
Process query systems : advanced technologies for process detection
and tracking
Berk, V.H.

Citation
Berk, V. H. (2006, January 18). Process query systems : advanced technologies for process
detection and tracking. Retrieved from https://hdl.handle.net/1887/4272

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/4272

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4272

“thesis_main” — 2005/11/21 — 13:09 — page i — #1
i

i

i

i

i

i

i

i

Process Query Systems

Advanced Technologies for Process Detection and Tracking

Proefschrift

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,

op gezag van de Rector Magnificus Dr. D. D. Breimer,
hoogleraar in de faculteit der Wiskunde en

Natuurwetenschappen en die der Geneeskunde,
volgens besluit van het College voor Promoties

te verdedigen op woensdag 18 januari 2006
klokke 15:15 uur

door

Vincent Hendrik Berk

geboren te Leidschendam in 1978

“thesis_main” — 2005/11/21 — 13:09 — page ii — #2
i

i

i

i

i

i

i

i

Promotiecommissie

Promotores: Prof. dr. H.A.G. Wijshoff
Prof. dr. G.V. Cybenko (Dartmouth College, USA)

Referent: Prof. dr. W. Jalby (Université De Versailles, France)
Overige leden: Prof. dr. S.M. Verduyn Lunel

Prof. dr. F.J. Peters
Prof. dr. ir. E.F.A. Deprettere

Parts of this research were supported by grants from the US Department of Justice, and
the US Intelligence Community (award numbers: DOJ-FBI-NIPC A3N308035 (9/04–
9/05), IC-ARDA-P2INGS F30602-03-C-2348 (10/03–3/05), and DOJ-ISTS 2000-DT-
CX-K001 (12/03–11/04)).

“thesis_main” — 2005/11/21 — 13:09 — page iii — #3
i

i

i

i

i

i

i

i

To my parents

“thesis_main” — 2005/11/21 — 13:09 — page i — #4
i

i

i

i

i

i

i

i

Contents

Preface v

1 Introduction 1
1.1 Motivation . 2
1.2 Background . 2

1.2.1 Problem definition . 3
1.2.2 The Discrete Cause Separation Problem 5
1.2.3 Example . 7
1.2.4 Existing Approaches . 12

1.3 Solution Roadmap . 17
1.4 Performance measurement . 19
1.5 Thesis outline . 20

2 Process Query Systems 23
2.1 Fundamentals of Process Query Systems 24

2.1.1 System overview . 24
2.1.2 Model overview . 26

2.2 An implementation: TRAFEN . 29
2.2.1 Observations, Tracks, Hypotheses, and Hypothesis-sets. 30
2.2.2 Newly incoming Observations 31
2.2.3 Track Scoring with Models . 33
2.2.4 Pruning and Hypothesis Control 34
2.2.5 Track Pruning . 38
2.2.6 Observation Pruning . 39
2.2.7 Track Score Decay . 41
2.2.8 Model Invocation . 42
2.2.9 The output of a PQS . 44
2.2.10 The Process Query Modeling Language 45
2.2.11 A PQML example . 48

2.3 Model Building Hints . 54
2.4 The DBMS, PQS analogy . 56
2.5 Illustrative Example: Simple Kinematic Tracking 57

i

“thesis_main” — 2005/11/21 — 13:09 — page ii — #5
i

i

i

i

i

i

i

i

ii CONTENTS

2.6 Performance . 60
2.6.1 Experimental Setup . 62
2.6.2 Performance Metrics . 65
2.6.3 Results . 67
2.6.4 Discussion . 76

3 Case Study: The Spread of Active Worms 81
3.1 Introduction . 82
3.2 Internet Worms . 83
3.3 Worms and their Propagation . 85

3.3.1 Worms and Viruses . 85
3.3.2 Worm Spread . 87
3.3.3 Epidemics . 89

3.4 Response . 94
3.5 Early Detection of Scanning Worms 97

3.5.1 ICMP-T3 Messages and Instrumented Routers 97
3.5.2 DIB:S . 100
3.5.3 TRAFEN model . 102

3.6 Performance . 103
3.6.1 Simulating Worms . 103
3.6.2 Detection Capabilities . 104
3.6.3 Discussion . 110

3.7 Future of Internet Worms . 112
3.8 Conclusion . 115

4 The PQS-Net System 117
4.1 Introduction . 118
4.2 Infrastructure . 118
4.3 Sensors . 120

4.3.1 Global . 120
4.3.2 Network . 123
4.3.3 Host . 126

4.4 Models . 128
4.4.1 Attacks . 129
4.4.2 Failures . 133
4.4.3 Tier-2 Models . 135

4.5 Results and Lessons Learned . 139
4.5.1 Performance . 139
4.5.2 Considerations . 140

“thesis_main” — 2005/11/21 — 13:09 — page iii — #6
i

i

i

i

i

i

i

i

CONTENTS iii

5 Other Applications 143
5.1 Covert Channels . 144

5.1.1 Introduction . 144
5.1.2 Background on Covert Communication Channels 145
5.1.3 Assumptions and Considerations 146
5.1.4 Covert Channels and their Capacity 147
5.1.5 Detection techniques . 150
5.1.6 Discussion . 153

5.2 Kinematic Tracking . 155
5.2.1 Introduction . 156
5.2.2 Design . 156
5.2.3 Results . 156

5.3 Autonomic Computing . 157
5.3.1 Introduction . 158
5.3.2 Design . 158
5.3.3 Results . 159

5.4 Application overview . 160

Appendix 161

A PQML Specification 161
A.1 Introduction . 162
A.2 Interpreter Specification . 162

A.2.1 Registers . 163
A.2.2 Stack . 163
A.2.3 Compare register . 163

A.3 Specification of program sections . 163
A.3.1 Labels . 164
A.3.2 Data (.data) . 164
A.3.3 Observations (.observation) 164
A.3.4 Track state and conclusion (.conclusion) 165
A.3.5 Opcodes and Syntax (.text) . 166
A.3.6 Logarithmic Likelihood decay (.halflife) 169
A.3.7 Including other files (.include) 169
A.3.8 Arrays . 169

B PQML Models 171
B.1 funcs.pqml . 172
B.2 movingdots.pqml . 173

Bibliography 181

Summary 191

Curriculum Vitæ 197

“thesis_main” — 2005/11/21 — 13:09 — page iv — #7
i

i

i

i

i

i

i

i

iv CONTENTS

“thesis_main” — 2005/11/21 — 13:09 — page v — #8
i

i

i

i

i

i

i

i

Preface

v

“thesis_main” — 2005/11/21 — 13:09 — page vi — #9
i

i

i

i

i

i

i

i

vi PREFACE

In this dissertation I present the results of my research in Process Query Systems.
This work started out four years ago as a search for methods capable of processing the
enormous amounts of streaming data that is generated by an Internet-scale worm detec-
tion system. The design of this system, named DIB:S, was started at Dartmouth College
and soon became a reliable and early indicator of active worms. In an effort to generalize
the detection concept, the first principles of Process Query Systems were developed. By
modeling interesting events as processes, many problems can be described in new and
powerful ways. These processes are then submitted as queries to the PQS, which then
returns evidence of these processes occurring in observed event streams.

As it turns out, Process Query Systems can be used for many different tasks, including
kinematic tracking, autonomic server monitoring and control, covert channel detection,
and the monitoring of security on large, enterprise-class computer networks. By simply
expressing the relevant processes as PQML (Process Query Modeling Language) models,
a PQS can quickly be applied to any given domain. This dissertation gives an in-depth
description of the PQS concept, algorithms, and performance analysis, as well as provid-
ing a number of very diverse examples using PQS, demonstrating its wide applicability.

Although a comprehensive study of Process Query Systems is offered, the reader
must realize that the area is new, and many applications remain to be studied. I aimed to
make the majority of this work comprehensible to the general public, however, some fun-
damental knowledge of computer science, mathematics, and network security is helpful
in understanding all the aspects of PQS.

Finally, I am indebted to many people who were instrumental to the development of
Process Query Systems, and I would like to thank them for all their help. Especially, I
would like to thank Marion Bates for her tedious proof-reading of the manuscript. And I
would like to thank my parents for their endless support.

“thesis_main” — 2005/11/21 — 13:09 — page 1 — #10
i

i

i

i

i

i

i

i

Chapter 1

Introduction

1

“thesis_main” — 2005/11/21 — 13:09 — page 2 — #11
i

i

i

i

i

i

i

i

2 CHAPTER 1. INTRODUCTION

1.1 Motivation

This thesis introduces a new family of algorithms and software implementations that
solve a broad class of problems classified as process detection. These algorithms are
called Process Query Systems. Several applications and examples are introduced that

demonstrate the power and applicability of PQS.

During the development of an Internet-wide worm tracking and detection system
we quickly realized that the number of events that need correlation rises far beyond the
capacity of already existing approaches. A fast moving worm will initially saturate any
specific-purpose detector, and then cause such significant Internet instabilities that entire
sensor arrays will become unreachable. Due to this scalability problem accurate detection
must happen within the first few seconds after the release of the worm.

Large scale data processing for detection quickly grew to the broader task of building
a generic tracking system. Tracking implies a deeper understanding of the subject than
detection. Detection simply says: “there is a THING”, whereas tracking actually tells
you: “the THING, which was detected, is going to do FOOBAR”, anticipating what may
occur. The objective therefore was: “can we decide, seconds after a worm is released,
how big, how fast, and how destructive it will be?” We realized that we needed a general
approach that recognizes the dynamics of an observed system, rather then merely the
signature of its existence. This meant finding evidence of an occurring Process in a
stream of observed events: a Process Query System solves this problem.

During the development of an initial PQS implementation, many questions were
raised and many lessons were learned. This work by no means answers all these ques-
tions, although it introduces most of them. It will likely take many more years for Process
Query Systems to mature and reach main-stream computing, even though a commercial
application is already nearing completion. Most importantly, there seems to be no end
to the applicability and the power of the paradigm; the same PQS kernel has already
been applied to: Worm detection, kinematic vehicle tracking, enterprise-class network
security monitoring, covert channel detection, server farm monitoring, and the kinematic
tracking of fish in a tank. All these applications are very diverse in nature and show the
generically applicable power of process detection.

1.2 Background

The field of Random Signal Processing deals with natural events producing noisy and
lossy signals. These natural events are usually modeled by Stochastic Processes occur-
ring in the observed environment. Typically, signals are also referred to as observations or
sensor reports. Natural signals generally exhibit some inaccuracy (like spatial deviation),
false positives (an observation while there should have been none), false negatives (no
observation while there should have been an observation), duplicates (two observations
for a single instance), overlap (one instance obscures the other), etc. All these factors
make proper process estimation a difficult task. The goal is to properly estimate the state

“thesis_main” — 2005/11/21 — 13:09 — page 3 — #12
i

i

i

i

i

i

i

i

1.2. BACKGROUND 3

of the observed environment, as accurately as possible. This often involves some type of
hidden states, meaning that the state of the environment is not directly observed by the
sensors, and that the actual state has to be derived from what the sensors are picking up.

The following section outlines the problem definition and explores some of the ter-
minology that is used throughout this thesis. Although the problem definition is broad,
we believe the solution offered here is able to fully address this need. Later on we give
an exploration of some of the classical methodologies in the field, and how they compare
to the proposed general solution.

1.2.1 Problem definition

We start by giving the following problem definition, and then continue by exploring its
separate parts:

The need for a generic, generally applicable framework for disambiguation,
detection, tracking, and state prediction of multiple discreet and/or continu-
ous stochastic processes in noisy and lossy environments.

What is a stochastic process?
Formally, a stochastic process is a collection of random variables X(ω, t) defined on

a given probability space, indexed by time variable t ∈ T , where ω ∈ Ω is the sample
space representing the state of the process [122, 21]. Intuitively, there is some mapping
function between any t and the expected outcome ot (where ot is the expected observ-
able). This mapping function changes for different values of t. Additionally, in general
the expected outcome ot at time t depends on the one or more observables before t, thus
creating a state sequence.

Both the sample time and the observable values can be random or discreet. An exam-
ple of a discrete time, continuous value stochastic process is the measurement of engine
temperature in a car. The car computer will measure the temperature at fixed times, for
example once per second, however, the temperature itself is a continuous value. An ex-
ample of a continuous time, discrete value stochastic process is a queue at the grocery
store. At any given time there are 0, 1, 2, 3, ... people in line, never 2 1

2 . However, the
arrival time of new customers and the moment that the attendant finishes with a customer
are continuous. The size of the queue is not a simple random variable since the attendant
can only help one customer at once. This means that the size of the queue at t depends
on the size of the queue before time t.

The methods for modeling stochastic processes are the same for continuous or dis-
crete time, whereas they differ for discrete and continuous values. Therefore time is often
simply taken to be continuous. Discrete value stochastic processes can for example be
modeled by Markov chains [72], continuous stochastic processes can often be modeled
by Wiener Filters [123] such as the Kalman Filter [58].

Furthermore, because future observable events generally depend on the foregoing se-
quence of observable events, stochastic processes are considered stateful. The state of the
process at time t is therefore defined by the sequence of observables leading up to time

“thesis_main” — 2005/11/21 — 13:09 — page 4 — #13
i

i

i

i

i

i

i

i

4 CHAPTER 1. INTRODUCTION

t, although the actual state is not necessarily defined as the sequence of known observa-
tions. This means that the actual state of the process may not always be readily apparent
from the observed events. Such processes may be modeled with Hidden Markov Mod-
els [99].

What is meant by noisy and lossy?
Noisy and lossy mostly concerns the sensors and the environment that are used to

obtain the observables. Consider for instance the case of tracking airplanes around an
airport using a radar. The “blips” that are returned will certainly be noisy, because of
birds flying close to the airport, bad weather conditions, radar reflections, etc. Also, the
blips will appear different depending on the angle that the plane makes with the radar
waves. We may miss radar observations when a plane goes behind a hill, or is obscured
by another plane. For some sensors we will know the effect of the environment on its
accuracy, for other types of sensors only a rough estimate can be made.

It is therefore hard to predict what the radar will actually see when we know that a
plane is flying through the airspace (the actual stochastic process). Additionally, the full
state of the plane is not directly observable by the radar, if we consider the plane’s di-
rection and speed as part of its state. The radar will only observe the estimated position.
A Kalman filter will help estimate the actual state of the process, and the error in this
estimation, thus aiding in the interpretation of the radar observations.

What about multiple processes?
This is where the complexity of the problem explodes. Consider the same airspace

from the example above, but now we put 10 planes in it. For every sweep of the radar we
expect to see about 10 blips, one for each plane, plus an undetermined number of birds,
reflections and other noise. How do we generically decide which blips belong to what
process? What can be considered noise? Which blips signal the arrival of a new plane?
The ultimate goal is to detect occurring processes by examining their behavior (i.e. their
observables), however, this cannot be done if the observables from multiple processes
are intermixed. The system must therefore offer some way in which the observations are
disambiguated before an attempt is made to determine what process is occurring. This
disambiguation is also referred to as “event gating”.

In real world environments, however, the observed events often come from several
different processes. Consider in the radar example that propeller planes will behave dif-
ferently on radar than passenger jets, although the blips they generate are exactly the
same. Only by correlating multiple series of radar blips and analyzing their behavior
can we determine if we are dealing with a jet plane or a propeller plane. The multiple
processes component will therefore get even more complicated if not all event producing
processes are of the same type.

Detection, tracking, and prediction
So far the discussion has focussed on the environment: a complex space in which

multiple instances of one or more different stochastic processes are generating observable
events. These observable events come out of the environment by means of noisy and

“thesis_main” — 2005/11/21 — 13:09 — page 5 — #14
i

i

i

i

i

i

i

i

1.2. BACKGROUND 5

lossy sensors, or sensor networks. The ultimate goal is, based only on the received
observables, to detect which processes are occurring and what state they are in. Tracking
implies a deeper understanding of the process than detection alone: it implies that we
understand the changes of state that the process went through to generate the observed
sequence of events. This actually helps in observation disambiguation, since tracking of
state changes also allows us to formulate an expected next observable: i.e. a prediction.

Predictions are usually a stochastic function specific to the (near) future time slices
t, which basically implies a probability distribution on several possible expected observ-
ables. These predictions make for improved accuracy in observation disambiguation,
meaning that new incoming observations can more easily be matched with already de-
tected processes that are now being tracked. Events that do not directly correlate may
therefore be considered the start of a new process in the environment, or the effects of
noise. An assignment of observed events to tracked process instances is usually referred
to as a hypothesis. An hypothesis is considered to be “internally consistent” when no
observed event is assigned to more than one tracked process.

Generally applicable framework
Although most of the above problems have been solved, or partially solved, for very

specific cases, no generally applicable framework exists. Most, if not all, solutions dupli-
cate a lot of basic functionality, such as observation handling logic, observation disam-
biguation and pairing, hypothesis generation, and hypothesis pruning. This basic func-
tionality calls for a generic framework in which new stochastic processes can easily be
modeled, such that a detection, tracking, and prediction system can quickly be built for
any specific area.

This idea calls for a clear separation of what is taken care of by the framework and
what is considered part of the modeled processes. Also, it is very important to set a
clear standard on how to model stochastic processes as generically as possible, to allow
for application in many specific domains. Process models should thus be considered
domain-specific plug-ins. The framework system is thus applied to a specific domain
by inserting the process models. All other logic in the framework should be domain-
independent.

Finally, no framework is generic if it cannot accommodate most of the existing case-
specific approaches. It is therefore required that most, if not all, of these existing ap-
proaches can fit right in and be easily implemented using the general framework. A
system that meets all the above requirements and satisfies the defined need is called a
“Process Query System”.

1.2.2 The Discrete Cause Separation Problem

This section formalizes the above problem definition further and introduces an example
that is used in the next section to compare existing approaches.

As discussed above, observable events are produced by one or more given processes
occurring in an environment. For example, an airplane flying through the sky is a process,
and the observable events could be a stream of radar observations (i.e. x,y,z-coordinates).

“thesis_main” — 2005/11/21 — 13:09 — page 6 — #15
i

i

i

i

i

i

i

i

6 CHAPTER 1. INTRODUCTION

This implies that processes are the cause of the observed event stream. The process
changes state either continually (the position of the airplane) or discretely (the block of
airspace the plane is currently in), and the observed events will be a representation of that
state, with a given error. However, due to the limitations of most sensing systems, it is of-
ten not directly clear what process produced the observed events. Consider two airplanes
in the same airspace, for instance, then the radar will report on two x,y,z-coordinate tuples
per pass.

Other examples of process-driven applications include network security monitoring,
where scanning and intrusion processes trigger network based sensors. In network man-
agement, the processes that occur are service failures caused by buggy software, or fail-
ures of hardware. Military situational awareness typically involves the tracking of troop
and vehicle movements, all modeled by processes. Although these applications may
seem very different in nature, they actually share many common features when viewed
from an appropriately abstract perspective. This abstract framework concerns a collec-
tion of processes {M1,M2, . . .}, which is producing a stream of observable events:

. . . ,ei,ei+1,ei+2, . . .

where event e j occurs at time t j where t j ≤ t j+1. The goal in these applications is to
solve the inverse problem: determine which instances of which processes produced the
observed sequence, keeping in mind that some processes have discrete states, while oth-
ers have a continuous state. A PQS is a software system that solves this class of problems.

It must be noted early on that the sequence of observed events is usually not perfectly
chronological, nor is it often complete. In practical environments the observable events
are not always time-stamped at the time of detection, meaning that the only time-stamp
available is when the observed event arrives at the PQS. Additionally, it is not uncommon
for observations to arrive out-of-order, or for observations to be lost entirely. Finally, it
is unknown what number of processes is causing the observed event stream, meaning
that multiple instances of a single process may be responsible for the events (for exam-
ple: Are there one, two, or three airplanes in radar range?). As will become clear from
the following discussion, these fundamental aspects of the problem are the reason that
previous algorithmic and software approaches are poorly suited for the process detection
task.

The class of processes can be diverse and processes often contain “internal” or “hid-
den” states, which are not directly externally observable. These hidden states produce
observable events from which the existence of the process must be determined as obser-
vations arrive. Process Query Systems solve in the broadest sense what we refer to as the
Discrete Cause Separation Problem (DCSP). The DCSP is informally stated as follows:

The Discrete Cause Separation Problem (DCSP) - Given a finite sequence
of observed events, captured at times t1, t2, . . . , tn,

et1 ,et2 , . . . ,etn

and a collection of processes, {M1,M2, . . .}, determine:

“thesis_main” — 2005/11/21 — 13:09 — page 7 — #16
i

i

i

i

i

i

i

i

1.2. BACKGROUND 7

1. The “best” assignment of events to process instances, namely

f : 1,2, . . . ,n→ � +× � +,

where f (i) = (j,k) is interpreted as meaning that event ei at ti was
caused by the kth instance of process model M j (the process detection
problem);

2. The corresponding internal states and state sequences of the processes
thus detected (the state estimation problem).

Here
� + = 1,2, . . . is the set of positive integers. (The name, Discrete Cause Separation

Problem, is by analogy with the Blind Source Separation Problem that arises in continu-
ous signal processing [54].)

This broad description of DCSP intentionally omits many details. The “best” as-
signment is ultimately determined by an application-specific scoring function between
sequences of events and process models. Note also that this “best” assignment is not
necessarily a perfect assignment that explains all observed events. Even if such an as-
signment were possible, it may not always be computable. In a practical environment
there will be noise, lost observations, and a number of other, unknown processes occur-
ring, which complicate the assignment of process models to events. Also, given a stream
of observable events, and a set of process models, the number of possible assignments
grows exponentially, meaning that any practical solution to the DCSP will be forced
to have data reduction steps. These data reduction steps will inevitably lead to a loss
of information as a set of possible assignment options. This implies that any practical
implementation of of a PQS will be a heuristic method: The “best” assignment is not
necessarily always the perfect one, although usually it will be close.

Additionally, in order to have a software system make an assignment between observ-
able events and processes, the causal relationship between processes and events needs to
be made explicit. This leads to the central question of how processes are described and
how process models are created in the first place. The central premise is that there is
no one-to-one relationship between observed events and states in a model, as this would
trivialize the problem. Accordingly, we will assume that different processes and differ-
ent states of the same process instance can give rise to the same observable events. This
means that temporal and causal relationships between states within a process must be
exploited to disambiguate between states and various processes. For instance, although
any airplane may be able to trigger radar observations all over the world, if two radar ob-
servations are received from opposite ends of the globe, within several seconds of each
other, they will not have been triggered by one and the same airplane.

1.2.3 Example

Consider the following example of a multi-process DCSP, containing two different mod-
els, each of which trigger exactly the same observations (i.e. an x,y,z-coordinate tuple).
Assume the first model describes the dynamics of a propeller plane. We will refer to

“thesis_main” — 2005/11/21 — 13:09 — page 8 — #17
i

i

i

i

i

i

i

i

8 CHAPTER 1. INTRODUCTION

Event−State Observable
Associations Events

{a,b}

{a,b}{a}

A

{c}

CB

State "A"

A

State Transitions

Figure 1.1: A Simple Process Model, M1

this model as M1. Then the second model M2 describes the dynamics of a fighter jet,
both observed by radar. Since both types of plane generate the same type of radar ob-
servation the disambiguation must focus on the specific dynamics of the different planes.
A jet fighter will generally fly much faster, and turn much faster than a propeller plane.
Also, propeller planes are less likely to fly in groups. The models would reflect these
dynamics. Now, given an actual environment, it may very well be possible that there
are several propeller planes and a group of jet fighters in the same airspace, all within
radar range. The PQS will use the radar data as input observations together with the two
models to disambiguate which radar observations were triggered by which aircraft by as-
sociating radar observations using the models. Subsequently, the hypothesis will be that
there are several instances of the model M1 (the propeller plane) and a group of instances
of model M2 in the observed environment.

This is a very complicated problem, and before discussing the more general problem
of multi-process DCSPs, we first address single process DCSPs. Generally speaking, a
process is defined by a set of states and a description of the dynamics that define state
evolution over time. That is, at any instant in time, the process occupies a state and at
some future time transitions to another state. The question of whether such transitions
are clocked (synchronous) will not be addressed, however synchronous state transitions
tend to simplify the problem since we know when to expect the next observable. We
do, however, use the traditional Markovian definition of “state”, in that the dynamics of
future state evolutions depend only on the current state. This limitation is taken initially
to clarify the approach, however there is no fundamental reason that constrains a PQS to
1st order Markovian models only. Additionally, although discrete states are used in the
following examples, states do not necessarily have to be discrete. For example, the state
of a moving vehicle would be its current position and speed, and possibly its acceleration.

Given is a process, M1, as depicted in Figure 1.1. M1 has three states, A, B, C. The

“thesis_main” — 2005/11/21 — 13:09 — page 9 — #18
i

i

i

i

i

i

i

i

1.2. BACKGROUND 9

arrows between states indicate the possible transitions. So we can go from state A to state
B, but not directly from A to C. These three states and their transitions from a classical
Finite State Machine [125]. In addition to the possible transitions, each state also has an
associated set of possible observable events that are characteristic for the process. These
observable events are represented by the dotted line. This means that a process modeled
by M1 produces observable events a when it is in state A, and produces both a and b
events when it is in state B, and so on.

As an example, assume that the process M1 models the operation of a network de-
vice, where state A is “normal” operation, state B is “abnormal” operation and state C
is “failure”. Observable event a would be a normal response to a Simple Network Man-
agement Protocol (SNMP) query, event b would be an abnormal response (an error code,
for example), and event c would correspond to no response at all. Note that the no re-
sponse observable, namely γ, could be due to a network link failure as well as a device
failure. A link failure could be modeled by a process similar to M1, but with different
states and similar, or different observables. Likewise, model M1 could depict a process
in an entirely different domain, like military target tracking, or interstate traffic control.
The central point is that in many application areas the need arises for a generic model-
ing approach. Although this example is very simple, it shows the generality of the PQS
approach.

Assume that the observable events are sensed and delivered to the tracking system
by a sensor network system. Such a sensor network system often contains many sources
and is designed to route and possibly pre-process the data before it is handed to the PQS
system. Note also that such a sensor network system will generally not be devoted to col-
lecting events for just one process. A sensor network system will collect and pre-process
observable events for the whole of the observed system and deliver them to the PQS core.
Likewise the PQS core will have many process models, each describing one possible pro-
cess that can take place within the observed domain. Let us look at an example to get a
better sense of what this means. The engine of a car has hundreds of internal sensors,
all providing a constant stream of data, regarding fuel mixture, combustion information,
temperature, engine speed, and so on. The sensor network system in this case would be
those sensors, and the network of wiring that gets all the sensor data to the central car
computer. Some sensor data might need some pre-processing before it is meaningful, this
can be done in-line. The central car computer will be running a PQS with many different
process models, looking for evidence of improper engine functioning. The models can
be as simple as looking for retarded ignition timing, and as complex as the detection of
excessive piston ring wear.

Getting back to the original example of one model M1, note that three observed
events, namely a, b, and c, are modeled as being associated with this process model.
Let x be any event not associated with this process (or more specifically: any event not
modeled to be associated with this process). In the DCSP framework, we observe the
following event sequence:

e1 = a,e2 = c,e3 = b,e4 = a,e5 = c

“thesis_main” — 2005/11/21 — 13:09 — page 10 — #19
i

i

i

i

i

i

i

i

10 CHAPTER 1. INTRODUCTION

which we shall denote as e1:5 = acbac for convenience. The DCSP in this case is defined
as the state sequence that best accounts for the sequence of observed events. An example
of a possible state sequence, given model M1 is BCBBC, while ACBAC would not be
because there are no transitions directly from state A to state C. A straightforward way
of matching a possible state sequence to a given observation sequence is to compare
the observation sequence to a list of all possible state sequences. Such a list is easily
generated iteratively by starting out in all the possible starting states of a model, and then
growing a tree for all reachable states in the next step and so on. The drawback of solving
a DCSP this way, however, is the exponential growth of the search space, with each step
we go deeper in the tree. Additionally, a parsing approach does not account for the error
in each observed event, nor does it handle missed observations. To account for these
artifacts the parser’s rule set would grow exponentially as well.

Existing information retrieval and database query approaches are very powerful tools
to filter and sort data. Given the right sorting queries, they are even able to do some rudi-
mentary correlation between data, essentially creating rules of relationships. However,
they are not able to express the dynamics of a process that can move through states and
have multiple possible observations per state. The following example explains why rule-
based approaches have difficulty solving even very simple instances of a DCSP. Recall
the symbol x denoting an event not associated with the process M1. A possible sequence
of observed events could be:

xxaxcxxbaxxcx

A database query or parser/filter rule can be created to only process events a, b, and
c. This will filter out all unassociated events x:

acbac

The next step is to create queries or parser rules that correlate the possible transitions
between states as a sequence of observations. Since there are multiple transitions between
states, and multiple observable events per state, this group of filter-rules grows quite large
(the rules given here associate sequence of observable events to process state transitions):

AA→ aa
AB→ aa,ab
BB→ aa,ab,ba,bb
BA→ aa,ba
BC→ ac,bc
CC→ cc
CB→ ca,cb
CA→ ca

The above set of queries or parser rules are only for single transitions (from one state
to the next) in a 1st order Markovian space. To identify sequences of more than two
observations in a more general environment, the set of rules must be expanded to detect

“thesis_main” — 2005/11/21 — 13:09 — page 11 — #20
i

i

i

i

i

i

i

i

1.2. BACKGROUND 11

A B C

A

State "A" State Transitions Event−State
Associations

P(a|A) = 1.0
Probability of

Event given State

0.1 0.2

0.10.1
0.7

0.4

0.50.9

P(b|B) = 0.8 P(c|C) = 1.0
P(a|B) = 0.2

Prior distribution: P(A) = 0.7 P(B) = 0.2 P(C) = 0.1

P(a|A) = 1.0

Figure 1.2: A Hidden Markov Model Example, M ′
1

all possible occurrences of double transitions (e.g.. state transitions AAA, AAB, ABB,
ABC, . . . etc.). It is clear that the number of queries that needs to be done on a database
is growing exponentially. Unless there are no loops in the process graph these sequences
are infinite, therefore the number of rules, or database queries are infinite.

An additional difficulty with rule-based approaches arises when the model has prob-
abilities assigned to state transitions and state-event transmissions. Figure 1.2 depicts
such a model. In this probabilistic formulation, initial, a priori probabilities must also be
assigned to states that define the probability of the process starting in a given state. By
assigning these probabilities, the process becomes a Hidden Markov Model (HMM) [99].

Given a sequence of observed events and the underlying process model, the DCSP
is now defined as the state sequence that most likely generated the observed sequence.
Viterbi algorithms [43] are well known classical algorithms for solving the “most likely
sequence” problem for HMM’s. Viterbi-type algorithms use a dynamic programming
approach to recursively compute the most likely state sequences at time tn from the most
likely state sequences at time tn−1. The initialization step is determined by the prior
probabilities on the states. So, using s1:n to denote a sequence of n hidden states in the
process model and e1:n to denote an event sequence of length n, the joint probability

P(e1:n,s1:n)

must be maximized. The point is that standard rule-based approaches cannot handle
such iterative state estimation problems (at least not in a scalable manner), and the class
of Viterbi-type algorithms cannot deal with multiple different processes. Furthermore,
when we are dealing with multiple models, unknown error margins in observations, and
possibly missed observations, then any conclusions should have a “confidence” asso-
ciated with them, indicating how “good the fit” between models and events is. Any

“thesis_main” — 2005/11/21 — 13:09 — page 12 — #21
i

i

i

i

i

i

i

i

12 CHAPTER 1. INTRODUCTION

D E F

D

State TransitionsState "D"
Associations
Event−State

{a,b}
Observable

{c}

Events

{b}{a,b}

Figure 1.3: Another Process Model, M2 (compare with Figure 1.1)

rule-based modeling or parsing is unable to do this.
In real-world applications there are problems that further complicate the challenges of

solving DCSP’s. Missed observations occur when a process is in a state and the observ-
able event is never registered by the sensing framework. Alternatively, the observation
is generated, but with a very high probability of error associated with it. The observed
process might therefore move to a different state without the Process Query System re-
ceiving any observable event indicating a transition might have occurred. In a rule-based
approach this would lead to many extra rules accounting for possible changes in state
of the dynamic system when no events are registered, and therefore not processed. The
complexity of the rule set grows exponentially, together with the cost of maintaining it.

Now consider the challenges that arise when another process model is considered.
Figure 1.3 depicts another three state process, using the same notation as process M1 in
Figure 1.1. Note that the states are labeled differently (this is a different process) but that
the observable events are collectively the same.

Given an event sequence, say

e1:9 = aabcbabcc

we can now ask the question: “Which instances of which processes M1 or M2, pro-
duced e1:9?” Implying: “Which subsequence of events was produced by which process
instance?”

1.2.4 Existing Approaches

The field of tracking (and random signal processing in general) has seen hundreds of
very domain-specific algorithms since about 1950, when radar was first used on a large

“thesis_main” — 2005/11/21 — 13:09 — page 13 — #22
i

i

i

i

i

i

i

i

1.2. BACKGROUND 13

scale in the second World War (note that the first radar was invented by Sir Robert A.
Waston-Watt in 1935). Most of these algorithms worked for one specific instance of the
problem domain only, offering little in terms of general usability. The reason for this
lack of generality was often the highly specific parameters of the environment in which
the algorithms were to be used. Over the years several algorithms were broad enough
to stick around and be used on a wider scale. These algorithms are discussed in this
section, and compared to the PQS approach. Table 1.1 summarizes the comparison by
functionality. The next section will briefly discuss how all of the methods discussed here
can be implemented quickly and efficiently using a PQS.

Formal lan-
guages and
DFAs

Bayesian /
rule-based

HMM,
Viterbi

MHT with
Kalman
Filter

Process
Query
System

Discrete
stochastic
processes

Yes Yes Yes No Yes

Continuous
stochastic
processes

No Yes No Yes Yes

Noisy and
lossy envi-
ronments

No No Yes Yes Yes

Observation
disam-
biguation

No No No Yes Yes

Multiple
process
models

No No No No Yes

Generic
model
framework

No No No No Yes

Table 1.1: Table of capabilities of the most prominent and successful methods in the field
of random signal processing.

Although Section 1.2.3 illustrates by example why rule-based approaches, databases,
regular DFAs, and Viterbi-like algorithms are all insufficient to solve the entire scope
of the DCSP, the paragraphs below touch on each of their strengths and weaknesses
individually.

“thesis_main” — 2005/11/21 — 13:09 — page 14 — #23
i

i

i

i

i

i

i

i

14 CHAPTER 1. INTRODUCTION

Formal languages and state machines

Formal languages and state machines accept, reject, or detect one of many sequences
of valid “words” in a string of incoming observations. These methods are more powerful
generalizations of rule-based detection and database queries.

A formal language L is usually defined over an input alphabet (of observable events)
Σ such that L ⊆ Σ∗. The language is then defined with a set of production rules over
alphabet Σ, allowing the detection of L+, meaning multiple subsequences of observations
that are an instance of the modeled process.

A Deterministic Finite Automata is defined by a quintuple M = (Q,Σ,δ,s,F) where
Q are the state symbols to be mapped to the incoming observations. The incoming ob-
servations are from alphabet Σ. The mapping must follow the state transitions defined by
δ : Q×Σ −→ Q. The processes that the model detects are therefore deterministic walks
through the graph defined by Q and δ, given Σ. Additionally, s ∈Q is defined as the start
state, and F ⊆ Q the group of final states [125].

Although multiple instances can be found, only one language can be detected at once
(meaning only one process can be detected at once). Difficulty comes when allowing
for multiple processes to occur concurrently, thus forcing some initial disambiguation.
Since no probabilities are assigned to the various “words” that are detected, all possible
solutions would be equally valid. Therefore the number of equally likely possibilities
explodes. Intuitively some external method would be needed to decide what to keep and
what to toss away. Finally, these methods offer no solutions for missed observations or
noise. Generally, an observed event is directly indicative of a state change in a DFA.

To implement either of these methods in a PQS it is assumed that only one instance
of one specific process is occurring in the observed environment. All observations are
correctly sensed and no observations are lost or altered by noise. The multiple instance,
multiple process capability of the PQS must be disabled.

Bayesian and rule-based approaches

Although technically rule-based approaches are unlimited in the number of rules that
can be used to achieve PQS functionality, it is straightforward to show that it does not
scale as a general method.

Consider creating a set of rules for all the state transitions of each process. Given N
models, each with an average of M transitions yields N×M rules. Now consider that
each state of every process can produce up to K different observable events (discrete
observation space mapping). Furthermore, consider L rules for each observable to be
noisy, or possibly lost. The number of rules is now: N×M×K× L, which is only a
quantitative measure, the quality of the rules and their order of importance is not even
discussed yet.

Some PQS models, however, are served very well by simple rules describing the
temporal or spatial causality of process states. These models will use the disambiguation
and multiple instance, multiple process capabilities of the PQS, instead of attempting to
implement these features directly into the rules.

“thesis_main” — 2005/11/21 — 13:09 — page 15 — #24
i

i

i

i

i

i

i

i

1.2. BACKGROUND 15

HMM Viterbi approaches
A Hidden Markov Model is a classical method for modeling processes in a dis-

crete event space where the process states are not directly observable from the incom-
ing events. This means that all states may produce multiple different observables, even
the same ones. Model M ′

1 in Figure 1.2 is an example of an HMM. Both state tran-
sitions, as well as event productions have assigned probabilities. Formally, a Hidden
Markov Model consists of a set of states ωn ∈Ω with state transitions over time t. These
state transitions are time-independent, meaning that the next state only depends on the
current state of the process. State transitions probabilities are thus defined as a matrix:
ai j = P(ω j(t +1)|ωi(t)). In each state symbols can be produced em ∈ Σ with probabilities
b jk = P(ek(t)|ω j(t)), the matrix of probabilities stating the chance that a given symbol is
produced in a given state.

Given a HMM and a sequence of observed events e1... we can now calculate the most
likely state sequence of the model based on probability matrices ai j and b jk. Viterbi-
class algorithms take the observed event sequence and produce a state sequence that
“best” explains the observed events. The specifics of the Viterbi algorithm can be found
in many textbooks [43, 99]. Hidden Markov Models and the Viterbi algorithm have been
used extensively in speech recognition and data communication.

Although the HMM Viterbi combination is very powerful, it only detects one instance
of one process occurring. It has no abilities to disambiguate between observations. Al-
though it is resilient to noise, missed observations must be accounted for in the state
transition matrices by adjusting probabilities. To use a PQS for standard HMM Viterbi
functionality the multiple instance, multiple process capabilities must be disabled.

MHT, Kalman Filter approaches
Multiple Hypothesis Tracking and the Kalman Filter were initially designed to track

aircraft on radar [58, 100]. MHT forms “tracks” of observed events that likely belong
together, based on evaluation by the Kalman Filter. In the Kalman Filter the state of a
stochastic process is encoded as a n-vector of real numbers, with state xk at time k. For an
airplane the state would include its position and momentum. A matrix Fk is introduced
that determines how the next state is calculated out of the current state (in Markovian
fashion) in the following way:

xk = Fkxk−1 +Dkuk +wk (1.1)

Where Dk is a matrix modeling the control of the system by changing control vector
uk. (Assuming we know nothing about the pilot’s intention, the control term may be
omitted.) Finally, wk is the process noise, assumed to be a normal distribution with mean
zero. Observations at time k are defined as: zk = Mkxk + vk, where zk is an m-vector
and Mk is an n×m matrix mapping the observation space to the state space. Finally, vk

models the noise in the observation, considered to be a zero-mean Gaussian distribution.
Without going into further detail, the Kalman Filter makes a prediction x̂k based on Fk

and previous state xk−1 and the control vector. Simply put, the goal is to minimize the
error between the expected observation and the actual observation, where the expected

“thesis_main” — 2005/11/21 — 13:09 — page 16 — #25
i

i

i

i

i

i

i

i

16 CHAPTER 1. INTRODUCTION

observation ẑk is calculated as ẑk = Mkx̂k. Specifics on the Kalman Filter can be found in
the literature, as well as many textbooks on control theory.

MHT has a good ability to disambiguate observations and match them with multiple
instances of the process modeled by the Kalman Filter. Although it has multiple instance
ability, it does not offer a way to use multiple process models, or process models other
than the Kalman Filter. Therefore, classical MHT is not able to disambiguate and identify
different objects in the same observation space by their dynamics alone. Most existing
solutions are very domain-specific and the lexicon is dominated by radar tracking.

Interestingly enough, many of the problems that can be solved using a PQS with a
Kalman Filter model have an optimal solution that reduces to the multi-partite matching
problem in graph theory. (This has long been known to be the case for the Kalman Filter.)
For instance, consider a rader sweep at time t0 returning n objects. Now, the next radar
sweep, at time t1, will most likely also return n objects (plus or minus a few). The Kalman
Filter can help in matching the objects observed at time t0 with the objects observed at
time t1, which is the Bipartite Matching problem, and is polynomially solvable. However,
now consider matching the set of objects returned from a third radar sweep at time t2,
this is the Tripartite Matching problem, which was shown, together with any higher
order multipartite matching problems, to be NP-complete by R.M. Karp in 1972 [26, 59].
Therefore, PQS offers a heuristic way of approaching the multipartite matching problem,
in addition to solving many other problems.

To use a PQS as a MHT Kalman Filter approach, the multiple process model abilities
of PQS must be turned off, and the submitted model must be Kalman Filter-based. Many
of the multiple instance, multiple model ideas for PQS are based on the MHT Kalman
Filter design.

Process Query Systems
The general thread in all the above algorithms is the identification of sequences or

groups of observations that are grouped together. All methods provide some sort of score
or likelihood for the sequences, yes-or-no for deterministic formal languages and DFAs,
actual probabilities for HMMs and the Kalman Filter. Most of the algorithms assume
that the groupings are already taken care of, or do not need to be performed, others, like
MHT, do the grouping, but do not offer much flexibility in modeling.

Viewed from this perspective, a PQS creates groupings of incoming observations and
offers these sequences or groups to the model(s) for this evaluation. The PQS takes care
of all these groupings, called tracks. Models therefore may contain Bayesian rules, state
machines parsing formal languages, the Kalman filter, the Viterbi algorithm with one or
more HMMs, or may simply be a whole new type of scoring algorithm.

The models are allowed to keep state with groups of observations, such that they will
not have to recalculate the scores each time they are invoked. There is a guarantee that no
more than one new observation will ever be added before the model is called again. This
way a PQS creates an abstracted level where the application programmer only needs to
work on implementing the proper models. All observation handling, pairing, and pruning
is taken care of by the PQS.

“thesis_main” — 2005/11/21 — 13:09 — page 17 — #26
i

i

i

i

i

i

i

i

1.3. SOLUTION ROADMAP 17

1.3 Solution Roadmap

This section outlines all the areas of development that need to be addressed to fully com-
plete the PQS concept. It offers a road map of tasks and states that have been completed
and implemented by this thesis. Some steps are handled in depth by this thesis, others
are only touched upon lightly.

• Problem Definition. Description of the problem domain, existing algorithms
and approaches, and a formal problem definition. This is given in Chapter 1.

• Generic multi-datastream, multi-model engine. This is the core of a Process
Query System. The concept of a generic engine with the described functionality
involves several sub-steps:

1. Multiple Datastream. The ability to hook into multiple arbitrary datas-
treams easily and quickly. This requires a flexible interface in the PQS to
define the format and origin of the incoming data.

2. Event grouping. Basically the creation of tracks and hypotheses. This
has to be internally consistent and complete. No hypothesis may ever have
more than one copy of each observation, and all possible pairings into tracks
should be allowed.

3. Model scoring. The grouped events (called tracks) will be offered to all
the models for evaluation. In a generic fashion, the models will be plug-ins
that take a track of observations and return a score indicating how well the
observations “fit together”. This may involve predictions, state sequences, or
simply a binary yes-or-no answer.

4. Hypothesis pruning. Based on the scores assigned by the models, the
majority of hypotheses should be pruned. It is inevitable that most event
groupings will score very low, as they do not belong together. Pruning keeps
PQS scalable.

The above topics are fundamental to the functionality of a PQS and are fully ex-
plored in this thesis, Chapter 2.

• Advanced Hypothesis Pruning. Although a PQS functions well with several
fundamental pruning methods (those described in this thesis), there are more ad-
vanced pruning ideas that justify investigation. For instance, it would be very ben-
eficial to compare, in a generic, application-independent way, how different two
hypotheses are. Two very similar hypotheses are obviously both going to score
quite high and survive pruning, whereas a slightly less optimal, but potentially
very promising hypothesis will be cut. One way of tackling this problem is by
comparing the parental history of each hypothesis, and then to disadvantage hy-
potheses that are very close together in the family tree. A thorough study remains
to be done on the merits of such an approach.

“thesis_main” — 2005/11/21 — 13:09 — page 18 — #27
i

i

i

i

i

i

i

i

18 CHAPTER 1. INTRODUCTION

• Modeling interface. The language in which models are interpreted is called
PQML: the Process Query Modeling Language. It is explored with several exam-
ples in Chapter 2. However, this language is the lowest level modeling interface
possible. Specifically, all higher level models such as HMMs, DFAs, Rule-based,
Kalman Filter, etc. must currently be written directly in PQML. Although PQML is
powerful and described in-depth in this thesis, writing higher level models directly
in PQML is not always desirable. One or more higher level modeling interfaces
still need to be designed.

• Higher level modeling interfaces. A higher level modeling language, or multi-
ple different higher level modeling interfaces would be very valuable additions to
PQS. Such languages would require compilers that can compile to PQML, or, even
more efficiently, directly to machine code. At present no such compiler exists. Ad-
ditionally, it would be very beneficial to allow models an extra interface through
which they can decide whether or not an observation may be a likely match with a
track. Such a function would be boolean and could significantly reduce the num-
ber of hypotheses that the PQS generates at each step. Although such an interface
would not lead to better PQS tracking accuracy, it would make the core algorithms
much more efficient. This interface has not yet been designed or investigated.

• Performance evaluation. PQS performance has two different aspects: (1) track-
ing accuracy, and (2) computational complexity, or efficiency. Tracking accuracy
pertains to the results produced by the PQS and the supplied models. The better
the results, the higher the accuracy. Computational complexity can be measured
in memory and compute cycles per observation. It has a direct relationship to the
amount of work that needs to be done for each observed event. Both measures are
closely related, however. Better models often lead to less computational complex-
ity and higher accuracy, while a noisy environment tends to increase computational
complexity and negatively impact tracking accuracy. Although both factors are
highly environment-dependent, the topic of performance is discussed throughout
this thesis.

• Auto-configuration. The initial implementations of PQS show that there are
many parameters that need tuning for each specific application. These parameters
include the number of hypotheses, length of tracks, hypothesis scoring methods,
etc. Based on experience so far, it is often possible to quickly tune the parameters
for a specific application; however, ideally the PQS would measure its internal per-
formance and adjust these parameters dynamically. The performance sections give
some idea on how these parameters could be automatically configured, although a
thorough study remains to be done.

• Applications. Even though PQS is a generic foundation for many different ap-
plications, by itself it can only be regarded as an academic framework. To demon-
strate the usefulness and applicability it must be used to implement multiple appli-
cations. During the last two years, PQS has been used in many different ways, and
this thesis presents several powerful applications in Chapters 3, 4, and 5.

“thesis_main” — 2005/11/21 — 13:09 — page 19 — #28
i

i

i

i

i

i

i

i

1.4. PERFORMANCE MEASUREMENT 19

The above list is by no means exhaustive and many smaller topics remain to be ad-
dressed. For instance, although this thesis describes a way to compute the scoring cor-
relation coefficient of two models, effectively computing how similair they are, it tells
us nothing about the intended purpose of the models. This comparison is not necessar-
ily a scientific process, moveover, comparing models is generally a matter of semantics.
Therefore, what is intended by the model builder is more relevant than what the actual
model code looks like. What the scoring correlation coefficient tells us, however, is
how similar the scoring behavior of two models is. Although this has little to do with
how accurate and efficient each model is, we can learn by submitting a broad range of
tracks to both models whether their scores show any relationship (through straightfor-
ward covariance calculation). For example, if two models are submitted, one describing
the dynamics of a truck, the other describing the dynamics of a car, it is expected that
both will return similar scores. Only when it is very clear that we are dealing with a car,
will the car model differ much in its score from the truck model, and vice versa. It is ev-
ident that some of these questions are very difficult to answer, and this thesis only offers
considerations for them. More about comparing models can be found in Section 2.1.2.

1.4 Performance measurement

When such a complex system as a PQS is implemented, it is necessary to have strict per-
formance measures in place to evaluate if a PQS-based solution is working as expected.
Performance, however, is difficult to define precisely because, in practical operation, a
PQS is expected to discard unlikely hypotheses and thus lose information. This means
that there is a chance that the actual correct solution may not be found, and a slightly less
optimal solution may be returned instead.

There is not much that can be said about the performance of Process Query Systems
before the algorithms are explicitly discussed (in Chapter 2), although one distinction
can be made now. Performance can be defined on two areas: (1) the accuracy of the
outcome, and (2) the computing resources needed to reach that outcome (also referred to
as efficiency). Intuitively more computing resources lead to higher accuracy, but that is
not necessarily true. Specifically, both accuracy as well as efficiency are highly depen-
dent on the application that the PQS is used for, although general trends can be identified.
Consider, for instance, sampling frequency; if the sampling frequency increases, the total
amount of work per second will increase, however, the amount of information about the
environment will increase as well, thus making the problem easier to solve. This will
lead to higher accuracy, and probably higher efficiency as well.

At the end of every Chapter there is a discussion regarding both the accuracy of
the application, as well as its efficiency. Both measures are especially important when
scalability and applicability are concerned.

“thesis_main” — 2005/11/21 — 13:09 — page 20 — #29
i

i

i

i

i

i

i

i

20 CHAPTER 1. INTRODUCTION

1.5 Thesis outline

During the research stages of this thesis, many pieces of software were developed, includ-
ing two general purpose Process Query Systems. The first, experimental PQS is named
TRAFEN, which stands for TRacking And Fusion ENgine. TRAFEN is an implemen-
tation of a general purpose PQS. All applications described in this thesis were based on
TRAFEN (by simply submitting the domain-specific models). In Chapter 3 a system
is described called DIB:S, the Dartmouth ICMP Bcc: System. This piece of software
was written before TRAFEN and was made to process ICMP Destination Unreachable
messages in the same way a general purpose PQS processes observations. Later on,
DIB:S was combined with TRAFEN to form a powerful Internet worm detection system.
DIB:S is the first stage in this worm detection system, handing its processing results to
TRAFEN, which then draws conclusions. The remainder of this thesis is organized as
follows:

Chapter 2. This chapter describes the internals of Process Query Systems, how mod-
els can be defined and compared, and the pruning and hypothesis generation algorithms.
Examples are used to show the reader the most relevant data structures and methods to
clarify the inner workings of TRAFEN, an implementation of a PQS. It continues by
describing PQML, the Process Query Modeling Language, and giving an annotated ex-
ample, where a PQML model is used to configure a PQS to do deterministic sorting. The
chapter closes by analyzing PQS accuracy and efficiency using an environment where
balls bounce around inside a 2 dimensional box. Parts of this chapter have been pub-
lished in [9] and [31].

