with dynamic behavior.

Finally, Section 2.6 briefly presents important definitions and theory used to identify
communication models while deriving a Polyhedral Process Network specification.

20 CHAPTER 2. BACKGROUND

2.1 Preliminaries

The formal objects handled in this dissertation are mainly vectors with integer coor-
dinates. A sub-vector of a vector ~x built from components k to l is written as: ~x[k..l].
Similarly, ~x[i] is a shorthand for ~x[i..i]. By ≪ we denote lexicographical ordering of
vectors. This is expressed as a set of equalities and inequalities as:

~a ≪~b ≡
n
∨

i=1

(~a[i] <~b[i] ∧
i−1
∧

j=1

~a[j] =~b[j]) (2.1)

The smallest and the largest vectors according to≪ are the lexicographical minimum
(lexmin) and lexicographical maximum (lexmax), respectively.

2.1.1 Polyhedral Model

Sets of rational values described by affine inequalities have been the subject of ex-
tensive research and are called polyhedra.

Definition 2.1.1 (polyhedron)
The implicit definition of polyhedron is defined as the intersection of a finite set of
closed linear half-spaces. Polyhedron is specified by a system of linear inequalities
and equalities:

P : {~x ∈ Qn|A~x ≥~b} (2.2)

where A is a j× n matrix,~b is a j-vector, and where n is the dimension of the space
containing the polyhedron. The dimension of a polyhedron is defined to be the di-
mension of the smallest affine subspace which spans the polyhedron. A polyhedron
of dimension d is called a d-polyhedron. Z-polyhedron [6] denotes a polyhedron
whose points are integers.

Definition 2.1.2 (parameterized polyhedron)
The parameterized polyhedra is a family of polyhedra P(~p) described as a linear
function of ~p, which is an m-vector of parameters:

P(~p) = {~x ∈ Qn|A~x + B~p ≥ ~c},~p ∈ Qm (2.3)

where A and B are constant matrices and~c is a constant vector.

In the compilers domain, the input program is usually represented in some internal
representation form. This form allows for manipulation and optimization, for exam-
ple in the context of loop transformations. One of this special intermediate program
formats called Polyhedral Model was originally introduced for systolic array syn-
thesis but also was found useful for parallelizing compilers [4]. This model applies
to the class of affine nested loop programs and is used in compiler optimizations to
efficiently analyze and transform the input program.

2.1 Preliminaries 21

In the following, we demonstrate how the Polyhedral Model can be extracted from
sequential programs considered in this dissertation.

1 2 3 N

1

2

3

M

10

10...

...

0

2

i

S2

1

5

j

j ≤ 2

j ≤ M
1 ≤ i

i ≤ j

i ≤ N

1 ≤ j

Figure 2.1: Geometrical representation of iteration domain of statement S2 in the
program depicted in Figure 1.2(a).

The whole execution of a statement in a program can be described by the following
constructs:

Iteration domain

The Iteration Domain (ID) is the set of values of an iteration vector for which a state-
ment is executed. ID of a statement S is denoted by D(S). An iteration vector ~x of
a statement in a dynamic program is built from iterators of surrounding for- and
while-loops. Although, an iterator for a while-loop may not be explicitly mentioned
in the source code of a program, we can associate some “virtual” iterator w : 0 ≤ w
with the while-loop.

Because the execution of a statement is guarded by an affine control, its iteration
domain can be specified as a set of linear inequalities defining a Z-polyhedron. For
example, consider statement S2 in Figure 1.2(a). Its iteration domain represented in
algebraic form is the following parameterized polyhedron:

D(S2) = P(M,N) =

=































(i, j) ∈ Q2 |

















1 0

−1 0

−1 1

0 −1

0 −1

















(

i

j

)

≥

















1

−N

0

−M

−2

















,











1 0

−1 0

0 1

0 −1











(

M

N

)

≥











1

−10

1

−10









































=

= {(i, j) ∈ Q2 |1 ≤ i ≤ N ∧ i ≤ j ≤ M ∧ j ≤ 2∧ 1 ≤ M ≤ 10∧ 1 ≤ N ≤ 10}.

22 CHAPTER 2. BACKGROUND

For illustrative purposes, the ID of statement S2 in a graphical form is shown in
Figure 2.1. Similarly, the iteration domain in algebraic form of statement S2 shown
in Figure 1.5(c) is:

D(S2) = {(i,w) ∈ Q2 | 1 ≤ i ≤ N ∧ 0 ≤ w ∧ 1 ≤ N ≤ 10}.

Order of execution

In an affine nested loop programs statements evaluate some data. An evaluation
of a single statement W on iteration point ~x is called an operation and is denoted as
〈W,~x〉, where ~x ∈ D(W).

The schedule determines the execution order of all operations of all statements in a
program. The execution order of operations can be established using the sequencing
predicate ≺. An operation 〈W,~x〉 is evaluated before an operation 〈R,~y〉 (〈W,~x〉 ≺
〈R,~y〉) according to the program sequence if: 1) iteration point ~x lexicographically
precedes iteration point~y; or 2) if~x = ~y and statementW precedes statement R in the
program code. The sequencing predicate depends only on the code of a sequential
program. Let NWR be the number of loops enclosing both statement W and R. Let
⊳ be the textual order of statements W and R in the code of the program. Then the
execution order is given by:

〈W,~x〉 ≺ 〈R,~y〉 ≡ ~x[1..NWR] ≪ ~y[1..NWR]∨ (~x[1..NWR] = ~y[1..NWR]∧W⊳R) (2.4)

[4] shows how sequencing predicate ≺ can be expanded to a system of linear in-
equalities.

2.2 The ProgramModel

In the following, we will give definitions of the type of sequential programs we con-
sider in this dissertation.

Definition 2.2.1 (static affine nested loop program,SANLP)
A static affine nested loop program (SANLP) is a program where each program
statement is enclosed by one or more for-loops and if-statements, and where:

1. loops have a constant step size;

2. loops have bounds that are affine expressions of the enclosing loop iterators,
static program parameters, and constants;

3. if-statements have affine conditions in terms of the loop iterators, static pro-
gram parameters, and constants;

4. index expressions of array references are affine functions of the enclosing loop
iterators, static program parameters, and constants;

2.2 The Program Model 23

5. data flow between statements is explicit via a variable or an array.

An example of a SANLP is given in Figure 1.2(a).

Definition 2.2.2 (Weakly Dynamic Program,WDP)
AWeakly Dynamic Program (WDP) is a program where each program statement is
enclosed by one or more for-loops and if-statements, and where:

1. loops have a constant step size;

2. loops have bounds that are affine expressions of the enclosing loop iterators,
static program parameters, and constants;

3. if-statements have no restrictions on conditions - the condition of if can be
an arbitrary function of program variables, enclosing loop iterators, static pro-
gram parameters, and constants;

4. index expressions of array references are affine functions of the enclosing loop
iterators, static program parameters, and constants;

5. data flow between statements is explicit via a variable or an array.

An example of a WDP program is given in Figure 1.5(a).

Definition 2.2.3 (affine nested loop program with dynamic loop bounds, Dynloop)
An affine nested loop program with dynamic loop bounds (Dynloop) is a pro-
gram where each program statement is enclosed by one or more for-loops and if-
statements, and where:

1. loops have a constant step size;

2. loops have no restrictions on the bounds - the bounds of for-loops can be an
arbitrary expression of program variables, the enclosing loop iterators, static
program parameters, and constants;

3. if-statements have no restrictions on conditions - the condition of if can
be an arbitrary function of program variables, enclosing loop iterators, static
program parameters, and constants;

4. index expressions of array references are affine functions of the enclosing loop
iterators, static program parameters, and constants;

5. data flow between statements is explicit via a variable or an array.

An example of a Dynloop program is given in Figure 1.5(b).

Definition 2.2.4 (affine nested loop program with while-loops,WLAP)
An affine nested loop program with while-loops (WLAP) is a program where each
program statement is enclosed by one ormore for-loops,while-loops and if-statements,
and where:

24 CHAPTER 2. BACKGROUND

1. for-loops have a constant step size;

2. loops have no restrictions on the bounds - the bounds of for-loops can be an
arbitrary expression of program variables, the enclosing loop iterators, static
program parameters, and constants;

3. if-statements have no restrictions on conditions - the condition of if can be
an arbitrary function of program variables, enclosing loop iterators, static pro-
gram parameters, and constants;

4. index expressions of array references are affine functions of the enclosing loop
iterators, static program parameters, and constants;

5. data flow between statements is explicit via a variable or an array.

An example of a WLAP program is given in Figure 1.5(c).

2.3 Polyhedral Process Networks

Below, we give a definition of the Polyhedral Process Network Model of Computa-
tion.

Definition 2.3.1 (Polyhedral Process Network,PPN)
The PPNmodel of computation is a special case of the Kahn ProcessNetworks (KPN) [7]
model of computation with the following properties:

• it consists of concurrent autonomous processes;

• processes communicate data in a point-to-point fashion over bounded FIFO
channels via ports;

• processes synchronize via blocking read/write on an empty/full FIFO;

• processes have a well defined structure consisting of read, execute and write
code sections;

• it is deterministic;

• it has a distributed control.

An example of a PPN is illustrated in Figure 2.2(a). The PPN consists of three pro-
cesses, P1, P2 and P3, and three FIFO channels. The examples of code of processes P1
and P3 of this PPN are illustrated in Figure 2.2(b) and Figure 2.2(c), respectively. In
order to see the well defined structure of every process on a PPN, consider the source
code of process P3 in Figure 2.2(c). In the read section at lines 3–7, the process reads
data from two ports p5 or p6. In the execute section at line 8, the process executes
function F3() on data that has been read. In the write section at line 9, the process

2.3 Polyhedral Process Networks 25

P3

P2

p1

p2

p3

p4

p5

p6

p0 p7
P1

(a) An example of a PPN.

1 int M = 10, P = 3

2 for i = 1 to M,

3 out = F1()

4 if i <= P,

5 write(p1, out)

6 else

7 write(p2, out)

8 endif

9 endfor

(b) An example of process P1.

1 int N = 10, P = 3

2 for j = 1 to N,

3 if j <= P,

4 in = read(p5)

5 else

6 in = read(p6)

7 endif

8 out = F2(in)

9 write(p7, out)

10 endfor

(c) An example of process P3.

Figure 2.2: An example of a PPN and source codes of its processes P1 and P3.

writes the produced data to port p7. This clearly separated structure of a process in
a PPN allows for explicit separation between computation and communication.

In a PPN, every process can be described by the following terms.

Definition 2.3.2 (node domain)
A Node Domain (ND) of process P executing function F in a PPN is the set of itera-
tion points NDPF for which function F is executed.

In this dissertation we consider PPNs where every process executes only one func-
tion, and, therefore, for the sake of brevity, we can use NDPF = NDP. A node domain
of a process can be represented by a polyhedron. In Section 2.1.1, it has been demon-
strated that a set of iteration points can be represented as a Z-polyhedron. Similarly,
a node domain of a process can be represented as a Z-polyhedron. For example, con-
sider process P1 of PPN shown in Figure 2.2(a). The code of process P1 is illustrated
in Figure 2.2(b). The process executes function F1(), and, thus, its node domain is
D(NDP1) = {i ∈ Z|1 ≤ i ≤ M ∧ M = 10}.

Definition 2.3.3 (input port domain)
An input port domain (IPD) of port p is the set of iteration points Ip ∈ IPDp for
which port p is read.

Definition 2.3.4 (output port domain)
An output port domain (OPD) of port q is the set of iteration points Oq ∈ OPDq for
which port q is written.

Similarly to a node domain, IPDs and OPDs of every process can be represented as
Z-polyhedra. For example, consider source codes of processes P1 and P3 depicted
in Figure 2.2(b) and Figure 2.2(c), respectively. Processes are connected via output
port p2 (see line 7 in Figure 2.2(b)) of process P1 and input port p5 (see line 4 in
Figure 2.2(c)) of process P3. Therefore, input and output port domains of ports p5
and p2 are D(IPDp5) = {j ∈ Z|1 ≤ j ≤ N ∧ j ≤ P ∧ N = 10 ∧ P = 3}, and
D(OPDp2) = {i ∈ Z|1 ≤ i ≤ M ∧ i > P∧ M = 10∧ P = 3}.

26 CHAPTER 2. BACKGROUND

A FIFO in a PPN is connected to processes which writes and reads via ports. For
every FIFO, there exists a mapping function that maps the iteration points of IPD of
the process that reads from the FIFO to the iteration points of OPD of the process
that writes to the FIFO. Consider a FIFO connected to processes via ports p and q.

Definition 2.3.5 (mapping function)
A mapping function is an affine mapping fpq : Ip → Oq : Oq = f (Ip), where Ip ∈
IPDp andOq ∈ OPDq.

An example of the mapping function between ports p1 and p5 of processes P1 and P3
in the PPN shown in Figure 2.2(a) is fp5p1 : Z → Z : j = i ∗ 1, i ∈ IPDp5, j ∈ OPDp1.

2.4 Exact Array Dataflow Analysis

Because our approach of parallelizing dynamic programs presented in the follow-
ing chapters is an extension of the parallelization approach of static programs, for
better understanding, in this section we formally describe the EADA [4] algorithm,
which is used to perform dependence analysis on static programs only. We will
demonstrate an application of the EADA algorithm on the static program depicted
in Figure 1.2(a).

The goal of the dependence analysis is to determine if evaluation of a statement de-
pends on evaluation of other statements and to find these evaluations. For example,
in the SANLP program depicted in Figure 1.2(a), the purpose of the dependence
analysis is to find whether statement S3 depends on statements S1 or S2 via array
y and at which iterations. Or in other words, for every element of array y read at
a given iteration of statement S3, the dependence analysis finds which statement,
S1 or S2, and at which iteration it writes data to the given array element. The re-
sult of the analysis forms the dependency relations between iterations of statements
writing/reading to/from the array.

Consider two statements W and R, and operations 〈W,~x〉 and 〈R,~y〉, where the first
operation writes to an array and the second operation reads from it. The operation
〈W,~x〉 is a source for operation 〈R,~y〉 if it satifsies the system of linear (in)equalities (2.5).
Note, that all iteration vectors of operations that satisfy this system form a convex
domain.

QWR(~y) = {~x | ~x ∈ D(W), (c1)

IW(~x) = IR(~y), (c2)

〈W,~x〉 ≺ 〈R,~y〉}. (c3)

(2.5)

The first constraint (c1) states that the source iteration ~x has to exist, i.e., it has to
belong to the iteration domain of statement W. The constraint (c2) specifies that if

2.4 Exact Array Dataflow Analysis 27

there is a dependency between two operations, both have to access the same array el-
ement. To access an array element, operation 〈W,~x〉 uses an affine indexing function
IW() and operation 〈R,~y〉 uses an affine indexing function IR(). The (c3) constraint
determines an order of operations, i.e., source operation 〈W,~x〉 has to be evaluated
before operation 〈R,~y〉.

There might be many operations of a single statement satisfying system (2.5), i.e.,
writing to the same array element. However, only the “last” writing operation is
the source for operation 〈R,~y〉. Therefore, the source operation is the lexicographical
maximum between all operations satisfying system QWR(~y):

KWR(~y) = lexmax{QWR(~y)}. (2.6)

So far, operations of only single statement have been considered, while there might
be several statements W1,. . . ,Wm writing to the same array element. In this case, all
pairsW1/R,. . .Wm/R have to be considered. The actual source is the “last” operation
between all operations of all statements:

σ(〈R,~y〉) = lexmax{〈Wk,KWkR(~y)〉 | k ∈ [1,m]}. (2.7)

For example, consider the program in Figure 1.2(a). There are two statements, S1
and S2 writing to array y and one statement S3 reading from that array. Therefore,
we consider two pairs S1S3 and S2S3. For each pair we build the system of linear
inequalities (2.5) as depicted in Table 2.1 (seeQS1S3((i3, j3)) andQS2S3((i3, j3))). With
(i3, j3), we denote the iteration vector (i, j) of statement S3.

QS1S3((i3, j3)) QS2S3((i3, j3))

1 ≤ k ≤ M 1 ≤ i2 ≤ N ∧ i2 ≤ j2 ≤ M∧ (c1)

j2 ≤ 2

k = j3 j2 = j3 (c2)

true 〈S2, (i2, j2)〉 ≺ 〈S3, (i3, j3)〉 (c3)

Table 2.1: Examples of system (2.5) for S1S3 and S2S3 statements.

Finding lexicographical maximums, KS1S3() and KS2S3(), of the systems in Table 2.1
means to solve the Parametric Integer Linear Problems (PILPs) depicted in Table 2.2.
The solution to find the maximum point for a given convex domain is based on
the dual simplex method [16] that is implemented in open-source libraries such as
isl [17], Parma Polyhedral Library [18], and PIPLib [19].

The source operation σ(〈S3, ()〉) is found by determining the lexmax betweenKS1S3()
andKS2S3()which is another PILP problem. Finally, the source operation σ(〈S3, (i3, j3)〉)
for the data read by statement S3 can be written in the following form:

28 CHAPTER 2. BACKGROUND

Objective: lexmax{(i3, j3)} lexmax{(i3, j3)}

subject to: QS1S3((i3, j3)) QS2S3((i3, j3))

Table 2.2: PILP problems for pairs S1S3 and S2S3.

σ(〈S3, (i3, j3)〉) =

∣

∣

∣

∣

∣

∣

∣

∣

if j3 ≤ 2

then 〈S2, (i3, j3)〉

else 〈S1, (j3)〉.

(2.8)

Both branches of the if-statement in Solution (2.8) shown above represent solutions
of the PILP problems formulated in Table 2.2. The if-condition is derived by finding
the lexicographical maximum by Equation 2.7. Solution (2.8) can be interpreted as
follows: the source of the data for statement S3 of the program in Figure 1.2(a) can
be two statements – the source is statement S1 when the iterator j of S3 is greater
than 2, otherwise, the source is statement S2.

2.5 Fuzzy Array Dataflow Analysis

As explained in Section 1.3, it is impossible to apply the EADA dependence analy-
sis algorithm to dynamic programs. However, there exists an enhanced version of
the EADA algorithm called Fuzzy Array Dataflow Analysis (FADA) [37, 38]. FADA
allows for the compile-time dependence analysis of programs where arbitrary if-
conditions and while-loops are allowed. We formally describe FADA because it is an
important part of our parallelization approaches presented in the following chapters.

In order to simplify the explanation of the FADAalgorithm, we split our presentation
in 2 parts. In the first part, we formally present the application of the FADA analysis
on programs containing dynamic if-conditions only. In the second part, we present
an application of the FADA algorithm on programs containing while-loops only. In
general, the FADA algorithm combines both methods.

I. dynamic if-conditions

Consider two statement W and R of a dynamic program. Operation 〈W,~x〉 writes
to and operation 〈R,~y〉 reads from the same array. Moreover, let statement W be
surrounded by a data-dependent if-condition. As a running example, consider Fig-
ure 1.5(a): statements S2 and S3 are W and R, respectively, and the if-condition at
line C surrounding statement S2 is a data-dependent condition.

In Section 2.4, it has been shown that in order to have two operations 〈W,~x〉 and
〈R,~y〉 of a static program dependent, they have to comply to the system of linear

2.5 FADA 29

inequalities (2.5). In the same way, to find whether operation 〈W,~x〉 is a source for
operation 〈R,~y〉 in a dynamic program, the following system of linear inequalities is
built:

QWR(~y,~α) = {~x | ~x ∈ D(W),~x =~α, (c1)

IW(~x) = IR(~y), (c2)

〈W,~x〉 ≺ 〈R,~y〉}. (c3)

(2.9)

The meaning of constraints (c2) and (c3) is the same as in system (2.5): operations
should access the same array element and the writing operation should occur before
the reading operation. We will explain the meaning of constraint (c1). As statement
W is surrounded by data-dependent if-condition, exact operations of W cannot be
determined at compile-time. Thus, for any reading operation 〈R,~y〉 it is impossible
to determine the exact source operation. The idea of the FADA algorithm is to in-
troduce a parameter which would hide unknown information, i.e., a parameter is
used to indicate at which iteration a writing operation 〈W,~x〉 may occur. It is un-
known exactly at which iteration points ~x ∈ D(W) writing to the array occurs, but
it is assumed that this happens for iterations ~x = ~α, where ~α is a free parameter
vector whose values have to be determined at run-time. Because source operations
satisfying system (2.9) are not exact, we call them approximated sources.

Similarly to the EADA algorithm, only the “last” writing operation is the source for
〈R,~y〉. Therefore, the source operation is the lexicographical maximum between all
operations satisfying system QWR(~y,~α):

KWR(~y,~α) = lexmax{QWR(~y,~α)}. (2.10)

Finally, the FADA algorithm considers all statements W1, . . . ,Wm which write to the
same array element. For each Wk, k ∈ [1..m], the approximated sources (2.10) are
found. Finally, the source operation is found by combining all approximated sources
as shown in (2.11). The procedure covering in depth the combination of all approxi-
mated sources is described in-depth in [37, 38].

σ(〈R,~y〉,~α) = lexmax{〈Wk,KWkR(~y)〉| k ∈ [1,m]}. (2.11)

For example, consider the program depicted in Figure 1.5(a). There are two state-
ments S1 and S2 writing to array y[] and one statement S3 which reads from it.
For every pair S1S3 and S2S3, the systems of linear inequalities (2.9) are built which
are depicted in Table 2.3. For pair S1S3 all operations of statement S1 are known
and thus, a parameter is not introduced (see system QS1S3((i3, j3)) in Table 2.3).
However, for pair S2S3 (see system QS2S3((i3, j3), (αi, αj))), the parameter vector
~α = (αi, αj) is introduced. This parameter vector is needed as statement S2 is sur-
rounded by the dynamic if-condition at line C in Figure 1.5(a) and, thus, exact op-
erations of S2 cannot be determined at compile-time. These parameters are used to

30 CHAPTER 2. BACKGROUND

designate at which iteration of S2 a writing to the array y[]may occur. Values of the
parameters are determined at run-time.

QS1S3((i3, j3)) QS2S3((i3, j3), (αi, αj))

1 ≤ k ≤ M 1 ≤ i2 ≤ N ∧ i2 ≤ j2 ≤ M∧ (c1)

i2 = αi ∧ j2 = αj

k = j3 j2 = j3 (c2)

true 〈S2, (i2, j2)〉 ≺ 〈S3, (i3, j3)〉 (c3)

Table 2.3: Examples of system (2.9) for S1S3 and S2S3 statements.

Approximated sources KS1S3() and KS2S3() are found by solving the parametric in-
teger linear problems (PILPs), similar to the ones presented in Table 2.2. Finally,
the source operation defined in Equation (2.11) is determined by the recurrent algo-
rithm of combining direct dependencies described in Section 5.2 of [37]. Therefore,
the source operation for statement S3 is:

σ(〈S3, (i3, j3)〉, (αi, αj)) =

∣

∣

∣

∣

∣

∣

∣

∣

if i3 ≥ αi ∧ j3 = αj

then 〈S2, (αi, αj)〉

else 〈S1, (j3)〉.

