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Chapter 2

Thermodynamic Expressions for
the Tolman length

ABSTRACT

The Tolman length measures the extend to which the surface tension of a small
droplet deviates from its planar value. Recent thermodynamic treatments have pro-
posed a relation between the Tolman length and the isothermal compressibility of the
liquid phase at two-phase coexistence, δ ≈ −σκ�. In this chapter we review this anal-
ysis and show how it relates to earlier thermodynamic expressions. Its applicability
is discussed in the context of van der Waals’ square-gradient theory. It is found that
the relation is semiquantitatively correct for this model unless one is too close to the
critical point.
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2.1 Introduction

When we consider a simple liquid in equilibrium with its vapour, one thermodynamic
parameter, the surface tension σ, is sufficient to describe the planar interface between
both phases. The grand potential for such a situation can be written as

Ω = −pV� − pVv + σA, (2.1)

where V�, Vv denote the volumes of the liquid and vapour phase respectively, p is the
pressure (at mechanical equilibrium the same throughout the system) and A denotes
the interfacial area. The exact position of the dividing surface is not known since on
a molecular scale the interface is rough and fluctuating, however the area A and total
volume (V� + Vv) in Eq. (2.1) are invariant to the choice of the dividing surface so σ
in Eq. (2.1) is well-defined.

The situation for curved interfaces is somewhat different. Curved interfaces appear
when considering nucleation, where small vapour/liquid droplets are being formed or
when fluids are being confined, for example. The pressures in both phases are now
not equal and both the sum (p�V� + pvVv) and A are no longer invariant anymore
upon changing the location of the dividing surface.

Gibbs [30] formulated a major part of the novel thermodynamics of curved sur-
faces but it was Tolman [22] who took the ideas of Gibbs further and worked them
out extensively for spherical surfaces. Tolman realized that the surface tension for
small droplets needs curvature corrections [22]. To leading order in an expansion in
curvature 1/R, where R is given by the equimolar radius of the droplet, it is given
by,

Δp =
2σ

R

(
1− δ

R
+ . . .

)
, (2.2)

where Δp = p� − pv is the pressure difference between the inside and outside of the
drop and σ is the surface tension of the planar interface. The first term in Eq.(2.2)
is the well-known Laplace equation [15] with the leading order term in curvature
defining the Tolman length δ. Alternatively, one can expand the surface tension itself
to leading order in curvature 1/R in terms of the droplet radius R:

σ(R) = σ

(
1− 2δ

R
+ . . .

)
. (2.3)

Note that σ(R) denotes the surface tension of a liquid drop with radius R, whereas σ
denotes its value in the planar limit. In this definition, and the one in Eq.(2.2), the
Tolman length is defined as a coefficient in an expansion in 1/R and therefore does not
depend on R. In the literature one may find definitions of the Tolman length in which
δ= δ(R) to account not only for deviations with the planar limit to leading order in
1/R, but to all order in 1/R. A legitimate question then addresses the accuracy of
truncating the expansion at first order [31,32]. Here, we shall not pursue this line of
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research limiting our discussion strictly to the limit δ= lim
R→∞

δ(R), so to say, keeping

in mind that in this limit results should be consistent.
The definition in Eq.(2.3) shows that the surface tension deviates from its planar

value when the droplet radius is of the order of Tolman’s length. Since any (small)
radius dependence of the surface tension influences the nucleation rate exponentially,
experimental interest has come from the description of nucleation phenomena [33].

From a theoretical side the Tolman length has been studied by many people but
some (still) unresolved issues arise. We will now briefly discuss four such issues.

Critical Exponents It is well established that the mean-field exponent for the
Tolman length has the borderline value of zero [34]. What that implies for the be-
haviour of the Tolman length near the critical point for a real fluid is therefore quite
sensitive to the value of the critical exponent going beyond mean-field. The Tolman
length might diverge algebraically, diverge logarithmically, become zero or reach some
finite value. Phillips and Mohanty [35] argued that it diverges in the same manner as
the correlation length (t−ν), but most authors now believe that if the Tolman length
diverges, it does so with an exponent close to zero [34,36,37]. Using complete scaling
Anisimov [38] recently showed that the Tolman length diverges more strongly than
expected upon approach to the critical point depending on the degree of asymme-
try between the liquid and vapour phase. We will come back to this point in the
discussion.

