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1. Impact of tumor-infiltrating T cells. 
Infiltration of tumors with CD8+ T cells is beneficial for patient survival in many types of tumors 
(1-6). In HPV-induced cervical cancer infiltration of CD8+ T cells is associated with an improved 
prognosis (Chapter 2) (7, 8), especially in patients who displayed a systemic HPV-specific immune 
response (Chapter 2). Consistent with earlier reports, we were able to show in a large cohort that 
these tumor infiltrating CD8+ T cells included T cells specific for the oncogenic HPV antigens E6 
and E7 (Chapter 3) (9, 10). These CD8+ T cells can be negatively influenced by co-infiltration of 
CD4+ T cells as indicated by the ratio of CD8+/CD4+ T-cell ratio (Chapter 2). This indicates that 
these CD4+ T cells may have a suppressive phenotype. A recent study in a large cohort of cervical 
cancer patients revealed that the CD8/FOXP3 ratio was a favorable independent prognostic 
factor for patient survival (11). This implicates that the presence of regulatory T cells (Tregs) is 
indeed unfavorable and may suppress CD8+ T cells, these cytotoxic T cells potentially control 
tumor growth. Since the tumor infiltrating CD4 T cells comprised of HPV E6/E7-specific T cells 
(Chapter 3), they may very well include HPV-specific Tregs. To fully characterize the phenotype of 
these infiltrating T cells, it was necessary to analyze them on a functional level. In order to obtain 
enough T cells for functional analysis, expansion of the HPV-specific T cells in vitro was required. 

Summary and general discussion
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2. Isolation and Culture of human Tregs
The most common method to obtain natural Tregs from 
the peripheral blood, is using flow cytometric isolation 
of CD4+ T-cells which highly express CD25 (12, 13). 
The numbers of these cells are generally enough to 
accommodate a few experiments. However, for in-depth 
analysis of the function and specificity of Tregs, larger 
numbers of cells and prolonged culture are required (14). 
Since several Treg subpopulations are characterised by 
their ability to produce IL-10 (reviewed in (15)), selection 
of T cells on the basis of specific IL-10 production by 
cytokine capture assays may prove to be a valuable tool 
to enrich for antigen specific CD4+ Tregs (Chapter 6) 
(16). The production of non-stimulatory factors (e.g. 
IL-10) by CD4+ Tregs precludes strong proliferation 
of the cells and as such it is difficult to expand Tregs 
in vitro. Different methods have been developed to 
circumvent these problems, which include antigen specific 
and non-specific expansion combined with different 
growth factors (17-19). T-cell receptor stimulation in 
combination with IL-2 can reverse the anergic state and 
can result in expansion of CD4+ Tregs (20, 21). IL-15, 
which efficiently promotes expansion of memory T cells 
(22, 23), enhances the expansion of Tregs as well (20, 24). 
IL-7 promotes survival of memory T cells (25) including 
CD4+ Tregs (26, 27). A recent study suggested that a 
combination of the common gamma chain cytokines IL-
2, IL-4, IL-7 and IL-15, maintain the optimal regulatory 
function of human Tregs in a PI3K-dependent manner 
(27). Interestingly, the combination of rapamycin, an 
immunosuppressive drug used to prevent acute graft 
rejection in humans, and IL-2 promotes the expansion of 
Tregs while selectively depleting CD4+CD25- effector T 
cells both in vitro and in vivo (28). Similar to results from 
studies on tumor-specific effector T cells, the presence and 
type of Tregs in the peripheral blood may not necessarily 
reflect the Treg repertoire infiltrating the tumor (29-31). 
Therefore, studies on Tregs that contribute to the local 
immunosuppressive tumor environment require Tregs to 
be directy isolated from fresh tumor material and from 
tumor draining lymph nodes. Pioneers in the field were 
able to isolate and culture Tregs from tumor tissue and 
from tumor ascites using recombinant IL-2 (32-34). In 
our own studies the combination of T-cell growth factor 
(containing natural IL-2) in combination with IL-15 
and IL-7 led to the successful isolation and expansion 
of tumor-infiltrating lymphocytes and tumor-draining 
lymph nodes-derived tumor-specific lymphocytes from a 
large cohort of patients with cervical cancer (Chapter 3). 