Chapter 3. The Internet worm detection and tracking system DIB:S/TRAFEN is
described in-depth in this chapter. The DIB:S system aggregates ICMP Destination Un-
reachable messages from routers across the Internet to catch any hosts showing aggres-
sive scanning behavior. TRAFEN is used to correlate the output from DIB:S, creating
a system that is capable of detecting worms within minutes, sometimes even seconds of
their initial release. The internal architecture of DIB:S was an important motivator for
the first designs of the Process Query System concept. Parts of this chapter have been
published in [6] [8] [11] [12] [47] and [69].

Chapter 4. The PQS-Net system described in this chapter is a powerful example of
the general applicability of a PQS. The system is capable of detecting and prioritizing
security-relevant processes in large, enterprise-class computer networks. The chapter
describes many different sensors and models that were used with TRAFEN to create the
PQS-Net system. A part of this chapter has been published in [10].

Chapter 5. This chapter describes three very different, and very succesful appli-
cations based on the TRAFEN PQS implementation. The first application is a detector
for timing covert channels, which are created by modulating the delay times between
packets of benign traffic to encode data. This way an attacker can exfiltrate data without

“thesis_main” — 2005/11/21 — 13:09 — page 21 — #30
i

i

i

i

i

i

i

i

1.5. THESIS OUTLINE 21

ever needing to create traffic on the network; instead, the timing of exising traffic is per-
turbed. Then we describe the use of a PQS to track fish swimming in a tank. The fish
are filmed and X,Y-coordinates are generated, which are then fed into TRAFEN. Using
a Kalman Filter-like model, the fish are tracked as they move around obstacles. Finally,
the chapter describes an autonomic computing server monitoring system. This system
monitors large networks of servers for potential failures or degredation of service, and
stops or restarts services when failures or intrusions are detected. Ideas from this chapter
have been published in [102].

Appendix A. Finally, this appendix contains the PQML specification document. This
document precisely defines how a PQS should handle a PQML model file. It is the lowest
possible level for defining implementation-independent PQS models.

“thesis_main” — 2005/11/21 — 13:09 — page 22 — #31
i

i

i

i

i

i

i

i

22 CHAPTER 1. INTRODUCTION

“thesis_main” — 2005/11/21 — 13:09 — page 23 — #32
i

i

i

i

i

i

i

i

Chapter 2

Process Query Systems

23

“thesis_main” — 2005/11/21 — 13:09 — page 24 — #33
i

i

i

i

i

i

i

i

24 CHAPTER 2. PROCESS QUERY SYSTEMS

In this chapter the specifics of implementing a Process Query System are discussed
by describing the internals of TRAFEN, an implementation of a general purpose PQS.
The algorithms are shown in detail and an example is developed. The chapter ends with
an in-depth analysis of the performance of a PQS. A PQS is used in an experimental
setting to verify the analytics of performance and complexity.

2.1 Fundamentals of Process Query Systems

Many DCSP and related problems are very hard to solve exactly in finite time, especially
when lost or incomplete observations are considered. In practical applications it is often
required to present partial solutions, or hypotheses, while observations are coming in.
The partial solution must be as accurate as possible given the models, such that practical
decisions can be made. The Process Query System paradigm is designed to continuously
present these hypotheses explaining a constantly changing observed environment. PQS
is a processing kernel that abstracts away the management of observations (observable
events), the overhead of dealing with missed detections, and lets the user focus on build-
ing models. Building models, then, is the main task of the application programmer using
PQS. It is the place where all expert knowledge goes into the system. Models can be
written from first principles, mathematical models, or can be learned using a feedback
loop. An in-depth discussion of model building follows later on in this Chapter.

2.1.1 System overview

The creation of hypotheses out of the received observations handled internally in the PQS
and the most feasible explanation of the observed environment is presented to the user.
Figure 2.1 gives a high-level overview of the components of a Process Query System
core.

As the figure suggests, the PQS core contains several important components. These
components are designed such that the user of a PQS only has to focus on the creation of
models and connecting the sensors as input. Since models, like the sensors, are externally
supplied, they are not part of the PQS core components. Specific functions of each of the
core PQS components are:

• Input Observation Handling. This component is a generic and flexible sub-
scriber that can take input from sensors in arbitrary format. The specific implemen-
tation of a PQS may dictate how this component functions, but it is very important
that this part is tightly integrated with the specification of the models (the Pro-
cess Query Modeling Language, PQML, defines such an intergration, as will be
described later). Specifically, the sensor subscriber must be able to take input in
many different formats, handle sensor specific errors, and subscribe to many sen-
sors at once. Additionally, this component must allow for the mapping of variables
in the models to fields in individual observations. Finally, most sensors have a
known error margin, which is encoded into the observation as a fidelity, indicating

“thesis_main” — 2005/11/21 — 13:09 — page 25 — #34
i

i

i

i

i

i

i

i

2.1. FUNDAMENTALS OF PROCESS QUERY SYSTEMS 25

PQS Core

S

S

Hypothesis

Generation

Models

Handle

Observations

Apply

Models

Publish

Conclusions

Sensors

S

Figure 2.1: High level overview of the components of a PQS system. The models and
the sensors are the only external components that the user needs to focus on. The sensors
determine the input to the PQS, the models determine the behavior.

how much this observation can be trusted. We will refer to observations with the
symbol Ot , indicating that this observation was generated from event et .

• Hypothesis Generation. This part takes all the incoming observations and
groups them together in “tracks”, refered to as T . When multiple hypotheses
are generated, they must all be internally consistent, meaning that no hypothesis
may have multiple copies of one observation. Each hypothesis, refered to as H
represents an alternative view of the observed environment. The most general (and
so far successful) approach to hypothesis generation has been to simply generate
all possible combinations of new observations in tracks in hypotheses, and have an
extensive pruning step after model scoring is complete. In this way only the most
likely and consistent hypotheses remain in the system.

• Model Scoring. The next step takes the set of hypotheses and applies the
models. The models “score” how well each hypothesis fits the set of process de-
scriptions. This means that, given the process descriptions in the models, how well
do the hypotheses explain the observed events? In this step it is important to real-
ize that the models access the actual observations. Variable names in models must
therefore correspond to fields in the observations coming from the sensors (for in-
stance: if a sensor uses a src_ip field in the observation, then the model must be
able to access that field by the same name).

• Conclusion Publication. Based on the scores assigned by the models to the
hypotheses, the last step decides which hypotheses to output to the user. Intuitively
the hypothesis that is most internally consistent will score highest and thus should
be published. The fidelity (usually 1− error) is amortized over all observations to
generate a confidence, indicating how trustworthy the conclusion is.

“thesis_main” — 2005/11/21 — 13:09 — page 26 — #35
i

i

i

i

i

i

i

i

26 CHAPTER 2. PROCESS QUERY SYSTEMS

Additionally, an external component not necessarily included in the PQS is a set of
performance metrics to evaluate how well the PQS is performing given the set of models
and input sensors. Since performance evaluation is usually application-specific, it is not
part of the PQS core. Possible problems include the lack of sufficient input observations
from the sensors, and improper scoring by the models. How to measure the performance
is up to the requirements of the specific application.

2.1.2 Model overview

Thanks to the Input Observation Handler the format and protocol of the sensor obser-
vations can be arbitrary. The models, however, are a little bit more involved, and are
essentially the plug-ins that apply a PQS to a specific domain. The PQS takes care of
making many groupings of observations into different tracks, and offers these tracks for
evaluation to the models. The models, then, return a score indicating how much the track
is evidence of the modeled process. At the lowest level, the API that the model should
offer the PQS is:

double Halflife;
void *State;

double Score (Track *t)
{

// Evaluate Track t
Set(t->State);
return(score);

}

conclusion *Conclude (Track *t)
{

Get(t->State);
// Build a conclusion
return(conclusion);

}

Where Halflife describes the rate of decay of previously assigned scores (more about this
in Section 2.2.7), *State is the current state of the process in a track, and should be set by
the Score function. Since *State is specific to each track, a unique copy needs to be made
for each track. The Score function, while calculating how much a given track is evidence
of the modeled process, also determines the current state of the process and stores that
with the track. Every time a new observation is added, the Score function must be called

“thesis_main” — 2005/11/21 — 13:09 — page 27 — #36
i

i

i

i

i

i

i

i

2.1. FUNDAMENTALS OF PROCESS QUERY SYSTEMS 27

again to re-evaluate. Finally, when a track is published the *Conclude function is called
which generates a datastructure from *State that is a conclusion for the track. Note that
by design, scoring and publishing of conclusions are independent. Arguably a third func-
tion can be added:

boolean mayMatch(Track *t, Observation *o)
{

if (fitsWithState(t,o)
return(true);

else
return(false);

}

indicating whether a new observation would fit with the existing track at all, and should
even be tried with the Score function. The mayMatch function would thus have to be
much more lightweight than the Score function. Such an addition could potentially save
a lot of processing time in very busy environments where there are a lot of processes
happening at once. Models can come in many different forms:

• State Change over Time. This is a very intuitive form of model because it
is very applicable to kinematic tracking (the tracking of objects through 2 or 3
dimensional space, over time.) The closer the observation sequence follows the ∆x

∆t
defined by the model, the higher the score. More sophisticated models can have
varying ∆x, or even learn an objects specific variations for ∆x.

• Noisy State Change. This is actually the same as the above, however, the
model needs to account for noise (inaccuracy) in the observation stream. The
Kalman Filter is very well suited for this type of model, defining the process state
at time k as xk = Fkxk−1 +Dkuk +wk, a function of the process dynamics modeled
in matrix Fk, and noise modeled in vector wk. Knowledge of input controls to the
process can be modeled with Dk and input vector uk.

• Discrete State Change. This is a subclass of the first type of model where ∆x
happens in discrete, predefined steps. The sequence of observations can be directly
mapped to a sequence of valid state transitions. This type of model is often defined
most easily with as a Markov chain (with probabilities) [99], or a Petri Net (without
probabilities) [125].

• Hidden Discrete State Change. This is a special case of the third (Discrete
State Change) models where the observations cannot be mapped to discrete states
directly. Models of this type are best represented using Hidden Markov Models,
where, besides likelihoods for each state transition, there is also a likelihood asso-
ciated with all possible observables for every possible state.

“thesis_main” — 2005/11/21 — 13:09 — page 28 — #37
i

i

i

i

i

i

i

i

28 CHAPTER 2. PROCESS QUERY SYSTEMS

• Rule-based Models. Some models are best represented as simple if-then-
else clauses; for example, when a sequence of observations indicates a single state
change, or when a sequence of observations raises a flag. Often simple rule-based
models can perturb the previously assigned score, that they themselves generated,
leading to very complex model behavior using only very simple rules.

• Formal Language Based Models. Most models that are expressed as formal
languages can be also be expressed as one of the other model classes discussed
above. For example, given is formal language L over alphabet Σ such that L⊆ Σ∗.
When observations are mapped to alphabet Σ and the model recognizes L+, then
the model can be implemented as a Petri Net, or a Finite Automata as well. Some
models are simply better expressed as a formal language, whereas others are better
expressed as an automata.

• Deterministic Finite Automata. This class of models is very broad and has sig-
nificant overlaps with formal language-based models, Markov and Hidden Markov
models, and Petri Nets. The DFA is defined as a quintuple M = (Q,Σ,δ,s,F) where
Q are the state symbols to be mapped to the incoming observations. The incoming
observations are from alphabet Σ. The mapping must follow the state transitions
defined by δ : Q×Σ −→ Q. The processes that the model detects are therefore
deterministic walks through the graph defined by Q and δ, given Σ. Additionally,
s ∈ Q is defined as the start state, and F ⊆ Q the group of final states [125].

Finally, it is often necessary to compare models to determine why PQS performance
is lower than expected. Comparison of different models depends once again on the prob-
lem domain and the specification of the particular models. One way of comparing two

models M1 and M2, with scoring functions SM1
k and SM2

k respectively at time time k, is
to experimentally determine their scoring covariance.

cov(M1,M2) = E((M1−µ)(M2−ν)) (2.1)

where E(M1) = µ and E(M2) = ν, the expected scores returned by the models for all
possible tracks. Since it is impossible to calculate the expected score for all possible
tracks (infinite), we must settle for an approximation. Given a sufficiently large number
K tracks, then for all tracks Tk for k ∈ K we have:

E(M) =
K

∑
k=0

1
K

SM
k (Tk) (2.2)

which is the average expected score that model M would return were we to pick a track
randomly from our collection. Therefore the scoring covariance between two models can
be computed with:

cov(M1,M2) =

(

K

∑
k=0

1
K

SM1
k (Tk)S

M2
k (Tk)

)

−µν (2.3)

“thesis_main” — 2005/11/21 — 13:09 — page 29 — #38
i

i

i

i

i

i

i

i

2.2. AN IMPLEMENTATION: TRAFEN 29

If the models are fully independent we would expect their covariance to be zero,
keeping in mind that only a finite number of tracks can be given to the models to compute
this number. However, since models are not necessarily bound to scores between 0 and 1,
it would make sense to normalize the average expected scores such that other values for
the covariance also make sense. We give a normalized version of the covariance using a
correlation coefficient:

ρM1,M2
=

cov(M1,M2)
√

var(M1)
√

var(M2)
(2.4)

where the variance var(M) is the average quadratic deviance from the average scores
assigned by M . This variance number can be computed as follows:

var(M) = E(M 2)− (E(M)2) (2.5)

expanded as:

var(M) =
K

∑
k=0

1
K

(SM
k (Tk))

2− (
K

∑
k=0

1
K

SM
k (Tk))

2 (2.6)

The correlation coefficient is normalized and bounded: −1 ≤ ρM1,M2
≤ 1, where

a value of 0 means that both models assign their scores fully independently, whereas
a value closer to -1, or closer 1, means that the models have an increasing degree of
correlation in their score assignments. Specifically, if ρ = 0, then the score assigned by
model M1 tells us nothing about the score that model M2 will give to that same track. If
ρ gets close to -1, then we know that a “high” score by model M1 will likely mean that
model M2 will give a relatively “low” score to the same track, and vice versa. Likewise,
if ρ is positive, then it may be expected that a “high” score assigned by model M1 means
that model M2 will also assign a “high” score for that same track.

Interestingly enough, these quantities can be computed on the fly by the PQS when
two or more models are submitted. Then, when one model seems to rarely score tracks
higher than other models, the correlation coefficient can tell us if there is another model
that assignes similar scores to the same tracks and is most likely dominating the weaker
model. Finally, poor performance can often be linked to a lack of sensors, or a poor
sampling rate. Poor model design can often be linked to low track scores, or many short
tracks, while the sensor data is clearly good. It must be said, however, that it is very
difficult to generically determine if the sensors or the models are at fault.

2.2 An implementation: TRAFEN

Conceptually a Process Query System takes arbitrary observations and process models as
input, and produces output that shows whether evidence of the process models is present
in the observation streams. This section describes our implementation of a PQS, called
TRAFEN, the TRAcking and Fusion ENngine. TRAFEN is based on a Multiple Hy-
pothesis Tracking approach, relying on some fundamental concepts from Evolutionary

“thesis_main” — 2005/11/21 — 13:09 — page 30 — #39
i

i

i

i

i

i

i

i

30 CHAPTER 2. PROCESS QUERY SYSTEMS

Computing. As a one-sentence overview, we could describe TRAFEN as a multiple hy-
pothesis core, where hypotheses are scored for fitness by multiple process models, and
the hypotheses are built from the incoming observations. Note that TRAFEN is the PQS
implementation that is used for all applications in this thesis.

This section starts with a thorough description of the hypothesis management scheme:
how observations are organized into tracks, how tracks form hypotheses, and how hy-
potheses form hypothesis-sets. Next are the process evaluation methods and the pruning
system. Then we discuss the specifics on the input, output and internal state of the sys-
tem. We will end with a discussion of the Process Query Modeling Language PQML,
an assembly-inspired language that allows fast and easy specification of observations,
models, and conclusions.

2.2.1 Observations, Tracks, Hypotheses, and Hypothesis-sets.

The hierarchy of data in TRAFEN is organised in four levels: Observations (O); the
data coming directly from the sensors, Tracks (T); sequences of related observations
given the models, Hypotheses (H); sequences of tracks, representing a whole (albeit not
necessarily correct) view of the system, Hypothesis-sets (W); sequences of hypotheses,
holding a range of views of the system.

Each hypothesis represents a complete view of the world. Among hypotheses in a
hypothesis-set there will be commonalities, as well as differences. No hypothesis claims
to be a complete and accurate view of the world, however, over time some hypotheses
may be more prevalant and accurate than others. In that sense, as more information comes
in, it might become evident that a “less likely” hypothesis provides a more accurate view
of the world, therefore becoming “more likely”. What “likely” means is dependent on
the process descriptions in the models. It is therefore important that multiple different
hypotheses are kept around, because the views on the world will change over time, as
more evidence comes in.

A hypothesis is a collection of tracks, where each track is a collection of observations
that “fit together”. This means that together they provide evidence of a process happen-
ing. A track therefore could be seen as the collection of observations that supports the
occurrence of a given process. If a process is happening multiple times in the observed
world, there will be multiple tracks, each with a set of observations supporting one par-
ticular instance of the process. Assume, for example, that TRAFEN has one process
model describing the parabolic arc that an object follows when thrown upwards. When
two balls are thrown up in the air, observations will be coming in, indicating the position
for two balls. Unless the balls are thrown at exactly the same time, with exactly the same
force, at exactly the same position, it will be very unlikely that the observations can be
confused for a single ball. Therefore, under the given process model, two tracks, one
for each ball, will be much more likely than one big track with all the observations. The
single big track would make it look like the ball made jumps in time or space and would
therefore not get scored very high by the process model.

To get a better understanding of the logic we will now dicuss the algorithm that drives

“thesis_main” — 2005/11/21 — 13:09 — page 31 — #40
i

i

i

i

i

i

i

i

2.2. AN IMPLEMENTATION: TRAFEN 31

the system internally. The similarities with Multiple Hypothesis Tracking [100] should
be apparent to the reader.

2.2.2 Newly incoming Observations

In short, every new observation needs to be evaluated against every track, by every model
in every hypothesis, meaning that all combinations must be tried. So, the observation
needs to be added to every track in the system, and then evaluated against all the models.
However, because every hypothesis represents a whole view of the world, it would be
inconsistent to simply add the new observation to every track. This is because an obser-
vation “occurs” only once in the observed world. This means that a hypothesis needs to
be cloned for every track that the observation is “tried with”.

Cloning of a hypothesis simply means that an exact copy is made of the hypothesis,
and the new observation is added to a different track for every cloned copy. All these
modified clones are added to the hypothesis-set W . In this way there is never more than
one copy of an observation present in each hypothesis, while it can still be tried with
every track in a hypothesis. This cloning of hypotheses brings with it an exponential
explosion in the number of hypotheses that are present in the system, and some type
of hypothesis management needs to be done. Later we will talk more about pruning
methods.

This method of hypothesis generation is brute force and creates an entirely new hy-
pothesis for every track in each hypothesis, for every new incoming observation. Since
there is no general way to control this exponential explosion, several important other
steps must be taken as well:

• Pruning. Since there will be only very few combinations of the new observa-
tion with the existing tracks that make any sense, all other combinations must be
pruned away immediately, preferably before the next observation arrives. Since the
system relies on the model scoring to determine what combinations are reasonable,
all generated hypotheses and tracks must be evaluated by the models first. After
this evaluation cycle only several of the very best hypotheses should be saved.
Pruning therefore happens every time right after evaluation by the models, which,
in turn, is done for each observation that arrives. (And in some cases multiple
times between two observations.)

• Copy-On-Write. When a hypothesis is cloned, all its tracks are cloned with
it. Since, in general, only one track of the cloned hypothesis will be modified, it is
unnecessary to actually copy all the other tracks. In any software implementation it
is therefore important that actual copies are only made when the track is modified.
Likewise, when models evaluate tracks the software implementation should ensure
that each track is evaluated only once.

Additionally, the new observation might be evidence of a whole new event (or pro-
cess) happening. This means that a track must be created with merely this new obser-

“thesis_main” — 2005/11/21 — 13:09 — page 32 — #41
i

i

i

i

i

i

i

i

32 CHAPTER 2. PROCESS QUERY SYSTEMS

T=1 T=2 T=3
Observation

Track

Hypothesis

HypothesisSet

Figure 2.2: Arrival of 3 new observations in an empty hypothesis-set. The outer box
(green) is the hypothesis-set containing the hypotheses (white boxes). There is only
1 hypothesis-set per time step. The hypotheses contain tracks (dotted lines) with the
observations (the blue, yellow, and red dots).

vation, and this track is then added to a copy of the original hypothesis. To illustrate
the cloning of hypotheses and construction of tracks as new observations arrive, consider
Figure 2.2. Initially the hypothesis-set is empty. The hypotheses in the hypothesis-set
change with the arrival of observations. The hypothesis-set is indicated with the large
dark green boxes. At time T = 1 the first observation comes in. In the hypothesis-set
a new hypothesis is created. In this hypothesis a new track is created, which holds one
observation: blue. Each hypothesis is indicated with a white box, and tracks are the small
dotted lines in the hypotheses that hold the observations together. The thick dotted lines,
from hypothesis-set to hypothesis-set indicate how hypotheses evolve over time.

So, at time T = 1, after the blue observation came in, the hypothesis-set contains one
hypothesis, which contains one track, which consists of one observation: the blue one.
At time T = 2 another observation comes in: the yellow one. The only hypothesis in
the hypothesis-set is cloned once. In the first copy the yellow observation is added to the
existing track. In the second copy the yellow observation is put in a new track, all by it-
self. Finally, a third, all new, hypothesis is created that holds one track, which consists of
only the yellow observation. Now the hypothesis-set contains three hypotheses, and four
tracks. Note how none of the hypotheses contains more than one copy of an observation.

At time T = 3 the third observation comes in: the red one. The first hypothesis (with

“thesis_main” — 2005/11/21 — 13:09 — page 33 — #42
i

i

i

i

i

i

i

i

2.2. AN IMPLEMENTATION: TRAFEN 33

one track: blue-yellow) is cloned, the first copy gets red added to the existing track, and
in the second copy the existing track is not modified and a new track is added, consisting
only of the red observation. The second hypothesis (with two tracks: blue, and yellow)
is cloned twice. The first copy has red added to the blue track, the second copy has red
added to the yellow track, and the third copy gets a whole new track with red all by itself.
And it goes analogously from here for the third hypothesis from T = 2. Finally a whole
new hypothesis is added with one track, consisting of only the red observation all by
itself.

Note that in Figure 2.2 a new hypothesis is generated at each step (T = 1, T = 2,
and T = 3) that contains one track with only the new observation. This is a strategy
to get tracks and hypotheses started in a condition where the hypothesis-set is empty.
The hypothesis-set is empty right after starting the algorithm, and at other times when
pruning has eliminated all tracks and all hypotheses. In most other cases (when there
are other tracks and hypotheses present) this new singleton hypothesis is usually of very
little consequence, for it tends to get pruned right away. Experience has demonstrated
that disabling creation of this singleton hypothesis does not effect the tracking abilities
of the algorithm.

Technically, to preserve symmetry, it would be justified to also maintain a copy of
each of the original hypotheses. This would mean that at time T = 2 the single hypothe-
sis from T = 1 is copied and maintained unmodified. The assumption would be that the
newly received observation is considered noise by the geometry of the algorithm, instead
of by model scoring. However, intuitively it can be guessed that this may get the algo-
rithm stuck in a local maximum. Consider a hypothesis that is scored very high by the
models, meaning that this hypothesis is very favorable. A newly incoming observation
is therefore likely to create a less favorable set of hypotheses. This would mean that all
hypotheses with this new observation present will be pruned, leaving only the original
umodified one. This local maximum has indeed been observed repeatedly in experimen-
tation, thus getting the PQS “stuck”. To avoid this problem the original hypothesis is
never copied verbatim into the next hypothesis set.

The nature of this algorithm leads to exponential explosion of hypotheses and tracks
over a very short amount of time. When we keep in mind that tracks are sequences of
related observations, given a certain model, then we can conclude that most tracks and
hypotheses that are formed in the outlined algorithm are of very little value. To put it
another way, a Process Query System tries to detect a process in an incoming observa-
tion stream. That means that the process model must evaluate all possible orderings of
observations (the tracks) and decide if they are evidence of the process occurring. All
other combinations are of no (or lesser) value, and may be discarded.

2.2.3 Track Scoring with Models

To decide which tracks and hypotheses can be thrown away (pruned), the models need to
evaluate the tracks and store the updated process state. When a model finds a track to be
possible evidence of the process that it represents, it gives the track a “high score”. When

“thesis_main” — 2005/11/21 — 13:09 — page 34 — #43
i

i

i

i

i

i

i

i

34 CHAPTER 2. PROCESS QUERY SYSTEMS

a model finds a track to be poor evidence of the process that it models, then it gives the
track a very “low score”. This score measures how likely it is that observations in the
track were formed due to the modeled process occurring. From now on we will refer to
this “score” as the “likelihood” (that the track is evidence of a modeled process).

For example, assume process model M3 describes a process in which there are an
arbitrary number of yellow observations, and then a red observation: [Y ∗R]. (This could
be modeling the failure of a network device, a traffic jam, a factory line failing, etc...)
Model M3 will therefore give a high likelihood to any track that has yellow observations
followed by red. If there is just a red observation, the likelihood will be relatively high
as well. Any other combination of observations in a track will be scored with a low (or
zero) likelihood by model M3.

For comparison, assume a second process model M4 describing a process in which a
blue observation is always followed by a yellow observation. Therefore, this model will
score a lone blue observation fairly high, in anticipation of what may come next, and it
will score any track with blue and yellow very high, to indicate the detected process. To
clarify this example consider Figure 2.3. After the cloning is done, and the new observa-
tion has been added to the appropriate tracks the two models are asked to evaluate each
track. The golden boxes give two scores, the first one from M3 and the second one from
M4. So, the first hypothesis of the second hypothesis-set, where T = 2, has one track
consisting of one blue observation and one yellow observation. Model M3 scores this
track with a likelihood of 0.2 to indicate the perceived match of the yellow observation
at the end of this track. However, model M4 scores this track with a likelihood of 0.7,
because it is a very good match with the yellow observation following the blue observa-
tion. This example shows how models may overlap in their scoring. In fact, if we look at
the first hypothesis in the third hypothesis-set, at T = 3, we see that it has one track with
three observations. Both models scored that track very high, because the track is a good
match for both models. This means that the track could be considered evidence of both
processes occurring.

2.2.4 Pruning and Hypothesis Control

Given the scores that are assigned by the models, it is very straightforward to decide
which tracks should be discarded. Because all possible combinations are made, of tracks
and arriving observations, there will be many tracks that won’t score very high (see Fig-
ure 2.3). A track which scores low for all models is a candidate for removal. It means
that the combination of observations in that track do not represent any of the processes
that the models describe. On the other hand, if a track is scored high by any model it
should be kept. Even if there is only one model that scores a track high, it means that the
track is likely to have been produced by the process that the model represents. In fact,
the modeled processes should be very different from each other and therefore most tracks
will get a high score from only one of the models. To conclude, the ultimate “total” score
of a track should be the highest score that ANY model assigned to that track.

To decide which hypotheses make the cut we need to assign a score to each hypothesis
as well. Intuitively the hypothesis score should reflect how well the hypothesis as a

“thesis_main” — 2005/11/21 — 13:09 — page 35 — #44
i

i

i

i

i

i

i

i

2.2. AN IMPLEMENTATION: TRAFEN 35

T=1 T=2 T=3

0.8

0.2,0.7

0.4,0.0

0.8,0.7

0.7

0.2,0.7

0.3

0.4,0.3

0.4,0.0

0.2,0.0

0.0,0.3

0.55

0.0.0.3

0.8,0.0

0.3 0.3

0.30.8

0.8,0.0 0.2,0.0

0.4,0.0

0.4

0.4,0.0

0.0,0.3

0.2

0.2,0.0

0.25

0.0,0.3

0.2,0.0

0.55

0.2,0.0

Figure 2.3: Scoring given models M3 and M4.

whole explains the observed sequence of observations. Considering that the incoming
observations are produced by processes happening in the observed world, the hypothesis
score should reflect how well its tracks are scored by the models. After all, the models
model the processes occurring in the observed world. If no processes are occurring,
and the observations can therefore not be properly grouped in tracks, the score of all
the tracks will be low for all the models. Then the hypothesis score will be low also,
which is correct. If one or more processes are occurring in the observed world, tracks
will be scored high by the models, and thus the hypothesis score must be high to reflect
a good explanation of the sequence of observations. This is done by taking the highest
track scores of all the tracks in the hypothesis, and averaging them. This can be done
straight, or in a weighted manner, where the size of the track is made to count as well.
The example shows the hypothesis score (in the pink boxes) as the average of the highest
scores of all the tracks in that hypothesis.

Note that the example in no way reflects the definitive way in which a PQS generates
an overall score for the hypothesis. The score of the hypothesis must represent how well
the collection of its tracks represents processes in the observed world, given the models.

“thesis_main” — 2005/11/21 — 13:09 — page 36 — #45
i

i

i

i

i

i

i

i

36 CHAPTER 2. PROCESS QUERY SYSTEMS

If, for example, an engineer is trying to build a radar system capable of tracking airplanes
near a bird nesting area, relatively speaking, there will be few planes and a lot of noise
(the birds). So, there will be many observations with many different radar footprints,
most of which are probably merely interference. The process model would describe
the exact properties of airplanes such as the speed and expected radar footprint. The
hypotheses will most likely contain several large tracks with the observations that are
evidence of aircraft, and many small tracks with all observations that can be considered
noise. The engineer will therefore only be interested in the long tracks and not care at all
about the noise tracks. He might therefore argue that the score of the hypothesis should
be the score of the highest scoring track.

Another way of dealing with this specific case would be to insert two models into
the PQS: one that describes airplanes, and one that describes everything but airplanes.
The second model could be most easily constructed by returning a score: 1 - score of
the airplane model, and so effectively modeling all non-airplane noise. In this way the
hypothesis score could easily be computed as the average of the highest track scores,
and everything would work fine. For convenience there are several different methods of
creating a score for the hypothesis, given the highest score for each track. Each method
favors a slightly different strategy. For one hypothesis H we consider S(Tn) the highest
score of track Tn, and L(Tn) its length. Consider T the number of tracks in hypothesis
H . The following methods are given:

• Simple average: Equation 2.7 where all tracks, regardless of their length are
weighted equally. This strategy works for most cases.

∑T
n=1 S(Tn)

T
(2.7)

• Length weighted average: Equation 2.8 where tracks are weighted by their
length. It is a proper average since it is divided by the total number of observa-
tions in the hypothesis. It works best when longer tracks are preferred, but small
tracks should be given time to grow. Essentially the score of the hypothesis hinges
mostly on the longer tracks, leaving smaller tracks to grow before they start to se-
riously contribute. This method also works very well when combined with a fixed
maximum track length.

∑T
n=1 S(Tn)L(Tn)

∑T
n=1 L(Tn)

(2.8)

• Sum of scores: Equation 2.9 When simply averaging scores, hypotheses have
a tendency to form very few tracks that score high. New tracks barely get a change
to grow and usually only two or three objects are actually tracked accurately. To
avoid this artifact it is sometimes beneficial to favor a larger number of tracks,
regardless of their specific scores. By simply adding all the scores from all the
tracks there is a tendency to form many useless tracks, however; therefore this

“thesis_main” — 2005/11/21 — 13:09 — page 37 — #46
i

i

i

i

i

i

i

i

2.2. AN IMPLEMENTATION: TRAFEN 37

method should be accompanied by a solid track pruning strategy. For example
pruning each hypothesis down to a fixed number of tracks, or removing all tracks
that score below a given threshold. (More about track pruning later.)

T

∑
n=1

S(Tn) (2.9)

• Weighted sum of scores: Equation 2.10 Same as above, except favoring long
tracks. Once again, it is prudent to have a solid track pruning method in place in
order to use this scoring strategy. Additionally, since track lengths are considered,
it is likewise important to prune observations and therefore constrain the length of
the individual tracks.

T

∑
n=1

S(Tn)L(Tn) (2.10)

• Average weighted sum of scores: Equation 2.11 This strategy works very well
in busy and noisy environments. Most models tend to assign scores based on the
last two observations in a track only, although longer tracks often indicate that
a process was tracked successfully for a while. This strategy therefore offers the
benefit of considering the length of a track while still averaging by the total number
of tracks.

∑T
n=1 S(Tn)L(Tn)

T
(2.11)

Looking at Figures 2.2 and 2.3 it becomes clear that the number of tracks and hy-
potheses explodes exponentially with every observation that comes in. It is necessary to
do some hypothesis and track pruning to keep the size of the hypothesis-set under con-
trol. Starting at the highest level, which hypotheses should be thrown out? Recall that
the score of the hypothesis reflects how well a hypothesis describes the observed world.
Several options have been explored:

1. Prune all hypotheses that have a score below a set threshold. This is a straight-
forward, deterministic way of tossing out any hypotheses that fail to score above
the threshold. Although effective, sometimes the remaining hypotheses tend to be
very similar. This is not hard to imagine; if a hypothesis has several tracks that
all score very high it will drive up the score of that hypothesis. Now when a new
observation comes in, that hypothesis is cloned several times and all its offspring
will score high as well, because of these high scoring tracks. Other hypotheses not
containing this successful set of tracks will be at a disadvantage and run the risk
of having all their offspring pruned when the next observation comes in. In this
way a set of high scoring tracks can dominate all hypotheses. This characteristic
is referred to as the “recurring track” problem.

“thesis_main” — 2005/11/21 — 13:09 — page 38 — #47
i

i

i

i

i

i

i

i

38 CHAPTER 2. PROCESS QUERY SYSTEMS

2. Deterministically prune the lowest scoring hypotheses until a set number of hy-
potheses are left. This method first sorts the hypothesis by score and then starts
removing the lowest scoring ones until a given number of hypotheses remain. This
method also suffers from the recurring track problem. Depending on the threshold
this method may give worse tracking performance. Especially when the maximum
number of allowed hypotheses is set low, the recurring track problem can become
quite severe. The benefit of this approach, however, is that the processing time
required for each observation and the total memory footprint are very constant.

3. Let the hypothesis score be the chance that a hypothesis will not be pruned. This
means that higher scoring hypotheses have a better chance of surviving the pruning
than the lower scoring hypotheses. This method battles the recurring track problem
quite well. This process can be followed until a set number of hypotheses are
left, or simply a one-shot pass where there is no maximum number of hypotheses
defined.

4. Track the parental history tree of each hypothesis. For any given two hypotheses
investigate how long ago they had a common ancestor. The closer their relation-
ship the smaller the chance that they will both make it into the next hypothesis-set.
This is a generic way of battling hypothesis-sets in which most hypotheses are very
similar. Intuitively it is good that many of the hypotheses are similar, because it
would mean that their tracks are accurately tracking a given number of objects,
however, the problem seems to be that sometimes new tracks barely get a chance
to grow. Biasing hypothesis scores based on parental history forces a certain level
of diversity into the hypothesis-sets which may be desirable. No extensive experi-
mentation has yet been done with this technique, however.

Often it requires some experimentation to find the correct scoring and pruning method
for hypotheses. The combination of hypothesis scoring and pruning is generally referred
to as: hypothesis control and is of vital importance to make process detection both scal-
able and functional.

2.2.5 Track Pruning

As a PQS is running it will form strong tracks for objects that are correctly tracked,
however, most hypotheses will also collect short, low scoring tracks. These lower scoring
tracks are often a characteristic of noise, and do not indicate the tracking of an actual
process. Over time many of these noisy tracks will be created, collecting all observations
that could not be properly matched with a tracked process. It is therefore important that
these tracks are frequently pruned away.

However, track pruning is a little bit more tricky because we have to deal with the
possibility that a short, low scoring track is going to grow and become the evidence for
an important process. If such a track is pruned too soon the process may go undetected.
In other words, small tracks must get a chance to grow. Intuitively it would be tempting
to simply not prune tracks below a set length. This will effectively exempt short (and

“thesis_main” — 2005/11/21 — 13:09 — page 39 — #48
i

i

i

i

i

i

i

i

2.2. AN IMPLEMENTATION: TRAFEN 39

often low scoring) tracks from pruning, thus allowing them a chance to grow. However,
this also allows the opportunity for a hypothesis to get flooded by very short (one or
two observation) tracks, with a very low score. We refer to this characteristic as the
“small tracks” problem. Often the small tracks problem can lead to a very poor overall
hypothesis score regardless of the quality of the higher scoring tracks. There are two
ways to mitigate the small tracks problem: 1. Allow only a set number of tracks in a
hypothesis, and prune short tracks anyway if they score the lowest, and 2. Write better
models. The second option is a usually a catch-all for most tracking problems, and that
is because it is true. Often it is possible to significantly improve tracking performance
by merely adjusting the way the a track is scored. (One notorious example is described
in more detail below in Section 2.5). The general advice on tackling the small tracks
problem is to first set a maximum to the total number of tracks allowed in a hypothesis.
If that does not fix the problem, try improving the model by setting constraints on how
tracks are scored. Track pruning options:

1. Prune all tracks with a score below a set likelihood. This method is straightforward
and works very well in most cases. The model has to account for scoring new and
small tracks that have good potential such that they will not get pruned right away.
This means that new very short tracks (one or two observations) can get a score
that is higher than the pruning threshold to allow them a chance to grow. Once
more observations are added to that track the score can be increased or decreased,
depending on how well the track represents the modeled process.

2. Prune all tracks with a score below a set likelihood but with at least a minimum
length. This is the same paradigm as above except that a track must be at least
of the minimum length before it may be pruned. The models can often be less
complex because small tracks get an opportunity to grow before they run the risk
of getting cut. Therefore the model builder does not have to account for short
tracks that may in the future grow, but are currently not yet a good indicator of
the modeled process. This track pruning method may suffer from the small tracks
problem.

3. Sort tracks by likelihood and prune them deterministically from the hypothesis un-
til a fixed number of tracks remain. This method can be used by itself, or combined
with the two other methods above. In either case, the tracks are sorted by score
and pruned starting at the track with the lowest score until a fixed number of tracks
are left in the hypothesis. This method works very well in reducing the effects of
the small tracks problem.

Once again the right choice depends on the specific scoring characteristics of the
models used. At this point the choice of pruning techniques is done by experimentation.

2.2.6 Observation Pruning

Most domains do not require the observations to linger around in a track forever, how-
ever, only the most recent observations are important to the models. In this case it is

“thesis_main” — 2005/11/21 — 13:09 — page 40 — #49
i

i

i

i

i

i

i

i

40 CHAPTER 2. PROCESS QUERY SYSTEMS

possible to remove the tail-end of a track and throw out the older observations that no
longer have any significant impact on the score of the track. Although this method has
no impact on tracking performance and accuracy, it does (significantly) improve compu-
tational performance. If older observations are pruned from prominent tracks the total
memory footprint of the hypothesis-set is going to be steadier and under control. This
leads to better computational performance as well, since all the work is done on a smaller
memory footprint.

For example, imagine the tracking of an airplane through a large airspace. If a radar
system gives 1 observation per second and the airplane is within radar range for sev-
eral hours, the track associated with this airplane could easily grow to over ten thousand
observations. However, any reasonable model would only use the last three or four obser-
vations to track the plane. If the tracks are kept short (say no more than 10 observations)
the score of the tracks would still be the same (because it is determined based only on the
last 3 or 4 observations) while the memory footprint is significantly reduced. Methods
for observation pruning:

1. Prune observations by track length. This is the most straightforward method which
prunes older observations until the length of the track is at a fixed maximum. This
method implies that as new observations are added to a track, older observations
are pruned out. The maximum track length must be at least as high as the maximum
number of observations that any model in the tracker looks at. (Clearly it would be
unwise to prune observations from a track that a process model still might need to
evaluate).

2. Prune observations by age. This method works best when observations come in
at a relatively steady rate, or when models use observations based on their age.
For example, if the process models only use observations that are newer than 30
seconds, then it is safe to prune any observations that are older than 30 seconds or
so.

When pruning observations it is important to keep the hypothesis scoring methods
in mind. For example, consider using a hypothesis scoring method that multiplies the
track score by the track length; then emphasis is given to longer tracks. If the tracks
are kept too short by the observation pruning, then the hypothesis scoring method will
not function properly. A common artifact that happens in such a case is when there is
a very distinct noisy sensor in the input, that gives the same observation at a very high
frequency. If observation pruning is not done by age then the PQS algorithm will have a
tendency to start multiple tracks for these noisy observations, splitting the observations
between these tracks. Needless to say, this is a method of keeping hypothesis score
artificially high. (Generally this artifact can easily be removed by pruning observations
by age and using a track-length-based hypothesis scoring algorithm, however, in the most
severe cases a modification to the model must be considered.)

“thesis_main” — 2005/11/21 — 13:09 — page 41 — #50
i

i

i

i

i

i

i

i

2.2. AN IMPLEMENTATION: TRAFEN 41

2.2.7 Track Score Decay

While experimenting with the initial implementation of a Process Query System it soon
became clear that old tracks have a habit of lingering around statically. When an event
would occur and a process model would detect it, it would score a track very high. Af-
ter the event would be over the track would not gather any new observations and would
simply hang around forever. This would prevent other tracks from growing and the hy-
pothesis would not be representative of the observed environment. The straightforward
solution to this problem was to decay the score of a track when no new observations are
added to it. Since a track is evaluated by every model in the PQS tracker, a vector of
scores is associated with each track. Therefore the score decay must be done on the en-
tire score vector, however, the rate of decay will be dependent on the specific processes
modeled by the models.

For example, assume once again that a Process Query System is tracking airspace.
Assume also that it is configured with three process models; one for personal propellor
aircraft, one for commercial passenger airliners, and one model for supersonic jetfighters.
The radar system reports once every five seconds on all objects observed in the airspace.
Because the radar system is relatively slow the models must make predictions of where
all tracked airplanes are. These predictions will be based on the last several observations
in each track, where a track represents one tracked airplane. When an airplane flies out
of radar range no more observations will be received and the predictions will become
less and less accurate as time passes. However, the accuracy of the predictions degrades
differently for different airplanes. Because of the speed and maneuverability of the super-
sonic jetfighters the predictions will be poor very quickly, although the propellor driven
personal aircraft are so slow that the model can keep making accurate predictions for a
while to come.

The above example demonstrates that when a PQS tracker is configured with multiple
models, they each may have different rates at which track scores decay. There are two
options for track score decay:

1. Models take care of decay. Every time an observation comes in, all models are
called for all tracks in all hypotheses. This means that even though most tracks do
not get extended with a new observation, the models will still be invoked for them.
The model can therefore detect that a track has not been modified for a longer time
and degrade the score of the track. Models can, for instance, insert extra states or
transitions to govern their own decay curve.

2. PQS tracker takes care of decay automatically. This method simply makes the
models less complex. The model configures the rate of decay in the tracker, for all
scores associated with this model. The tracker then automatically applies the decay
to all tracks. The model now only has to assign a score when a track was actually
modified (i.e. when a new observation was added). This method uses logarithmic
decay only.

The function for logarithmic decay is:

“thesis_main” — 2005/11/21 — 13:09 — page 42 — #51
i

i

i

i

i

i

i

i

42 CHAPTER 2. PROCESS QUERY SYSTEMS

Figure 2.4: Halflife curves for λ = 10,λ = 20, and λ = 40.

st1 = st0 × e−α×(t1−t0) (2.12)

where α dictates the rate of decay. It is common to specify logarithmic decay in halflife
values, where halflife value λ indicates the amount of time after which the score will be
exactly half. With (t1− t0) = λ, this gives:

e−α×λ =
1
2

−α×λ = ln(
1
2
)

α =
ln(2)

λ
(2.13)

Halflife decay has become a fundamental part of Process Query systems. Figure 2.4
shows halflife graphs for various values of λ.

2.2.8 Model Invocation

So far the discussion focussed on the structural underlying aspects of Process Query
Systems. Now we will focus on the most important part of any PQS: the actual “process

“thesis_main” — 2005/11/21 — 13:09 — page 43 — #52
i

i

i

i

i

i

i

i

2.2. AN IMPLEMENTATION: TRAFEN 43

queries”, or “models”. Incoming observations are automatically grouped in all possible
configurations of tracks in a large group of hypotheses. Models then evaluate all those
tracks and determine a “score”, indicating how well a track forms evidence of the queried
process. The only thing not discussed so far is exactly when a model is asked to evaluate
a track, and how it goes about doing that.

In principal, a model (or process query) is a simple function that takes a track as the
argument and produces a score as output: sk = SM

k (Tk). Preferably the score is between
0 and 1, however there is no rule that explicitly requires that. The model is asked to
evaluate one track at a time, meaning that the PQS tracker will invoke the model once
for every track in a hypothesis for all hypotheses. The model therefore only has to focus
on “how well this track is evidence of the process”. Therefore, the model writer only
needs to focus on the actual model, and does not have to be concerned with observation
bookkeeping, hypothesis control, and other related matters.

The PQS system will invoke the model according to the following rules:

• For every new observation the tracker invokes all the models on all the tracks in
all hypotheses, before the pruning step is done. Since a hypothesis is cloned for
every track such that the observation can be tried in every possible configuration
with all existing hypotheses, there will be many tracks that did not change since
the last time the models were invoked. The model, however, is free to re-evaluate
the track and re-adjust the score because time has passed (see the discussion on
halflife times).

• Invoke the models at any other convenient time. The tracker can invoke all the
models on all the tracks in all hypotheses based on reasons other than the arrival of
a new observation, however, this is not a requirement. It is good practice to invoke
the models at regular time-intervals to allow the models to downgrade tracks if
appropriate. Since models may be computationally intensive it is recommended
that the tracker watches system CPU load and try to make the periodic invocation
of models coincide with moments of low load.

All models must be invoked when a new observation is added, specifically before the
pruning step. Invoking at any other time is not required and is up to the PQS tracker.
Additionally, it is very common for several hypotheses to contain exactly the same track.
An efficient PQS implementation is therefore encouraged to invoke the models only once
and copy the scores.

Although this method of computing track scores is very computationally expensive,
experimentation has shown that reducing model invocation rates drastically increases
the explosion of hypotheses. The reason is that pruning can only be done after model
invocation. Additionally, tracking performance suffers in that case. As mentioned be-
fore, PQS tracking is a heuristic process; missed observations, sensor error margins, and
exponential hypothesis explosion control (pruning) all contribute to make the “perfect”
assignment of observations to processes very difficult. Technically, if all observations
were received correctly, without error, and in chronological order, it is still not guaran-

“thesis_main” — 2005/11/21 — 13:09 — page 44 — #53
i

i

i

i

i

i

i

i

44 CHAPTER 2. PROCESS QUERY SYSTEMS

teed that a “perfect” answer is computable. More about computability and performance
in section 2.6.

2.2.9 The output of a PQS

The input of a PQS are observations (in arbitrary form) that come from one or more
sensors. The format of these observations is irrelevant and can differ from sensor to
sensor, and may even be different for observations from the same sensor. Next, it is
up to the models to handle the various fields in the different observations and assign
scores to the tracks that the PQS builds from the observations. Although the incoming
observations and the process models are all that are needed to successfully do process
detection and tracking, the system will need to publish some output as well. Ideally
the output of a PQS is formatted such that it can be used as input observations for a
second-level PQS. This essentially means that the conclusions published by a PQS can
be used as observations for another PQS, conceptually allowing us to chain multiple
Process Query Systems. The benefits of chaining multiple PQS engines become obvious
when we consider splitting a complex tracking problem into multiple tracking tasks. For
instance, consider tracking a flock of birds. The first-tier tracker would process a radar
or video image, trying to identify the paths of individual birds. This is a very difficult
problem since the observations will be too sparse to make a clear distinction between
birds. However, a second-tier tracker could take output of the first-tier tracker as input
and come to more general conclusions, such as the direction of the flock, its speed, and
the approximated number of birds.

The two questions that remain are: (1) What does such an “output conclusion” look
like, and (2) When are they published? Intuitively it seems prudent to publish only one
hypothesis, since multiple hypotheses do not necessarily have meaning as output (let
alone clear up any confusion as to which observations are evidence of what process).
Additionally, the highest scoring hypothesis should be published, because, at the current
time, it is the best description of the observed environment given the process models. It
must be said, however, that in some application fields it may be meaningful to publish
more than just the highest scoring hypothesis. This decision is up to the user and should
be a PQS configurable option.

So what exactly should be published from the highest scoring hypothesis? The an-
swer lies in the definition of a hypothesis. Since a hypothesis represents a complete
view of all the evidence of the individual processes that are occurring in the observed
environment, evidence of each occurring process should be published. So, if a PQS is
tracking the movement of three balls bouncing around in a box, the hypothesis will have
three tracks, each representing a collection of observations associated with one ball. The
tracks, therefore, tell us which observations belong to which ball, and thus describe the
paths that each of the three balls followed. So in this case the PQS tracker would publish
three conclusions, one for each track (ball).

The contents of the conclusions should be up to the model. Depending on what the
model was designed to do, the contents of a conclusion may differ. For the example
above, we can envision a model that was made to predict the position and future path of

“thesis_main” — 2005/11/21 — 13:09 — page 45 — #54
i

i

i

i

i

i

i

i

2.2. AN IMPLEMENTATION: TRAFEN 45

a ball. Such a model would publish a momentum and maybe one or two expected future
locations. However, if the model was designed to report the path of the ball for the last
10 seconds, then the published conclusion should contain a list of past locations for the
ball. What this means is that the model should determine the contents of the conclusions.
Notice, however, that both examples refer to relatively static data associated with the
track. We could, for example, store a data section T M

d with each track T , for every model
M in the system. A model would then be free to use this data section as a canvas to store
data with the track, eliminating the need for the model to recompute all these factors
every time the model is invoked for a track. This datasection, then, holds the state of the
process modeled by M . The predictive model, for example, would store the momentum
with the track and would then only have to update the momentum every time the model
is invoked. The model would also update the predicted future locations of the ball in this
track-specific data section. Now, when the tracker decides it is time to publish this track,
it only needs to publish the track-specific data section T M

d without having to invoke the
model again. This effectively separates the model evaluations and the publishing tasks.
Therefore the model only has to update its track-specific data section for each track that
it evaluates, and the PQS tracker will simply publish this section as a conclusion when
necessary.

