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General Introduction

Coronary artery disease (CAD) is one of the leading causes of mortality and morbidity. 

Worldwide 3.8 million men and 3.4 million women die of CAD each year.1 In 2007 11,876 

people died of CAD in the Netherlands.2 Currently approximately 1 in 25 patients in the 

Netherlands have CAD, and the prevalence is expected to increase by 40% until 2025, due 

to demographic changes in the Dutch population.

CAD is caused by the development of atherosclerotic lesions in the coronary arteries. The 

process of atherosclerosis is induced by endothelial dysfunction, inflammation and the influx 

of cholesterol in the artery wall.3 This process is mediated by multiple risk factors including 

age, gender, smoking, hypertension, hypercholesterolemia, diabetes mellitus, obesity, and 

family history. Formation and early progression of atherosclerosis occurs asymptomatically. 

Acute symptoms may develop when an atherosclerotic plaque ruptures causing coronary 

thrombosis and acute coronary occlusion. Stable or chronic symptoms develop due to 

atherosclerosis progression not resulting in coronary occlusions. As the lesion progresses 

it may start to block the coronary artery, thereby affecting myocardial blood flow. At first 

this stenosis is counterbalanced by vasodilatation of the coronary artery. However, as the 

stenosis progresses further, myocardial perfusion and function decrease and patients start 

to experience chest pain. Complaints generally become apparent at first during exercise or 

stress. During rest, adequate myocardial blood flow can usually be maintained, however 

during exercise or stress the myocardial blood flow can no longer be increased to cope with 

increased oxygen demand.

Currently many diagnostic tools are used to detect the presence of CAD, varying from clinical 

assessment, blood markers, and the electrocardiogram (ECG), to invasive and non-invasive 

cardiac imaging. The latter plays an important role in both diagnosis and risk stratification of 

patients with suspected or known CAD.

Imaging of CAD

The presence of CAD can be identified by direct anatomic assessment of coronary athero-

sclerosis and stenosis. In contrast, CAD may also be diagnosed indirectly by assessment of 

myocardial perfusion and function in rest and during exercise or stress. Several anatomic 

and functional imaging techniques are currently used, of which the invasive modalities are 

considered the golden standard.

Jaap BW4.indd   13 10-05-11   16:39
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Invasive imaging

Invasive selective coronary angiography is used extensively as a diagnostic tool in both 

acute and outpatient settings. Using a transfemoral catheter a contrast agent is selectively 

injected into the ostium of a coronary artery. Simultaneous fluoroscopy allows for high 

resolution images of the coronary arteries and of luminal narrowing caused by stenotic 

lesions.4 In addition to standard fluoroscopic assessment of coronary arteries, coronary 

angiography has evolved to a platform for intracoronary imaging and measurement using 

intravascular ultrasound (IVUS), virtual histology (VH), Doppler flow measurement, and the 

fractional flow reserve (FFR). IVUS and VH provide a set of transversal ultrasound images of 

the vessel wall, thereby enabling direct assessment of coronary atherosclerosis. In contrast, 

Doppler flow and FFR measure coronary blood flow and coronary blood flow reserve and 

are used to evaluate the hemodynamic effect of lesions detected during preceding coronary 

angiography.

Non-invasive imaging

Although invasive cardiac imaging techniques are considered the golden standard, these 

techniques are associated with complications. Although severe complications occur in only 

a very small proportion of patients, invasive imaging is nevertheless generally restricted to 

individuals with a high pre-test likelihood of CAD. Non-invasive imaging was developed 

to identify or rule out the presence of CAD in patients with a lower pre-test likelihood of 

CAD, and has gained widespread popularity in the last decades. The development of stress 

echocardiography, single photon emission computed tomography (SPECT), positron emis-

sion tomography (PET), and magnetic resonance imaging (MRI) has enabled non-invasive 

evaluation of myocardial perfusion and function. Stress echocardiography uses ultrasound 

to image the myocardium and can identify patients with CAD by detecting impaired wall 

motion due to decreased blood flow resulting from a coronary stenosis.5 SPECT and PET 

asses myocardial perfusion by use of radioisotope tracers which are injected into the blood-

stream. The blood-borne SPECT and PET tracers distribute throughout the myocardium and 

respectively emit gamma radiation and positrons, which can be detected externally by a 

gamma camera.6 A perfusion defect caused by coronary stenosis is indicated by decreased 

emissions from the corresponding myocardial segments. Sets of images obtained during 

distinct intervals of the cardiac cycle can be looped to assess wall motion. MRI is also used 

to assess myocardial perfusion and wall motion, however without the use of ionizing radia-

tion. MRI uses a magnetic field to align the nuclear magnetism of hydrogen atoms in the 

body. The alignment of these hydrogen atoms are subsequently altered by a radio frequency 

field which results in the hydrogen atoms producing an electromagnetic signal which can 

be detected by an MRI scanner.7 Different tissue types can be distinguished from each other 

by the different electromagnet signals. To assess myocardial perfusion, MRI contrast agents, 
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which alter the electromagnetic signal emitted from the myocardium, are injected into the 

bloodstream.8

In addition to these non-invasive functional imaging techniques, non-invasive assessment 

of coronary anatomy has become feasible with the more recent introduction and rapid 

technical advances of non-invasive imaging using computed tomography (CT). The CT scan-

ner generates a set of cross sectional images of the body, obtained with an X-ray tube and 

detector row rotating around the longitudinal z-axis of the body.9 Non-contrast enhanced 

CT allows for visualization of coronary calcifications as a marker for CAD, and can quantify 

the extent and severity of coronary calcification by use of the coronary calcium score (CS). 