3. HPV-specific Tregs isolated from 
cervical cancer patients suppress via 
antigen-dependent mechanisms
Using the isolation and expansion protocols as described 
above we were able to show in numerous cases cervical 
cancer derived T-cell cultures contained CD4+ Tregs. 
These could be cloned and studied extensively (>2 
years) with respect to phenotype, antigen specificity and 
mechanism of suppression (Chapter 4.1). Both FOXP3+ 

and FOXP3- Treg clones were isolated (Figure 1). HPV-
specific T-cell bulk cultures contained suppressive 
capacity in several but not all cases. Importantly, HPV-
specific T-cell bulk cultures from healthy donor derived 
positive skin-test biopsies did not contain suppressive 
capacity. Suppressive capacity was also detected in a HPV-
specific T-cell bulk culture isolated from premalignant 
lesion in one case but not in another (Chapter 5). This 
indicates that Tregs are already prominent in a proportion 
of the cervical pre-cancers. Moreover, Tregs were detected 
against both the E6 and E7 oncogenic proteins, indicating 
a broad specificity of the Tregs present in these patients 
(Chapter 4.1 and 5).  In-depth analysis of HPV-specific 
Tregs on the clonal level revealed that they could suppress 
in an antigen-dependent manner (Chapter 4.1), which 
was also the case for a polyclonal T-cell culture isolated 
from HSIL lesion (Chapter 5). As HPV is not available in 
high enough quantities, we were unable to show that these 
Tregs were also capable to suppress upon stimulation by 
APC cross-presenting HPV antigens from infected cells. 
However, Treg clones specific for influenza M1 were able 
to suppress upon stimulation of APC infected with live 
influenza virus. This suggests that virus antigen-specific 
Tregs are capable of exerting their suppressive function 
upon stimulation when antigen is presented in natural 
physiological context (Chapter 6). 

4. Origin of CD4+ regulatory T cells
4.1 Thymus derived CD4+ Tregs
Literature on the origin of CD4+ Tregs focusses on two 
different developmental pathways. The first pathway is 
generation of natural CD4+CD25high Tregs in the thymus 
and the second is generation of adaptive CD4+ Tregs in 
the periphery. Thymus derived CD4+ Tregs are generated 
as part of the natural differentiation of developing T cells 
in the thymus. Several antigens are selectively expressed on 
specialised tissue in the periphery. These tissue-restricted 
self antigens are also expressed in thymic epithelial cells 
under the control of the autoimmune regulator (AIRE) 
(35-38). AIRE+ medullary thymic epithelial cells 
(mTECs) play a central role in the generation of Tregs in the 
thymus by presentation of tissue restricted antigens either 
directly or indirectly (Figure 2A) (39, 40). Tumor antigens 
are in most cases aberrantly expressed self-antigens that are 
either also expressed in normal cells or are self-antigens 

A B

Figure 1. Staining of FOXP3 (PCH101, eBioscience) on cy-
tospins of human papilloma virus-specific FOXP3+ (A) and 
FOXP3- (B) regulatory T-cell clones isolated from cervical 
cancer patients (Chapter 4.1). Clear intra-nuclear staining 
is visible in the FOXP3+ clone (A; C148.31), and not in the 
FOXP3- clone (B; C271.9)
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that are normally only expressed during embryogenesis 
(oncofetal antigens). Collectively these antigens are 
known as tumor associated antigens (TAA). Since both 
types of TAA are expressed in thymic epithelial cells as 
well, it is likely that at least part of the Tregs generated in 
the thymus is specific for these tumor associated antigens. 
In the case of HPV-specific Tregs this does not occur, as 
the E6 and E7 antigens are not expressed in the thymus. 
However, HPV-infected tumor cells overexpress different 
self-antigens as well which are expressed in the thymus, 
including hTERT and p16 (41-44). For this reason it is 
likely that Tregs specific for these antigens also infiltrate 
cervical tumors and contribute to the establishment of an 
immunosuppressive microenvironment in the tumor.