(2.12)

From Solution (2.12) above, it can be seen that for any read operation 〈S3, (i3, j3)〉
there are two data sources: statements S1 or S2. When for a given iteration (i3, j3)
of statement S3, at least one of the previous evaluations of the condition at line C
in Figure 1.5(a) was true, then parameter αi ≤ i3 and, parameter αj = j3, thus,
the source is statement S2. Otherwise, the source is statement S1. In contrast to
Solution (2.8), Solution (2.12) is approximated, because it depends on parameters
(αi, αj) that are determined at run-time.

II. while loops

Consider again two statements W and R of a dynamic program. Operation 〈W,~x〉
writes to and operation 〈R,~y〉 reads from the same array. Moreover, statement W is
enclosed in a while-loop at depth d. As a running example, consider Figure 1.5(c):
statements S2 and S3 are W and R, respectively; statement S2 is enclosed in the
while-loop at depth 1. The iteration vector of statement S2 is ~x = (i,w). To find
whether operation 〈W,~x〉 is a source for operation 〈R,~y〉, the following system of
linear inequalities is built:

2.5 FADA 31

QWR(~y, (~α, β)) = {~x | ~x ∈ D(W),~x[1..d] =~α,

1 ≤ ~x[d+ 1] ≤ β (c1)

IW(~x) = IR(~y), (c2)

〈W,~x〉 ≺ 〈R,~y〉}. (c3)

(2.13)

The meaning of constraints (c2) and (c3) is the same as in system (2.5): operations
should access the same array element and the writing operation should occur before
the reading operation. We will explain the meaning of constraint (c1). As statement
W is surrounded by a while-loop, exact operations of W cannot be determined at
compile-time. Thus, for any reading operation 〈R,~y〉 it is impossible to determine
the exact source operation. The idea of the FADA algorithm is to introduce param-
eters which would hide unknown information, i.e., parameters are used to indicate
at which iteration a writing operation 〈W,~x〉 may occur. We do not know exactly at
which iteration ~x ∈ D(W) writing to the array occurs, but we assume that this hap-
pens for iterations ~x[1..d] =~α and 1 ≤ ~x[d+ 1] ≤ β. Vector ~x[1..d] is built of iterators
enclosing the while-loop, and iterator ~x[d+ 1] is the while-loop iterator. Parameter
vector~α captures the values of loop iterators enclosing the while-loop, and parameter
β indicates the upper bound of the while-loop, i.e., we introduce a parameter vector
(~α, β). Both parameters are free parameters which values have to be determined at
run-time. Because source operations satisfying system (2.13) are not exact, we call
them approximated sources.

Similar to systems (2.10) and (2.11) the following systems define the source opera-
tion.

KWR(~y, (~α, β)) = lexmax QWR(~y, (~a, β)). (2.14)

σ(〈R,~y〉, (~α, β)) = lexmax{〈Wk,KWkR(~y, (~α, β))〉 | k ∈ [1,m]}. (2.15)

To illustrate this algorithm, consider the WLAP depicted in Figure 1.5(c). There are
two statements S1 and S2 writing to array y[] and one statement S3 which reads
from it. For every pair S1S3 and S2S3 the systems of linear inequalities (2.13) are
built. The systems are depicted in Table 2.4. To capture all evaluations of statement
S2, the new iterator w is introduced which corresponds to the while-loop at line 8.
For pair S1S3 all operations of statement S1 are known and thus, a parameter is
not introduced (see system QS1S3(i3) in Table 2.4). However, for pair S2S3 (see sys-
tem QS2S3(i3, (α, β)) in Table 2.4), new parameters α and β are introduced as shown
in system (2.13), because statement S2 is surrounded by the while-loop at line 8 in
Figure 1.5(c) and, thus, exact operations of S2 cannot be determined at compile-time.
These parameters are used to designate at which iteration of S2 a writing to the array
y[]may occur. Values of the parameters are determined at run-time.

Approximated sources in S1S3 and S2S3 pairs are found by solving the parametric
integer linear problems (PILPs) formulated similar to Table 2.2. Again, as in the

32 CHAPTER 2. BACKGROUND

QS1S3(i3) QS2S3(i3, (α, β))

1 ≤ i1 ≤ N 1 ≤ i2 ≤ N∧ (c1)

i2 = α ∧ 1 ≤ w ≤ β

i1 = i3 i2 = i3 (c2)

〈S1, i1〉 ≺ 〈S3, i3〉 〈S2, (i2,w)〉 ≺ 〈S3, i3〉 (c3)

Table 2.4: Examples of system (2.13) for S1S3 and S2S3 pairs.

previous section, the source operation defined in Equation 2.15 is determined by
the recurrent algorithm of combining direct dependencies described in Section 5.2
of [37, 38]. Therefore, the source operation for statement S3 is:

σ(〈S3, i3)〉, (α, β)) =

∣

∣

∣

∣

∣

∣

∣

∣

if i3 = α ∧ β ≥ 1

then 〈S2, (α, β)〉

else 〈S1, i3〉.

(2.16)

From Solution 2.16 above, we see that for any read operation 〈S3, i3〉 there are two
data sources: statements S1 or S2. When for a given iteration i3 of statement S3,
there is an iteration of statement S2: (i2,w) = (α, β), such that for i3 = α there
was at least one iteration of the while-loop, i.e., β ≥ 1, then the source is statement
S2. Otherwise, the source is statement S1. Solution 2.16 is approximated, because it
depends on parameters (α, β) that are determined at run-time.

2.6 Communication model identification in PPNs de-

rived from static programs

In this section, we consider important definitions and theory used in the Lineariza-
tion step of the procedure of PPN derivation illustrated in Figure 1.2(b). In this step
the multi-dimensional arrays are linearized and the communication models of all
Producer/Consumer (P/C) pairs are identified. In order to understand our contri-
bution presented in Chapter 5, we explain the communication model identification
procedure on an example where a SANLP program is translated into a PPN.

Applying the EADAdependence analysis on the static program shown in Figure 1.2(a)
allows to generate the PPN as shown in Figure 1.2(d). This PPN has three processes
and two FIFO channels that connect processes via ports p1–p4. Thus, there are two
P/C pairs: P1/P3 and P2/P3.

According to Definition 2.3.5, relations between reading/writing of processes in a
P/C pair are expressed by the mapping functions. A mapping function in a P/C

2.6 Communication model identification in PPNs derived from static programs 33

pair gives for each iteration of a statement corresponding to a Consumer process,
the iteration of a statement corresponding to a Producer process. For example, for
the P1/P3 pair shown in Figure 1.2(d) connected via ports p1 and p3, the mapping
function and its domain are:

fp3p1 : Z2 → Z : k = (0 1)

(

i3

j3

)

,

D(fp3p1) = D(IPDp3) = {(i3, j3) ∈ Z |1 ≤ i3 ≤ j3, 2 < j3 ≤ 4},

(2.17)

and for P2/P3 pair connected via ports p2 and p4, the mapping function is:

fp4p2 : Z2 → Z2 :

(

i2

j2

)

=

(

1 0

0 1

)(

i3

j3

)

,

D(fp4p2) = D(IPDp4) = {(i3, j3) ∈ Z|1 ≤ i3 ≤ 2, i3 ≤ j3 ≤ 2}.

(2.18)

The graphical representations of mapping functions (2.17) and (2.18) are illustrated
in Figure 1.3(b). This figure depicts the iteration domains of statements S1, S2 and
S3 which correspond to processes P1, P2 and P3 using the coordinate systems. The
points on the coordinate systems designate the evaluations of statements and the
arrows reflect the data dependency relations. The numbers at the points show the
lexicographical order of statement evaluations. For pair P2/P3, mapping function
fp2p4 shown in Equation (2.18) maps points 1,2 and 5 from iteration domain of port
p4 of statement S3 to points 1,2 and 5 of statement S1.

In Section 1.1.2, we explained that the communication model of a channel depends
on the order of firings of the Producer and Consumer processes. We define the or-
dering in the communication models of a P/C pair as follows:

Definition 2.6.1 (in-order,out-of-order)
A P/C pair is in-order iff the mapping function f preserves the token order, i.e.,

every two Consumer iteration points y1, y2 ∈ LmP(D(f))∧ y1≪y2 are mapped onto
two Producer iteration points x1 = f (y1) and x2 = f (y2) such that x1≦x2. If a P/C
pair is not in order we call it out-of-order.

The LmP(D(f)) set used in Definition 2.6.1 is defined as follows:

Definition 2.6.2 (Lexicographically minimal Preimage,LmP)
Lexicographically minimal Preimage (LmP) is a set of the Consumer iteration points ym
that read the tokens from the Producer for the first time. LmP is found by solving
the following Integer Linear Problem:

objective : subject to :

ym = lexmin{ f−1(x)},

{

y ∈ D(f),

x = f (y).

34 CHAPTER 2. BACKGROUND

For example, in Figure 1.4(b), the LmP is marked by the dashed box and according to
Definition 2.6.1 this P/C pair is in-order. Similarly, for our running example shown
in Figure 1.3(b), the LmP corresponds to the dashed box and the communication
model of a P/C pair formed by statement S2 and S3 is in-order.

The definition of multiplicity in a P/C pair given below we take from [14].

Definition 2.6.3 (multiplicity)
AP/C pair iswithoutmultiplicity iff themapping function f is injective, i.e., ∀ y1, y2 ∈

D(f)) s.t. y1 6= y2 ⇒ f (y1) 6= f (y2). Otherwise we say that the P/C pair is with
multiplicity.

For example, in our running example shown in Figure 1.3(b), we see that there are at
least two different iteration points of S3 which correspond to a single iteration point
of S1. Therefore, the P/C pair formed by statements S1 and S3 has a multiplicity.

To analytically determine the communication type of an arbitrary P/C pairs in Fig-
ure 2.3 the Reordering Problem (RP) and the Multiplicity Problem (MP) are specified
which correspond to Definitions 2.6.1 and 2.6.3, respectively.











y1, y2 ∈ LmP(D(f)),

y1≪y2,

f (y1)≫ f (y2).

(a) Reordering Problem (RP)











y1, y2 ∈ D(f), (c1)

y1 6= y2, (c2)

f (y1) = f (y2). (c3)

(b)Multiplicity Problem (MP)

Figure 2.3: Reordering and Multiplicity Problems in static programs.

The RP and MP problems are integer linear problems (ILP), meaning that if, for ex-
ample, there is an integer solution satisfying RP, then the communication model is
out-of-order. Otherwise, the the communication model is in-order. Similarly, if there is
an integer solution satisfying MP, then the communication model iswith-multiplicity,
and otherwise the communication model is without-multiplicity. For example, ac-
cording to these problems, communication models of P/C pairs P1P3 and P2P3 in
Figure 1.3(b) are IOM and IO, respectively.

Chapter 3
Automated Generation of
Polyhedral Process Networks
from
Affine Nested-Loop Programs
with Dynamic Loop Bounds

In this chapter, we introduce a first approach for automated translation of affine
nested loop programswhich contain relaxation I, i.e., dynamic loop bounds (Dynloop),
into input-output equivalent Polyhedral Process Networks (PPNs). We developed
this approach in order to address an important question: whether static restrictions
on loop bounds in Static Affine Nested Loop Programs (SANLPs) can be relaxed
while keeping the ability to perform compile-time analysis and to derive PPNs in an
automated way. Achieving this would significantly extend the range of applications
that can be parallelized in an automated way.

Recall, that in Section 1.1 we briefly introduced the main steps needed to translate a
static sequential application into a PPN. Additionally, in Section 1.3 we showed that
this approach cannot be used on dynamic applications. In this chapter we develop a
new approach elaborating in more detail on the new models and techniques that are
used in parallelization of a Dynloop program.

36 CHAPTER 3. DYNLOOP

1 parameter N 1 10;

2 for j = 1 to N,

3 for i = 1 to f(...),

S1: y[i] = F1()

5 endfor

6 endfor

S2: [...] = F2(y[5])

(a) Dynloop program

step4

step1

step3

step2

Dependence Analysis

WDP

dSAC

program
Dynloop

Polyhedral Process Network

program

(b) Parallelization approach

Figure 3.1: An example of a Dynloop program and an approach that translates
Dynloop into PPNs.

3.1 Solution Overview

The high-level overview of the approach is illustrated in Figure 3.1(b). It starts with
an application written as a sequential program that has dynamic loop bounds simi-
lar to one depicted in Figure 3.1(a). We have found out that a Dynloop program can
be formally represented as aWeakly Dynamic Program (WDP). Therefore, in the first
step of the approach, the initial Dynloop program is represented as a WDP. For WDP
programs we can employ the Fuzzy Array Dependence Analysis (FADA) [37, 38]
technique, described in Section 2.5. The analysis, which constitutes the second step
of the approach, helps to extract the dependent memory accesses and present an ini-
tial program in a form where data dependencies are made explicit. In Section 1.3
we showed that in a Dynloop program exact data dependency patterns are unknown
at compile time. The FADA analysis allows to parameterize (or approximate) such
data dependency patternswith parameterswhich values are determined at run-time.
In the third step, based on the results of the FADA dependence analysis, the initial
sequential program is translated into a dynamic Single Assignment Code (dSAC) rep-
resentation of the WDP program. The dSAC was proposed in [21] as an extension
of the Single Assignment Code [4]. A dSAC program is input-output equivalent to
the corresponding WDP and it has the property that every data variable or an array
element is written at most once. This implies that some variables may not be written
at all. We derive a dSAC program using the FADA algorithm, therefore, parameters
introduced by FADA are present in the dSAC as well. The values of these parame-
ters in dSAC are assigned using control arrays. The generation of the control arrays
has been studied in [21], whereas, in this chapter, we present an extension to this
procedure. Similar to the SAC, the dSAC can be represented in Polyhedral Reduced
Dependence Graph (PRDG) [15] form. In the fourth step, the topology of the corre-

3.2 Step 1 (Dynloop-to-WDP) 37

sponding PPN is derived, as well as the code executed in each process. Recall, that
the PRDG model still exploits (multi-)dimensional arrays for data communication.
However, the target model, Polyhedral Process Networks, requires FIFO channels
as communication medium. Therefore in this step, the multi-dimensional memory
accesses are converted into managed dataflow over FIFO queues.

In the remaining part of this chapter we describe the four steps in greater detail. We
illustrate the proposed solution approach using the example shown in Figure 3.1(a).
Additionally, in Section 3.6 we discuss how the buffer sizes are computed in the
resulted PPN. In Section 3.7, we present an analysis which estimates the execu-
tion overhead introduced in the PPNs derived from programs with dynamic loop
bounds. Finally, in Section 3.8 we present the conclusions.

3.2 Step 1 (Dynloop-to-WDP)

Consider the Dynloop program in Figure 3.1(a). In this program, the upper bound of
the for-loop at line 3 is determined by an arbitrary function f (. . .). The upper bound
of the inner loop i may change at every iteration of the outer loop j but cannot be
changed on iterations of i. More importantly, the values of the upper bound are
unknown at compile-time as they are determined at run-time by f ().

In order to be able to apply our solution approach, we assume that the range of the
values that function f () may have is finite. This is particularly true for all programs
that execute in finite memory, i.e., the programs we are interested in.

Then, without altering the functionality, we modify the initial Dynloop program to
the program shown in Figure 3.2(a). Such modification is general and applicable to
any Dynloop program. First, we substitute the upper bound of the loop at line 3 in
Figure 3.1(a) with a constant equal to the maximum value of f (), denoted by max_f,
see line 4 in Figure 3.2(a). For example, for the program in Figure 3.2(a), in order
for the 5th element of array y[] to be read at line 10, the value of max_f should be
greater than 5. We will use max_f ≥ 5 in the rest of the chapter.

In general, the value of max_f can be determined in 4 different ways:

1. provided by the application/program developers (e.g., by using pragmas in
the code);

2. calculated by analyzing the arrays’ capacity and indexing functions;

3. deduced by studying the ranges of function f ();

4. by taking the maximum of the data type used to declare the loop iterator.

For example, consider method (2) above. Assume that the capacity of the array y[]
is 100 elements. Then, by taking into account the array indexing function at line 4

38 CHAPTER 3. DYNLOOP

in Figure 3.1(a) and that the program is correct, we can calculate that the maximum
value of iterator i and, consequently the max_f equals to 100.

Second, we introduce an array X[] used to capture the values of the dynamic upper
bound at run-time. That is, the elements of X[] are written by function f () at line 3 in
Figure 3.2(a), just before the for-loop. The same array elements are used in evaluat-
ing the if-condition at line 5 in Figure 3.2(a), which preserves the original program
behavior. This newly created program belongs to the class of the weakly dynamic
programs (WDPs). Since the loop bounds of the program in Figure 3.2(a) are fixed
and known at compile-time, we can apply the FADA algorithm on this program to
perform dependence analysis.

1 parameter N 1 10;

2 for j = 1 to N,

3 X[j] = f(...)

4 for i = 1 to max_f,

5 if i <= X[j],

S1: y[i] = F1()

7 endif

8 endfor

9 endfor

S2:[] = F2(y[5])

(a) Newly created WDP program

1 parameter N 1 10;

2 for j = 1 to N,

3 X[j] = f(...)

4 for i = 1 to max_f,

5 if i <= X[j],

S1: y_1[j,i] = F1();

7 endif

8 endfor

9 endfor

10 if c1 <= N && c2 == 5,

11 in_0 = y_1[c1,c2]

12 else

13 in_0 = 0

14 endif

S2:[] = F2(in_0)

(b) Initial dSAC

Figure 3.2: A WDP program equivalent to the Dynloop program in Figure 3.1(a) and
its corresponding dSAC.

The formal description of the FADA algorithm has been given in Section 2.5. In the
following section, we demonstrate only the application of FADA on our running
example.

3.3 Step 2 (FADA analysis)

The WDP program in Figure 3.2(a) has two statements S1 and S2 which commu-
nicate through array y[]. Statement S2 is not enclosed in any loops, therefore its
iteration vector is empty, i.e., an operation of statement S2 is written as 〈S2, ()〉. Ac-
cording to FADA, for pair S1S2, we build the system of linear inequalities shown in
Table 3.1 which corresponds to Equation 2.9. Constraint (c1) in Table 3.1 describes
all possible source iterations of statement S1, i.e., its iteration domain. The vector of
parameters (αj, αi) stores the iteration point (j1, i1) of statement S1 where writing to
array y[]may occur.

The system shown in Table 3.1 is used to formulate a PILP problem specified by

3.3 Step 2 (FADA analysis) 39

QS1S2((αj, αi))

1 ≤ j1 ≤ N ∧ 1 ≤ i1 ≤ max_f (c1)

j1 = αj ∧ i1 = αi

i1 = 5 (c2)

true (c3)

Table 3.1: An example of system (2.9) for S1S2 pair.

Equation (2.10). After solving the PILP problem, the approximated source operation
defined in Equation 2.11 for statement S2 is:

σ(〈S2, ()〉, (αj, αi)) =

∣

∣

∣

∣

∣

∣

∣

∣

if αj ≤ N ∧ αi = 5

then 〈S1, (αj, αi)〉

else ⊥ .

(3.1)

From Solution 3.1 above, we see that for read operation 〈S2, ()〉 there is one data
source. If, for at least one iteration (j1, 5) of statement S1, the condition at line 5 in
Figure 3.2(a) is evaluated to true, then the source is statement S1. Otherwise, the
source for y[5] is undefined and statement S2 will use the initial value of y[5]. For
the sake of brevity, the initialization of array y[] is omitted in the example.

The graphical representation of Solution 3.1 is illustrated in Figure 3.3. This figure
shows the iteration domain (j, i) of statement S1 in one possible instance of the dy-
namic program shown in Figure 3.2(a). It is assumed that N = 10 and max_f = 10.
Black dots represent the iterations when statement S1 is executed at run-time, i.e.,
the if-condition at line 5 evaluated to true. The vector of parameters (αj, αi) points
at the last operation of the source statement 〈S1, (j1, i1)〉 which will be needed by
the read operation 〈S2, ()〉. For the example in Figure 3.3, the last writing to y[5]
occurred when j = 8 and i = 5. Therefore, (αj, αi) = (8, 5).

3.3.1 Initial dSAC

The solution provided by FADA is used to modify the WDP program in order to
capture the identified dependencies in an explicit way. The result of the modifi-
cation for our running example is shown in Figure 3.2(b) which is in a dynamic
single-assignment-code (dSAC) form. The dSAC is an extension of the SAC [4]. In
contrast to SACwhere every variable is written exactly once, in dSAC every variable
is written at most once. This implies that some of the variables may not be written at
all.

Based on Solution 3.1, we modify the WDP in Figure 3.2(a) and generate the dSAC

40 CHAPTER 3. DYNLOOP

4

9

1097 85 6321
0

1

2

3

4

5

6

7

8

10

last write

j

i

max_f

y[5]

N=10

(αj, αi)

Figure 3.3: Representation of Solution 3.1 for the instance of the program in Fig-
ure 3.2(a).

in Figure 3.2(b) by inserting the code lines 10-14 shown in Figure 3.2(b). This code is
needed to implement array element accesses such that the dependencies identified
by FADA are respected. For example, the if-condition at line 10 implements Solu-
tion 3.1. Recall that when the if-condition evaluates to true, then the source of the
data is statement S1. This is captured at line 11. Otherwise, statement S2 will use
the initial value of y[5]. Assume that in our example, y[5] has been initialized to
zero. Therefore, at line 13, the input argument for statement S2 has been set to zero
as well.

Recall that to deal with a dynamic if-condition, for every pair of statements the
FADA algorithm introduces vector of parameters that corresponds to the iteration
vector. In our example, there are two parameters (see line 10 in Figure 3.2(b)) which
are reflected in the following way. Parameter c1 corresponds to αj. It is related to
iterator j and may have values c1 ∈ [1..N]. Parameter c2 corresponds to αi. It is
related to iterator i and may have values c2 ∈ [1..max_f]. The meaning of the param-
eter values in this program is to indicate the last iteration of j when function F1()
has been executed at the fifth iteration of i. The values of parameters c1 and c2 are
unknown at compile-time. They are determined at run-time, during the execution of
the program. Therefore, we need a mechanism to generate and propagate the values
at run-time in a way that keeps the correct program behavior.

3.4 Step 3 (Control arrays)

In order to keep the functionality of the dSAC equivalent to the functionality of the
initial WDP, we introduce local and global control arrays that are used to initialize
and propagate values of parameters introduced by FADA at run-time.

3.4 Step 3 (Control arrays) 41

3.4.1 Local control arrays

A local control array is added for the set of parameters introduced by FADA and is
used to store values of the set of parameters for every iteration. We illustrate the idea
of local control arrays on the example in Figure 3.3.

Figure 3.3 depicts the iteration domain (j, i) of statement S1 shown at line 6 in Fig-
ure 3.2(a). Black dots are iterations when statement S1 is executed at run-time, i.e.,
the if-condition at line 5 evaluated to true. Parameters introduced by FADA in the
previous step happen to take up the values of iteration vectors when the last writing
needed by a read operation occurred. It is not possible to determine such iterations
at compile-time. Therefore, we use a local control array to store the values of all
iterations when a source statement is executed (black dots).