Now let’s assume that there are two models, M1 and M2 in the tracker. This means
that some tracks will score high for the first model M1, and others will score high for
the second model M2. This also means that each track will have two track-specific data

sections; T M1
d and T M2

d , one for each model. It would be proper to only publish the
data section for the model that scored highest for the given track. It should be clear that
publishing anything else would be against the principle of process detection. A sequence
of observations is usually only indicative of one occurring process, therefore, the model
that matches this process best will ultimately dictate the score for that track, and with
that, the conclusions.

Now that conclusion creation and conclusion publication are functionally separated,
the publishing thread of a PQS tracker can autonomously make decisions on when to pub-
lish the conclusions. The publication frequency will depend on the specific requirements
that the PQS is deployed for. If the observation frequency is very high, the publication
frequency might be best set lower, however, if the observation frequency is very low,
models can make predictions which can be published at a higher frequency. Examples of
these conclusions will follow in the Process Query Modeling Language sections 2.2.10,
and 2.2.11.

2.2.10 The Process Query Modeling Language

From the specification document: (Attached in Appendix A).

The Process Query Modeling Language (PQML) is an assembly-inspired,
low level language specification for defining observations and models for
Process Query Systems. Any implementation of a Process Query System

“thesis_main” — 2005/11/21 — 13:09 — page 46 — #55
i

i

i

i

i

i

i

i

46 CHAPTER 2. PROCESS QUERY SYSTEMS

must be able to parse PQML (pronounce Puh-Que-Mol) files and obtain ob-
servation layouts and model definitions from such a file.

There is no explicit information given on the binary representation of a
PQML definition, it is up to the implementer of the specific PQS to de-
termine what the best internal representation for its PQS is.

It is expected that all higher level models can be compiled into a PQML pro-
gram and so be used by a PQS. Hidden Markov Models, or state machines
can have their transition predicates be PQML programs, thus making the
translation to PQML more convenient.

PQML is meant to be the lowest level specification for PQS models. However, it is
still fully platform independent since it does not specify a binary representation (although
there are minimum standards set for all constructs). Essentially PQML defines a set of
instructions and structures that represent all fundamental (atomic) operations that a model
can perform in a PQS. The goal in designing PQML was therefore to represent all these
fundamental operations in as simple a language as possible. This means that all other
models can compile to PQML and still be fully functional. For efficient model building
it is recommended that the model builder use a higher level model specification method.
Sensible modeling methods include Hidden Markov Models, Petri Nets, rule sets, and
iterative programs.

To fully appreciate PQML it is important that the exact function of models in a PQS
is clearly understood. Recall that the PQS tracking core takes care of all the hypothesis
and track creation, and pruning. Models are invoked after new observations arrive, and
in between observation arrivals. Models are therefore often invoked on tracks that have
not changed, but only aged instead. The task of a PQS model is to assign a score to
the given track, based on the observations that the track consists of, representing how
well the track is evidence of the modeled process. Thus, a model M is invoked with a
track Tk at time k as input, the model then returns a score SM

k (Tk) representing how well
the observation sequence O1...n of Tk fits the definition of the process that model M is
modeling.

The models are executed on a virtual machine which is reset every time a model is
invoked. Special instructions are available to retrieve data from observations in a track,
and to set the score. The virtual machine is register-register driven with separate data and
instruction memory (however, there are two separate types of data memory; 1. persistent
with each track, i.e. process state, 2. globally persistent.) There are three basic datatypes
in PQML; integers, floats, and strings. Integers are at least 32-bits signed, floats are
IEEE Standard 754 compatible, and strings must be able to contain at least 32 characters
(including any terminating NULL “\0” characters). There are at least 32 registers of
each type, named i0 . . . i31, f 0 . . . f 31, and s0 . . .s31. For the data memory (both track
specific, as well as global), and for the observations it is possible to define arrays for both
integers as well as floating point data. Arrays are indexed with special array instructions.
Finally, there is a stack to and from which all three datatypes can be pushed and popped.
This stack is also used to store return addresses for function calls.

“thesis_main” — 2005/11/21 — 13:09 — page 47 — #56
i

i

i

i

i

i

i

i

2.2. AN IMPLEMENTATION: TRAFEN 47

The seemingly limited number of basic datatypes in PQML was a deliberate decision
to keep the language as simple as possible. The goal was to evaluate the language as is,
and grow its capabilities as needed. Specifically, any changes in data type directly affect
the way in which the PQS system communicates observations and conclusions over the
network. So far no models have had a need different from what is outlined in PQML.
Additionally, PQML does not feature a pointer datatype. Although integers can be used
to index arrays, it is not possible to store, for example, a pointer to an observation. The
reason for this choice is not only the added complexity that this would bring, but also the
fact that observations are not unique structures, and are internally shared amongst tracks.
One future extension that is under consideration is to mitigate the current inability of the
models to access the observation “fidelity”. Each observation is given a fidelity number
f = 1−e, where e is the error margin in the observation as reported by the sensor. If this
feature is added, a model will be able to assess the confidence that a track is correct, given
the error in its observations. Another possible future addition is a mayMatch function that
returns a yes-or-no answer indicating if an existing track and a new observation could fit
together, effectively avoiding creating useless tracks and hypotheses.

A PQML program is split up in “program sections”. These program sections must be
one of six types, however may re-occur as often as needed:

1. data Defines the globally persistent data. Arrays may be used in this section. This
is also the section to define constants because PQML does not support immediates
in its instructions. Variables in a .data section can be used for dynamic parts of
a model, meaning that these variables are global. Every subsequent invocation of
the model can read and write to these variables. For example, it could be used to
count how many times a model was invoked. More practical uses include keeping
track of the layout of a network; a special observation updates the model’s internal
network graph, which is kept statefully in the .data section. Also, this section is
very useful for models that can be trained.

2. observation This section defines the layout of one incoming observation type. It
also requires an identifier name. There can be many different observation types
that a model can handle, so there are likely to be several .observation sections in
each model. Array definitions are permitted, keeping in mind that the array size
must correspond to the producing sensor and this model definition. Additionally,
each observation carries with it a timestamp which can be retrieved with the lobsts
(load observation timestamp) instruction. This timestamp is assigned when the
observation was received in the PQS tracker.

3. conclusion Defines the output of the model. There may be only one .conclusion
section in every model. It is also the track stateful data section for this particular
model Td . What this means is that the variables in this section stay with a track
and are specific for that track. This section is published by the PQS tracker when
the track is selected for publishing. This section is very useful for storing the state
in a stateful model. For example, in kinematic tracking it can be used to store the
momentum of the tracked object, and also one or more predicted next positions.

“thesis_main” — 2005/11/21 — 13:09 — page 48 — #57
i

i

i

i

i

i

i

i

48 CHAPTER 2. PROCESS QUERY SYSTEMS

4. text The actual model. Text is the code that gets executed when the model is
invoked. Unlike labels in the various data sections, labels in the .text sections are
followed directly by a colon “:”. Execution of the model starts at the start: label
and ends when the exit instruction is encountered.

5. halflife This directive sets the speed with which track scores will decay over time.
After the specified time (in seconds, floating point) the score of the track associated
with this PQML model will have decayed to half its original value, unless it was
overwritten by a new setl instruction. Disable by setting a negative value.

6. include Includes another PQML file. The specified file may contain all other sec-
tions, including .include sections. It is the task of the programmer to ensure that
includes do not redefine labels or contain cyclic inclusions. This feature is ex-
tremely useful for providing libraries of commonly used functions.

Notice how conclusions and observations are defined very similarly. The intention is
to allow the output conclusions of one PQS tracker to be input observations of another.
In this way trackers can be chained. For example, in military command and control
it is often necessary to track movement of entire groups of units. A PQS tracker can
then be configured with several PQML model for identifying troops, vehicles, tanks, and
jetfighters. The conclusions from all those models would then include: type of unit,
current position, direction, and speed. A second level PQS tracker would take these
conclusions and could be configured with a PQML model to associate groups of units.
This second level PQS tracker would then be tracking group movements.

The inputs of a model are the observations, the outputs are the track-specific con-
clusions. This defines a many-to-one relationship. A model can take input from various
sensors (or other trackers) and have a range of different input observation types, however,
it may only publish one particular conclusion observation. Theoretically there is nothing
that forbids looping: the output conclusion is used as an input observation for the same
model. No experiments have yet been performed with such a configuration.

A second feature to notice is the difference between globally accessible variables (in
the .data sections) and the track specific stateful data (in the .conclusion section). Note
that the track specific stateful data is also the conclusion that is published by the PQS
tracker when this PQML model assigned the highest score to a track. This section is
also very useful to store intermediate data that would otherwise require the model to
completely re-evaluate the track. The global .data sections have proven to be very useful
in self-calibrating models.
(For more specifics on PQML please refer to the PQML specification document.)

2.2.11 A PQML example

This section introduces a PQML model that takes observations containing only an integer
number. The model sorts these observations into tracks, each track taking observations
for one integer number. Effectively the observations are thus sorted by content. The
published conclusion gives the numbers for which tracks were made, and how many

“thesis_main” -- 2005/11/21 -- 13:09 -- page 49 -- #58
i

i

i

i

i

i

i

i

2.2. AN IMPLEMENTATION: TRAFEN 49

observations there are in each track. Note that this is merely an example PQML model,
although it shows most of the concepts discussed so far.

The first section of this program defines the halflife time (10 seconds), the format and
identifier name of the incoming observation and the format and name of the outgoing
conclusion, which is also the track-specific stateful data section. The scores associated
with this model for every track will decay to 50% of their given values in 10.0 seconds,
unless this model overwrites them. Only one type of incoming observation is defined,
named input which only contains an integer field, called number. The default value for
this field is 0, however, the actual value is not determined by the PQS system, but by the
sensor or the system that produces these observations. The conclusion named output is
the stateful data that is stored with each track. Also, when conclusions are published,
this is the section that gets sent out, assuming this was the highest scoring model for the
track.

;
; PQML example
; Vincent Berk
;

; Decay tracks to 50% over 10 seconds

.halflife 10.0

; The incoming observation contains a number
; TYPE LABEL DEFAULT_VALUE

.observation input
int number 0

; The conclusion just keeps track of what the
; number is of the track, and how many observations
; there are in this track.

.conclusion output
int type_number 0
int count 0

The second code block defines the global data section. There may be multiple .data
sections defined in a PQML program, as long as there is no overlap in label names.
All variables in this section are global and may be modified. These modifications are
permanent and will persist between model invocations. The variables that have the prefix:
const_ are considered constants for the programmer, however, this is not a language
feature. Since PQML does not feature immediate values in the instructions it is necessary
to store all known values as global variables. It is up to the programmer to ensure that
these variables do not get modified.

“thesis_main” -- 2005/11/21 -- 13:09 -- page 50 -- #59
i

i

i

i

i

i

i

i

50 CHAPTER 2. PROCESS QUERY SYSTEMS

; Globally stateful data.
; Defines some constants and keeps track of how
; many times this model has been called.

.data
int model_calls 0
int const_0 0
int const_1 1
float const_zero 0.0
float const_half 0.5
float const_one 1.0

The third block is the beginning of the actual model code. Processing begins at the
special start: label. The first instruction, tmod lets the model know if the track was
actually extended with a new observation since the last time this model was invoked.
Using this instruction a distinction can be made between the arrival of a new observation
in this track, or merely the passage of time. In this particular case, if no new observations
were added, the model simply jumps to the end. If a new observation was added, the
model checks the size of the track to determine if this is a totally new track (size=1) or
if there were other observations in this track before the new one got added (size>1). The
ALL directive specifies that the model wants to retrieve the length of the entire track,
instead of only the number of one type of observation in the track. For example, it is
possible to simply query the number of observations of type input by calling ldsize i0,
input. However, since this model only specifies one type of incoming observation it is
safe to use ALL here.

;
; The actual model code:
;

.text
start:

; If no new observations were added since
; last time this model was called, then
; just go to the end

tmod
be end

; Get the track length. If it is 1, then
; the track is totally new. If longer
; than 1, it must be checked for a match.

ldsize i0, ALL ; get the size
setci i0, count ; set conclusion

geti i1, const_1 ; get 1

“thesis_main” -- 2005/11/21 -- 13:09 -- page 51 -- #60
i

i

i

i

i

i

i

i

2.2. AN IMPLEMENTATION: TRAFEN 51

cmpi i0, i1 ; is the track size 1?
bne extend_track ; jump if not

The fourth block handles tracks that are totally new and never have been evaluated
before. The previous code block ascertained that the track has not been evaluated since
the new observation was added. It also assures that the track only has one observation;
the new one. Therefore this block of code goes ahead and gets the number of the newest
observation in the track (indexed by a zero in register i0). It then stores this number
in the track stateful data section, specifically in the variable type_number. This field
will be published as a conclusion if the PQS tracker decides to publish this track. From
now on only observations with the same number in the number field will be allowed
to be appended in this track, as we shall see in the fifth code block further down. The
second thing that is done in this block is setting the score (sometimes referred to as the
“likelihood”) to 0.5. This is a new track and the likelihood is deliberately kept lower
than the likelihood for older and longer tracks. The reason is to discourage new tracks to
form if there already is an existing track with the same type_number in the hypothesis.
A descriptive example will follow further down below.

; else fall through:

singleton_track:

; There is only one observation:

geti i0, const_0
lobsi i2, input[i0].number ; get from obs
setci i2, type_number

; Set the track score to 0.5

getf f0, const_half
setl f0 ; set the score

; done

jmp end

The following code block (fifth) deals with tracks that have more than one observa-
tion, and just had a new observation added. These tracks already have a type_number.
It is therefore necessary to retrieve the type number from the track-specific stateful data
section (using the lobsi – load observation integer instruction) and compare it to the num-
ber in the newly added observation. If it is a match then the track gets a very high score
(1.0), if it is a mismatch then we must discourage this track and hypothesis as much as
possible (score will be 0.0).

extend_track:

“thesis_main” — 2005/11/21 — 13:09 — page 52 — #61
i

i

i

i

i

i

i

i

52 CHAPTER 2. PROCESS QUERY SYSTEMS

; There are multiple observations:
; Get the number of the last observation,
; then get it from the track, and compare.

geti i0, const_0
lobsi i2, input[i0].number ; get from obs
getci i3, type_number ; get from track
cmpi i2, i3 ; compare
be set_one ; if equal set score to 1

; Set the track score to 0.0

set_zero:

getf f0, const_zero
setl f0 ; set the score
jmp end

; Set the track score to 1.0

set_one:

getf f0, const_one
setl f0 ; set the score

The last code block is the end of the model. To update the statistics, it retrieves
the global variable model_calls and increments it before writing it back. This variable
will count the number of times the model is invoked by the PQS tracker. In order to
actually publish this number it would have to be written to a variable in the track-specific
data section, because those are the only variables that ever get published. Finally, the
program finishes by calling the exit instruction.

end:
; Increment the number of times this model was
; called before exiting.

geti i0, model_calls ; get global variable
geti i1, const_1 ; get a constant
addi i0, i1 ; add them up
seti i0, model_calls ; write global var back

exit ; exit the model

Now lets consider an example situation to show how the model performs in a PQS
tracker. Given in Figure 2.5 is a hypothesis with two different tracks, one with obser-
vations with type_number 5 (blue), and another one with type_number 3 (red). At time
T = 1 there are three observations in the blue track (type_number=5), and four in the red
track (type_number=3). Due to the halflife decay, blue has a score of 0.8, and red has a

“thesis_main” — 2005/11/21 — 13:09 — page 53 — #62
i

i

i

i

i

i

i

i

2.2. AN IMPLEMENTATION: TRAFEN 53

T=1 T=2

0.33

0.58

0.8

0.65

0.65

0.6

0.5

0.6

0.0

1.0

0.75

0.7

0.8

Figure 2.5: Deterministic sorting with a PQS.

score of 0.7. At time T = 2 a new observation arrives with number=5 (blue). Given the
single hypothesis at time T = 1, three new hypotheses are generated; one where the new
observation is added to the existing blue track, one where the new observation is added
to the existing red track, and one where the new observation is in a track all by itself.

So, according to Figure 2.5 that generates three hypotheses with a total number of
seven tracks. For simplicity we will assume that the PQS tracker is configured with only
the PQML model described above. The model will therefore be invoked seven times
because of the arrival of a new observation, at time T = 2. The first hypothesis at T = 2
has the new observation added to the blue track. This is the ideal situation, and is what
we were looking for. The model assigns a score of 1.0 to the blue track. The red track has
not changed and the model will therefore not assign a new score to it. Notice, however,
that the score on the red track has decayed due to the halflife time set by the model. The
averaged score of this hypothesis is 0.8.

The second hypothesis adds the new observation to the red track. This is clearly a
mismatch between the track type_number (3) and the number of the new observation
(5). The model will therefore assign a score of 0.0 to this track. The blue track is not
modified and the model will therefore not assign a new score. Halflife decay brings it
down to 0.65. The average score of this hypothesis is 0.33; very low, because it contains
a track which is undesirable.

Finally, the third hypothesis leaves the two existing tracks untouched (notice the
halflife decay on their scores). A new track is created containing just the newly arrived

“thesis_main” — 2005/11/21 — 13:09 — page 54 — #63
i

i

i

i

i

i

i

i

54 CHAPTER 2. PROCESS QUERY SYSTEMS

observation. Although this does not necessarily violate the rules of the model, it still is
an undesirable situation. If the new track would get too high a score there is a risk of
it overtaking a more desirable hypothesis (the first one). So, for this reason new tracks
must get a lower score (0.5 in this case) which leads to a 0.58 score for the hypothe-
sis, placing it well below the first hypothesis in this hypothesis-set. To ensure that this
model will perform deterministic sorting we must prune all hypotheses but one. In a less
deterministic situation it would be better to keep multiple hypotheses around.

2.3 Model Building Hints

Building PQS models is often straightforward and easy, however, fine-tuning models
can sometimes be difficult. This section introduces some tips that may help improve
model performance. One of the most common artifacts of poorly balanced models is
the formation of many short tracks versus one long one. Although the model builder
knows that there is only one process generating the observed events, the process model
groups the observations into multiple tracks anyway. This suggests that there are multiple
instances of a process occurring in the observed environment, which is incorrect. Other
causes of this artifact include very noisy observations, or an overload of observations.

The trick to minimizing this problem is by favoring long tracks over short ones. After
computing the track score, the model must multiply the score by the following formula,
where x is the length of the track:

f (x) = 1− α
(x+α)

(2.14)

where α configures how quickly f (x) rises to 1. Figure 2.6 shows this curve for three
different values of α. Picking the proper α value for a model can increase tracking
performance significantly. Based on experience, as a rule of thumb it is recommended to
choose α to be about half to one third of the average expected track length:

1
3
× Avg(LT) ≤ α ≤ 1

2
× Avg(LT) (2.15)

When, for efficiency reasons, the PQS tracker is configured to prune old, no longer
relevant observations from tracks, it is recommended that a “virtual length” variable is
kept in the track-specific stateful data section. This variable can then record how long
the track would have been if observations had not been pruned. It is used for x, instead
of the actual track length.

The PQS tracker is at liberty to invoke the models at any time in addition to invoking
on new observation arrival. This allows models to account for aging of a track, and it
allows for models to update state and/or position predictions. Other models, however,
do not require this and therefore do not benefit from a high rate of invocation between
observation arrivals. Such models may wish to use the tmod instruction to determine if
a new observation has arrived since the last invocation of the model. If this is not the
case, the model can simply exit without any processing done. Keep in mind that setting

“thesis_main” — 2005/11/21 — 13:09 — page 55 — #64
i

i

i

i

i

i

i

i

2.3. MODEL BUILDING HINTS 55

Figure 2.6: The f (x) = 1− α
(x+α) function for α = 1, α = 4, and α = 8.

a halflife value will ensure that track aging automatically takes place, no new likelihood
has to be set by the model.

Finally, sometimes it is useful to force a PQS tracker to act deterministically. It is,
for example, very easy to make a PQS sort incoming observations into tracks, given a
selective feature. Imagine tracking stateful TCP connections with a PQS to determine if
any communication contains a bad signature. To match a signature it is important that all
packets are re-assembled, such that the whole communication can be evaluated. (If we
did not do this, a possible attacker could slip the attack past our sensor by simply slicing
it up into many small packets.) So all packets from a given stateful connection must
end up in the same track. This problem is very similar to the example PQML program
discussed above; instead of comparing type_numbers we now must compare source and
destination IP addresses, source and destination ports, and the protocol used. To ensure
that all packets from one session end up in the same track, without two or more tracks
forming, it is important to prune away any hypotheses that do not conform. This situation
is identical to the third hypothesis from Figure 2.5 and can be dealt with by simply only
allowing one hypothesis to remain after pruning. Therefore, to make a PQS tracker
deterministic, you must enforce one, and only one hypothesis to survive pruning. This is
a configurable option in a PQS tracker. (Note that this effectively configures a PQS as a

“thesis_main” — 2005/11/21 — 13:09 — page 56 — #65
i

i

i

i

i

i

i

i

56 CHAPTER 2. PROCESS QUERY SYSTEMS

“plain old signature intrusion detection system”, by using it as a stream processor.)
The opposite, increasing the maximum number of hypotheses, has a similar effect

as increasing the population size in evolutionary algorithms; small low-scoring tracks
have more time and opportunity to grow because their hypotheses are not pruned as
aggressively. This may increase tracking accuracy environments where processes are
easily confused. Therefore, when tracking accuracy is poor in complex environments, it
may be worth raising the maximum number of concurrent hypotheses.

2.4 The DBMS, PQS analogy

A common question about PQS is: “Can it do . . . better than . . .?” Where the dots may
stand for practically anything. The answer ranges from “sometimes” to “definitely”, and
occasionally: “no”. In this section we will explain why this is the wrong question to ask.
A PQS allows for the fast and easy creation of powerful process trackers. This does not
necessarily mean that a PQS airplane tracker will perform better than a custom written
one; however, it does mean that the time it will take to create a PQS-based tracker will
be significantly shorter than the time it takes to create a custom system. This allows the
programmer to spend more time on fine-tuning the models, and therefore the PQS tracker
may perform better.

The analogy with DataBase Management Systems (DBMS) is therefore strong. In
the pre-SQL era of databases, a programmer would spend a lot of time taking care of file
handling, disk accesses, sorting, query handling, searching, etc. A whole new database
system had to be built for every application. When SQL was first introduced by IBM in
1979 as the query language for the System/R database project, it allowed programmers to
abstract entirely from all file management, searching, etc., and instead focus on format-
ting records and building SQL queries. The SQL databases nowadays are not necessarily
better than custom-built databases, however, they are created in far less time. The saved
time can be used to improve standard queries, the user interface, and the general useful-
ness of the system. Using a commercial, off the shelf DBMS to implement a customer
database, library catalog, or a financial accounting system simply means creating the
records and building the queries. The DBMS remains unchanged at the core, taking care
of all file management, searching and retrieving and all other common database tasks.
It makes building databases easier, thus allowing more powerful databases to be built in
less time.

To apply a Process Query System to a particular field all that the programmer needs
to do is write the proper PQML queries and run the PQS. A PQML model defines the
input observation formats and output conclusion format (compare: the record format
for a DBMS), as well as the process model (compare: the SQL queries for a DBMS).
PQS/PQML makes building trackers easier, thus allowing more powerful trackers to be
built in less time. Because a PQS is a heuristic method working in a possibly noisy and
lossy environment, the analogy breaks down on deterministic base performance. Looking
at an SQL query it is obvious what its result will be, and if it will work or not. The same
cannot always be said about PQML queries; the performance of a PQS is determined in

“thesis_main” — 2005/11/21 — 13:09 — page 57 — #66
i

i

i

i

i

i

i

i

2.5. ILLUSTRATIVE EXAMPLE: SIMPLE KINEMATIC TRACKING 57

Figure 2.7: Three dots moving in circular orbits using a high publication rate.

a large part by uncontrollable factors in the observed environment.

2.5 Illustrative Example: Simple Kinematic Tracking

This section gives an intuitive example where a PQS is applied to a specific problem.
The problem domain contains several dots moving around in circular orbits, at varying
speeds. The positions of the dots is published occasionally, at set intervals (very much
like a sweeping radar). Each published location is an observation, containing only an
X and Y coordinate, and no other information. About 10% of the observations are lost
and are never published. The observations are the only source of information about the
observed environment. (The frequency of observation publication, the percentage of lost
observations, the speed and paths of the dots are all variable.) Figure 2.7 shows the dots
moving. The concentric circles indicate when and where the location of the dots was
published.

The goal of the tracker is to associate observations coming from the same dot into
one track and then to predict the location of dots between observations. In this way a

“thesis_main” -- 2005/11/21 -- 13:09 -- page 58 -- #67
i

i

i

i

i

i

i

i

58 CHAPTER 2. PROCESS QUERY SYSTEMS

monitoring system can plot a smooth path for all the tracked objects, while the observa-
tion frequency is low, and/or the lost observation rate is high. The model therefore needs
to correctly associate observations to be able to calculate the momentum of each of the
tracked objects. This momentum, combined with the last known (observed) position can
be used to calculate the predicted current position at any time.

The format of the input observations coming from the environment:

.observation position
int pos_x
int pos_y

The format of the output conclusions:

.conclusion prediction
int cur_pos_x
int cur_pos_y
float momentum_X
float momentum_Y
int object_number

The variable object_number is intended to identify the track that produced the con-
clusion observation. In this way, subsequent conclusions giving follow-up predictions
can be associated with the same object. In the model this number can be set to an arbi-
trary value for every new track that gets started (tmod combined with a tracksize of 1).
This number must be considered as the “unique identifier” for the tracked object. It is the
only way outside of the PQS to establish which track was published. It is also important
to note that the less rugged models will sometimes get confused when dots cross paths,
and therefore start new tracks once the objects moved far enough apart again to no longer
be confused. In such models the object_number will change after “close encounters”.

In order to correctly calculate the momentum the model must assure that observations
are correctly grouped into tracks. Once this is done, the momentum is simply calculated
by dividing the traveled distance in the X and Y direction by the difference in time ∆t.
Grouping observations correctly into tracks is the actual tracking problem and lies at the
core of the model. In a PQML-based PQS tracker this is done by assigning a score to
tracks evaluating how well they fit a modeled process. In this domain the modeled pro-
cesses are the moving dots, therefore the model score describes how likely it is that a new
observation is associated with a track. The tracks are groups of observations associated
with the motion of one dot, so each track follows a dot, or each track collects all the
evidence for one dot. Therefore, if a track is evaluated in which the new observation is
not likely to have been part of the path of the dot that this track follows, then the score of
this track should be set low. However, if the new observation lies exactly in the path of
the dot that this track is tracking, then the score should be high. The pseudo-code for the
model:

“thesis_main” — 2005/11/21 — 13:09 — page 59 — #68
i

i

i

i

i

i

i

i

2.5. ILLUSTRATIVE EXAMPLE: SIMPLE KINEMATIC TRACKING 59

d

d

Figure 2.8: a (left): travelled distance d is used to determine the score; the closer together,
the higher the score. b (right): distance d from the predicted path is used to determine
the score; the smaller d the higher the score.

if (new observation)
compare to assign score
update momentum

else
update predicted position

This can be done, for example, by checking the absolute distance between the last
known location of the tracked object and the new observation. If this distance is too large
then the score should be low, because it is unlikely that this observation was generated by
the same process. This method is actually quite effective when the sampling frequency
is high, although it is not very resilient to missed observations. The method breaks down
quickly when two or more dots cross paths, because in that case many combinations seem
valid. For an improved model we must also take the direction and speed of the object
into consideration. The primary benefit of this model is its simplicity. Figure 2.8 a shows
the way this absolute distance d is calculated.

A far better model actually takes into account the momentum and the predicted path
of tracked objects. By comparing a new observation to the predicted path of the track a
far more accurate score can be assigned. So when a new observation is very close to the
predicted position of the tracked object the score is set very high. If the new observation
deviates significantly from the predicted location, the score is set low. This method relies
on the presumption that the tracked objects do not suddenly change momentum; their
paths and speeds must be relatively stable. Figure 2.8 b shows the way this absolute
distance d is calculated. In both cases the score is calculated as 1− (d × ξ), where
ξ represents a scaling factor. This type of model is a simplified case of the Kalman

“thesis_main” — 2005/11/21 — 13:09 — page 60 — #69
i

i

i

i

i

i

i

i

60 CHAPTER 2. PROCESS QUERY SYSTEMS

Filter [58] (no control information is included, and the estimated error in the prediction
is omitted, instead only the actual error between prediction and observation is calculated.)

Both models described above can be improved by setting limits on momentum. When
the calculated momentum is higher than a predetermined threshold the score of the track
is set low (near zero). This is especially effective when tracks start to form initially. When
the hypothesis is mostly empty and does not contain any high scoring tracks yet, some
very unlikely combinations may form; for example tracks that tie together observations
that are on the opposite sides of the observed environment. The perceived momentum is
then very high. These tracks can be discouraged from initially forming by limiting the
momentum.

Another improvement to the last model would include the calculation of the change
of direction and speed. If the speed is steadily increasing, or the direction is gradually
changing the model can measure this and make better predictions. For the second model
these predictions are important because they determine how well new observations fit
the track. Better predictions therefore mean better tracking performance. Since the dots
follow a circular path their direction is always changing by the same amount. If the model
can detect this then the predictions will be far more accurate, therefore making the model
stronger and better able to cope with missed observations.

Finally, predictions are made by the models by simply taking the momentum of the
track, multiplying it by the time since the last observation, and then adding that distance
to the last observed position. This is done every time the model is invoked, even when no
new observations were added to the track. Figure 2.9 shows three dots moving in circular
orbits. The PQS is configured with one model that calculates the momentum of the
tracked objects. The models are called many times per second and may therefore publish
conclusions (including the predictions) between actual observations. The dots are white
boxes, and the concentric circles indicate when and where locations were sent into the
PQS. The crossed markings indicate the predictions of the model for the tracked objects.
Note that all markings fade out with time, thus the most recent predictions/publications
are brightest. The full model code can be found in Appendix B.2.

2.6 Performance

Before applying the power of a Process Query System to any particular application do-
main it is useful to be able to estimate the performance of the PQS based application.
This will then provide helpful guidelines on parameters and specifics of the models to
be used. Although the actual performance will be very specific to the particular domain,
this section aims to give some general rules of thumb to focus attention on specific con-
siderations when using a PQS.

For a PQS the term “performance” can be taken to mean two different metrics:

• Accuracy. A measure of the accuracy of the tracking outcome. Given a set of pa-
rameters and a model for the PQS, how accurate is the tracking and disambiguation
of the system as a whole (including the sensor network, PQS, and the model)? This

“thesis_main” — 2005/11/21 — 13:09 — page 61 — #70
i

i

i

i

i

i

i

i

2.6. PERFORMANCE 61

Figure 2.9: Three dots at lowered publication rate are tracked by a predicting model.
The crossed marks are the model predictions between actual observations. Note that this
model is unaware of the circular direction change.

can be measured by determining how many observations were correctly correlated
together and how high the confidence is in the resulting hypotheses.

• Efficiency. A measure of the amount of work that needs to be done to reach a cer-
tain hypothesis. This is usually best expressed as the total number of observations
that were handled per second, or the load on the system running the PQS core. The
efficiency is for a large part determined by the configuration of the tracker and the
complexity of the model.

Both analytics as well as experiments are used to learn the complexities and perfor-
mance potential of a PQS. This section will point out the bottlenecks and the relative
importance of several PQS parameters by showing the effect of changing parameters
such as the complexity of the environment, and the number of concurrent hypotheses in
the system. Finally, the section is concluded with some ideas that can drastically increase
accuracy and efficiency for general cases.

“thesis_main” — 2005/11/21 — 13:09 — page 62 — #71
i

i

i

i

i

i

i

i

62 CHAPTER 2. PROCESS QUERY SYSTEMS

2.6.1 Experimental Setup

In addition to analyzing the complexity of the PQS algorithm, a lot can be learned by
experimentally changing parameters in a controlled tracking environment and measuring
how the change effected the accuracy or efficiency. The specific experiment that was
used involves N balls bouncing around in a two dimensional unit box (x ∈ [0.0,1.0] and
y ∈ [0.0,1.0]). When a ball hits a wall it turns around deterministically by inverting the
x or y component of the momentum, depending on which wall was hit (see Figure 2.10).
Balls do not rebound off each other.

Figure 2.10: Two balls bouncing around the unit box. Observations were made at the
points indicated by the stars. The ball on the left is travelling faster than the ball on the
right.

All balls are assigned a random speed with both the x and the y component of the
momentum being a random number between 0.0 and 0.1, thus giving any ball a possi-
ble topspeed of

√
2×0.12 = 0.1414. Sampling was done based on a delay ∆t between

measurements, meaning that an observation containing the (x,y) position of each ball
was generated every ∆t seconds. However, due to the inherent limitations of the com-
puting hardware, the timing of these observations is by definition noisy since the motion
of the balls, the measurements, and the creation of the observation are all asynchronous.
The noise in the timing of observations is therefore an artifact, however, it only had a
significant effect on the measurements at the highest of sampling frequencies with the
greatest number of balls. Although this artifact could have been removed, it is actually
quite representative of real world sensor environments.

The observation stream thus consists of (x,y) coordinate pairs with a hidden third
component indicating the ball ID, which may only be used for accuracy evaluation after
tracking. The tracker therefore only sees a stream of unlabelled coordinate pairs.

“thesis_main” — 2005/11/21 — 13:09 — page 63 — #72
i

i

i

i

i

i

i

i

2.6. PERFORMANCE 63

Noise and Lost observations

Besides the noise in the timing, a perturbation in the actual (x,y) coordinates can be
introduced. This noise is modeled using a Gaussian distribution on distance and a flat,
uniform probability distribution on angle. The stochastic variable G is Gaussian normal
distribution with mean µ = 0 and variance σ2 = 1. The uniform distribution has stochastic
variable U where U ∈ [0.0,2π〉. The severity of the effect of the noise can be controlled
with the variable η, taken in the range η ∈ [0.0,0.01]. The deviations caused by noise are
then computed as:

∆x = η×G× sin(U) (2.16)

∆y = η×G× cos(U) (2.17)

The effect of the above noise is that the length of the average perturbation is noise
control variable η. For the majority of the experiments the noise control variable is set to
0, allowing only for natural perturbations in the observation timing.

In addition to the two types of noise described above, the simulator also has the option
of dropping observations as if they were lost or never registered. The lost observation
control variabable γ takes integer values γ ∈ [2,3,4, . . .〉, where the probability of an
observation being lost is 1

γ . When the lost observation control variable is set to 0 then no
observations are lost, which is the default setting for most experiments.

The Model

Although the exact dynamics of the environment are known, the model was designed
to disregard some of this knowledge, and instead be a simplified representation of the
characteristics of the balls. Specifically, the model is unaware of the balls rebounding off
the walls, and it has no special logic for dealing with lost observations and noise. Effec-
tively this means that the PQS will create new tracks for balls that have rebounded. This
means that the rebounds, noise, and lost observations create an extra level of uncertainty
in the model. The model is therefore deliberately imperfect to simulate the fact that the
actual dynamics of a system are frequently uncertain. The model is fundamentally the
same as the one described in Section 2.5, with the PQML model in Appendix B.2. A few
modifications were made as follows:

The model (M) has a track specific section that is unique for each track in the PQS,
and the model is designed to follow one ball per track. This track specific section thus
holds the current estimated position of the tracked ball and its estimated momentum:

float pos_x ; estimated position x
float pos_y ; same y
float mom_x ; estimated momentum x
float mom_y ; same y

“thesis_main” — 2005/11/21 — 13:09 — page 64 — #73
i

i

i

i

i

i

i

i

64 CHAPTER 2. PROCESS QUERY SYSTEMS

The model is divided into two three separate sections, each reflecting different rea-
sons why the tracker invoked the model:

• New observation, new track. A new track was formed with a new observation O0.
The track specific section is reset by assigning pos_x and pos_y the values of the
new observation O0.x and O0.y, and setting the momentum to zero. The initial
score SM

0 (T0) is set to 0.05.

• New observation, existing track. A new observation On is assigned to an existing
track. Based on the time difference between th last observation in the existing
track On−1 and the new observation the current estimated position pos_x and pos_y
is calculated using the stored estimated momentum. The Euclidean distance D
between the estimated position (pos_x,pos_y) and observated position (On.x,On.y)
is computed and the new track score SM

n (Tn) is calculated as:

SM
n (Tn) = (2×SM

n−1(Tn−1)+(1− D
0.05

))/3

This basically produces a new score by taking the Euclidean distance between the
tracks estimated position and observed position, normalizes it with value 0.05 and
subtracts it from 1. So the (1− D

0.05) portion of the score function calculates a
normalized score based on the current deviation from the predicted position. This
new score is then mixed with the previous track score (SM

n−1(Tn−1)) by a 1:2 weight
ratio. Finally, the new momentum is computed by averaging it with the current
estimated momentum using a 1:3 weight ratio. (Note that these averaging weight
ratios are a very simple way to smooth out noise. A more accurate model, such
as the Kalman Filter, would be able to account for the noise directly in the model,
leading to improved tracking accuracy. The goal here, however, is to work with a
non-optimal model, which is the typical situation for most real-world applications.)

• No new observation, existing track. No new observation was added, but the tracker
invoked the model anyway. This gives the model the opportunity to update the cur-
rent estimated position (pos_x,pos_y) based on the stored momentum and the time
that has passed since the last time the current estimated position was calculated.

The weighing factors (1:2 for score, 1:3 for momentum) in the second section of the
model provide a decent buffer for noise. By smoothing out score and momentum over
multiple observations the model is better able to deal with deviations in the input. Finally,
the halflife time set for this model was 1 second, meaning that if no new observations are
added to a track, then the score of that track decays by 50% each second.

Tracker configuration

Closely related to the specifics of the model are the parameters that are used to con-
figure the tracker. In the experiments some parameters are changed to gauge their effect
on the accuracy and efficiency of the tracking system, however, other parameters were
fixed to values that make sense, given the model:

“thesis_main” — 2005/11/21 — 13:09 — page 65 — #74
i

i

i

i

i

i

i

i

2.6. PERFORMANCE 65

• Track pruning. The minimum length of a track to be considered for pruning is set
to 2, meaning that short tracks are exempt from pruning until they have at least two
observations. Additionally, the tracker would only prune tracks that have a score
below 0.035.

• Publication frequency. Conclusions were published every 0.2 seconds, or 5 times
per second. The conclusions are used to evaluate the accuracy of the PQS and the
model. The tracker simply takes the current internal hypothesis-set and publishes
it to the evaluator program.

• Observation pruning. Since the evaluation only considered the last 10 observa-
tions in a track (for every time that track was published) all tracks were pruned to
hold no more than 20 observations. This simple consideration saves memory and
processing time. Additionally, few balls would generate more than 20 observations
between rebounds off the walls.

• Hypothesis size. Most experiments were done with 10 or fewer balls. To save pro-
cessing time and memory the tracker was configured to prune as many low scoring
tracks as needed to reach a maximum hypothesis size of 20 tracks. Given the en-
vironment, this rule, however, was rarely invoked. Setting this value sufficiently
large will have no deteriorating effect on accuracy.

The only two parameters that need to be in sync with the model are the minimum
length for a track to be considered for pruning (2), and the lowest score at which a track
may survive pruning (0.035). Recall that new tracks (length 1) do not have a momentum
yet, and therefore their predictions will be off, thus the rule to save very short tracks from
pruning allows new tracks to form before their scores are seriously considered. Tracks
that do not grow get a score of 0.05 that quickly deteriorates (halflife time of 1 second) to
below 0.035 (the tracker pruning threshold) and thus get efficiently pruned away as soon
as their length grows to 2 observations or longer.

2.6.2 Performance Metrics

The output of the tracking system gives the last (newest) 10 observations of each track
in the hypothesis, 5 times per second. These observations contain a hidden ID label, in-
dicating which ball generated a particular observation. Additionally, the output contains
the score that was assigned to a track, the score of the hypothesis, the number of tracks in
the hypothesis, and the CPU cycles used by the tracker. The number of tracks indicates
if the tracker has correctly determined the number of objects in the environment.

To evaluate accuracy a compounded performance number is used. This compounded
performance number reflects serveral factors (all three factors are weighted equally):

• The length of the tracks. Basically, longer is better. As tracks grow longer it means
that their score was sufficiently high for the tracker to keep them around. Also,
if most (or all) of the observations are generated by the same ball, a long track
indicates that the ball has been tracked for awhile.

“thesis_main” — 2005/11/21 — 13:09 — page 66 — #75
i

i

i

i

i

i

i

i

66 CHAPTER 2. PROCESS QUERY SYSTEMS

• The score of the tracks. An average of the score of all the tracks in the hypoth-
esis. For each track the score is returned directly by the model and indicates the
confidence that the model has in this track. In other words, the score indicates
how certain the model is that all these observations were generated by the same
cause. It must be said, however, that lower sampling frequencies have by defini-
tion a suppressing effect on the score returned by our model M . So, although the
track may be flawlessly following the ball, the score may be lower than at higher
sampling frequences, because confidence in the track is lowered by the relatively
fewer number of observations per distance travelled by the ball. This number is a
measure of the model’s confidence in the hypothesis.

• The deviance in observations. This number measures the uniformity of the hidden
ID labels in the observations of a track. The last 10 observations in a track are eval-
uated to how many were generated by the same ball. This means that a track with
IDs 9,9,9,4,9 will get a deviance number of 1− 1

5 . A track with IDs 3,4,5,6,7,8
will get a deviance number of 1− 5

6 . The first example is a good track following
ball with ID 9, and it has one deviant observation from ball 4. The second exam-
ple is a track made up from observations from 6 different balls, and is therefore
following no ball.

Basically, these accuracy numbers are quite abstract and, at lower sampling frequen-
cies may seem worse than they actually are. However, they do give a clearly-stated
comparative measure of accuracy that is consistent and considers many different factors.
Experience with looking at the actual tracking output in comparison to the compounded
accuracy number gives good meaning to these numbers, as described in Table 2.1.

Range Meaning
20-18 All balls are tracked perfectly. One track per ball.
17-15 Most balls are tracked perfectly. Sometimes a ball is

missed, sometimes two tracks get mixed up.
14-10 Tracking goes well for most of the balls. Sometimes ev-

erything mixes up and it takes some time to pick up the
thread again.

9-6 Typically most balls are correctly tracked, but there are
several tracks that contain mixed observations; mixups
are more frequent.

≤ 5 Tracking is really horrible. Only a few balls are tracked
accurately. Most data is discarded. Tracks are very short
due to a lot of confusion.

Table 2.1: Meaning of the compounded accuracy scores used in this performance section.

Evaluating efficiency is more difficult because a PQS is a realtime system. The com-
putational resources used are highly dependent on the specific implementation of the

“thesis_main” — 2005/11/21 — 13:09 — page 67 — #76
i

i

i

i

i

i

i

i

2.6. PERFORMANCE 67

model, the rate at which observations are arriving, the complexity of the environment,
and the computing resources available in the system. Measurements were taken by mo-
nitoring the number of CPU cycles used by the application vs. the number of CPU cycles
available on the system in the same timeslice. So, for instance, if the PQS tracker used
500,000 cycles in the last n seconds, and the system had 750,000 cycles available, then
the load of the tracker would be 67%. Now, if that system had two of these processors,
then the available cycles in that same timeframe would be 1,500,000 and the load of the
tracker would be only 33%. For this reason all measurements regarding load were taken
on the same system.1 Furthermore, although multiple processors may be available, a sin-
gle tracker is unable to exploit more than about 1.4 processors at once, due to inherent
limits in concurrency using only a single model in the PQS.

2.6.3 Results

This section evaluates accuracy and the efficiency of the tracking of the bouncing balls,
both experimentally as well as analytically. This is done by varying parameters such as
the complexity of the problem, and the number of hypotheses that the tracker is allowed
to maintain. All datapoints in the graphs are averages from at least 3 independent experi-
ments, with 1 outlier removed. Each experiment was done by running the simulation and
the tracker for 4 minutes, and measurements reflect the averages of the last 30 seconds
of those 4 minutes.

Accuracy vs. Complexity

Intuitively the accuracy of the PQS will suffer from a more complex environment.
Factors that make an environment more complex are an increased number of objects, and
a reduced sampling frequency. To evaluate the accuracy of the tracker, we experimented
with varying sampling frequencies at different ball counts. The graph in Figure 2.11
shows the accuracy of tracking 1 to 10 balls with varying sampling delays. At 0.05
seconds between samples the simulator generated 20 observations per ball per second.
Likewise, at 0.5 seconds between samples the simulator generated only 2 observations
per ball per second. It is clear from the graph that sampling frequency is much more im-
portant than the actual number of balls in the environment. Therefore, as long as there are
enough observations flowing in, the tracker is able to keep track of an arbitrary number of
objects. (Note, however, that this graph tells us nothing about the computing resources
needed, which, intuitively is going to be higher for higher sampling frequencies, and
higher for a greater number of balls.)

Accuracy vs. Multiple hypotheses

Contrary to popular belief, increasing the number of hypotheses is not necessarily
a way to improve accuracy. It is often said that the number of concurrent hypotheses

1A Sun Blade 2500 with dual 1280Mhz SPARC III CPUs.

“thesis_main” — 2005/11/21 — 13:09 — page 68 — #77
i

i

i

i

i

i

i

i

68 CHAPTER 2. PROCESS QUERY SYSTEMS

 0
 2
 4
 6
 8
 10
 12
 14
 16
 18
 20

 1 2 3 4 5 6 7 8 9 10

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0

 5

 10

 15

 20

accuracy

"output_f20_w0.2_l0.035_m4_n2_e_t20-compound.txt" using 1:2:3

balls

dt

accuracy

Figure 2.11: Compound performance number for different numbers of bouncing balls
and time between samples ranging from 0.05 seconds to 0.5 seconds. After pruning 4
hypotheses are kept.

in a tracking algorithm will allow for more of the initially unlikely combinations to stay
around before they can grow to become dominant. However, considering the vast number
of observations that flow through the system, the number of possibly generated hypothe-
ses is truly enormous (more about that later). It is true, however, that having too few
hypotheses impacts accuracy, as the graph in Figure 2.12 shows, where only 1 hypothe-
sis was kept after every pruning step.

Experience in several very different domains has shown that keeping 3 to 4 hypothe-
ses after pruning is sufficient for maximum accuracy in tracking. Experiments with 8
or more hypotheses indicate that accuracy does not necessarily improve at higher hy-
pothesis counts. Considering the PQS algorithm, that makes sense since only the most
successful hypotheses contain tracks that have accurately followed a single object for
awhile. Therefore, only a few variations on these successful hypotheses need to be kept
around to allow for new tracks to form.

It must be said, however, that the optimal number of hypotheses to keep in the system
is highly domain dependent. One can conceivably design a multi-model scenario that
requires at least 16 hypotheses to be kept, in order to obtain maximum accuracy. In
general the rule of thumb is to consider the maximum number of occurring processes

“thesis_main” — 2005/11/21 — 13:09 — page 69 — #78
i

i

i

i

i

i

i

i

2.6. PERFORMANCE 69

 0
 2
 4
 6
 8
 10
 12
 14
 16
 18
 20

 1 2 3 4 5 6 7 8 9 10

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0

 5

 10

 15

 20

accuracy

"output_f20_w0.2_l0.035_m1_n2_e_t20-compound.txt" using 1:2:3

balls

dt

accuracy

Figure 2.12: Compound performance number for different numbers of bouncing balls
and time between samples ranging from 0.05 seconds to 0.5 seconds. Only 1 hypothesis
is kept after pruning.

that could easily be confused in the environment. This number should be the maximum
number of hypotheses kept. In this case 4 hypotheses is a good number because the
chances are very small that more than 4 balls will all be very close together, and travelling
in the same direction. This “rule of thumb” is investigated further in the discussion below.

Efficiency vs. Multiple hypotheses

To see the effect of increasing the number of hypotheses on the accuracy and the
efficiency we experimented with a rigid simulation setup and changed the number of
hypotheses. The graph in Figure 2.13 shows that for different numbers of hypotheses the
accuracy of tracking does not change (compound score around 15). However, the total
amount of CPU cycles used by the tracker increases linearly, which is to be expected
since the amount of work done by the algorithm for each hypothesis in the system is the
same. (Note that at higher hypotheses counts the measurement of CPU cycles becomes

“thesis_main” — 2005/11/21 — 13:09 — page 70 — #79
i

i

i

i

i

i

i

i

70 CHAPTER 2. PROCESS QUERY SYSTEMS

less accurate due to OS scheduling and other jobs running on the same system. Number
of balls was fixed at 7, with a sampling frequency of 5 observations per second.)

Figure 2.13: Compound performance number as well as tracker load in percentages for
different numbers hypotheses. A fixed number of 7 balls was used at a sampling fre-
quency of 5 samples per second (dt = 0.2).

Efficiency vs. Complexity

Although the complexity of the environment (ie. the number of balls) was shown
to have little impact on the accuracy of tracking, nothing was said about the efficiency
at which this can be done. Intuitively the number of combinations that can be made in
hypotheses as the number of objects grows is exponential. This means that the amount
of work that needs to be done grows exponentially as well, as the number of objects
increases. The graph in Figure 2.14 shows the CPU cycles used by the tracker in per-
centages as the number of balls in the environment grows. Sampling frequency was once
again 5 samples per ball per second, and at every pruning step 4 hypotheses were kept.
Although the load increases exponentially, it flattens out around 140% where the tracker
hits the maximum processing capacity available on the test machine.