4.2 Induction of CD4+ Tregs in the 
periphery 
In several mouse models it was shown that CD4+ T cells 
with suppressive capacity can also be generated from 
naïve precursors in the periphery (45-49). In these mouse 
studies, naïve CD4+ T cells were stimulated using high 
doses of antigen (oral tolerance protocols) or with a low 
antigen dose in the absence of co-stimulatory molecules. 
Furthermore, stimulation of naïve precursors in human 
peripheral blood mononuclear cells with an Epstein-Barr 
virus (EBV) encoded EBNA1 peptide resulted in the 
generation of CD4+ Tregs to EBV in vitro (50).  Several 
studies investigated different methods to generate Tregs 
in vitro (19). Most of them focused on DCs, as DCs are 
the key players in the initiation of the immune response 
(51). These studies aimed at inducing CD4+ Tregs by 
stimulating naïve T cells with immature DCs (iDCs) (52). 
The generation of such Tregs was dependent on IL-10, 

which was likely to be produced by iDCs (53). Consistent 
with the idea that presentation of antigens by iDCs 
suppresses immunity, tumor derived vascular endothelial 
growth factor (VEGF) has been shown to inhibit 
maturation of DCs (54). Increased numbers of iDCs 
have been found in tumor patients as well,  indicating that 
iDCs play a role in local immunosuppression, possibly 
through the induction of CD4+ Tregs (reviewed in (55)) 
(Figure 2CDG). 

Next to iDCs a specialised tolerogenic DC 
(tDC) subset can also induce CD4+ Tregs (19, 56). These 
tDCs can be generated by compounds such as vitamin D3 
and dexamethasone and by immunomodulatory cytokines 
including IL-10, TGFβ and IFNα (57-63). These 
tDCs may display similar or somewhat lower levels of 
costimulatory molecules such as CD40 and CD86 when 
compared to activated DCs (56, 64). However, tDCs also 
express other membrane molecules including ICOS-L, 
ILT3 and ILT4 which following cognate interaction 
activates tDCs to convert naïve CD4+ T-cells into Tregs 
(65, 66). In cancer patients, tDCs may be involved in the 
peripheral generation of Tregs, as DCs exposed to tumor 
cells acquire an immunosuppressive phenotype associated 
with the induction of Tregs (67-69) (Figure 2CDG). 

The enzyme indoleamine 2,3-dioxygenase 
(IDO) when upregulated in plasmacytoid DCs, has 
also been shown to induce Tregs in vitro and activate 
mature Tregs in vivo (70-72). IDO is an enzyme which 
is involved in the tryptophan degradation pathway (73). 
The generation of Tregs is dependent both on tryptophan 
depletion and on the generation of its metabolites (71). 
IDO+ plasmacytoid DCs present in tumor-draining 
lymph nodes can directly activate lymph node resident 
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Figure 2. Proposed model of generation 
and migration of tumour-specific Tregs. (A) 
Tumour associated antigens are expressed 
by mTECs and presented directly and/or 
indirectly to naïve T cells, converting them 
to Tregs. (B) Both naïve T cells and thymus 
derived Treg migrate to the tumour drai-
ning lymph node. (C) Antigen derived from 
tumour cells is captured by immature DCs. 
(D) DCs remain immature or mature into a 
tolerogenic DC phenotype and migrate to 
the tumour draining lymph node along with 
tumor associated macrophages (TAMs). (E) 
Thymus derived tumor associated antigen-
specific Tregs expand after stimulation by 
DC which present tumour antigen-derived 
epitopes. (F) Non professional APC, inclu-
ding TAMs and Myeloid derived suppres-
sor cells (MDSC) may also induce Treg from 
naïve precursors. (G) Immature DC and/or 
tolerogenic DC present tumour antigen to 
naïve T cells, which are subsequently con-
verted to Tregs. (H) Thymus derived and 
peripheral induced Treg migrate to the 
tumour, where they contribute to the im-
munosuppressive environment.
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CD4+ Tregs. Thereby it prevents the activation of a 
proper antitumor response (72). Furthermore, IDO levels 
are elevated in different cancers which besides influencing 
Tregs, can also induce general T-cell anergy and apoptosis 
(reviewed in (74)). 

Type 2 macrophages are abundant in 
many tumors (75). A recent study showed that Type 2 
macrophages induce FOXP3+ Tregs from naïve precursors 
in a TGFβ dependent mechanism (76). The abundant 
presence of these cells may therefore be responsible 
of inducing Tregs in the tumor microenvironment 
(Figure 2CDF). However Tregs can also induce type 2 
macrophages (77). This indicates that Tregs may also 
be partly responsible for the high numbers of type 2 
macrophages in the tumor. These studies implicate an 
intimate relationship between type 2 macrophages and 
Tregs. This relationship is responsible for the generation 
and maintenance of an immunosuppressive milieu in the 
tumor microenvironment.