Sign of δ for a simple liquid Of late, much theoretical work on the Tolman length
has been carried out in the context of density functional theories [31,32,39–49]. These
theories give consistent results with regard to the mean-field value of the Tolman
length for simple liquids: it is only weakly temperature dependent reaching a value
at the critical point which is small (a fraction of a molecule’s diameter) and negative.
The few MD simulations that have been carried out for a Lennard-Jones system,
however, seem to indicate that the Tolman length is positive although of the same
order of magnitude as in the density functional theories [50–53].

Recent MD simulations furthermore indicate that the Tolman length sensitively
depends on the interaction potential [54]. The discrepancy in sign and its dependence
on the interaction potential is not understood. Further MD simulations should help
to resolve these issues.

Mechanical expressions When obtaining the surface tension from computer sim-
ulations one often falls back to the use of mechanical expressions relating the surface
tension to the integral of the difference between the normal and tangential compo-
nents of the pressure tensor [15]. There is no unique choice for the pressure tensor [55]
but it was shown that the actual choice did not alter the values of the surface ten-
sion [15]. In the same line of thought a similar method for the Tolman length was
devised relating the surface tension to an integral of the first moment of the excess
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tangential pressure of a planar interface. However, it was shown by Henderson and
Schofield [56,57] that the first moment is dependent on the actual choice of the pres-
sure tensor and this makes such a mechanical expression for the Tolman length not
well defined. Later it was also shown that the Tolman length evaluated in this way
using the ‘normal’ Irving-Kirkwood form for the pressure tensor is inconsistent with
a more direct virial approach which avoids the use of a pressure tensor [58].

It is now well-established that the mechanical expression for the Tolman length
is not well-defined [58–60]. However, in the context of local theories, i.e. theories in
which the free energy depends only on one position, and not, as for the pressure tensor,
on two positions (the positions of the two interacting molecules), the Tolman length
can indeed be written as the first moment of the surface free energy density [61]. An
example of such an expression is given in section 2.4.

Fluctuation route – Triezenberg-Zwanzig Examining the liquid interface from
a completely different perspective, in 1972 Triezenberg and Zwanzig derived a formal
expression for the surface tension expressing it in terms of the direct correlation
function in the two-phase region by examining the restoring force associated with
thermal fluctuations of the interface [62]. As of yet, no analog prescription for the
Tolman length exists and this lead people to believe [56,59,60] that this “fluctuation
route” is fundamentally different for curved interfaces than for planar ones.

It is now known that different thermodynamic conditions to induce interfacial cur-
vature may lead to different values for curvature coefficients not only for the Tolman
length, but also for the second order curvature coefficients [63,64]. From quite a dif-
ferent perspective, Helfrich expanded the surface free energy of an arbitrarily curved
surface to second order in the curvature [23]

FH =
∫

dA

[
σ − 2

k

R0

J +
k

2
J2 + k̄K

]
. (2.4)

In this expression J = 1
R1
+ 1

R2
, the total curvature, K = 1

R1R2
, the Gaussian curvature

with R1 and R2 the radii of curvature at a point on the surface. The expansion coeffi-
cients are R0, the radius of spontaneous curvature, k, the rigidity constant associated
with bending and k̄, the rigidity constant associated with Gaussian curvature. Many
people have shown Eq.(2.4) to be a suitable choice in describing systems where the
surface tension does not play a dominant role [23,26,65].

Even though it was set up in a different context, the Helfrich expansion is anal-
ogous to the expansion made by Tolman to first order and for a spherical surface
(where J = 2

R
) comparing the first order terms in Eqs.(2.2) and ??eq:sigmaR) one

finds [58]

σδ =
2k

R0

. (2.5)

This equation connects the Tolman length to the radius of spontaneous curvature.
Assuming a positive rigidity (k > 0), a positive Tolman length would imply positive
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values for R0 which indicates a preferred curvature towards the liquid phase whereas
negative values for the Tolman length would result in a tendency for the interface to
curve toward the vapour phase.