Contrast enhanced CT coronary angiography (CTA) provides direct visualization of the 

coronary arteries and allows for direct detailed assessment of coronary atherosclerosis and 

stenosis severity.9 

Objective and outline of the thesis

CTA is a relatively new imaging technique; the objective of the thesis is therefore to explore 

the value of CTA for diagnosis and risk stratification of CAD in patients presenting with sus-

pected and known CAD, in order to further define its role in clinical practice. In Part 1 of the 

thesis the value of CTA for diagnosis of CAD, and its relationship to existing diagnostic imag-

ing modalities is described. Chapter 2 reviews the technique and potential implementation 

of CTA in clinical practice relative to existing non-invasive imaging modalities. In Chapter 

3 the diagnostic accuracy of CTA is studied specifically in patients with an intermediate 

pre-test likelihood, as this is the population of choice for non-invasive diagnostic imaging 

strategies. In Chapter 4 multiple non-invasive and invasive cardiac imaging techniques are 

compared to evaluate their ability to detect CAD. Chapter 5 describes the prevalence of 

atherosclerotic lesion on CTA in patients with normal myocardial perfusion as assessed on 

SPECT. In Chapter 6 the relationship between CTA, invasive coronary angiography and FFR 

is described. Chapter 7 assesses the complementary value of CTA and myocardial perfusion 

imaging using MRI. In Chapter 8 the predictive value of CTA for perfusion defects on SPECT 

is evaluated in detail. Chapter 9 describes the effects of patient clinical presentation and 

pre-test likelihood on the relationship between CS and CTA. In Part 2 of the thesis the 

value of CTA for risk stratification is evaluated; in addition the prognostic value of CTA is 

compared to other non-invasive imaging techniques used for risk stratification. A review of 

this topic is provided in Chapter 10. In Chapter 11 the prognostic value of CTA is compared 

to the prognostic value of myocardial perfusion imaging using SPECT. Chapter 12 describes 

the incremental prognostic value of CTA over CS testing. The incremental prognostic value 

of left ventricular function over CTA is discussed in Chapter 13. In Chapter 14 the prognostic 
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value of CTA is evaluated specifically in patients with an intermediate pre-test likelihood for 

CAD. Chapter 15 evaluates the prognostic value of CTA in diabetic patients and compares 

it to a non-diabetic population. The prognostic value of CTA in smokers compared to non-

smokers is discussed in Chapter 16. Future perspectives of CTA are discussed in Part 3 of the 

thesis. The potential value of CTA for perfusion imaging is reviewed in Chapter 17, and the 

feasibility of diastolic function assessment using CTA is discussed in Chapter 18.
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Abstract

Non-invasive imaging plays an increasingly important role in the diagnosis and risk 

stratification of coronary artery disease. Several techniques such as stress echo-

cardiography and myocardial perfusion imaging have become available to assess 

cardiac function and myocardial perfusion. With the arrival of multi-slice computed 

tomography coronary angiography (CTA), non-invasive imaging of coronary anat-

omy has also become possible. Studies concerning the diagnostic accuracy have 

demonstrated a good agreement with conventional coronary angiography resulting 

in a sensitivity and specificity of approximately 86% and 96% respectively. The high 

negative predictive value of 97% renders it particularly useful to rule out the pres-

ence of coronary artery disease in patients with an intermediate pre-test likelihood. 

Moreover comparative studies have demonstrated that anatomic imaging with CTA 

may provide information complementary to the traditionally used techniques for 

functional assessment. From these studies can be derived that only approximately 

50% of significant stenoses on CTA are functionally relevant; a large proportion 

of significant (>50%) lesions on CTA does not result in perfusion abnormalities. 

Alternatively, many patients with a normal perfusion CTA show considerable ath-

erosclerosis on CTA. Therefore the combined use of these techniques may enhance 

the assessment of the presence and extent of coronary artery disease. In the future 

diagnostic algorithms combining non-invasive anatomic and functional imaging 

need to be evaluated in large patient populations to establish their efficacy, safety, 

and cost effectiveness. Importantly, these investigations should result in the devel-

opment of comprehensive guidelines on the use of CTA in clinical practice as well.

Jaap BW4.indd   22 10-05-11   16:39



C
h

ap
ter 2

C
TA

: an
ato

m
ic vs fu

n
ctio

n
al assessm

en
t in

 clin
ical p

ractice

23

Introduction

Coronary artery disease (CAD) is one of the leading causes of death in the western world. In 

the diagnosis and risk stratification of this condition, imaging plays an increasingly impor-

tant role. The golden standard for detecting CAD is conventional coronary angiography 

which enables visualization of the coronary lumen. This is a highly accurate and robust 

diagnostic technique, but because of its invasive nature it is less suitable as a first line diag-

nostic test. In the past decades non-invasive imaging has been developed for this purpose 

and functions as a gatekeeper for conventional coronary angiography. Several techniques 

such as stress echocardiography and myocardial perfusion imaging have become available 

to assess cardiac function and myocardial perfusion. Myocardial perfusion imaging with 

single photon emission computed tomography (SPECT) in particular is widely available and 

frequently used. With the arrival of multi-slice computed tomography coronary angiography 

(CTA), non-invasive coronary angiography has become possible. The technique has matured 

rapidly and its introduction has resulted in a shift from pure functional imaging to non-

invasive assessment of coronary anatomy as well. In the present review we will provide an 

overview of the current status of CTA, and its clinical implications.

CTA technique

Background

Accurate imaging of coronary anatomy with CTA is governed by several basic principles. To 

ensure detailed evaluation of the coronary arteries as well as coronary stenosis, a high spa-

tial resolution is necessary. This is determined by the minimal slice thickness. Other factors 

are a high temporal resolution, ECG gating, and sufficient coverage, which are all needed 

to minimize artefacts due to cardiac and respiratory motion. Temporal resolution (shutter 

speed) is determined by the rotation time, number of X-ray beams, and the reconstruction 

protocol used. It needs to be high because of the constant motion of the heart and coronary 

arteries. ECG gating is used to essentially ‘freeze’ the heart during an optimal phase of the 

cardiac cycle with the least cardiac motion. Sufficient images of each cardiac phase are 

obtained by using an overlapping scan protocol. Finally, respiratory motion is counteracted 

by performing data acquisition during an inspiratory breath hold. Sufficient coverage (i.e. 

number of slices) ensures a short scan time during a single breath hold.