1 parameter N 1 10;

2 for j = 1 to N,

3 X[j] = f()

4 for i = 1 to max_f,

5 if i <= X[j],

6 y_1[j,i] = F1()

7 lcl_c1c2[i] = (j,i)

8 endif

9 endfor

10 endfor

11 (c1,c2) = lcl_c1c2[5]

12 if c1 <= N && c2 == 5,

13 in_0 = y_1[c1,c2]

14 else

15 in_0 = 0

16 endif

17 [] = F2(in_0)

(a) Initial dSAC shown in Fig-
ure 3.2(b) with local control ar-
ray

1 parameter N 1 10;

2 for j = 1 to N,

3 X[j] = f()

4 for i = 1 to max_f,

5 if i <= X[j],

6 y_1[j,i] = F1()

7 lcl_c1c2[i] = (j,i)

8 endif

S1: ctrl_c1c2[i] = lcl_c1c2[i]

10 endfor

11 endfor

S2:(c1,c2) = ctrl_c1c2[5]

13 if c1 <= N && c2 == 5,

14 in_0 = y_1[c1,c2]

15 else

16 in_0 = 0

17 endif

18 [] = F2(in_0)

(b) Modified dSAC code with
new global control array

1 parameter N 1 10;

2 for j = 1 to N,

3 X[j] = f()

4 for i = 1 to max_f,

5 if i <= X[j],

6 y_1[j,i] = F1()

7 lcl_c1c2[i] = (j,i)

8 endif

9 ctrl_c1c2_1[j,i] = lcl_c1c2[i]

10 endfor

11 endfor

12 (c1,c2) = ctrl_c1c2_1[N, 5]

13 if c1 <= N && c2 == 5,

14 in_0 = y_1[c1,c2]

15 else

16 in_0 = 0

17 endif

18 [] = F2(in_0)

(c) Final dSAC

Figure 3.4: Examples of the initial dSAC with a local control array, the modified
dSAC with a global control array, and the final dSAC.

For our example in Figure 3.2(b), a new local control array of vectors lcl_c1c2[] is
introduced to the program as shown in Figure 3.4(a). The components of each vector
correspond to parameters c1 and c2 derived by the FADA analysis for pair S1S2.
We use the original index function used with the data variable y, i.e., y[i], to per-
form the access to the local control arrays, i.e., lcl_c1c2[i]. In order to distinguish
iterations where parameters values have been stored, the elements of the control ar-
rays must be initialized with values that are greater than the maximum value of the
corresponding parameters. Recall that for our example, parameter c1 ∈ [1..N] and
c2 ∈ [1..max_f]. Therefore, the corresponding local control array is initialized as
follows:

∀i : 1 ≤ i ≤ max_f : lcl_c1c2[i] = (N+ 1, max_f+ 1). (3.2)

42 CHAPTER 3. DYNLOOP

For the sake of brevity, this initialization is not shown in Figure 3.4(a). Writing to the
local control array is performed just after function F1(), see line 7 in Figure 3.4(a).
This guarantees that when the function is executed, the current iteration vector is
stored in the control array.

The values of the local control array are propagated and assigned to the parameters
c1 and c2 at line 11. These parameters are used to evaluate the conditions at line 12
which determine the source of the data for function F2(). With the introduction of
the local control array to the program shown in Figure 3.4(a), this program is input-
output equivalent to the program in Figure 3.2(a).

3.4.2 Global control arrays

Unfortunately, introducing local control arrays to the dSAC code violates the prop-
erty that "every variable is written at most once”. For example, local control array
lcl_c1c2[i] that initializes parameters c1 and c2 at line 11 in Figure 3.4(a) is not in
a single assignment form, i.e., elements of lcl_c1c2[i]may be written more than
once (see line 7). Therefore, the program in Figure 3.4(a) is not in a dSAC form. In
order to be able to create a process network, as discussed later in Step 4, and most
importantly, to create the FIFO channels used for transferring data, the correspond-
ing data variables/arrays must be in a single assignment form. Below, we explain
how such control array is transformed into a single assignment form.

In order to represent the program in Figure 3.4(a) as dSAC, we need to identify the
relation betweenwriting to and reading from the control array. Thus, we need to per-
form dataflow analysis for the local control array, where the writings to the control
array occur inside a block surrounded by a dynamic if-condition. We achieve this
in the following way. While keeping the same functionality, we modify the program
by introducing and additional global control array (ctrl_c1c2[]) outside the block
surrounded by the dynamic if-condition, see lines 9 and 12 in Figure 3.4(b). This
program is input-output equivalent to the program in Figure 3.4(a). The new control
array is written (line 9) at every iteration of the for-loops and takes the same values
as the local control array lcl_c1c2[]. Consequently, we can perform the static ex-
act array dataflow analysis (presented in Section 2.4) on control array ctrl_c1c2[].
We can always do this, because the introduced new array is not surrounded by the
dynamic if-condition.

QS1S2()

1 ≤ j1 ≤ N ∧ 1 ≤ i1 ≤ max_f (c1)

i1 = 5 (c2)

true (c3)

Table 3.2: An example of system (2.5) for the control arrays at lines 9 and 12.

3.5 Step 4 (PPN generation) 43

For the EADA analysis we need to build a system of linear inequalities as it has been
shown in Section 2.4. The system for pair S1S2 at lines 9 and 12 from Figure 3.4(b) is
built in Table 3.2. Recall, that max_f is a scalar and in this example we assume that
max_f ≥ 5. After finding the maximum of the system according to Equation (2.7),
the final solution and the source operation is:

σ(〈S2, ()〉) = 〈S1, (N, 5)〉.

Based on this solution, we replace the original one-dimensional array ctrl_c1c2[],
see lines 9 and 12 in Figure 3.4(b), with two-dimensional array ctrl_c1c2_1[,]
shown at lines 9 and 12 in Figure 3.4(c). The program in Figure 3.4(c) is in a dSAC
form because the new global control array ctrl_c1c2_1[] used to initialize param-
eters c1 and c2 is in a single assignment form. This dSAC is the final input-output
equivalent representation of our running example which is the Dynloop program in
Figure 3.1(a). We use this final dSAC to generate a process network which is ex-
plained in the next section.

3.5 Step 4 (PPN generation)

In this step of our solution approach, we describe how the processes and FIFO chan-
nels are created from the corresponding final dSAC program. The dSAC specifica-
tion has an equivalent polyhedral representation called Polyhedral Reduced Depen-
dence Graph (PRDG) [15] form. This representation can be used for code generation
for each process [14]. For the illustrative purposes, instead of polyhedral model we
will use the dSAC form to demonstrate how processes of a PPN are generated.

Recall that according to Definition 2.3.1, a PPN consists of autonomous processes
that communicate data in a point-to-point fashion over bounded FIFO channels. A
process of a PPN consists of a target function, input ports and output ports. The tar-
get function specifies how data tokens from input streams are transformed to data
tokens to output streams. The input and output ports are used to connect a process
to FIFO channels. Data read from the input ports is used to initialize the function
arguments. Data produced as a result of the function execution is written to the out-
put ports. Section 2.1.1 demonstrated how a process can be compactly represented
mathematically using the Polyhedral ReducedDependence Graph (PRDG) [15]. This
polyhedral representation is used to generate node domains (see Definition 2.3.2)
and input/output port domains (see Definition 2.3.3 and Definition 2.3.4).

The procedure for PPN generation from the final dSAC consists of 3 substeps. First,
based on the final dSAC representation of a Dynloop program derived in the previ-
ous step, the topology of the PPN is created. The topology is created by instantiat-
ing processes and communication channels. Second, the internal code structure of
each process is derived from the final dSAC specification. It is important to note,
that in this substep, the created communication channels are not FIFOs but multi-
dimensional arrays. Third, the multi-dimensional arrays that are used for data com-
munication between function statements in the final dSAC are replaced by FIFO

44 CHAPTER 3. DYNLOOP

channels. In other words, we replace the multi-dimensional array accesses in the
code of each process with a read/write primitives to implement synchronization
through blocking read/write on FIFO channels. This substep is called Linearization.
Below, we explain the three substeps in more detail using the final dSAC in Fig-
ure 3.4(c).

3.5.1 Topology creation of a PPN (substep 1)

P1 P2 P3
X[j]

ctrl_c1c2_1[j,i]

y_1[j,i]

Figure 3.5: The topology of the PPN derived from the dSAC in Figure 3.4(c).

The PPN corresponding to the dSAC in Figure 3.4(c) is shown in Figure 3.5. This
PPN consists of 3 processes and 3 communication channels. We explain how these
processes and communication channels are created. In our approach, a process is
created for every function statement in the dSAC program. Therefore, the PPN in
Figure 3.5 has three processes: process P1 corresponds to function f () at line 3 in
Figure 3.4(c), process P2 corresponds to function F1() at line 6, and process P3 corre-
sponds to F2() at line 18 in the same figure. The three communication channels cor-
respond to arrayswhich are in a single assignment form in the dSAC in Figure 3.4(c).
These arrays are: one-dimensional array X[j] at line 3 and 5 in Figure 3.4(c), two-
dimensional data array y_1[j,i] at lines 6 and 14, and one two-dimensional control
array ctrl_c1c2_1[j,i]at lines 9 and 12 in the same figure. Recall that array X[j] is
in a single assignment form because of the way we introduced this array in Step 1 of
our solution approach. Array y_1[j,i] is the single assignment form of array y[i]
derived by applying the FADA analysis on the WDP program in Figure 3.2(a) as de-
scribed in Step 2 of our solution approach. The control array ctrl_c1c2_1[j,i] is
introduced and transformed into a single assignment form in Step 3 of our solution
approach. In the following substep, we describe how the internal code structure of
each process is created.

3.5.2 Internal code structure generation (substep 2)

Consider Figure 3.6 where the internal code structures of processes P1, P2 and P3 of
the PPN in Figure 3.5 are shown. Below we explain how these code structures are
derived from the corresponding dSAC specification depicted in Figure 3.4(c).

The Node domain of a process introduced by Definition 2.3.2 is the iteration domain
of a corresponding statement in the dSAC program. For example, the node domain
of process P2 is formed by the iteration domain of function F1 defined by lines 2,
4, and 5 in Figure 3.4(c). Additionally, the code accessing data and control arrays is

3.5 Step 4 (PPN generation) 45

8 endfor
9 endfor

Process P1

3 in_0 = y_1[c1,c2]

4 else

5 in_0 = 0

6 endif

7 [] = F2(in_0)

1 (c1,c2) = ctrl_c1c2_1[N,5]

2 if c1 <= N && c2 == 5,

Process P3

y_1[j,i]

2 X[j] = f();

3 endfor

1 for j = 1 to N,
X[j]

2 for i = 1 to max_f,

4 y_1[j,i] = F1()

5 lcl_c1c2[i] = (j,i)

3 if i <= X[j]

1 for j = 1 to N,

6 endif

7 ctrl_c1c2_1[j,i] = lcl_c1c2[i]

Process P2

ctrl_c1c2_1[j,i]

Figure 3.6: The internal code structure of each process in the PPN derived from the
dSAC in Figure 3.4(c).

added to the code of a process. For example, lines 6–11 are added to the internal code
structure of process P2 shown in Figure 3.6. Similarly, the internal code structure of
processes P1 and P3 are formed by lines 2–3 and 12–18, respectively, from the dSAC
shown in Figure 3.4(c).

3.5.3 Linearization (substep 3)

At this point, the processes of the PPN communicate data via multi-dimensional
arrays. In this substep, we explain how the multi-dimensional arrays are replaced
with FIFO channels. This process is called Linearization.

2 read(i2, in_2)

1 read(i1, in_1)

5 else

6 in_3 = 0

7 endif

8 [] = F2(in_3)

4 in_3 = in_2

3 if in_1−>j <= N && in_1−>i == 5,

Process P2Process P1

o1

1 for j = 1 to N,

2 out_1 = f();

3 write(o1, out_1);

4 endfor

i1
1 for j = 1 to N,

3 for i = 1 to max_f,

4 if i <= in_1,

5 y_1[j,i] = F1()

6 lcl_c1c2[i] = (j,i)

7 endif

8 if j == N && i == 5

9 out_1 = lcl_c1c2[i]

10 out_2 = y_1[lcl_c1c2[i]−>j, lcl_c1c2[i]−>i]

19 endfor

12 write(o2, out_2)

11 write(o1, out_1)

13 endif

14 endfor

2 read(i1, in_1)

i2

i1

o2

o1

Process P3

Figure 3.7: The final PPN derived from the program in Figure 3.1(a).

In the PPN depicted in Figure 3.6, processes are connected with communication
channels which are the multi-dimensional arrays used in the dSAC shown in Fig-
ure 3.4(c). However, as explained in Section 1, the processes in a PPN communi-
cate via FIFOs and synchronize using a blocking read/write on an empty/full FIFO
channel, i.e., an execution of a process is suspended if it tries to read from an empty
FIFO channel, or tries to write to a full channel, respectively. Therefore, in order
to generate a PPN, the multi-dimensional array accesses have to be replaced with
corresponding write and read operations on FIFO channels.

The Linearization is implemented using the approach presented in Chapter 5 of this

46 CHAPTER 3. DYNLOOP

dissertation. While there, the approach is discussed in full details, here, we present
only the summary of the Linearization approach applied to our running example.

The approach presented in Chapter 5 identifies the communication characteristics
of a data exchange in a pair of processes. Based on this information, the multi-
dimensional array accesses are replaced with one-dimensional FIFO accesses. The
result of the linearization applied on the multi-dimensional arrays in Figure 3.6 is
shown in Figure 3.7. In each process, the multi-dimensional arrays accesses are sub-
stituted by read/write primitives from/to FIFO channels. Internally, these read-
/write primitives realize the blocking synchronization between processes. For ex-
ample, writing to the global control array at line 7 of process P2 in Figure 3.6 is
substituted by writing to the FIFO at line 11 in process P2 in Figure 3.7.

The communication read/write primitives access the FIFO channels through ports.
That is, every process has a set of input ports and a set of output ports connected
to FIFO channels. For example, process P2 reads from a single channel via port i1
at line 2 and writes data to two channels via ports o1 and o2 at lines 11 and 12,
respectively. Additionally, we apply the iteration domain reconstruction of ports
described in [14] to avoid transferring more data tokens than needed. For details,
we refer to [14].

3.6 Calculation of deadlock-free buffer sizes

1 for i = 0 to N,

2 a[i] = A()

3 endfor

4 for j = 1 to N,

5 b[j] = B(a[j-1])

6 endfor

7 for k = 1 to N,

8 C(a[k-1],b[k])

9 endfor

(a) Sequential Program

A

B
a

c

b

C

(b) PPN

Figure 3.8: An example of a SANLP program and its PPN graph.

Finally, we discuss how we compute the sizes of FIFO channels that guarantee a
deadlock-free execution of a PPN derived from a Dynloopprogram. First, we explain
the procedure for computing buffer sizes in a PPN derived from a static affine nested
loop program (SANLP). Then, we explain how to use this procedure to compute
buffer sizes for a PPN derived from a Dynloop program.

Computing minimal deadlock-free buffer sizes is a non-trivial global optimization
problem. This problem becomes easier if we first compute a deadlock-free schedule
of the PPN and then compute the buffer sizes for each channel individually. Note
that this schedule is only computed for the purpose of computing the buffer sizes
and is discarded afterwards because the processes in our PPNs are self-scheduled
due to the blocking read/write synchronization mechanism. Although the schedule

3.6 Calculation of deadlock-free buffer sizes 47

we compute may not be optimal, our computations do ensure that a valid schedule
exists for the computed buffer sizes. The schedule is computed using a greedy ap-
proach. This approach may not work for process networks in general, but it does
work for PPNs derived from static affine nested loop programs.

The basic idea is to place all iteration domains in a common iteration space at an
offset such that the dependences in the initial program are respected. The offset is
computed by the scheduling algorithm described in [49]. By fixing the offsets of the
iteration domain in the common space, we have therefore fixed the relative order be-
tween any pair of iterations from any pair of iteration domains. The algorithm starts
by computing for any pair of connected processes, the minimal dependence distance
vector, being the difference between a read operation and the corresponding write
operation. Then, the processes are greedily combined, ensuring that all minimal
distance vectors are (lexicographically) positive. The end result is a schedule that
ensures that every data element is written before it is read. For more information
on this algorithm, we refer to [49], where it is applied to perform loop fusion on
SANLPs.

N−1

N

N

i

k

j

dependence distance

. . .

. . .

. . .

2

1

2

1

0

1

iterations

01 01 01 01

1 1 1 11

01

B

A

C

(a) Representation of data dependencies

b b

C

c c c c cb b b

0 1

a a a aa

. . .2 3
i

N

B

A

common iteration space

(b) Schedule for minimum buffer sizes

Figure 3.9: Representation of the data dependencies between statements on the pro-
gram in Figure 3.8(a), and the global schedule computed for the same program for
minimum buffer sizes.

As an example, consider the sequential program shown in Figure 3.8(a). It results
in the process network in Figure 3.8(b). The data dependencies are depicted in Fig-
ure 3.9(a). The horizontal axes illustrate the single dimension of the iteration do-
mains of the processes (function calls) A, B and C, and the arrows show the data
dependencies. The value of the dependence distances are shown next to each arrow.
As a next step, a valid global schedule is computed by placing (offsetting) processes
together in a way that keeps the distance between write operations and the corre-
sponding read operations minimal.

The result is shown in Figure 3.9(b). In this figure, next to each arrow, we also depict
the names of the FIFO channels used to propagate the corresponding data at each
iteration, e.g., FIFO a is used to propagate data between processes A and B. In the
common iteration space, the horizontal axis represents the single dimension of the
problem and the vertical axis represents the additional dimension that orders the
statements lexicographically.

48 CHAPTER 3. DYNLOOP

To compute the buffer sizes for each FIFO, we compute the number of read iterations
R(i) that are executed before a given read operation i and subtract the resulting ex-
pression from the number of write iterationsW(i) that are executed before the given
read operation:

#elements in FIFO at operation i : W(i)− R(i)

This computation can be performed entirely symbolically using the barvinok li-
brary [50] that efficiently computes the number of integer points in a parametric
polytope. The result is a piecewise (quasi-)polynomial in the read iterators and the
parameters. Then, the required buffer size is the maximum of this expression over
all read iterations:

FIFO size = max
i

(W(i)− R(i))

To compute the maximum symbolically, we apply the Bernstein expansion [51] to
obtain a parametric upper bound on the expression.

Below, we show how the buffer sizes are computed based on the schedule in Fig-
ure 3.9(b). Consider FIFO a. Let the number of elements written to the FIFO by
process A before iteration i is denoted as Wa

A(i) and the number of elements read
from the same FIFO by process B before iteration i is denoted as R a

B (i). Then, for
every iteration i, i ∈ [1,N], we compute the differenceWa

A(i)− R a
B (i) and assign the

maximum difference as the buffer size of FIFO channel a. For example, consider the
fourth iteration of the common iteration spaces (i = 3). Then:

Wa
A(3) = 3,

R a
B (3) = 2,

Wa
A(3)− R a

B (3) = 3− 2 = 1.

Due to the uniform data dependences in the example,Wa
A(i)− R a

B (i) = 1, ∀i ∈ [1,N]
and consequently the size of FIFO channel a = max(Wa

A(i) − R a
B (i)) = 1. In the

same way, we compute the buffer sizes of the remaining FIFOs, i.e.,

size of FIFO channel b = max(Wb
B(i)− R b

C (i)) = 0,
size of FIFO channel d = max(Wc

A(i)− R c
C(i)) = 1.

If some of the computed FIFO buffer sizes equal to zero, then size 1 is assigned to all
such FIFO channels.

In contrast to PPNs derived from SANLPs, the PPNs derived from Dynloops con-
tain two types of channels: control and data FIFO channels. Control channels realize
dependencies between global control arrays presented in Step 3 (see Section 3.4.2).
These dependencies are defined by the static part of a Dynloop program. There-
fore, for control channels we can apply the procedure for computing buffer sizes
described above. For example, the control arrays at lines 9 and 12 in Figure 3.4(c) are
global and we can use the method described above to compute buffer sizes.

3.7 Overhead Analysis 49

Data channels realize data dependencies between function statements of a Dynloop

program. In contrast to SANLP programs, in Dynloop programs some statements
are guarded by dynamic if-conditions. Consequently, the iteration domains of these
statements as well as the rate and the exact amount of data tokens that will be trans-
ferred over the corresponding data channels are unknown at compile-time. There-
fore, we cannot use directly the method described above to compute buffer sizes. To
be able to handle the dynamism of Dynloop programs we have to follow a conser-
vative strategy, i.e., we have to calculate buffer sizes such that to provide enough
space to run any possible instances of the dynamic program. There is always one
instance of a dynamic program that requires the largest buffer sizes. It is the in-
stance when the iteration domains of input/output ports of all FIFO channels are
the largest. These iteration domains are the largest when the dynamic if-condition
that determine these domains evaluate to true. In our procedure for calculating
FIFO buffer sizes in channels derived from a Dynloop program, we modify the it-
eration domains of input/output ports of all FIFO channels, such that all dynamic
if-conditions defining any of these iteration domains evaluate always to true. This
means in practice, that we ignore/remove the dynamic if-conditions from the FIFO
calculation. Therefore, again we can apply the procedure described above to the
resulted channels.

3.7 Overhead Analysis

In this section, we discuss the overhead in the generated process networks, which
results from the proposed approach for systematic parallelization of sequential pro-
grams with dynamic loop bounds. There are two types of overhead in the generated
process networks, i.e., memory and execution time overhead. The memory over-
head is due to the introduced control arrays, as well as, the created dataflow and
control FIFO channels. It highly depends on the characteristics of the application
being parallelized (see Section 6.1, Memory overhead and Table 6.2). Therefore, it is
very difficult to be analyzed systematically. However, we can systematically analyze
the execution time overheadwhich is introduced by the approachwe propose in this
chapter. This overhead is caused by the execution of some ’dummy’ iterations not
present in the initial sequential program. Below, we discuss this overhead in details.
Recall that in our approach, we substitute a dynamic upper loop bound with the
maximum value (max_ f) that the bound may have during the execution of the pro-
gram. Then at run-time, the actual number of iterations at which a function executes
is determined by the behavior of the application and the current value of the dy-
namic loop bound. This means that if the actual number of executions (x) is smaller
than the maximum number, then the corresponding process performs (max_ f − x)
’dummy’ iterations. The overhead,we consider, is the time spent in performing these
“dummy” iterations.