The Tolman length can also be related to the surface of tension [15,22], the surface
for which the Laplace equation holds exactly for all drop radii:

Δp =
2σs

Rs

, (2.6)

where σs = σ(R = Rs) is the surface tension at the surface of tension. Tolman himself
showed [22] that the Tolman length could be related to the adsorbed amount at the
interface at coexistence

δ =
Γ

Δρ0

, (2.7)

with Δρ0 = ρ0,� − ρ0,v where the subscript zero denotes the value of the density at
two-phase coexistence. In the next section we will show that this results leads to
another definition of the Tolman length:

δ = lim
R→∞

(R−Rs) = ze − zs, (2.8)

where the heights ze and zs denote the locations of the equimolar surface and the
surface of tension respectively. Although these definitions do not lend themselves
well for direct numerical results without a specific microscopic model, it does con-
nect the Tolman length to different thermodynamic quantities (radius of spontaneous
curvature, adsorption, etc.).

Recently, one such thermodynamic treatment was postulated by Bartell [66], in
which an approximate expression for the Tolman length was derived in terms of
the isothermal macroscopic compressibility of the liquid phase, κ�, at liquid-vapour
coexistence:

δ ≈ −κ�σ. (2.9)

In this chapter we will show how this expression relates to previous thermodynamic
expressions and we will test its validity in the context van der Waals’ square-gradient
theory.

In the next session we start by a review of Tolman’s thermodynamic analysis and
we will present a formal systematic expansion in curvature in order to link the Tolman
length to the second order coefficient of the chemical potential in an expansion in
curvature. In section 2.3 we will review the connection between the Tolman length and
the isothermal compressibility of the liquid phase and in section 2.4 the applicability of
these expressions is tested using a van der Waals liquid-vapour system as an example.
We finish with some conclusions.

2.2 Thermodynamics

Figure 2.1 shows the appropriate thermodynamic conditions in a schematic way.
Shown is the two-phase coexistence line as a function of chemical potential and tem-
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perature along which μ = μcoex(T ). At two-phase coexistence both phases have the
same chemical potential and bulk pressure and there they coexist with a planar in-
terface between them. By raising the chemical potential at constant temperature
(depicted by the dashed arrow in Figure 2.1) the liquid phase will become the more
stable phase. In this region we will consider the formation of a critical nucleus with
an equimolar radius of R and surrounded by metastable vapour. This is the typical
situation considered in the description of nucleation [33]. While making sure we do

Figure 2.1 Schematic phase diagram for a liquid-vapour system as a function
of μ and T . The solid line is the locus of liquid-vapour coexistence, μ =
μcoex(T ), ending at the critical point (μ = μc, T = Tc). The dashed line
is a path in the phase diagram for fixed temperature and varying chemical
potential Δμ=μ−μcoex, along which a liquid droplet in a metastable vapour
is considered.

not cross the spinodal, the radius R is well defined in this region approaching infinity
when μ → μcoex. This suggests that instead of μ we could take 1/R as variable to
indicate the amount we are brought off-coexistence.

Thermodynamics relates the density to changes in the chemical potential when
changing pressure:

1

ρ
=

(
∂μ

∂p

)
T

. (2.10)

Alternatively, when changing the chemical potential along the path depicted in Figure
2.1, the pressure in either phase changes according to

dp�,v = ρ�,vdμ, (2.11)

where the subscripts �, v denote the liquid or vapour phase respectively. The pressure
difference across the droplet is then given by

d(Δp) = Δρdμ, (2.12)
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This expression is valid along the whole path sketched in Figure 2.1 but we now
consider the case where Δμ is small, i.e. we consider changes infinitesimally close
to the coexistence line. Inserting Eq.(2.6) and the Gibbs adsorption equation dσs =
−Γsdμ (chosen at the surface of tension) in Eq.(2.12) one finds

d
(
2σs

Rs

)
= −Δρ

Γs

dσs. (2.13)

To leading order in 1/Rs this becomes

d
(
2σ

Rs

+ · · ·
)
= −

(
Δρ0

Γs

+ · · ·
)

d

(
σ − 2δσ

Rs

+ · · ·
)

. (2.14)

So that

δ =
Γs

Δρ0

, (2.15)

which is the same definition Tolman used in his original work [22]. Note that Γs is
the adsorption at the surface of tension at two-phase coexistence.