Technological advances

CTA technology evolved rapidly starting with the first 4-slice spiral CT scanner in 2000.1, 2 

At first, the development of new scanners focused on the number of slices. This increased 

the coverage and thereby reduced scan time. These advancements enabled a shorter breath 
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hold which reduced the prevalence of uninterpretable scans caused by breathing artefacts, 

and arrhythmias. Currently 64-slice scanners are the industry standard.

Recent development of new scan technology has moved into different directions. To 

increase temporal resolution a dual source computed tomography (DSCT) system has been 

developed, which integrates two X-ray tubes into one scan system, thereby increasing the 

temporal resolution to 83 ms.3, 4 This improvement results in superior image quality as well 

as less dependency on heart rate control.5, 6 Another improvement has been a reduction of 

the radiation dose by the development of prospective ECG gating. With this “step-and-shoot” 

protocol images are made during a fixed part of the RR interval, typically end diastolic. Since 

data are acquired only during this interval the radiation dose can be substantially lowered 

to approximately 1.1-3.0 mSv.7 Finally, entire cardiac coverage in one heart beat can be 

obtained by the recently introduced 320-slice CT system.8, 9 Because of the wide detector 

array a complete volume of the heart can be scanned without the need for overlapping 

scans. This significantly lowers the scan time, which counters problems with arrythmias, 

decreases the radiation dose, and reduces the amount of contrast needed.

Scan protocol

Patient preparation is an important component of non-invasive coronary angiography. 

Before each scan, patients should be informed about the procedure, and heart rate is moni-

tored. Most centers administer beta-blockers to patients with heart rates above 65 beats per 

minute, typically with oral beta-blockers (metoprolol 50 -100 mg), but intravenous beta 

blockers are also used. Importantly, only patients with sinus rhythm should be studied while 

imaging should not be performed in patients with arrhythmias. Finally, some centers also 

administer sublingual nitrates which dilate the coronary arteries thereby enhancing image 

quality. Importantly, only patients with sinus rhythm should be studied while imaging should 

not be performed in patients with arrhythmias.

After patient preparation, several exploratory scans are performed to determine accurate 

start and end positions. Finally, the ECG gated contrast enhanced scan is performed during 

administration of approximately 80-140 ml of iodinated contrast agent, followed by 40-50 

ml saline for optimal arterial enhancement.

After the data have been acquired, the cardiac phase with the least motion is identified 

and used to reconstruct a dataset of the entire heart. Reconstructions are transferred to an 

offline workstation for further analysis. The presence of coronary artery stenosis is typically 

evaluated by assessing the axial images in combination with processed images included 3D 

volume rendered and curved multiplanar reconstructions or maximum intensity projections.

(Figure 1)
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Diagnostic accuracy of CTA

Interpretability

The diagnostic accuracy of CTA for the detection of significant CAD (>50% lumen diameter), 

has been assessed in many comparative studies.2, 6, 10-26 With each generation of scanners 

better image quality, a lower number of uninterpretable scans, and an increased diagnostic 

accuracy has been obtained. Indeed, although 4-slice CTA showed promising diagnostic 

accuracy, up to 30% of segments were uninterpretable and had to be excluded from 

analysis.2, 10, 17 The number of uninterpretable scans decreased substantially with 16-slice 

CTA,15, 16, 19 and with the current 64-slice scanners the rate of uninterpretable segments is 

approximately 4%.27 

64-slice CTA

A recent meta-analysis by Abulla et al. has evaluated the diagnostic accuracy of 64-slice 

CTA compared to conventional coronary angiography.27 The authors included 19 studies 

that evaluated the native coronary arteries in a total of 1,740 patients. On a patient level 

the following diagnostic accuracy was observed: sensitivity 86%; specificity 96%, positive 

predictive value 83%, and negative predictive value 97%. Recently, results from a multi-

center trial have been reported by Miller et al.26 The authors included 316 patients with a 

calcium score ≤600, of which 291 patients underwent conventional coronary angiography. 

On a patient level a sensitivity and specificity of respectively 83%, and 91% were observed. 

Accordingly, these multi-center data confirm the observations from previous single center 

studies.11-13, 18, 20-22, 24, 25 An example of the excellent concordance between 64-slice CTA 

and conventional coronary angiography is illustrated in Figure 2.

Figure 1. Examples of different reconstruction techniques used for the offline evaluation of CTA exams. Panel A 
shows a three dimensional volume rendered reconstruction of the right and left coronary arteries. In panel B an 
axial cross section is depicted in which the left anterior descending coronary artery (LAD), right coronary artery 
(RCA), and left circumflex artery (LCX) are clearly visible. A multi-planar reconstruction of the right coronary artery 
is shown in panel C.
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DSCT

The diagnostic accuracy of DSCT has been evaluated in several studies.6, 14, 23 In a study by 

Weustink et al. including 100 patients, the DSCT scanner yielded a high diagnostic accu-

racy with a sensitivity of 99%, specificity 87%, positive predictive value 96%, and negative 

predictive value 95% on a patient level.6 Because of the increased temporal resolution (83 

ms), a high diagnostic accuracy could be obtained even in patients with a high heart rate. 

This is further emphasized in the study by Ropers et al. who evaluated the influence of 

heart rate on the diagnostic accuracy of DSCT.5 In total, 100 patients were scanned without 

premedication with beta blockers, allowing comparison of the diagnostic accuracy between 

56 patients with a heart rate <65 and 44 patients with a heart ≥65. Although the per-segment 

evaluability was slightly lower in patients with a high heart rate, no decrease in diagnostic 

accuracy was observed.