It is important to note that it is difficult to determine the exact amount of the over-
head because it depends on values which are determined and change at run-time.
Below, we define the overhead and determine how it varies for particular range of

50 CHAPTER 3. DYNLOOP

its terms. Assume thatmax_ f is the maximum value of a dynamic loop bound and x
represents the actual number of iterations in which a process executes its associated
function. When a function executes, it takes Wx time units. Performing a ’dummy’
iteration takes W time units, respectively. This is the time spent in one iteration but
not executing the corresponding function. Then, for any given values of max_ f , x,
Wx , andW, the total execution time (Tex) is:

Tex = x(Wx +W) + (max_ f − x)W, (3.3)

where x(Wx +W) is the time spent on real computation (Treal) and (max_ f − x)W is
the extra time spent performing ’dummy’ iterations. Consequently, we can compute
the introduced execution overhead as follows:

Tex
Treal

=
x(Wx +W) + (max_ f − x)W

x(Wx +W)
= 1+

(max_ f − x)W

x(Wx +W)
,

where the percentage of the execution overhead (Ovhd) is:

Ovhd =
(max_ f − x)W

x(Wx +W)
· 100 =

(max_ f − x)

x
·

W

(Wx +W)
· 100 [%] (3.4)

Equation 3.4 shows that the overhead depends on two ratios. The first one,
(max_ f−x)

x ,
depends on i) the application characteristics, which determine max_ f , and ii) the ex-
ecution behavior, which determines the values of x at run-time. The second ratio is
related to the computation performed by a process (executed on a particular proces-
sor) as it represents the ratio between the time to perform a ’dummy’ iteration and
the time spent on actual computing. Figure 3.10 illustrates the amount of overhead
for the following ranges of the two ratios in Equation 3.4:

1. 0 ≤
max_ f − x

x
≤ 2 ⇒ for any value of max_ f ,

max_ f

3
≤ x ≤ max_ f ;

2. 0.01 ≤
W

Wx +W
≤ 0.5⇒ for any value ofW,W ≤ Wx ≤ 99·W.

These ranges capture the characteristics for awide spectrum of applications and their
behavior. Moreover, our experience shows that if a particular application has suffi-
cient inherited parallelism, then the approach we propose to parallelize sequential
programs with dynamic loop bounds can lead to performance speed-up if the two
ratios stay within the specified ranges above.

In case x = max_ f , there is no overhead (see the right part of Figure 3.10) because
there are no ’dummy’ iterations to be executed (max_ f − x = 0). Then, by decreasing
the value of x, the overhead increases. The rate of the increase is determined also by

the value of
W

Wx +W
. The values of this ratio used in the figure capture functions

3.7 Overhead Analysis 51

with low and high workload. The lowest workload we consider is Wx = W, i.e., the
time to execute the corresponding function is equal to the time of a ’dummy’ iteration
(see the back plane of the figure). We use such a low workload to illustrate some
extreme values of the overhead. For example, when Wx = W and x = max_ f/2
the maximum overhead is 50%. The combined effect of both ratios leads to 100%
overhead when Wx = W and x = max_ f/3, see the left part of Figure 3.10. In
contrast, functions with high workload, i.e., 50·W ≤ Wx ≤ 99·W, lead to very low
overhead. For example, even if x = max_ f/3, the introduced overhead is around
5-10% as it can be observed at the bottom-left part in the figure. This indicates that
the approach we propose is not sensitive to functions with high workloads.

W=Wx

x=
m

ax f/
2

x=
m

ax f
x=

m
ax f/

3

 0
 0.5

 1
 1.5

 2

(maxf-x)/x
 0.01

 0.1

 0.2

 0.3

 0.4

 0.5

W/(Wx+W)

 0

 20

 40

 60

 80

 100

O
v
e
rh

e
a
d
 [
%

]

Figure 3.10: The amount of introduced overhead.

For easier evaluation of the overhead values, we plot the percentage overhead as
a color map in Figure 3.11. From this figure, it is seen that overhead above 35% is
present only in 1/4 of the cases. In addition, 1/16 of the cases, see the areawith over-
head ≥ 80%, correspond to functions with very low workload and a large number
of ’dummy’ iterations. For the other 3/4 of the cases, we would like to emphasize

on the following two areas. First, if the ratio
max_ f − x

x
is smaller than 0.25, then

the granularity of the executed functions does not affect the overhead, which is be-
low 10%, see the dark vertical strip on the left part of the figure. This indicates also
that for light-weight functions, the overhead will be small if the executed iterations
are close to the max_ f value. Similarly, in case of functions with high workload
(50·W ≤ Wx ≤ 99·W), the number of ’dummy’ iterations that are executed does
not affect the overhead, which again is below 10% – see the dark horizontal strip at

52 CHAPTER 3. DYNLOOP

Overhead [%]

 0 0.5 1 1.5 2

(maxf-x)/x

 0.01

 0.1

 0.2

 0.3

 0.4

 0.5

W
/(

W
x
+

W
)

 0

 20

 40

 60

 80

 100

Figure 3.11: Overhead’s color map.

the bottom of Figure 3.11. The second area covers almost half of the plot, see the
arc-shape stripe in the middle of Figure 3.11. This area shows that even with a large
variety of the values of both ratios, the overhead is kept below 35%, which is rela-
tively low. This area also shows that such overhead can be achieved even if one of

the ratios goes to its extreme value. For example, 35% overhead is achieved if W
Wx+W

reaches its maximum value of 0.5 and
max_ f−x

x = 0.7.

3.8 Discussion and Summary

In this chapter, we presented a first approach for automated translation of affine
nested loops programswith dynamic loop bounds (Dynloop) into input-output equiv-
alent polyhedral process networks (PPNs). The problem of deriving a Process Net-
work specification from a sequential program in a systematic and automated way
has been addressed by many researchers. The work in [14, 30, 52] reports techniques
for automated derivation of Kahn Process Networks (KPNs) [7] from applications
specified as static affine nested loop programs (SANLPs). The main property of
such programs is that everything about the program execution is known at compile-
time. However, the static restriction limits the applicability of these approaches, i.e.,
these approaches cannot be applied to the applications that have adaptive and dy-
namic behavior, such as multimedia applications (MPEG coders/decoders, Smart
Cameras, Software Radio), adaptive filters, iterative algorithms, etc. If some of the
static restrictions of the SANLPs could be relaxed while keeping the ability to derive
PPNs in an automated way, this would significantly extend the range of applica-
tions that can be parallelized in an automated way. This inspired the work in [21]
where an approach for KPN derivation fromWeakly Dynamic Programs (WDP) has
been developed. WDPs aremore relaxed than the SANLP class of applications where
if-conditions might be dependent on some information that is unknown at compile-

3.8 Discussion and Summary 53

time and may change at run-time. In this chapter, we further extended the class of
applications to Dynloop programs from which the PPN specification can be derived
in an automated way.

Although, the execution of a Dynloop program is not known completely at compile
time, we have shown in this chapter that still a Dynloop program can be analyzed
and transformed into a PPN in a formal, systematic and structured way. To do this,
we demonstrated how a Dynloop program can be formally represented as a WDP,
we employed the Fuzzy Array Dataflow Analysis (FADA) technique, the dynamic
Single Assignment Code form and demonstrated how to set the values of parameters
introduced by FADA.

In a PPN derived from a Dynloop program we distinguish two types of communi-
cation FIFO channels depending on the purpose of the communicated data: 1) data
FIFO channelswhere computational data used/generated by function calls (tasks) ex-
ecuted inside processes is communicated; 2) control global FIFO channels where data
that controls the internal sequential behavior of processes is communicated. By se-
quential behavior of a process we mean the sequential order of execution of function
calls inside the process.

The control FIFO channels appear in a PPN derived froma Dynloopprogrambecause
the behavior of Dynloop is not know completely at compile-time. The unknown
behavior has to be resolved at run-time in the PPN and the control FIFO channels
are used to communicate the necessary data to do this. Control FIFO channels do
not appear in case a PPN is derived from a static program. This means that the
presence of control FIFO channels introduces extra workload and communication
overhead that are the consequences of the dynamic nature of the initial application.

Most of the methods and techniques of our approach presented in this chapter have
been prototyped in the pn [48] compiler and tested on a small set of Dynloop pro-
grams. Besides this small set and the running example from this chapter, the ap-
proach and the prototype software have been applied and validated successfully on
a real-life application called Low Speed Obstacle Detection (LSOD). The analysis of
a PPN derivation from this application is presented in Chapter 6.

The approach presented in this chapter includes only basic techniques that we have
developed in order to derive a PPN automatically from a Dynloop program. The re-
sults we have obtained from the LSOD application indicated that as a future work
some optimization techniques have to be added to the approach that will help im-
proving the quality of the generated PPNs in terms of optimal partitioning of the
computation and communication workloads of a Dynloop program over processes
and channels in the PPN.

54 CHAPTER 3. DYNLOOP

Chapter 4
Automated Generation of
Polyhedral Process Networks
from
Affine Nested-Loop Programs
with While-loops

In this chapter, we present a first approach for automated translation of affine nested
loop programswhich contain relaxation II, i.e.,while-loops (WLAP), into input-output
equivalent Polyhedral Process Networks (PPNs). We developed this approach in
order to further extend the range of applications that can be parallelized in an au-
tomated way. This approach can be automated and implemented efficiently in a
compiler that will help to reduce significantly the time for parallelizing sequential
programs.

Recall, that in Section 1.1 we briefly introduced the main steps needed to translate a
static sequential application into a PPN. Additionally, in Section 1.3 we showed that
this approach cannot be used on dynamic applications. In this chapter we develop a
new approach elaborating in more detail on the new models and techniques that are
used in parallelization of programs containing while-loops.

The rest of this chapter is organized as follows. In Section 4.1, we present a real-
life application that requires while-loop for specification. Further, starting with Sec-
tion 4.2 until Section 4.6, we present the approach for translation WLAP programs
into equivalent PPNs in more detail elaborating on the new models and techniques
that are used in parallelization. Finally, in Section 4.7, the conclusions are presented.

56 CHAPTER 4. WHILE-LOOPS

4.1 Motivating example

As a motivating example, we use a real-life application from the signal processing
domain called Adaptive Beamforming (AB) [25]. With the description of the AB
application below, we present a program that has the specific dynamic behavior we
consider in this chapter, and we outline the problems introduced by this behavior.

Adaptive Beamforming is a signal processing technique which performs adaptive
spatial signal processing with an array of antennas in order to transmit or receive
signals in different directions without having to mechanically steer the array. The
main property of the AB is the ability to adjust its performance tomatch the changing
signal parameters. Figure 4.1(a) illustrates the AB application. Signals from three
antennas are constantly fed into an adaptive filter where they are processed together
with adaptive coefficients (ACs) w1�w3. ACs are needed to adjust the signals and are
recalculated for new signals received from the antennas. This propertymakes the AB
application to bewidely used in communications to point an antenna at the changing
signal source to reduce interference and improve communication quality. That is
why the AB is an important part of modern wireless communication standards, such
as IEEE 802.11n (Wifi), 4G, WiMAX, etc.

[w1, w2, w3]

A
n

te
n

n
a

s Adaptive Filter

SVD

(a) Adaptive beamforming application

1 M = HouseHolder(M)

2 while (F(M)),

3 M = QR(M)

4 endwhile

(b) An example of a WLAP program: the SVD
algorithm

Figure 4.1: Adaptive Beamforming and the SVD [53] algorithm.

The most computationally intensive part of the AB application is the Singular Value
Decomposition (SVD) algorithm. The SVD algorithm performs a factorization of a
matrix and is used to produce ACs for the adaptive filter shown in Figure 4.1(a).
Pseudo-code of the SVD algorithm is illustrated in Figure 4.1(b). First, a matrix
is reduced to a bidiagonal form by the Householder transformation at line 1, and
then, the result is diagonalized using an iterative QR algorithm at line 3. Iterative
QR is an eigenvalue algorithm, and it is an example of a program which has dy-
namic control. The program requires a while-loop at line 2 in Figure 4.1(b), as calcu-
lated values iteratively converge to eigenvalues until desired precision determined

4.2 Solution Overview 57

by function F() is achieved. The number of iterations to converge is unknown at
compile-time. Since the SVD algorithm cannot be specified as a static program or a
program with dynamic if-conditions considered in [21] or for-loops with dynamic
bounds considered in [26,27] and Chapter 3, the pn compiler [3] as well as techniques
from [21, 26, 27] and Chapter 3 are unable to handle the program in Figure 4.1(b).
Therefore, in this chapter, we propose a solution approach to this problem by intro-
ducing a novel procedure for automated translation of affine nested loops programs
with while-loops (WLAP) (see Definition 2.2.4) into input-output equivalent PPNs.

Handling the dynamic behavior of while-loops is more difficult compared to dy-
namic if-conditions [21] and for-loops with dynamic bounds (Chapter 3). A for-loop
with dynamic loop bounds can be replaced by dynamic if-condition with some
modifications as it has been shown in [26, 27] and Chapter 3. However, a while-
loop cannot be replaced by a for-loop with dynamic bounds. Information about the
number of iterations of a while-loop is unknown until the loop has been finished.
Whereas the number of iterations of a for-loop with dynamic bounds is known just
before the loop starts to execute. This absence of information in awhile-loop requires
much more advanced analysis compared to analysis of for-loops. In this chapter,
we demonstrate the analysis of while-loops in order to translate WLAPs into input-
output equivalent PPNs.

step3

step2

step1

Dependence Analysis

dSAC

Polyhedral Process Network

program
WLAP

(a) Parallelization approach

1 parameter EPS 0.005

2 for i = 1 to N,

S1: y[i] = F1()

S2: x = F2(y[i])

W: while (x >= EPS)

S3: x = F3()

7 for j = i+1 to N+1,

S4: y[j] = F4(y[j-1])

S5: x = F5(x, y[j])

10 endfor

S6: y[i] = F6(x)

12 endwhile

S7: out = F7(x)

14 endfor

(b) A complex example of a WLAP pro-
gram.

Figure 4.2: An approach that translates WLAP program into PPNs and a complex
example of a WLAP program.

4.2 Solution Overview

The high-level overview of the approach is illustrated in Figure 4.2(a). It starts with
an application written as a sequential program that has while-loops similar to one
depicted in Figure 1.5(c). First, we find all data-dependency relations in the initial
WLAP program by applying the Fuzzy Array Dependence Analysis (FADA) [37,38]

58 CHAPTER 4. WHILE-LOOPS

on it. This analysis, described in Section 2.5, helps to extract the dependent mem-
ory accesses and represent an initial program in a form where data dependencies
are made explicit. In Section 1.3 we have shown that in a WLAP program exact data
dependency patterns are unknown at compile time. The FADA analysis allows to pa-
rameterize (or approximate) such data dependency patterns with parameters which
values are determined at run-time. Second, based on the results of the analysis, we
transform the initial WLAP program into a dynamic Single Assignment Code (dSAC)
representation. dSAC was proposed in [21] as an extension of the SAC [4]. A dSAC
program is input-output equivalent to the initial program and it has the property
that every variable is written at most once. This implies that some variables may not
be written at all. We derive the dSAC program using the FADA algorithm, therefore,
parameters introduced by FADA are present in the dSAC aswell. The values of these
parameters in dSAC are assigned using control variables. The generation of control
variables constitutes the third step of our solution approach. Control variables have
been studied in [21] for programs containing dynamic if-conditions, whereas, in this
chapter, we present an extension to these procedureswhich can be applied onWLAP
programs. In the last fourth step, the topology of the corresponding PPN is derived,
as well as the code executed in each process. In the remaining part of this chapter, we
describe the four steps in more detail and we also illustrate our solution approach
with the example shown in Figure 4.2(b).

QS2S7(i7) QS3S7(i7, α, β) QS5S7(i7, α, β)

1 ≤ i2 ≤ N 1 ≤ i3 ≤ N∧ 1 ≤ i5 ≤ N∧

i3 = α, 1 ≤ w3 ≤ β i5 = α, 1 ≤ w5 ≤ β (c1)

i5 + 1 ≤ j5 ≤ N + 1

— — — (c2)

〈S2, (i2)〉 ≺ 〈S7, (i7)〉 〈S3, (i3,w3)〉 ≺ 〈S7, (i7)〉 〈S5, (i5,w5, j5)〉 ≺ 〈S7, (i7)〉 (c3)

〈S2, (i7)〉

if β ≥ 1 ∧ 1 ≤ α ≤ i7

then 〈S3, (α, β)〉

else ⊥ .

if β ≥ 1 ∧ 1 ≤ α ≤ i7

then 〈S5, (α, β,N + 1)〉

else ⊥ .

S
O
L
U
T
IO

N
S

Table 4.1: Systems of linear inequalities (2.13) for pairs S2S7, S3S7 and S5S7 in the
program in Figure 4.2(b).

4.3 Step 1 (FADA analysis) 59

4.3 Step 1 (FADA analysis)

The formal description of the FADA algorithm has been given in Section 2.5. In this
step of our solution approach, we demonstrate the application of the FADA analysis
on our running example in Figure 4.2(b).

Consider the WLAP program in Figure 4.2(b). An application of the FADA analysis
on this program finds all data dependencies between all functional statements com-
municating data via array y[] and scalar x. We demonstrate in detail the application
of the FADA analysis in order to find source operations for scalar x read in statement
S7. For the other statements, we present the final solutions only and discuss some
important observations.

In order to be able to apply the FADA analysis to the program in Figure 4.2(b), we
have to capture all iterations of the while-loop at line 5 in an explicit way. We asso-
ciate an integer iterator wwith this while-loop. Later, we demonstrate the realization
of this iterator in the code.

The candidate source operations for statement S7 are in statements S2, S3 and S5.
Therefore, in order to find the source operation for statement S7we need to apply the
FADA algorithm presented in Section 2.5 on pairs S2S7, S3S7 and S5S7. According
to FADA, for all these pairs we build the systems of linear inequalities shown in
Table 4.1 which correspond to Equation 2.13. Constraint c1 in Table 4.1 describes all
possible source iterations of statements S2, S3 and S5. Constraint c2 is not stated as
data is communicated via scalar x. Parameters (α, β), store the iteration point (i5,w5)
of statement S5 and iteration point (i3,w3) of statement S3 when writing to scalar x
may occur.

Solutions to the three parametric integer linear problems stated in Table 4.1 are
shown in the last row of Table 4.1. For example, in pair S5S7 the source operation
for x is statement S5 if condition β ≥ 1 ∧ 1 ≤ α ≤ i7 evaluates to true. Otherwise,
the source for x is not statement S5 which is designated by ⊥. In this case, statement
S7 will use either the value of x assigned somewhere else in the code, or the initial
value of x.

Finally, after combining the three solutions in Table 4.1, the approximated source
operation defined in Equation 2.15 for scalar x read in statement S7 is:

σx(〈S7, (i7, α, β)〉) =

∣

∣

∣

∣

∣

∣

∣

∣

if (β ≥ 1 ∧ 1 ≤ α ≤ i7)

then 〈S5, (α, β,N+ 1)〉

else 〈S2, i7〉

(4.1)

From Solution 4.1 above, we see that for read operation 〈S7, (i7, α, β)〉 there are two
possible source operations. Depending on the values of the parameter vector (α, β),
the source operation is either in statement S2 or in statement S5. The values of the
parameter vector will be determined at run-time.

60 CHAPTER 4. WHILE-LOOPS

Similarly, we find the source operations for the other statements. Figure 4.3 shows
the source σ functions only for statements S4, S5, S6 and W that include non-trivial
dependencies that exist in the program in Figure 4.2(b).

σy(〈S4, (i4,w4, j4)〉) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

if (j4 = i4 + 1)

then

∣

∣

∣

∣

∣

∣

∣

∣

if (w4 = 1)

then 〈S1, i4〉

else 〈S6, (i4,w4 − 1)〉

else 〈S4, (i4,w4, j4 − 1)〉

(4.2)

σx(〈S5, (i5,w5, j5)〉) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

if (j5 = i5 + 1)

then

∣

∣

∣

∣

∣

∣

∣

∣

if (w5 = 1)

then 〈S3, (i5,w5)〉

else 〈S5, (i5,w5 − 1,N+ 1)〉

else 〈S5, (i5,w5, j5 − 1)〉

(4.3)

σx(〈S6, (i6,w6)〉) = 〈S5, (i6,w6,N + 1)〉 (4.4)

σx(〈W, (iW ,wW)〉) =

∣

∣

∣

∣

∣

∣

∣

∣

if (wW == 1)

then 〈S2, iW〉

else 〈S5, (iW ,wW − 1,N + 1)〉

(4.5)

Figure 4.3: Source operations for statements S4,S5,S6 and W of the WLAP program
in Figure 4.2(b).

4.4 Step 2 (Initial dSAC)

The solutions provided by FADA are used to transform the initial WLAP program
in order to expose the identified dependencies in an explicit way. The transformed
program shown in Figure 4.4(a) is in dynamic Single Assignment Code (dSAC) form.
The dSAC is an extension of the SAC introduced in [4]. In contrast to SAC where
every variable is written exactly once, in dSAC every variable is written at most once.
This implies that some of the variables may not be written at all.

Based on the solutions in the previous step, we transform the initial WLAP program
in Figure 4.2(b) and generate the dSAC in Figure 4.4(a) by inserting the highlighted
(bolded) code lines into the initial WLAP program. The inserted code is needed
to implement array element accesses such that the data dependences in the initial
program are respected. The Right-Hand Side (RHS) of code lines 7,11,13,17 and 20

4.4 Step 2 (Initial dSAC) 61

1 #parameter EPS 0.005

2 w = 0

3 for i = 1 to N,

S1: y_1[i] = F1()

5 in_2 = y_1[i]

S2: x_2[i] = F2(in_2)

W: while (in_w = σx(〈W , (i,w)〉) >= EPS),
8 w = w + 1

S3: x_3[i,w] = F3()

10 for j = i+1 to N+1,

11 in_4 = σy(〈S4, (i,w, j)〉)
S4: y_4[i,w,j] = F4(in_4)

13 in_5_x = σx(〈S5, (i,w, j)〉)
14 in_5_y = y_4[i,w,j]

S5: x_5[i,w,j] = F5(in_5_x, in_5_y)

16 endfor

17 in_6 = σx(〈S6, (i,w)〉)
S6: y_6[i,w] = F6(in_6)

19 endwhile

20 in_7 = σx(〈S7, (i,α, β)〉)
S7: out = F7(in_7)

22 endfor

(a) Initial dSAC

1 #parameter EPS 0.005

2 w = 0

3 ctrl_x_5 = (N+1,0)

4 for i = 1 to N,

S1: y_1[i] = F1()

6 in_2 = y_1[i]

S2: x_2[i] = F2(in_2)

W: while (in_w = σx(〈W, (i,w)〉) >= EPS),
9 w = w + 1

S3: x_3[i,w] = F3()

11 for j = i+1 to N+1,

12 in_4 = σy(〈S4, (i,w, j)〉)
S4: y_4[i,w,j] = F4(in_4)

14 in_5_x = σx(〈S5, (i,w, j)〉)
15 in_5_y = y_4[i,w,j]

S5: x_5[i,w,j] = F5(in_5_x, in_5_y)

17 ctrl_x_5 = (i,w)

18 endfor

19 in_6 = σx(〈S6, (i,w)〉)
S6: y_6[i,w] = F6(in_6)

21 endwhile

22 (α, β) = ctrl_x_5
23 in_7 = σx(〈S7, (i, α, β)〉)
S7: out = F7(in_7)

25 endfor

(b) Modified dSACwith control variable

Figure 4.4: Examples of the initial dSAC and the modified dSAC with control vari-
ables.

implement the source σ functions depicted in Solution 4.1 and in Figure 4.3 found
by FADA in the previous step of our solution approach. These source σ functions
should be interpreted as code lines determined by Solution 4.1 and the solutions in
Figure 4.3. For example, variable in_5_x at line 13 in Figure 4.4(a) is assigned by
the source σx function defined by Solution 4.3 in Figure 4.3. This solution finds a
source for scalar x read in statement S5 at line 9 in Figure 4.2(b). The whole line 13 in
Figure 4.4(a) should be interpreted as the code in Figure 4.5. The code represents the
σx function defined by Solution 4.3. Similarly, the other σ functions are represented
in the code of dSAC.

if (j == i+1),

if (w == 1),

in_5_x = x_3[i,w]

else

in_5_x = x_5[i,w-1,N+1]

endif

else

in_5_x = x_5[i,w,j-1]

endif

Figure 4.5: An interpretation of σx function for statement S5.