To evaluate the adsorption we write out its definition in terms of the density
profile ρ0(z) at two-phase coexistence,

Γs =
∫ ∞
−∞

dz [ρ0(z)− ρ�,0Θ(−z + zs)− ρv,0Θ(z − zs)] , (2.16)

where Θ(x) is the Heaviside function and zs denotes the location of the surface of
tension. The coordinate z is the direction perpendicular to the (planar) interface and
we adopt the convention that the integration runs from the liquid phase (z = −∞)
to the vapour phase (z =∞). If we let ze denote the location the equimolar surface,
we have

Γe ≡ 0 =
∫ ∞
−∞

dz [ρ0(z)− ρ�,0Θ(−z + ze)− ρv,0Θ(z − ze)] . (2.17)

Subtracting these two expressions for the adsorption and carrying out the integration
over z yields

Γs = Δρ0(ze − zs). (2.18)

Inserting this into Eq.(2.15) one arrives at:

δ = (ze − zs), (2.19)

which is the same result as Eq.(2.8).
Starting with Eq.(2.12) one can also expand to second order in 1/R to obtain

d

(
2σ

R
− 2σδ

R2
+ · · ·

)

=
(
Δρ0 +

Δρ1

R
+ · · ·

)
d
(
μcoex +

μ1

R
+

μ2

R2
+ · · ·

)
. (2.20)
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After some regrouping the two leading order terms in 1/R are

μ1 =
2σ

Δρ0

μ2 = − 2σδ

Δρ0

− μ1Δρ1

2Δρ0

. (2.21)

The latter can be rewritten as

μ2 = − 2σδ

Δρ0

− σΔρ1

(Δρ0)2
. (2.22)

We now have found an expression for the Tolman length:

δ = − Δρ1

2Δρ0

− μ2Δρ0

2σ
. (2.23)

This derivation appeared previously in the literature starting from the free-energy
density [34, 67, 68]. We give a a brief summary of this alternative derivation in ap-
pendix A.

Just as a microscopic model is needed to evaluate the location of the surface
of tension in order to make use of the definition in Eq.(2.19), Eq.(2.23) requires
the knowledge of μ2 in order to calculate δ. In the next section we will focus on
the necessary approximations in order to link the Tolman length to the isothermal
compressibility.

2.3 Relation with the isothermal compressibility

of the liquid

The isothermal compressibility κ in the fluid phase reads

κ ≡ 1

ρ

(
∂ρ

∂p

)
T

=
1

ρ2

(
∂ρ

∂μ

)
T

. (2.24)

Again we consider an infinitesimal change from two-phase coexistence along the path
sketched in Figure 2.1. To leading order in 1/R one finds that(

∂ρ

∂μ

)
=

ρ1

R
/
μ1

R
=

ρ1

μ1

. (2.25)

Now Eq.(2.24) can be written as

κ� =
1

ρ2
�,0

ρ�,1

μ1

=
ρ�,1Δρ0

2σρ2
�,0

, (2.26)

κv =
1

ρ2
v,0

ρv,1

μ1

=
ρv,1Δρ0

2σρ2
v,0

,
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where κ�,v denotes the isothermal compressibility in the bulk liquid and vapour phases
respectively at coexistence. We may use Eq.(2.26) to rewrite Δρ1 = ρ�,1 − ρv,1 as

Δρ1 =
2σ

Δρ0

[
ρ2

�,0κ� − ρ2
v,0κv

]
. (2.27)

Inserting Eq. (2.27) into the definition of δ in Eq. (2.23) one obtains

δ = − σ

(Δρ0)2

[
ρ2

�,0κ� − ρ2
v,0κv

]
− μ2Δρ0

2σ
. (2.28)

This thermodynamically exact relation describes δ in terms of the compressibility of
the bulk phases instead of Δρ1.