 3

2.2 

 
Figure 2. Patient with a significant coronary artery stenosis in the right coronary artery (panels A-D) on CTA. In 
panels A-C axial slices of the heart are shown at three levels of the right coronary artery corresponding with the 
markers in panel D: top arrowhead (panel A), middle arrow (panel B), and bottom arrowhead (panel C). While 
in panels A and C the coronary lumen is clearly visible, substantial reduction of the coronary lumen is visible in 
panel B. Findings were confirmed by conventional coronary angiography (panel E).
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Potential use of CTA in clinical practice

Possible indications
Stable chest pain

The majority of studies on the diagnostic accuracy of CTA have been performed in patients 

with stable chest pain complaints and referred for coronary angiography due to a high 

pre-test likelihood for CAD. As a result, most data have been obtained in populations with a 

high prevalence of CAD. However, non-invasive imaging may be more valuable in patients 

with a lower likelihood of disease.28 The relationship between pre-test probability and the 

usefulness of CTA was recently studied by Meijboom et al. who evaluated the diagnostic 

accuracy of CTA among patients with a high, intermediate, or low pre-test likelihood. In 

patients with a high pre-test likelihood for CAD, the additional value of CTA was limited. In 

contrast, in patients with an intermediate pre-test likelihood, a negative CTA scan allowed 

reduction of the post test probability of CAD to 0%.29 Accordingly these data indicate that 

the main strength of CTA may be to rule out CAD in patients with a low to intermediate 

pre-test likelihood.

Acute chest pain

CTA may also be proven useful in patients presenting with acute chest pain. In this clinical 

setting, it is important to obtain a rapid diagnosis to avoid unnecessary hospitalization as 

well as incorrect discharge of patients.30, 31 Several studies have evaluated the feasibility 

of CTA in this population.32-36 In a large randomized controlled trial by Goldstein et al., 

197 low risk chest pain patients were randomized into a CTA group (n=99) and a standard 

of care group (n=98).37 In the CTA group, CAD was ruled out in 67 (68%) of 99 patients. 

In 24 patients with an intermediate or non-diagnostic CT exam a nuclear stress study was 

performed for further evaluation. In the remaining 8 patients CTA detected severe disease. 

These patients were directly referred for conventional coronary angiography. An important 

finding of this study was that the implemented algorithm significantly reduced the diagnostic 

time compared to the standard of care (3.4 h vs. 15.0 h, p < 0.001), while also lowering the 

costs ($1,586 vs. $1,872, p < 0.001). Accordingly, initial data suggests that in patients with 

an intermediate likelihood without ECG changes and elevated enzymes, in whom diagnosis 

may be particularly challenging, CTA may be useful.38 Nevertheless, further evaluation of 

the accuracy, safety, and cost-effectiveness of CTA in this setting is warranted.

Asymptomatic patients

In general use of CTA is considered to be inappropriate in asymptomatic patients because 

of the associated radiation burden. However several subpopulations have been identi-

fied that may benefit from evaluation with CTA, such as patients referred for preoperative 

cardiac evaluation,39 or patients with left bundle branch block.40 Also, in patients with 
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dilated cardiomyopathy CTA may be useful for identification of idiopathic versus ischemic 

etiology.41 

Previous revascularization

In patients with previous revascularization (percutaneous coronary intervention or bypass 

grafting) imaging with CTA is possible but is frequently challenging.42, 43 The assessability 

of in-stent restenosis is hampered by the occurrence of metal artefacts caused by the stent 

struts. As a result, high rates of uninterpretable stents have been reported. The routine use 

of CTA in patients with previous coronary stenting is therefore not recommended.28 How-

ever in selected patients with larger stent diameter, results with 64-slice CTA have been 

promising. Cademartiri et al evaluated 182 patients with a total of 192 stents (diameter ≥2.5 

mm) and demonstrated a sensitivity and specificity of 95% and 93%. Moreover, a negative 

predictive value of 99% was obtained indicating that in selected patients, CTA may be used 

to rule out in-stent restenosis.28, 44, 45

CTA imaging of bypass grafts is less affected by motion than the coronary arteries, thereby 

allowing good visualization of graft patency or stenosis. In general, high accuracies in the range 

of 90% to 100% have been reported.46, 47 However, the assessment of grafts can be affected 

by surgical metal clips which may render the graft uninterpretable. Furthermore, assessment 

of the native coronary arteries or segments distal to the anastomosis may be difficult due to the 

frequent presence of extensive coronary calcifications in combination with small vessel size. 

As a result, higher rates of unevaluable segments as compared to patients without previous 

coronary artery bypass grafting have been reported.43 Thus, while coronary artery bypass grafts 

can be assessed accurately, assessment on a patient level remains challenging. The routine use 

of CTA is therefore not recommended in patients with previous bypass graft surgery.28

Integration into current clinical practice
Anatomy versus function

Traditional non-invasive diagnostic imaging strategies have focused on the assessment of 

myocardial perfusion and function. Accordingly, the presence of CAD was determined based 

on the presence of inducible perfusion or wall motion abnormalities, indicating the pres-

ence of ischemia. With the arrival of CTA it has become possible to assess cardiac anatomy 

non-invasively as well. To understand the relative values of these techniques several studies 

comparing CTA to myocardial perfusion imaging have been performed.32, 48-50 An overview 

of the studies comparing 64-slice CTA to myocardial perfusion imaging using SPECT is 

shown in Table 1. From these studies can be derived that only approximately 50% of sig-

nificant stenoses on CTA are functionally relevant; a large proportion of significant (>50%) 

lesions on CTA does not result in perfusion abnormalities. Alternatively, many patients with 

a normal perfusion scan show considerable atherosclerosis on CTA. Accordingly, these 

Jaap BW4.indd   28 10-05-11   16:40



C
h

ap
ter 2

C
TA

: an
ato

m
ic vs fu

n
ctio

n
al assessm

en
t in

 clin
ical p

ractice

29

studies illustrate the discrepancy between anatomic and functional testing; CTA detects 

atherosclerosis, functional testing evaluates the presence of hemodynamically significant 

lesions. As a result, the techniques may be considered to provide complementary infor-

mation on the presence and severity of CAD. The combined use of these techniques may 

therefore potentially enhance the diagnostic workup of patients presenting with chest pain 

complaints.