This exponential growth can be easily explained when we analyze the rate of hypoth-
esis and track growth if pruning were to be disabled. If a hypothesis has TH(n) tracks
at time n, then the PQS algorithm expands this to TH(n) hypotheses, each with TH(n)

“thesis_main” — 2005/11/21 — 13:09 — page 71 — #80
i

i

i

i

i

i

i

i

2.6. PERFORMANCE 71

Figure 2.14: The CPU cycles used by the tracker in percentages as the number of balls in
the environment is increased. A fixed sampling frequency of 5 samples per second was
used, with a maximum of 4 hypotheses.

tracks, and one hypothesis with TH(n)+ 1 tracks. The total number of hypotheses that
get generated by a hypothesis H when one more observation comes in, given that H
contains TH(n) tracks is therefore:

H (n+1) = TH(n)+1 (2.18)

The total number of tracks that hypothesis H will generate when a new observation
comes in is:

T (n+1) = (TH(n))2 +TH(n)+1 (2.19)

The above rules describe the growth of arbitrary hypotheses, where the initial con-
dition is an empty hypothesis-set, which, after the first observation comes in, will hold
1 track in 1 hypothesis. Now, lets consider the total number of hypothesis of size m as
Hm(n) at time n. Based on Equations 2.18, and 2.19 each hypothesis with TH(n) = m
tracks at time n will generate m new hypotheses of size m, and one new hypothesis of
size m+1 at time n+1. This means that the total number of hypothesis of size m at time
n + 1 will therefore be a function of the hypotheses of size m an those of size m− 1 at
time n as follows:

“thesis_main” — 2005/11/21 — 13:09 — page 72 — #81
i

i

i

i

i

i

i

i

72 CHAPTER 2. PROCESS QUERY SYSTEMS

Hm(n+1) = Hm(n)×m+Hm+1(n) (2.20)

giving the total number of hypotheses at time n as:

∑
m

Hm(n) (2.21)

and the total number of tracks at time n as:

∑
m

Hm(n)×m (2.22)

summing over all hypothesis sizes m. Table 2.2 shows hypothesis and track counts for
unrestricted growth where one observation comes in per timestep. When we investigate
Equation 2.20 further we realize the following properties:

H0(n) = 1 ∀n≥ 0 (2.23)

Hm(n) = 0 ∀n < m (2.24)

After all, there is always exactly one hypothesis with zero tracks (the empty hypothesis,
implying that none of the modeled processes are detected in the environment), leading
to any H0(n) = 1. Then, when n < m, the count of hypothesis of size m will be zero,
which makes sense considering that a hypothesis of any given m size will only produce
one hypothesis of size m+1, meaning that we need at least n timesteps before we reach
a hypothesis of size m = n (this is driven by the second term from Equation 2.20). Now,
setting n = m gives:

Hm(n) = Hm−1(n−1) ∀n = m (2.25)

since the first term of Equation 2.20 gets n < m, and is therefore zero according to Equa-
tion 2.24. Which, when we realize that H0(0) = 1, becomes 1:

Hm(n) = Hm−1(n−1) = H0(0) = 1 ∀n = m (2.26)

effectively putting all ones on the diagonal n = m, and all zeros below it n < m. The
properties predicted by Equations 2.23, 2.24, and 2.26 can all be observed in Table 2.2.
Now we move on to prove exponentiality in the count of all hypotheses of any given size
m over time n, when n≥m. By dropping the last term of Equation 2.20 we can infer that
at least:

Hm(n+1)≥ Hm(n)×m ∀n≥ m (2.27)

expanding the sequence we realize that:

Hm(n+1)≥ (Hm(n−1)×m)×m ∀n≥ m (2.28)

“thesis_main” — 2005/11/21 — 13:09 — page 73 — #82
i

i

i

i

i

i

i

i

2.6. PERFORMANCE 73

therefore:

Hm(n+1)≥ mn−m ∀n≥ m (2.29)

thus proving exponential hypothesis counts for all sizes of hypothesis m over time. Fi-
nally, thanks to the second term of Equation 2.20, and the property that Hm(n) = 1 ∀n =
m from Equation 2.26, we also know that:

Hm(n+1) = mn−m ∀n = m (2.30)

Hm(n+1) > mn−m ∀n > m (2.31)

Hypotheses Time n (total observations):
of size m:

1 2 3 4 5 6 7 8 9 10

1 1 2 3 4 5 6 7 8 9 10
2 0 1 4 11 26 57 120 247 502 1013
3 0 0 1 7 32 122 423 1389 4414 13744
4 0 0 0 1 11 76 426 2127 9897 44002
5 0 0 0 0 1 16 156 1206 8157 50682
6 0 0 0 0 0 1 22 288 2934 25761
7 0 0 0 0 0 0 1 29 491 6371
8 0 0 0 0 0 0 0 1 37 787
9 0 0 0 0 0 0 0 0 1 46
10 0 0 0 0 0 0 0 0 0 1
11 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0

Totals:
Hypotheses 1 3 8 23 75 278 1155 5295 26442 142417
Tracks 1 4 14 51 202 876 4139 21146 115974 678569

Table 2.2: Number of hypotheses of a given size Hm(n + 1) = Hm(n)×m + Hm+1(n) ,
the total number of hypotheses ∑m Hm(n), and the total number of tracks ∑m Hm(n)×m
for unrestricted hypothesis growth (no pruning).

Now looking at Table 2.2 again we realize what this means. After 10 observations have
come in, the total number of possible hypotheses is 142,417, illustrating the complexity
of the environment in which PQS operates. With 5 balls in the simulator the first 10

“thesis_main” — 2005/11/21 — 13:09 — page 74 — #83
i

i

i

i

i

i

i

i

74 CHAPTER 2. PROCESS QUERY SYSTEMS

observations come in with 2 samplings, with 10 balls in the simulator only 1 sampling
is needed to reach this level of complexity. The graph in Figure 2.15 shows on an expo-
nential scale this growth in hypotheses. Figure 2.16 shows the same for tracks. At each
timestep one observation comes in.

Figure 2.15: Total number of hypotheses in unrestricted growth. At each timestep one
observation comes in, so at t = 10 the system has received 10 observations.

Noise and Lost Observations

In addition to the time variance and inherent complexity of the environment, we in-
vestigated the effect of increased noise and lossy conditions. Most real-world sensor
networks suffer from known or unknown inaccuraries in the sensor, with the possibility
of lost observations (often the object fails to trigger a sensor, or a sensor broke). The
graph in Figure 2.17 shows the effect of a fixed noise level η = 0.002 and a lost obser-
vation rate of γ = 10. The total number of hypotheses was 4, the number of balls and the
sampling rate was variable. Although the noise level was relatively high, serious effects
on accuracy are only observed at higher ball numbers or the lower sampling frequencies.
This is understandable because the chances of confusion are higher for those conditions.
The accuracy was mostly depressed by a dip in the deviance number, meaning that tracks
tend to more easily pick up observations that were generated by another ball, thus indi-
cating the increased confusion in the hypotheses.

“thesis_main” — 2005/11/21 — 13:09 — page 75 — #84
i

i

i

i

i

i

i

i

2.6. PERFORMANCE 75

Figure 2.16: Total number of tracks in unrestricted growth.

The graphs in Figure 2.18 and Figure 2.19 respectively show the effect of lost obser-
vations and increased noise on accuracy and efficiency, independent of each other. For
both series of experiments the number of hypotheses was set to 4, using 7 balls, and a
sampling frequency of 5 observations per ball per second. In Figure 2.18 we see clearly
that the loss of every other observation γ = 2 has a suppressing effect on the accuracy of
tracking, however, since fewer observations arrive, the required processing time is also
less. As more observations come in, the processing time increases, as does the accuracy.
This is exactly as one would expect, since there is more information available to correctly
track the objects.

Figure 2.19 shows clearly how increased noise can reach dramatically low levels of
accuracy. Noise at a level of η = 0.001 makes it already very difficult for the human eye
to track the balls (given 0.2 seconds between observations). As noise further increases
not only does the accuracy dip (as expected), however, also the CPU power needed to
generate hypotheses increases. Although we would intuitively expect the system to need
more cycles to disambiguate the observations when there is more noise, the actual reason
for the increase is due to the increased numbers of tracks per hypothesis. Since there was
no correction made for noise in the model, the scores that are assigned to the tracks tend
to degrade rapidly as more noise is added. This leads to many more smaller tracks being
formed, besides the tracks that (more) accurately track the moving balls. Although these

“thesis_main” — 2005/11/21 — 13:09 — page 76 — #85
i

i

i

i

i

i

i

i

76 CHAPTER 2. PROCESS QUERY SYSTEMS

 0
 2
 4
 6
 8
 10
 12
 14
 16
 18

 1 2 3 4 5 6 7 8 9 10

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0

 5

 10

 15

 20

accuracy

"output_f20_w0.2_l0.035_m4_n2_e_t20_ns0.002_lst10-compound.txt" u 1:2:3

balls

dt

accuracy

Figure 2.17: Accuracy for a noise level of η = 0.002 and a lost observation change of one
out of γ = 10. Notice how the graph is significantly more jagged at the lower sampling
rates.

tracks are usually pruned away quickly, they do inflict a hit on processing power.

2.6.4 Discussion

Although the results obtained by experimentation do not always correspond to what our
intuition tells us, it does correspond with the analysis of the algorithms. For instance,
intuitively we would expect tracking accuracy to improve as more hypotheses are kept,
however, there is nothing in the algorithm that suggests that keeping more than several
hypotheses would be beneficial. After all, the best hypotheses are going to be very simi-
lar, and differ only in the minute details, usually concerning small tracks with low scores.
Increasing the number of hypotheses does have a linear impact on the total processing
time that the tracker uses.

What this means is that there is an upper bound to the number of hypotheses that
is going to be useful, meaning that increasing the number of hypotheses past a certain
value (in the case of this example: 4) is not going to yield increased accuracy. However,
keeping fewer than this upper bound of hypothesis will impact accuracy. This intuitively
means that there is an optimal number of hypotheses, for each specific application do-

“thesis_main” — 2005/11/21 — 13:09 — page 77 — #86
i

i

i

i

i

i

i

i

2.6. PERFORMANCE 77

Figure 2.18: As the rate of observations that is lost decreases (horizontal axis, towards
the right), the accuracy goes up. As expected, the CPU load also increases, because the
PQS has more data to handle.

main. Although it is hard to say what the exact optimal number for each application will
be, the general guideline is to consider the maximum number of valid combinations of
observations, given the models. Or put more generically: in the vast majority of the en-
countered environments, what is the maximum number of processes that can be “easily
confused” when occurring simultaneously. In this case that would mean considering the
chance that more than 4 balls are moving very close together at approximately the same
speed. Although it may happen, the chances are very small; therefore, using 4 hypotheses
is a justifiable number. It must be said, however, that this is a rule of thumb.

Another important fact, although it should not have been a surprise, is that sampling
frequency is really the most important factor for accurate tracking. Basically, the more
observations that come in, the more information there is available regarding the envi-
ronment. It only makes sense that sampling frequency is the most important factor in
accurate tracking.

Also, analysis of the lower compounded accuracy numbers showed that bad accuracy
numbers were mostly due to lower confidence in the tracks, or not correctly tracking
every object. In many cases most objects were tracked correctly, but one or two inter-
fering balls would be the cause for many short tracks that all get scored low. This leads
to a much lower confidence for the hypothesis as a whole. Additionally, the deviance

“thesis_main” — 2005/11/21 — 13:09 — page 78 — #87
i

i

i

i

i

i

i

i

78 CHAPTER 2. PROCESS QUERY SYSTEMS

Figure 2.19: As noise increases (horizontal axis, towards the right), the accuracy de-
creases, and the required CPU time increases. This is expected as the opportunity for
confusion gets larger at higher levels of noise.

numbers were rarely below 0.99. This means that longer tracks tend to very accurately
disambiguate the observations, even in the most noisy environments.

The fact that the number of hypotheses grows exponentially goes to show how com-
plex the problem is that PQS solves. It also forces a PQS to set strict limits on its use of
resources. It is true that the complexity can be reduced if, as with radar, it is known up-
front that a set of blips (observations) came from the same sweep. Many combinations do
not have to be made anymore, however, in most situations this is simply not the case, as
data comes in asynchronously. PQS currently does not offer an easy interface for models
to prevent the PQS from forming a worthless hypothesis. Application programmers are
therefore forced to make yes/no decisions early on in the model, to improve efficiency.
Experiments verified this fact by showing that the number of balls mostly affected load
(exponentially), not necessarily accuracy.

Increasing Efficiency

Several things can be done to increase efficiency. Some of those are more structural
than others, although efficiency is usually very application dependent. More efficient
models, or models that more strongly disambiguate between observations have a strong

“thesis_main” — 2005/11/21 — 13:09 — page 79 — #88
i

i

i

i

i

i

i

i

2.6. PERFORMANCE 79

effect on increasing efficiency. However, a good structural addition to PQS would be
to allow a special model interface to be added where a model can quickly evaluate if a
Track-Observation combination is even worth making. In this case the model would not
evaluate the track entirely, but be allowed to quickly check whether or not a new ob-
servation may be a feasible combination with an existing track. Although mathematical
complexity is still exponential, if models implement such a mayMatch method efficiently,
it can save a lot in processing time.

An example would be for a model to check if the current observation came from the
same radar sweep. If that is the case, then the match is probably useless to try. This
hypothesis would then never be generated, saving CPU time. Before a hypothesis is
created, all models are first asked if a match seems feasible. If any of the models returns
“yes”, then the hypothesis is actually created and offered for evaluation to the models.
This feature is high on the list of future extensions for PQS and the PQML modelling
interface.

Increasing Accuracy

It goes without saying that better models will lead to better accuracy, however, it
must be said that in the experiments done in this section the model was not adjusted for
different sampling frequencies, different levels of noise, or different numbers of lost ob-
servations. Most scoring functions would certainly benefit from characteristic knowledge
of the sensing infrastructure.

Additionally, it can be read directly from the graphs that a higher sampling frequency
and lower observation noise will lead to better tracking accuracy. Finally, it is important
to mention that the PQS in this experiment was able to accurately track balls far beyond
human capability.

“thesis_main” — 2005/11/21 — 13:09 — page 80 — #89
i

i

i

i

i

i

i

i

80 CHAPTER 2. PROCESS QUERY SYSTEMS

“thesis_main” — 2005/11/21 — 13:09 — page 81 — #90
i

i

i

i

i

i

i

i

Chapter 3

Case Study: The Spread of
Active Worms

81

“thesis_main” — 2005/11/21 — 13:09 — page 82 — #91
i

i

i

i

i

i

i

i

82 CHAPTER 3. CASE STUDY: THE SPREAD OF ACTIVE WORMS

3.1 Introduction

Worm detection and the design of the DIB:S system were one of the first indicators that,
early on, lead to the development of the Process Query System concept. The idea was to
detect the process of a propagating worm by its indicators: aggressively scanning hosts.
The input stream would be continous, and most likely massive. Simply put, the question
that the system tries to answer is: given a stream of failed connection attempts, which
hosts show clear signs of random scanning behavior.

Although DIB:S is now a sensor to TRAFEN, it is in itself a Process Query Sys-
tem with just one model: host scanning detection. Using a modern PQS, it is therefore
possible to rebuild the DIB:S system in just a matter of hours by constructing a model
that processes ICMP destination unreachable observations and looks for evidence of host
scanning behavior. In a sense, DIB:S was the first prototype of a Process Query System,
with one (built-in) model which is tightly integrated with the data structures. The sen-
sors, then, are the routers that supply the ICMP destination unreachable messages, which
are the observations. DIB:S forms tracks by collecting evidence of each scanning host in
the network. So for each infected host there will be a track, following the process of that
host’s scanning behavior. That then is the process model: the increasing stages of more
and more aggressive scanning that an infected host goes through as it scans the Internet
for other vulnerable systems. DIB:S, however, only keeps one hypothesis, which is the
current state of the monitored network (which could potentially be the entire Internet),
containing one track for each infected host.

This chapter should therefore be read as an in-depth explanation of the expert knowl-
edge that went into the construction of the DIB:S technology. Although the system was
purpose built and has little of the general-purpose features that are typical for an actual
Process Query System, the considerations are general and can easily be reapplied to con-
struct a DIB:S model in, for example, PQML. Needless to say, the tight integration of the
DIB:S datastructures with the scan-detection model yields a significant performance ben-
efit over using a PQML scan-detection model in a general-purpose PQS. (Specifically, to
monitor the complete Internet with a general-purpose PQS it would be required to split
up the model in several different tiers, just to be able to cope with hypothesis explosion.)

Although the DIB:S system is in itself a PQS with a hardcoded model, it is used as a
sensor for TRAFEN, which was developed as a more general PQS approach. TRAFEN,
therefore, should be regarded as the second-tier in the worm detection system; DIB:S
tracks the scanning behavior of individual hosts, while TRAFEN tracks the evidence of
global worms, given the conclusions from DIB:S. In Chapter 4 we will again use the
DIB:S conclusions as input to the PQS-Net system, where more advanced models search
for evidence of various other types of attacks.

Finally, worm detection and tracking is an interesting case study of the powers of
a Process Query System because of the large quantity of infected hosts during a worm
infestation. The tier-1 tracking must therefore form tens of thousands of tracks of individ-
ual hosts and process their observations. The hypothesis will therefore quickly become
very large, considering the massive volume of observations that flow into the first tier
(in this specific case: ICMP Destination Unreachable messages). It also shows how a

“thesis_main” — 2005/11/21 — 13:09 — page 83 — #92
i

i

i

i

i

i

i

i

3.2. INTERNET WORMS 83

tier-1 tracker becomes a sensor for a tier-2 tracker, effectively doing data-reduction at
every step. The results obtained by the DIB:S/TRAFEN worm detection system make a
compelling case for the scalability and versatility of Process Query Systems. A large part
of this chapter was published in Chapter 6 of the book: “Managing Cyber Threats” [11].

3.2 Internet Worms

An active Internet worm is malicious software (or malware) that autonomously spreads
from host to host, actively searching for vulnerable, uninfected systems. The first such
worm was the 1988 Internet worm, which spread through vulnerable Sun 3 and VAX sys-
tems starting on November 2, 1988 [111]. This worm exploited flaws in the sendmail
and fingerd code of that time, and through the rsh service and a password-cracking
library, also exploited poor password policies. The worm collected the names of target
hosts by scanning files, such as .rhosts and .forward, on the local machine, and then
attempted to infect those hosts through the finger, sendmail, and password-guessing ex-
ploits. Although the exact number of infected machines is unclear, the worm infected
enough machines to disrupt normal Internet activity for several days due to high network
traffic and CPU loads.

Recent examples of active worms include Code Red v2, which exploited a flaw in
Microsoft’s Internet Information Services and infected 360,000 machines [76], and Sap-
phire/Slammer, which exploited a flaw in Microsoft’s SQL Server and infected 75,000
machines [75], in a matter of minutes. Code Red, Sapphire/Slammer and most other re-
cent active worms find vulnerable machines by generating random (or pseudo-random)
IP addresses and then probing to see if the desired vulnerable service is running at those
addresses. Compared to the 1988 Internet, the modern Internet has so many hosts that
random probing is an effective way to find vulnerable machines. In 1988, the address
space was sparsely populated, and the 1988 worm, if it had used random probing, would
have needed years (or even centuries) to find even one existing machine, let alone a vul-
nerable machine.

In addition to using random probing, most recent worms probe as quickly as possible,
so that the worm can spread to most vulnerable machines before system administrators
have time to shut down infected machines and repair the exploited security hole. In
fact, since current response is entirely manual, a worm only has to spread faster than
human response time to succeed. Sapphire/Slammer, the fastest spreading worm to date,
far exceeded human response time by infecting most vulnerable machines within five
minutes of its launch [75]. Clearly, if the Internet community wants to halt the spread
of a worm, rather than simply cleaning up afterward, some form of automated detection
and response is needed. Here, we will focus on the problem of detection, and present
an automated system that can identify active scanning worms soon after they begin to
spread. Worm authors, when faced with such a detection system, might switch from
address scanning to stealthier techniques for identifying potential targets, including the
older, but effective, techniques of the 1988 worm. For this reason, we also will give a
brief overview of potential techniques for detecting slow-moving or stealthy worms.

“thesis_main” — 2005/11/21 — 13:09 — page 84 — #93
i

i

i

i

i

i

i

i

84 CHAPTER 3. CASE STUDY: THE SPREAD OF ACTIVE WORMS

An active scanning worm generates unusual network activity, which can be observed
using many possible data sources. One attractive data source is ICMP Destination Un-
reachable (also known as ICMP Type 3 or ICMP-T3) messages. When a source machine
attempts to contact an unreachable or nonexistent target machine, the last Internet router
on the path, if configured to do so, will send an ICMP-T3 message to the source ma-
chine. Scanning worms, through the process of probing randomly selected IP addresses,
will attempt to contact many unreachable machines, and will produce a unique pattern
of ICMP-T3 messages. As a worm spreads and infects more machines, more unique
source addresses will be attempting to contact the same (or related) ports on unreachable
machines. Observing such an increase in scanning activity is a reliable, and early, indica-
tor of worm activity. Using this principle, we have implemented a system called DIB:S
in which instrumented routers send copies of their generated ICMP-T3 messages to a
central collection station. The instrumented routers are the sensors for the DIB:S sys-
tem. The collector forms tracks of related ICMP-T3 messages according to the source
and destination IP address and ports, and whenever one IP address is seen to be scan-
ning a significant number of target addresses, the collector sends a scan alert to the tier-2
PQS system. This tier-2 PQS system receives the DIB:S scan alerts as observations,
each alert containing information regarding one scanning (or scanned) host. TRAFEN,
using a higher-level worm model, assembles tracks of related scanning activity, based
on the time and target port of the scan, and once a track matches the process model for
a worm, TRAFEN takes the track as evidence of an active Internet worm. As we will
see, TRAFEN can detect worms before they spread to too many vulnerable machines,
opening up the possibility of an effective, early response.

By collecting raw ICMP-T3 messages, the DIB:S system can see scanning activity
that spans multiple target networks. Even if a worm instance probes any single network
only a few times, DIB:S still will detect the scan as long as there are enough instrumented
routers distributed throughout the Internet. The number of instrumented routers can be a
modest fraction of the total, making the DIB:S system practical for Internet-wide deploy-
ment. In addition, many other unique scanning patterns besides worm propagation can
be extracted from the ICMP-T3 data, making DIB:S more extensible and powerful than
a system that collects only higher-level scan alerts. Finally, ICMP-T3 messages are rela-
tively compact, and reveal little information about the target network, particularly since
the instrumented routers can be configured to send the ICMP-T3 message only to the col-
lection point, rather than to the source machine also. System administrators should have
less concern about sharing these messages with a third party than they might with other
data sources, although other data sources, as long as they provide insight into scanning
activity, could be used within the DIB:S and TRAFEN framework as well.

In the rest of this chapter, we present background on Internet worms and a model
for their propagation, describe the architecture of our prototype worm-detection system,
DIB:S/TRAFEN, and examine simulation results that illustrate the system’s detection
performance. Finally, we examine future directions for both worm authors and worm
defenders.

“thesis_main” — 2005/11/21 — 13:09 — page 85 — #94
i

i

i

i

i

i

i

i

3.3. WORMS AND THEIR PROPAGATION 85

3.3 Worms and their Propagation

The first step in detecting an active worm is to understand how active worms propagate,
and to develop a general propagation model that can be used as the starting point for
detection algorithms. First, we compare active worms with other types of malware, and
then we present an epidemic model for worm propagation.

3.3.1 Worms and Viruses

Over the last several years, there has been frequent discussion of the difference between
viruses and worms. In the early days after the 1988 Internet worm, Eichin et al. [39]
referred to this new event as an “Internet virus”, stating that it bore no resemblance
to the biological equivalent of a worm. Today, however, most experts refer to it as the
“Morris worm”, indicating that biological equivalence no longer dictates the terminology.
Figure 3.1 is an inheritance graph showing current, commonly accepted relationships
in terminology. Viruses and worms are both part of the larger category of malicious
code. A related member of the malicious-code group is root-kits and backdoors, pieces
of software often installed on compromised systems by hackers to enable them to easily
regain control of the machine in the future. Rootkits are associated with the so-called
“auto-rooters”, pieces of software that offer a nice GUI to the hacker, making computer
intrusion child’s play. A disturbing detail is that many of these tools can perform multiple
attacks (exploits) with various target selection strategies, eliminating the need for any
understanding from the hacker. The tools often are easier to use than most security
products.

Another related member of the malicious-code family is spyware, software that ships
and installs with bona fide programs and relays information from the user’s computer
back to a data center without the user’s explicit consent. This implies that the user often
is not aware that spyware programs are present on the system, increasing the risk that pri-
vate, or even privileged, information might be stolen. Spyware is gaining more attention
lately, largely because software packages are increasing in size and complexity, making
detection of spyware much more difficult. In addition, spyware programs tend to remain
on the system even when the program to which they were originally attached is removed.

Where other malicious code is intended for controlled use, viruses and worms are
designed to propagate without control. This makes them very dangerous, since there are
no bounds on their spread, and their workings are fully decentralized. Where root-kits
and backdoors provide the hacker with full control of a system, worms and viruses need
to be fully autonomous, following the same algorithm over and over again for each newly
infected system. There is no reason, however, why the two cannot be combined. creating
a massively (self-)propagating piece of malware that leaves backdoors for the hacker to
enter all infected systems at will. Regarding terminology, worms and viruses can be
viewed as separate types of autonomous malware (as we prefer and depict in Figure 3.1),
or viruses can be viewed as a broad category of which worms are a special case. Whether
worms are their own category or a subcategory has little effect on the discussion of their
properties, so we leave it to the reader to form their own opinion.

“thesis_main” — 2005/11/21 — 13:09 — page 86 — #95
i

i

i

i

i

i

i

i

86 CHAPTER 3. CASE STUDY: THE SPREAD OF ACTIVE WORMS

MALICIOUS CODE

SPYWARE ROOTKITS/
BACKDOORS

AUTO-ROOTERS

VIRUSES WORMS

AUTONOMOUS

Figure 3.1: A partial hierarchy of malicious code (or malware).

The difference between worms and viruses lies in their method of propagation. In
short, viruses require carriers, where worms facilitate their own propagation. Worms
often use an attack strategy that actively selects targets and opens connections to those
targets. The worm then launches an exploit, and, if successful, propagates by copying its
code to the new system and then running that code. The new system now is infected and
will behave the same as the system that infected it, resulting in two copies of the worm,
both looking for new systems to infect. This spread continues until most vulnerable
systems are infected, or until a built-in timer stops the propagation and switches the
worm to another mode, such as a massive Distributed Denial of Service (DDOS) attack
using all the infected systems as drones.

In contrast to worms, viruses need a carrier to propagate. Traditionally, viruses bind
to executable files, the system boot sector, or both. This ensures that the virus is loaded
into memory at boot time, or whenever a program is loaded. Once active in memory, the
virus binds to the operating system and tries to infect the boot sector and every program
that is run. This will guarantee its spread, since infected executables that are run on clean
systems will infect the boot-sector of that system, leading to subsequent infection of that
system’s other programs as well. This technique requires executable files to be shared
between computers, imposing a natural limit on how fast the virus can spread. Recently,
however, viruses have been designed to piggy-back on bona fide communication mech-
anisms such as email. Email viruses often rely on the recipient to open the email and
run the attached viral executable, which, in turn, will attempt to send itself to all e-mail
addresses in the user’s address book. This is the reason that such viruses often come
from your best friend. Virus writers use many techniques to hide the actual virus from
the user, such as embedding the viral code inside a screensaver or game. A more sophis-
ticated approach is to include a macro in the e-mail that will run the viral code as soon
as the e-mail is opened (without the user having to open the viral attachment itself). This
approach, however, requires an email client that understands and automatically interprets
and runs such macros. Email viruses, with or without automatic execution of the viral
attachment, show propagation patterns very similar to those of active worms.

“thesis_main” — 2005/11/21 — 13:09 — page 87 — #96
i

i

i

i

i

i

i

i

3.3. WORMS AND THEIR PROPAGATION 87

3.3.2 Worm Spread

The propagation pattern and autonomous behavior that classifies worms leads to a clearly
identifiable three-step algorithm:

1. Target Selection

2. Infection Attempt

3. Code propagation (when the infection attempt succeeds)

Intuitively, the faster a worm can identify and infect new vulnerable targets, the faster
it can propagate. This is important, since historically it seems that slow and “silent”
worms do significantly worse than fast and “loud” worms, in terms of the peak number of
infected systems. The major reason for the success of fast worms is the minimal response
time that they allow to take appropriate countermeasures. Successful response mainly
depends on human factors, since it usually involves system administrators learning about
new worm events, and then identifying and patching or removing any vulnerable systems
in their networks. Given the limits of human response time, the initial propagation of a
new worm can proceed unobstructed, giving fast worms the chance to reach a “critical
mass”, namely, infect enough systems to create and sustain an epidemic. In the next
section, we will back these intuitive explanations with some basic epidemiology.

The target-selection algorithm is crucial to the success of a worm, and worm authors
have shown stunning creativity in this part. Proposed or observed approaches include
(1) random (directed or hitlist), (2) sniffing, and (3) name (email addresses, system files,
DNS). In addition, many worms have combined these three techniques with varying re-
sults. The most common, and easily implemented, algorithm is random generation of
target IP addresses. This method has gained popularity on the IPv4 Internet, since the
IPv4 Internet is densely populated. Selecting a random IP address has a high chance
(between 5% to 35%) of hitting an existing machine. A larger address space, like IPv6,
would mitigate this problem since it would take years to even find an active IP address
by random scanning. On the IPv6 Internet, the random IP generation technique is far
less effective due to the enormous address space. When all the machines currently on the
IPv4 Internet migrate to the IPv6 Internet, the IPv6 Internet would be extremely sparse,
and it would take years for a random-generation algorithm to find an IP address actually
associated with a host.

To improve the chance of finding vulnerable machines, many worm authors employ
techniques in which they direct the random target selection. By preferring address ranges
that are densely populated or address ranges that are suspected to contain a large number
of vulnerable machines, the worm can propagate significantly faster. As an example of
the latter case, the vulnerability that the worm exploits might be typical of home com-
puters. The worm author would attempt to identify up front which target ranges hold
the most home computers (dial-up, DSL, and cable-modem ISPs) and then program the
worm to prefer targets in those address ranges. Alternatively, the worm can be pro-
grammed to select targets only from a list of known targets. This approach usually is
called “hitlist propagation”, and is most effectively used as an initial propagation method

“thesis_main” — 2005/11/21 — 13:09 — page 88 — #97
i

i

i

i

i

i

i

i

88 CHAPTER 3. CASE STUDY: THE SPREAD OF ACTIVE WORMS

before defaulting to random propagation [114]. Such a hitlist would contain IP addresses
that are known to be vulnerable systems, and thus would need to be constructed before
the worm was released. Construction of hitlists can be done slowly over the course of
months by randomly scanning the Internet. To avoid attacking the same system multiple
times during propagation, the list can be split in half every time a worm instance propa-
gates. One half is kept by the infecting system, while the other half is given to the newly
infected system. Hitlists are an effective way of establishing a critical mass of infected
systems. A further optimization is permutation scanning in which every worm copy scans
according to the same reproducible random sequence. Each copy of the worm starts at a
position in the sequence determined by the IP address of the local host, and switches to
a new random position whenever it encounters a machine that already is infected [114].
Switching to a new position takes into account the fact that if a host is already infected,
some other copy of the worm already is working its way through that portion of the
sequence. The permutation approach, which has not been employed in actual worms
yet, preserves the simplicity of random scanning, while minimizing duplicative scanning
effort.

Scanning activity can be difficult to hide, since traffic-monitoring and intrusion-
detection systems can notice the pattern of one machine actively connecting to many
other machines. A technique that has been frequently discussed, although not used in
implemented worms yet, is passively sniffing the network (or inspecting application-
level traffic) to identify reachable IP addresses that likely are running a service that the
worm can exploit. As an example, a contagion worm might have two exploits, one for
web clients and one for web servers. A copy of the worm on a web server attempts to
infect any web client that requests a page, while a copy of the worm on a web client
attempts to infect any web server to which the client connects. Fortunately, this approach
is applicable only for some services, since the worm must see enough traffic to build up
a reasonably sized set of potential targets. For example, if the worm only had an exploit
for web servers and was passively sniffing the network to identify other web servers, it
might see little or no traffic for any web server other than the one already infected, partic-
ularly given the prevalence of switched Ethernet. On the other hand, a worm exploiting a
vulnerability in email servers will have a better chance of succeeding, since email servers
contact each other to exchange email. As long as users on the local network make mod-
erate to heavy use of email, the worm will be able to identify a significant number of
email servers that it can attempt to infect. As an added bonus for the worm author, such
an email worm would be equally successful in densely or sparsely populated address
spaces.

When the address space is only sparsely populated, random scanning (even to con-
struct a hitlist) can be an impossible task, and thus other methods need to be employed.
In addition to the passive network sniffing discussed above, a worm can use DNS names
rather than IP addresses to identify systems. When a top-level domain name is acquired,
DNS servers often will reveal the names of the associated mail exchange server and Web
server. Even if these names are not obtainable directly from the DNS system, the worm
author can make an educated guess as to what the names of existing systems would
be. Imagine that the worm acquired the domain exampledomain.com. A logical nam-

“thesis_main” — 2005/11/21 — 13:09 — page 89 — #98
i

i

i

i

i

i

i

i

3.3. WORMS AND THEIR PROPAGATION 89

ing scheme would suggest that www.exampledomain.com would be the Web server and
mail.exampledomain.com would be the mailserver. A list of other names would include
www1, ns, ns1, dns, dns1, nameserver, ftp, smtp, pop3 or skywalker. Names from Greek
mythology also are very popular. The worm author’s creativity can be endless, and tech-
niques that have been used for many years in password crackers also can be used to
construct hostnames. If a site has a hostname sparc09, for example, it is worth trying
sparc01, sparc02, ... sparc99 as well. Additionally, hostnames can be gleaned from
many other sources. The 1988 worm [39] used the .rhosts file to obtain hostnames of
other systems in the network. Similarly, most operating systems maintain small name
databases as a backup for when the DNS system fails. Other sources can be email ad-
dresses, which have the basic structure username@domainname, and provide domain
names for the process above. Obtaining the addresses or names of potential targets from
information stored on the currently infected machine often is called topological scan-
ning [114]. Although most worms today use some form of random target selection, the
introduction of IPv6 means that it is no longer the guaranteed fastest way to propagate.
Future worms most likely will employ combinations of the above techniques to facilitate
their propagation. In addition, viruses that use normal network traffic as a carrier will
become increasingly popular, since they do not need to select their own targets.

After a target is selected, the worm will attempt to infect it. If successful, the worm
will run a copy of itself on the newly compromised system. The two general approaches
to code propagation are the use of a central repository or the use of cloning. A central
repository stores the code of the worm, and each time a new host is infected, the worm
is downloaded from this location. The benefits of this approach are that the worm author
can update the worm code while the worm is propagating. It is even possible to store com-
mands that each instance of the worm will download and execute, leaving all the infected
systems open for control by the worm author. The drawback is obvious – the security
community easily can take the central repository off-line, effectively disabling the worm
and stopping further propagation. The second approach (cloning) does not allow for code
updates, but also makes it much harder to stop the worm during propagation. The code
of the running worm is copied and started on each newly infected machine, effectively
cloning the current copy. Although not allowing any control mechanisms, these types
of worms tend to be more successful. Evolutions of the central-repository technique, or
programming worm copies to create their own peer-to-peer network for command distri-
bution, will provide significant control capabilities for hard-to-stop worms, however.

3.3.3 Epidemics

To get a feel for the factors that govern worm (as well as virus) propagation, most re-
searchers take to the classic epidemiological equations. These models describe biological
epidemics quite well, and have proven to be very applicable to their cyber equivalents.
We will introduce these models here and refer to further reading for a more in-depth
coverage of the topic.

In its most basic form, the behavior of a single host is described by the SIR (Suscepti-
ble - Infective - Recovered) model as shown in Figure 3.2. For a given worm, the S-state

“thesis_main” — 2005/11/21 — 13:09 — page 90 — #99
i

i

i

i

i

i

i

i

90 CHAPTER 3. CASE STUDY: THE SPREAD OF ACTIVE WORMS

(susceptible) indicates the host is vulnerable to that worm. The I-state (infective) indi-
cates that the host is infected and spreading the worm. The R-state (recovered/removed)
means that the host is not (or no longer) of interest to the epidemic. The reasons for being
in the R-state may vary, most often the host simply was not vulnerable to the worm in
the first place, or the host was patched (whether infected or not). Alternatively, the host
might be disconnected from the network, either to prevent infection or further propaga-
tion. For any worm, only a marginal portion of all the hosts are vulnerable, i.e., in the
group of susceptibles S. The majority of Internet-connected hosts will be in the R-group,
and not be involved in the spread of the epidemic. The transitions between the states
are given below, keeping in mind that the transitions apply to the state of a host for one
particular infection only:

S→ I (infection)
I→ R (patching or disconnection)

And furthermore:

S→ R (uninfected system patched)
I→ S (infection removed, but system not patched)
R→ S (susceptible system reconnected to the network)
R→ I (infected system reconnected to the network)

S RI

Figure 3.2: The SIR (Susceptibles-Infectives-Recovered) model is probably the most
popular way of identifying the groups in an epidemic, and its transitions form the basis
for a broad range of mathematical models.

The first two transitions are the most common case, and account for the majority of
the total number of state transitions made during an epidemic. They model the infection
of vulnerable systems (S→I transition), and the patching or removal of infected systems
(S→R transition). Many systems generally are not vulnerable to a certain worm attack,
and such systems do not change state and largely remain in their R-group. The classic
epidemic equations from Kermack and McKendrick focus on these two transitions (see
Daley and Gani [32]) for modeling the spread of an infection in continuous time. The
population N is constructed from the three groups S, I, and R, which change over time
as defined by s(t), i(t), and r(t), where t0 is the time at which the infection begins. Note
that N = s(t)+ i(t)+ r(t), meaning that the population size is assumed constant, which
is acceptable considering that we defined R to contain disconnected, not just patched,
systems. The population changes over time can be defined as

“thesis_main” — 2005/11/21 — 13:09 — page 91 — #100
i

i

i

i

i

i

i

i

3.3. WORMS AND THEIR PROPAGATION 91

(a)
ds
dt

=−βsi (b)
di
dt

= βsi− γi (c)
dr
dt

= γi (3.1)

The parameter β models the transition S→I and γ models the transition I→R. Intu-
itively, β is the likelihood of one particular infected system contacting (and infecting) one
particular susceptible system in dt time. Likewise, γ is the likelihood that one particular
infected system is patched or disconnected in dt time. Putting a number to these factors
is not easy since it is different for each worm. The general principels discussed in the
previous section, however, lead to some guidelines. First, the rate at which a worm can
infect new systems is limited by the rate at which it can contact other systems (which de-
termines β). This rate is either limited by parallelism or by bandwidth, whichever reaches
its limit first, and these factors are determined by the capabilities of the infected host and
the target-selection algorithm of the worm. The most effective propagation would be
when the worm uses up all the bandwidth that the host has to offer, thus, the closer a
worm can approach this limit, the better its chances are for fast propagation. There are
several factors involved that make this easier or harder. The first factor is the protocol
that the worm uses to propagate. When the worm uses a fire and forget protocol (like
UDP), it most easily can use all of the bandwidth since it never has to wait for a return
packet. When a connection-oriented protocol (such as TCP) is used, however, the worm
will need to wait for an acknowledgment from the target host before it can send the at-
tack data. The choice is not always up to the worm author since most services (and hence
most vulnerabilities) are built using connection-oriented protocols.

The latency between initiation and acknowledgment, however, can be filled with con-
nection requests to other potential targets when the worm interleaves them properly. With
appropriate programming, which may include the worm generating its own connection
requests and bypassing the operating system’s network stack, the worm can hide most
of the latency associated with connection-oriented protocols. For example, one thread in
the worm would craft requests packets, transmit those packets, and log the outstanding
connection in a table, while a second thread constantly would check (sniff) for return
packets and attempt to match them with the entries in the table. Every several seconds
the worm traverses the entire table to fault connection requests that have not had a re-
sponse within a worm-defined timeout period. By making this table sufficiently large,
the worm should be able to fill the available bandwidth without needing to run thousands
of concurrent copies of itself on the infected host. Although such an approach makes
the worm more complex and more difficult to implement correctly, the added burden
might be well worth the increased propagation speed. In addition, matters become easier
when the target-selection algorithm has some predetermined knowledge of reachability
or even vulnerability, such as in the case of a pre-constructed hitlist. The targets on this
list are mostly reachable and likely also vulnerable. This will significantly decrease the
time spent in timeouts, meaning that more network bandwidth will be used since each
connection attempt will take less time on average.

Given this discussion, the average time that each connection takes can be calculated
as:

τ = r× tlatency +(1− r)× ttimeout (3.2)

“thesis_main” — 2005/11/21 — 13:09 — page 92 — #101
i

i

i

i

i

i

i

i

92 CHAPTER 3. CASE STUDY: THE SPREAD OF ACTIVE WORMS

where r is the reachability based on the target-selection algorithm. A perfect hitlist would
give r = 1, and random target selection on the current Internet would give r ≈ 0.1. (It
must be noted that general reachability on the Internet is affected not only by assigned
and used address space, but also by firewalls and other filtering devices. Additionally,
reachability numbers vary majorly between address ranges. Safe numbers for r are usu-
ally between 1% and 25%, depending on the service under attack, preferred address
ranges, etc.)

When a worm does use a hitlist for initial propagation, the worm would have two
different values for β, one value for the hitlist part of the propagation, and a second
smaller value for the remaining (random) part of the propagation. In addition, I0 (the
initial number of infected systems) for the second part would be the number of infected
systems after the hitlist propagation is complete. For completely random target selection,
β can be defined as

β =
1
N
× α

τ
(3.3)

where N is the size of the address space (232 in case of IPv4) and α is the number of
concurrent scanning threads. In the case of a worm that implemented a fully parallel
scan through the construction of its own request packets, α might be defined quite high
(even if the worm itself only used the two threads described above). In the equations, dt
is the same as the unit of τ, meaning that if τ is calculated in seconds, dt in Equations 3.1
also is in seconds. For a perfect hitlist (where every IP address is indeed a susceptible
host), we instead could define β as:

β =
1
S0
× α

τ
(3.4)

where S0 is the number of systems that are initially susceptible (assuming that the hitlist
holds all susceptible systems). The second factor α

τ essentially calculates the average
number of successful connections a single infected host can complete in dt time (not all
of those are necessarily susceptibles). When network bandwidth is the limiting factor,
rather than worm parallelism, the second factor can be replaced with a division of the
available network bandwidth by the size of the infection packetstream.

The γ parameter (the I→R transition) can be harder to model since it mostly depends
on actions of the system administrator. (See Figure 3.3, where parameter β was calculated
based on Equations 3.2 and 3.3 and the characteristics of Code Red v2 on a per-second
basis: Code Red v2 used 100 concurrent scanning threads (α = 100), with an average
reachability of r = 1

10 and a default timeout on no response of 21 seconds (based on
the default Windows NT timeout, exponential back-off with 3 retries after 3, 6, and 12
seconds). This gives (3.2) τ = 1

10 ×1+(1− 1
10)×21 = 19. The address space was IPv4,

and thus N = 232 gives (3.3) β = 1
232 × 100

19 = 1.23× 10−9. The term α
τ = 100

19 gives us
about 5.26 completed scans per second. Notice how the total number of systems infected
(surface area under the graphs) decreases with higher values for γ. Code Red v2 data was
collected at TRIUMF Canada (http://www.triumf.ca), which generously made the data
available to us for this research.) It will take security personnel some time to discover a

“thesis_main” — 2005/11/21 — 13:09 — page 93 — #102
i

i

i

i

i

i

i

i

3.3. WORMS AND THEIR PROPAGATION 93

 0

 50000

 100000

 150000

 200000

 250000

 0 5 10 15 20 25

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

Code Red v2

hours

hosts

Figure 3.3: Spread of Code Red v2 versus the epidemic equations for different values of
γ. The vertical axis represents the total number of infected systems at any given time,
and the horizontal axis is the time in hours.

newly launched worm, and then they will need to analyze the worm and possibly write a
patch. System administrators then must learn about, download, and install the new patch.
Another option for system administrators is the disconnection of infected machines from
the network. Both processes, patching and disconnection, are hard to model, and likely
are not governed by a fixed rate. Note that in the Kermack and McKendrick model, the
transition is dependent only on the current size of the group of infected systems, which
could be too simple a dependency to model the behavior of security personnel and system
administrators.

Additional Transitions. The other transitions in the SIR model are interesting for
further study. The S→R transition models uninfected systems that are vulnerable to the
worm under consideration, but get patched or disconnected before they are infected. Al-
though this process might be underway before the worm is launched (i.e., a patch for
the worm’s exploit is available a priori), only its effect on the worm should be mod-
eled. Patching that occurs before the worm is released simply decreases S0. Below is
an extended set of differential equations taking into account all six transitions from the
graph:

“thesis_main” — 2005/11/21 — 13:09 — page 94 — #103
i

i

i

i

i

i

i

i

94 CHAPTER 3. CASE STUDY: THE SPREAD OF ACTIVE WORMS

ds
dt

=−βsi−ηi+ζr +θi (3.5)

di
dt

= βsi− γi+ εr−θi (3.6)

dr
dt

= γi− εr−ζr +ηi (3.7)

The S→R transition is governed by the parameter η and is taken to be dependent
on the size of the group of infectives over time. This is parallel to the I→R transi-
tion, and indicates that administrators will patch uninfected systems, as well as infected
ones, with greater urgency as the worm propagates. It can be argued, however, that it
should be multiplied by the size of the group of susceptibles as well, since the chance
that administrators patch or disconnect uninfected systems decreases as there are fewer
systems uninfected. The I→S transition (represented by θ) also is taken to increase and
decrease as the group of infected systems grows and shrinks. This means that the larger
the group of infected systems, the greater the number of systems that will be cleaned,
but not patched. A good example of this was the propagation of the Code Red v2 worm.
Although Code Red v2 could be removed from a system by rebooting, the system would
be susceptible to re-infection after the reboot. The R→S transition (ζ in the equations)
is most likely due to uninfected, yet susceptible, systems being taken off-line and then
reconnected to the network later. It also could indicate systems that were patched and
updated, but became vulnerable again for various reasons. In nearly all cases, this will
be a small fraction, and is mostly dependent on how many systems are disconnected or
patched. Similarly, The R→I transition (modeled by ε) will be small, representing the
infected systems that are taken off-line and later reconnected, allowing them to continue
spreading the infection. One final note on these four transitions is their relative insignif-
icance compared to β and γ. Even for very small values of θ, ε and ζ, the equations can
be unrealistically imbalanced. The interested reader is encouraged to try different values
for all parameters and see how the epidemic curve behaves.

3.4 Response

The best way to respond to an epidemic is to prevent it in the first place. History has
shown, however, that there have always been unpatched vulnerabilities. Moreover, with
software getting more and more complex, it is unlikely that this will change. Software
vendors put significant effort into distributing patches to mend security holes in their
software, but not nearly enough users install such patches promptly. Often people are not
aware of security updates, and many others get tired of the continuous stream of updates,
inadvertently leading to disregard. Patching does decrease the size of the pool of sus-
ceptibles, however, effectively limiting the damage any worm can do. The most obvious
solution would seem to be automated patching services, although the necessary basis of
trust is lacking. Most operating systems vendors offer some form of automated patching

“thesis_main” — 2005/11/21 — 13:09 — page 95 — #104
i

i

i

i

i

i

i

i

3.4. RESPONSE 95

service, either manually invoked, or automatically, and such services work reasonably
well. The catch is, however, that these services often only patch the vulnerabilities in the
base operating system and several frequently used network services. They have no way
of knowing about custom installed services, which may subsequently remain vulnerable
to attack. Also, security experts have long argued that these services are themselves an
important target for attack, although none have been reported compromised so far. It can
be seen, however, that if an exploited automated patching service goes undetected, the
attackers have the option of creating a large pool of susceptible systems by distributing a
vulnerable patch. Needless to say, such a situation would be devastating.

Thus, although automated patching does have its place, automated response after the
worm is launched must be a critical part of an effective defense. When we consider the
epidemic equations, the two parameters that govern the majority of all transitions are
β and γ. An epidemic can be reduced by either lowering β or increasing γ. Figure 3.3
shows how increasing the value of γ reduces the number of hosts affected by the epidemic
(surface area under the graph). We now will discuss several ways of influencing these
parameters as a form of active response to worms.

Increasing γ. A common way of avoiding communication with infected systems is
the ‘blacklist’. This is a technique often used within the security community to filter
out IP addresses that have shown aggressive behavior in the recent past. A similar tech-
nique could be used to collect IP addresses of systems that are known infectives. This
list would grow as the worms propagate. Routers and firewalls across the world would
have to implement filtering rules to disallow traffic from any of these IP addresses. This
effectively cuts infected systems off the network by blocking them from communicat-
ing, therefore increasing γ. The R-group will increase, and there will be relatively more
disconnected, infected systems than normal. Problems with this approach are the imple-
mentation requirements. Moore et al. [77] conclude that practically all of the Internet’s
major connections need to employ blacklist filters for this technique to be effective. In
addition, the list of blocked IP addresses needs to be continually updated and, as the list
grows, it will incur a significant load on all the participating routers and firewalls. Ad-
ditionally, a fast and accurate detection system needs to be in place to determine which
systems should be added to the blacklist. Another common problem that this technique
poses is the ability for attackers to perform a DOS attack on arbitrary hosts or networks.
Attackers can spoof malicious traffic, making it seem like it came from a particular net-
work, and get the worm response system to blacklist or filter out all traffic from that
network, effectively disconnecting it from the Internet.

Reducing β. Since β governs the growth of the worm, worm authors will try to maxi-
mize β to speed up the propagation; the security community, in turn, must try to minimize
it. A technique that has been discussed by Williamson [124] is to reduce the number of
new connections that a host may initiate per timeslice. A connection is counted as new
when it connects to an IP address that it was not communicating with in the recent past.
Known IP addresses (i.e., those with which a machine communications often, such as
mail or DNS servers) are stored in a list of a given size and will never incur a delay. For
the unknown IP addresses, however, the connection limit is imposed incrementally. A
worm, which created a list of hundreds of IP addresses to contact, would incur a delay

“thesis_main” — 2005/11/21 — 13:09 — page 96 — #105
i

i

i

i

i

i

i

i

96 CHAPTER 3. CASE STUDY: THE SPREAD OF ACTIVE WORMS

between itself and the previous connection request. The connection limit is suggested
at five new connections per second, which is roughly the effective scanning speed of
the Code Red v2 worm, meaning that only the fastest of worms will be hindered.1 An
additional argument for implementing this method is the minimal overhead it puts on
the system, while putting a direct limit to β. Some server systems, however, would suf-
fer badly from this method, since they usually have more active outbound connections.
Consider, for example, DNS or email servers, both of which will connect to many other
systems based on the name queries or email messages sent by the users. A similar dif-
ficulty is encountered on multi-user systems, where multiple users are logged on at the
same time. This technique works better on “static” servers like webservers that mainly
listen for incoming connections. Additionally, it may be possible for a worm to circum-
vent the rate-limiting mechanisms by crafting packets instead of traversing the TCP/IP
stack.

A second technique is “traffic content filtering”. It is based on the idea that routers
and/or firewalls will test all traffic flowing through against a set of known, viral signa-
tures. When a malicious signature is detected, the packet is dropped, effectively limiting
the propagation of malicious code and decreasing β. The technique, however, requires
very elaborate signatures and matching on port/protocol combinations, since the sheer
volume of traffic traveling through large routers creates a fair possibility that smaller sig-
natures would be matched in regular, bona fide traffic. As Moore et al. discuss [77], for
application during a new worm event, this approach requires the signature to be generated
as early as possible. Signature-capable routers would need to be in widespread use, as
well as a mechanism to quickly and securely distribute new signatures. Once again, this
defense system allows for a DOS attack when an attacker is able to insert a falsified sig-
nature that would block all traffic for a particular service. In addition, this system would
put a tremendous overhead on critical network routers on the Internet, since signature
matching (especially when the pool of signatures is large) is very processor intensive.
Combined with the need to re-assemble each fragmented packet, to avoid overlooking
fragmented attacks, this cure might be difficult to deploy widely.