The remainder of this section deals with the analysis made by Bartell [66], which
in turn is inspired by a previous analysis done by Laasonen and McGraw [69], that
proposes an approximate expression for the Tolman length in terms of the isothermal
compressibility of only the liquid phase.

In order to understand the derivation made by Bartell [66] we turn to the integral
form of Eq.(2.10) in the liquid phase:

Δμ = μ− μcoex =
∫ p

pcoex

dp

(
1

ρ�

)
. (2.29)

When we consider infinitesimal changes from coexistence (i.e. Δμ small) one may
approximate the bulk liquid density by its value at two-phase coexistence to leading
in 1/R by, ρ� ≈ ρ�,0 and use the Laplace equation for the pressure in the liquid phase,
p� ≈ pv +

2σ
R
so that,

Δμ ≈ 1

ρ�,0

(
2σ

R
+ pv − pcoex

)
correct to O

(
1

R

)
. (2.30)

When considering the next-to leading order term, the Laplace equation gets a correc-
tion and the liquid density becomes a function of R. We find

Δμ ≈ 1

2

(
1

ρ�

+
1

ρ�,0

)(
2σ

R
− 2σ

R2
+ pv − pcoex

)
(2.31)

correct to O
(
1

R2

)
.

Next, the analysis by Bartell [66] introduces two assumptions. First the vapour
density is neglected. As a consequence any curvature dependence of the pressure
and density in the vapour phase also disappears. One would expect this assumption
to break down in the vicinity of the critical point. Second, it is argued [66] that
Eq.(2.29) has a wider range of validity than just to first order in 1/R. The result
is that the Tolman length should cancel the leading curvature variation of the liquid
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density. Neglecting the vapour density and equating Eqs.(2.29 and 2.30) then result
in [66]

δ ≈ − ρ1

2ρ0,�

. (2.32)

If we now employ the same assumptions on the compressibility of the liquid phase,
Eq.(2.24) we have

κ� =
ρ1,�Δρ0

2σρ2
�,0

≈ ρ�,1

2σρ�,0

, (2.33)

which leads to [66]
δ ≈ −σκ�. (2.34)

This is the expression derived in the analysis done by Bartell [66]. It can also be
derived from the thermodynamically exact relation Eq.(2.23). The previous approxi-
mations imply setting μ2 = 0 and ρv = 0 in Eq.(2.23) to obtain the above result. In
order to gain more insight in the validity of these approximations, especially setting
μ2 = 0, we evaluate the Tolman length in the context of van der Waals’ square-
gradient theory in the next section.

2.4 The Tolman length using the van der Waals

equation of state

In this section we turn to the explicit evaluation of the Tolman length in the context
of van der Waals’ square-gradient theory [15]. The grand free energy is given by the
following functional form [15]:

Ω[ρ(r)] =
∫

dr
[
m|∇ρ(r)|2 + g(ρ)

]
, (2.35)

where m is the usual coefficient of the square-gradient term and g(ρ) is the grand
free energy density for a fluid constrained to have uniform density ρ. The density
profile ρ0(z) for the liquid and vapour at two-phase coexistence can be obtained by a
functional minimization of Eq. (2.35). Then the surface tension and Tolman length
can be expressed in terms of ρ0(z) [15, 67]:

σ = 2m
∫ ∞
−∞

dz [ρ′0(z)]
2
, (2.36)

σδ = 2m
∫ ∞
−∞

dz(z − ze) [ρ
′
0(z)]

2
,

where the location of the equimolar surface ze is determined by the condition in
Eq.(2.17).