Combined anatomic and functional imaging

Two approaches can be used to combine the information from CTA and myocardial perfu-

sion imaging. The first is fusion of the anatomic and functional information, either by hybrid 

imaging or by retrospective fusion of datasets.51, 52 The advantage of this approach is that it 

allows accurate allocation of perfusion defects to the corresponding coronary arteries.53 A 

disadvantage however is the associated radiation dose while information on both anatomy 

and function may not be required in all patients.

An alternative approach to combining anatomic and functional imaging therefore might be 

sequential imaging. A flow chart advocating such a strategy has been recently published and is 

provided in Figure 3.54 Patients presenting with an intermediate pre-test likelihood may benefit 

the most from CTA. In these patients, CTA can be used as an initial imaging technique to rule out 

the presence of CAD. Patients with a normal CTA can be safely discharged and do not require 

further testing. In patients with non-obstructive atherosclerosis (<50%) medical therapy and 

aggressive risk factor modification may be indicated. Invasive imaging and revascularization 

may not be needed as the likelihood of ischemia is still low. On the other hand, the likelihood 

of hemodynamically relevant CAD is high in patients with a severely abnormal CTA, including 

left main or three vessel disease. These patients may be referred for conventional coronary 

angiography immediately. Finally, in patients with a borderline stenosis or an equivocal CTA, 

functional imaging remains required to determine the further management and in general, only 

patients with ischemia should be referred for conventional coronary angiography in combina-

tion with possible revascularization. An example of a patient with a significant stenosis on CTA 

with a corresponding perfusion defect on SPECT is shown in Figure 4. 

Table 1. Overview of studies comparing 64-slice CTA to myocardial perfusion imaging (MPI).

CTA ≤50% CTA >50%
n MPI - MPI + MPI - MPI +

Schuijf(50) 114 37 (90%) 4 (10%) 40 (55%) 33 (45%)
Hacker(49) 26 12 (86%) 2 (14%) 4 (33%) 8 (67%)
Gaemperli(48) 91 53 (96%) 2 (4%) 18 (50%) 18 (50%)
Galagher(32) 85 66 (90%) 7 (10%) 6 (50%) 6 (50%)
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Patient with suspected CAD

(Intermediate likelihood of CAD)

Non-invasive anatomical imaging

Normal

Functional imaging
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(1st prevention)

Invasive coronary
angiography + possibly

revascularization

IschemiaNo ischemia

Medical therapy and 
aggressive risk factor 

modification (2nd prevention)

Non-
obstructive

stenosis

Severe
abnormal/3VD

Borderline
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equivocal result

 

Figure 3. A flow chart describing the combined use of non-invasive anatomical and functional imaging in patients 
with an intermediate pre-test likelihood of coronary artery disease (CAD). Reprinted with permission from 
reference 54.

 5

2.4  

 

Figure 4. Example of a patient with a significant stenosis in the right coronary artery on CTA (panel A), which 
resulted in a partially reversible perfusion defect on SPECT (panel B).
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Future perspectives

Plaque imaging

Acute coronary syndromes (ACS) are a major cause of morbidity and mortality worldwide.55 

Since CTA allows direct evaluation of the presence and (to some extent) composition of 

atherosclerosis, the technique may potentially be useful to identify patients with plaque 

characteristics suggesting a high risk for plaque rupture. Several studies have identified dif-

ferences in plaque composition between patients presenting with ACS and patients with 

stable CAD.56-58 Motoyama et al. studied the characteristics of culprit lesions in 38 patients 

with ACS and compared them to the lesions observed in 33 patients presenting with stable 

angina pectoris.55, 57 The authors observed significantly more positive remodeling, non-

calcified plaque, and spotty calcifications in the culprit lesions of ACS patients. Similar 

findings have been reported in other studies.56, 58 Although these data suggest that the 

assessment of plaque characteristics may be of clinical relevance, accurate and reproduc-

ible quantification remains challenging. Leber et al. recently reported on the accuracy of 

64-slice CTA to classify and quantify plaque volumes in the proximal coronary arteries.55, 

59 CTA was compared with intravascular ultrasound in 19 patients with 36 vessels. CTA 

detected calcified and mixed plaque with high accuracy (95% and 94%, respectively) but 

accuracy was lower for non-calcified lesion (83%). When regarding plaque volume, non-

calcified plaque and mixed plaque volumes were systematically underestimated whereas 

calcified plaque volume was overestimated by CTA. Importantly the presence of features 

associated with plaque vulnerability, including the presence of large lipid cores and spotty 

calcifications, was also assessed. A lipid pool was correctly identified in 70% of sections 

and spotty calcification patterns in 90% of sections. The authors concluded that imaging 

of plaque characteristics related to ACS may be possible with CTA, but that evaluation of 

plaque burden is only moderately concordant with intravascular ultrasound.

These preliminary studies demonstrate the ability of CTA to provide information on athero-

sclerotic plaque patterns. Potentially, this information may be used for risk stratification, 

although only limited outcome data of CTA are currently available.60, 61 

CTA perfusion imaging

Another potential feature of CTA is the evaluation of myocardial perfusion, which has 

generated substantial interest. Based on differences in the attenuation values during contrast 

administration, differentiation between territories with normal and abnormal perfusion is 

possible. Indeed, using the same protocol as used for coronary angiography, areas of previ-

ous myocardial infarction are identified as hypoenhanced regions.62-64 Similar to MRI, iden-

tification of scar tissue is possible with delayed enhancement imaging. Using this technique 

myocardial segments with scar tissue appear as hyperenhanced regions.65, 66 An excellent 
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agreement has been shown between infarct imaging with CTA and other techniques includ-

ing magnetic resonance imaging and SPECT.63, 67 

Importantly, preliminary data suggest that CTA can also be used to assess the presence 

of inducible perfusion abnormalities indicating the presence of ischemia.68 However, the 

administration of adenosine may frequently induce tachycardia, which in turn may hamper 

simultaneous assessment of the coronary arteries. The introduction of new generation scan-

ners such as 256- and 320-slice CT however may substantially facilitate combined evalua-

tion of coronary anatomy and stress perfusion in a single procedure.69 Further studies should 

demonstrate whether CTA may indeed have the potential to provide combined assessment 

of anatomy and function in a single session.