Additionally, we transform the while-loop at line 5 in the initial program in Fig-

62 CHAPTER 4. WHILE-LOOPS

ure 4.2(b) in order to implement data dependency relations for the while-loop’s con-
dition. First, we introduce the iterator w in order to capture all iterations of the while-
loop. This iterator is initialized at line 2 and explicitly incremented at line 8 in Fig-
ure 4.4(a). Second, we replace line 5 in the initial program in Figure 4.2(b) with line
7 in Figure 4.4(a) implementing the same condition function. The source σx func-
tion defined by Solution 4.5 in Figure 4.3 should be interpreted in the same way as
explained above.

Recall that to deal with a while-loop, the FADA algorithm introduces a vector of pa-
rameters to the solutions. In our example, a vector of parameters (α, β) is introduced
at line 20 in Figure 4.4(a) by Solution 4.1. At this line, a source operation for scalar
x read in RHS of statement S7 is determined. Solution 4.1 is approximate, as the po-
tential source statement S5 is inside the while-loop. Parameter α is related to iterator
i and takes values α ∈ [1..N]. Parameter β is related to iterator w and takes values
β ≥ 1. The meaning of the parameter vector values in this program is to indicate the
last iteration (i,w) when statement S5 has been executed. The values of parameters
α and β are determined at run-time, during program execution. Therefore, we need
a mechanism to generate and propagate the values of parameters at run-time in a
way that keeps the correct program behavior.

4.5 Step 3 (Control variables)

In order to keep the functionality of the dSAC equivalent to the functionality of the
initial dynamic program with while-loops, we introduce control variables used to
propagate parameter values at run-time. That is, an array of control variables is
added for every parameter vector introduced by FADA. A control variable is used to
store a parameter vector value for every iteration. For our running example, a new
control variable ctrl_x_5 is introduced at lines 3, 17 and 22 in the program shown
in Figure 4.4(b). It stores parameter vector (α, β), derived by FADA in Step 1 of our
solution approach. To access a control variable, we use the same indexing function as
in the corresponding data array. In our example, the new control variable ctrl_x_5
is a scalar, as it corresponds to the data scalar x.

The control variables must be initialized with values that are never taken by the
corresponding parameters. Recall that for our example, parameter α ∈ [1..N] and
β ≥ 1. Therefore, the corresponding control variable ctrl_x_5 is initialized at line
3 in Figure 4.4(b) as follows: ctrl_x_5 = (N+1,0). Parameter β that corresponds
to the iterator w is always initialized to 0 which indicates that the corresponding
while-loop has not been executed.

Writing to the control variables is performed just after the writing to the correspond-
ing data array. For example, control variable ctrl_x_5 is written right after function
F5(), see line 17 in Figure 4.4(b). This guarantees that when a function is executed,
the current iteration is stored in a control variable. The value of control variable
ctrl_x_5 is propagated and assigned to the parameters α and β at line 22. These
parameters are used to evaluate the source σx function at line 23 corresponding to

4.5 Step 3 (Control variables) 63

Solution 4.1 which determines the source for the data read by function F7 at line 24.
With the introduction of the control variables to the program shown in Figure 4.4(b),
this program is input-output equivalent to the initial program in Figure 4.2(b).

1 #parameter EPS 0.005

2 w = 0

3 ctrl_x_5 = (N+1,0)

4 for i = 1 to N,

S1: y_1[i] = F1()

6 in_2 = y_1[i]

S2: x_2[i] = F2(in_2)

W while (in_w = σx(〈W, (i,w)〉) >= EPS),
9 w = w + 1

S3: x_3[i,w] = F3()

11 for j = i+1 to N+1,

12 in_4 = σy(〈S4, (i,w, j)〉)
S4: y_4[i,w,j] = F4(in_4)

14 in_5_x = σx(〈S5, (i,w, j)〉)
15 in_5_y = y_4[i,w,j]

S5: x_5[i,w,j] = F5(in_5_x, in_5_y)

17 ctrl_x_5 = (i,w)

18 endfor

19 in_6 = σx(〈S6, (i,w)〉)
S6: y_6[i,w] = F6(in_6)

21 endwhile

22 ctrl_x_5_[i] = ctrl_x_5

23 (α, β) = ctrl_x_5_[i]
24 in_7 = σx(〈S7, (i,α, β)〉)
S7: out = F7(in_7)

26 endfor

Figure 4.6: Final dSAC.

4.5.1 Additional control variables

Unfortunately, introducing control variables to the dSAC code violates the property
that "every variable is written at most once”. For example, control variable ctrl_x_5
that initializes parameter vector (α, β) at line 22 in Figure 4.4(b) is not in a single
assignment form, i.e., ctrl_x_5 may be written more than once at line 17. There-
fore, the program in Figure 4.4(b) is not a dSAC anymore, and we cannot create a
FIFO channel from control variable ctrl_x_5. In order to be able to create a process
network, as discussed later in Section 4.6, and most importantly, to create the FIFO
channels used for transferring control and data, the corresponding variables must be
in a single assignment form.

In order to represent the program in Figure 4.4(b) as dSAC, we need to identify the
relation between writing to and reading from the control variables. Thus, we need
to perform dataflow analysis for the control variables, where the writings to them
occur inside a while-loop. We achieve this in the following way. While keeping the
same functionality, we introduce additional control variable ctrl_x_5_ right after
the while-loop, see line 22 in Figure 4.6. This program is input-output equivalent to
the program in Figure 4.4(b). The new control variable is written at every iteration of
for-loop i and takes the value either of control variable ctrl_x_5 assigned on the last

64 CHAPTER 4. WHILE-LOOPS

iteration of the while-loop, or its initial value, if the while-loop is not executed. On
this new control variable ctrl_x_5_we can perform the static exact array dataflow
analysis (EADA) [4]. We can always do this, because the new control variable is not
surrounded by the dynamic while-loop. The solution of EADA is used to modify the
program in Figure 4.4(b) into the program in Figure 4.6 by inserting one-dimensional
arrays ctrl_x_5_[i] at lines 22 and 23. The program in Figure 4.6 is in a dSAC form
because the new control variable ctrl_x_5_[] used to initialize parameter vector
(α, β) is in a single assignment form, thus allowing us to create a FIFO channel to
communicate values of control variable ctrl_x_5_[].

Finally, the program shown in Figure 4.6 is functionally equivalent to our running
example shown in Figure 4.2(b). In the next step, we explain how to generate a
process network from the program in Figure 4.6.

4.6 Step 4 (PPN generation)

Recall that a PPN consists of autonomous processes that communicate data in a
point-to-point fashion over bounded FIFO channels. In this last step of our solu-
tion approach, we describe how the processes and FIFO channels are created from
the corresponding final dSAC program derived in the previous step.

The procedure of PPN generation consists of 4 substeps. First, based on the final
dSAC representation of a WLAP program derived in the previous step, the topol-
ogy of the PPN is created. The topology is formed by instantiating processes and
communication channels. Second, internal code structure of each process is derived
from the dSAC specification. It is important to note, that in this substep, the created
communication channels are not FIFOs but multi-dimensional arrays. Third, the
multi-dimensional arrays that are used for data communication between function
statements in the dSAC are replaced by FIFO channels. In other words, we replace
the multi-dimensional array accesses in the code of each process with a read/write

P1

P2y _ 1 [i]

P4

y _ 4 [i , w , j]

W
x _ 2 [i] P7

x _ 2 [i]

P3
P5

P6

c t r l _ x _ 5 _ [i]

y _ 6 [i , w]

Figure 4.7: PPN representation of the program in Figure 4.6.

4.6 Step 4 (PPN generation) 65

1 #parameter EPS 0.005

2 w = 0

3 for i = 1 to N,

4 while(1),

5 w = w + 1

6 if (w == 1),

7 in_w = x_2[i]

8 else

9 in_w = x_5[i,w-1,N+1]

10 end

11 C[i,w] = (in_w >= EPS)

12 if (!C[i,w]) <break>

13 endwhile

14 endfor

(a) Code of process W

1 w = 0

2 ctrl_x_5 = (N+1,0)

3 for i = 1 to N,

4 while(1),

5 w = w + 1

6 in_w = C[i,w]

7 if (!in_w) <break>

8 for j = i+1 to N+1,

9 if (j == i+1),

10 if (w == 1),

11 in_5_x = x_3[i,w]

12 else

13 in_5_x = x_5[i,w-1,N+1]

14 endif

15 else

16 in_5_x = x_5[i,w,j-1]

17 endif

18 in_5_y = y_4[i,w,j]

S5: x_5[i,w,j] = F5(in_5_x, in_5_y)

20 ctrl_x_5 = (i,w)

21 endfor

22 endwhile

23 ctrl_x_5_[i] = ctrl_x_5

24 endfor

(b) Code of process P5

0 w = 0

2 for i = 1 to N,

3 (α,β) = ctrl_x_5_[i]
4 if (β>=1 && 1<= α <= i),
5 in_7 = x_5[α,β,N+1]
6 else

7 in_7 = x_2[i]

8 endif

S7: out = F7(in_7)

10 endfor

(c) Code of process P7

Figure 4.8: Internal source codes of processesW, S5 and S7.

primitives to implement synchronization through blocking read/write on FIFO com-
munication channels. Fourth, the internal code structures of processes are modified
to avoid the overflow of while-loop iterators which may lead to erroneous behav-
ior of a PPN. Below, we explain the four substeps in more detail using the dSAC in
Figure 4.6.

4.6.1 Substep 1: Topology creation of a PPN

The PPN that corresponds to the program in Figure 4.6 is depicted in Figure 4.7. This
PPN consists of 8 processes and 18 channels. We explain how these processes and
communication channels are created.

In our approach, one process is created for every function statement in the dSAC
program, and one process is created for every while-loop’s condition function. The
latter process is needed to detect a while-loop’s termination and notify the processes
that execute functions enclosed in this while-loop. Therefore, the PPN in Figure 4.7
has 7 processes, P1–P7, that correspond to functions F1–F7 in Figure 4.6; and one
process W which corresponds to the while-loop’s condition function W at line 8 in
Figure 4.6. The 18 communication channels correspond to data and control arrays
in a single assignment form in the dSAC in Figure 4.6. Recall that data arrays in
a single assignment are introduced after application of the FADA analysis on the
WLAP program in Figure 4.2(b) as described in Step 1 of our solution approach. The
control variables, i.e., array ctrl_x_5_[i] is introduced and transformed in a single

66 CHAPTER 4. WHILE-LOOPS

1 #parameter EPS 0.005

2 w = 0

3 for i = 1 to N,

4 while(1),

5 w = w + 1

6 if (w > 2) then w = 2

7 if (w == 1),

8 read(P2, 1, in_w)

9 else

10 read(P5, 2, in_w)

11 end

12 out_w = (in_w >= EPS)

13 write(P3, 3, out_w)

14 write(P4, 4, out_w)

15 write(P5, 5, out_w)

16 write(P6, 6, out_w)

17 if (!out_w) <break>

18 endwhile

19 endfor

(a) Code of process W

1 w = 0

2 ctrl_x_5 = (N+1,0)

3 for i = 1 to N,

4 while(1),

5 w = w + 1

6 if (w > 2) then w = 2

7 read(W, 1, in_w)

8 if (!in_w) <break>

9 for j = i+1 to N+1,

10 if (j == i+1),

11 if (w == 1),

12 read(P3, 2, in_5_x)

13 else

14 read(P5, 3, in_5_x)

15 endif

16 else

17 read(P5, 4, in_5_x)

18 endif

19 read(P4,5, in_5_y)

S5 out_5 = F5(in_5_x, in_5_y)

21 ctrl_x_5 = (i,w)

22 if (j == N+1),

23 write(P5, 6, out_5)

24 else

25 write(P5, 7, out_5)

26 endif

27 endfor

28 endwhile

29 out_5_c = ctrl_x_5

30 out_5_x = out_5

31 write(P7, 8, out_5_c)

32 write(P7, 9, out_5_x)

33 endfor

(b) Code of process P5

1 w = 0

2 for i = 1 to N,

3 read(P5, 1, in_c)

4 if (in_c.β>=1 && 1<= in_c.α <= i),
5 read(P5, 2, in_7)

6 else

7 read(P2, 3, in_7)

8 endif

S7: out = F7(in_7)

10 endfor

(c) Code of process P7

Figure 4.9: ProcessesW, P5, and P7 after linearization of multi-dimensional arrays.

assignment form in Step 3 of our solution approach. In the following substep, we
describe how the internal code structure of each process is generated.

4.6.2 Substep 2: Code generation

Let us consider Figure 4.8, which illustrates the internal code structures of processes
W, P5 and P7 of the PPN in Figure 4.7. Process W is an example of a process de-
tecting the termination of the while-loop at line 5 in Figure 4.2(b). Process P5 is
an example of a process executing a function enclosed in the while-loop. Process
P7 is an example of a process that runs a function outside the while-loop and has a
data dependency with a function inside the while-loop. Below, we will use them as
examples to explain how the internal code structure of each process in the PPN is
generated.

The internal code structure of each process is generated from the dSAC program
derived in Step 3 of our solution approach. The code structure of each process is
extracted from the code lines of the dSAC program. For example, all non highlighted

4.6 Step 4 (PPN generation) 67

(non-bolded) code lines in Figure 4.8 are taken from dSAC in Figure 4.6 expanding
all σ source functions as explained in Section 4.4 and illustrated in Figure 4.5. At
this point, the PPN is not functionally equivalent to the dSAC program because for
processes enclosed in a while-loop the termination problem is not solved yet.

To address this problem, process W is introduced which detects the termination of
the while-loop. This process evaluates the while-loop’s condition function and prop-
agates the result to all processes that execute functions enclosed in this while-loop.
This behavior is implemented in the highlighted (bolded) code at lines 4, 11 and 12
in Figure 4.8(a). Note, that lines 6–10 realize the interpretation of σx function defined
in Solution 4.5 in Figure 4.3. A new array C[i,w] is added to propagate the value
of the while-loop’s condition function via FIFO to other processes. Correspondingly,
we modify the code of process P5 in Figure 4.8(b) at lines 4, 6 and 7, where the infor-
mation about while-loop termination is received and used. As process P7 executes
function F7 which is outside the while-loop, no such modification is needed.

At this point, the processes of the PPN communicate data via multi-dimensional
arrays. In the following substep, we explain how the multi-dimensional arrays are
replaced with FIFO channels. This process is called Linearization.

4.6.3 Substep 3: Linearization

Processes W, P5 and P7 depicted in Figure 4.8 are connected with communication
channels which are the multi-dimensional arrays inherited from the dSAC shown in
Figure 4.6. However, the processes in our target PPN have to synchronize using a
blocking read/write on an empty/full FIFO channel, i.e., an execution of a process
is suspended if it tries to read from an empty FIFO channel, or tries to write to a full
channel, respectively. Therefore, in order to synthesize a PPN, the multi-dimensional
array accesses have to be replaced with corresponding write and read operations on
FIFO channels. This is called “linearization”.

To implement the Linearization, we adapted the approaches proposed in [29,54] and
Chapter 5. In these works, the communication characteristics are identified when
exchanging data between pair of statements. Based on this information, the multi-
dimensional array accesses are replaced with one-dimensional array accesses. The
result of the linearization applied on the arrays used in the internal source codes
of the processes in Figure 4.8 is shown in Figure 4.9. In each process, the multi-
dimensional arrays accesses are substituted by reading/writing primitives from/to
FIFO channels. The communication read/write primitives access the FIFO channels
through ports. That is, every process has a set of input ports and a set of output
ports connected to FIFO channels. For example, process P5 in Figure 4.9(b) reads
from processW and itself via ports 1, 3 and 4 at lines 7, 14 and 17. These input ports
are connected with output port 5 of processes W, and output ports 6 and 7 of pro-
cess P5, correspondingly. Internally, the read/write primitives realize the blocking
synchronization between processes.

Additionally, we want to discuss how buffer sizes in FIFO channels of a PPN de-

68 CHAPTER 4. WHILE-LOOPS

rived from a WLAP program are determined. In our procedure we use the method
of buffer sizes estimation presented in [3] and explained in Section 3.6 of this dis-
sertation. Although this method accepts as an input a PPN derived from a static
program, we explain how we adapt our procedure to use this method.

There are two types of channels in a PPN derived from a WLAP program: control
and data channels. Control channels realize data dependencies between control vari-
ables. These dependencies are static and unique by construction. Therefore, we can
safely use the method from [3] to determine buffer sizes in control channels. Data
channels realize data dependencies between function statements of a program. In
contrast to static programs, in WLAP programs data dependency relations are not
static as some of the statements are enclosed in while loops. Therefore, the rate and
the exact amount of data tokens that will be transferred over a particular data chan-
nel is unknown at compile-time, and we cannot directly use the method from [3] to
determine buffer sizes.

However, with the following observation we are still able to determine buffer sizes.
Consider two cases. First, if data dependency relation exists across a while-loop,
i.e., a source statement is enclosed in the loop and the sink statement is outside, the
while-loop acts as a barrier meaning that only the data from the last iteration of the
while-loop has to be transferred to the sink. Therefore, in the code after a while-loop
we can reconstruct a producer domain based on the data dependency relations with
the data written on the last iteration of the while-loop. Next, we use the method
from [3] to determine the buffer sizes of these data dependency relations. Second, if
a data dependency relation exists between statements which are both enclosed in a
while-loop, then based on Property 1 presented below in Section 4.6.4, and that w is
not used in indexing we can use the method from [3] to determine the buffer sizes.

4.6.4 Substep 4: Implementation of a while-loop’s iterator w

The PPN generated in the previous three substeps has a problem: potentially, iterator
w may overflow the finite set of values determining the data type of the iterator. For
example, if iterator w is specified by a 32-bit integer data type, the overflow may
occur at line 5 in Figure 4.9(a) if the while-loop iterates more than 232 times. As a
consequence, it may lead to erroneous evaluation of the σ functions expanded in the
previous code generation substep, and, finally, to erroneous behavior of a PPN. To
address this problem, we show that it is sufficient to capture only 2 values of iterator
w. To prove this, we use the following Property.

Consider two statements W and R, and operations 〈W,~x〉 and 〈R,~y〉, where the first
operation writes to an array and the second operation reads from the same array.
Both statementsW and R are governed by a while-loop located at depth k.

Property 1 In the solution of the FADA algorithm applied on WR pair, the k+ 1-th
dimension of mapping function M(~y) can be in one of the two forms: ~y[k + 1] and
~y[k+ 1]− 1.

4.7 Discussion and Summary 69

Proof: According to Property 1 in [37, 38], the solution defined by Equation 2.13 in
Section 2.5 is exact, and iterator ~y[k+ 1] associated with the while-loop is present in

sequencing predicate (c3) only. Consider the expressions of Q
p
WR(~y):

• If k < p, then the sequencing predicate includes ~x[1..k+ 1] = ~y[1..k+ 1], and,
thus, the lexicographical maximum of Q

p
WR(~y) along k + 1-th dimension is

~y[k+ 1].

• If k = p, then the sequencing predicate includes ~x[1..k] = ~y[1..k] ∧ ~x[k+ 1] <
~y[k + 1], and, thus, the lexicographical maximum of Q

p
WR(~y) along k + 1-th

dimension is ~y[k+ 1]− 1.

Initially, iterator w which is associated with a while-loop is initialized with value
0. This indicates that the while-loop has never been executed. From Property 1
and the fact, that only non-negative values of w determine source evaluations of
statements enclosed in the while-loop, we conclude that it is needed to capture only
2 values of w: w = 1, meaning that the data dependency is at the same iteration of
the while-loop; and w ≥ 2, meaning that the dependency is at the previous iteration
of the while-loop. The abovementioned reasoning allows us to modify the internal
code structures of processes generated in the previous substep without altering their
functionality. We introduce the code that captures only two values of iterator w. For
example, see lines 6 in Figures 4.9(a) and 4.9(b).

4.7 Discussion and Summary

In this chapter, we presented an approach for automated translation of affine nested
loops programs with while-loops (WLAPs) into input-output equivalent polyhedral
process networks (PPNs). The approach presented in this chapter extended the work
on an automated PPN derivation from a class of dynamic applications with more
relaxed constrained than in Weakly Dynamic Programs (WDPs) presented in [21]
and Dynloop programs presented in Chapter 3.

The work in [21] presented an approach for PPN derivation from Weakly Dynamic
Programs (WDP). WDPs are more relaxed than the static class of applications be-
cause if-conditions might be dependent on some information that is unknown at
compile-time and may change at run-time. In Chapter 3, we presented a first ap-
proach for automated translation of affine nested loops programswith dynamic loop
bounds (Dynloop) into input-output equivalent PPNs. In this chapter, we further ex-
tended the class of applications to WLAP programs from which the PPN specifica-
tion can be derived in an automated way.

The approach of PPN derivation from WLAP programs consists of the similar steps
as the approach of PPN derivation from Dynloop programs: we apply Fuzzy Ar-
ray Dataflow Analysis (FADA) on an initial program, transform the program into a
dSAC specification and demonstrate how the parameters introduced by FADA are

70 CHAPTER 4. WHILE-LOOPS

set at run-time using control variables. Although the approaches of PPN genera-
tion from Dynloop and WLAP programs are similar, still, there are many important
differences.

The first difference is that in order to analytically analyze the evaluation of a while-
loop presented in a WLAP program, a new iterator w is introduced for every while-
loop. An important consequence to this is that more parameters β are introduced to
a dSAC specification and eventually it leads to more control FIFO channels present
in a generated PPN.

The second difference is that in PPNs derived fromWLAP programs we need to de-
tect the termination of a while-loop and notify the processes in a PPN which execute
functions enclosed in this while-loop. In order to handle this notification we intro-
duce extra control channels that distribute the termination data in a specific way.

Another difference is that a PPN generated from a WLAP program has a problem:
potentially, iterator w that corresponds to a while-loop may overflow the finite set of
values determining the data type of the w iterator. In our approach presented in this
chapter, we have shown that it is sufficient to capture only 2 values of iterator w and
have proven this in Property 1 in Section 4.6.4. This property guarantees that we can
implement iterator w in an efficient way that avoids the overflow. We have shown
such implementation in Figure 4.9(a) and Figure 4.9(b).

All the above differences prove one more time that PPN derivation fromWLAP pro-
grams is more difficult than PPN derivation from Dynloop programs. Information
about the number of iterations of a while-loop in aWLAP program is unknown until
the loop has been finished. Whereas the number of iterations of a for-loop with dy-
namic bounds in a Dynloop program is known just before the loop starts to execute.
This absence of information in a while-loop requires much more advanced analy-
sis compared to analysis of for-loops and, ultimately, produces a PPN with larger
overhead.