In order to determine the density profile a specific model for g(ρ) needs to be
chosen. Before we take the van der Waals equation of state, it is instructive to
consider the results when one assumes for g(ρ) a double parabola.
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Results for double parabola as free energy The grand free energy density is
given by

g(ρ) + pcoex =

⎧⎨
⎩

1
2ρ2

v,0κv
(ρ− ρv,0)

2 when ρ < ρm ,
1

2ρ2
�,0

κ�
(ρ− ρ�,0)

2 when ρ > ρm ,
(2.37)

where ρm is the density where the two parabola meet. The curvature of the parabola
is directly related to the compressibility, g′′ = 1/(ρ2κ). Iwamatsu [39] used this form
of the free energy to determine the surface tension and the Tolman length. They
obtained

σ =
(

m

2

)1/2 (Δρ0)
2

(ρ�,0
√

κ� + ρv,0
√

κv)
,

δ =
(

m

2

)1/2

(ρv,0

√
κv − ρ�,0

√
κ�) . (2.38)

It can be shown that the quadratic form for the free energy in Eq.(2.37) yields μ2 = 0.
If one then also neglects the vapour density (i.e. ρv = 0), it immediately follows that
δ = −κ�σ holds for this model.

Unfortunately, this double-well form for the free energy is not able to describe the
behaviour near the critical point. The free energy derived from the van der Waals
equation of state does describe the critical point albeit in a mean-field manner,

g(ρ) = −kBT ln(
1/ρ− b

Λ3/e
)− aρ2 − μcoexρ. (2.39)

Here a and b are the usual van der Waals parameters and Λ is the de Broglie thermal
wavelength.

We have solved for the density profile using the above van der Waals free energy
numerically and plotted the results for δ in Figure 2.2. At the critical point δ reaches
a finite negative value [34,40]

δ = − 1

12

(
2m

a

)1/2

(T → Tc),

σ = σ0t
3/2 =

16a

27b2

(
2m

a

)1/2

t3/2, (2.40)

where t ≡ 1 − T/Tc is the reduced temperature distance to the critical point. This
result may also be written as

δ = − σ0

192pc

, (2.41)

where the critical pressure in the fluid phase according to the van der Waals model is
given by pc = a/(27b2) (this prefactor of −1/192 differs from that quoted in ref. [70]).
The dotted curve in Figure 2.2 gives the contribution to δ derived from setting μ2 = 0
in Eq.(2.28),

δ ≈ − σ

(Δρ0)2

[
ρ2

�,0κ� − ρ2
v,0κv

]
. (2.42)
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Figure 2.2 Tolman length in units of (2m/a)1/2 as a function of reduced
temperature t ≡ 1 − T/Tc. The solid line is the result obtained from the
numerical solution of the square-gradient model using the van der Waals
equation of state. The dotted line is the approximate expression for δ in
Eq.(2.42). The dashed line is the approximation δ ≈ −κ�σ with κ� taken
from the van der Waals equation of state.

One concludes from Figure 2.2 that this approximation describes the qualitative fea-
tures of δ rather well and is quantitatively correct within 25% in the entire tem-
perature range considered. Far from the critical point the vapour density becomes
negligible and Eq.(2.42) reduces to the the formula proposed by Bartell [66]

δ ≈ −κ�σ. (2.43)

This relation is shown in Figure 2.2 as the dashed line. It is clear that the ap-
proximation breaks down close to the critical point, but it is qualitatively correct far
away from it. Both approximations in Eqs.(2.42) and (2.43) thus capture the order
of magnitude and sign of the full mean-field solution.

2.5 Discussion

In this chapter, we have reviewed thermodynamic relations for the Tolman length.
Such relations are useful in providing a framework for mathematical modeling. We
saw that the surface tension itself may depend on curvature and thermodynamics
gives us the tools to provide expressions for the curvature coefficients. The validity
of such an expansion in curvature can be questioned (see chapter 3), but in the
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case of bringing a liquid-vapour system off-coexistence by a small amount (i.e. Δμ
small) Tolman’s expansion (truncated at the first order term) provides a satisfactory
description for the liquid drop.