Conclusion. The general mantra for this section is the need for very early detection
of new worm events. Whatever the response will be, it will never be useful if the alert
and classification come too late. Considering that the Sapphire/Slammer worm [75, 38]
propagated in just several minutes, it is clearly not humanly possible to generate the alerts
by hand. Although automated alert and response systems would be up to the task, they
are at the risk of becoming the target themselves, potentially being more dangerous than
any regular worm could ever be. It seems, therefore, that there will always remain a
delicate balance between human interaction and machine automation. We can envision a
system in which the monitoring and detection is done automatically, such that alerts and
signatures are generated for a human first responder to assess. Next the human responder
can decide which (if any at all) of the active response mechanisms to activate, allowing
an appropriate response to the event.

1This number was previously calculated as α
τ = 100

19 ≈ 5.26, as well as observed from the actual worm in
our test environment.

“thesis_main” — 2005/11/21 — 13:09 — page 97 — #106
i

i

i

i

i

i

i

i

3.5. EARLY DETECTION OF SCANNING WORMS 97

3.5 Early Detection of Scanning Worms

Our prototype system for detecting scanning worms collects ICMP Destination Unreach-
able (or ICMP-T3) messages as observations from instrumented routers (the sensors),
then aggregates these messages in tracks to identify scanning activity, and then looks for
patterns of scanning activity that indicate a propagating worm using a tier-2 PQS. The
system, whose architecture is shown in Figure 3.4, has two major components, the Dart-
mouth ICMP BCC: System or DIB:S (tier-1), which aggregates the ICMP-T3 messages
into scans alerts, and our Tracking and Fusion Engine or TRAFEN (tier-2), which identi-
fies propagating worms based on their scanning activity. DIB:S forms tracks of individual
host activity, while TRAFEN generates tracks of related scanning activity based on the
submitted worm process models. These process models contain several approaches to
identifying worm-like behavior, for instance, by searching for a near-exponential rise in
DIB:S alerts. From a layered PQS point of view, the DIB:S system is the tier-1 tracker
and forms a sensor to the tier-2 TRAFEN system, however, from the worm detection
point of view, DIB:S and TRAFEN should be considered integrated components. (Tech-
nically, as mentioned before, a general-purpose PQS system could be used to perform
the specific-purpose task done by DIB:S, however, this would come at a significant per-
formance cost.) The prototype DIB:S and TRAFEN system focuses on the detection of
fast-moving worms that attempt to infect the vulnerable population within minutes or
hours, since automatic detection of such worms is the only way to provide enough early
warning to take appropriate countermeasures. For slower-moving worms, manual detec-
tion of the worm, in time to warn system administrators and other personnel, is much
more likely. As we will see, however, the system can detect of slow-moving worms
through straightforward extensions. The system will not detect worms that do not probe
“randomly” generated IP addresses, however, such as worms that use a pre-constructed
hitlist or that monitor network traffic to identify existent, reachable machines. In this sec-
tion, we present background on ICMP-T3 messages, describe the DIB:S and TRAFEN
components, and examine the detection capabilities of the prototype system.

3.5.1 ICMP-T3 Messages and Instrumented Routers

When a source machine attempts to contact a nonexistent or unreachable machine, an
Internet router, somewhere between the source machine and the target network, will de-
termine that the packets can go no farther. This router, if configured to do so, will send
an ICMP-T3 message to the source machine. Scanning worms, through the process of
probing randomly selected IP addresses, will attempt to contact many unreachable or
nonexistent machines, such as machines protected by a firewall or addresses from an
unassigned part of the Internet. If this scanning activity produces enough ICMP-T3 mes-
sages, we can infer the presence of a propagating worm through its unique scanning
pattern, specifically, the growth in scanning activity as the worm infects more and more
machines.

Table 3.1 shows the responses we received when we probed selected address ranges
on the Internet. The data, which was obtained for a separate project, is skewed slightly,

“thesis_main” — 2005/11/21 — 13:09 — page 98 — #107
i

i

i

i

i

i

i

i

98 CHAPTER 3. CASE STUDY: THE SPREAD OF ACTIVE WORMS

Router

Router

...

Router
TRAFEN

Worm
Alerts

Analysis
Station

SrcIP or DstIP =
 10.0.0.1
 10.0.0.11
 ...

Analysis
Station

SrcIP or DstIP=
 10.0.0.10
 10.0.0.20
 ...

...
Collection

Station

ICMP
Unreachable

Messages
Scan

Alerts

DIB:S

Figure 3.4: The combined DIB:S and TRAFEN system. ICMP Unreachable messages
with the same source or destination address are sent to the same analysis station.

since we scanned only known highly populated address ranges (such as DSL-pool and
cable model ISPs). Many address ranges simply are unassigned, and contain no reachable
machines at all. The two most significant numbers are the high response rates (25%
average) and the numbers of ICMP-T3 messages returned (6.2% average). The latter
number, although seemingly low, means that a significant fraction of scan attempts will
produce an ICMP-T3 message at some router. Thus, if we can collect and analyze ICMP-
T3 messages from multiple, distributed routers, we will have enough messages to detect
a worm’s unique scanning activity.

PING PING TCP/80
24.[0-128]/16 [209-211].[32-64]/16 [209-211].[32-64]/16

Requests 1628977 100% 6487973 100% 1171298 100%
No response 1258388 77.3% 4911425 75.7% 800636 68.4%
Echo replies 244445 15.0% 636135 9.8% 37707 3.2%
ICMP-T3 77361 4.7% 398841 6.0% 104555 8.9%
Other 48783 3.0% 550472 8.5% 228400 19.5%

Table 3.1: Responses to random probing on the Internet - ICMP echo request on the
24.0/16 - 24.128/16 networks. ICMP echo and TCP port 80 request on the 209.32-64/16
- 211.32-64/16 networks

Due to privacy concerns, we have chosen not to sniff for ICMP-T3 messages, but in-
stead to ask network providers and other organizations to forward the ICMP-T3 messages

“thesis_main” — 2005/11/21 — 13:09 — page 99 — #108
i

i

i

i

i

i

i

i

3.5. EARLY DETECTION OF SCANNING WORMS 99

from their routers to our analysis systems. These forwarded messages are essentially a
Blind Carbon Copy (BCC) of the original ICMP-T3 message, which is a legitimate action
since the generating router was a participant in the original conversation. Although site
policy may require that no response be sent to the source machine, the router can remain
silent to the outside world while still sending the ICMP-T3 messages to the analysis sys-
tems. In particular, there was no response to 75% of our probes, but many of these probes
may have gone through routers that were instructed to silently ignore unsolicited traffic.
These routers could easily forward ICMP-T3s to the analysis systems, while still drop-
ping the original packet without a response to the sender. 2 This approach allows broader
coverage, while still respecting the security policies of individual organizations. We cur-
rently provide router patches for the LINUX kernel to provide the ICMP-T3 forwarding
ability.

ICMP-T3 messages come in several different flavors, [97] two of which are of par-
ticular interest for detecting scanning activity: Network Unreachable (Code 0) and Host
Unreachable (Code 1). A router generates a Network Unreachable message when a de-
sired network cannot be reached. This might happen when a packet is sent to an IP
address that resides in an unassigned portion of the Internet address space. Far more
commonly, a router generates a Host Unreachable message when a router cannot find the
addressed host in its network. This might happen when the packet could be routed to the
correct network, but the router responsible for that network could not locate a machine
in its network that bears the requested IP address.

The feature that makes analyzing ICMP-T3 messages useful is their message body.
When a router builds a Destination Unreachable message, it includes the IP header, and
at least the first eight bytes of the body of the original message (i.e., the message that pro-
voked the ICMP-T3 response) as the payload of the ICMP-T3 message. (See Figure 3.5.)
For TCP and UDP, this includes the source and destination port numbers. Scanning sys-
tems thus will reveal both their IP address and their target port.

To clarify this, imagine a system that is randomly scanning IP addresses to find web
servers listening on Port 80. From Table 3.1, we see that this will elicit a significant
number of ICMP-T3 responses that would include, as their payload, the IP address of the
scanning system, plus at least eight extra bytes from the original payload, which, in this
example, would be the beginning of the TCP header. If the analysis systems received
a BCC of such an ICMP-T3 packet, the IP address of the scanning system would be
known, as well as the port for which it was scanning.3 Now, if multiple routers across the
Internet forward the ICMP-T3s that they generate to the data analysis systems, it would
soon become clear that a host (i.e., an IP address) was scanning the Internet to find web
servers. We refer to this scanning pattern as a “bloom”.

2RFC 1812 section 5.2.7.1 states that routers should be able to generate ICMP-T3s, not that they should
generate them.

3The destination port appears within the first 8 bytes of the TCP or UDP header.

“thesis_main” — 2005/11/21 — 13:09 — page 100 — #109
i

i

i

i

i

i

i

i

100 CHAPTER 3. CASE STUDY: THE SPREAD OF ACTIVE WORMS

IP Header

> 8 bytes payload

> 8 bytes payload

ICMP Msg Header

IP Header

IP Header

ICMP MessageOriginal Packet

Figure 3.5: The IP header, plus at least 8 bytes of the protocol data, of the packet that
provoked that generation of an ICMP-T3 get copied as the payload of that ICMP-T3
message.

3.5.2 DIB:S

The primary task of DIB:S is to collect ICMP-T3 data and identify blooms of scanning
activity. The instrumented routers, described in the previous section, send carbon copies
of their ICMP-T3 messages to one or more collectors, which, in turn, will forward the
messages to one or more analyzers. Each analyzer is assigned an IP address range within
which it will look for scanning activity, and more analyzers can be spawned dynamically
as needed (with appropriate updates to the assigned address ranges). Each analyser will
therefore only form tracks for a certain range of IP addresses, thus balancing the load.
When an ICMP-T3 message arrives at a collector, the collector extracts the embedded
content, sends one copy of the message to the analyzer associated with the embedded
source IP address, and sends another copy to the analyzer associated with the destination
IP address.4 In this way, an analyzer will see all information about a specific range of
IP addresses, regardless of the routers from which the information came. Organizing
the analysis by source and destination address, rather than the generating router, is criti-
cal, since randomly scanning worms will hit many different networks, and the resulting
ICMP-T3 messages will come from many different routers. This then, is at the core of
the embedded process model, tracks collect all evidence pertaining to just one host, re-
gardless of where the information originated. Thus, the scanning activity is much more
visible when viewed across routers, rather than at a single router. This division of labor
is possible since tracks are formed containing evidence of one infected host per track.
Tracks can therefore be distributed deterministically.

4Depending on the number of analyzers and the particular source and destination IP addresses, the two
copies might go to the same analyzer, in which case only one copy is actually sent.

“thesis_main” — 2005/11/21 — 13:09 — page 101 — #110
i

i

i

i

i

i

i

i

3.5. EARLY DETECTION OF SCANNING WORMS 101

The analyzers keep a history of the ICMP-T3 messages received for a particular IP
address over the last ∆t seconds. DIB:S will generate alerts in six cases. Only two are
relevant to worm detection – in the last ∆t seconds, on the same port p and using the
same protocol P, one host has contacted N different IP addresses (Case 1), or one host
has been contacted by N different IP addresses (Case 2). These are classical scanning
patterns, both observed during worm propagation, although Case 2 also can indicate a
failed server for which requests keep arriving. Similarly, the other two cases also are
symmetrical – in the last ∆t seconds, on the same port p and using the same protocol
P, one IP address has contacted another IP address at least N times (Case 3), or one
IP address has been contacted by another IP address at least N times (Case 4). These
two cases could indicate service failure In addition to the four primary cases, DIB:S also
can generate alerts in two symmetrical secondary cases – in the last ∆t seconds, one IP
address has contacted another IP address on at least N different ports (Case 5), or one IP
address was contacted by another IP address on at least N different ports (Case 6). The
DIB:S alerts contain the case number, the embedded source and destination IP address,
the protocol, and, if available, the source and destination port numbers. An analyzer will
not generate a second alert for an address if it already has generated an alert within the
last ∆t seconds. As time progresses and the history expires, however, the analyzer will
generate a second alert if scanning activity from or against the address continues. If one
IP address is scanning two different ports, DIB:S will issue two separate alerts.

The proper values for the parameters N and ∆t are the configuration of the tier-
1 model, and depend on the number of participating routers, however, several general
things can be said. A lower value of N increases the chances of false positives, and any
value below N = 4 makes the system unusable. Although higher values will lead to more
accurate detection, the moment of detection will be later, possibly too late. Experimen-
tation has shown that 5 ≤ N ≤ 15 gives the best results. Similarly, smaller values for ∆t
will give a very inaccurate view of events, since alerts on fast scanning IP addresses will
be frequently re-issued, and slower-scanning worms will not be detected at all. Higher
values of ∆t, however, put a serious performance penalty on the analysis system since
each packet has to be remembered for a longer time. Proper values during experimenta-
tion were determined to be 300≤ ∆t ≤ 14400. We will consider these two parameters in
more detail in a later section.

Case 1 is the most direct and obvious indication of (random) scanning behavior, and
also is the clearest case of a “bloom”. It could be a direct result from an active worm.
Case 2 would be seen when a public server fails and requests keep arriving. If Case
2 increases over time instead of decreasing, it is most likely the result of a successful
denial-of-service (DOS) attack. Cases 3 and 4 are most likely the result of one of two
communicating hosts going off-line, and packets from the other system are attempting,
but failing, to reach the first host. Cases 5 and 6 could be a sign of one system doing a
vertical port scan on another system. It is very unlikely that DIB:S will see these cases,
however, since ICMP is rate limited, and routers generally will not generate more than
three or four ICMP messages er second. Thus, it takes significant time to see these latter
types of observations. In fact, a worm simulation with a steady stream of injected noise
showed that 99% of all observations are actually of Type 1.

“thesis_main” — 2005/11/21 — 13:09 — page 102 — #111
i

i

i

i

i

i

i

i

102 CHAPTER 3. CASE STUDY: THE SPREAD OF ACTIVE WORMS

3.5.3 TRAFEN model

This section describes the initial elementary models that were submitted to TRAFEN
(TRacking And Fusion ENgine), to track active worms. Later, in the PQS-Net setting
(see Chapter 4), we experimented with more diverse sensor inputs and more complicated
models for worm tracking. It should be noted, however, that the general worm model
described below performs as well, if not better, than these more complicated PQS-Net
worm models.

Recall that a Process Query System can take input from arbitrary sensors and then
forms hypotheses regarding the observed environment, based on the process queries
given by the user. Process Queries are synonymous with Process Models or simply
Models. To apply a PQS to a particular problem domain, the developer must (1) define
the format for the input observations, and (2) must provide one or more process models
that return a score representing how related a set of observations in a track are. From the
tier-2 point of view, in which we detect the actual worms, the observations are the scan
alerts from the DIB:S analyzers, and the score assigned to a track is the probability that
the track represents a worm. TRAFEN subscribes to the DIB:S Alert stream and picks
out the Case 1 and Case 2 alerts (since those are the most relevant for worm detection).

The score calculation, then, is the heart of our model, and is essentially a set of
scoring rules. This is different, however, from a rule-based detector which looks for
specific signatures. Keep in mind that the models are invoked at the arrival of each
observation, therefore the scoring rules will essentially “grow” and “shrink” the score
of the tracks. Thus the model focusses on how well new incoming observations fit in
an existing track. The model assigns two match scores, one representing the scan type
(destination port), and the other representing the timescale between two subsequent scans
of the same type. After initial experiments, we arrived at three straightforward rules.
Rule 1 (type): If a machine scans the same port, using the same protocol, as the machines
already in a particular track, the type match is high (0.9); otherwise the type match is
low (0.1). This rule captures the fact that an active worm typically scans for and exploits
one particular vulnerable service, although the rule could be extended easily to take into
account those worms that scan two or more related service ports. Rule 2 (time): If a
machine performs a scan only a short period of time after a previous series of scans, the
time match should be higher than if the scans occur farther apart, which captures the fact
that an active worm must scan continuously if it wants to propagate quickly. We assign a
time match of 1.0 if the new scan occurs 10 seconds or less after a previous scan, a time
match of 0.0 if a new scan occurs 300 seconds or more after a previous scan, and a time
match scaled linearly between 0 and 1 if the scan is between 10 and 300 seconds after the
previous scan. Although the exact thresholds have little effect on tracking performance,
these thresholds are best for fast-moving worms. Rule 3 (combined): Finally, if the
type match is low, the overall score (the score returned by the model) representing that
the new scan is related to the tracked scans is set low, again 0.1, because two scans on
different destination ports likely do not represent the same active worm, no matter how
closely together those two scans occur in time. If the type match is high, the overall
score is set between 0.675 and 0.925, scaled linearly according to the time match. Since

“thesis_main” — 2005/11/21 — 13:09 — page 103 — #112
i

i

i

i

i

i

i

i

3.6. PERFORMANCE 103

the score of an initial single-observation track is set to a low value, and since the track
score is a moving average of these individual scores, the rules ensure that it takes several
observations for the track probability to increase significantly, reflecting the fact that only
a series of scans can indicate a worm.

Finally, a more complex worm detector could provide two process descriptions to
TRAFEN, one for worm activity and one for coincidental scanning activity, allowing
TRAFEN to create hypotheses in which each track has a type, namely, worm or coinci-
dental scan, and greatly reducing the possibility of false positives. Overall, the TRAFEN
framework allowed us to produce a working worm detector (given the DIB:S input) in
only a few hours, and provides the flexibility to extend the tracking system later through
more complex models. Next, we will examine the detection performance of the current
ruleset, and discuss extensions to the current DIB:S/TRAFEN system.

3.6 Performance

Evaluating the performance of a multi-tiered system must focus on the performance of the
system as a whole, rather than evaluating its parts. In this case that intuitively means how
quickly does the system detect new worms? Needless to say, performance measurement
of this system is dependent on the number and placing of the routeres (i.e. the sensors),
the configuration of DIB:S (i.e. Tier-1), and the model(s) used in TRAFEN (i.e. Tier-
2). This section discusses the various environments and parameters sets with which the
systems performance was evaluated.

3.6.1 Simulating Worms

DIB:S and TRAFEN currently are deployed at Dartmouth College, with instrumented
routers throughout the USA sending their ICMP-T3 messages to our DIB:S installa-
tion. This initial deployment, although functional, is not enough to analyze the detec-
tion performance of the system because there is no way to accurately determine ground
truth; what is actually happening. Therefore we turn to simulated worms for perfor-
mance analysis. We developed two different worm simulations, one small-scale and one
large-scale. The small-scale simulation allows us to run hundreds of worms through the
DIB:S/TRAFEN system in rapid succession, allowing us to explore the parameter space
and fine-tune the system for specific environments. The large-scale simulation is essen-
tially the same, but it simulates a worm propagating over the entire Internet, allowing
system evaluation under more realistic conditions. The volume of ICMP-T3 messages
generated in the large-scale simulation can be massive, however.

Small-Scale Worm Simulation Our small-scale worm simulator is designed to run
worms on address spaces of one million addresses or less. The number of reachable
hosts and the number of susceptible hosts is configurable, and each susceptible host is
simulated individually. We assume that each reachable system is reachable from all
connected hosts, using a given latency distribution, and we do not explicitly simulate
routers. Instead, the generation of ICMP-T3 messages is done based on address ranges.

“thesis_main” — 2005/11/21 — 13:09 — page 104 — #113
i

i

i

i

i

i

i

i

104 CHAPTER 3. CASE STUDY: THE SPREAD OF ACTIVE WORMS

For example, when the router coverage is set to 10%, ICMP-T3 messages are generated
for a fixed 10% of the addresses (and only for those addresses within the 10% that do not
correspond to a reachable host). For a random address probe, the simulation first checks
whether the address is associated with a vulnerable host, then whether it is associated
with a reachable host, and finally, if not reachable, whether the address is covered by
an instrumented router. When the probe hits a vulnerable host, the worm propagates to
that host, and the newly infected host starts scanning as well. In our experiments, typical
network parameters are a space of 105− 106 addresses of which 5-15% are reachable
and 100-1000 hosts are vulnerable. The only worm-specific parameter is the worm’s
scan rate, and the worm selects random target addresses uniformly distributed through
the address space, with the random seed for each worm instance derived from the current
(simulated) time and the address of the infected machine.

Large-Scale Worm Simulation
The large-scale worm simulator aims to be an accurate representation of the current

Internet. The address space contains 232 addresses and is subdivided into Autonomous
Systems between which simulated BGP-routers route traffic. The simulation is divided
into two tiers, the macroscopic level and the microscopic (or network) level. The BGP-
routers are simulated at the macroscopic level, where a stochastic version of the epidemic
model is used to model the total flow of infection packets between autonomous systems.
At this level, only the size of the flow and the source of the flow (a distribution of au-
tonomous systems) is simulated. Then, for several representative (1-128) autonomous
systems, the actual networks and the infected, susceptible, and reachable hosts are simu-
lated at the microscopic or packet level. Because necessary address information is miss-
ing the generated traffic is an estimation. The arrival of packets is modelled as a Poisson
process; the interarrival times between packets shrink as the flow of traffic increases. The
ICMP-T3 messages are generated at the border of participating autonomous systems, un-
der the assumption that those autonomous systems are connected by a single gateway.
The ICMP-T3 forwarding routers only look at arriving scan packets, sending ICMP-T3
messages to a real DIB:S/TRAFEN system when a scan hits an IP address that was not
represented by an actual host. The generation of ICMP-T3 messages is rate limited at 3
per second per router, the same limit applied by Linux and CISCO routers. An in-depth
description of this simulation system can be found in [69].

3.6.2 Detection Capabilities

Small-Scale Worm Simulation. Figure 3.6 shows the detection performance of DIB:S
and TRAFEN for a simulated Sapphire/Slammer worm. The y-axis is the percentage of
vulnerable machines that are infected at the time of worm detection, and the x-axis is
the router coverage. Each line in the graph corresponds to a different network size. For
each network size, 75% of the addresses were unreachable, 25% of the addresses were
reachable, and 0.1% of the addresses were reachable and vulnerable. For example, for a
network size of 500,000 unique addresses, 375,000 addresses are unreachable, 125,000
are reachable, and 500 are vulnerable. The reachable 25% corresponds to our observed
data from the scans of selected populated address ranges, while the vulnerable 0.1%,

“thesis_main” — 2005/11/21 — 13:09 — page 105 — #114
i

i

i

i

i

i

i

i

3.6. PERFORMANCE 105

although large, corresponds to a vulnerability in web, mail, database, or other widely in-
stalled software. Each data point in the graphs is an average across ten simulated worms,
and each simulated worm probed 100 target addresses per infected machine per second,
slightly lower than, but consistent with, the average Sapphire/Slammer scan rate. DIB:S
had to receive N = 5 ICMP-T3 messages for the same IP address before issuing a scan
alert to TRAFEN, and DIB:S maintained a history window of ∆t = 300 seconds. Each
simulation run continued until the worm infected all vulnerable machines, and TRAFEN
was assumed to have detected the worm as soon as the probability of a track containing
the relevant scanning activity went above a likelihood threshold of 0.9, a constant value
used in all experiments. The value of 0.9 is arbitrary and based mostly on experience.
Generally, if the track-score in TRAFEN is “low” then there is no worm, and when it is
“high” then a worm has been detected.

0

5

10

15

20

0 2 4 6 8 10

In
fe

ct
io

n
P

er
ce

nt
ag

e
(a

t d
et

ec
tio

n
tim

e)

Router Coverage (percent)

Network Size = 100,000
Network Size = 200,000
Network Size = 300,000
Network Size = 400,000
Network Size = 500,000

Figure 3.6: Detection performance with the small-scale simulation. The horizontal axis
is the router coverage, and the vertical axis is the percentage of vulnerable machines
already infected at the time that an active worm is detected.

As seen in Figure 3.6, the detection performance improves significantly as the router
coverage increases from 1% to 2%, but then levels off at different, roughly constant,
values for the different network sizes. For a network size of 500,000, for example, the
infection percentage starts at a peak of 5% when the router coverage is 0.5, but drops
quickly to around 2% as the coverage increases. The straightforward reason is that,
for router coverages of 2% and higher, DIB:S receives enough ICMP-T3 messages to

“thesis_main” — 2005/11/21 — 13:09 — page 106 — #115
i

i

i

i

i

i

i

i

106 CHAPTER 3. CASE STUDY: THE SPREAD OF ACTIVE WORMS

reliably detect the scanning activity of the first few infected machines. Thus, at these
higher coverages, the detection always will take place within a fixed number of infected
machines, no matter whether the coverage is 2% or 10%. For router coverages below
2%, however, DIB:S will not receive enough ICMP-T3 messages to reliably detect all
scanning activity, and correspondingly more machines will be infected before DIB:S can
conclude that a worm is present. The critical message of this graph is that router coverage
of 2% provides just as good detection performance as higher coverages, meaning that we
need only a modest number of instrumented routers, and that we need only transmit and
process a manageable volume of ICMP-T3 messages.

In addition, the detection performance improves as the network size increases. Fig-
ure 3.7 shows how many systems were infected at the time of detection, for several
different simulated Internet sizes. The worm was identical in all of the cases, and spread
with the same parameters. The number of vulnerable hosts was grown proportionally
with the size of the simulated Internet. The explanation is simply that DIB:S detection
performance is dependent not so much on the percentage of machines infected so far, but
on the absolute number of infected machines and the amount of scanning activity that the
worm generated while infecting those machines. In fact, if the infection percentages for
a 2% router coverage are converted into the absolute number of infected machines, we
can see that detection occurs at approximately 12 infected machines in a 100,000-address
network, and at a comparable 10 machines in a 500,000-address network. Intiutively we
can say that, assuming the error in the sensor data is low, once a dozen or so machines
have been infected, showing an exponential increase in number of infected systems, we
will detect a worm. However, if this exponential increase is lacking, the detection will
not happen. In our simulations this exponential increase is usually very distinct, how-
ever, in the case of an actual worm the initial increase in infected systems may not be
distinct enough for a solid detection at a dozen or so infected hosts. This can be due
to a relatively low sensor (router) coverage compared to the worms propagation speed.
Overall, in terms of our ability to detect the worm early and eventually protect the largest
percentage of vulnerable, but not yet infected, machines, we can keep the router cover-
age fixed, and still do better and better as the network size increases. Alternatively, for
a larger network, we can achieve the same detection performance with a smaller router
coverage.

Large-Scale Simulation. The large-scale simulation allows us to explore these network-
size results further. The large-scale simulation used 232 addresses, and instrumented
routers were placed at the border of class-B sized networks. Each of those class-B net-
works were assumed to have 50% unused address space, and each router was rate limited
at 3 ICMP-T3 messages per second. Two worms were simulated for router coverages
varying from 1 class-B participating router up to 64 class-B participating routers. The
first worm, a simulated version of Code Red v2, scanned at a rate of 5.65 scans per sec-
ond with a population of 380,000 susceptible hosts, and the second worm, a simulated
version of Sapphire/Slammer scanned at a rate of 4000 scans per second with a popu-
lation of 120,000 susceptible hosts. The DIB:S parameters were N = 5 and ∆t = 7200
for the Code Red v2 worm, and N = 5 and ∆t = 3600 for the Slammer/Sapphire worm.
The higher values of ∆t are necessary since the number of instrumented routers is small

“thesis_main” — 2005/11/21 — 13:09 — page 107 — #116
i

i

i

i

i

i

i

i

3.6. PERFORMANCE 107

0

2

4

6

8

10

12

14

100 200 300 400 500 600 700 800 900 1000

In
fe

ct
io

n
P

er
ce

nt
ag

e

Network Size (x1000)

Infection Percentage at Detection Time versus Network Size

Infection Percentage at Detection Time

Figure 3.7: Percentage of infected machines at worm-detection time as a function of
network size (100,000 to 1,000,000 IP addresses and 100 to 1,000 vulnerable machines);
the router coverage is set to a fixed 2 percent.

compared to the size of the address space. Although the number of incoming ICMP-T3s
was very large, the chances that one infected system hits the small group of participat-
ing routers several times is minimal. Therefore, accurate detection over time requires
larger values for ∆t. The lower ∆t value for Sapphire/Slammer allowed faster simulation
runs, but did not affect detection performance. Finally, for simulation convenience, the
recovery parameter γ was set to 0.

Figure 3.8 shows the resulting detection performance as a function of router coverage.
For 2 class-B instrumented routers (which corresponds to a 0.003% router coverage),
Code Red detection occurs at 0.2% infection of the susceptible population, dropping
to 0.03% for 16 class-B networks. For 4 class-B networks, Slammer detection occurs
at 0.01% infection of the susceptible population, dropping to 0.005% for 16 class-B
networks. The drastic increase in detection performance compared to Code Red v2 is due
to the vastly increased scanning speed of the Sapphire/Slammer worm, and the smaller
number of susceptibles (i.e., more scans were necessary to find one vulnerable system).
An important note, however, is that TRAFEN failed to detect the Slammer worm with
a coverage of 1 or 2 class-B networks, since at these coverages, even the overwhelming
scanning activity of Slammer did not cause those routers to generate enough ICMP-T3

“thesis_main” — 2005/11/21 — 13:09 — page 108 — #117
i

i

i

i

i

i

i

i

108 CHAPTER 3. CASE STUDY: THE SPREAD OF ACTIVE WORMS

messages (due to the ICMP-T3 rate limiting).

0

0.05

0.1

0.15

0.2

0 20 40 60 80 100 120 140
0

0.005

0.01

0.015

0.02

In
fe

ct
io

n
P

er
ce

nt
ag

e
at

 D
et

ec
tio

n
T

im
e

(C
od

e
R

ed
)

In
fe

ct
io

n
P

er
ce

nt
ag

e
at

 D
et

ec
tio

n
T

im
e

(S
la

m
m

er
)

Number of Instrumented Class B Networks

Detection Performance

Code Red (no noise)
Code Red (noise)

Slammer/Sapphire (no noise)

Figure 3.8: Detection performance for the Internet-scale simulated Code Red v2 and
Sapphire/Slammer worms.

The simulations for the Code Red v2 worm were run again with a simulated back-
ground noise of 1.41 coincidental random probes on the worm’s target port per class-B
network per second, which corresponds to the background noise observed at the start of
the real Code Red v2 worm infection. In other words, participating routers would see,
on average, 1.41 unrelated scan packets per second, and thus might generate ICMP-T3s
that have no connection with the propagating worm. The results, also shown in Fig-
ure 3.8, show that this modest noise level does not affect detection performance. Similar
noise results have been obtained for Slammer/Sapphire, although not with the large-scale
simulation.

N and ∆t. There are many parameters within the DIB:S and TRAFEN systems that
affect detection performance. Two of the most important are N, the number of ICMP-
T3 messages per generated DIB:S alert, and ∆t, the size in seconds of the DIB:S history
window. Figure 3.9 shows the detection performance for a small-scale Sapphire/Slammer
simulation as a function of N, while Figure 3.10 shows the detection performance as a
function of ∆t. For both graphs, the network size is 500,000, and the number of vulner-
able machines is 500. When N is varied, ∆t is held fixed at 300 seconds, and when ∆t
is varied, N is held fixed at five ICMP-T3 messages per alert. In Figure 3.9, we see that
detection performance decreases as N increases, particularly when the router coverage is

“thesis_main” — 2005/11/21 — 13:09 — page 109 — #118
i

i

i

i

i

i

i

i

3.6. PERFORMANCE 109

0

1

2

3

4

5

2 3 4 5 6 7 8 9 10 11

In
fe

ct
io

n
P

er
ce

nt
ag

e
(a

t d
et

ec
tio

n
tim

e)

Number of Scans, N, Before Alert

Coverage = 1.0
Coverage = 2.0
Coverage = 3.0

Figure 3.9: Detection performance for different values of N, the number of ICMP-T3
messages required for the generation of a scan alert.

only 1%. At lower coverages and higher values of N, DIB:S might not see enough ICMP-
T3 messages to actually generate an alert, and scanning activity will go unreported. In
Figure 3.10, we see that detection performance is very poor for the lowest values of ∆t,
and then after an initial improvement decreases steadily as ∆t increases. The very poor
performance is due to the fact that when the history window is too small, ICMP-T3 mes-
sages will age out before enough messages are received to produce an alert. The steady
decrease in performance after the initial improvement is arguably illusory, since when ∆t
is small, DIB:S will generate multiple scan alerts for the same source address, whereas
when ∆t is large, DIB:S will generate only one scan alert per source address (during the
worm’s initial propagation). Although the multiple alerts per source address drive the
track probability in TRAFEN above the detection threshold quite quickly, multiple scans
from the same source address are not, in fact, a reliable indicator of worm activity. They
could merely indicate an intense, but manual, scanning effort. In the current system,
therefore, ∆t must be kept high enough to avoid “duplicate” alerts within too short a time
period.

“thesis_main” — 2005/11/21 — 13:09 — page 110 — #119
i

i

i

i

i

i

i

i

110 CHAPTER 3. CASE STUDY: THE SPREAD OF ACTIVE WORMS

0

2

4

6

8

10

0 50 100 150 200 250 300

In
fe

ct
io

n
P

er
ce

nt
ag

e
(a

t d
et

ec
tio

n
tim

e)

Seconds in Aggregation Window

Coverage = 1.0
Coverage = 2.0
Coverage = 3.0

Figure 3.10: Detection performance for different values of ∆t, the length, in seconds, of
the history window over which ICMP-T3 messages are aggregated.

3.6.3 Discussion

The current TRAFEN model is simple enough that it can lead to false positives. Although
our experiments have shown that random scanning noise does not affect detection per-
formance, not all scanning noise is random. For example, attackers constantly scan TCP
port 80 looking for vulnerable web servers. If many of these scans coincidentally occur
within seconds of each other, TRAFEN incorrectly will detect a worm that exploits web
servers. Similarly, although lowering N, the number of ICMP-T3 messages needed to
detect a scan, gives us faster tracking and detection times, there is a limit to how low N
can be. Setting N = 1 would result in DIB:S not analyzing anything, but instead pass-
ing every unreachable message to TRAFEN. In this case, TRAFEN sees all ICMP-T3
“noise” and has significant problems distinguishing between scanning activity and in-
nocuous ICMP-T3 messages after a normal failed connection attempt. Conversely, when
N is chosen too high, DIB:S will generate an accurate view of the world (and will be im-
mune to almost any noise in the ICMP-T3 data), but will generate that accurate view far
too late. Choices for ∆t are less critical, as long as ∆t is high enough that older ICMP-T3
messages do not expire from the history window too soon. TRAFEN presents graphs
of current ICMP-T3 activity to system administrators, and the graphs for worms and co-
incidental scanning activity are immediately and visually distinct, giving direct hints as

“thesis_main” — 2005/11/21 — 13:09 — page 111 — #120
i

i

i

i

i

i

i

i

3.6. PERFORMANCE 111

how to improve TRAFEN rules: meaning that false positives are less of a problem than
they might be in other intrusion-detection applications. We still need to minimize false
positives, however, since any false positive involves administrator time. Fortunately, the
TRAFEN and DIB:S framework provides significant flexibility for improving the pro-
cess model. In our case, this means taking into account all of the scanning characteristics
of a propagating worm. Scanning activity uniformly distributed in time, no matter how
intense, is likely not a worm, but instead simultaneous, but unrelated, attacker scanning
efforts. On the other hand, scanning activity that increases linearly or exponentially over
time almost certainly is a worm, no matter how much time that increase takes. The goal
of the TRAFEN model is to quickly detect an exponential increase in scanning activity
(i.e., detect the worm) without incorrectly classifying non-exponential behavior as ex-
ponential (i.e., avoid false positives). With the current TRAFEN model and thresholds,
detection is best for worms at Code Red v2 speeds or faster. This time dependence was
easily removed by submitting multiple worm models to TRAFEN, each focussing on a
different infection and spread rate.

The core of the DIB:S system are the routers. Without the routers there would be
no data flowing to the DIB:S system. As seen with the large-scale simulation results, a
coverage of 4 to 16 class-B networks is enough for accurate detection. Achieving such
coverage may be administratively difficult, but is entirely achievable with the cooperation
of only a few medium- to large-sized organizations. At this sensor coverage it is possible
to detect if there is an exponential increase in the first dozen or so hosts that get infected,
meaning that a higher sensor coverage will most likely not lead to a faster detection. It
will merely ensure that the detection is more reliable. Alternatively, large portions of the
Internet address space are unassigned. If these unassigned address ranges were routed
to a system that provided no response to the sender, but merely forwarded appropriate
alerts to DIB:S/TRAFEN, we would gain significant data with minimal risk of “noise”.
Unassigned address ranges never should be contacted in normal Internet communication.

In terms of scalability, if DIB:S is installed at a single, central location, the net-
work bandwidth will limit the number of incoming ICMP-T3 messages. This limit is
not as serious as it might appear, however. Even with 64K instrumented routers covering
4 Class-A networks, for example, the routers would generate only approximately 200
Mbps of ICMP-T3 messages (at a three per second ICMP-T3 rate limit). In addition,
if 200 Mbps is too much network traffic for a single collector site, then DIB:S can be
distributed almost to an arbitrary degree. Instrumented routers can send their ICMP-T3
messages to “nearby” collectors, and the analyzers, each of which is in charge of a par-
ticular address range, can be distributed throughout the Internet. Even TRAFEN could
be distributed by having different copies of TRAFEN handle different sets of destination
ports, although this likely is not necessary since the stream of scan alerts coming from
DIB:S is significantly smaller than the stream of ICMP-T3 messages flowing into DIB:S.

Additionally, ICMP-T3 messages are not the only data source that can provide in-
dications of worm activity. Although ICMP messages are particularly attractive since
they indicate scanning activity that spans multiple independent networks, scan reports
and other information from firewalls, intrusion-detection systems and even host-based
sensors also can be fed into the DIB:S/TRAFEN system, serving as a useful complement

“thesis_main” — 2005/11/21 — 13:09 — page 112 — #121
i

i

i

i

i

i

i

i

112 CHAPTER 3. CASE STUDY: THE SPREAD OF ACTIVE WORMS

to the ICMP-T3 data. The ICMP-T3 messages can provide useful additional information
themselves, since passive OS fingerprinting5 would allow DIB:S to infer the type of the
operating system that is performing the scan, adding to the hypothesis-generation ability
of TRAFEN. Two scans originating from a Linux and Windows machine respectively,
for example, most likely do not belong to the same worm.

Finally, regardless of how effective an early warning system is, there is no use in
detecting a worm unless something can be done. As discussed earlier, this can be as
little as informing system administrators or as much as having a framework in place that
will automatically reconfigure firewalls and IDS systems as the epidemic is occurring.
Although automated responses may prove more lethal than the worm itself. Even so,
early warning is always worthwhile.

3.7 Future of Internet Worms

When we think of the history of computers and the Internet, we have to conclude that his-
tory is not a very solid indicator of the future. The way computers and micro-controllers
have integrated our lives, through appliances, motor vehicles, communication systems,
and personal computers, was completely unforeseen at the time the first computers were
constructed with vacuum tubes. It often has been said that truth is stranger than fiction,
and this is certainly true in the computing and communication fields. Therefore, it would
be pretentious of us to try to paint a picture of the future of computers, the Internet, and
their malware. We can make a few inferences, however, based on the worm code of today
and proposed techniques for improving worm capabilities.

Computers increasingly are taking on the role of home appliances, integrating such
services as game and DVD playing, digital television recording and playback, Internet-
based telephony, and traditional personal and home-office computing. In addition, soft-
ware from a small number of companies is finding its way into more and more prod-
ucts, increasing the likelihood that a software vulnerability will affect a large number of
systems. Finally, broadband Internet now is commonplace in many homes, increasing
the number of connected systems. With more connected computer systems, often with
higher bandwidth, and with more widely deployed software, worm and virus authors will
continue to have an ideal environment for their malicious code. There will remain a des-
perate need for diversity in software and operating systems, decreasing the likelihood of
massively homogeneous vulnerabilities.

The increase in connectivity also has prompted a shortage in available IP address
space. Although this shortage mostly has been mended with Network Address Transla-
tion (NAT), eventually a more structural solution will be needed. Increasing the address
space will bring with it the nice property that random scanning for vulnerable IP ad-
dresses will become nearly impossible, requiring a significant change in the way authors
write their worms. As an example, consider IPv6, which offers 128 bits of address space
versus the 32 bits available in IPv4, and Code Red v2, which we analyzed for IPv4 in

5Michael Zalewski wrote some of the first passive-fingerprinting code, which is available at
http://www.stearns.org/pOf/.

“thesis_main” — 2005/11/21 — 13:09 — page 113 — #122
i

i

i

i

i

i

i

i

3.7. FUTURE OF INTERNET WORMS 113

Figure 3.3. We limit ourselves to propagation within a single IPv6 site, which has 264

possible IP addresses. We assume 216 responding machines, of which 1/100th are vul-
nerable. We pick γ = 0, so that there is no recovery or removal and the worm is free
propagate. This makes r(t) a constant, leading to s(t) + i(t) = M being a constant as
well, and effectively rewrites the epidemic-model equations [32]:

di
dt

= βsi = β(M− i)i (3.8)

This also is known as the logistic growth equation, and it represents a worst-case epi-
demic in which there are no recoveries or disconnects, and each infective stays infective
forever. Propagation speed will be higher than in a realistic scenario, but the equation
allows us to define the absolute limit on propagation speed. Citing Daley and Gani [32]
once more for the integral over (0, t), we have

i(t) =
i0M

i0 +(M− i0)e−βMt
(3.9)

We can use this formula to find out how fast a worm would spread in the fastest
scenario, given ideal connectivity and no countermeasures. To do so, we set

i(Tε) = εM (3.10)

where ε is the fraction of susceptibles infected (for example we could define TEND by
taking ε = 0.95). Replacing the left-hand side of Equation 3.10 with Equation 3.9, and
performing straightforward algebraic manipulation – i.e., moving terms to isolate e and
then inverting, simplifying, and taking the natural log of both sides – we have

Tε =
1

βM
× ln

(

ε(M− i0)
i0(1− ε)

)

(3.11)

Looking at Equations 3.8 and 3.11, we note two important properties. First, realizing
that O(β)À O(M) and that O(M) ≈ O(i), it is clear that the propagation time will be
mostly dependent on β. Second, the relationship between propagation time and β is a
linear one. If β is doubled, di

dt , which is the propagation speed, also doubles. If the speed
is doubled, the time it will take for all hosts to be infected will be halved. The linear
relationship with β, as well as M, also can be clearly seen from Equation 3.11. Now
we can fill in the numbers for Code Red v2 in IPv4 space, assuming the initial number
of infected hosts is 10, and we are looking for how long it takes to infect 95% of all
susceptible hosts. Remembering that β = 1.23×10−9 (see the caption of Figure 3.3), we
have a time in seconds of

T0.95 =
1

1.23×10−9×360000
× ln

(

0.95× (360000−10)

10× (1−0.95)

)

which is 30220/3600 = 8.4 hours, a good approximation of what we can read from
Figure 3.3 and thus verifying our equations. Now we fill in the numbers for the Code
Red v2 worm propagating within one IPv6 site. First, we calculate r, which is very low,

“thesis_main” — 2005/11/21 — 13:09 — page 114 — #123
i

i

i

i

i

i

i

i

114 CHAPTER 3. CASE STUDY: THE SPREAD OF ACTIVE WORMS

since the address space, even for just one site, is enormous: r = 216/264 = 2−48 ≈ 10−15.
Next, we obtain τ by filling in Equation 3.2: τ = 10−15×1+(1−10−15r)×21≈ 21.
Finally, we obtain β by filling in equation 3.3: β = 1

264 × 100
21 ≈ 2.5814×10−19. With

M = 216/100≈ 655, the time to reach 95% propagation is:

T0.95 =
1

2.5814×10−19×655
× ln

(

0.95× (655−10)

10× (1−0.95)

)

which gives 4.2057× 1016, or over 1.3 billion years, and confirms the intuition that an
enlarged address space will pose a significant challenge to randomly propagating worms.

This undoubtedly will lead to new and improved target selection techniques, most of
which were already discussed in the worm propagation Section 3.3.2. We will mention
two of them again, however, and suggest probable detection strategies. To acquire IP
addresses of hosts running a vulnerable service the worm could sniff the network wire for
traffic from that service. Mail and DNS servers will be most vulnerable to this approach,
since they constantly communicate between peers. Imagine a worm that moved from
web browser to web server, and from web server to web browser. Similar worms could
be designed for any peer-to-peer or client/server service (as long as the clients regularly
communicate with different services). One possible way of detecting such a worm is by
inserting bogus communication into the network. By spoofing non-existent IP addresses
and so making fake queries to all the services in the network, sniffing worms can be
provoked to connect to these non-existent machines. The challenge would be to make the
fake communication look as real as possible, ensuring that the worm could not distinguish
between real and false events. Worms attempting to connect to the non-existent addresses
would provoke ICMP-T3 messages, which could be fed into the DIB:S/TRAFEN system.

The DIB:S/TRAFEN system also can be used in the case of DNS exploration. As
noted before, worms can gain hostnames by probing DNS servers and potentially trying
whole ranges of possibly related hostnames (recall the example with sparc01, sparc02, ...
sparc99). DIB:S could be configured to receive notification of all failed DNS queries, as
a blind carbon copy from name servers. The analogy is simple: one IP address attempted
to contact many hostnames on many different networks (and failed). This would be
a clear bloom, and TRAFEN soon would detect the worm when multiple hosts show
the same behavior. The analogy ends, however, when we try to distinguish between
multiple worms that are using DNS queries to obtain IP addresses. There will be no
significant differences. To tackle this problem, a more radical approach is needed. DNS
servers could be configured to respond with unassigned IP addresses when presented
with repeated DNS requests for unknown hostnames. This way worms would attempt
to connect to the targeted service port on unassigned IP addresses, leading to generation
of ICMP-T3 messages suited for DIB:S. The drawback is a long timeout when users
mistype hostnames, since the DNS server might give an unassigned IP address instead of
an error message.

Finally, worms will begin to use some of the same polymorphism techniques as the
most advanced viruses, such as encrypting and permuting basic code blocks on each
propagation, making signature-based detection more difficult. Thus, inferring the exis-

“thesis_main” — 2005/11/21 — 13:09 — page 115 — #124
i

i

i

i

i

i

i

i

3.8. CONCLUSION 115

tence of worms through their secondary network traffic (such as ICMP-T3 messages),
rather than using signatures, always will be an important detection strategy, even for
previously seen worms.

Companies that today provide automated virus-signature update services will con-
tinue to do so, will add worm signatures, and possibly will provide services for content-
based filtering in transit. To elude detection during propagation, however, worms can
be created that use some of the same polymorphism techniques as the most advanced
viruses. The easiest way of creating polymorphic code is by encryption. A small section
of code can decrypt the entire program using a key that is propagated along with the code.
When such a worm found a vulnerable target, it would create a key, then encrypt itself,
and propagate both the key and the encrypted version of its code. On the newly infected
machine, the key would be used to decrypt the worm and start the procedure of looking
for new vulnerable hosts. When the initial decryption code is relatively small, it might be
very difficult to create a proper signature for such a worm. An alternative for a polymor-
phic worm would be to permute the basic code blocks before each propagation. These
blocks are linear sets of instructions between branches or jumps, and can be moved to
arbitrary locations when all the corresponding branch instructions are updated properly.
Signatures can no longer be singular in such a case, and would need to include several
sufficiently large basic blocks and a query that checks if all those blocks are present, re-
gardless of their order. In short, inferring the existence of worms through their secondary
network traffic (such as ICMP-T3 messages), rather than using signatures, always will
be an important detection strategy.

3.8 Conclusion

Most current worms identify vulnerable machines through random probing of the ad-
dress space, as the Internet becomes more and more densely populated with machines,
such worms will be able to spread faster and faster. Fortunately, it is possible to quickly
detect such worms by looking for unusual patterns in different kinds of network traf-
fic. In this chapter, we explored the use of ICMP-T3 messages for worm detection.
When a connection request is made to an IP address that is not populated by an ac-
tual system, routers along the path may return ICMP Destination Unreachable messages
(ICMP-T3). The system we developed, DIB:S/TRAFEN, collects ICMP-T3 messages
forwarded from participating routers, and looks for the distinct, bloom-like connection
pattern that worm-infected hosts exhibit while they are randomly scanning for targets.
Using both small-scale and large-scale simulated worms, we demonstrated that our sys-
tem is capable of detecting propagating worms early in their lifetime. In particular, the
large-scale simulation indicates that a router coverage of 16 class-B networks is enough
to detect worms that spread at Code Red v2 and Sapphire/Slammer rates before 0.03%
of the vulnerable machines are infected. These results, particularly since they involve a
router coverage that would be achievable in the real Internet, are extremely promising.
When DIB:S/TRAFEN is fully deployed on the real Internet, it will be able to detect
active worms early enough to take meaningful defensive action.

“thesis_main” — 2005/11/21 — 13:09 — page 116 — #125
i

i

i

i

i

i

i

i

116 CHAPTER 3. CASE STUDY: THE SPREAD OF ACTIVE WORMS

At the same time, however, there is a lack of actual active-response capability for
the current Internet. Although there has been some initial work in this area, significant
additional research is needed to develop field-deployable solutions. Moreover, we can
expect worm authors to continue to improve their target-selection techniques, and we
can expect to see many worms that use alternatives to random scanning. Some of these
future worms could be detected by looking for other patterns of unusual network activity,
possibly through DIB:S/TRAFEN, but some will require entirely new approaches. For
example, imagine a contagion worm that starts on a web client, spreads to any vulnerable
web servers that visit that web client, spreads to any vulnerable clients that visit those
infected web servers, and so on. It is not clear that such a worm would generate unusual
patterns of network activity, Instead such worms might need to be “tricked” into attempt-
ing to infect a dummy server or client whose entire purpose is watching for infection
attempts. Many other techniques are both possible and necessary. Additionally, as many
other authors have concluded, it is important to note that diversity in operating systems
and server software, as well as appropriate maintenance and patching procedures, miti-
gates the total damage that any individual worm can do.

Finally, the performance in terms of processing power and memory footprint is very
good, thanks to the tight integration of the DIB:S software. However, if the ICMP-T3
sensor data was directly sent to a general-purpose PQS system, running a DIB:S-like
PQML model, then processing power would have been constrained by the PQS system,
probably to several hundres of ICMP-T3 observations per second per PQS-instance. In a
large-scale deployment this would require running multiple PQS-instances, and possibly
using compiled models, instead of PQML models (which is essentially what DIB:S does
by using multiple analyzers). Therefore, difference between the DIB:S system and an
actual general-purpose PQS system is that in a PQS the expert knowledge should only be
integrated into the models, not the datastructures, as it is done with DIB:S today.