The approach presented in this chapter includes only basic techniques that have to
be applied in order to derive a PPN automatically from aWLAP program. Although,
leveraging the FADA analysis this approach extracts themaximumparallelism avail-
able in an application, still, some optimization techniques have to be added to the
approach that will help improving the quality of the generated PPNs in terms of
optimal partitioning of the computation and communication workloads of a WLAP
over processes and channels in the PPN. Our approach can be automated and im-
plemented efficiently in a compiler that will help to reduce significantly the time for
parallelizing sequential programs containing while-loops.

Chapter 5
Identifying Communication
Models in Polyhedral Process
Networks derived from Dynamic
Programs

In Section 1.1, we have demonstrated that the Linearization is an important step
of the parallelization approach depicted in Figure 1.2(b). As a result of the Depen-
dence Analysis step, the initial program is translated into its functionally equivalent
Polyhedral Reduced Dependence Graph (PRDG). The storage structure of the ini-
tial application is transformed such that each pair of statements communicates data
over a dedicated multidimensional memory array as shown in Figure 1.2(c). How-
ever, the target model, Polyhedral Process Network (PPN), requires FIFO channel as
communication medium. Therefore, the Linearization step converts such memory
accesses into managed dataflow over FIFO queues.

Mapping array communication onto FIFO channels requires complex address gener-
ators, especially if the arrays have multiple dimensions. Therefore, the Linearization
also solves the Communication Model Identification (CMI) problem, which investi-
gates communication characteristics of each Producer/Consumer (P/C) pair.

In Section 1.1.2, we have demonstrated that there are four possible communication
models that can describe the dataflow in a P/C pair. They are: in-order (IO), out-of-
order (OO), in-order with multiplicity (IOM) and out-of-order with multiplicity (OOM).
Also, we have shown that the realization of different communication models re-
quires different utilization resources (such as memory) and produces different run-
time overhead. The difference in realization puts the communication models into a

72 CHAPTER 5. COMMUNICATION MODELS

hierarchy: from the most general OOM which can realize all communication mod-
els but requires most of the resources, to the specific, for example, IO, which can be
realized as a FIFO in as straightforward way. Therefore, the identification procedure
solves the optimization problem by finding the most optimal realization for each
P/C pair.

In Section 2.6, in Definitions 2.6.1 and 2.6.3 we gave the overview of the Reorder-
ing and Multiplicity problems [14] which are used to identify communication mod-
els while translating static affine nested loop programs into functionally equivalent
PPNs. In this chapter we present our novel compile-time procedure for communi-
cation model identification while translating the dynamic programs defined in Sec-
tion 2.2 into functionally equivalent PPN. This procedure is used in the two paral-
lelization approaches we have presented in Chapter 3 and Chapter 4.

In the following Section 5.1 we give the rationale of the communication model iden-
tification approach which will be presented in Section 5.2. Section 5.3 presents the
conclusions.

5.1 Rationale

The overall challenge of Communication Model Identification while deriving a PPN
from a dynamic program is how to deal with uncertainties introduced by the re-
laxations presented in Section 1.2. In Section 1.3 we have demonstrated that the
approach used for CMI in static programs is inapplicable for dynamic programs.

In this dissertation, we use the PPN model of computation to specify both static
and dynamic programs in parallel form. Therefore, the communication models in
PPNs derived from dynamic programs are the same as in PPNs derived from static
programs. These models are presented in Section 1.1.2.

Because the communication models in PPNs derived from static and dynamic pro-
grams are the same, we could have assumed that in order to identify the commu-
nication model in a P/C pair derived from a dynamic program we can use the RP
and MP presented in Section 2.6. This problems are formulated according to Defini-
tions 2.6.1 and 2.6.3 which give the formal definitions of ordering and multiplicity in
a P/C pair. The key elements of these definitions are the mapping functions which
are used to describe the dependency relations in a P/C pair. The definition of a
mapping function is given in Definition 2.3.5.

However, there is a big difference in dependency relations between dynamic and
static programs. In static programs, different instances of a program correspond to
one and the same single dependency patternwhich is known at compile-time. There-
fore, only one unique set of mapping functions exist for all P/C pairs derived from
a static program. We can observe this in Figure 1.3(b). In contrast to static programs,
in dynamic programs, data dependency patterns correspond to different instances of
a dynamic program, and are unknown at compile time. This has been demonstrated
in Figure 1.6 explained in Section 1.3. Figure 1.6 depicts data dependency relations

5.2 Solution Approach 73

between statements S1, S2 and S3 in three instances of the dynamic program in Fig-
ure 1.5(a) for M = N = 4. An instance of a dynamic program is an evaluation of
the program with a particular input dataset. Figure 1.6 illustrates iteration domains
of statements S1, S2 and S3, where the points on the coordinate systems designate
the evaluations of statements and the arrows reflect the data dependencies between
evaluations. The numbers at the points show the lexicographical order of statement
evaluations.

Similar to static programs, from this figure it can be seen that for every instance
of a dynamic program there is a unique set of mapping functions that determine the
dependency relations between all statements for evaluation of the programwith par-
ticular input data set. However, for different instances of a dynamic programs, there
exist different sets of mapping functions that compensate for unknown, at compile-
time, information inherent to dynamic programs.

To capture all unknown information at compile-time our novel approach is to define
and use parameterizedmapping functions that can be used to describe all possible de-
pendency relations that exist in all instances of a dynamic program. By using these
parameterizedmapping functions, it is possible to analytically identify the most gen-
eral communication model of a P/C pair in all possible instances of a dynamic pro-
gram. Based on this information, the communication of a P/C pair can be realized
with the most general communication model which implements all possible data
dependency patterns occurring in all instances of a dynamic program.

In the following section we will demonstrate how these parameterized mapping
functions are derived and how the parameters are determined at run-time. The
derivation of parameterized mapping functions is our novel contribution.

5.2 Solution Approach

Because, the communication model identification procedure is a part of the Lin-
earization step of the parallelization approaches presented in Chapters 3 and 4, we,
first, briefly recall the main steps of these approaches. To illustrate these steps, we
will use the running example shown in Figure 1.5(a).

The first steps of the parallelization approaches presented in Chapters 3 and 4 use the
dependence analysis in order to extract dependency relations of the initial program.
The Fuzzy Array Dependence Analysis (FADA) [37, 38] is used. The FADA is an
enhanced version of Exact Array Dependence Analysis (EADA) [4] and it is used to
analyze programs with dynamic behavior.

For example, consider the dynamic program depicted in Figure 1.5(a). There are two
statements S1 and S2 writing to array y[] and one statement S3 which reads from
it. Statement S2 is guarded by an if-condition whose values are determined at run-
time. The FADA analysis of this program is described in Section 2.5. The result of
the analysis is given below.

74 CHAPTER 5. COMMUNICATION MODELS

σ(〈S3, (i3, j3)〉, (αi, αj)) =

∣

∣

∣

∣

∣

∣

∣

∣

if i3 ≥ αi ∧ j3 = αj

then 〈S2, (αi, αj)〉

else 〈S1, (j3)〉

(5.1)

From Equation (5.1) it can bee seen that for any reading operation 〈S3, (i3, j3)〉 the
source of the data can be from two different locations. The source is in S1 when for
given j3 none of the previous evaluations of the condition at line C in Figure 1.5(a)
was true. Otherwise, the source is in S2. Parameters αi and αj are introduced by
the FADA algorithm. Parameters are used to hide unknown, at compile-time, infor-
mation and will be determined at run-time. Because the values of parameters are
unknown at compile-time, the result of the dependence analysis (i.e., the source op-
eration) shown in Equation (5.1) is unknown at compile-time either, and the result is
approximated.

Based on the results of the FADA dependence analysis, the initial sequential pro-
gram is translated into a dynamic Single Assignment Code (dSAC) representation of
the initial dynamic program. The dSAC was proposed in [21] as an extension of the
Single Assignment Code [4]. A dSAC program is input-output equivalent to the cor-
responding initial dynamic program and it has the property that every data variable
or an array element is written at most once. This implies that some variables may not
be written at all.

1 for j = 1 to 4,

2 ctrl[j] = (5,5)

3 end

4 for k = 1 to 4,

S1: y_1[k] = F1()

6 end

7 for i = 1 to 4,

8 for j = i to 4,

C: if y_1[j]<=2,

S2: y_2[i,j] = F2()

11 ctrl[j] = (i,j)

12 end

13 c1 = ctrl[j].i

14 c2 = ctrl[j].j

15 if i >= c1 && j == c2,

16 in_0 = y_2[c1, c2]

17 else

18 in_0 = y_1[j]

19 end

S3: [] = F3(in_0)

21 end

22 end

(a) The dSAC form

ctrl[]

P2

P3

P1
p1

p3 p4

p2

p6

p5

y_2[,]

y_1[]

(b) PPN specification

Figure 5.1: An example of a dSAC program and corresponding PPN specification
derived from the program shown in Figure 1.5(a).

5.2 Solution Approach 75

For example, the dSAC form of the program in Figure 1.5(a) derived from Equa-
tion 5.1 is depicted in Figure 5.1(a) where the parameters N and M are set to 4. It
is in dSAC form because if we consider line 10, we do not know at compile-time at
which iteration the elements of array y_2[]will be written. The only thing known is
that they will be written at most once. The other array y_1[] has the same property
as an array in SAC form: every element is written exactly once.

Another property of the dSAC form is the presence of parameters that originate from
the FADA analysis. For example, in Figure 5.1(a) the program variables are c1 and
c2 which correspond to parameters αi and αj in Equation 5.1. In order to make
dSAC to be functionally equivalent to the initial dynamic program, the values of
these parameters have to be changed at run-time.

Parameters are changedwith the help of control variables that store the correct value
of the parameters for every iteration. For example, dynamic change of the values of
c1 and c2 is accomplished by lines 13 and 14. The control array ctrl[] at line 11
stores the iterations for which the data-dependent condition at line C is true. The
control variables must be initialized with values that are greater than the maximum
value of the corresponding parameters. Therefore, the values of control array ctrl[]
are initialized with value (5,5) at lines 1–3 in Figure 5.1(a). Writing to the control
variables is performed just after the functional statement F2(), see line 11 in Fig-
ure 5.1(a). This guarantees that when the function is executed, the current iteration
is stored in the control variables. The values of the control variables are propagated
and assigned to the program variables c1 and c2 at lines 13 and 14. These variables
are used to evaluate the conditions at lines 15 and 16 which determine the source of
the data for function F3().

From the dSAC we can build the topology of the PPN depicted in Figure 5.1(b).
Every functional statement becomes a process, and every variable or array becomes
a channel. For example, lines 4-6 form process P1; lines 1-3 and 7-12 form process
P2; and, finally, lines 7-8, 13-21 form process P3. Processes P1 and P3 are connected
with a FIFO channel via ports p1 and p3. Processes P2 and P3 are connected with
two FIFO channels: the first one (ports p2 and p4) originated from array y_2[,]
for transferring data, and the second channel which originates from control variable
ctrl[], to communicate the outcome of the condition at line C.

5.2.1 Parameterized mapping functions

From the dSAC form and Equation 5.1 we derive parameterized mapping func-
tions which are functions of the Consumer iteration point and vectors of parameters:
f (~y,~α). Vector of parameters ~α is used to uniformly specify a set of unique map-
ping functions which exist for every instance of a dynamic program, thus capturing
the unknown information at compile-time. Values of vector~α will be determined at
run-time during the execution of a PPN.

We define a parameterized mapping function as follows:

76 CHAPTER 5. COMMUNICATION MODELS

Definition 5.2.1 (parameterizedmapping function)
A parameterized mapping function is an affine mapping fpq : Ip → Oq : Oq =
f (Ip,~α), where Ip ∈ IPDp(~α) andOq ∈ OPDq.

For example, for the P1/P3 pair (ports p1-p3) in the PPN shown in Figure 5.1(b), the
parameterized mapping function and its domain are:

fp3p1 : Z4 → Z : k =
(

0 1 0 0
)

(i3, j3, αi, αj)
t,

D(fp3p1) = {(i3, j3, αi, αj) ∈ Z4 | 1 ≤ i3 < αi ≤ 4∨ i3 ≤ j3 6= αj ≤ 4}.

(5.2)

For the P2/P3 pair (ports p2-p4), the parameterized mapping function and its do-
mains are:

fp4p2 : Z4 → Z2 : (i2, j2)
t =

(

0 0 1 0

0 0 0 1

)

(i3, j3, αi, αj)
t,

D(fp4p2) = {(i3, j3, αi, αj) ∈ Z4 | 1 ≤ i3 ≥ αi ≤ 4∧ i3 ≤ j3 = αj ≤ 4}.

(5.3)

Finally, we use the parameterized mapping functions to formulate the Reordering
Problem (RP) and the Multiplicity Problem (MP) used to identify the communication
models in a PPN derived from a dynamic program. This problems are shown in
Figure 5.2 and correspond to Definitions 2.6.1 and 2.6.3, respectively.

The meanings of all constraints in Figure 5.2 are the same as in Figure 2.3. A ma-
jor difference is that parameterized mapping functions are used. The novelty of our
communication model identification procedure is to model unknown information at
compile-time by the parameterized mapping functions.











y1, y2 ∈ LmP(D(f)),

y1≪y2,

f (y1, α1) ≫ f (y2, α2).

(a) Reordering Problem (RP)











y1, y2 ∈ D(f) (c1)

y1 6= y2, (c2)

f (y1, α1) = f (y2, α2). (c3)

(b) Multiplicity Problem (MP)

Figure 5.2: Reordering and Multiplicity Problems for used in communication model
identification in PPNs derived from dynamic programs.

The definition of the LmP set used in Figure 5.2(a) is given in Figure 5.3(a). It is
a parametric integer linear problem (PILP) similar to the problem given in Defini-
tion 2.6.2. The differences between the two formulations of LmP problems are that
in the problem shown in Figure 5.3(a) the mapping function is parameterized and
this problem finds lexicographically minimal Consumer’s iteration points and pa-
rameter vector~α. For example, consider the P2/P3 pair (and its corresponding ports
p2 and p4) formed by statements S2 and S3 from the dSAC shown in Figure 5.1(a).

5.2 Solution Approach 77

The LmP problem for the P2/P3 pair is illustrated in Figure 5.3(b). The solution of
this problem is LmP(D(fp4p2)) = {(i3, j3, αi, αj) ∈ Z4 | i3 = i2 ∧ j3 = j2 ∧ αi =
i2 ∧ αj = j2 ∧ 1 ≤ i2 ≤ j2 ≤ 4}.

objective :

(~ym,~αm) = lexmin { f−1(~x)},

subject to :
{

~y ∈ D(f),

~x = f (~y,~α).

(a) Formulation of the LmP problem



















i3 ≥ αi, j3 = αj,

i2 = αi, j2 = αj,

1 ≤ i3 ≤ j3 ≤ 4,

1 ≤ i2 ≤ j2 ≤ 4.

(b) An example of LmP problem

Figure 5.3: Formulation of the problem with an example used to find Lexicograph-
ically minimal Preimage (LmP) of the Consumer iteration points while deriving a
PPN from a dynamic program.

Examples of applying RP and MP problems to our running example depicted in Fig-
ure 1.5(a) are shown in Figure 5.4. The RP and MP problems are formulated for
the P2/P3 pair formed by statements S2 and S3 from the Figure 5.1(a), respectively.
Clearly, the RP problem shown in Figure 5.4(a) does not have an integer solution,
because constraints (c3) and (c4) contradict each other. Therefore, the communica-
tion model of P2/P3 pair is in-order. The MP problem illustrated in Figure 5.4(b)
has an integer solution: for some i13 6= i23, there can be α1

i = α2i which satisfy (c4),
and, thus, the communication model of the channel has a multiplicity. Therefore,
the communication model of P2/P3 pair is IOM.























i13 = α1
i , j

1
3 = α1

j ,

i23 = α2
i , j

2
3 = α2

j ,

(i13, j
1
3) ≪ (i23, j

2
3),

(α1
i , α

1
j) ≫ (α2

i , α
2
j).

(a) RP for P2/P3 pair























i13 ≥ α1
i , j

1
3 = α1

j , (c1)

i23 ≥ α2
i , j

2
3 = α2

j , (c2)

(i13, j
1
3) 6= (i23, j

2
3), (c3)

(α1
i , α

1
j) = (α2

i , α
2
j). (c4)

(b) MP for P2/P3 pair

Figure 5.4: Examples of RP and MP problems for P2/P3 pair.

78 CHAPTER 5. COMMUNICATION MODELS

5.3 Discussion and Summary

In this chapter, we have presented a novel procedure for communication models
identificationwhile deriving PPNs from the dynamic programs defined in Section 2.2.
The procedure, needed to convert multidimensional arrays used for data communi-
cation after the Data Dependence analysis step, distinguishes between four patterns
of communicating data and identifies the most general one which can realize all de-
pendency patterns in different instances of a dynamic program. This identification
procedure solves the optimization problem by finding the most optimal realization
for each P/C pair.

The novel idea that we have used in our communication model identification proce-
dure is the parameterized mapping functions. We derive them from a dSAC speci-
fication of an initial dynamic application using the Fuzzy Array Dataflow Analysis.
Parameterizedmapping functions are used to describe all possible dependency rela-
tions that exist in all instances of a dynamic program for each P/C pair. Parameters
in these functions are used to uniformly specify a set of unique mapping functions
which exist for every instance of dynamic program, thus, capturing unknown infor-
mation at compile-time. Using parameterized mapping functions, we reformulated
the problems presented in Section 2.6: the Reordering Problem (RP) and the Multi-
plicity Problem (MP) which are used to identify communication models in a derived
PPN.

Chapter 6
Experimental Studies

In this chapter, we examine the approach presented in Chapter 3 by deriving a PPN
parallel specification from a real-life application called Low Speed Obstacle Detec-
tion (LSOD). This application contains relaxation II described in Section 1.2. We
present some of the results we have obtained by implementing and executing the
derived parallel PPN specification of the LSOD application on a shared memory
multi-processor system. The main objective of this experiment is to show the practi-
cal applicability of our approach on a real-life application and to show the benefits of
our parallelization approach. For the implementation, we derive the PPN specifica-
tion of the LSOD application following the approach presented in Chapter 3. Then,
we use the ESPAM [55] tool and the HDPC [56] back-end library to generate C++
code for the processes and the FIFO channels.

In this chapter, in Section 6.1 we evaluate our parallelization approach presented in
Chapter 3, and in Section 6.2 we present the conclusions.

6.1 Low Speed Obstacle Detection

The LSOD application shown in Figure 6.1(a) is intended to detect and to track ob-
jects in front of a car in traffic. The output of the system presents spatial positions
for targets – cars, pedestrians, etc. Applying several general image processing al-
gorithms helps to find new targets, and to track existing targets. The algorithms
implement shadow detection, symmetry detection, lights detection, motion segmen-
tation, and vertical edge detection. The output of each algorithm is collected by a
particle filter component [24] for analysis.

The first step in the LSOD application is to obtain two images from a given camera
picture. They are named high and low resolution images and are depicted by the

80 CHAPTER 6. EXPERIMENTAL STUDIES

two dark rectangles in Figure 6.1(b). Applying different image processing algorithms
on these images, hypotheses whether cars exist are computed. Possible targets are
defined as coordinates and dimensions of rectangles belonging either to the high or
low resolution image. In Figure 6.1(b), two possible targets are presented by the
white rectangles, surrounding the cars. Then, for every identified target, the image
gradient in vertical direction of the area of the target is computed. The result is finally
analyzed in order to support or decline a target.

0 vsum[] = 0

1 for k = 1 to Targets,

2 [Height,Width,X,Y] = getLSODTarget(k)

3 for j = 0 to Height+1,

4 for i = 0 to Width+1,

5 img[j,i] = readTarget(X,Y)

6 endfor

7 endfor

8 for j = 1 to Height,

9 for i = 1 to Width,

10 img_out[j,i] = edgeDetection(

img[j-1,i-1],img[j-1,i+1],

img[j ,i-1],img[j ,i+1],

img[j+1,i-1],img[j+1,i+1])

11 img_out[j,i] = absVal(img_out[j,i])

12 endfor

13 endfor

14 for j = 1 to Height,

15 for i = 1 to Width,

16 vsum[i] = vertSum(vsum[i], img_out[j,i])

17 endfor

18 endfor

19 endfor

(a) Pseudo code of the edge detection part of the mo-
tivating example. Target size is specified by variables
Height and Width.

TaTarget 1 1TaTarget 1 1etetetetTarget 1Target 1

Target 2Target 2Target 2Target 2

(b) LSOD applied on real data. The vehicles in
front of the camera are detected and tracked. The
dark rectangles depict the area of the image that
is processed.

Figure 6.1: Pseudo code of the edge detection part of the LSOD application and its
application on real data.

The edge detection part of the LSOD application, shown in Figure 6.1(a), is an exam-
ple of a program which is not a static affine nested loop program. This program is
affine nested loop program but it has dynamic control as function getLSODTarget()
at line 2 initializes variables Height and Width used as loop bounds. These vari-
ables define the size of a target, i.e., the amount of data to be processed, and change
values for every target at run-time. Since targets are moving in front of a camera
(which is also moving), the identified positions stored in variables (X,Y) and dimen-
sions (Height,Width) will differ for different targets in the frame and for one and
the same target in different frames. That is why, the values of variables Height and
Width (as well as the number of targets) are unknown at compile-time, and therefore,
the pn compiler [3] cannot handle the program shown in Figure 6.1(a).

6.1 LSOD 81

Parallelization

The result of Steps 1 to 3 of the solution approach presented in Chapter 3 and applied
on the LSOD program in Figure 6.1(a) is illustrated in Figure 6.2. It is the final dSAC
specification. We use the final dSAC to derive the PPN topology, shown in Figure 6.3,
as well as to derive the internal code structure of all processes. Examples of the
internal code structures of processes readTarget and edgeDetection are depicted
in Figure 6.4. Below, we emphasize on some of the important moments of the PPN
derivation, we describe the PPN topology, show how code for processes is generated,
and comment on the overhead introduced in the generated PPN.