Myeloid Derived Suppressor Cells (MDSCs) 
are present in high quantities in the peripheral blood of 
cancer patients with different types of cancer (78). In 
mouse models these MDSCs have been shown to induce 
Tregs (79, 80) (Figure 2F). On the other hand MDSCs 
have been shown to expand Tregs and in a mouse model 
for B-cell lymphoma (81). However, other studies showed 
only limited or no effect of MDSCs on the expansion of 
Tregs (82, 83). These contradictory results may be partly 
explained by differences in models used in these studies. 
Therefore it is important to analyze the effect of MDSCs 
on Tregs in cancer patients to determine their interaction 
with Tregs in a clinically relevant setting. 

Tregs are essential in limiting collateral 
damage as a result of exuberant immune responses against 
invading pathogens (84). Especially adaptive Tregs are 
important to limit immunopathology as was shown in 
a mouse model of allergic inflammation (85). Adaptive 
Tregs in humans include influenza-specific Tregs that 
are induced as a result of acute virus infection (Chapter 
6), indicating that Tregs are part of the normal antiviral 
immune response. Therefore it is likely that Tregs specific 
for cancer antigens are already induced early during 
malignant transformation, but the balance between Tregs 
and effector T cells may have shift over time towards a 
more immunosuppressive milieu.

4.3 Origin of HPV-specific Tregs in 
cervical cancer
It is difficult to determine the origin and role of HPV-
specific Tregs during disease progression in cervical cancer 
patients. It is highly likely that Tregs are induced as part 
of the normal immune response against HPV. Generally, 
HPV infections are cleared quite slowly (median of 
6 months) (86), while acute viral infections such as 
influenza are cleared within weeks. Therefore, the immune 
system seems to be inefficient in clearing HPV infections. 
This may be caused by early interactions of the host with 
the virus at multiple levels. Firstly, Langerhans cells, which 
are the professional antigen presenting cells in initiating 

mucosal immune responses, are improperly activated 
upon encounter of L2-containing virus like particles (87). 
Secondly, HPV also interferes with the IFN pathway 
in infected keratinocytes, caused by the oncogenes 
E6 and E7 (Reviewed in (88)). This results in a more 
immunosuppressive microenvironment and may thereby 
promote the induction and expansion of HPV-specific 
Tregs. One or combinations of these interactions may 
result in enhanced induction of HPV-specific Tregs and 
as such induce a more immunosuppressive virus-specific 
immune response compared to acute viral infections. 
However, these observations do not explain why most 
people are able to clear persistent HPV infections, whereas 
a minority of the infected women are not able to cope 
with the virus and as a result develop cervical cancer. Both 
genetic and environmental factors have been implicated in 
HPV oncogenesis, however a clear picture is still missing 
(89). 

Accumulating numbers of circulating Tregs 
(defined as CD4+CD25+) have been detected in the 
peripheral blood of HSIL patients as witness of an 
immunosuppressive milieu in these patients (90, 91). In 
line with these findings, substantial quantities of FOXP3+ 
Treg infiltrate have been detected in HSIL patients (92, 
93), but no significant differences were observed between 
HSIL and LSIL (93). Moreover, HPV-specific Tregs were 
detected among cervical infiltrating lymphocytes in a 
patient with HSIL (Chapter 5). This is indicative of an 
immunosuppressive HPV-specific response in this patient.  
The immunosuppressive microenvironment in HSIL 
patients may subsequently favour the progression towards 
invasive carcinoma by evading immunosurveillance.

5 Mechanisms of CD4+ regulatory T-cell 
induced suppression
Several studies showed that Tregs have the capacity 
to suppress different members of adaptive immunity. 
Specifically, CD4+ Tregs have been shown to inhibit 
the proliferation and cytokine production of activated 
naïve CD4+ T cells as well as established T-helper 1 
cells (Chapter 4.1 and Chapter 6) (32, 33, 52, 94-96). 
Moreover, a recent report showed that Tregs can induce 
a Treg phenotype in naïve T cells independent of APC in 
a TGFβ dependent manner (97). We and others reported 
that CD4+ Tregs were also able to prevent the activation 
of CD8+ T cells by preventing the expression of CD25 
and by inhibiting IL-2 production by CD4+ T cells 
(Chapter 6) (98).  Besides effects on T cells, Tregs were 
also shown to affect B cells. CD4+CD25high Tregs were 
shown to directly interact with B cells resulting in an 
inhibition of antibody production, isotype switching and 
proliferation of B cells (99, 100). CD4+CD25high Tregs 
are also able to suppress antigen-specific IFNγ production 
of γδ T cells (101). 