“thesis_main” — 2005/11/21 — 13:09 — page 117 — #126
i

i

i

i

i

i

i

i

Chapter 4

The PQS-Net System

117

“thesis_main” — 2005/11/21 — 13:09 — page 118 — #127
i

i

i

i

i

i

i

i

118 CHAPTER 4. THE PQS-NET SYSTEM

4.1 Introduction

The PQS-Net system is a valuable proof-of-concept that the PQS framework is ideally
suited to do high-level network security monitoring on large, enterprise-class networks.
Enterprise-class networks are split up into many different subnets, often geographically
diverse in nature. These subnets are then connected through WAN connections, allowing
the network to spread worldwide. Enterprise networks may contain as many as 2 million
connected hosts, many of which will be mission critical servers. Any form of central
security monitoring will be very difficult. Standard intrusion detection sensors such as
Snort [107] have a tendency to generate large quantities of alerts, most of which are false
positives, therefore often obscuring the important information. Most notably, they only
collect data for the subnet that they are connected to. Needless to say, security adminis-
trators need ways to collect this, and other data from the many networks at different sites,
and be able to sift through the data in a meaningful manner.

In addition to Snort IDS logs, security administrators will often also consult services
such as Dshield.org [35] to get an idea of which attacks are most popular at the current
time. Combined with server logs, system logs, and TripWire logs [121] collected from the
many sites, security administrators will have a flood of data to review. It is not difficult
to see how this data can grow up to several gigabytes per day that need to be analyzed,
most of which will be false positives.

The PQS-Net system collects data from many different sensors and implements PQS
models based on methodical procedures commonly followed by security administrators.
These models evaluate the data coming from the many sensors and the conclusions are
published though a web interface. The system eliminates most of the false positives,
focussing on detecting the processes that are indicative of malicious hacker behavior,
insider threat behavior, and autonomic attacks such as worms and viruses. To improve
the power of the PQS-Net system, models were also written that specifically search for
network failures, such as faulty routers, or misconfigured servers. This way the system
is able to disambiguate between malicious hacker attacks, network failures, and benign
behavior.

To test the PQS models and verify the results a test network was constructed that is
complete with several subnets, network servers, and actual user hosts. Since the setup of
this network is important for the understanding of the PQS-Net system, the next section
will focus on this basic infrastructure. The sections afterward will focus on the sensors
that were deployed, and the models that were written. Finally, this chapter will close with
a discussion of our experiences.

4.2 Infrastructure

Figure 4.1 shows a toplevel schematic view of the network that was constructed for the
PQS-Net project. Although the network is small compared to an actual enterprise class
network, it features a wide range of systems and servers that are typical of larger organ-
isations. Looking at the models it will become evident that the size of the test network

“thesis_main” — 2005/11/21 — 13:09 — page 119 — #128
i

i

i

i

i

i

i

i

4.2. INFRASTRUCTURE 119

Linux 2.4

WS1
.225
WinXP

Clients
.227
Solaris 9

.194
DNS

BSD 5.1

Mail
.195
RH9

Share
.196
Linux 2.4

WWW
.197
BSD 5.1

Thin Clients
172.16.100.0/24
Solaris 9

192.168.12.0/24

192.168.12.224/27

Uplink

192.168.12.192/27

DMZWorkstations

Firewall

Router

WS2
.226

192.168.12.192/26

Figure 4.1: Schematic overview of the most important systems in the PQS-Net network.

is irrelevant because of the scalability of the PQS framework. As more hosts are added
the number of observable events increase, however, were the load on any one single
PQS instance to become too high, it is always possible to spread the load over multi-
ple instances. Several models are ultimately suited to only monitor the local subnet, for
example, therefore creating good opportunities for subdividing the PQS instances.

Behind the firewall there are 64 addresses available (.192/26), which are split up
between a Workstations network and a Demilitarized Zone server network, both (/27s).
The uplink connects directly to the Internet, and all addresses are globally routable1.
Both subnets contain more hosts than are displayed in the image, however; they are
immaterial to the dicussion below and have therefore been omitted. The workstations
network features several Windows XP clients, Linux 2.4 and 2.6 systems, several Solaris
9 workstations, and a Solaris 9 server to which multiple thin-clients are connected. All
these systems are used daily by students, and so the traffic on this network is typical for
a normally operating organization where people browse the web, print documents, and
download files during business hours.

The DMZ features several servers implemented on several different operating sys-
tems. The DNS server resolves names for all the hosts connected to the network, Mail
handles inbound and outbound email traffic for the students, and WWW serves up the
results produced by PQS-Net system, as well as personal webpages. Finally, the Share

1The first three octets of these addresses have been obscured by replacing them with unroutable addresses.

“thesis_main” — 2005/11/21 — 13:09 — page 120 — #129
i

i

i

i

i

i

i

i

120 CHAPTER 4. THE PQS-NET SYSTEM

server holds home-directories, as well as general fileshare areas that can be used to store
and backup data.

The firewall is configured to allow nearly all inbound traffic in, and only protects
the core PQS infrastructure, which is not considered part of the test network, and there-
fore not shown in the image. Although this would be uncommon for a normal orga-
nization, it does allow a lot of scans and attacks through that naturally come from the
Internet [88, 73]. These scans form a nice baseline to test the PQS-Net system on actual
malicious traffic. In addition to the expected malicious traffic coming from the Inter-
net the PQS-Net network is also attacked from dedicated Attack Systems that are located
both inside the network, as well as outside on the Internet. These attacks include network
scans, vulnerability scans, and directed attacks, all intended to test the PQS-Net detection
capabilities.

4.3 Sensors

In order to apply a Process Query System to any area the programmer must do two things:
(1) connect the sensors, and (2) implement the process models. This section describes the
first step; what sensors are installed in the test network and connected to the PQS system.
Generally, the sensors can be split up into three categories: Global (Internet wide data),
Network (network specific data), and Hostbased (data pertaining to one specific host). In
the subsections below all connected sensors are outlined, together with the data that they
provide to the PQS system. Figure 4.2 shows where the sensors are located in the test
network. The placement of the sensors is roughly similar to the common data collection
points that security administrators use.

4.3.1 Global

Both the DIB:S (Dartmouth ICMP Bcc: system) sensor, as well as the BGP (Border
Gateway Protocol) sensor are not directly connected to the test network as shown in
Figure 4.2. Because of their global nature; their data collection and conclusion gener-
ation occurs outside of the test network. The PQS system merely connects outbound
to both of these sensors to get their reports. Global sensors are important because they
provide a solid comparison with “trends”; i.e. “can the locally collected data be ex-
plained by events seen throughout the Internet, or is the local network specifically under
attack?” Essentially, the global sensors fulfill the role of network security sites such as
www.dshield.org, which security administrators may refer to regularly. The PQS models
then have the ability to compare locally gathered data with Internet trends.

• DIB:S For the PQS-Net system DIB:S (see Chapter 3) output conclusions are
taken as sensor input into TRAFEN. As a global sensor, DIB:S reports on scanning
patterns throughout the Internet in real time. The most general form of information
coming from this sensor is: “port P gets scanned a lot everywhere”. DIB:S, how-
ever, does provide more specific information regarding scanning and frequently

“thesis_main” — 2005/11/21 — 13:09 — page 121 — #130
i

i

i

i

i

i

i

i

4.3. SENSORS 121

Linux 2.4

WS1
.225
WinXP

Clients
.227
Solaris 9

.194
DNS

BSD 5.1

Mail
.195
RH9

Share
.196
Linux 2.4

WWW
.197
BSD 5.1

Thin Clients
172.16.100.0/24
Solaris 9

WS2
.226

Uplink

192.168.12.0/24

192.168.12.224/27

Workstations

192.168.12.192/27

DMZ

192.168.12.192/26

Firewall

Router

Web−Log

Netfilter: IP−Tables

Netfilter: EB−Tables
Spade

Snort (3x)

BGP

DIB:s

SaMBa

TripWire

Figure 4.2: Overview of the location of sensors in the test network.

scanned hosts, therefore allowing conclusions such as: “our network gets signif-
icantly more probes on port P′ than the rest of the Internet”, which could be a
significant conclusion, because the network may be specifically targetted. The
specific format of the observations generated by the DIB:S sensor is (note that the
data formats here are in sensor-output format, the PQML model will handle all
char, short, and long as int, and all struct timeval as two int):

struct timeval ts;
long src_ip;
long dst_ip;
char proto;
short sport;
short dport;

which means: In the last ∆t seconds, on the same port p (sport) and using the
same protocol P (proto), one host (src_ip) has contacted N different IP addresses
(Case 1), or one host (dst_ip) has been contacted by N different IP addresses (Case
2). Where ∆t and N are configured in the DIB:S system, for the PQS-Net system:
∆t = 600 seconds and N = 4 hosts.

The DIB:S sensor works in collaboration with dozens of routers distributed across
the Internet. Whenever an unsolicited request comes in, the router returns an

“thesis_main” — 2005/11/21 — 13:09 — page 122 — #131
i

i

i

i

i

i

i

i

122 CHAPTER 4. THE PQS-NET SYSTEM

ICMP-T3 (Destination Unreachable) message to the originator of that packet. It
also, however, forwards a second copy of this ICMP-T3 to the DIB:S system,
which then does book-keeping and statistical analysis on these messages to de-
termine which hosts are scanning, and which are being scanned. Note: the DIB:S
architecture is described in-depth in Chapter 3.

• BGP The Border Gateway Protocol is used between top-level routers on the
Internet. At the highest level the Internet is divided into Autonomous Systems.
An autonomous system (AS) is an enclave of associated networks; for example, a
college campus would be considered one autonomous system, consisting of many
class-C networks. Technically an AS is a collection of networks with the same
prefix, defined by their CIDR notation. CIDR, or Class-less Inter-Domain Routing
blocks are identified by their network base address, a slash, and the number of
fixed bits in the network address.

Consider the following CIDR block: 129.170.0.0/16, where 129.170.0.0 is the base
network address, and 16 is the number of fixed bits in the address. In this case 16
bits are the first two octets (129 and 170), meaning that any address that starts
with 129.170 is part of this CIDR block. So 129.170.249.24 is part of the block,
although 129.171.249.24 is not, because the second octet is not 170. When the
fixed number of bits is a multiple of 8 a CIDR notation is quite intuitive because
each set of 8 bits in a network address is another octet. A class-C network, for
example, can be designated as a slash-24 CIDR block: 129.170.249.0/24 would
mean all addresses that have 129.170.249 as the first three octets. The last octet
is variable, meaning that a class-C network contains 256 addresses (28 = 256).
Specifically, because there are 32 bits in every IP address in IPv4 Internet address-
ing the number of IP addresses N in a CIDR block can be calculated as N = 232−s,
where s is the number of fixed bits in the CIDR-block. Another example was given
by Figure 4.1 where the 192.168.12.192/26 network was split up into two slash-
27 networks: 192.168.12.192/27 and 192.168.12.224/27. The slash-26 network
(232−26 = 64 addresses) was split up into two slash-27 networks (each 232−27 = 32
addresses).

The BGP-4 protocol [101] determines how packets are to be routed through au-
tonomous systems by defining how these systems are interconnected. The BGP
protocol allows a top-level router to announce to all other top-level routers how
its AS is connected to other autonomous systems. Specifically, such an announce-
ment would include the CIDR blocks that are part of its AS, and a list of other
autonomous systems to which it is connected. This way each top-level border
router will collect lists of all autonomous systems that it can reach, each with a list
of other border routers to traverse. Such a list would look somewhat like this:

129.170.0.0/16 245 21 1103 554
24.128.16.0/20 245 915 582 45
64.151.135.0/24 12 873 16

“thesis_main” — 2005/11/21 — 13:09 — page 123 — #132
i

i

i

i

i

i

i

i

4.3. SENSORS 123

where the first column is the CIDR block and the following list contains the AS
numbers to traverse for reaching the top-level border router responsible for this
CIDR block. Therefore, when a top-level border router needs to route a packet to
a specific destination it will look in this table to determine what AS the destination
is a member of. Knowing the destination AS it knows what route the packet needs
to take to get to the destination IP (essentially: which AS it will send the packet to,
next. After that it becomes the responsibility of the next border router, which will
follow the same steps).

Knowing that physical connections are changed constantly (due to new connec-
tions being made, wires breaking, satellites failing, etc.) these tables need to be
updated constantly in all the border routers. These announcements “update” the
reachability of CIDR-blocks. When the Internet is under heavy load (for example
due to worm propagation) it is observed that the number of route updates increases
drastically. This is usually due to top-level border routers failing under heavy
load, therefore making entire CIDR blocks unreachable. The BGP sensor collects
these update messages from hundreds of top-level border routers and calculates
how much of allocated address space on the Internet is reachable. This number is
referred to as the “Global Reachability Index” and is normally between 0.98 and
0.99, indicating that between 98% and 99% of the allocated addresses on the Inter-
net are reachable. The second measure that is generated by the BGP sensor is the
portion of the CIDR blocks that had their routes updated in the last 24 hours. This
is referred to as the “Global Instability Index”. This number is normally expected
to be between 0.08 and 0.12, indicating that about 8% to 12% of the CIDR blocks
on the Internet have their routes updated per day. The format of the messages is
therefore:

double GRI;
double GII;

By itself this information may not lead to definitive conclusions, however, com-
bined with other forms of information it can strengthen or weaken existing hy-
potheses. For instance, when parts of the Internet are unreachable it could indicate
both local router failure, as well as general higher-level routing problems. The
PQS system will generate both hypotheses. The local router failure hypothesis
may be weakened in favor of the higher-level routing problems hypothesis by a
BGP observation with a GII of 90% and a GRI of 20%.

4.3.2 Network

Network sensors are the most common class of sensors, often having one or more in-
stances of each per local network. In particular, it is not uncommon to have a copy of
the Snort IDS running on every segment of the network, thus scanning all traffic for sig-
natures of malicious activity. This brings with it two artifacts that a user has to account

“thesis_main” — 2005/11/21 — 13:09 — page 124 — #133
i

i

i

i

i

i

i

i

124 CHAPTER 4. THE PQS-NET SYSTEM

for when building models for a PQS. The first is the fact that observations from the same
type (e.g. Snort alerts) may have come from different sensors. For network sensors this
is often not an issue since most (if not all) observations pertain directly to a given IP
address, therefore making the detection point irrelevant. The second artifact may lead
to more confusion: two sensors both generate an observation based on the same cause.
Models must account for the fact that both observations may have been generated due to
the same event. Consider, for example, a packet enters the network carrying a malicious
payload. En route to its destination it traverses several local network segments, where
each network segment hosts a Snort IDS sensor. The PQS system will then see observa-
tions from several Snort IDS sensors, all containing the same alert, generated just a few
microseconds apart. Some models may have to be aware this situation, while for others
it may not matter at all.

• Snort This sensor is based on the freely available network intrusion detection
system Snort. Commercial versions will be just as effective, if not more so. The
general concept of network intrusion detection systems is to do elaborate signa-
ture matching on all packets flowing past it. This often means that each packet
needs to be compared to thousands of known malicious signatures in the database.
Whenever a packet (or a set of packets) matches, an entry is written into the log
file. Most PQS-Net sensors are based on a template that allows for easy parsing of
dynamically growing log files. Using this template the Snort sensor retrieves the
following fields:

struct timeval timestamp;
int ruleNum;
int srcip;
int dstip;
char proto;
short srcport;
short dstport;
int prio;

where ruleNum refers to the rule that matched the packet coming from srcip:srcport
going to dstip:dstport using protocol proto. The prio field returns the priority (or
severity) associated with the particular rule that was matched.

The most notable messages obtained from an IDS are specific exploits, network
scan reports, and Trojan/backdoor traffic. Often the systems that are the target
of the exploit are not vulnerable to that exploit. Because the IDS has no way of
knowing if an attack was succesful, the false positive rate is usually very high.
Models in the PQS-Net system match these IDS alerts with other indicators of
possible host infection, such as hostbased sensors like TripWire and weblog files,
or other Snort alerts. This way most (often all) of the IDS false positives can be
eliminated.

“thesis_main” — 2005/11/21 — 13:09 — page 125 — #134
i

i

i

i

i

i

i

i

4.3. SENSORS 125

• Spade A significant drawback of intrustion detection systems is their inabil-
ity to detect unknown attacks. Although this is a problem that is hard to solve, it
can, however, be mitigated to some degree. The Spade Anomaly Detection sen-
sor is a plugin to Snort, although the concept is general and does not depend on
an IDS [113]. All packets that pass through a network are categorized by some
identifyer (e.g. destination IP and port). Next, a count is kept for each category,
identifying how many packets of that type were observed in a given timeframe
(usually a week or so). These counts then give a probability that a packet of a
certain type will be seen on the network. The anomaly score is the inverse of that
probability.

Consider, for example, the PQS-Net DMZ with a DNS server, an email server, a
fileshare, and a web server. Because of their tasks the DNS server will get a lot
of UDP 53 requests, and the web server TCP 80. Therefore the probabilities for
these kinds of packets will be high, and the anomaly score low. However, when a
TCP 80 packet is sent to the DNS server there will probably not even be a table for
that type in the anomaly detection system; the probability will be near zero and the
anomaly score will be very high. This in itself may not be a reason for concern,
but once again it is about the bigger picture: what are other sensors reporting. If,
for example, shortly after this unusual packet was seen, the DNS server starts to
communicate on highly unusual ports, also triggering high anomaly scores, the
server may have been compromised.

The specific anomaly score calculator in Spade categorizes packets by their des-
tination IP and port. For any packet x the anomaly score is calculated as A(x) =
− log2(P(x)). The observation received by the PQS is:

struct timeval timestamp;
int srcip;
int dstip;
char proto;
short srcport;
short dstport;
float anomaly;

where anomaly is the anomaly score for the packet. Optionally, since the sensor
will produce an anomaly score for every packet on the network, a threshold can be
set to only report the x% most anomalous packets.

• Netfilter IPtables Both the IPtables as well as the EBtables sensors are based
on the Linux Netfilter firewall [84]. The general concept behind this class of net-
work sensors is to report on known incorrect network behavior. For example, DMZ
machines are never supposed to contact workstations. If this happens it could be
a evidence of a compromised server. Also if an email server starts doing anything
more than sending email or resolving names with the local DNS server, it may be

“thesis_main” — 2005/11/21 — 13:09 — page 126 — #135
i

i

i

i

i

i

i

i

126 CHAPTER 4. THE PQS-NET SYSTEM

compromised. Although another explanation would be that the server is improp-
erly configured; this is something for the PQS models to figure out.

In the PQS-Net network the IPtables sensor is configured to log any traffic from
the DMZ outbound to the Internet which is not directly associated with the task
of a particular server. Meaning that the only traffic which is not logged is email
connections from the mail server and name resolutions from the DNS server (the
web server should only be contacted inbound by clients, and the fileshare is acces-
sible only from inside.) Additionally, communications with known suspicious port
numbers is also logged, for example port 31337 (Backorifice [4]) and port 27374
(Subseven [119]), both associated with well-known Windows trojans. The obser-
vation received from the IPtables sensor is (note that the char* type maps to string
in PQML):

struct timeval timestamp;
char *hostname;
char *comment;
int src_ip;
int dst_ip;
int len;
short proto;
short src_port;
short dst_port;

where hostname is the hostname of the firewall that generated this observation,
comment is the comment field associated with this rule in the firewall, and len is
the length of the packet reported by this observation.

• Netfilter EBtables This sensor produces exactly the same observations as the
IPtables sensor, however, the underlying Netfilter implementation is built on a
bridge, instead of on a router. This means that this firewall sensor is able to pick
up non-routable layer 2 packets in addition to the usual layer 3 traffic. Specifi-
cally, this sensor is configured to report only on ARP traffic. Often a flood of ARP
packets can be a strong indicator of network misconfigurations. Consider, for ex-
ample, a workstation is persistently looking for the MAC address associated with
unused IP address 192.168.12.233. This is usually an indicator of some software
misconfiguration of the host. If the host is sending out ARP requests for all possi-
ble addresses on the subnet it is likely an indicator of scan behavior, meaning that
the host may have been compromised.

4.3.3 Host

Hostbased sensors provide specific information pertaining to one host. Their focus is on
information that cannot be gathered from network traffic alone.

“thesis_main” — 2005/11/21 — 13:09 — page 127 — #136
i

i

i

i

i

i

i

i

4.3. SENSORS 127

• Tripwire When a computer system is compromised the attacker will often want
to be able to re-enter the host at a later time, either to steal information or launch
another attack. Therefore the attacker will need to leave a backdoor in the form
of a software program that listens for an incoming connection from the attacker,
or possibly connects back to the attacker at a predetermined time. Because such
a backdoor program is easily detectable by administrators using common system
tools, the attacker will try to hide his or her presence to avoid being noticed. The
most straightforward method is to disable these system tools, or to modify them
such that the backdoor software is undetectable. Then, when the system adminis-
trator uses these tools the backdoor program will no longer show up.

Tripwire [121] is one of several “host filesystem integrity checkers”, a class of
software programs that keeps a database of MD5 checksums of a large number of
important system tools and libraries. This database is built right after installing
Tripwire (assuming the system is not compromised yet), and then used every 12
hours or so to check all the monitored files. This is done by regenerating MD5
checksums of these files and comparing the result to the checksum stored in the
database. Since a single bit-change in a file will change the MD5 checksum com-
pletely, even the slightest modification of system tools will show up right away. For
example, on a Unix system the files that Tripwire monitors include: /etc/passwd,
/bin/ls, /bin/ps, /bin/login, etc. The output of this sensor is:

int type;
struct timeval ts;
char *hostname;
char *filename;

where type is either: 1. added, 2. removed, 3. modified, hostname the host that
this observation came from, and filename is the file that was modified.

• Samba This sensor was chosen for its platform independence. The concept
will work for any type of filesharing method. Samba is the name given to the SMB
protocol (Server Message Block), which is the default and primary way in which
Windows computers share resources over the network. Clients are available for
all major operating systems. The idea behind this sensor is to monitor which user
accesses which files at what time, and from where. This leads to very verbose
information since users are accessing files on a fileshare all the time. To improve
the performance of this sensor it is recommended that only the most important
files are monitored. When one of the monitored files is accessed (read, write, or
modify) this is reported by the sensor in the following format:

struct timeval ts;
int src_ip;
char *filename;
char *smbname;
char *user;

“thesis_main” — 2005/11/21 — 13:09 — page 128 — #137
i

i

i

i

i

i

i

i

128 CHAPTER 4. THE PQS-NET SYSTEM

where src_ip is the computer that was used to access filename on fileshare smb-
name by user user. It is up to the PQS models to verify if anything is out of the
ordinary.

To make this sensor even more powerful it is possible to distribute some files ac-
cross the directories on the share that do not contain any useful information. These
files function as bait for possible attackers or malicious insiders and they are in-
tentionally “booby-trapped”. As soon as any of these special files are opened it is
immediately considered an access violation. These special files are referred to as
“honey tokens” and are intended to attract the attention of an attacker.

Most of the above sensors are either generally present in a network, or can be very
easily deployed. The goal of the PQS-Net project was, therefore, to design a system
that uses a conventional, every-day sensing infrastructure. Since a PQS takes care of
all data processing and hypothesis generation, only the sensors need to be hooked up
and the models need to be submitted. The models, therefore, contain the expert domain
knowledge.

4.4 Models

The second part of applying a Process Query System to a specific task consists of defining
the models that are to be submitted. In the construction of the PQS-Net system many
models were written; this section outlines several of these models, separated into attacks,
network failures, and higher level models. Recall that models are asked by the PQS
to “score” sequences of observed events. If the sequence of events is evidence of the
process that the model is describing, then the score should be high, otherwise it should
be low. Some of the earlier models were extremely complex and needed a lot of tuning.
We quickly learned, however, that the power of PQS encourages simpler models; either
two or three process states, or just several decision rules.

Since a PQS automatically creates all possible hypotheses at any given time, it is
important to structure the models such that very unlikely or impossible combinations of
observations are scored low enough such that they will be pruned away quickly. The
general rule of thumb for creating models in a large system is to encourage promising
combinations of observations (with a “higher” score), and to discourage poor combina-
tions of observations (with a “lower” score).

Most of the sensors discussed above (Snort, Spade, Samba, ...) have a tendency to
produce a large flood of observations. It is the task of a good model to sift through
this and find relevant combinations of events that are evidence of the modeled process.
Additionally, some observations have more “weight” than others. For instance, consider
a stream of Snort scan alerts towards the web server versus a single firewall observation
of unexpected outbound traffic from the web server. The stream of Snort scan alerts
is not necessarily alarming, considering that any Internet-connected DMZ servers will
experience regular scanning, however, unexpected outbound traffic from the web server
is almost always related to a compromise. Therefore, based on the firewall observation,

“thesis_main” — 2005/11/21 — 13:09 — page 129 — #138
i

i

i

i

i

i

i

i

4.4. MODELS 129

the Snort scan alerts become more important and can be used as evidence to support that
the web server may have been compromised. (Note: the DIB:S based worm models are
described in-depth in Chapter 3.)
Terminology:

SM (Tn) New score of track T at time n given by model M .
SM (Tn−1) Old score previously assigned to this track by model M .

4.4.1 Attacks

Often the observed events can be explained in various different ways. For instance, DIB:S
observations may indicate that the network is being scanned, or that a server has failed.
Similarly, Tripwire observations may indicate that a system was compromised and im-
portant files were changed, however, it can also indicate that a system software update
was performed recently. Because of the multiple hypothesis capability of the PQS system
it is possible to keep both hypotheses around in the above cases (given that the PQS is
configured to keep several hypotheses around). As more observations come in the mod-
els may favor one hypothesis over the other. In this way we load multiple models into
the PQS and allow them to contend for observations, while forming a conclusion. This
section describes several succesful attack detection models.

Noisy Worm Propagation

sensors: DIB:S
Snort
BGP

This model looks for worms that show aggressive scanning patterns. The most typical
and early evidence for worms comes from the DIB:S system (see Chapter 3). During the
initial stages of worm propagation an exponential growth in infected systems is expected.
Since DIB:S reports on hosts that display massive parallel scan behavior it is expected
that the number of DIB:S alerts for the destination port of the worm will also increase
exponentially. A track consisting entirely of the same destination port DIB:S alerts gets
scored as follows:

SM (Tn) =

1
2 × (1+SM (Tn−1)) : ∆t < 10

1
2 × (∆t−10

890 +SM (Tn−1)) : 10≤ ∆t ≤ 900
1
2 ×SM (Tn−1) : ∆t > 900

0 : when destination ports mismatch

where ∆t stands for the time between two consecutive DIB:S alerts in the track. The
above function alone is a very powerful worm detection model when submitted to a
PQS. The score is constructed for 50% from the previous score that this model assigned,
and for 50% based on the time between the newly added observation and the previous
observation. This weighting effectively creates a filter that smooths out the scores over

“thesis_main” — 2005/11/21 — 13:09 — page 130 — #139
i

i

i

i

i

i

i

i

130 CHAPTER 4. THE PQS-NET SYSTEM

time, and is the same as the model that is used in the original DIB:S/TRAFEN system
described in Chapter 3. This model is specifically tuned to to worms that propagate at a
speed typical of reaching maximum infection rates within 30 minutes to several hours.
To improve the model and increase the amount of information returned, the following
functions may be added:

SM (Tn) =

1
6 × (1+5×SM (Tn−1)) : Snort port and protocol match
1
6 × (1+5×SM (Tn−1)) : BGP GII > 12.0

0 : otherwise

However, all tracks must be started, and primarily be constructed from DIB:S ob-
servations. The rule for Snort observations encourages tracks when there are matching
Snort rules for the vulnerability that the worm is exploiting. The BGP observation may
be expected later into the propagation of the worm where the network load on the Internet
is causing routing instabilities (a GGI> 12.0). In this calculation the previous score that
this model assigned to the track is weighted in 5 times. Finally, the score of any new,
single-observation DIB:S tracks is set to 0.1 for this model.

Email Virus Propagation

sensors: IPtables
DIB:S
Snort
Spade

This model is only concerned with local systems infected with an email virus. Two
things are checked, first: are there any systems other than the email server sending SMTP
(TCP/25) traffic outbound, and second: how fast is this occurring? Both models must be
considered before a conclusion can be made. The IPtables sensor is specifically instru-
mented to report on any outbound SMTP traffic. The score is determined as follows for
all observations:

if (local(src_ip) AND proto == 6 AND dst_port == 25)
then

CalculateScore()
else

Return(0)

When a zero is returned it will discourage this track from growing any further in the
PQS system. However, this does not mean that there are no others tracks forming that do
provide evidence of an email virus. When the above truth statement is true, the score is
calculated as follows:

SM (Tn) =

{ 1
2 × (1+SM (Tn−1)) : ∆t < T

1
2 × (0.1+SM (Tn−1)) : ∆t ≥ T

“thesis_main” — 2005/11/21 — 13:09 — page 131 — #140
i

i

i

i

i

i

i

i

4.4. MODELS 131

where ∆t is the time between two email messages, and T is the threshold time between
growing or shrinking the score. This model is simple, yet very effective. The only
parameter is the threshold, which can be adjusted to match normal levels of email traffic
on the network. If email messages are being sent out generally too fast then the likelihood
that an email virus has infected the network quickly grows to 1. If the rate at which
messages are sent is generally lower then this likelihood shrinks to 0.1, at which point
the track runs a high risk of getting pruned by the PQS. New tracks may start with all
four observation types, and get an initial score of 0.3 when the truth equation matches.

This model is a typical example of a very robust process. The specifics on the thresh-
old, too fast, too slow, and high score or low score do not matter very much. Although the
model does perform a little bit better when it is properly tuned, it also performs very well
when these values are chosen by best guess. The reason for this is the inherent flexible
nature of a PQS; decent models tend to perform very well when part of the previously
assigned score is embedded in the newly assigned score.

Remote Administration Tool Deployment
sensors: DIB:S

Snort
This model searches for evidence of Remote Administration Tool (RAT) deployment.

Remote administration tools are often characterized by Trojan backdoors, such as Sub-
seven or Backorifice. For most of these tools there exist Snort IDS rules that recognize
signatures of such RAT traffic. Since it is very likely that an attacker will attempt to in-
stall backdoors on many hosts, hoping to infect at least a few, the attacker’s behavior will
often also show up in DIB:S observations. This model sometimes seems “trigger happy”
because many forms of malicious behavior tend to initially show up as RAT deploying
hosts. Initially, any track starting with either a DIB:S or a Snort observation gets a 0.3
score from this model. Then, as more DIB:S or Snort observations arrive the track score
grows as follows:

SM (Tn) =

{

1
2 × (0.8+SM (Tn−1)) : when source IPs match

0 : otherwise

An interesting artifact of this particular model is that our experimental worms ini-
tially show up as a list of RAT deploying hosts. This is understandable considering the
aggressive scanning nature of worms, and the fact that they, after succesful infection,
themselves start to scan and deploy the worm code. Because of this behavior the model
tends to quickly collect many observations and thus starve other tracks from potentially
useful observations. Therefore the best results with this model are achieved when it runs
all by itself in a separate instance of a PQS. The concluding results from this PQS can
then again be used as input to a tier-2 PQS tracker as evidence of “poorly behaved hosts”.

Low&Slow Scans
sensors: IPtables

DIB:S
Snort

“thesis_main” — 2005/11/21 — 13:09 — page 132 — #141
i

i

i

i

i

i

i

i

132 CHAPTER 4. THE PQS-NET SYSTEM

This model checks for one particular type of low and slow scanning behavior; one
IP address scanning a large network, or multiple networks, on the same port using the
same protocol. Two things are very important for this model; First, things go slow. This
means that it often cannot be combined with other models in the same PQS, because
pruning rates typical for other models will destroy most low-and-slow tracks before they
even get a change to grow to a significant score. Second, because of the slow pruning
configuration, a lot of very small tracks are formed and kept around with a very low
score. Basically, any observation that may even remotely indicate scanning behavior is
included by this model and forms the beginning of a new track. Then, only when more
observations come in that show that a particular host is scanning slowly, the track grows
and bubbles up to the top of the track list, where a conclusion can be drawn. For larger
networks, this model can be a CPU and memory nightmare. As with the RAT model, the
output of this model often better serves as input to higher level trackers.

For this model several ports were defined as Extra Caution; port/protocol combina-
tions that should be watched in particular for the monitored network:

UDP 53 (DNS)
TCP 21 (FTP)
TCP 22 (SSH)
TCP 135-139 (NetBios)
TCP 27374 (SubSeven)
TCP 31337 (Backorifice)

Any track starting with a DIB:S, IPtables, or Snort observation will get an initial
score of 0.1, or 0.3 if the observation was flagged as Extra Caution. When source IP,
protocol, and destination ports are matched the score is grown as follows (and set to 0
otherwise):

SM (Tn) =

{ 1
4 × (1.0+3×SM (Tn−1)) : normally

1
2 × (1.0+SM (Tn−1)) : for Extra Caution

Similar to previous models, the previous score assigned to the track by this model
is taken into consideration in every score calculation. Since all tracks start off with a
score of 0.1 (or 0.3, depending on service port) this model makes scores grow to 1.0, but
only if destination ports match. If the service port requires Extra Caution the previously
assigned score is weighted only one time to ensure that the track score grows faster as
more evidence comes in. Otherwise the previous score is weighted three times.

Unauthorized Insider Document Access
sensors: SaMBa

Spade

This model focusses primarily on users accessing honeytokens on the central file-
share. It monitors all accesses to the fileshare using the SaMBa sensor, and checks it
agains a list of known honeytokens. To improve performance this model also checks for

“thesis_main” — 2005/11/21 — 13:09 — page 133 — #142
i

i

i

i

i

i

i

i

4.4. MODELS 133

fileshare packets that have a high anomaly score, for example, when the fileshare is ac-
cessed at an unusual time of day. Initial scores are 0.9 if a honeytoken was accessed, 0.6
for any packet with a very high anomaly score going to the fileserver, 0.4 for any fileshare
access violation, and 0.0 otherwise. Tracks scores change according to this function:

SM (Tn) =

1
2 × (1.0+SM (Tn−1)) : honeytoken access
1
2 × (0.5+SM (Tn−1)) : general access violation
1
2 × (1.0+SM (Tn−1)) : anomalous traffic to fileshare

SM (Tn−1) : otherwise

where in all cases either the SMB username or the source IP address of the request must
be the same for all observations in the track.

4.4.2 Failures

This category of models was specifically designed to catch cases where the observed
events are more likely associated with a network device failure than an attack. However,
it is not always clear which of the two may be going on, for instance, consider a DDOS
attack on a large network. The border router of this large network is likely to fail under
such a heavy load, and therefore it is more likely that the system reports router failure
than DDOS attack. (Either way there is only one thing the administrator can do: restart
the router.)

Router or Link Failure
sensors: DIB:S

Snort

Technically the models for router failure and link failure are separated, however, it
seems very difficult to separate the two conditions based on the observations we have
available. Router failure happens when a router, somewhere upstream, fails to route
packets. In some cases traffic will be dynamically re-routed, although usually network
connectivity simply stops. Link failures are all conditions where the physical link failes,
this can be a cut in the wire or a switch or hub failure. Both conditions are very sim-
ilar and often require a lot more than network based sensors to diagnose the condition
accurately.

The router failure model depends on DIB:S observations with a local source address,
giving a score of 0.6 to all new tracks that fit this condition. More DIB:S observations
with a local source address quickly let the total score grow to 1 according to SM (Tn) =
1
2 × (1.0 + SM (Tn−1)). The drawback of this model is that it requires a local network
installation of the DIB:S system, and at least one functioning router. If the local network
router fails, then this model will be unable to detect the condition for any host on that
local network. It will, however, work well for a larger enterprise class network that has
multiple smaller (say class-C) networks, all monitored by DIB:S enabled routers. If any

“thesis_main” — 2005/11/21 — 13:09 — page 134 — #143
i

i

i

i

i

i

i

i

134 CHAPTER 4. THE PQS-NET SYSTEM

of these routers for a class-C subnet fails, other hosts in the larger network will be unable
to reach this small subnet. The ICMP-T3 traffic coming from the other routers going to
the DIB:S system will then quickly generate alerts that will trigger this model effectively.

The link failure model relies on Snort observations and starts out with the premise
that only the local subnet is still reachable. Therefore all other network based and global
sensors are unreachable. The Snort observations are assumed to be originating from a
local sensor, and are only considered for this model when their source address is within
the local network. Only two rules are important to this model: Snort rule 472 (ICMP
redirect host), and Snort rule 394 (ICMP-T3 destination unreachable). Both may (but do
not necessarily have to) be generated by a reachable router closeby. When the source IP
address on any of these two specific Snort observations is from the local network then
the observation may grow the score in the track. The score starts out at 0.2 and grows
to 0.9 when the destination IP address is the same for all observations, otherwise to 0.7,
according to the following formula:

SM (Tn) =

{ 1
2 × (0.9+SM (Tn−1)) : iff destination IP is the same
1
2 × (0.7+SM (Tn−1)) : otherwise

where the scores never really grow to 1.0, mostly because this model can never be really
certain of what is going on. It may merely be the “best” explanation of what is happen-
ing, due to the lack of a better hypothesis.

DNS server misconfiguration

sensors: IPtables

This is a very straightforward model that simply checks if external systems are prop-
erly contacting the local DNS server. If name resolution requests consistently arrive at
the wrong system in the network, then the DNS record may be wrong. This is a very
rare condition that is not expected to occur frequently, but can be hard to diagnose from
within the local network. The Netfilter firewall is configured to report on any UDP 53
(DNS) requests not going to the local DNS server. The model only scores tracks con-
sisting of IPtables observations originating from outside the network, going to inside the
network, with a destination other than the DNS server. Tracks start with a score of 0.3
and grow to 0.9 according to SM (Tn) = 1

2×(0.9+SM (Tn−1)), given that all observations
are UDP 53 DNS requests.

Email server breakdown

sensors: DIB:S

Since DIB:S reports on consistent groupings of destination unreachable messages, it
can also be used to diagnose that critical hosts are not responding. This model gives a
simple example on how these observations can be used in a PQS to detect that a specific
mission critical system has failed. When many systems are all trying to reach the SMTP
mail server, but the router is not getting a response on its ARP requests, then it will start
returning ICMP-T3 messages. If these messages are processed by DIB:S, it will soon

“thesis_main” — 2005/11/21 — 13:09 — page 135 — #144
i

i

i

i

i

i

i

i

4.4. MODELS 135

issue an observation reporting that many systems attempted to contact machine: mail on
port 25 using protocol TCP, and failed to do so. This model will therefore only accept
DIB:S messages that are formatted exactly like that: destination must be mail, on TCP
25 (SMTP). Other protocols can be easily included, however. Tracks start with a score
of 0.3 and quickly grow to 1.0 given SM (Tn) = 1

2 × (1.0+SM (Tn−1)).

4.4.3 Tier-2 Models

Tier-2 models refers to a category of models that have both sensor observations, as well
as the output of other models available for evaluation. This means that the output of
the models discussed so far may be used as input to these Tier-2 models. The output of
the above models includes: track score, model name, source and destination IP (where
appropriate), and source and destination port and protocol (where appropriate). These
higher tier models are often very interesting because they deal with complex behavior.
For instance, the two models discussed in this section are designed to track the higher
level behavior of single hosts (host-state), and to track the progression of a multistage
attack through a network (attack-state).

Consider Figure 4.3 where a Tier-2 PQS tracker is added to the architecture. Outputs
from the Tier-1 tracker are used as input observations to the Tier-2 tracker, together with
sensor observations. In practice there is often no particular need for a second PQS core,
instead it is possible to loop the output from one core back into its own input, effectively
combining both Tier-1 and Tier-2 models in the same tracking engine.

Based on Tier-1 output, or direct sensor observations the status of an individual host
can be tracked. Consider the model in Figure 4.4 where a host is in one of seven states,
three of which are considered “trusted”, and the others are “hostile”. Once a host is
in a hostile state it cannot move back to a trusted state automatically. Notice how the
“compromised” state is essentially a placeholder, waiting for further information on what
activity the host will be undertaking, while hostile. The depiction of this model omits
the specific sensor observations that are associated with each state, or state transition.

S

S

S

S

Level−1 PQS Core

L1 Models

Level−2 PQS Core

L2 Models

Level 1

Results

Level 2

Results

Figure 4.3: Toplevel view of a Tier-1 and a Tier-2 PQS tracker.

“thesis_main” — 2005/11/21 — 13:09 — page 136 — #145
i

i

i

i

i

i

i

i

136 CHAPTER 4. THE PQS-NET SYSTEM

Trusted Hostile

Attack

attempts

Compromise

Attacking

ScanningTrusted

Scanning

Recon

Exfiltration

Figure 4.4: State machine for an individual host.

However, assigning these observations is intuitive, for instance, examples of “recon” are
the results of the low&slow scan model, a DIB:S observation, or a Snort scan alert. This
model also shows that there is not necessarily a structured set of state transitions that put
a host from fully trusted into a compromised state; depending on received observations
it is very well possible that a host is considered compromised without going through the
reconnaisance or attack attempt states.

Figure 4.5 shows another Tier-2 model that tracks the progression of a complicated,
multistage attack. The challenge here is to correlate the activities of various hosts to-
gether and identify which steps are related. Consider the following two Tier-1 observa-
tion sequences:

A scans B
A attacks (failed) B
A scans C
A attacks (successfully) C

and:
A scans B
C attacks (failed) B
A scans B
C attacks (successfully) B

In the first case it is clear that host A is being very hostile, and there will be little doubt
that all four steps are related and part of the same multistage attack. It is unlikely that A’s
attack on B is unrelated to its attack on C, although both hypotheses will be generated
by the PQS. It is expected that the first hypothesis will ultimately dominate because all
steps originated from the same aggressor.

In the second sequence, however, this is not as clear cut. Although host A is doing

“thesis_main” — 2005/11/21 — 13:09 — page 137 — #146
i

i

i

i

i

i

i

i

4.4. MODELS 137

Compromise

 Scans

Scanning

Recon

Exfiltration

Trusted

All Cool

Connect out

connect

Outbound

File Access

File Access

Attacks

Scans

attack

Succesfulattempt

Failed

 Recon

Data access

Figure 4.5: Level-2 model tracking steps in a multistage attack.

the scanning, it is host C that actually performs the attacks. The PQS will generate two
hypotheses (one assuming that all steps are related, the other assuming that the scanning
is independent from the attacks), each of which has a separate set of reasons why it is
a likely hypothesis. For example, it could be argued that the target is B, and that the
attacker is using multiple systems to attempt a compromise. On the other hand A and
C are separate machines acting independently. If, later on, evidence comes in that A is
actually scanning the entire subnet, whereas C has only attempted to attack one system,
then it becomes more likely that their actions are, in fact, independent, although the other
scenario cannot be ruled out. In the end, however, the human analyst will probably care
more about the fact that B was compromised than whether A and C are controlled by one
and the same aggressor. Finally, consider the following observation sequence reported
by the Tier-1 PQS:

“thesis_main” — 2005/11/21 — 13:09 — page 138 — #147
i

i

i

i

i

i

i

i

138 CHAPTER 4. THE PQS-NET SYSTEM

A B

A C

B C

C B

C D

1.0

0.9

0.0

0.5

Figure 4.6:

A attacks D
B attacks D
C attacks D
D scans E
D attacks E

Although it is obvious that host D is successfully used as a stepping stone, it is not clear
which of the hosts A, B, or C initially successfully compromised D. Initially all three
will be part of the hypothesis-set, however, as time passes and more evidence arrives a
definitive determination may be generated. In other cases, the true chain of attacks may
never become fully clear.

Figure 4.6 gives a graphical representation of this multistage attack model. The scores
are calculated as follows, based on the two IP addresses X and Y in the new observation:

SM (Tn) =

{

1
2 × (N +SM (Tn−1)) : iff either X or Y occur in track

0 : otherwise

where Figure 4.6 gives score N. The model is actually matched backward, searching
from the newest observation back into the track. Self-transitions do not impact the score,
and are consumed until one of the four actual transitions is found. At that point the score
N is assigned. IP addresses X and Y are therefore matched to the two IP addresses in the
matching final state.

“thesis_main” — 2005/11/21 — 13:09 — page 139 — #148
i

i

i

i

i

i

i

i

4.5. RESULTS AND LESSONS LEARNED 139

4.5 Results and Lessons Learned

Process Query System technology is still maturing, however its use as a powerful and
flexible data processing system has been proven by various applications. The goal of
the PQS-Net system was to build a system that can assist intrusion analysts, not replace
them. Data is conveniently collected from all over the network through the PQS sensor
interface and evaluated by one or multiple models. So far the models have reflected
relatively straightforward relationships between events, however, these relationships are
the same as the associations made by analysts. Based on these associations the analyst
will often search for more information or evidence by collecting logs, watching traffic,
or reading websites on global Internet trends. Collecting data is probably the single most
time consuming task for any analyst. The PQS-Net system effectively eliminates the
need for the human to go get the data, look at it, and decide what other information to
look for.

4.5.1 Performance

Since all of the basic network security sensors are present (IDS monitoring, firewall logs,
etc.) the PQS-Net system does not miss any intrusions or attacks if they are picked up by
the sensors. Therefore, accuracy should not be measured as a factor of the false positives
and false negatives, as this would only directly reflect the accuracy of the sensors, how-
ever, a more meaningful measure is to evaluate if the associations made by the models
give an accurate top-down list of important relationships. In other words, whether the
system is properly telling the analyst what is “important”, and what is “unimportant” in
the flow of observations from the sensors. The problem is that “importance” is a very
subjective term because it depends not only on network data, but also on the specific pur-
pose of the systems, and the value placed on them by the organization. For example, a
bank will place a very high value on the system that holds the account information. When
the bank gets attacked, the analyst will like to see an intrusion of the account computer at
the top of the list, preferably not cluttered with alerts about scanned teller workstations.
This is what the PQS-Net system does.

So, in terms of accuracy, a better measure of performance would be to look at the
number of correct associations made. To test the system structurally, several large attack
datasets were sent through the PQS-Net system at full speed. Each of these datasets
represented networks of roughly 1260 hosts, dozens of which were public servers. The
attack scenarios included multiple concurrently acting aggressors (usually 3 or 4 attacks
going on at once), decoy scanning hosts (not actually associated with the attacks), several
victims and stepping stones (usually server hosts that got compromised and used to gain
deeper access into the network). Furthermore, the datasets contained many Gigabytes of
normal, benign traffic. Now, based on all the observed traffic and log files, how many of
the attackers, decoys, victims, and stepping stones were correctly correlated and reported
to the administrator? The results are presented in Table 4.1.

The results in this table represent a significant data reduction from tens of thousands

“thesis_main” — 2005/11/21 — 13:09 — page 140 — #149
i

i

i

i

i

i

i

i

140 CHAPTER 4. THE PQS-NET SYSTEM

Dataset: Attackers Decoys Victims Stepping stones
1 3 of 3 (100%) 5 of 5 (100%) 2 of 2 (100%) 1 of 1 (100%)
2 4 of 4 (100%) 2 of 2 (100%) 2 of 2 (100%) 1 of 1 (100%)
3 0 of 2 (0%) 2 of 2 (100%) 1 of 2 (50%) 1 of 2 (50%)
4 3 of 5 (60%) 6 of 6 (100%) 10 of 11 (91%) 2 of 3 (67%)

total 10 of 14 (71%) 15 of 15 (100%) 15 of 17 (88%) 5 of 7 (71%)

Table 4.1: PQS-Net performance on 4 blind datasets. The operators of the system were
unaware of which attacks would take place.

of alerts to only several. For example, the first dataset contained 22,930 alerts (total count
from all sensors), which the PQS-Net system boiled down to 100 tracks (or events), that
the administrator should take note of. For the fourth dataset the reduction was even
bigger, from 39270 alerts to only 107 tracks (a reduction of 1:367).

In terms of efficiency we can only give some rough numbers on resources used. The
first dataset contained 1.5 Gigabytes of traffic, covering a real-time duration of exactly
47 minutes. A total of 62 sensors were used in this test. A 1Ghz Ultra SPARC III system
ran this dataset through using about 80% of the available CPU time, which means it can
handle a network of about 1500 hosts maximum. The memory requirements, however,
were minimal: under 100 MB total. Note, however, that no official studies were done
to evaluate if human analysts showed improved productivity using the PQS-Net system,
although several analysts responded, when asked for their opinions, with: “This really
rocks!”, “Wahooo”, “Great work”, “When can we start using this?”, and “Thanks mate!”.

4.5.2 Considerations

Regarding ease of applying a PQS to any particular area a couple of things can be said:

• Model building needs to be simplified. At this point most models are written di-
rectly in Java code, PQML or XML. It is quite straightforward to envision graph-
ical user interfaces that will make model building significantly easier. Especially
considering the frequent re-use of old code in new models, these GUIs will com-
pile the models into PQML, which is the portable modeling language for trackers.
Since PQML is an assembly-inspired language, it suffers from the same flaw that
assembly languages suffer from: not everyone is comfortable writing it. Improved
user interfaces can therefore make a big difference.

• More models in a single tracker, or each model in its own tracker. This is one of the
bigger question marks of the current PQS-Net system. It seems that some models
(low&slow for instance) require their own tracker because of specific tuning pa-
rameters that make the model work. However, in other cases the system performs
better when the models compete for observations in the same tracker, thus forming
many meaningful hypotheses.

“thesis_main” — 2005/11/21 — 13:09 — page 141 — #150
i

i

i

i

i

i

i

i

4.5. RESULTS AND LESSONS LEARNED 141

• How different are two models? Closely related with the previous point is the ques-
tion of how different two models are. Although multiple models were constructed
for detecting worms, they all seem to catch the same worms equally well, based
on very different associations. This means that simply looking at the models and
deciding that their associations are “very different” or “very similar” says noth-
ing about their expected tracking accuracy. However, it is important to have some
measure of similarity. Consider, for example, a case where two models are built
to detect two similar events in a noisy environment. If the models are “very sim-
ilar” it may actually mean that there is too little sensor information available for
the models to make a clear distinction between the events. When another type of
sensor source is added the models may be able to do a better job simply because
more information is provided.

• When to draw hard conclusions. Although the PQS-Net system was designed
to assist analysts by showing event correlations in order of importance, it can be
argued that in some cases an autonomic response would be desirable. In order for
that to work the system must be able to draw hard conclusions and act on them.
Hard conclusions are usually drawn when the score of a track goes above 0.8, or
0.9. If there are multiple competing models all claiming a different conclusion,
then the score will have to be closer to 1 before a conclusion can be drawn. The
tuning of this parameter will depend highly on the specific circumstances.