We have investigated expressions for the Tolman length that involve the isothermal
compressibility of the liquid, and tested their applicability in the context of the square-
gradient model for the liquid-vapour interface. The main results of this investigation
are shown in Figure 2.2. It should be kept in mind that any conclusions drawn from
this Figure are made strictly in the context of the mean-field model. An important
observation is that the approximate expressions for δ in Eqs.(2.42) and (2.43) do
capture the order of magnitude and sign of the full mean-field solution. In these
expressions the sign of Tolman’s length is determined by the difference between the
liquid and vapour phase of the symmetrized compressibility χ≡ ρ2 κ; since χ� > χv

the Tolman length is negative. This observation was first made by Iwamatsu [39]
using the double-well form for the free energy density for which the approximation
Eq.(2.42) holds exactly.

It is tempting to infer from the expression for δ in Eq.(2.42) the critical behaviour
of Tolman’s length beyond mean-field theory. The assumption then implicitly made
is that the term involving μ2 in the full expression for δ in Eq.(2.28) is sub-dominant
near the critical point, or – as is the case for the square-gradient mean-field model
– has the same leading critical behaviour as the contribution to δ in Eq.(2.42). The
critical behaviour of the compressibility χ in the coexisting liquid and vapour phase
is described by the following form [71]

χ� = χ0 t−γ
(
1 + α� t−Δ + . . .

)
, (2.44)

χv = χ0 t−γ
(
1 + αv t−Δ + . . .

)
.

The leading critical behaviour of the symmetrized compressibility, as described by
the prefactor χ0 and the critical exponent γ≈1.24, is the same for χ� and χv. Since
δ∝χv − χ�, the critical behaviour of the Tolman length is determined by the leading
order corrections as described by the dimensionless prefactors α� and αv and the
gap-exponent Δ≈−0.50 [71]. We thus find from Eq.(2.42):

δ ∝ tμ−2β−γ−Δ ∝ t−Δ−ν ∝ t−0.13 , (2.45)

where μ≈1.26, ν≈0.63, and β≈0.325 are the usual critical exponents for the surface
tension, correlation length and density difference, respectively [15].

As a result we find that the Tolman length diverges weakly on approach to the
critical point, which is in line with previous predictions [34, 36, 37, 53]. The result
δ∝ t−Δ−ν is also consistent with the mean-field critical behaviour for δ in the van der
Waals model as given in Eq.(2.40) (i.e. δ∝constant), when one inserts the mean-field
value for the exponents ν=1/2 and Δ=−1/2.

As a final point we like to point out the recent results given by Anisimov [38]
obtained using complete scaling [72]. Starting from the generalized Laplace equation
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Eq. (2.2), the pressure difference in and outside the liquid drop is separated into a
symmetric and antisymmetric part 1:

Δp = (Δp)sym + (Δp)asym (2.46)

Since the Tolman length depends on the asymmetric part only to a first approximation
δ can be written as

2δ

R
	 −(Δp)asym

(Δp)sym

. (2.47)

In the vicinity of the critical point the pressure difference scales as (Δp)crit ≈ χ(Δμ)2

and accordingly the isothermal compressibility χ (the susceptibility with respect to
density fluctuations) can again be separated into a symmetric and asymmetric part.
Using expressions for the susceptibility obtained earlier from complete scaling allowed
for the expansion of the Tolman length valid in the vicinity of the critical point:

δ ∝ constant1t
β−ν + constant2t

1−α−β−ν , (2.48)

where α 	 0.109 is a universal critical Ising exponent. Since 1− α− β − ν 	 −0.065
the first term (only present when using complete scaling) in Eq. (2.48) diverges more
strongly (β − ν 	 −0.3042) and will determine the leading order behaviour upon
approaching the critical point. This result implies that in highly asymmetric fluids
(like high molecular weight hydrocarbons or ionic fluids) the Tolman length can easily
reach a substantial magnitude.

Is should be kept in mind however that faraway from the critical point the Tol-
man’s length is only a small fraction of the molecular dimensions and in order to
observe noticeable changes in the surface tension one needs a nanosize droplet.

1The part of Δp which does not depend on which fluid phase resides within or outside the droplet
is the symmetric part.

2More thermodynamic quantities like the adsorption Γ diverge as tβ−ν