Not only the members of the adaptive 
immune response are affected, but also cells from innate 
immunity. Thymus derived Tregs are capable to induce 
a suppressive phenotype in monocytes/macrophages 
(77). The interaction between Tregs and DCs may lead 
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to down regulation of CD80 and CD86, even in the 
presence of stimuli that normally would enhance cell 
surface expression of these molecules and increased  IL-
10 production by DC maturation (102, 103). Moreover, 
Tregs can activate the immunosuppressive tryptophan 
catabolism by the induction of IDO in DCs (104). The 
subset of TGFβ producing CD4+ Tregs was shown 
to inhibit the cytotoxicity, cytokine production and 
proliferation of natural killer cells both in vitro and in 
vivo through TGFβ dependent mechanisms (reviewed 
in (105)). Tumor infiltrating FOXP3+ Tregs have been 
indicated to downregulate VCAM and ICAM expression 
in large tumors, thereby hampering tumor-infiltration of 
CD8 T cells. Downregulation of the adhesion molecules 
could only be reversed by radiotherapy or prophylactic 
depletion of Tregs and not by therapeutic depletion of this 
T-cell subset (106).

Thymus derived Tregs function in a contact-
dependent manner, as was shown in vitro by separating 
Tregs from responders by a semi-permeable membrane 
(94). A recent study showed that thymus derived Tregs 
in mice have contact with responder T cells trough 
gap-junctions (107). They further show that cAMP, 
known to be a potent inhibitor of proliferation and 
interleukin 2 synthesis in T cells, was present at high 
levels in thymus-derived Tregs and this was transferred to 
responder T cells through gap-junctions resulting in the 
suppression of the responder cells (107). However, we 
did not detect gap-junction formation for our Treg clones 
(unpublished data). Two membrane bound molecules 
(CD39 and CD73) have been shown to be expressed by 
Tregs and generate pericellular adenosine, which results 
in the suppression of effector T cells by ligation of the 
adenosine receptor 2A (Reviewed in (108)). We found 
that both molecules (CD39 and CD73) were expressed 
both by Treg as well as Thelper clones (unpublished data). 
Studies on adaptive Tregs show that the Tr1 subset of 
CD4+ Tregs act through the cytokines IL-10 and TGFβ 
(reviewed in (109)) (21, 110, 111), but we were unable to 
detect active TGFβ production by HPV and influenza-
specific Tregs. Moreover, IL-10 produced by FOXP3+ 
Tregs is important in limiting inflammatory responses 
in vivo (112). Consistent with our results (unpublished 
data), others have reported that IL-10 production by 
natural Tregs is not involved in in vitro assays (113). 
Adaptive Tregs can also deploy a perforin and granzyme 
dependent pathway as a mechanism to control immune 
responses (114, 115). Such a mechanism may also be 
employed by thymic-derived Tregs (115). Both human 
and murine thymus derived Tregs were shown to secrete 
TNFRII, which inhibits the action of TNF-a and thereby 
limiting inflammation (116). Several molecules are able 
to counteract the suppressive function or expansion of 
certain subsets of Tregs. Leptin was shown to prevent 
proliferation of thymic-derived Tregs after engaging the 
leptin receptor ObR (117). IL-21 renders human CD4+ 
T cells resistant to the suppressive capacity of Tregs 
(118). Treatment with reserpine releases catecholamines 
from Tr1-type Tregs. This results in a decreased potential 

of these Tregs to produce IL-10 and TGFβ, as well as a 
decreased potential to inhibit proliferation of CD4+ T 
cells (119). 