Conclusions

With the current generation scanners CTA has become a robust non-invasive imaging tech-

nique. Studies concerning the diagnostic accuracy have demonstrated a good agreement 

with conventional coronary angiography. The high negative predictive value of CTA renders 

it particularly useful to rule out the presence of CAD in patients with an intermediate pre-

test likelihood. Comparative studies have demonstrated that anatomic imaging with CTA 

may provide information complementary to the traditionally used techniques for functional 

assessment. Moreover, the combined use of these techniques may enhance the assessment 

of the presence and extent of CAD. In the future diagnostic algorithms combining non-

invasive anatomic and functional imaging need to be evaluated in large patient populations 

to establish their efficacy, safety, and cost effectiveness. Importantly, these investigations 

should result in the development of comprehensive guidelines on the use of CTA in clinical 

practice as well.
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Abstract

Data on the diagnostic accuracy of multi-slice computed tomography coronary angi-

ography (CTA) have been mostly derived in patients with a high pre-test likelihood for 

coronary artery disease (CAD). Systematic comparison with invasive angiography in 

patients with intermediate pre-test likelihood is scarce. The purpose of the present 

study was to determine the diagnostic accuracy of CTA in patients without known 

CAD with an intermediate pre-test likelihood. 61 patients (61% male, and average 

age 57±9 years) referred for invasive coronary angiography underwent additional 

64-slice CTA. 920 segments were identified on invasive coronary angiography of 

which 885 (96%) were interpretable on CTA. Invasive coronary angiography identified 

a significant stenosis (≥50% luminal narrowing) in 29 segments, of which 23 were 

detected on CTA. As a result, sensitivity, specificity, positive predictive value and 

negative predictive value were 79%, 98%, 61%, and 99% respectively. On a patient 

level, sensitivity, specificity, positive predictive value, and negative predictive value 

were respectively 100%, 89%, 76%, and 100%. Importantly, CTA correctly ruled out 

the presence of significant stenosis in 66% (40 of 61) of the total population. In con-

clusion, the current study confirms that CTA has an excellent diagnostic accuracy in 

the target population of patients with an intermediate pre-test likelihood. Notably, 

the high negative predictive value allowed rule out of significant stenosis in a large 

proportion of patients. CTA may therefore be used as a highly effective gatekeeper 

for invasive coronary angiography.
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Introduction

Recently, non-invasive anatomic imaging has become possible with the introduction of 

multi-slice computed tomography coronary angiography (CTA). Numerous studies have 

shown that CTA has a high diagnostic accuracy for the evaluation of significant CAD (≥50% 

luminal narrowing) as compared to invasive coronary angiography.1-7 Accordingly, the 

technique has been proposed as a tool to rule out significant CAD and thus serve as a 

non-invasive gatekeeper for invasive coronary angiography. However thus far, almost all 

studies investigating the diagnostic accuracy of CTA have been performed in populations 

with a high pre-test likelihood for CAD. Nevertheless, this population is unlikely to benefit 

from CTA as the majority of patients will require invasive coronary angiography anyway. 

In contrast, patients with an intermediate pre-test likelihood of CAD may derive far more 

benefit from a non-invasive alternative for coronary angiography and may in fact represent 

the target population for this technique. Unfortunately, only very limited data are currently 

available in patients with an intermediate pre-test likelihood, and systematic comparison 

with invasive coronary angiography is scarce. For this reason the purpose of the present 

study was to specifically address the diagnostic accuracy of CTA in patients with an inter-

mediate pre-test likelihood for CAD. 

Methods

In this prospective cohort study, 61 patients with an intermediate pre-test likelihood for CAD 

and referred for invasive diagnostic coronary angiography underwent additional evaluation 

with CTA within a period of 14 days. An intermediate pre-test likelihood was defined accord-

ing to the Diamond and Forrester criteria as a pre-test likelihood of CAD between 13.4% 

and 87.2%, as previously described.8 Patients were excluded from the study if they met one 

of the following exclusion criteria for CTA: cardiac arrhythmias, renal insufficiency (serum 

creatinine >120 mmol/L), known hypersensitivity to iodine contrast media, and pregnancy. 

Finally patients were excluded in the occurrence of a cardiac event (worsening angina, 

revascularization, or myocardial infarction) in the period between the 2 examinations. The 

study was approved by the local medical ethics committee (Medical Center Haaglanden, 

The Hague, The Netherlands) and all patients gave written informed consent.

All examinations were performed using a 64-slice MSCT scanner (Lightspeed VR 64, GE 

Healthcare, Milwaukee, MI, USA). Patient’s heart rate and blood pressure were monitored 

before each scan. In the absence of contraindications, patients with a heart rate exceeding 

the threshold of 65 beats per minute were administered beta-blocking medication (50-100 

mg metoprolol, oral or 5-10 mg metoprolol, intravenous).
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Before the helical scan, a non-enhanced electrocardiographically gated scan, prospectively 

triggered at 75% of the R-R interval, was performed to measure the coronary calcium score 

(CS), and to determine the start and end positions of the helical scan. Following the calcium 

scan a retrospectively electrocardiographically gated helical scan was performed using the 

following scan parameters: collimation 64 x 0.625 mm; rotation time 0.35 s; tube voltage 

120 kV, and tube current 600 mA (with tube modulation to reduce the radiation dose). A 

bolus of 80 ml iomeprol (Iomeron 400, Bracco, Milan, Italy) was injected at 5 ml/s followed 

by 40 ml saline flush. The helical scan was automatically triggered using a bolus tracking 

technique (SmartPrep), when the attenuation level in the region of interest reached the 

predefined threshold (baseline attenuation + 100 Hounsfield units). Datasets were recon-

structed from the retrospectively gated raw data with an effective slice thickness of 0.625 

mm. Coronary arteries were evaluated using the reconstructed dataset with the least motion 

artifacts, typically an end-diastolic phase. 