1 for k = 1 to Targets,

2 [Height,Width] = getLSODTarget()

3 X_j[k] = Height

4 X_i[k] = Width

5 for j = 0 to maxHeight + 1,

6 for i = 0 to maxWidth + 1,

7 if (j <= X_j[k] + 1 && i <= X_i[k] + 1)

8 img_1[k,j,i] = readTarget(X,Y)

9 lcl_1[j,i] = (j,i)

10 endif

11 ctrl_1[k,j,i] = lcl_1[j,i]

12 endfor

13 endfor

14 for j = 1 to maxHeight,

15 for i = 1 to maxWidth,

16 (c11,c12) = ctrl_1[k,j-1,i-1]

17 if (c11 == j-1 && c12 == i-1)

18 in_0 = img_1[k,j,i]

19 endif

20 (c21,c22) = ctrl_1[k,j-1,i+1]

21 if (c21 == j-1 && c22 == i+1)

22 in_1 = img_1[k,j,i]

23 endif

24 (c31,c32) = ctrl_1[k,j,i-1]

25 if (c31 == j && c32 == i-1)

26 in_1 = img_1[k,j,i]

27 endif

28 (c41,c42) = ctrl_1[k,j,i+1]

29 if (c41 == j && c42 == i+1)

30 in_1 = img_1[k,j,i]

31 endif

32 (c51,c52) = ctrl_1[k,j+1,i-1]

33 if (c51 == j+1 && c52 == i-1)

34 in_1 = img_1[k,j,i]

35 endif

36 (c61,c62) = ctrl_1[k,j+1,i+1]

37 if (c61 == j+1 && c62 == i+1)

38 in_5 = img_1[k,j,i]

39 endif

40 if (j <= X_j[k] && i <= X_i[k])

41 img_out_1[k,j,i] = edgeDetection(

in_0, in_1,

in_2, in_3,

in_4, in_5)

42 img_out_2[k,j,i] = absVal(img_out_1[k,j,i])

43 lcl_2[j,i] = (j,i)

44 endif

45 ctrl_2[k,j,i] = lcl_2[j,i]

46 endfor

47 endfor

48 for j = 1 to maxHeight,

49 for i = 1 to maxWidth,

50 (c71,c72) = ctrl_2[k,j,i]

51 if (j == c71 && i == c72)

52 in_0 = img_out_2[k,j,i]

53 endif

54 if (j <= X_j[k] && i <= X_i[k])

55 if(j >= 1)

56 in_1 = vsum[i]

57 else

58 in_1 = 0

59 endif

60 vsum[i] = vertSum(in_1, in_0)

61 endif

62 endfor

63 endfor

64 endfor

Figure 6.2: Final dSAC.

According to Step 1 (see Section 3.2) of our solution approach we substitute the dy-
namic upper bound functions with constants equal to the maximum values these
functions can have. The initial LSOD program in Figure 6.1(a) has three loop nests
with dynamic upper bound functions: Height+1, Width+1, Height and Width at lines
3–4, 8–9 and 14–15, respectively. These functions take their maximum when vari-
ables Height and Width are maximum, i.e., equal to some constants maxHeight and
maxWidth, respectively. In the LSOD program, the maximum values of Height and
Width are the maximum dimensions that a targetmay have. Therefore, we substitute

82 CHAPTER 6. EXPERIMENTAL STUDIES

the dynamic upper bound functions with constants equal to the maximum of these
functions as depicted in Figure 6.2 at lines 5–6, 14–15 and 48–49.

The result of applying the FADA analysis which constitutes Step 2 (see Section 3.3)
of our solution approach is illustrated at lines 17–19, 21–23, 25–27, 29–31, 33-35,
37–39 and 51-53 in Figure 6.2. In total, 6 two-dimensional vectors of parameters
(c11, c12), . . . , (c61, c62)were introduced by the FADA algorithm analyzing the data-
dependencies between functions readTarget()and edgeDetection() shown in Fig-
ure 6.1(a). Also, one two-dimensional vector of parameters (c71, c72)was introduced
after analyzing the data-dependencies between functions absVal() and vertSum().

At Step 3 (see Section 3.4) of our solution approach, we introduce local and global
control arrays in order to initialize and propagate the values of the parameters at
run-time. For the pair of functions readTarget() and edgeDetection(), 6 vectors
of parameters were introduced by FADA. All these parameter vectors correspond to
the single iteration vector (j2, i2) of the source function readTarget(). Therefore, at
lines 9 and 11 only one local and one global control arrays are generated for this pair
of functions. Similarly, at lines 43 and 45 one local and one global control arrays are
added for the pair of functions absVal() and vertSum().

P_1

getLSODTarget

P_2

readTarget

P_3

edgeDetection

P_4

absVal

P_5

vertSum

H:1

W:1

X:1

Y:1

H:1

W:1

H:1

W:1

H:1

W:1

img:703

img:701

img:353

img:351

img:3

img:1

ctrl_1:703

ctrl_1:701

ctrl_1:353

ctrl_1:351

ctrl_1:3

ctrl_1:1 img_out:1

img_out:1

ctrl_2:1

vsum: 350

Figure 6.3: The PPN derived from the LSOD program.

By applying Step 4 (see Section 3.5) of our approach to the final dSAC of the LSOD
application depicted in Figure 6.2, we derive the topology of the PPN depicted in
Figure 6.3. The topology consists of 5 processes, 19 data channels shown as solid lines
that are used to exchange data between processes and 7 control channels shown as
dashed lines used to propagate values of global control arrays. The edges of the PPN
in Figure 6.3 are annotated with the buffer sizes calculated for the LSOD program
considering maximum dimensions of the targets to be 350x300 pixels. This means

6.1 LSOD 83

that we set maxWidth = 350 and maxHeight = 300.

Finally, as an example of the internal structure of the PPN processes, in Figure 6.4,
we present the pseudo code for readTarget and edgeDetection processes derived
after the linearization step. These processes exhibit the most intensive data commu-
nication in the PPN. The internal code structures of these processes are generated
as it has been explained in Step 4 (see Section 3.5) of our solution approach. Note,
that the input/output ports used to access FIFO channels (see the read/write primi-
tives in Figure 6.4) are automatically mapped to physical addresses generated by the
Espam tool (in a separate header file).

1 for k = 1 to Targets,

2 for j = 0 to maxHeight + 1,

3 for i = 0 to maxWidth + 1,

4 if (j == 0 && i == 0)

5 read(0, H)

6 read(1, W)

7 read(2, X)

8 read(3, Y)

9 endif

19 if (j <= H + 1 && i <= W + 1)

11 img_1 = readTarget(X,Y)

12 lcl_1 = (j,i)

13 if(j <= H-1 && i <= W-1)

14 write(1, img_1)

15 if(j <= H-1 && i >= 2)

16 write(3, img_1)

...

17 endif

18 ctrl_1 = lcl_1

if(j <= H-1 && i <= W-1)

write(0, ctrl_1)

if(j <= H-1 && i >= 2)

write(1, ctrl_1)

...

23 endfor

24 endfor

25 endfor

(a) Process readTarget

1 for k = 1 to Targets,

2 for j = 1 to maxHeight,

3 for i = 1 to maxWidth,

4 if (j == 0 && i == 0)

5 read(0, H)

6 read(1, W)

7 endif

8 if (j <= H && i <= W)

9 read(0, ctrl_1)

10 if (ctrl_1.j == j-1 &&

ctrl_1.i == i-1)

11 read(1, in_0)

12 read(2, ctrl_1)

13 if (ctrl_1.j == j-1 &&

ctrl_1.i == i+1)

14 read(3, in_1)

...

15 img_out = edgeDetection(

in_0, in_1,

in_2, in_3,

in_4, in_5)

write(0, img_out)

endif

19 endfor

20 endfor

21 endfor

(b) Process edgeDetection

Figure 6.4: Internal code structures of processes readTarget and edgeDetection of
the PPN derived from the LSOD application.

We evaluate our approach by executing the parallel LSOD application specification
on an Intel® Xeon® quad-core machine running a Linux operating system. We
used the ESPAM [55] tool and the HDPC [56] library to map the processes of the
generated PPN onto cores and to generate C++ code for these cores. We used the
GCC compiler to generate the final binary code. The HDPC library employs the
boost-thread framework that enables the use of multi-threaded implementations.
That is, the derived PPN has been translated to a multi-threaded program realizing
the LSOD application, in which every process of the PPN is a separate thread.

In this experiment, we implemented and executed the parallel PPN specification of
the LSOD application considering 5 different mapping configurations. The obtained
results are shown in Figure 6.5. The horizontal axis depicts the number of cores used

84 CHAPTER 6. EXPERIMENTAL STUDIES

 0

 1

 2

 3

 4

 5

1 2 3 4 5

S
p

e
e
d

-u
p

Number of cores

LSOD
 Theoretical

Figure 6.5: Evaluation of LSOD PPN on several CPUs.

in each configuration, i.e., we mapped the 5 processes of the PPN onto 1, 2, 3, 4, and
5 cores, respectively. Note that because the Intel® Xeon®processors support hyper-
threading, the operating systems ’sees’ 8 different cores. Therefore, we could map
5 processes on 5 different cores exploiting maximum concurrency. Obviously, when
using less than 5 cores, some processes have to share the same core. In this case, we
let the operating system to schedule the execution of these processes (i.e., threads)
on a particular core. We experimented with grouping different processes together,
i.e., mapping several processes on a single core. Figure 6.5 presents the best results
that we have obtained. In addition, every configuration has been executed multi-
ple times and the bars show the obtained average speed-up. The first configuration
(see the leftmost bar in Figure 6.5) represents our reference configuration, in which,
we mapped all 5 processes of the PPN onto a single core. We consider the speed-
up of this configuration to be 1. Also, we have normalized the performance of the
other configurations with respect to the performance of this reference configuration.
Looking at the performance of the other 4 configurations, we see that by increasing
the number of cores, the speed-up increases below the theoretical maximum shown
as gray bars in Figure 6.5. We found that because of the data dependencies in the
LSOD application and the imbalanced workload of the functions executed by differ-
ent processes, the theoretical maximum cannot be achieved. In addition, in all con-
figurations except the one using 5 cores (see the rightmost bar in Figure 6.5), there is
an overhead introduced by the operating system for scheduling different threads on
one core. As a result, the rightmost configuration exhibits a slightly larger speed-up
increase compared to the other configurations. Finally, there is the execution time
overhead caused by the extra ’dummy’ iterations, which we discussed in Section 3.7.
Below, we present some numbers with regards to this execution time overhead, as
well as, the memory overhead in the LSOD process network.

Execution time overhead

From the execution statistics obtained by profiling of the LSOD application and its
PPN, we computed the two ratios in Equation 3.4 presented in Section 3.7. Ta-
ble 6.1 shows the ratios for each process and the whole PPN. Note that for computing
(max_ f − x)/x, we need to consider that the targets are 2-dimensional. Therefore,

6.1 LSOD 85

we used the term:

maxWidth·maxHeight− x· y

x· y
=

350· 300− x· y

x· y
.

The terms x and y represent the average target size, which we computed from the
targets used when executing the program. Based on the computed values in the last
column of Table 6.1 and applying Equation 3.4 in Section 3.7, the overhead due to
the execution of ’dummy’ iterations of the LSOD PPN is 33.93%.

Process P_1 P_2 P_3 P_4 P_5 PPN

W/(Wx +W) 0.53 0.38 0.26 0.47 0.3 0.39

(max_ f − x)/x 0 1.09 1.09 1.09 1.09 0.87

Table 6.1: Statistics LSOD PPN.

Memory overhead

In order to evaluate the memory overhead, we measured the memory requirements
for the sequential LSOD program and compared this with the memory require-
ments for executing the corresponding PPN. The sequential program requires in
total 13650 Bytes of memory, which includes both the code and the data. In order
to make a fair comparison, it is important to note that this number (13650 Bytes)
does not include the data array used to buffer the largest possible target, i.e., vari-
able img[TH][TW]which requires 350x300 = 105000 Bytes. Although, we use such a
variable in the sequential program, the program can be written more efficiently in a
way that we do not need to buffer the whole (largest possible) target. The left part
of Table 6.2 shows the memory requirements for every process in the generated pro-
cess network. In addition, we need to consider also the memory used to implement
the FIFO channels. In total, the PPN requires 17018 Bytes for implementing the pro-
cesses and 18384 Bytes for the FIFO channels, see the right part of Figure 6.2. Then, if
we compare these numbers with the number of the sequential program, we see that
the memory overhead is 2.6x, which is reasonable provided that this is the memory
requirement for the implementation of 5 processes and 26 FIFO channels.

Process P_1 P_2 P_3 P_4 P_5

Code (bytes) 1626 2302 2510 1742 1978

Data (bytes) 1420 1360 1360 1360 1360

Total (bytes) 3046 3662 3870 3102 3338

PPN Sequential

Memory (bytes) 17018 13650

FIFOs (bytes) 18384 –

Overhead 2.6x –

Table 6.2: Memory overhead of the LSOD PPN.

Overall, the average efficiency of the 4 parallel implementations of the LSOD process
network is around 70%. The efficiency (E f f) is defined as:

86 CHAPTER 6. EXPERIMENTAL STUDIES

E f f =
SP

C
,

where SP is the speed-up and C represent the number of cores used to achieve this
speed-up.

6.2 Discussion and Summary

In this chapter, we evaluated our parallelization approach presented in Chapter 3
on a real-life application called Low Speed Obstacle Detection (LSOD). This appli-
cation contains for-loops with dynamic bounds and is an example of an application
with relaxation II presented in Section 1.2. By evaluation of this application, we
demonstrated the practical applicability of our parallelization approach to a real-life
dynamic application.

By evaluating our approach we found that because of the data dependencies in the
LSOD application and the imbalanced workload of the functions executed by differ-
ent processes, the theoretical maximum cannot be achieved. In addition, there are
two types of overhead in the generated PPN, i.e., memory and execution time over-
head. The execution overhead is caused by the execution of some ’dummy’ iterations
not present in the initial sequential program. The memory overhead is due to the in-
troduced control arrays, as well as, the created dataflow and control FIFO channels.
It highly depends on the characteristics of the application being parallelized. In Sec-
tion 3.7, we presented analytical analysis of the execution overhead. For the LSOD
application, the overhead due to the execution of ’dummy’ iterations of the LSOD
PPN is 33.93%. This overhead is highly dependent on the maximum dimensions of
the targets in the image.

In order to evaluate the memory overhead, we measured the memory requirements
for the sequential LSOD program and compared this with the memory requirements
for executing the corresponding PPN. The total memory overhead is 2.6x which is
reasonable, because this is the memory requirement to implement 5 separate pro-
cesses and 26 FIFO channels which is unavoidable if wewant to parallelize the LSOD
to the maximum task-level parallelism available in the initial LSOD specification.
Overall, the average efficiency of the 4 parallel implementations of the LSOD pro-
cess network is around 70% which is very reasonable for parallel implementation.

From the LSOD evaluation, the obtained results indicate that the approach we pre-
sented in Chapter 3 facilitates efficient parallel implementations of sequential nested
loop programs with dynamic loop bounds. That is, our approach reveals the pos-
sible parallelism available in such applications, which allows for the utilization of
multiple cores in an efficient way.

Chapter 7
Summary and Conclusions

In this dissertation, we addressed the problem of automated derivation of Polyhe-
dral Process Network (PPN) specifications from dynamc sequential programs. Our
work is essential for the development of parallelization compilers exploiting task-
level parallelism inherent to many dynamic applications. As an example, the work
presented in this dissertation inspired the development of further extensions in the
pn [3, 48] compiler, where at the moment, most of the research done in this disserta-
tion has been implemented. The derivation of a parallel specification described by
our approach is an essential for the systematic and automated design of the emerg-
ing embedded systems-on-chip platforms. In designing the platforms the parallel
specification allows for systematic and efficient exploration and mapping of the ap-
plication onto the platform. As an example, the work presented in this dissertation
is used in a methodology, implemented in a system-level design tool-flow called
DAEDALUS [57, 58], for automated design, programming, and implementation of
MPSoCs starting at a high level of abstraction. The methodology is built on the con-
cept of Platform-Based Design (PBD) [59] being a promising new approach to master
the ever growing complexity of today’s embedded systems.

Many system-level design flows and application modeling and exploration approa-
ches reported in the literature use the Kahn Process Network (KPN) [7] model of
computation for a parallel application specification. In this dissertation, we target
Polyhedral Process Networks (PPNs) [6] which is a special case of the KPN model.
The PPN allows to specify an application, manipulate and optimize its representa-
tion in terms of polyhedra. This model is well suited for data-flow dominated ap-
plications in the realm of multimedia, imaging, and signal processing that naturally
contain tasks communicating via streams of data. In this dissertation, we target such
applications as being natural for extracting task-level parallelism.

The work presented in this dissertation is directly related to previous works on sys-
tematic and automated derivation of process networks from affine nested loops pro-

88 CHAPTER 7. SUMMARY AND CONCLUSIONS

grams initiated by Rijpkema et al. [15, 30]. Further, Turjan et al. [14] proposed an
automated derivation of process networks from a class of application called static
affine nested loop programs (SANLPs). In SANLPs the memory array subscripts,
loop bounds and conditional control structures are affine constructs of surrounding
loop iterators, program parameters and constants. Also, they put a restriction on the
input program to be static in order to enable the automatic analysis and conversion
of the input program to a PPN. Although, many scientific, matrix computation, and
signal processing applications can be specified as SANLPs, the static restriction lim-
its the applicability of their approach, i.e., their approach cannot handle applications
that have adaptive and dynamic behavior, such as multimedia applications (MPEG
coders/decoders, Smart Cameras, Software Radio), adaptive filters, iterative algo-
rithms, etc. Therefore, in this dissertation, we addressed the important question:
whether some of the static restrictions of the SANLPs can be relaxed while keeping
the ability to perform compile-time analysis and to derive PPNs in an automated
way. Achieving this would significantly extend the range of applications that can be
parallelized in an automated way.

By studying different dynamic applications we distinguished three relaxations to
SANLP programs that would allow one to specify dynamic applications as sequen-
tial programs. These relaxations are:

I. dynamic if-conditions are allowed in a program;

II. for-loops with dynamic bounds are allowed in a program;

III. while-loops are allowed in a program.

In [21], the first relaxation has been considered: a novel automated procedure has
been developed that derives a PPN from a class of affine nested loop programs
calledWeakly Dynamic Programs (WDPs). In this class of programs, the if-conditions
might be dependent on some information that is unknown at compile-time and may
change at run-time. In this dissertation, we have considered the other two more
difficult relaxations. In Chapter 3, we considered relaxation II and presented a first
approach for automated translation of affine nested loops programs with dynamic
loop bounds (Dynloop) into input-output equivalent PPNs. Relaxation III, we con-
sidered in Chapter 4 by presenting a novel approach for automated translation of
affine nested loop programs with while-loops (WLAPs) into input-output equiva-
lent PPNs.

In contrast to deriving a PPN specification of a SANLPprogram, converting dynamic
programs into PPNs in a systematic and automated way is a challenging and com-
plex problem. This stems from the fact that the exact behavior of a dynamic program
is unknown at compile-time. Therefore, for example, formal tools such as Exact Ar-
ray Dataflow Analysis cannot be used to extract dependence relations in a dynamic
program as this has been shown in Section 1.3. In Chapters 3 and 4, we demonstrated
that although the exact behavior of dynamic programs with relaxations II and III is
unknown at compile-time, still such programs can be analyzed and converted to an
executable PPN specification in a systematic and automated way.

89

At a high-level, our approaches presented in Chapters 3 and 4 are similar and consist
of three main steps. First, we extract an approximated dependency relation informa-
tion from a dynamic program using the Fuzzy Array Dataflow Analysis (FADA) [37,
38] technique. We explain what approximation means. In Section 1.3 we demon-
strated the difference of dependency patterns between dynamic and static programs.
In static programs, different instances of a program correspond to one and the same
single dependency pattern which is known at compile-time. In dynamic programs,
data dependency patterns correspond to different instances of a dynamic program,
and are unknown at compile time. This also means that the exact data dependency
patterns in a dynamic program cannot be determined at compile-time. Therefore,
we parameterize or approximate them using parameters whose values have to be set
dynamically at run-time in order to preserve the initial data-flow in a program.

Second, we translate the initial program into dynamic Single Assignment Code (dSAC)
[21] form and implement the general approach how to set the values of parameters
introduced by FADA at run-time. A dSAC program is input-output equivalent to
the corresponding dynamic program and it has the property that every data variable
or an array element is written at most once. This implies that some variables may not
be written at all. Also, at this step, the storage structure of the initial application is
transformed such that each pair of statements communicates data over a dedicated
multidimensional array.

Third, we demonstrate how the topology of the corresponding PPN and the code
executed in each process are derived. Additionally, because the target model, Poly-
hedral Process Network (PPN), requires FIFO channels as communication medium,
at this step memory array accesses are converted into managed dataflow over FIFO
queues. Mapping such array communication onto FIFO channels requires com-
plex address generators, especially if the arrays have multiple dimensions. There-
fore, in Chapter 5, we addressed the Communication Model Identification (CMI)
problem, which investigates communication characteristics of each Producer/Con-
sumer (P/C) pair.

On the basis of the results obtained from Chapters 3,4,5,6 and experimental results,
we can draw the following conclusions:

Conclusion I Thework presented in this dissertation can be implemented efficiently
in a compiler that will help to reduce significantly the time for parallelizing se-
quential dynamic programs. The pn [48] compiler which implements our ap-
proaches drew the attention of Intel Corporation and actually, Intel sponsored
and evaluated these implementations.

Conclusion II With our approach that uses FADA analysis, we reveal all available
task-level parallelism presented in the initial specification of a dynamic pro-
gram. This allows for the utilization of multiple cores in an efficient way. This
has been demonstrated in Chapter 6.

Conclusion III In some cases our parallelization approachesmay exhibit some over-
head introduced by creation of an excessive amount of control channels. This

90 CHAPTER 7. SUMMARY AND CONCLUSIONS

will result in more run-time communication of control data in comparison to
the control data communication in a PPN carefully optimized and derived
by hand. Therefore, some optimization techniques have to be added to our
approach in order to improve the quality of the generated PPNs in terms of
communication control overhead. The investigation of such optimization tech-
niques has already been started and sponsored by Intel Corporation. More-
over, some of the optimizations are under development and test in the current
version of the pn [48] compiler.

Conclusion IV The control FIFO channels appear in a PPN derived from dynamic
programs because the behavior of these programs is not completely known at
compile-time. The presence of control FIFO channels introduces extra work-
load and communication overhead that are the consequences of the dynamic
nature of the initial application. The analytical analysis conducted in Sec-
tion 3.7 showed that the effect of these extra control structures and operations
(overhead) on the performance of the PPN significanlty decreases when the
granularity of the function calls executed inside the processes increases.

In the work presented in this dissertation, we considered a parallelization strategy
that exploits task-level parallelism. Although, our approaches extract the maximum
parallelism available, some other techniques can be used to extract other types of
parallelism. For example, in future work, one can investigate on the transformations
of PPNs similar to [20, 60], where a data-level partition strategy can be considered
in order to achieve better execution performance and to automatically derive PPNs
from dynamic applications.

Bibliography

[1] G. Martin. Overview of the MPSoC Design Challenge. In Proc. DAC, July 2006.

[2] Andrew Mihal and Kurt Keutzer. Mapping Concurrent Applications onto Ar-
chitectural Platforms. In Axel Jantsch and Hannu Tenhunen, editors, Networks
on Chips, pages 39–59. Kluwer Academic Publishers, 2003.

[3] Sven Verdoolaege, Hristo Nikolov, and Todor Stefanov. pn: a tool for improved
derivation of process networks. EURASIP J. Embedded Syst., 2007(1):19–19, 2007.

[4] Paul Feautrier. Dataflow Analysis of Scalar and Array References. Journal of
Parallel Programming, 20(1):23–53, 1991.

[5] Paul Feautrier. Automatic parallelization in the polytope model. In The Data
Parallel Programming Model, volume 1132 of LNCS, pages 79–103, 1996.