Furthermore, Tregs have been shown to 
express the toll-like receptors (TLR) 2, 5 and/or 8 (120-
122).  Ligation of TLR2 was shown to induce Treg 
proliferation and to cause temporal loss of suppressive 
phenotype (120), TLR8 ligation was shown to abrogate 
Treg mediated suppression (122), while ligation of TLR5 
was shown to enhance the suppressive function of Tregs 
(121). A recent study showed that IL-10 producing CD4+ 
T cells induced in the presence of 1α,25-dihydroxyvitamin 
D3 express TLR9. Ligation of TLR9 on these cells inhibits 
the IFNγ and IL-10 production (123). In our hands, Treg 
clones displayed a heterogeneous TLR expression profile 
and no TLR was consistently expressed between clones. 
Moreover, almost all clones lacked TLR8 expression and 
TLR8 ligation by ssRNA40 did not result in decreased 
suppressive capacity of these clones (unpublished data). 
This indicates that TLR8 ligation cannot be used as 
general approach to directly abrogate Treg function.

Altogether, a variety of mechanisms for 
suppression utilized by Tregs have been described, but 
none of these mechanisms seem to be universal. Dominant 
mechanisms need to be identified to design potential 
clinical approaches that interfere with Treg function. On 
one hand, universal markers need to be identified, which 
may lead to more selective depletion strategies. So far, 
most studies focussed on natural Tregs versus naïve CD4 
T cells, resulting in Treg associated markers, which are also 
present on activated T helper cells. More specific markers 
for subsets of Tregs (e.g. FOXP3+ vs FOXP3-) on the 
other hand will be greatly beneficial to determine which 
types of Tregs are present in tumors and cervical cancer 
in particular.

6 Impact of cancer immunotherapy on 
Tregs
Many of the known TAA and TSA are the prime 
components of therapeutic vaccines against cancer that 
are currently under development (reviewed in (124-
126)). Tregs specific for several of these tumor antigens 
have been detected in cancer patients, including Tregs 
specific for the viral oncoproteins of HPV (Chapter 4.1 
and 5) (32, 33, 127-129). Tumor-specific Tregs have also 
been detected in several tumor models in mice (130-132). 
Although therapeutic vaccines are designed to enhance 
CD4+ and CD8+ T-cell effector immunity, they may 
also activate pre-existing TAA/TSA-specific CD4+ Tregs 
present in the lymph nodes and tumors of cancer patients 
(Chapter 4.2) (128) (Figure 3). In mice, the boosting of 
Tregs after therapeutic vaccination was associated with 
subsequent failure of the anti-tumor immune response 
(131). Moreover, a recent study in vulvar intraepithelial 
neoplasia patients showed that patients who did not 
display a complete clinical response, mounted both HPV-
specific effector T cells as well as HPV-specific Tregs 
following vaccination. In contrast, patients who displayed 
a complete clinical response mounted predominantly 
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HPV16-specific T effector cells (Welters & Van der 
Burg, personal communication). These data indicate that 
those patients in which the current therapeutic approach 

is unsuccessful could benefit from an alternative therapy 
that includes the neutralization of Tregs (Figure 4).

7 Intervention strategies to bypass 
vaccination-induced Treg expansion

7.1 Depletion of Treg based on CD25 
expression
In several mouse models, treatment with an anti-CD25 
depleting antibody enhanced the anti-tumor immune 
response (reviewed in (133)). For translation to the clinic a 
hybrid molecule has been used (ONTAK). This molecule 
contains full-length IL-2 for binding to CD25 and the 
translocation and toxic domains of diphtheria toxin to 
induce apoptosis (134). In mice this molecule was able 
to deplete FOXP3+ Tregs in different compartments and 
was able to enhance vaccination-induced T-cell responses 
(135). In combination with vaccination, ONTAK is able 
to deplete Tregs and thereby boosting the tumor-specific 
immune response in renal cell carcinoma, CEA-positive 
and melanoma patients (136-138). In contrast, in one 
study ONTAK was unsuccessful in depleting Tregs in 
metastatic melanoma patients (139). Together, these 
studies show that ONTAK as supplementary therapy in 
vaccination trials may be promising, however caution is 
needed as this therapy is not always successful. 

LMB-2 is another immunotoxin which 
targets CD25. LMB-2 is a hybrid molecule consisting of 
pseudomonas exotoxin A and the Fv chain of anti-CD25 
(140). In a human study, LMB-2 was able to partially 
deplete Tregs, but no effect was seen on vaccine-induced 
responses (141). Since this is just one study showing in 
vivo depletion by LMB-2, further studies are required to 
investigate the efficacy of this molecule to deplete Tregs.