Post-processing of the MSCT calcium scans and coronary angiograms was performed on 

a dedicated workstation (Advantage, GE Healthcare, Waukesha, Wisconsin, USA). The 

total CS was calculated from the non-enhanced calcium scan using the Agatston method. 

Subsequently, coronary anatomy was evaluated using the contrast-enhanced helical exami-

nations. Coronary arteries were divided into 17 segments according to a modified American 

Heart Association classification.9 All studies were interpreted by two experienced observers 

blinded to the results of coronary angiography. First image quality was assessed and scored 

as good, average (reduced image quality but diagnostic quality), and poor (low diagnostic 

image quality). Next, the presence of significant stenosis (≥50% luminal narrowing) was 

evaluated using axial slices, curved multiplanar reconstructions, and maximum intensity 

projections.

Invasive diagnostic coronary angiography was performed according to standard techniques. 

Coronary angiograms were evaluated by an observer blinded to the CTA results using offline 

quantitative software (QCA-CMS, version 6.0, Medis, Leiden, The Netherlands) for quantita-

tive coronary angiography (QCA). Coronary arteries were divided into 17 segments accord-

ing to a modified American Heart Association classification and QCA was performed in 

lesions exceeding 30% luminal narrowing on visual assessment.9 Each segment was evalu-

ated for the presence of ≥50% luminal narrowing on QCA. Obstructive CAD was defined 

as luminal narrowing of ≥50%. Accordingly, sensitivity, specificity, positive and negative 

predictive values (including 95% confidence intervals), and positive and negative likelihood 

ratio’s for the detection of stenoses ≥50% luminal narrowing on QCA were calculated on 

segmental, vessel and patient levels. 
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Results

All 61 patients were clinically referred for invasive diagnostic coronary angiography because 

of chest pain suspect for CAD and an intermediate pre-test likelihood according to the 

Diamond and Forrester criteria. Characteristics of the study population are listed in Table 1. 

Briefly, the average age was 57±9 years, and the population consisted of 61% male patients. 

The majority of patients presented with atypical angina (82%), non-anginal chest pain was 

observed in 13%, and typical angina in 5%. 

On invasive coronary angiography 920 coronary segments were identified of which 35 

segments (3.8%) were uninterpretable on CTA, leaving 885 segments for further analysis. 

The image quality was good in 753 segments (85%), average image quality was observed 

in 100 segments (11%) and image quality was poor in the remaining 32 segments (4%). On 

invasive coronary angiography a significant stenosis was identified in 29 segments (3.3%). 

CTA correctly ruled out the presence of significant stenosis in 841 of 856 segments while a 

significant stenosis was correctly identified in 23 of 29 segments. CTA overestimated disease 

severity in 15 segments without significant disease on invasive coronary angiography, while 

6 segments were incorrectly scored as non-significant on CTA. Accordingly the sensitivity 

and specificity were respectively 79% and 98% on a segment level. The positive predictive 

value was 61% and the negative predictive value 98%. The positive likelihood ratio was 

39.5 compared to a negative likelihood ratio of 0.21.

Table 1. Patient characteristics

Men/Women 37/24
Age (years) (range) 57±9 (35-75)
Heart rate (beats per minute) (range) 58±8 (41-78)
Average calcium score (Agatston) (range) 198±323 (0-1505)
B-blocking medication 37 (61%)
Diabetes mellitus 15 (25%)
Hypertension 38 (62%)
Hypercholesterolemia† 38 (62%)
Current smoker 20(33%)
Body mass index ≥ 30 kg/m2 14 (23%)
Non-anginal chest pain 8 (13%)
Atypical angina pectoris 50 (82%)
Typical angina pectoris 3 (5%)
Nr. of coronary arteries narrowed on invasive coronary angiography
 None 45 (74%)
 1 8 (13%)
 >1 8 (13%)
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In total 183 vessels were identified. Significant stenosis was observed in 26 vessels on 

invasive coronary angiography. CTA correctly identified a significant stenosis in 22 of 26 

vessels. Significant stenosis was ruled out in 148 of 157 vessels. CTA overestimated disease 

severity in 9 vessels without significant stenosis on invasive coronary angiography, while 

disease severity was underestimated in 4 vessels. The sensitivity, specificity, positive predic-

tive value, and negative predictive value on a vessel level were respectively 85%, 94%, 71% 

and 93%. Positive and negative likelihood ratios were 14.2 and 0.16 respectively.

In the 61 included patients significant CAD was observed in 16 patients (26%) on invasive 

coronary angiography. CTA correctly identified significant CAD in all 16 patients with sig-

nificant disease on invasive coronary angiography. On the other hand, CTA correctly ruled 

out significant disease in 40 of 45 patients without significant stenosis on invasive coronary 

angiography, representing 66% of the total population. Disease severity was overestimated 

in 5 patients without a significant stenosis on invasive coronary angiography. Importantly 

CTA did not underestimate disease severity. This resulted in a sensitivity and specificity of 

respectively 100% and 89%. The positive predictive value was 76% and the negative predic-

tive value of 100%. The positive likelihood ratio was 9.1 compared to a negative likelihood 

ratio of 0.00. The results of all analyses, including positive and negative predictive values 

with 95% confidence intervals, are listed in Table 2. 

Discussion

The main finding of this study is that CTA has an excellent diagnostic accuracy in patients 

without known CAD and with an intermediate pre-test likelihood for CAD. Importantly, the 

observed negative predictive value was consistently high on a patient, vessel and segment 

level. As a result, CTA allowed accurate rule out of significant CAD in 66% of the total 

population. These findings indicate that CTA may be used as a highly accurate and effec-

tive gatekeeper for invasive coronary angiography in this target population for non-invasive 

imaging.