[6] Sven Verdoolaege. Polyhedral process networks. Springer, 2010.

[7] Gilles Kahn. The Semantics of a Simple Language for Parallel Programming. In
Proc. of the IFIP Congress 74. North-Holland Publishing Co., 1974.

[8] Todor Stefanov, Claudiu Zissulescu, Alexandru Turjan, Bart Kienhuis, and
Ed Deprettere. System design using kahn process networks: The com-
paan/laura approach. In Proceedings of the conference on Design, automation and
test in Europe - Volume 1, DATE ’04, pages 10340–, Washington, DC, USA, 2004.
IEEE Computer Society.

[9] E. A. de Kock. Multiprocessor mapping of process networks: a jpeg decoding
case study. In Proceedings of the 15th international symposium on System Synthesis,
ISSS ’02, pages 68–73, New York, NY, USA, 2002. ACM.

[10] Kees Goossens, John Dielissen, Jef van Meerbergen, Peter Poplavko, Andrei
Rădulescu, Edwin Rijpkema, Erwin Waterlander, and Paul Wielage. Networks
on chip. chapter Guaranteeing the quality of services in networks on chip, pages
61–82. Kluwer Academic Publishers, Hingham, MA, USA, 2003.

92 Bibliography

[11] Basant Kumar Dwivedi, Anshul Kumar, and M. Balakrishnan. Automatic syn-
thesis of system on chip multiprocessor architectures for process networks. In
Proceedings of the 2nd IEEE/ACM/IFIP international conference on Hardware/soft-
ware codesign and system synthesis, CODES+ISSS ’04, pages 60–65, New York,
NY, USA, 2004. ACM.

[12] Jeronimo Castrillon, Ricardo Velasquez, Anastasia Stulova, Weihua Sheng, Jian-
jiang Ceng, Rainer Leupers, GerdAscheid, andHeinrichMeyr. Trace-based kpn
composability analysis for mapping simultaneous applications to mpsoc plat-
forms. In Proceedings of the Conference on Design, Automation and Test in Europe,
DATE ’10, pages 753–758, 3001 Leuven, Belgium, Belgium, 2010. European De-
sign and Automation Association.

[13] Wolfgang Haid, Lars Schor, Kai Huang, Iuliana Bacivarov, and Lothar Thiele.
Efficient execution of kahn process networks on multi-processor systems using
protothreads and windowed fifos. In Andy D. Pimentel and Naehyuck Chang,
editors, ESTImedia, pages 35–44. IEEE, 2009.

[14] Alexandru Turjan. Compiling nested loop programs to process networks, 2007.
PhD thesis, Leiden University, The Netherlands.

[15] Edwin Rijpkema. Modeling Task Level Parallelism in Piece-wise Regular Programs.
PhD thesis, LIACS, Leiden University, The Netherlands, 2002.

[16] C.E Lemke. The dualmethod of solving the linear programming problem.Naval
Research Logistics Quarterly, 1:36 – 47, 1954.

[17] Sven Verdoolaege. An integer set library for program analysis. ACES sympo-
sium, Edegem, 7-8 september, 2009.

[18] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. The Parma Polyhedra
Library: Toward a complete set of numerical abstractions for the analysis and
verification of hardware and software systems. Sci. Comput. Program., 72(1-2):3–
21, 2008.

[19] Paul Feautrier. Parametric Integer Programming. In RAIRO Recherche
Op’rationnelle, 22(3):243-268, 1988.

[20] SjoerdMeijer. Transformations for Polyhedral Process Networks. PhD thesis, Leiden
University, The Netherlands, 2010.

[21] Todor Stefanov. Converting Weakly Dynamic Programs to Equivalent Process Net-
work Specifications. PhD thesis, Leiden University, The Netherlands, 2004.

[22] W.B. Pennebacker and J.L. Mitchel. JPEG Still Image Data Compression Standard.
Van Nostrand Reinhold, New York, 1993.

[23] Vasudev Bhaskaran and Konstantinos Konstantinides. Image and Video Compres-
sion Standards; Algorithms and Architectures. Kluwer Academic Publishers, 1995.

Bibliography 93

[24] S. Arulampalam and S. Maskell. A Tutorial of Partical Filter for On-line Non-
linear/Non-Gaussian Bayesian Tracking. IEEE Trans. on Signal Processing, pages
68–73, February 2002.

[25] Tie-Jun Shan and T. Kailath. Adaptive beamforming for coherent signals and
interference. IEEE Transactions on Acoustics, Speech, and Signal Processing, 33:527–
536, 1985.

[26] Dmitry Nadezhkin, Hristo Nikolov, and Todor Stefanov. Translating Affine
Nested-Loop Programs with Dynamic Loop Bounds into Polyhedral Process
Networks. In Embedded Systems for Real-Time Multimedia (ESTIMedia), 2010,
pages 21–30, Scottsdale, AZ, USA, October 2010.

[27] Dmitry Nadezhkin, Hristo Nikolov, and Todor Stefanov. Automated gen-
eration of polyhedral process networks from programs with dynamic loop
bounds. Accepted for publication in ACM Transactions on Embedded Comput-
ing Systems (TECS), 2012(1):xx–xx, 2012. Pre-print can be downloaded from
http://www.liacs.nl/~dmitryn/pb/TECS-2011-0228.R1.pdf.

[28] Dmitry Nadezhkin, Hristo Nikolov, and Todor Stefanov. Automatic Translation
of While-loop Affine Nested Loop Programs into Polyhedral Process Networks.
In Embedded Systems for Real-Time Multimedia (ESTIMedia), 2011, Taipei, Taiwan,
2011.

[29] Dmitry Nadezhkin and Todor Stefanov. Identifying Communication Models in
Process Networks Derived from Weakly Dynamic Programs. In Proc. SAMOS
X, pages 372–379, July 2010.

[30] Bart Kienhuis, Edwin Rijpkema, and Ed F. Deprettere. Compaan: Deriving
process networks from matlab for embedded signal processing architectures.
In 8th International Workshop on Hardware/Software Codesign (CODES’2000), San
Diego, USA, May 2000.

[31] Alexandru Turjan, Bart Kienhuis, and EdDeprettere. Translating AffineNested-
loop Programs to Process Networks. In Proc. CASES’04, Washington D.C., USA,
September 23-25 2004.

[32] K. Knobe and V. Sarkar. Array SSA form and its use in Parallelization. In ACM
Symp. on Principles of Programming Languages (PoPL), pages 107–120, San Diego,
California, USA, January 1998.

[33] Paul Feautrier, Jean-Francois Collard, Michel Barreteau, Denis Barthou, Albert
Cohen, and Vincent Lefebvre. The Interplay of Expansion and Scheduling in
PAF. Technical report, PRiSM, University of Versailles, France, 1998. Report
#1998/6.

[34] Jean-François Collard. Automatic parallelization of while-loops using specula-
tive execution. Int. J. Parallel Program., 23:191–219, April 1995.

94 Bibliography

[35] M. Griebl and J.-F. Collard. Generation of Synchronous Code for Automatic Paral-
lelization of while-loops. EURO-PAR’95, Springer-Verlag LNCS, number 966, pp.
315-326, 1995.

[36] Martin Griebl and Christian Lengauer. A communication scheme for the dis-
tributed execution of loop nests with while loops. Int. J. Parallel Programming,
23, 1995.

[37] Jean-François Collard, Denis Barthou, and Paul Feautrier. Fuzzy array dataflow
analysis. In ACM SIGPLAN Symp. on Principles and Practice of Parallel Program-
ming, pages 92–101, Santa Barbara, California, 1995. ACM Press.

[38] Denis Barthou Jean-Francois, Jean francois Collard, and Paul Feautrier. Fuzzy
array dataflow analysis. In Journal of Parallel and Distributed Computing, pages
92–102, 1997.

[39] Paul Feautrier, Jean-François Collard, Michel Barreteau, Denis Barthou, Albert
Cohen, and Vincent Lefebvre. The interplay of expansion and scheduling in
paf, 1998.

[40] Easwaran Raman, Guilherme Ottoni, Arun Raman, Matthew J. Bridges, and
David I. August. Parallel-stage decoupled software pipelining. In Proc. 6th
annual IEEE/ACM international symposium on Code generation and optimization,
pages 114–123, New York, NY, USA, 2008.

[41] Martin Griebl and Christian Lengauer. The loop parallelizer loopo. In Proc.
Sixth Workshop on Compilers for Parallel Computers, volume 21 of Konferenzen des
Forschungszentrums Jülich, pages 311–320. Forschungszentrum, 1996.

[42] Max Geigl, Martin Griebl, and Christian Lengauer. Termination detection in
parallel loop nests with while loops. Parallel Comput., 25(12):1489–1510, 1999.

[43] M.-W. Benabderrahmane, L.-N. Pouchet, A. Cohen, and C. Bastoul. The poly-
hedral model is more widely applicable than you think. In Proc. International
Conference on Compiler Construction (ETAPS CC’10), Paphos, Cyprus, 2010.

[44] Lawrence Rauchwerger and David Padua. Parallelizing while loops for mul-
tiprocessor systems. In In Proceedings of the 9th International Parallel Processing
Symposium, 1995.

[45] Tjerk Bijlsma, Marco J. G. Bekooij, and Gerard J .M. Smit. Inter-task communi-
cation via overlapping read and write windows for deadlock-free execution of
cyclic task graphs. SAMOS’09, pages 140–148, 2009.

[46] Tjerk Bijlsma. Automatic parallelization of nested loop programs for non-manifest
real-time stream processing applications. PhD thesis, Enschede, the Netherlands,
July 2011.

[47] S. Geuns, T. Bijlsma, H. Corporaal, and M.J.G. Bekooij. Parallelization of While
Loops in Nested Loop Programs for Shared-Memory Multiprocessor Systems.
In Proc. Int. Conf. Design, Automation and Test in Europe (DATE’11)", Grenoble,
France, Mar 14–18 2011.

Bibliography 95

[48] pn compiler. http://repo.or.cz/w/isa.git.

[49] Sven Verdoolaege, Maurice Bruynooghe, Gerda Janssens, and Francky
Catthoor. Multi-dimensional incremental loop fusion for data locality. In In
Proceedings of the IEEE International Conference on Application Specific Systems, Ar-
chitectures, and Processors, pages 17–27, 2003.

[50] Sven Verdoolaege, Rachid Seghir, and Kristof Beyls. Analytical computation of
ehrhart polynomials: Enabling more compiler analyses and optimizations. In
In CASES, pages 248–258, 2004.

[51] Philippe Clauss, Federico Javier Fernández, Diego Garbervetsky, and Sven Ver-
doolaege. Symbolic polynomial maximization over convex sets and its appli-
cation to memory requirement estimation. IEEE Trans. Very Large Scale Integr.
Syst., 17(8):983–996, August 2009.

[52] Edwin Rijpkema. Modeling Task Level Parallelism in Piece-wise Regular Pro-
grams, 2002. PhD thesis, Leiden University, The Netherlands.

[53] G. Golub and C. Reinsch. Singular value decomposition and least squares solu-
tions. Numerische Mathematik, 14:403–420, 1970.

[54] Alexandru Turjan, Bart Kienhuis, and Ed Deprettere. Realizations of the ex-
tended linearization model in the compaan tool chain. In Proceedings of the 2nd
Samos Workshop, Samos, Greece, August 2002.

[55] Hristo Nikolov, Todor Stefanov, and Ed F. Deprettere. Systematic and auto-
matedmultiprocessor system design, programming, and implementation. IEEE
Trans. on CAD of Integrated Circuits and Systems, 27(3):542–555, 2008.

[56] Tamas Farago. A framework for heterogeneous desktop parallel computing.
Master’s thesis, LERC, LIACS, 2009.

[57] Hristo Nikolov. System-Level Design Methodology for Streaming Multi-Processor
Embedded Systems. PhD thesis, 2009. Leiden University, The Netherlands.

[58] Daedalus system-level design, http://daedalus.liacs.nl/.

[59] Alberto Sangiovanni-Vincentelli and Grant Martin. A Vision for Embedded
Systems: Platform-Based Design and Software Methodology. IEEE Design and
Test of Computers, 18(6):23–33, 2001.

[60] Teddy Zhai, Hristo Nikolov, and Todor Stefanov. Mapping streaming appli-
cations considering alternative application specifications. Accepted for publica-
tion in ACM Transactions on Embedded Computing Systems (TECS), 2012(1):xx–xx,
2012. Pre-print can be downloaded from http://www.liacs.nl/~tzhai/pdf/
Zhai-TECS2012.pdf.

Index

affine nested loop program with dy-
namic loop bounds, 23

affine nested loop programwith while-
loops, 23

Dependence Analysis, 4
dynamic program, 10
Dynloop, 23

in-order, 33
input port domain, 25
IO, 8
IOM, 8
iteration domain, 21
iteration vector, 21

lexicographical order, 20
Lexicographically minimal Preimage,

33
LmP, 33

mapping function, 26
multiplicity, 34
Multiplicity Problem, 34, 76, 78

node domain, 25

OO, 8
operation, 22
out-of-order, 33
output port domain, 25

parameterized mapping function, 76
parameterized polyhedron, 20
polyhedra, 20

Polyhedral Process Network, 24
polyhedral reduceddependence graph,

6
polyhedron, 20
PPN, 24

Reordering Problem, 34, 76, 78

SANLP, 22
sequencing predicate, 22
static affine nested loop program, 22

WDP, 23
Weakly Dynamic Program, 23
WLAP, 23

Z-polyhedron, 20

Acknowledgments

Working on the Ph.D. was an incredible and often overwhelming experience. It was
a time of professional and personal growth, a time of unforgettable experience living
abroad and a time when new friends were met. It is my privilege and great pleasure
to express my gratitude to those who have, directly or indirectly, supported me and
helped me during my Ph.D. studies.

First of all, I would like to thank the former and the current members of the LERC
group. It is an honor to say that I was a part of this group. The good advice, sup-
port and friendship of the LERC members has been invaluable on both an academic
and a personal level, for which I am extremely grateful. My thoughts go out to
Hristo Nikolov, Sven van Haastregt, Bin Jiang, Teddy Zhai, Mohammed al Hissi,
Mohammed Bamakhrama, Emanuele Cannella and many others.

I also want to specially thank SjoerdMeijer for being my “Dutch” friend and helping
me to discover The Netherlands. Amongst the fruitful professional interactions at
Niels Bohrweg, there always was time for jokes and joyful moments.

Furthermore, several professors outiside of my research group and/or Leiden Uni-
versity have contributed to building my way of thinking and knowledge at a level,
giving me the confidence needed to finish Ph.D. research. In particular, Sven Ver-
doolaege, Andy Pimentel, Georgi Gaydadjiev, AndreDeutz, andmany others. Thank
you!

Also, I would like to acknowledge the financial, academic and technical support of
the LIACS institute and its staff. I also thank the HR Department of Leiden Univer-
sity for their support and assistance during my Ph.D. studentship.

The work presented in this dissertation has been supported by the MEDEA+ NEVA
project 2A703. I would like to thank the NEVA project for financially supporting my
research.

I am very grateful to the committee members for the critical evaluation of my disser-
tation.

100 Acknowledgments

Especially, I would like to say “spasibo” to all my Russian friends I met in The
Netherlands. Polina, Kate, Misha, Masha, Anton and many many others, thank you
for being a small motherland for me. I sincerely appreciate our friendship and thou-
sand of kilometers that now separate us will never fade my feelings to you. You are
always welcome to visit me wherever I will be living.

I also want to thank those who put up with me throughout the whole Ph.D. process
and shared with me their thoughts and experience: Luca, Alexander, Chris, Jorge,
Marat, Niki, Oleg, Arseniy and many others.

In addition, I would like to thankmy friend “ironman”Norman, whose self-discipline
and musical talents have always been great inspirations for me.

At times, when I needed a cosy and homelike atmosphere, I often headed to Babbles
restaurant. Thank you, Natali.

More than four years of my living in Leiden I spent at Mozartstraat. While staying
there I had many unforgettable events and happy moments. Thank you, Oscar, for
providing me this roof in Leiden. I will always remember this place as my home.

My special thoughts go to Sean who became my close friend and soul mate. I truly
enjoyed the discussions and debates we had about almost any subject. Sometimes,
we happen to look on things differently but had always respected and accepted each
other’s opinion. Thank you and the best of luck in your personal pursuits.

With all my heart, I would like to thank Masha for her love and encouragement
which supported me when I needed it the most.

Finally, I would love to express my gratitude to my mom, dad, and brother for their
infinite support throughout everything.

Dmitry Nadezhkin
December, 2012
Leiden, The Netherlands

Samenvatting

Dit proefschrift concentreert zich op de automatische parallellisatie van sequentiele
programma’s met een zodanig adaptief en dynamisch gedrag dat zij geexecuteerd
kunnen worden op een embedded systeem met meerdere processoren. In ons werk
leiden wij Polyhedrale Proces Netwerken (PPN) specificaties af uit dynamische se-
quentiele programma’s. Het sequentiele model matcht niet met de manier waarop
multiprocessor systemen werken. Het PPN model is een deelverzameling van het
Kahn Process Netwerk model, en staat veel dichter bij multiprocessor systemen.
PPN kan met wiskundige methoden benaderd worden.

De methoden en technieken van dit proefschrift zijn belangrijke en niet-triviale uit-
breidingen op voorafgaand werk over systematische en automatische afleiding van
parallelle specificaties in de vorm van procesnetwerken, uit programma’s die bestaan
uit statische programmeerconstructies (“loops”). Deze programma’s staan een au-
tomatische analyse toe en kunnen direct vertaald worden naar PPN’s. De restrictie
tot statische programma’s geeft echter beperkte toepasbaarheid, programma’s met
adaptief en dynamisch gedrag passen niet binnen deze restrictie. Daarom proberen
we in dit proefschrift deze beperkingen te verminderen.

Door het bestuderen van verschillende toepassingen besloten wij de volgende uit-
breidingen van programma’s te bekijken:

(1) dynamische if-condities worden toegestaan

(2) for-loops met dynamische grenzen worden toegestaan

(3) while-loops worden toegestaan.

Voor (1) hebben we een nieuwe methode ontwikkeld die werkt voor een klasse
van affine loopprogramma’s met dynamische if-condities. Deze condities kunnen
afhankelijk zijn van informatie die niet bekend is op het tijdstip van de compilatie
and die gedurende run-time aan verandering onderhevig kan zijn. We hebben ook
gekeken naar de moeilijkere uitbreidingen (2) en (3). In hoofdstuk 3 is een eerste
stap gezet voor programma’s met affine nested loops met dynamische grenzen. In

102 Samenvatting

hoofdstuk 4, gevenwij een nieuwe aanpak voor affine nested-loop programma’smet
while-loops.

In tegenstelling tot het afleiden van een PPN specificatie uit een statisch programma,
is het systematisch en automatisch omzetten van dynamische programma’s naar
PPN’s een complex en uitdagend probleem. Dit komt omdat de belangrijke stap-
pen in het afleiden van een PPN programma dan niet werken. In hoofdstukken 3 en
4 laten we zien dat, ondanks dat het precieze gedrag van dynamische programma’s
niet bekend is op het tijdstip van de compilatie, het toch mogelijk is om dergelijke
programma’s te analyseren en te transformeren naar executeerbare PPN specificaties
op een systematische en automatische manier.

In hoofdstuk 5 wordt een andere contributie beschreven. The PPN model gebruikt
FIFO kanalen als communicatiemedium. Het gevolg is dat toegang tot het geheugen
in het sequentiele programma geconverteerd moet worden naar dataflow over de
FIFO kanalen. Hoofdstuk 5 laat zien hoe dit gedaan kan worden: communicatie
karakteristieken tussen twee communicerende processen in PPNworden bestudeerd.

De methoden en technieken die in dit proefschrift gepresenteerd worden, hebben
geresulteerd in uitbreidingen van de pn compiler (http://daedalus.liacs.nl). In hoofd-
stuk 6 wordt de parallellisatieaanpak van hoofdstuk 3 geevalueerd op de toepassing
“Low Speed Obstacle Detection”.

Curriculum Vitae

Dmitry Nadezhkin was born on 15th of July, 1981 in Arzamas-16, USSR. In 2003,
he received his Master Degree in Mathematics from the Lomonosov Moscow State
University. During his M.Sc. study, Dmitry Nadezhkin worked at designing soft-
ware targeting high-performance computing systems. In 2006, Dmitry joined the
Leiden Embedded Research Center (LERC) which is part of the Leiden Institute of
Advanced Computer Science (LIACS) at Leiden University where he was appointed
as a research assistant (Ph.D. student). He was involved in the NEVA project which
deals with Networks on Chips Design Driven by Video and Distribution Applica-
tions, and conducted research in the area of automatic parallelization of program
code with dynamic constraints. As a part of his work, he developed a FIFO library
that allows to run Polyhedral Process Networks on the IBMCell multiprocessor plat-
form. The researchwork culminated in the writing of this Ph.D. dissertation in 2012.

List of Publications

• Dmitry Nadezhkin, Hristo Nikolov, and Todor Stefanov, “Automated Gen-
eration of Polyhedral Process Networks from Programs with Dynamic Loop
Bounds”, Accepted for publication in ACM Transactions on Embedded Com-
puting Systems (TECS), vol. x, Issue x, pp. xx - xx, June 2012. Pre-print
of the paper can be downloaded from http://www.liacs.nl/~dmitryn/pb/
TECS-2011-0228.R1.pdf

• Dmitry Nadezhkin, Todor Stefanov: “Automatic Translation of While-loop
Affine Nested Loop Programs into Polyhedral Process Networks”, In Proc. 9th
IEEE Workshop on Embedded Systems for Real-Time Multimedia (ESTIMe-
dia’11), Taipei, Taiwan, October 13-14, 2011.

• DmitryNadezhkin, Hristo Nikolov, Todor Stefanov: “TranslatingAffineNested
Loop ProgramswithDynamic Loop Bounds into Polyhedral Process Networks”
In Proc. 8th IEEE Workshop on Embedded Systems for Real-Time Multimedia
(ESTIMedia’10), Scottsdale, Arizona USA, October 24-29, 2010. WINNER of
the 2010 ESTIMedia Best Paper Award!

• Dmitry Nadezhkin, Todor Stefanov: “Identifying Communication Models in
Process Networks derived from Weakly Dynamic Programs”, In Proc. “10th
Int. Conference on Embedded Computer Systems: Architectures, MOdeling,
and Simulation (SAMOS’10)”, pp. 372-379, Samos, Greece, July 19-22, 2010

• Dmitry Nadezhkin, Sjoerd Meijer, Todor Stefanov, Ed F. Deprettere, “Realizing
FIFO Communication When Mapping Kahn Process Networks onto the Cell”
In Proc. “9th Int. Conference on Embedded Computer Systems: Architectures,
MOdeling, and Simulation (SAMOS’9)”, pp. 308-317, Samos, Greece, July, 2009

• Sjoerd Meijer, Sven van Haastregt, Bart Kienhuis, Dmitry Nadezhkin: “Kahn
Process Network IR Modeling for Multi core Compilation”, Technical Report,
Leiden University, 2008