7.2 Depletion of Tregs based on cytotoxic 
chemotherapy
Low-dose cyclophosphamide, which is a cytotoxic 
alkylating compound, reduces both the number of Tregs 
as well as their function in mice (142). A recent study 
showed enhanced Treg depletion in the tumor when 
cyclophosphamide was used in combination with an 
agonistic anti-OX40 antibody. This regime induced 
hyperactivation and cell death in the Treg compartment 
(143). In animal models, low-dose cyclophosphamide was 
able to enhance vaccine-induced anti-tumor responses 
(144, 145). In humans, cyclophosphamide used as a single 
agent was shown to inhibit the Treg compartment, while 
the effector compartment was not negatively influenced 
(146, 147). Combinational therapy has not been studied 
in humans, but may prove to be an effective approach to 
enhance anti-tumor vaccination strategies.

7.3 CTLA-4 blockade to improve anti-
tumor immunityCTLA-4 is an inhibitory co-
receptor that is expressed both on activated T cells and 
constitutively on thymus derived Tregs. In mouse models, 
it has been shown that combination therapy of CTLA-
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Figure 3. Interaction of different T cell types with tumour 
vaccines. Tumour vaccines contain antigens in order to ac-
tivate both tumour-specific CD4+ T cells and CD8+ T cells. 
Injected antigens are taken up by local DCs and migrate into 
the draining lymph node. Here the DCs can stimulate both 
effector T cells and adaptive CD4+ Tregs. If self-antigens 
are injected also natural Tregs may get activated and ex-
panded. In the draining lymph node the presence of natu-
ral Tregs as well as adaptive Tregs may limit the activation 
and expansion of effector T cells. Migrating effector T cells 
and Tregs may leave the blood vessels and enter the tu-
mour stroma where the migration of effector T cells into 
the tumour cell nests may be dampened by co-migrating 
or resident Tregs. Furthermore, the function of effector T 
cells within the tumour cell nests may be downregulated 
by Tregs.
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4 blockade, especially together with CD25 depletion or 
GM-CSF secreting vaccine improves immunotherapy 
against established tumors (148-150). CTLA-4 blockade 
both on the effector population as well as on the Treg 
compartment is important in the enhancement of anti-
tumor responses (151). Two monoclonal blocking 
antibodies (ipilimumab and tremelimumab) are currently 
being tested in clinical trials (152).  Since these antibodies 
affect all T cells regardless of specificity, side effects of these 
antibodies include mild to severe autoimmunity (152, 
153). Early promising clinical trials show enhanced anti-
tumor T-cell responses upon treatment with anti-CTLA4 
antibodies (154-156). Currently placebo-controlled 
phase II and III clinical trials are conducted to further 
investigate the potential of CTLA-4-blocking antibodies 
and treatment of the side-effects (152). These monoclonal 
antibodies may provide a window in which CTLA-4 
blockade combined with antigen-specific immunotherapy 
may elicit an improved anti-cancer immune response that 
is able to eradicate tumors of cancer patients.

7.4 Blockade of PD-L1
Programmed Death 1 (PD1) is another inhibitory 
coreceptor which is expressed on activated T and B 
cells (including Tregs), APC and highly expressed on 
exhausted CD8+ T cells (157). The natural ligand PD-
L1 (B7-H1) is expressed on APC and by several human 
tumors (158).  In a variety of tumors, expression of PD-L1 
is associated with poorer survival (159-166). Blockade of 

PD1 or PD-L1 improves anti tumor-responses in several 
mouse models (Reviewed in (157)). Unexpectedly, 
expression of cell-surface PD-L1 in cervical cancer 
patients was associated with improved survival (Karim 
et al, submitted). This phenomenon could be explained 
by incapacitation of infiltrating PD1+ Tregs through 
PD1:PD-L1 interactions. A humanized blocking antibody 
to PD-1 has been tested in a phase I trial in patients with 
hematological malignancies and was found to be well 
tolerated in these patients (167). Despite clinical benefit 
in a proportion of these patients, this antibody is likely 
to provoke adverse responses in cervical cancer patients 
as expression of PD-L1 is beneficial for patient survival. 
Alternatively, engagement of PD-1 in PDL-1 negative 
patients may suppress the Treg population, thereby 
enhancing the anti-tumor response.