The above considerations will drive development of the PQS-Net system for awhile
to come. As mentioned in the last point it is often difficult to accurately present an admin-
istrator with useful input, without being overwhelming. In computer network security,
enormous quantities of data are available from all over the network. The PQS therefore
becomes a data reduction filter, looking for the most important signs, however, also to a
human analyst it is often not clear what these signs are. Thus model building will only
be as good as the analyst supplying the expert knowledge for the models.

“thesis_main” — 2005/11/21 — 13:09 — page 142 — #151
i

i

i

i

i

i

i

i

142 CHAPTER 4. THE PQS-NET SYSTEM

“thesis_main” — 2005/11/21 — 13:09 — page 143 — #152
i

i

i

i

i

i

i

i

Chapter 5

Other Applications

143

“thesis_main” — 2005/11/21 — 13:09 — page 144 — #153
i

i

i

i

i

i

i

i

144 CHAPTER 5. OTHER APPLICATIONS

In this chapter three applications of PQS are introduced that were developed based on
the TRAFEN platform. They demonstrate the wide applicability of the PQS concept. The
first application is a detector for timing covert channels, which are a highly stealthy way
of exfiltrating data. By perturbing the time of release of packets in a benign communica-
tion, the attacker encodes the desired information. The models focus on identifying the
statistical properties of these covert channels. The second application tracks fish swim-
ming in a tank, giving a good, real-world example of kinematic tracking with a PQS. The
tank is filmed by a camera, and X,Y-coordinates are generated of anything that moves. A
PQS is then used with a relatively simple model to track the fish as they move around and
behind obstacles. It is a very intuitive way of presenting the PQS concept. Finally, for the
third application, TRAFEN is used to monitor servers in a network, and take autonomous
action based on the detected processes. Examples of processes that are detected include
the failure of a service, degredation of response times or system resources, and the effects
of a succesful network intrusion.

5.1 Covert Channels

This section discusses a technology that was developed as an extension to the PQS-Net
framework. It uses a PQS tracker of its own, and its output has been successfully used as
observation inputs to the PQS-Net tier-2 trackers. This technology focuses on methods
of detecting Timing Covert Channels, a technique where the interpacket timing of benign
traffic is perturbed to encode information.

5.1.1 Introduction

The success of modern network defense and intrusion detection has forced hackers to be
more and more creative with their attack methods. In a situation where an attacker has
infiltrated a tightly monitored network with the goal of stealing information, he or she
runs the risk of being detected when the information is exfiltrated.

Assuming the network is heavily guarded with Intrusion Detection Systems, Packet
Anomaly Detection systems, and firewalls, the intruder has limited options on getting
the stolen data out. The most straightforward method for exfiltrating data is the use
of a conventional protocol, like FTP. This runs the risk of being detected in log-files
and traffic dumps, and running a similar communication on irregular, high port numbers
might even trigger Packet Anomaly Detection systems, because such communications
are highly unusual. Encoding data in the unused space in packet headers is likely to set
off most modern intrusion detection systems, as will packing data in the payload section
of Ping packets. Additionally, transmitting data through a Ping payload might trigger
Packet Anomaly Detection systems when the size of the Ping packets is increased and/or
irregular. The attacker will thus have to look for even more covert ways of moving the
data out of the compromised network.

“thesis_main” — 2005/11/21 — 13:09 — page 145 — #154
i

i

i

i

i

i

i

i

5.1. COVERT CHANNELS 145

The data exfiltration option under investigation in this section is the utilization of in-
terpacket delay times to encode data. This means that the intruder does not necessarily
have to create traffic, however, he or she can modulate the time between packets of reg-
ular communications to encode the data. The extent to which existing traffic streams can
be used depends on the location of the recipient. The intruder will need access to the
communication to measure the packet interarrival times, in order to retrieve the data.

We investigated two techniques for detecting possible use of interpacket delays for
detection of covert channels. The first technique is based on the calculation of the entropy
of the suspected bit sequence. The entropy here measures the amount of chaos in data,
meaning that completely random data will have an entropy of 1.0, and thus not hold any
information. However, when data does hold information it is structured and not fully
irregular, thus having an entropy smaller then 1.0. We use a data compression technique
to see if the suspected bitstream is compressible; if so, the data has regularities and the
entropy is lower. The second technique simply tries to identify multiple concentrations
of interpacket delay times. These concentrations should be sufficiently differentiable, in
order for it to encode a binary bitstream.

5.1.2 Background on Covert Communication Channels

Since security analysts first started thinking about covert channel communication, two
terms were introduced: covert storage channels and timing covert channels. Covert stor-
age channels involve the writing to a storage location by one process and the reading of
the storage location by another process. The resource, such as unused bits in a packet
header, or the padding fields in a datagram, is shared between the two subjects. With
timing covert channels the sender transmits data to the receiver by modulating its use of
system resources in such a way that the manipulation affects the response time observed
by the receiver. Specifically, this is done by modulating the wait time between sending
packets (the interpacket delays). Since various techniques already exist to detect the first
type of covert communication, the second type is the focus of our research.

The general form of a covert communications channel is based on the idea of exploit-
ing time delays between transmitted packets in order to implement a form of Morse-like
code. Intuitively this means that a short time delay between two consecutive packets
encodes a binary zero, and a long time delay encodes a binary one. More generally,
suppose an outside intruder has been able to gain control over a machine X inside our
network and wishes to send data to his/her computer A by codifying the information as
time delays between packets. (Note that A does not have to be the destination for the
network packets, however, A merely needs to be on the path such that the packets may be
intercepted and their interpacket delays measured.) For example we can imagine that the
intruder is able to execute instruction ping A from the compromised machine X within
the perimeter of our network.

• ping A

• ping A, after ∆t1 seconds

“thesis_main” — 2005/11/21 — 13:09 — page 146 — #155
i

i

i

i

i

i

i

i

146 CHAPTER 5. OTHER APPLICATIONS

• ping A, after ∆t2 seconds

• ping A, after ∆t3 seconds

• · · ·

Machine A intercepts a sequence of pings with time delays between consecutive pack-
ets as ∆t1 seconds, ∆t2 seconds, ∆t3 seconds and so on. From an abstract point of view
this technique amounts to sending symbols of a source through a noisy channel, and
decoding the message at the destination. We consider the fact that the delays at the ar-
rival computer are not exactly the same as in the departure computer due to noise within
the Internet. Any forwarding device (routers, firewalls, switches, repeaters) will incur
a small processing delay. This delay will vary in time, thus perturbing the interpacket
times, making the channel noisy.

Assume that all the packets flowing through our network are filtered by an agent
(e.g. a firewall) that can record packet interdelays for each related communication (for
example: pings to the same destination address, or a stateful TCP session with a web
server). From this agent we obtain a list of delays. The question we try to answer is:
“Given a chain of consecutive delays ∆ti, is it possible to affirm with a certain probability
that there has been malicious intent from somebody within our network?”. In other
words, “Are the observed delay times specific/discernable enough to (most likely) not
have been generated by chance.”

5.1.3 Assumptions and Considerations

Since the general problem is very broad we start with some considerations that give rise
to several restrictive assumptions that will reduce the complexity of the situation.

The first difficulty in detecting a covert channel comes from the problem that we
cannot know the cardinality of the encoding that the attacker is using. Meaning that it is
not clear from the start if the attacker is using two, three, or N different delays. Intuitively,
the attacker may pick an encoding that maximizes the bandwidth of the transmission.
However, the decision to use a given number of symbols (or delays) is not always a
matter of maximizing transmission bandwidth. Consider, for instance, that transmitting
a given datafile though a given covert channel would maximize the bandwidth when 2
symbols (ie. 2 different delays) are used. Since it is often hard to control existing sessions
(it usually requires root privileges), the attacker will be better off sending HTTP requests
to a web server that he/she controls (alternatively, Ping could be used). By modulating
the times between the requests the attacker will be able to encode the transmission.

Although the transmission rate is maximized in this case, it is also, by far the most
noisy. For every bit transmitted an HTTP request is made, something that may stand
out when the traffic on the network is analyzed. Conversely, consider that the attacker
prefers stealth over transmission speed. Conceivably a 64 symbol encoding can be cho-
sen, meaning that each HTTP request then carries 6 bits of information (26 = 64). It is
therefore illogical to assume the attacker will pick a given encoding based on the maxi-
mizations of transmission speed. Especially when we consider that the attacker chooses

“thesis_main” — 2005/11/21 — 13:09 — page 147 — #156
i

i

i

i

i

i

i

i

5.1. COVERT CHANNELS 147

a covert channel to communicate, it is likely that he/she will try to maximize stealth over
transmission bandwidth.

Additionally, for the aforementioned reasons the communication to modulate would
preferably be a continuous datastream, for example, the acknowledgments of a real-time
audio stream. An interactive session, such as SSH, will not have a predictable release of
packets (ie. only when the user types a command) to allow for transmission of large files.
Add to that the fact that the attacker will rarely know beforehand what communications
will predictably exist; it is therefore easiest to simply create the traffic, instead of using
existing connections. (Although this has an increased risk of unwanted detection.)

It must be noted, however, that an attacker will most likely not have the luxury of
choosing the most efficient or most stealthy encoding possible, for it assumes that the
attacker can have some form of information exchange with the compromised system.
If no such bilateral communication channel exists beforehand, the attacker will never
be able to instruct the attacking agent on what encoding is best received (and therefore
preferable). For that reason we may safely assume that an attacker will pick an encoding
that will yield a decent bandwidth on average, while being sufficiently stealthy. With this
in mind, we continue with the following two restrictions.

1. Malicious Noise. The intruder does not add artificial noise with the purpose of
preventing the observer from detecting his/her activity. Artificial noise can be
added by wildly varying the interdelays at a predetermined moment. For example,
the intruder resolves to send a sequence of packets with randomized interdelays
after successful transmission of every 100 bits. The intruder knows to discard these
random interdelays as intended noise, however, our algorithms do not, therefore the
algorithms might fail to detect malicious activity in the blocks of 100 actual bits.

2. Binary source. The intruder implements a code based on two symbols. So there
will be only two intervals of time ∆t1 and ∆t2 that codify two symbols 0 and 1
respectively, as in the classical Morse code. This assumption may seem very re-
strictive as the intruder could try to codify information based on more than two
intervals of time and so more than two symbols. The detection methods discussed
here are, however, easily extensible to handle other encodings as well.

5.1.4 Covert Channels and their Capacity

Before we can say anything useful about detecting covert channels we first investigate the
properties of such a channel. We consider the error rates, and the channel capacity. To
test our algorithm we implemented a version of the covert channel with a self-calibrating
delay loop in the sender. This means that the sender automatically adjusts sleep times
for operating system overhead and system load to ensure that the timing is accurate. An
arbitrary string of bytes was sent and then verified at the receivers’ end. Error rates were
measured for zeroes being received as ones, and ones being received as zeroes.

Experiments were run where the receiver was 4 hops, and 24 hops away, however,
the error rate for 4 hops was mostly dependent on system load instead of network latency

“thesis_main” — 2005/11/21 — 13:09 — page 148 — #157
i

i

i

i

i

i

i

i

148 CHAPTER 5. OTHER APPLICATIONS

Figure 5.1: Error rates for zeroes being received as ones (p0) and ones being received
as zeroes (p1), and channel capacity (C) for non-symmetric binary channel, where ∆t0

is constant and ∆t1 increases. Horizontal axis shows ∆t1−∆t0 in seconds, ∆t0 = 0.2s,
0.21≤ ∆t1 ≤ 0.4s

differences. Therefore all 4 hops data was discarded. Over the course of multiple days
various predetermined sequences were transmitted and the error rates were recorded. The
difference between ∆t0 and ∆t1 was varied from 0.01 second to 0.2 seconds. The graph
in Figure 5.1 shows the error rates p0 and p1 that were measured, where p0 is the fraction
of zeroes that were received as ones, and p1 is the fraction of ones that were received as
zeroes.

There is no error-free communication over a noisy channel when messages are en-
coded with zero redundancy. The amount of redundancy that must be added to achieve
error-free communication depends on how noisy the channel is, and can be measured
with the Shannon Channel Capacity [90]. The channel capacity represents the high-
est amount of information per symbol (Bit/Symbol) that can be transmitted through the
given noisy channel, and for a binary symmetric channel (BSC) is defined as

C = 1−
[

Pe log
1
Pe

+(1−Pe) log
1

1−Pe

]

(5.1)

where Pe is the error probability. For example, if we observe a train of time delays that
form a “random” (incompressible) binary sequence then we would expect that the num-
ber of zeroes is about the same as the number of ones. However if C < 1 then it would
be impossible for the intruder to convey any information (with a negligible error proba-

“thesis_main” — 2005/11/21 — 13:09 — page 149 — #158
i

i

i

i

i

i

i

i

5.1. COVERT CHANNELS 149

bility) transmitting at a rate of 1 Bit/Symbol. In other words, in the presence of noise,
the intruder will in general be forced to adopt some form of channel codification with a
rate necessarily below C. This redundancy is well known in almost any form of digital
communication; popular schemes include sending parity bits, CRC (Cyclic Redundancy
Check) codes, and ECC (Error Correcting Code). However, when the C falls far below 1,
the amount of redundancy that the intruder is forced to use becomes impractical. This is
also the solution to preventing this type of covert channel: by artificially varying packet
delays at the border (be it router or firewall) enough to force C down so far that successful
transmission of data will go too slow, and is too unreliable.

However, intuitively our binary channel is not symmetric. Since the interpacket de-
lays are different for zeroes and ones, their respective transmission rates are different as
well. This leads to the expectation that the error rates must be different also, and this can
be observed from the graphs (p0 and p1 are different). In other words, it takes less time to
transmit 100 zeroes than it takes to transmit 100 ones. This means that the rate at which
zeroes are transmitted is higher than the rate at which ones are transmitted. (The fact that
zeroes and ones are intermixed in our communication does not matter; the results would
have been the same where all the zeroes transmitted first, and then all the ones.) Assum-
ing that the channel does not care whether zeroes or ones are transmitted, then the error
rate is expected to go up as the transmission rate goes up. This explains why the error rate
p0 (zeroes being incorrectly received as ones) is much higher than the error rate p1 (ones
being received as zeroes). As the difference ∆t1−∆t0 increases the error curves both go
down, since it becomes easier to distinguish between zeroes and ones. Given error rates
p0 and p1 the channel capacity for a non-symmetric binary channel becomes [81]:

C = log

(

1+2
H(p0)−H(p1)

p1+p0−1

)

+
(1− p0)H(p1)− p1H(p0)

p1 + p0−1
(5.2)

where

H(x) =−x logx− (1− x) log(1− x) (5.3)

The graph in Figure 5.1 shows the channel capacity for a non-symmetric binary channel,
based on the measured error probabilities. Finally some observations about the experi-
ments need to be made explicit. Note that the time of day and network load can seriously
affect the accuracy of the transmission; this means that a congested network forces the
sender to adopt larger differences between ∆t0 and ∆t1, thus bringing down transmission
speed. Secondly, the path that the packets traverse is of direct impact on the differences
in interpacket latencies; not all 24 hops anywhere on the Internet will give the same
graph. Larger backbones tend to have faster switching hardware, keeping differences in
latencies to a minimum. We found that crossing oceans has the most profound impact on
transmission speeds, sometimes lowering them by a factor of 10. Likewise, rate limiting
and quality-of-service queueing may at times completely distort the channel, while at
other times allowing flawless transmission. This said, it must be realized that the graph
in Figure 5.1 teaches us more about the expected shape and best-case scenario, than it
tells us about what can be expected in general. The observed differences between ∆t0

“thesis_main” — 2005/11/21 — 13:09 — page 150 — #159
i

i

i

i

i

i

i

i

150 CHAPTER 5. OTHER APPLICATIONS

and ∆t1 (horizontal axis) would certainly incur much higher error rates using different
Internet paths.

5.1.5 Detection techniques

In this section we propose two methods for detecting a covert channel in interpacket
delays, measured at an arbitrary point in the network. Both techniques are based on
capturing related datastreams, meaning either a TCP communication, a PING to the same
host address or network, or a series of UDP packets with the same destination host and
port. The observation sequence that is extracted consists of the delays between outgoing
packets. Thus each time a packet leaves the local network, the ∆t is reported since the last
packet went out to the same destination. Any returning acknowledgments hold no value
for an outgoing covert channel. A PQS was used with a simple model to associate packets
with streams, and since this is a very straightforward task, the data processing capabilities
of a PQS allowed us to create this application very quickly. The PQML model produces
histograms of interpacket delay times for a configurable number of seconds, for each
tracked network communication. Below is the pseudo C-code for this model:

double Score(Track *t, Obs *o)
{

Obs *last = t -> getLast();

if (last -> src_ip != o -> src_ip ||
last -> dst_ip != o -> dst_ip ||
last -> proto != o -> proto ||
last -> sport != o -> sport ||
last -> dport != o -> dport)

return(0.0);

int i = floor ((o -> ts - last -> ts) * 10)
t -> hist[i] += 1;

double score = t -> length / (t -> length + 10);
return(score);

}

Since a detector is unaware of the time encoding that the attacker is using, an as-
sumption must be made to attempt differentiation between the ∆t’s. In our system all the
delays are stored and an average is calculated every time a new delay comes in. This
average delay (basically the sample mean) is used as a cutoff to designate the delays as
either zeroes (when they are smaller than the mean) or ones (when they are larger than
the mean). This estimated bit sequence is re-evaluated for each new delay that comes in,
and therefore can change as the mean is adjusted.

Detection by measuring Entropy

“thesis_main” — 2005/11/21 — 13:09 — page 151 — #160
i

i

i

i

i

i

i

i

5.1. COVERT CHANNELS 151

The goal of this approach is to find if the estimated bit sequence holds information,
or if it is completely random. We do this by measuring the entropy of the bit sequence.
Entropy is the measure of chaos, meaning that a higher entropy indicates that there is
less order in the data. Completely random data will give an entropy of 1.0, the highest
possible. However, when information is transmitted the data is structured and will there-
fore have a lower entropy. Measuring entropy is difficult and subjective; however, a good
approach is to measure how well the data can be compressed. Compression (like Huff-
man, or Lempel-Ziv encoding) identifies repetitions and regularities in data and codifies
recurrences with shorter codes, thus saving space. This means that the more regular the
data is, the smaller it can be compressed. For entropy we give:

ht =
LZ(OL)

L
(5.4)

where ht represents the entropy, OL is the bit sequence of length L, and LZ(OL) is the
length of the compressed bit sequence. A covert channel is detected when ht drops be-
low 0.95 or 0.90. Figure 5.2 shows the entropy for (a) normal traffic, and (b) a sentence
transmitted over a binary covert channel. The horizontal axis holds the length of the bit
sequence. It can easily be seen that the compressibility of the packet interarrival times
of regular network traffic is very poor, keeping the entropy at 1.0. However the com-
pressibility of a covert communication does not become apparent until a large sequence
has already been sent. Although the entropy drops below 1.0, it does not do so until at
least 3000 packets have been transmitted. Although this technique works, it might not
be practical (also note the scale on the vertical axis: the entropy does not drop far below
1.0). Additionally, once a chunk of data is compressed the regularities are exploited and
the sequence will have an entropy of 1.0. This means that when the attacker decides to
compress his/her communication this technique fails altogether.

Statistical Detection

This method is based on the assumption that (for a binary channel) the interpacket
delays will center around two distinct values (ie. two distinct delays) while in a normal
communication where the delays are more or less random, the ∆t’s are spread around
a single spike, see Figure 5.3. We take advantage of this characteristic to make some
statistical comparisons between a covert communication channel and normal network
traffic.

Looking at Figure 5.3 the difference between a binary covert channel (graph (b)) and
regular traffic (graph (a)) becomes evident; two spikes versus one big spike. For the
covert channel the sample mean µ (average) of the interpacket delays will be somewhere
between the two spikes. The packet count in the histogram at that point will therefore
be very low. However, looking at a normal traffic pattern the mean of the interpacket
delays will be in the center of the large spike. The packet count at the mean will thus
be very high, if not the highest. If we compare the packet count at the mean by the
maximum packet count from the histogram, we get a measure of how likely it is that the
communication is a covert channel:

“thesis_main” — 2005/11/21 — 13:09 — page 152 — #161
i

i

i

i

i

i

i

i

152 CHAPTER 5. OTHER APPLICATIONS

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 2000 4000 6000 8000 10000 12000 14000 16000

E
nt

ro
py

Bits

Covert Channel
Normal Traffic

Figure 5.2: Entropy (compressibility) of bit sequence estimated based on interpacket
delay times of (a) normal traffic, and (b) sentence transmitted over binary cover channel.
Horizontal axis shows the length of the estimated sequence in bits, vertical axis shows
the entropy.

PCovChan = 1− C(µ)

Cmax
(5.5)

Experiments with three different types of data were conducted, and Figure 5.4 shows the
ratio C(µ)

Cmax
for these experiments.

1. Normal Data. Packets with a average delay of 0.2 seconds were transmitted. The
interarrival times vary but the spike is at 0.2 seconds. The sample mean µ is there-
fore represented by a delay very close to 0.2 and the number of packets with exactly
that delay (C(µ)) is very high. The ratio between this number and the maximum
number of a packet for a certain delay (Cmax) quickly grows to 1.0, and stays there
as more packets are transmitted. Normal traffic is very bursty and interpacket
delays are often dependent on how quickly acknowledgments or responses are re-
turned, which is once again dependent on the distance (and system load) of the
two systems communicating. The packet delays therefore center mostly around a
single value (0.2 seconds in this case) with occasional outliers (usually in the order
or 120 seconds or more).

2. Random Data. Packets are sent with a fully random delay. Although this is not
realistic for traffic encountered on the network, it does present a good idea of the

“thesis_main” — 2005/11/21 — 13:09 — page 153 — #162
i

i

i

i

i

i

i

i

5.1. COVERT CHANNELS 153

(a) (b)

Figure 5.3: Histograms for two different network communications. Horizontal axis
shows the interpacket delay time in tenths of a second, vertical axis shows the num-
ber of packets received with a given delay. (a) example HTTP traffic session captured at
our border. (b) a covert channel using UDP traffic, receiver was 24 hops away.

worst case scenario. Initially, when only a few bits have been sent, the delays
scatter across the range and it is unlikely that the sample mean will have a high
count. That explains why, until approximately the first 10 bytes, the ratio C(µ)

Cmax
remains zero. Later on, as more packets arrive the histogram starts to even out so
the ratio starts to crawl up. As the number of transmitted packets goes up even
further the ratio keeps growing, until it eventually hits 1.0 as the packet count goes
to infinity.

3. Covert Channel Communication. Two delays are used, thus the interarrival times
concentrate around those two values. The sample mean µ lies approximately in
the middle between the two spikes. The count C(µ) is low and therefore the ratio
C(µ)
Cmax

is approximately zero. As more and more bits are transmitted over the covert
channel the spikes increase in size, however that ratio always remains very close
to zero.

Our algorithm detects the sequence that most likely represents the covert communi-
cation channel analyzing the value C(µ)

Cmax
. The lower that value the higher is the probability

of having a malicious communication hidden in interpacket delays.

5.1.6 Discussion

The statistical analysis of the interpacket delays seems to do the best job of classifying
between regular network traffic and traffic that is communicating through modulation of
the interpacket delays. Therefore the covert channel detection models were all based on
the statistical technique. As outlined above the actual sensor also runs inside a PQS,

“thesis_main” — 2005/11/21 — 13:09 — page 154 — #163
i

i

i

i

i

i

i

i

154 CHAPTER 5. OTHER APPLICATIONS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800

C
(m

ea
n)

/C
(m

ax
)

Bits

Covert Channel
Normal Traffic

Random Packet Delays

Figure 5.4: The ratio between the packet count at the sample mean and the maximum
packet count for normal traffic, fully random delays, and for a binary covert channel.
Horizontal axis shows the length of the estimated sequence in bits, vertical axis shows
C(µ)
Cmax

.

generating histograms of packet delays for all observed traffic streams. The PQS detec-
tion model takes these histograms as input and compares it to previously seen histograms
of the same traffic stream, effectively smoothing out the outliers. The second step is
evaluating the number of packets that were transmitted in the monitored stream; after
all, if only 17 packets were transmitted so far the attacker could only have exfiltrated 2
bytes. This is hardly worthy of a red alert. Thus, as the number of packets transmitted
grows, and the model still considers the histograms evidence of a covert channel, then
the score of this alert is increased. We are currently investigating a method of further
improving this model by comparing the histograms of a given network communication
with previously recorded histograms of the same traffic type. This will refine the model
by suppressing false positives, as the histogram of an interactive SSH session will look
significantly different from the histograms of a HTTP web page download.

Finally, it is important to point out the intuitive relationship between the relative
height of Cµ and the channel capacity. Consider that, for an approximately equal distri-
bution of input symbols, Cµ forms the cutoff point between zeroes and ones; if a received
∆t is smaller than Tµ a zero is received, otherwise a one. Therefore, in a histogram, the
more packets are counted exactly around the mean (Cµ), the “higher” the confusion. In
other words: the peak for zeroes and the peak for ones are overlapping. The higher Cµ,
the larger the overlap. Confusion, or overlap, means that zeroes are incorrectly received

“thesis_main” — 2005/11/21 — 13:09 — page 155 — #164
i

i

i

i

i

i

i

i

5.2. KINEMATIC TRACKING 155

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25

p0
p1
C

C_u/C_max

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25

p0
p1
C

1-C_u/C_max

Figure 5.5: Same graph as 5.1 with the channel capacity added. Note the close relation-
ship between the channel capacity C and the ratio 1− Cµ

Cmax
.

as ones, and vice versa. A bigger overlap means higher error rates and a reduced channel
capacity. So as the ratio Cµ

Cmax
grows, the channel capacity drops.

Furthermore, we know that when the peaks are perfectly separated the error will be
zero, and therefore the channel capacity one. Also 1− Cµ

Cmax
will be one. Conversely,

when the peaks are exactly overlapping 1− Cµ
Cmax

will be zero, and there will be no dis-
tinction between zeroes and ones, meaning that the channel capacity will be zero also.
The intuitive expectation that 1− Cµ

Cmax
and the channel capacity are closely related is

confirmed by the experiments shown in Figure 5.5.

5.2 Kinematic Tracking

This section describes the use of a PQS to track the motion of fish in a fish-tank, using a
video camera. The PQS models used are very similar to the model presented with the dot
tracking example in Section 2.5. This work was done together with Alex Jordan, who
presented a Masters thesis on the subject [57]. An in-depth description of the system can
be found there.

“thesis_main” — 2005/11/21 — 13:09 — page 156 — #165
i

i

i

i

i

i

i

i

156 CHAPTER 5. OTHER APPLICATIONS

5.2.1 Introduction

Many tracking problems are centered around the kinematic properties of the object to
track. Examples include tracking of airplanes, vehicles moving through a battlefield, peo-
ple walking through the streets, the balls that were used in section 2.6, and tracking fish
in a tank. In all these examples there are multiple objects that have a constantly changing
position and momentum. The fish are particularly interesting since their changes in mo-
mentum are very sudden (fish tend to sit still for awhile and then quickly move and turn
before settling down again). The goal of this project was to use streaming video images
of the fish, track them, and predict where they are going in real-time.

5.2.2 Design

Sensors
The fish-tank was filmed by a low resolution camera providing a steady stream of

frames to an image processing library that extracted “centroids” of anything that was
bright in comparison with the rest of the frame. This means that colored fish, air bubbles,
and moving plants stand out and get processed to an (X,Y) coordinate pair indicating the
center of the object. The sensor therefore includes the camera and the processing that
yields the centroids. The output of the sensor is a stream of (X,Y) coordinates for each
frame.

Modeled Processes
The model used is directly derived from the model used in the example described in

Section 2.5. This model is a degenerate case of the Kalman Filter, mostly because the
motion of the fish is generally not very regular. The model is therefore designed such
that (near-)linear motion is preferred, however, when linear motion cannot be detected,
Euclidean distance to the next observation is used with a score penalty. This means that
sitting fish, drifting fish, or fish swimming at a reasonably constant pace could be tracked
by comparing the next predicted position with the stream of incoming observations.

Outputs
As output, the system draws a string of colored dots for each observation in a track

right on the video frame. This means that a correctly tracked fish leaves a long trail
of dots all in the same color. When multiple fish are in the frame, each track gets a
different color. Additionally, the model will output a prediction of where each fish is
going, showing that tracking continues even when the fish is behind an obstacle.

5.2.3 Results

The annotated video stream looks so intuitive that most casual observers wonder what is
so remarkable about it. The application is capable of tracking multiple fish swimming
around, crossing paths, and moving in and out of view, while rarely losing track or get-
ting confused. Recorded movies can be obtained at http://www.pqsnet.net/projects. For

“thesis_main” — 2005/11/21 — 13:09 — page 157 — #166
i

i

i

i

i

i

i

i

5.3. AUTONOMIC COMPUTING 157

(a) (b)

(c) (d)

Figure 5.6: Four screen shots of a tank with three fish. Trails are about 16 observations
long and show that the past observations have been correlated to belong to the same fish
(color of each trail is the same for all past observations).

further details, and an in-depth description of higher level detection of fish behaviors,
such as feeding and chasing behavior, refer to Alex’s thesis [57]. Several screen shots of
the annotated video are shown in Figure 5.6.

5.3 Autonomic Computing

In this section an application of PQS is outlined where the observed environment con-
sists of large server networks. The models describe failure, deteriorating performance,
and attack processes. This work was done together with Chris Roblee, who presented a
Masters thesis on the subject [103]. A paper was also presented at the second IEEE In-
ternational Conference on Autonomic Computing in June 2005 [102]. This section aims
to give a rough overview of the functionality of the system. For an in-depth description
of the specifics, the references should be consulted.

“thesis_main” — 2005/11/21 — 13:09 — page 158 — #167
i

i

i

i

i

i

i

i

158 CHAPTER 5. OTHER APPLICATIONS

5.3.1 Introduction

Autonomic computing approaches aim to detect deviant behavior of servers and services,
and fix the situation before it becomes a problem. Most experimental systems hook into
the OS kernel and monitor all system calls for each monitored process [44]. Combined
with dynamic behavior learning algorithms, such systems can become an unacceptable
load on system resources. Since most failures, degrading performance, and crippling
attacks are very process-like in nature it is a logical choice to apply a PQS to this problem
domain. For instance, consider a system running a network enabled service to which
clients make requests. Examples of such services are web servers, on-line Transaction
Processing servers, and Database servers. Assume that this service has a programming
flaw that makes the service consume more and more system memory as requests come
in over the network. Eventually the system is going to run out of memory and use disk
swap, leading to significantly degraded response times. An autonomic monitoring system
should have quickly realized that the service process is consuming increasing amounts of
memory, and should have taken “appropriate action” before all resources were consumed.
Here “appropriate action” would be to stop and restart the buggy service.

5.3.2 Design

The architecture was designed to mimic the conclusions and actions that a diligent ad-
ministrator would take, given the opportunity to monitor one particular system 24 hours
per day.

Sensors
The observations of the system should include most things that an administrator

would normally look at. However, another requirement was that the sensors require
minimal changes to the monitored host, meaning that hooking into the OS kernel and
monitoring system calls was out of the question. Specifically, monitored quantities for
the host in general include: total system memory utilization, total CPU usage, process
count, and total network usage, and for any directly monitored process includes: process
state, process memory utilization, process CPU usage, and process forking behavior. In
addition to this host based sensor, we also included information coming from any net-
work IDS sensors.

Modeled Processes
The goal was to look for processes that an administrator would normally look for.

This includes unusually high memory or CPU usage, slow response times, and unex-
pected forking behavior in combination with possible ongoing network attacks, or in-
creased numbers of client requests. For instance, consider monitoring an FTP server.
This server may be vulnerable to an unknown exploit that gives the attacker root privi-
leges. Were such an attack to occur the network IDS may or may not pick up the attack
signature, however, the host based autonomic computing sensor will report that the FTP
server has just forked a shell (such as “/bin/sh”), which would be a really bad sign. Con-

“thesis_main” — 2005/11/21 — 13:09 — page 159 — #168
i

i

i

i

i

i

i

i

5.3. AUTONOMIC COMPUTING 159

versely, when we consider an SSH server, it would be normal to expect it to spawn shells
in response to remote user logins. Although, once again, if a network attack was ob-
served, and for example the CPU utilization of the SSH server was to skyrocket, it would
be a sign of a possible compromise of the SSH server.

Outputs

A system cannot be considered autonomic if the detection of failure or attack pro-
cesses is not acted upon autonomously. The actions that the system invokes should be
the same as those that an administrator would normally take in the same situation. A
buggy or faulty service may be shut down and restarted safely, thus freeing the resources
that it was erroneously holding. This cycle can be repeated forever, as long as the ser-
vice is restarted before the host system runs out of resources and crashes. In the case
of a compromise, however, it is important to shut down the vulnerable service and all
its children as soon as possible, without restarting them. An administrator, in such a
case, would probably patch the vulnerable service, or replace it by a version that does not
have the vulnerability. This, however, lies beyond the capabilities of the PQS based au-
tonomic system. Instead, after disabling the vulnerable service and its children, a human
administrator is notified.

5.3.3 Results

The essence of the PQS autonomic server monitoring system was to detect and act as
an administrator, but only in the simplest of cases. This required the PQS models to
predict the moment of service failure, and detect a possible system compromise. To test
the system a service was created that could be configured to be buggy in several different
ways: it could leak memory, increase CPU usage with every request, or reduce response
times. Additionally, an FTPD service was used that could be exploited to give a root
shell, and a web service was used that could be crippled by a DOS attack.

For all three different deteriorating conditions of the buggy service, the system only
needed observations from the host based sensor to correctly determine the moment to
restart the service. The web server was shut down based on a network IDS observa-
tion that an attack had occurred, and the failure of the service to respond to subsequent
queries. In retrospect, the web service could safely have been restarted. The FTPD ser-
vice was correctly shut down after the host based sensor detected that it had spawned a
root shell (which was also killed). It must be said, however, that simply killing the ser-
vice and the shell is only one step in cleaning up after the attack. There is always a slight
delay between the compromise, the detection, and the reaction of the system. During this
delay an automated attack could have installed a root-kit, thus leaving access to the com-
promised system open, even though the vulnerable service has been killed. Additional
details can be found in the references [103], and [102].

“thesis_main” — 2005/11/21 — 13:09 — page 160 — #169
i

i

i

i

i

i

i

i

160 CHAPTER 5. OTHER APPLICATIONS

5.4 Application overview

This section gives an overview of many of the applications of PQS. Most of these ap-
plications have been discussed in one way or another in this thesis, and all of them use
exactly the same underlying PQS software. The diversity of the domains that PQS has
been used for is a strong argument for the power of the PQS paradigm.

Bouncing balls (Section 2.6)
Application Area Kinematic tracking (of billiard balls)
Sensors Synthetic (X,Y) pairs
Models Simplified Kalman Filter
Output Tracks and predicted positions
Performance Measured How? Accuracy of predictions

DIB:S (Chapter 3)
Application Area Internet worms
Sensors ICMP Destination Unreachable enabled routers
Models Fast and medium-fast moving worms
Output Alerts of aggressively scanning hosts
Performance Measured How? Infection percentage at detection time

Covert Channels (Section 5.1)
Application Area Malicious data exfiltration
Sensors Data flow sensor, packet timing sensor
Models Information theory based, channel capacity, statisti-

cal
Output Communications that are suspected covert channels
Performance Measured How? False positive and false negative rates

Fish tracking (Section 5.2)
Application Area Kinematic tracking (of fish)
Sensors Video centroids
Models Simplified Kalman Filter
Output Correlated Path and predicted position
Performance Measured How? Accuracy of predictions

Autonomic Computing (Section 5.3)
Application Area Server monitoring
Sensors Host based (process and OS), Snort
Models Service failure, deteriorating performance, service

compromise or DOS
Output Autonomic actions: shut down and restart, terminate
Performance Measured How? Total number of requests serviced per time period

“thesis_main” — 2005/11/21 — 13:09 — page 161 — #170
i

i

i

i

i

i

i

i

Appendix A

PQML Specification

161

“thesis_main” — 2005/11/21 — 13:09 — page 162 — #171
i

i

i

i

i

i

i

i

162 APPENDIX A. PQML SPECIFICATION

A.1 Introduction

The Process Query Modeling Language (PQML) is an assembly inspired, low level lan-
guage specification for defining observations and models for Process Query Systems
(PQS). Any implementation of a Process Query System must be able to parse PQML
(pronounce Puh-Que-Mol) files and obtain observation layouts and model definitions
from such files.

PQS models work on tracks of observations that are constructed by the core system.
These tracks of observations are scored by PQS models through likelihoods. Models are
called to evaluate tracks and assign a likelihood score between 0 and 1. These scores
are then used by the PQS engine to determine which tracks should be pruned and which
tracks get to survive. As more observations arrive the tracks grow and the models are
called again to evaluate the track. Models can also be called to evaluate tracks even if
that track did not change. This accounts for time passing, so the model can make the track
age out. The goal, therefore, of PQML is to provide a structured interface for evaluating
observations in a track, and to score that track with a likelihood. This likelihood can be
configured to decay logarithmically by setting a halflife value in seconds. This decay will
be continuous and when a new likelihood is set it will start decaying immediately.

There is no explicit information given on the binary representation of a PQML defi-
nition, it is up to the implementer of the specific PQS to determine what the best internal
representation for its PQS is. This specification document lists the requirements for the
interpreter and the syntax of the language. The section at the end gives several examples
which should be used to verify the correct parsing and execution of the PQML inter-
preter in any PQS implementation. It is expected that all higher level models can be
compiled into a PQML program and so be used by a PQS. Hidden Markov Models, or
state machines can have their transition predicates be PQML programs, thus making the
translation to PQML more convenient.

Starting November 10th, 2004, PQML includes Arrays in the .data, .observation
and .conclusion sections. These arrays must be addressed by special instructions which
take an extra argument to index the array. Arrays are now considered part of the base
specification.

A.2 Interpreter Specification

This chapter defines the minimum specifications for a PQML interpreter. A PQML in-
terpreter is a virtual machine with registers, a program counter, flags and a stack. There
are three sets of registers, one for each datatype:

DATATYPES
type: minimum specification:

int signed integer of at least 32 bits
float at least IEEE 754 floating point number compatible
string character string of at least 32 characters

“thesis_main” — 2005/11/21 — 13:09 — page 163 — #172
i

i

i

i

i

i

i

i

A.3. SPECIFICATION OF PROGRAM SECTIONS 163

A.2.1 Registers

The PQS implementation is required to have at least 32 registers of each datatype: int,
float, and string. All registers are general purpose, and instruction opcodes are register
specific. Addressing of registers is done starting from 0:

i0—i31 integer registers
f0—f31 floating point registers
s0—s31 string registers

A.2.2 Stack

The stack is used to record the return address in a CALL/RETURN sequence. Addition-
ally, the stack can be explicitly modified with any PUSH/POP instruction pair. The size
of the stack may depend on the implementation of the particular PQS, however, it should
at least hold 64 items, regardless of the item size. (This is especially relevant regarding
the string datatype, since its size is large compared to other dataypes.)

A.2.3 Compare register

The compare register holds the result from the CMP operations. The datatype of the com-
pare register is integer. Conditional jumps query the compare register to adjust program
control flow.

A.3 Specification of program sections

PQML consists of six different program sections that can be placed at any location in
a PQML file. The .text sections contain opcodes and program code, the .data sections
contain specification of memory, both constants, and track-independent model memory.
The special section .observation defines the layout and default values of a particular
observation type. It is up to the particular PQS implementation to aquire the observations
and map them to the format specified in the PQML file. Very similar to observations is
the .conclusion section. The definition of a conclusion is a stateful section that is kept
with each track. When tracks are split off in children this conclusion section is cloned
as well. The PQML model can write (and read) these conclusion variables, and track
specific data can be stored by the model, to later be used as stateful data. This conclusion
section also defines the output of the PQS. The .hal f li f e directive is not really a section
because it only takes a floating point value indicating the halflife value in seconds to use
to decay the track likelihood. Likelihood decay can be disabled by setting a negative
value. Finally, an .include section is a one-line directive which can be used to include
another PQML file.

Text is parsed in the order that it is received. An include puts the included file right at
the point of include. Because there are no explicit line separators, there may only be one
data definition, or instruction per line. All data and observations should be parsed first to

“thesis_main” — 2005/11/21 — 13:09 — page 164 — #173
i

i

i

i

i

i

i

i

164 APPENDIX A. PQML SPECIFICATION

identify their labels. Text should be parsed in two passes, the first pass to identify all the
labels and verify the syntax, the second pass to generate code. Execution of code starts
at the start label in the .text section. There must be exactly one start label in a PQML
program.

Comments are prepended by a semi-colon: “;” and run to the end of the line.

A.3.1 Labels

Labels are used to identify data, observation variables, and locations in program code.
Labels must start with a letter, but can contain numbers in all but the first character.
Labels are case sensitive and may contain up to 32 characters. Labels in a text section
are immediately followed by a colon “:”.

A.3.2 Data (.data)

Since PQML does not feature immediates in the instruction code, all constant data must
be defined in a separate .data section. The labels can then be used in the program code
to load these constants into registers, where it can be modified. Storage of data can also
be done to this data section, but it is, in general not recommended. Although it possible
to write to all memory locations it is advised to keep a very clear distinction between
constants and modifiable data. This data section can be used by models that are self-
learning and cannot always store model-data with tracks, because the learning data is
track independent. Any PQS implementation must be able to hold at least 1000 data
definitions per PQML program.

Data is defined by a datatype label value triplet, with one data definition per line.
Three datatypes are valid (int, float, and string) as defined in the Interpreter Specification
section. Strings in a data section must have double quotation marks around it: “ and ”.
Example:

.data
int cnt0 0
float PI 3.1415
string str1 “test”

A.3.3 Observations (.observation)

Observation specifications define how the lobs instructions will be able to access data in
observations. All observation types and layouts must be defined in the PQML program
before it can be used by the program code. The .observation directive takes the obser-
vation name directly after the directive. The data layout definition follows on the lines
below, each definition followed by a default value. Every .observation section defines
exactly one observation. The layout definition of the observation follows the syntax de-
fined above for .data sections. Any implementation of a PQS must be able to handle at

“thesis_main” — 2005/11/21 — 13:09 — page 165 — #174
i

i

i

i

i

i

i

i

A.3. SPECIFICATION OF PROGRAM SECTIONS 165

least 4 different observation definitions per PQML model. Example:

.observation packet
string src_host “sky-walker”
string dst_host “artemis”
int protocol 6
int src_port 35024
int dst_port 22

A.3.4 Track state and conclusion (.conclusion)

Any PQML program can have only one .conclusion section. It defines the layout of the
stateful data that is associated with each track. Also, it defines the conclusion that will
be published for any given track by the PQS.

When a track of related events gets created by a PQS it must create a stateful section
for each PQML model. When a track is cloned and creates offspring, the stateful section
must be cloned as well. A PQML model may store stateful information in this section
that can be reused on subsequent evaluations of the track. If, for example, the model
defines a state machine, then the .conclusion stateful section of a track can hold the state
that the machine is currently in. This eliminates the need for the PQML model to re-
evaluate the entire track. The stored state is enough to determine how the newly added
observation is going to affect the current state. This stateful section must be unique for
every track of related events in the PQS.

Besides being a stateful, readable and writable section of memory associated with
each track, it is also, by definition, the conclusion for that track. This means that when
the PQS decides to publish a track as a result the .conclusion section associated with that
track must be published as well. The PQML model may therefore put current state data,
as well as final conclusion (and possibly even predicted state) data in this section. This
.conclusion track data must be published by the PQS as an observation. This means that
the PQS can publish its conclusions directly into a second PQS where the .conclusion is
defined as a .observation input.

The stateful track data can be read and written with the GETC and SETC instructions.
The .conclusion section defines datatypes, labels, and defaults. Example:

.conclusion modelstate
string modeltext “State of Model”
int DFA_state 0
int predicted_next1 5
int predicted_next2 4
float next1_chance 0.4
float next2_chance 0.1

In addition to defining variables that can be assigned in the PQML model there are
several variables that may be added to a conclusion section only, and which get filled in

“thesis_main” — 2005/11/21 — 13:09 — page 166 — #175
i

i

i

i

i

i

i

i

166 APPENDIX A. PQML SPECIFICATION

by the tracker on publication. This means that the values are not accessible inside the
PQML program.1 The identifiers are: intHY POT HESIS_ID, intHY POT HESIS_SIZE,
and f loatHY POT HESIS_SCORE. Type specifications are mandatory and default values
must be given, although they are ignored by the publishing logic of the PQS. The hypoth-
esis ID is unique for every hypothesis and changes even when a new observation arrives
at a hypothesis. This number can be easily used to regroup conclusion observations into
a full hypothesis. Size indicates the number of tracks in the hypothesis, and score returns
the averaged score of the hypothesis. Example:

.conclusion modelstate2
int HYPOTHESIS_ID -1
int HYPOTHESIS_SIZE -1
float HYPOTHESIS_SCORE -1.0

A.3.5 Opcodes and Syntax (.text)

Code sections are identified by the .text directive. Labels in the program code are fol-
lowed directly by a colon “:”. Execution starts at the start label. Instructions are all lower
case. The examples are designed to give good insight into the use of these instructions
and building PQML programs.

General
nop No operation nop
exit Terminate program exit
Arithmetic
addi i1, i2 Add integer i1←i1+i2
addf f1, f2 Add float f1←f1+f2

subi i1, i2 Subtract integer i1←i1−i2
subf f1, f2 Subtract float f1←f1−f2

muli i1, i2 Multiply integer i1←i1×i2
mulf f1, f2 Multiply float f1←f1×f2

divi i1, i2 Divide integer i1←i1/i2
divf f1, f2 Divide float f1←f1/f2

modi i1, i2 Modulo (remainder) i1←i1%i2
xltif i1, f2 Typecast F to I i1←(int) f2

xltfi f1, i2 Typecast I to F f1← (float) i2

1To make these values accessible during model execution would put a serious cap on efficient implementa-
tions of a Process Query System. In all cases the different hypotheses that get created are very similar, meaning
that they contain many of the same tracks. Efficient PQS implementations would not clone these tracks, thus
only needing one model evaluation per copy. Such a track would therefore belong to many hypotheses at once.

“thesis_main” — 2005/11/21 — 13:09 — page 167 — #176
i

i

i

i

i

i

i

i

A.3. SPECIFICATION OF PROGRAM SECTIONS 167

Additional Arithmetic
sqrtf f1 Square root f1← sqrt(f1)
sinf f1 Radial Sine f1← sin(f1)
cosf f1 Radial Cosine f1← cos(f1)
tanf f1 Radial Tangent f1← tan(f1)
asinf f1 Radial Arc Sine f1← asin(f1)
acosf f1 Radial Arc Cosine f1← acos(f1)
atanf f1 Radial Arc Tangent f1← atan(f1)
logf f1 Natural Log f1← ln(f1)

expf f1 Natural Exp f1← ef1

powf f1, f2 Power f1← ff2
1

Extended Data
xchi i1, i2 Exchange integer i1↔i2
xchf f1, f2 Exchange float f1↔f2

xchs s1, s2 Exchange string s1↔s2

movi i1, i2 Copy integer i1←i2
movf f1, f2 Copy float f1←f2

movs s1, s2 Copy string s1←s2

Control flow
jmp label Jump to instruction at label PC← label
be label Jump if compare was equal if CMP = 0 PC← label
bne label Jump if not equal if CMP 6= 0 PC← label
bg label Jump if greater if CMP > 0 PC← label
bge label Jump if greater or equal if CMP ≥ 0 PC← label
bl label Jump if lesser if CMP < 0 PC← label
ble label Jump if lesser or equal if CMP ≤ 0 PC← label
call label Push PC on stack and jump push(PC), PC← label
ret Pop PC from stack PC← pop()
Compares
cmpi i1, i2 Compare integer CMP←i1−i2
cmpf f1, f2 Compare float CMP← (int) f1−f2

cmps s1, s2 Compare string CMP← strcmp(s1, s2)
Data section operations
geti i1, label Get integer i1 ← DATA[label]
getf f1, label Get float f1 ← DATA[label]
gets s1, label Get string s1 ← DATA[label]
seti i1, label Set integer DATA[label]← i1
setf f1, label Set float DATA[label]← f1

sets s1, label Set string DATA[label]← s1

“thesis_main” — 2005/11/21 — 13:09 — page 168 — #177
i

i

i

i

i

i

i

i

168 APPENDIX A. PQML SPECIFICATION

Stack
pushi i1 Push integer push(i1)
pushf f1 Push float push(f1)
pushs s1 Push string push(s1)
popi i1 Pop integer i1 ← pop()
popf f1 Pop float f1 ← pop()
pops s1 Pop string s1 ← pop()

The observation instructions below operate directly on the observations in a track.
The second parameter to these instructions is formatted with a type, an integer register,
and a label field. The type is as identified by .observation sections, as are the label fields.
The type refers to a specific type of observation, and the label refers to the particular
named field inside the observation. The integer register indicates which observation the
data is going to be retrieved from, where 0 is the last observation that came in, of the
specified type. The first observation of a particular type in a track can be retrieved with
the ldsize instruction outlined further below. The lobsts instruction is a special case where
the timestamp of the requested observation is returned in two destination registers. The
first will hold the number of seconds since the Epoch (00:00:00, January 1st, 1970), the
second register will hold the number of microseconds in this second. As a type speci-
fier ANY may be used to get the timestamp from the last observation added to this track.
For comparison the lnowts loads the current time (now) into the two destination registers.

Observations
lobsi i1, type[i2].label
lobsf f1, type[i2].label
lobss s1, type[i2].label
lobsts i1, i2, type[i3]
lnowts i1, i2

The instructions below set or get the likelihood for the track. When the program is
called by the PQS the likelihood that is set (and thus returned on a get) should be the
likelihood that was previously given to this track by this particular model minus the log-
arithmic decay set by the halflife parameter.

Likelihood modification
getl f1 Get likelihood f1 ← LIKELIHOOD
setl f1 Set likelihood LIKELIHOOD← f1

The conclusion instructions load and store stateful data with the track under evalua-
tion. The data stored in a conclusion section remains with the track (and all its children,
which get their own copy) and can be retrieved and updated on subsequent calls to the
PQML model. This section is also published as the conclusion for the given track. For
more information refer to the section regarding the .conclusion directive.