7.5 Modulating antigen presenting cells
As described in paragraph 4.2 different subsets of APC 
have the capacity to induce Tregs. As these cell types 
are not affected using the strategies described above, 
depletion of Tregs does not exclude de novo induction 
of HPV-specific Tregs upon tumor-specific vaccination. 
Therefore, strategies to modulate these cells as well, may 
prove to be a valuable supplementary therapy to enhance 
tumor-specific immune responses. 

Several approaches have been proposed to 
skew the phenotype of DCs in cancer patients from a 
tolerogenic into a pro-inflammatory phenotype (reviewed 

PD-L1

PD-L1

PD-1:PD-L1
blockade

Treg-targeting
therapy

DC maturation:
TLR ligands

CD40 ligation
In�ammasome stim

Modulation TAM
phenotype:
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CTLA-4
blockade

depletion of
Treg cells

Induction
MDSC apoptosis

Figure 4. Strategies that could 
bypass vaccination-induced Treg 
expansion. Depletion of Treg 
before or during treatment with 
CD25-targeting compounds or 
with low dose cyclophosphamide 
decreases the initial numbers of 
Treg. Blockade of CTLA-4 signa-
ling both dampens Treg as well 
as releasing the brakes on effec-
tor cells. Blockade of PD-1:PD-L1 
interaction results in enhancement 
of effectotr responses, but also 
can enhance Treg function. Sever-
al agents can be used to skew the 
antigen presenting compartment 
to an immunogenic phenotype. 
These approaches include matu-
ration of DC, modulation of ma-
crophage phenotype and targeting 
myeloid suppressor cells (MDSC).
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in (168)). These approaches include activation of DCs 
by anti-CD40 antibodies, TLR ligands, activation of 
the inflammasome and immunogenic cell death by 
chemotherapy and radiation therapy (169-171). These 
properly activated DCs may in turn shift the balance 
from a Treg dominated response into a CTL dominated 
response, which is able to mount a full-blown attack 
against the tumor.

Tumor associated macrophages promote the 
immunosuppressive microenvironment. Targeting these 
cells may therefore augment vaccination protocols. Two 
recent studies described that skewing of the phenotype 
towards a proinflammatory M1 phenotype by inhibition 
of IKKβ results in improved tumoricidal activity (172, 
173). The M1 macrophages in turn may promote anti-
tumor immune responses. Even though subversion of 
the phenotype of macrophages represents a promosing 
approach for anti-cancer therapy, agents are not yet 
available to promote M1 macrophage differentiation in 
the clinic.

Several agents are currently tested in preclinical 
models to inhibit expansion and function of MDSCs 
(Reviewed in (78)). These cells are implicated in the 
expansion of Tregs and are present in the peripheral blood 
of cancer patients in relatively high numbers. Therefore, 
depletion of MDSCs may result in abrogation of the 
immunosuppressive milieu, enabling effective vaccination 
without vigorous expansion of Tregs. 

8 Final remarks
The local presence of HPV-specific Tregs provides a 
plausible explanation for the inability of the immune 
system of cervical cancer patients to cope with the tumor. 
Moreover, these HPV-specific Tregs are boosted upon 
vaccination with HPV16 systemic long peptides and 
correlate with clinical outcome. Therefore, elimination/
reduction of the Treg compartment either before or 
during vaccination, will likely shift the balance from a 
Treg dominated response to an effector T-cell dominated 
response. This will result in improved vaccination 
efficacy. Strategies that elicit potent anti-tumor immune 
responses may also lead to the induction of different 
escape mechanisms. These mechanisms could include 
antigen loss, loss of MHC-class I molecules and impaired 
antigen processing. Monitoring a substantial number of 
patients in who the therapy failed will give further insights 
in dominant escape variants that evolve in response to 
vaccination. These escape variants can subsequently be 
targeted in alternative approaches, such as vaccination 
against epitopes that are associated with impaired antigen 
processing (174). 

Finally, the tumor microenvironment 
observed in cervical cancer patients has similar 
characteristics to other types of cancer. Knowledge 
gathered on inducing a potent anti-tumor immune therapy 
in cervical cancer patients may therefore be translated to 
other types of cancer as well. 
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