“thesis_main” — 2005/11/21 — 13:09 — page 169 — #178
i

i

i

i

i

i

i

i

A.3. SPECIFICATION OF PROGRAM SECTIONS 169

Track state and conclusion.
getci i1, concl_label i1← T.concl(label)
getcf f1, concl_label f1← T.concl(label)
getcs s1, concl_label s1← T.concl(label)
setci i1, concl_label T.concl(label)← i1
setcf f1, concl_label T.concl(label)← f1

setcs s1, concl_label T.concl(label)← s1

The instructions below are special function instructions. The ldsize instruction loads
the number of type observations in the current track into the given integer register. To
determine the size of the entire track (all observations) the type specifier should be set to
ALL. The cmpt instruction compares the type of the i1th observation in the track to the
given type. If the types match the compare register is set to 1, else the compare register is
set to 0. The integer register holds the number of the observation to compare to, where 0
is the last observation that was added to this track. The tmod instruction sets the compare
register to 1 if the track was modified since the last time this model was called to evaluate
this track. If no new observation was added to this track since the last evaluation, then
the compare register is set to 0.

Special instructions
ldsize i1, type return number of type obsv. i1← #type
cmpt i1, type compare i1th obsv. to type CMP← obs[i1] - type
tmod set if track was modified if mod(TRACK) CMP← 1

A.3.6 Logarithmic Likelihood decay (.halflife)

The .hal f li f e directive sets that speed with which track likelihoods will decay over time.
After the specified time the likelihood of the track will have decayed to half of its original
value, if it wasn’t overwritten by a new setl instruction. To disable the likelihood decay
set a negative value. The .hal f li f e directive takes a floating point argument indicating
the halflife time in seconds.

A.3.7 Including other files (.include)

The .include directive takes one argument which must be a valid filename of another
PQML file. This file can contain data, observation, and text sections, as well as other
inclusions. It is the task of the programmer to ensure that the includes do not redefine
labels (data, text, or observation) or contain cyclic includes.

A.3.8 Arrays

As of November 10th, 2004, PQML includes Arrays in the .data, .observation and
.conclusion sections. This section describes how to specify arrays, and how to address

“thesis_main” — 2005/11/21 — 13:09 — page 170 — #179
i

i

i

i

i

i

i

i

170 APPENDIX A. PQML SPECIFICATION

them through any of the 15 new special instructions. Arrays are specified by a size
parameter placed between square brackets directly following (no whitespace) the name
label. The size must be specified and cannot be variable. The value specified after the
array name label will be given to all elements in the array as the default value. Only the
int and f loat formats are valid for arrays.

.data
int state_space[10] -1

.conclusion HMMstate
float state_space[4] 0.25

To reference elements of an array an integer register must be given that holds the
index. The indexing is similar to the C programming language: 0 addresses the first ele-
ment, 1 addresses the second, and so forth.

Data section array operations
getia i1, label[i2] i1 ← DATA[label@i2]
getfa f1, label[i2] f1 ← DATA[label@i2]
setia i1, label[i2] DATA[label@i2]← i1
setfa f1, label[i2] DATA[label@i2]← f1

Track state and conclusion array oprators.
getcia i1, concl_label[i2] i1← T.concl(label@i2)
getcfa f1, concl_label[i2] f1← T.concl(label@i2)
setcia i1, concl_label[i2] T.concl(label@i2)← i1
setcfa f1, concl_label[i2] T.concl(label@i2)← f1

Observations array operators
lobsia i1, type[i2].label[i3]
lobsfa f1, type[i2].label[i3]

“thesis_main” — 2005/11/21 — 13:09 — page 171 — #180
i

i

i

i

i

i

i

i

Appendix B

PQML Models

171

“thesis_main” -- 2005/11/21 -- 13:09 -- page 172 -- #181
i

i

i

i

i

i

i

i

172 APPENDIX B. PQML MODELS

B.1 funcs.pqml

This code is sourced by several of the PQML code files given in this appendix. It imple-
ments a function that translates two integer time pairs (seconds and microseconds) to a
floating point time difference in seconds.

;
; Vincent Berk
; [10/28/2004]
;
; Take notice which registers are used for parameters,
; and which are used for return values. Make sure to
; push registers which you don’t want overwritten accidentally.
;

; Some constants used here

.data
float funcs_million 999999

;
; This function calculates the delta T in seconds
; from four integer registers, and returns the
; result in one float register.
; Parameters:
; i20 - seconds old
; i21 - microseconds old
; i22 - seconds new
; i23 - microseconds new
; Returns:
; f20 - difference in seconds
;

.text
delta_t:

pushf f21 ; save f21
pushi i20 ; save i20
pushi i21 ; save i21
pushi i22 ; save i22
pushi i23 ; save i23

subi i22, i20 ; secs new - secs old
subi i23, i21 ; usecs new - usecs old
xltfi f20, i23 ; usecs to float

getf f21, funcs_million
divf f20, f21 ; usecs to secs

xltfi f21, i22 ; seconds
addf f20, f21 ; add the seconds difference

popi i23 ; restore i23
popi i22 ; restore i22
popi i21 ; restore i21
popi i20 ; restore i20

“thesis_main” -- 2005/11/21 -- 13:09 -- page 173 -- #182
i

i

i

i

i

i

i

i

B.2. MOVINGDOTS.PQML 173

popf f21 ; restore f21
ret ; done

B.2 movingdots.pqml

This PQML model program was used for the example in Section 2.5. The model scores
tracks based on how well the predicted current position of the dot matches the received
observation.

;
; PQML for tracking a moving dot
; If the length of the momentum vector is larger than 200,
; the track gets a score of 0. No exceptions.
;
; Vincent Berk
; [10/28/2004]
;
; It is expected that tracks < 2 are not pruned, just
; to give them a chance to grow.
;

;
; After 5 seconds of lack of new observations
; the track is half as accurate/valid.
;

.halflife 5.0

;
; Get some useful functions
;

.include funcs.pqml

;
; An observation contains just an X and Y
; position.
;

.observation position
int pos_x 0 ; ranges from 0 to 1000
int pos_y 0 ; idem

;
; Track dynamic data. When the object_number is still
; zero no track number was yet assigned to this track.
; It is like the color of a tracked object.
;

.conclusion direction
int cur_pos_x 0
int cur_pos_y 0
float momentum_x 1.0

“thesis_main” -- 2005/11/21 -- 13:09 -- page 174 -- #183
i

i

i

i

i

i

i

i

174 APPENDIX B. PQML MODELS

float momentum_y 1.0
int object_number -1

;
; Dynamic data which is track specific. Every time
; a track is started that does not have an object_number
; this number is incremented and assigned to that track.
;

.data
int current_cnt 0

;
; Consts, static data:
;

int c0 0
int c1 1
int c2 2
float f_zero 0.0
float f_one 1.0
float f_ten 10.0
float f_half 0.5
float f_thres 200.0

;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; The actual toplevel model
;

.text
start:

;
; Load constants
;

geti i0, c0
geti i1, c1

;
; Two possibilities: new observation or no new observation
;

tmod
be no_new

call new_observation
jmp end

no_new:
call nonew_observation
jmp end

;;;;;;;;;;;
;

“thesis_main” -- 2005/11/21 -- 13:09 -- page 175 -- #184
i

i

i

i

i

i

i

i

B.2. MOVINGDOTS.PQML 175

; The end.
;

end:
exit

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; Function to calculate the new score
; and the new momentum.
; Check the length of this track first.
;

new_observation:

;;;
;
; First estimate the current position based on
; the existing momentum
;

;
; Constants
;

geti i0, c0
geti i1, c1

;
; Size
;

ldsize i2, position
setci i2, object_number
cmpi i2, i1 ; size - 1
ble set_zero ; cmp <= 0, set momentum to zero.

;
; Calculate time difference
;

lobsts i20, i21, position[i1]
lobsts i22, i23, position[i0]

call delta_t ; f20 < delta_t

;
; Load previous last position
;

lobsi i3, position[i1].pos_x ; previous x
lobsi i4, position[i1].pos_y ; previous y

xltfi f3, i3 ; f3 <- i3
xltfi f4, i4 ; f4 <- i4

“thesis_main” -- 2005/11/21 -- 13:09 -- page 176 -- #185
i

i

i

i

i

i

i

i

176 APPENDIX B. PQML MODELS

movf f7, f3 ; backup previous position x
movf f8, f4 ; backup previous position y

;
; Multiply momentum by delta t and add to original
; position
;

getcf f5, momentum_x
getcf f6, momentum_y
mulf f5, f20
mulf f6, f20
addf f7, f5
addf f8, f6

;
; Estimated new position is now in f3,f4
; Get the new observation, and calculate the
; difference between the estimated and the
; actual position.
;

lobsi i5, position[i0].pos_x ; newest x
lobsi i6, position[i0].pos_y ; newest y

xltfi f5, i5 ; f5 <- i5
xltfi f6, i6 ; f6 <- i6

;
; Calculate the difference between estimated and
; actual position. Euclidian distance.
;

subf f7, f5
subf f8, f6
mulf f7, f7
mulf f8, f8
addf f7, f8
sqrtf f7 ; This is the Euclidian distance.

;
; Make a score out of this absolute distance
; by multiplying by 10 -- this is a normalisation!
;

getf f8, f_ten
divf f7, f8
divf f7, f8
divf f7, f8
getf f8, f_one
subf f8, f7 ; f8 now contains the new score

;
; If track-len == 2, set score to 0.5
;

“thesis_main” -- 2005/11/21 -- 13:09 -- page 177 -- #186
i

i

i

i

i

i

i

i

B.2. MOVINGDOTS.PQML 177

push i0
geti i0, c2
cmpi i2, i0
bne set_normal

set_half:
getf f8, f_half
jmp set_normal

set_normal:
setl f8
pop i0

;;
;
; Now it is time to update the position to reflect
; the actual new observation. Also update the
; momentum. Register values:
; (f3,f4) previous position
; (f5,f6) new(current) position float
; (i5,i6) new(current) position int
; f20 time difference between old and new
;

;
; Momentum.
;

subf f5, f3
subf f6, f4
divf f5, f20
divf f6, f20
setcf f5, momentum_x
setcf f6, momentum_y

;
; Check the length of the momentum vector.
; If it is larger than 200, then set score to zero.
;

getcf f11, momentum_x
getcf f12, momentum_y
mulf f11, f11
mulf f12, f12
addf f11, f12
sqrtf f11
getf f12, f_thres
cmpf f11, f12
bge set_zero_score
jmp cont

set_zero_score:
getf f8, f_zero
setl f8

“thesis_main” -- 2005/11/21 -- 13:09 -- page 178 -- #187
i

i

i

i

i

i

i

i

178 APPENDIX B. PQML MODELS

cont:
;
; Set new position.
;

setci i5, cur_pos_x
setci i6, cur_pos_y

;
; Done.
;

jmp momentum_end

;
; Set momentum to zero
;

set_zero:

getf f0, f_zero
setcf f0, momentum_x
setcf f0, momentum_y

;
; Return.
;

momentum_end:

ret

;;
;
; Update the current estimated position
; when no new observation was received.
;

nonew_observation:

;
; Constants
;

geti i0, c0
geti i1, c1

;
; Calculate time difference
;

lobsts i20, i21, position[i0]
lnowts i22, i23

call delta_t ; f20 < delta_t

“thesis_main” — 2005/11/21 — 13:09 — page 179 — #188
i

i

i

i

i

i

i

i

B.2. MOVINGDOTS.PQML 179

;
; Load last position
;

lobsi i3, position[i0].pos_x ; newest x
lobsi i4, position[i0].pos_y ; newest y

xltfi f3, i3 ; f3 <- i3
xltfi f4, i4 ; f4 <- i4

;
; Multiply momentum by delta t and add to original
; position
;

getcf f5, momentum_x
getcf f6, momentum_y
mulf f5, f20
mulf f6, f20
addf f3, f5
addf f4, f6

;
; Translate the new floating point position back
; to integers
;

xltif i3, f3
xltif i4, f4
setci i3, cur_pos_x
setci i4, cur_pos_y

;
; Done with this.
;

ret

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; End of model
;

“thesis_main” — 2005/11/21 — 13:09 — page 180 — #189
i

i

i

i

i

i

i

i

180 APPENDIX B. PQML MODELS

“thesis_main” — 2005/11/21 — 13:09 — page 181 — #190
i

i

i

i

i

i

i

i

Bibliography

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Tech-
niques, and Tools. Addison Wesley, 1986.

[2] Kamran Ahsan. Covert channel analysis and data hiding in TCP/IP. Master’s
thesis, University of Toronto, 2000.

[3] Kamran Ahsan and Deepa Kundur. Practical data hiding in TCP/IP. Multimedia
and Security Workshop at ACM Multimedia 2002, 2002.

[4] Symantec security response - BackOrifice Trojan, February 18, 2003. Available at
http://securityresponse.symantec.com/avcenter/venc/data/backorifice.trojan.html.

[5] F. Baker. RFC 1812: Requirements for IP version 4 routers. volume 1812 of
Request for Comments. 1995.

[6] George Bakos and Vincent Berk. Early detection of internet worm activity by
metering ICMP destination unreachable messages. In Proceedings of the SPIE
Aerosense, 2002.

[7] J.S. Baras, A.A. Cardenas, and V. Ramezani. On-line detection of distributed
attacks from space-time network flow patterns. In 23rd Army Science Conference,
December 2002.

[8] Vincent Berk, George Bakos, and Robert Morris. Using sensor networks and data
fusion for early detection of active worms. In Proceedings of the IEEE Inter-
national Workshop on Information Assurance (IWIA 2003), Darmstadt Germany,
March 2003.

[9] Vincent Berk, Wayne Chung, Valentino Crespi, George Cybenko, Robert Gray,
Diego Hernando, Guofei Jiang, Han Li, and Yong Sheng. Process query systems
for surveillance and awareness. In Proceedings of the 7th World Multifconference
on Systems, Cybernetics and Informatics (SCI 2003), Orlando, Florida, July 2003.

[10] Vincent Berk and Naomi Fox. Process query systems for network security moni-
toring. In Proceedings of the SPIE Vol. 5778, Sensors, and Command, Control,
Communications, and Intelligence (C3I), April 2005.

181

“thesis_main” — 2005/11/21 — 13:09 — page 182 — #191
i

i

i

i

i

i

i

i

182 BIBLIOGRAPHY

[11] Vincent H. Berk, George Cybenko, and Robert S. Gray. Early detection of active
internet worms. In Vipin Kumar, Jaideep Srivastava, and Aleksander Lazarevic,
editors, Managing Cyber Threats, chapter 6, pages 147–180. Springer, 2005.

[12] Vincent H. Berk, Robert S. Gray, and George Bakos. Using sensor networks and
data fusion for early detection of active worms. In Proceedings of AeroSense
2003: SPIE’s 17th Annual International Symposium on Aerospace/Defense Sens-
ing, Simulation, and Controls, volume 5071, Orlando, Florida, April 2003.

[13] Richard E. Blahut. Computation of channel capacity and rate-distortion functions.
IEEE Transactions on Information Theory, IT-18(4):460–473, July 1972.

[14] Aniruddha Bohra, Iulian Neamtiu, Pascal Gallard, Florin Sultan, and Liviu Iftode.
Remote repair of operating system state using Backdoors. In Proceedings of the
International Conference on Autonomic Computing, May 2004.

[15] Robert Brown. A brief account of microscopical observations made in the months
of June, July and August, 1827, on the particles contained in the pollen of plants;
and on the general existence of active molecules in organic and inorganic bodies.
Edinburgh New Philosophical Journal, pages 358–371, 1828.

[16] Robert G. Brown and Patrick Y.C. Hwang. Introduction to Random Signals and
Applied Kalman Filtering. John Wiley & Sons, 1983.

[17] Daniel J. Burroughs, Linda F. Wilson, and George V. Cybenko. Analysis of dis-
tributed intrusion detection systems using Bayesian methods. In Proceedings of
the 21st IEEE International Performance, Computing and Communications Con-
ference (IPCCC 2002), April 2002.

[18] David R. Butenhof. Programming with POSIX Threads. Addison Wesley, May
2003.

[19] Joao B. D. Cabrera, Lundy Lewis, Xinzhou Qin, Wenke Lee, and Raman K.
Mehra. Proactive intrusion detection and distributed denial of service attacks –
a case study in security management. Journal of Network and Systems Manage-
ment, 10(2), June 2002.

[20] Serdar Cabuk, Carla Brodley, and Clay Shields. IP Covert Timing Channels: De-
sign and Detection. Proceedings of the 11th ACM conference on Computer and
Communications Security, 2004.

[21] Christos G. Cassandras and Stephane Lafortune. Introduction to Discrete Event
Systems. Kluwer Academic, 1999. ISBN 0-7923-8609-4.

[22] David M. Chess and Steve R. White. An undetectable computer virus. Virus
Bulletin Conference, September 2000.

“thesis_main” — 2005/11/21 — 13:09 — page 183 — #192
i

i

i

i

i

i

i

i

BIBLIOGRAPHY 183

[23] Steven Cheung, Rick Crawford, Mark Dilger, Jeremy Frank, Jim Hoagland, Karl
Levitt, Jeff Rowe, Stuart Staniford-Chen, Raymond Yip, and Dan Zerkle. The
design of GrIDS: A graph-based intrusion detection system. Technical Report
CSE-99-2, Department of Computer Science at UC Davis, 1999.

[24] Douglas Comer. Internetworking with TCP/IP Principles, Protocols, and Archi-
tectures, volume 1. Prentice Hall, fourth edition, 2000.

[25] Common Vulnerabilities and Exposures List. CVE advisory CAN-2004-0942
apache webserver denial of service vulnerability. Technical report, The MITRE
Corporation, 2004.

[26] S.A. Cook. The complexity of theorem proving procedures. In Proceedings of the
third Annual ACM Symposium on Theory of Computing, pages 151–156, 1971.

[27] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley
Series in Telecommunications. John Wiley & Sons, New York, NY, USA, 1991.

[28] Valentino Crespi, Wayne Chung, and Alex B. Jordan. Decentralized sensing and
tracking for uav scheduling. In Proceedings of the SPIE Vol. 5403, Sensors, and
Command, Control, Communications, and Intelligence (C3I), April 2004.

[29] J. P. Crutchfield. Information and Its Metric. Nonlinear Structures in Physical
Systems – Pattern Formation, Chaos, and Waves, 1990. 119-130.

[30] J. P. Crutchfield and D. P. Feldman. Regularities unseen, randomness observed:
Levels of entropy convergence. CHAOS (submitted). Santa Fe Institute Working
Paper 01-02-012, 2001.

[31] George Cybenko, Vincent H. Berk, Valentino Crespi, Robert S. Gray, and Guofei
Jiang. An overview of process query systems. In Proceedings of SPIE Vol. 5403
Sensors, and Command, Control, Communications, and Intelligence (C3I) Tech-
nologies for Homeland Security and Homeland Defense III , Orlando, Florida,
April 2004.

[32] D.J. Daley and J. Gani. Epidemic Modeling. Cambridge University Press, 1999.

[33] William James Dally and Brian Towles. Principles and Practices of Interconnec-
tion Networks. Morgan Kaufmann, 2004.

[34] H. G. Dehling and J. N. Kalma. Kansrekening het zekere van het onzekere. Epsilon
Uitgaven, Utrecht, 1995.

[35] Dshield - distributed intrusion detection system, the internet’s early warning sys-
tem, 2005. Available at http://www.dshield.org.

[36] Bob DuCharme. XML: The Annotated Specification. Prentice Hall, 1999.

“thesis_main” — 2005/11/21 — 13:09 — page 184 — #193
i

i

i

i

i

i

i

i

184 BIBLIOGRAPHY

[37] Gary Dudley, Neeraj Joshi, David M. Ogle, Balan Subramanian, and Brad Topol.
Autonomic self-healing systems in a cross-product IT environment. In Proceed-
ings of the International Conference on Autonomic Computing, May 2004.

[38] Microsoft SQL Sapphire worm analysis, 2003. Available at
http://www.eeye.com/html/Research/Flash/AL20030125.html.

[39] Mark W. Eichin and Jon A. Rochlis. With microscope and tweezers: An anal-
ysis of the Internet virus of November 1988. In Proceedings of the 1989 IEEE
Computer Society Symposium on Security and Privacy, May 1989.

[40] Wei Fan, Matt Miller, Sal Stolfo, Wenke Lee, and Phil Chan. Using artificial
anomalies to detect known and unknown network intrusions. In Proceedings of
the First International Conference on Data Mining, November 2001.

[41] Randima Fernando and Mark J. Kilgard. The Cg Tutorial. Addison Wesley, Febru-
ary 2003.

[42] Tiago Ferreto, Cesar De Rose, and Luiz De Rose. RVision: An open and high
configurable tool for cluster monitoring. In Proceedings of the 2nd IEEE/ACM
International Symposium on Cluster Computing and the Grid, 2002.

[43] G. D. Forney. The Viterbi algorithm. In Proceedings of the IEEE, volume 61(3),
pages 268–278, 1973.

[44] Stephanie Forrest, Steven Hoffmeyr, Anil Somayaji, and Thomas Longstaff. A
sense of self for unix processes. In IEEE Symposium on Security and Privacy,
pages 120–128, 1996.

[45] Annarita Giani. Efficiency and accuracy trade-offs in process detection. In Pro-
ceedings of the SPIE Vol. 5403, Sensors, and Command, Control, Communica-
tions, and Intelligence (C3I), April 2004.

[46] J. Giles and B. Hajek. An Information-theoretic and Game-theoretic Study of
Timing Channels. IEEE Transactions on information Theory, 2002.

[47] Robert S. Gray and Vincent H. Berk. Rapid detection of worms using ICMP-T3
analysis. In Proceedings of the SPIE Vol. 5403, Sensors, and Command, Control,
Communications, and Intelligence (C3I), April 2004.

[48] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kauffman, third edition, 2003.

[49] Diego Hernando and Valentino Crespi. Sampling theory for process detection with
applications to surveillance and tracking. In Proceedings of the SPIE Vol. 5403,
Sensors, and Command, Control, Communications, and Intelligence (C3I), April
2004.

“thesis_main” — 2005/11/21 — 13:09 — page 185 — #194
i

i

i

i

i

i

i

i

BIBLIOGRAPHY 185

[50] John Hertz, Anders Kroch, and Richard G. Palmer. Introduction to the Theory of
Neural Computation. Addison Wesley, 1991.

[51] http://www.caida.org/analysis/security/code red/coderedv2_analysis.xml. The
spread of the code-red worm (crv2).

[52] http://www.caida.org/analysis/security/code red/index.xml. Caida analysis of
code-red. 2002.

[53] http://www.incidents.org/react/code_red.html. Code red. 2001.

[54] Aapo Hyvrinen. Survey on independent component analysis. In Neural Comput-
ing Serveys, volume 2, pages 94–128, 1999.

[55] Guofei Jiang. Weak process models for robust process detection. In Proceedings
of the SPIE Vol. 5403, Sensors, and Command, Control, Communications, and
Intelligence (C3I), April 2004.

[56] Guofei Jiang and George Cybenko. Temporal and spatial distributed event corre-
lation for network security. In Proceedings of the IEEE American Control Con-
ference, Boston MA, June 2004.

[57] Alex B. Jordan. Models for tracking and level 2 fusion. Master’s thesis, Thayer
School of Engineering at Dartmouth College, May 2005.

[58] Rudolph Emil Kalman. A new approach to linear filtering and prediction prob-
lems. Transactions of the ASME–Journal of Basic Engineering, 82(Series D):35–
45, 1960.

[59] R.M. Karp. Reducibility among combinatorial problems. In Complexity of com-
puter computations, pages 85–103, 1972.

[60] Robert. A. Kemmerer. Shared Resource Matrix Methodology: An Approach to
Identifying Storage and Timing Channels: Twenty years later. Proceedings of the
18th Annual Computer Security Applications Conference, 2002.

[61] Robert. A. Kemmerer. Shared Resource Matrix Methodology: An Approach to
Identifying Storage and Timing Channels. ACM Transaction on Computer Sys-
tems, August 1983.

[62] Jeffrey Kephart and Steve White. Directed-graph epidemiological models of com-
puter viruses. In Proceedings of the 1991 IEEE Computer Society Symposium on
Research in Security and Privacy, May 1991.

[63] Jeffrey O. Kephart. A biologically inspired immune system for computers. Artifi-
cial Life IV, 1994.

[64] Olaf Kirch. LINUX Network Administrators Guide. O’Reilly, first edition, March
1995.

“thesis_main” — 2005/11/21 — 13:09 — page 186 — #195
i

i

i

i

i

i

i

i

186 BIBLIOGRAPHY

[65] Helmut Kopka and Patrick W. Daly. A Guide To LATEX. Addison Wesley, third
edition, 1999.

[66] O. Patrick Kreidl and Tiffany M. Frazier. Feedback control applied to survivabil-
ity: A host-based autonomic defense system. IEEE Transactions on Reliability,
53(1):148–166, March 2004.

[67] Jamie Lerner. Advanced System and Security Monitoring - Achieving Complete
System Control. JJ Labs Inc., 2003. White Paper, http://www.jjlabs.com.

[68] Donald Lewine. POSIX Programmers Guide. O’Reilly and Associates, Inc., first
edition, March 1994.

[69] Michael Liljenstam, David M. Nicol, Vincent H. Berk, and Robert S. Gray. Simu-
lating realistic network worm traffc for worm warning system design and testing.
In ACM Workshop on Rapid Malcode, Washington DC, Oktober 2003.

[70] Michael Liljenstam, Yougu Yuan, BJ Premore, and David Nicol. A mixed ab-
straction level simulation model of large-scale Internet worm infestations. In Pro-
ceedings of Tenth IEEE/ACM International Conference on Modeling, Analysis and
Simulation of Computer and Communications Systems (MASCOTS 2002), October
2002.

[71] G. Mansfield, K. Ohta, Y. Takei, N. Kato, and Y. Nemoto. Towards trapping wily
intruders in the large. In Proceedings of the second international workshop on
Recent Advances in Intrusion Detection (RAID 1999), 1999.

[72] A. A. Markov. Extension of the limit theorems of probability theory to a sum of
variables connected in a chain. 1971. Reprinted in Appendix B of: R. Howard.
Dynamic Probabilistic Systems, volume 1: Markov Chains.

[73] Stuart McLure, Joel Scambray, and George Kurtz. Hacking Exposed.
Osborne/McGraw-Hill, third edition, 2001.

[74] Zbigniew Michalewicz. Genetic Algorithms + Data Structures = Evolution Pro-
grams. Springer-Verlag, third edition.

[75] David Moore, Vern Paxon, Stefan Savage, Colleen Shannon, Stuart Staniford, and
Nicholas Weaver. The spread of the Sapphire/Slammer worm. Technical report,
CAIDA, 2003.

[76] David Moore, Colleen Shannon, and Jeffery Brown. Code Red: A case study on
the spread and victims of an Internet worm. In Proceedings of the Second Internet
Measurement Workshop (IMW 2002), November 2002.

[77] David Moore, Colleen Shannon, Geoffrey M. Voelker, and Stefan Savage. Internet
quarantine: Requirements for containing self-propagating code. In Proceedings of
the 22nd Annual Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM 2003), April 2003.

“thesis_main” — 2005/11/21 — 13:09 — page 187 — #196
i

i

i

i

i

i

i

i

BIBLIOGRAPHY 187

[78] David Moore, Geoffrey Voelker, and Stefan Savage. Inferring internet denial-of-
service activity. Usenix, 2001.

[79] I. Moskowitz, R. Newman, D. Crepeau, and A. Miller. Covert channels and
anonymizing networks. Proceedings of the Workshop on Privacy in the Electronic
Society (WPES 03), Washington, DC, USA., October 2003.

[80] I. S. Moskowitz and M. H. Kang. Covert channels here to stay? Proceedings of
COMPASS, 1994.

[81] I. S. Moskowitz and A. R. Miller. The Channel Capacity of a Certain Noisy Timing
Channel. IEEE Transaction on information Theory, Vol 38, n.4, 1992.

[82] I. S. Moskowitz and A. R. Miller. Simple timing channels. Proceedings of
IEEE Computer Society Symposium on Research in Security and Privacy, Oak-
land, 1994.

[83] T. Narten and R. Draves. RFC 3041: Privacy extensions for stateless address
autoconfiguration in IPv6. volume 3041 of Requests For Comments. 2001.

[84] The netfilter/IPtables project homepage, 2005. Available at
http://www.netfilter.org.

[85] Peter G. Neumann and Phillip A. Porras. Experimence with EMERALD to date. In
Proceedings of the First USENIX Workshop on Intrusion Detection and Network
Monitoring, Santa Clara, California, April 1999.

[86] NimSoft. NimBUS for Server Monitoring. Solution Overview Paper,
http://www.nimsoft.com.

[87] Glenn Nofsinger and Keston Smith. Plume source detection using a process query
system. In Proceedings of the SPIE Vol. 5403, Sensors, and Command, Control,
Communications, and Intelligence (C3I), April 2004.

[88] Stephen Northcutt and Judy Novak. Network Intrusion Detection. New Riders,
second edition, September 2000.

[89] N. Ogurtsov, H. Orman, R. Schroeppel, S. O’Malley, and O. Spatscheck. Covert
Channel Elimination Protocols. Technical Reports TR96-14. Department of Com-
puter Science, University of Arizona, 1996.

[90] Lathi B. P. Modern Digital and Analog Communication Systems. Third Edition.
Oxford University Press, 1998.

[91] Peter S. Pacheco. Parallel Programming with MPI. Morgan Kaufmann, 1997.

[92] Steve Parker. A simple equation: IT on = business on. The IT Journal, Hewlett
Packard, 2001.

“thesis_main” — 2005/11/21 — 13:09 — page 188 — #197
i

i

i

i

i

i

i

i

188 BIBLIOGRAPHY

[93] Vern Paxson. End-to-end routing behavior in the Internet. IEEE/ACM Transac-
tions on Networking, 5(5):601–615, 1997.

[94] Vern Paxson and Sally Floyd. Wide-area traffic: The failure of Poisson modeling.
In Transaction on Networking, pages 226–244. IEEE/ACM, 1995.

[95] D. C. Plummer. RFC 826: An ethernet address resolution protocol. volume 826
of Request for Comments. 1982.

[96] Phillip Porras and Alfonso Valdes. Live traffic analysis of TCP/IP Gateways. In
ISOC Symposium on Network and Distributed Systems Security, 1998.

[97] J. Postel. RFC 792: Internet Control Message Protocol. volume 792 of Request
for Comments. 1981.

[98] Xinzhou Qin, David Dagon, Guofei Gu, Wenke Lee, Mike Warfield, and Pete
Allor. Worm detection using local networks. Submitted to USENIX 2004 and
made available on several security mailing lists, 2004.

[99] Lawrence R. Rabiner. A tutorial on Hidden Markov Models and selected applica-
tions in speech recognition. Proceeding of the IEEE, 77, Num. 2:257–286, 1989.

[100] D. B. Reid. An algorithm for tracking multiple targets. IEEE Transactions on
Automatic Control, AC-24:843–854, December 1979.

[101] Y. Rekhter and T. Li. RFC 1771: A border gateway protocol 4 (BGP-4). volume
1771 of Request for Comments. 1995.

[102] Christopher Roblee, Vincent Berk, and George Cybenko. Large-scale autonomic
server monitoring using process query systems. In Proceedings of the second
IEEE International Conference on Autonomic Computing (ICAC-05), June 2005.

[103] Christopher D. Roblee. Process query systems for network self awareness: A
principled, scalable approach to rapid autonomic healing. Master’s thesis, Thayer
School of Engineering at Dartmouth College, May 2005.

[104] Stuart Russel and Peter Norvig. Artificial Intelligence. Prentice Hall, 1995.

[105] Kristina Lisa Shalizi, Cosma Rohilla Shalizi, and J. P. Crutchfield. Pattern Dis-
covery in Time Series, part I and II: Implementation, Evaluation, and Comparison.
Journal of Machine Learning Research, 2002.

[106] Claude E. Shannon. A mathematical theory of communication. Bell System
Technical Journal, 27(3):379–423, July 1948. Continued 27(4):623-656, Octo-
ber 1948.

[107] Snort - the open source network intrusion detection system, 2005. Available at
http://www.snort.org.

“thesis_main” — 2005/11/21 — 13:09 — page 189 — #198
i

i

i

i

i

i

i

i

BIBLIOGRAPHY 189

[108] Matthew J. Sottile and Ronald G. Minnich. Supermon: A high-speed cluster mo-
nitoring system. In Proceedings of the IEEE International Conference on Cluster
Computing, 2002.

[109] Eugene Spafford. The Internet worm incident. In Proceedings of the Second
European Software Engineering Conference (ESEC ’89), volume 87 of Lecture
Notes in Computer Science, pages 446–468. Springer-Verlag, September 1989.

[110] Eugene H. Spafford. An analysis of the Internet worm. In Proceedings of the 1989
European Software Engineering Conference, September 1989.

[111] Eugene H. Spafford. The Internet worm: Crisis and aftermath. Communications
of the ACM, 32(6), June 1989.

[112] Stuart Staniford. Analysis of the spread of the July infestation of the Code Red
worm. technical report, Silicon Defense, 2001.

[113] Stuart Staniford, James A. Hoagland, and Joseph M. McAlerney. Practical auto-
mated detection of stealthy portscans. Journal of Computer Security, 10:105–136,
2002.

[114] Stuart Staniford, Vern Paxson, and Nicholas Weaver. How to 0wn the Internet in
your spare time. In Proceedings of the 11th USENIX Security Symposium (Security
’02), San Francisco, California, August 2002.

[115] W. Richard Stevens. UNIX Network Programming, volume 1. Prentice Hall PTR,
second edition, 1998.

[116] W. Richard Stevens. UNIX Network Programming, volume 2. Prentice Hall PTR,
second edition, 1998.

[117] W. Richard Stevens. Advanced Programming in the UNIX Environment. Addison
Wesley, January 2003.

[118] Bjarne Stroustrup. The C++ Programming Language. Addison Wesley, Septem-
ber 2001.

[119] Symantec security response - backdoor SubSeven, July 25, 2003. Available at
http://www.symantec.com/avcenter/venc/data/backdoor.subseven.html.

[120] Kenneth Theriault, Wilson Farrel, Helene Henri, Derrick Kong, and William Nel-
son. The SARA experiment: Coordinated autonomic defense against an e-mail-
borne virus. In Proceedings of the 2002 IEEE Workshop on Information Assur-
ance, June 2002.

[121] Tripwire, inc. - tripwire is the leading provider of change auditing solutions, 2005.
Available at http://www.tripwire.com.

“thesis_main” — 2005/11/21 — 13:09 — page 190 — #199
i

i

i

i

i

i

i

i

190 BIBLIOGRAPHY

[122] K. S. Trivedi. Probability, Statistics with Reliability, Queueing and Computer
Science Applications. Wiley, second edition, 2002. ISBN 0-471-33341-7.

[123] Norbert Wiener. Extrapolation, interpolation and smoothing of stationary time
series with engineering applications. 1949.

[124] Matthew M. Williamson. Throttling viruses: Restricting propagation to defeat
malicious mobile code. Technical Report 172, HP Labs Bristol, 2002.

[125] Derrick Wood. Theory of Computation. John Wiley and sons, 1987.

[126] Derrick Wood. Data Structures, Algorithms, and Performance. Addison Wesley,
1993.

[127] Vinod Yagneswaran, Paul Barford, and Johannes Ullrich. Internet intrusions:
Global characteristics and prevalance. In Proceedings of the International Confer-
ence on Measurements and Modeling of Computer Systems (SIGMETRICS 2003),
San Diego California, June 2003.

[128] Cliff C. Zou, Lixin Gao, Weibo Gong, and Don Towsley. Monitoring and early
warning for internet worms. In 10th ACM Conference on Computer and Commu-
nication Security (CCS 2003), October 2003.

[129] Cliff C. Zou, Weibo Gong, and Don Towsley. Worm propagation modeling and
analysis under dynamic quarantine defense. In ACM CCS Workshop on Rapid
Malcode (WORM 2003), October 2003.

[130] Cliff Changchun Zou, Weibo Gong, and Don Towsley. Code Red worm prop-
agation modeling and analysis. In Proceedings of the 9th ACM Conference on
Computer and Communication Security (CCS 2002), Washington, DC, November
2002.

“thesis_main” — 2005/11/21 — 13:09 — page 191 — #200
i

i

i

i

i

i

i

i

Summary

191

“thesis_main” — 2005/11/21 — 13:09 — page 192 — #201
i

i

i

i

i

i

i

i

192 SUMMARY

English

This thesis introduces a new set of methods that offers a novel way of solving a broad
class of problems involving process detection. Many of these problems have never been
considered as processes, which is, in this authors opinion, why little actual progress has
been made in solving them efficiently. With this thesis I hope to initiate a new way of
thinking about problems as processes.

Almost everything that happens around us is process-like in nature. Consider, for
instance, a car driving down a multi-lane highway. We can easily follow where the car
is now, and where it is going. The car is in the process of driving, and we understand
how the position of the car changes, based on its speed and direction. Essentially, we
understand this process of moving. To formalize this concept a little bit, a process is
usually considered to have some type of state that changes over time according to a set of
laws (the process description). In case of the car, the state can be defined as its position,
direction, and velocity. The process description, then, defines how this state changes
over time, namely, if the car is traveling at 10 meters per second (the velocity) down the
highway (the direction), its position will have changed to be 30 meters further down the
road after three seconds have passed. Although this is a rough estimate, we do not need
to be any more precise; after all, we only need to be accurate enough to realize the car is
not going to hit us!

→ The beauty of process descriptions is that they are often elegant and
straightforward, making them easy to understand.

Now imagine that we are driving on the same road with many cars around us. There
will be cars passing, changing lanes, entering and exiting the highway, slowing down,
and so forth. When we try to navigate on the road, we must keep a reasonably clear idea
of what is happening near us, to avoid collisions or driving off the road. Unfortunately,
we cannot look in all directions at once, meaning that we cannot keep a constant eye on
all cars around us. We must therefore form a mental picture of where other cars are, and
where they are going. What helps us greatly here is our understanding of the process of
moving cars. For example, by looking in our rear-view mirror we see two cars behind us,
both traveling in the same direction, one going a little faster than the other. What we have
done now is take a partial sample of the environment, and learned the state of two cars,
and our mental picture can be updated. As we drive along, we can now predict that one
of those two cars may be passing us soon. This prediction helps us in making a decision
not to move into the passing car’s lane.

→ An important part of processes is that they allow us to make predictions
on the future state of the environment.

One problem with our mental picture, however, is that it quickly becomes inaccurate.
By simply looking at other cars, we cannot make very precise observations on speed,
direction, and position. Therefore, we will need to look at them again soon, to correct
for these inaccuracies. As a matter of fact, the longer we wait without looking at a car

“thesis_main” — 2005/11/21 — 13:09 — page 193 — #202
i

i

i

i

i

i

i

i

193

that we know is there, the more we feel compelled to look at it. This way we constantly
update and refine our mental picture of the environment around us. To formalize a little
further, in our mental picture we have a certain number of tracks, each representing an
instance of the process “moving car”. Each time we look over our shoulder or in the
mirror, we sample the state of other cars and match them with our predictions of where
we expected them to be, basically updating our tracks. In general, we will take notice
when a car has changed lanes, or when we did not see a car when we looked, because it
was in a blind spot.

→ Using the predictions made by processes we can quickly assign new ob-
servations to existing tracks, even when these observations are in some way
inaccurate.

Using our mental picture of the environment we are now able to quickly and safely
make decisions in traffic. We can change lanes, enter or exit the highway, and pass other
cars without colliding with them. This mental picture is often referred to as situational
awareness, and the steps of updating this mental picture, based on what we observe
and what we know about the processes that are happening, is at the core of a Process
Query System, the topic of this thesis. A Process Query System lets a user describe
processes that he or she is interested in, and the PQS then figures out if these processes
are occurring in the observed environment. By using the steps described above, the PQS
takes incoming observations and uses the described processes to form tracks of what
events are happening, and reports those tracks back to the user. Since the PQS is a
general engine, the user only needs to submit a description of the processes to build a full
situational awareness system.

→ A Process Query System takes one or more process models and returns
evidence of instances of these processes occurring in the observed environ-
ment.

This thesis describes the specifics of Process Query Systems, and demonstrates the
power and versatility of the concept by applying PQS to several very diverse examples.
For instance, in Chapter 4 a PQS is used in network security, where many different attacks
are happening in large networks, while the network sensors only pick up partial data. In
Chapter 3 a PQS is used to quickly identify new Internet worms, seconds after they are
released. Then, in Chapter 5, a PQS is used for tracking fish swimming around in a tank,
hiding behind obstacles and chasing each other. In that same Chapter, a PQS is used
detect covert data exfiltration channels, and to monitor large server networks, making
predictions about when services are about to fail. All of these examples have many
processes occurring in a noisy, and lossy environment, where classical methods quickly
break down. The power of a PQS comes from the fact that it only requires a process
description to be submitted in order to track events, and have situational awareness in
such difficult environments.

→ Process Query Systems can quickly and easily be applied to solve many
practical problems.

“thesis_main” — 2005/11/21 — 13:09 — page 194 — #203
i

i

i

i

i

i

i

i

194 SUMMARY

Finally, this thesis only scratches the surface of what is possible with Process Query
Systems. It lays bare an interesting new field of research in which many discoveries are
yet to be made.

Dutch

Dit proefschrift introduceert een nieuwe groep methoden die een unieke manier bieden
om een klasse van problemen te relateren aan process detectie, en ze daarmee op te
lossen. Het merendeel van deze problemen zijn nooit in het kader van proces detectie
bestudeerd. Dit is volgens de auteur van dit proefschrift de reden dat er weinig voortgang
is geboekt in het efficiënt oplossen van deze problemen. Met dit proefschrift hoop ik een
eerste stap te zetten tot het denken over problemen als processen.

Vrijwel alles wat rondom ons heen gebeurt is van nature proces georiënteerd. Neem
bijvoorbeeld een auto die over een snelweg rijdt. We kunnen die auto gemakkelijk vol-
gen, en voorspellen waar hij heen gaat. De auto is in het proces van rijden, en we be-
grijpen hoe de positie van de auto verandert, gebaseerd op zijn snelheid en richting. Of
anders gezegd, wij begrijpen dit verplaatsingsprocess. Formeel gezegd, een proces is
normaal gedefinieerd als een staat die met de tijd verandert volgens een aantal wetten
(de procesbeschrijving). Voor de auto kunnen we de staat beschrijven als de positie,
snelheid, en richting. De procesbeschrijving definieerd hoe deze staat veranderd met de
tijd, namelijk, als de auto 10 meter per seconde (de snelheid) over de snelweg rijdt (de
richting), dan is zijn positie na drie seconden 30 meter verder. Alhoewel dit een ruwe
schatting is, hoeven we niet preciezer te zijn; immers, we hoeven slechts precies genoeg
te zijn om te voorkomen dat de auto ons raakt!

→ Het mooie van procesbeschrijvingen is dat ze vaak elegant en eenvoudig
zijn, waardoor ze gemakkelijk te begrijpen zijn.

Stel nu dat we op diezelfde snelweg rijden met vele andere auto’s om ons heen. Er
zullen auto’s zijn die ons passeren, van baan veranderen, in- en uitvoegen, afremmen,
enzovoorts. Als we in dit verkeer willen rijden moeten we dus een redelijk goed idee
hebben van wat er om ons heen gebeurt om botsingen te voorkomen en niet van de weg te
raken. Helaas kunnen we niet in alle richtingen tegelijk kijken, dus kunnen we niet altijd
alle andere auto’s direct zien. Daarom moeten we dus een mentaal beeld vormen van
waar de andere auto’s zijn, en waar ze heengaan. We worden hierbij geholpen door ons
begrip van het proces van een rijdende auto. Bijvoorbeeld, als we in onze spiegel kijken,
zien we twee auto’s achter ons, alle twee rijden ze in dezelfde richting, ene een beetje
sneller dan de andere. Wat we zojuist hebben gedaan is het nemen van een gedeeltelijke
waarneming van onze omgeving. Deze gedeeltelijke waarneming vertelt ons de staat
van twee auto’s, en ons mentaal beeld kan nu worden bijgesteld. Als we blijven rijden
kunnen we nu een voorspelling maken dat een van deze twee auto’s ons spoedig zal
passeren. Deze voorspelling helpt ons bij het besluit om niet van baan te veranderen.

→ Een belangrijk onderdeel van processen is dat ze ons in staat stellen om
voorspellingen te maken over de toekomstige staat van onze omgeving.

“thesis_main” — 2005/11/21 — 13:09 — page 195 — #204
i

i

i

i

i

i

i

i

195

Een probleem van ons mentaal omgevingsbeeld is dat het snel onnauwkeurig wordt.
Door slechts naar andere auto’s te kijken kunnen we niet erg precies meten wat hun
snelheid, richting, en positie is. Daarom zullen we korte tijd later weer naar ze moeten
kijken, om voor deze onnauwkeurigheden te corrigeren. Sterker nog, hoe langer we
wachten zonder te kijken naar een auto waarvan we weten dat die er is, hoe sterker
we ons gedwongen voelen om ernaar te kijken. Op deze manier verfijnen we constant
ons mentaal beeld van de omgeving om ons heen. Om dit nog een stukje verder te
formaliseren, in ons mentaal beeld hebben we een aantal reeksen, die ieder een instantie
zijn van het proces “rijdende auto”. Telkens als we over onze schouder of in de spiegel
kijken, doen we een nieuwe waarneming van de andere auto’s en vergelijken die met
onze voorspellingen. Hierdoor kunnen we onze reeksen bijstellen en verbeteren. Over
het algemeen merken we op wanneer een auto onverwachts van baan is veranderd, of als
we een auto niet direct zichtbaar is vanwege een blinde hoek.

→Door de voorspellingen van processen te gebruiken kunnen we snel nieuwe
waarnemingen toevoegen aan bestaande reeksen, zelfs als deze waarnemin-
gen onnauwkeurig zijn.

Door gebruik te maken van ons mentaal beeld van de omgeving kunnen we nu snel
en veilig beslissingen nemen in het verkeer. We kunnen van baan veranderen, in- en
uitvoegen, en andere auto’s passeren zonder een botsing te veroorzaken. Dit mentale
beeld wordt vaak beschreven als omgevingsbewustheid, en de stappen van het bijstellen
van dit mentale beeld, gebaseerd op de waarnemingen en onze kennis van de processen in
de omgeving, is de kern van Process Query Systems, het onderwerp van dit proefschrift.
Een Process Query System stelt de gebruiker in staat processen te beschrijven waar hij
of zij in geïnteresseerd is, en de PQS vindt dan uit of deze processen in de waargenomen
omgeving voorkomen. Door gebruik te maken van de boven beschreven stappen, neemt
de PQS binnenkomende waarnemingen, en gebruikt de procesbeschrijvingen om reeksen
te vormen van de dingen die in de omgeving gebeuren. Deze reeksen worden dan ver-
volgens gerapporteerd aan de gebruiker. Omdat de PQS een algemene methode is, hoeft
de gebruiker slechts één procesbescrijving te maken om een volledig omgevingsbewust
systeem te bouwen.

→ Een Process Query System gebruikt één of meer proces beschrijvin-
gen om bewijzen te vinden van de aanwezigheid van deze processen in de
waargenomen omgeving.

Dit proefschrift geeft een precieze beschrijving van Process Query Systems, en demon-
streert de kracht en breedheid van het concept door PQS toe te passen in een aantal
zeer uiteenlopende voorbeelden. In hoofdstuk 4 wordt een PQS gebruikt voor netwerk
beveiliging in grote computer netwerken, waar de sensoren slechts gedeeltelijke infor-
matie verschaffen. In hoofdstuk 3 word een PQS toegepast om nieuwe Internet-wijde
virussen te detecteren, slechts enkele seconden nadat ze zijn geactiveerd. Dan, in hoofd-
stuk 5, wordt een PQS gebruikt om vissen in een aquarium te volgen terwijl ze achter
obstakels verdwijnen, en elkaar achterna zitten. In datzelfde hoofdstuk wordt een PQS

“thesis_main” — 2005/11/21 — 13:09 — page 196 — #205
i

i

i

i

i

i

i

i

196 SUMMARY

toegepast om verborgen communicatiekanalen te detecteren, en om grote server netwerken
in de gaten te houden om te voorspellen wanneer servers op het punt staan uit te vallen.
Alle bovenstaande voorbeelden hebben vele processen in omgevingen met veel storing
en wegvallende waarnemingen. Klassieke methoden werken vaak niet goed in zulke
omgevingen. De kracht van een PQS komt van het feit dat er slechts procesbeschrij-
vingen nodig zijn om gebeurtenissen te kunnen volgen, en omgevingsbewust te zijn, in
zeer complexe omgevingen.

→ Process Query Systems kunnen snel en gemakkelijk worden toegepast
om vele praktische problemen op te lossen.

Tenslotte, dit proefschrift beschrijft slechts het tipje van de ijsberg van wat mogelijk
is met Process Query Systems. Het introduceert een interessant nieuw onderzoeksgebied,
dat zich snel zal ontwikkelen.

“thesis_main” — 2005/11/21 — 13:09 — page 197 — #206
i

i

i

i

i

i

i

i

Curriculum Vitæ

197

“thesis_main” — 2005/11/21 — 13:09 — page 198 — #207
i

i

i

i

i

i

i

i

198 CURRICULUM VITÆ

Vincent Berk was born on the 20th of Februari 1978, in Leidschendam, the Nether-
lands. He lived most of his life in Zoeterwoude, finishing his VWO in 1996, after which
he started his studies in Computer Science at Leiden University. At Leiden he was an ac-
tive member of the student community, serving as the president of “de Leidsche Flesch”,
the student union for Mathematics, Physics, Astronomy, and Computer Science, for the
year of 1998. He also held the student position on the board of the Faculty of Mathe-
matics and Natural Sciences at Leiden University from May 1998, to September 1999.
During his computer science studies he attended an intensive-program at the Technical
University of Vienna, working on neural networks for image recognition. After finishing
a research project on compiler optimizations for cache blocking, he moved to Hanover
New Hampshire, USA, in August 2000, where he studied computer security at Dart-
mouth College while finishing his M.S. degree at Leiden. During this year he designed
two new network security technologies that are still in use today: the “network-fuse”,
dynamically breaking connectivity for hosts showing hostile behavior, and the “URL-
filter”, which checks and validates every HTTP request before passing the request on to
the actual web server. He also obtained a GIAC level-2 certification as a firewall and
perimeter defense analyst. After obtaining his M.S. degree in June 2001, he started work
as a full-time researcher and lecturer at the Thayer School of Engineering at Dartmouth
College, working with prof. dr. G.V. Cybenko. There, he worked on his PhD. research
in Internet-scale worm detection, which ultimately lead to the development of the Pro-
cess Query System concept, guided by prof. dr. H.A.G. Wijshoff and prof. dr. G.V.
Cybenko. He continues to live in New Hampshire, leading the development on Process
Query Systems, and teaching the graduate Computer Architecure classes at Dartmouth
College.