The diagnostic accuracy of CTA has been studied extensively. In early single center studies 

an average weighted sensitivity of 97.5 (95%-confidence interval 96-99) and specificity of 91 

(95%-confidence interval 87.5-95) have been observed.5 More recently several prospective 

multi-center studies have been published showing similar sensitivities and specificities.1, 3, 4 

Importantly however, almost all data on the diagnostic accuracy of CTA have been obtained 

in patients with a high pre-test probability for CAD. Nonetheless, the role of CTA may be 

limited in this population as the majority of patients will require invasive coronary angiogra-

phy anyway. In contrast, only very limited data are available in patients with an intermediate 

Jaap BW4.indd   44 10-05-11   16:40



C
h

ap
ter 3

D
iag

n
o

stic accu
racy C

TA
 in

 in
term

ed
iate p

re-test likelih
o

o
d

 p
atien

ts

45

Ta
b

le
 2

. D
ia

gn
os

tic
 a

cc
ur

ac
y 

of
 m

ul
ti-

sl
ic

e 
co

m
pu

te
d 

to
m

og
ra

ph
y 

co
ro

na
ry

 a
ng

io
gr

ap
hy

Va
ri

ab
le

S
eg

m
en

ta
l A

n
al

ys
is

Ve
ss

el
 A

n
al

ys
is

Pa
ti

en
t A

n
al

ys
is

E
xc

lu
d

ed
35

/9
20

 (
3.

8%
)

0%
0%

S
en

si
ti

vi
ty

23
/2

9 
(7

9%
, 6

4-
94

%
)

22
/2

6 
(8

5%
, 7

1-
99

%
)

16
/1

6 
(1

00
%

, 1
00

-1
00

%
)

S
p

ec
ifi

ci
ty

84
1/

85
6 

(9
8%

, 9
7-

99
%

)
14

8/
15

7 
(9

4%
, 9

0-
98

%
)

40
/4

5 
(8

9%
, 8

0-
98

%
)

Po
si

ti
ve

 p
re

d
ic

ti
ve

 v
al

u
e

23
/3

8 
(6

1%
, 4

6-
77

%
)

22
/3

1 
(7

1%
, 5

5-
87

%
)

16
/2

1 
(7

6%
, 5

8-
94

%
)

N
eg

at
iv

e 
p

re
d

ic
ti

ve
 v

al
u

e
84

1/
84

7 
(9

9%
, 9

9-
10

0%
)

14
8/

15
2 

(9
7%

 (
94

-1
00

%
)

40
/4

0 
(1

00
%

, 1
00

-1
00

%
)

D
ia

g
n

o
st

ic
 a

cc
u

ra
cy

86
4/

88
5 

(9
8%

, 9
7%

-9
9%

)
17

0/
18

3 
(9

3%
, 8

9-
97

%
)

56
/6

1 
(9

2%
, 8

5-
99

%
)

Po
si

ti
ve

 li
ke

lih
o

o
d

 r
at

io
39

.5
14

.2
9.

1
N

eg
at

iv
e 

lik
el

ih
o

o
d

 r
at

io
0.

21
0.

16
0.

00

Jaap BW4.indd   45 10-05-11   16:40



Pa
rt

 1

46

pre-test likelihood although it is precisely this population that may benefit the most from 

CTA. However, since according to Bayes theorem pre-test probability directly affects the 

diagnostic performance of a test, it is important to realize that diagnostic modalities should 

be validated across the full range of pre-test probabilities. The relationship between pre-

test probability and the diagnostic benefit of CTA was recently studied by Meijboom et al. 

among patients with a high, intermediate, or low pre-test likelihood. In patients with a high 

pre-test likelihood for CAD, observations on CTA failed to substantially change the post-test 

probability for significant CAD. Thus, a normal CTA examination did not result in sufficient 

reduction of post-test probability to reliably rule out the presence of significant CAD. These 

data further underline the limited clinical value of CTA in this patient group. In contrast, in 

patients with a low and intermediate pre-test likelihood, a negative CTA scan was able to 

reduce the post test probability of CAD to 0%.10 Particularly in patients with an intermediate 

pre-test probability CTA was most beneficial as the largest changes from pre-test probability 

to post-test probability were observed.

The findings of the current study confirm the usefulness of CTA in patients with intermediate 

pre-test likelihood. In all patients with a negative CTA study, invasive coronary angiography 

confirmed the absence of significant CAD resulting in a negative predictive value of 100%. 

These observations are in line with Meijboom et al. who also observed a negative predictive 

value of 100% in their subanalysis of patients with an intermediate pre-test likelihood.11 

Similarly, Leber et al. reported a high negative predictive value of 99% in their study using 

dual-source computed tomography in patients with an intermediate pre-test likelihood.12 

Thus, when CTA is applied in a patient population with intermediate pre-test likelihood, 

the need for further imaging will be restricted to only those patients with an abnormal CTA 

examination. In the current study, the presence of significant CAD could be ruled out in a 

large proportion of patients; a negative CTA study was obtained in 66% of the patient popu-

lation. Similar percentages were reported by Meijboom et al. (52%) and Leber et al. (68%). 

Thus, when appropriately applied, use of CTA may avoid invasive coronary angiography in 

the majority of patients. Indeed, the high negative predictive value and the small proportion 

of patients needing further testing support CTA as a highly effective gatekeeper for invasive 

coronary angiography in patients with an intermediate pre-test likelihood of CAD. Interest-

ingly, this concept has been further strengthened by preliminary cost-effectiveness data. Min 

et al. recently explored the value of CTA (n=1647) as a first line test as compared to myo-

cardial perfusion imaging (n=6588) using single photon emission computed tomography 

(SPECT) in patients with mainly low to intermediate pre-test likelihood. Importantly, in this 

low risk population, lower referral rates to invasive coronary angiography and overall lower 

healthcare costs were observed in patients undergoing CTA as a first line test compared to 

SPECT, with similar event rates in both groups during follow-up.13 
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This prospective study was performed in a relatively small patient population. Larger studies 

are necessary to more accurately approximate the sensitivity and specificity of CTA in a 

broad population of patients with an intermediate pre-test likelihood. Importantly, these 

investigations should take into account variations in patient characteristics which in addi-

tion to pre-test probability may also have an effect on diagnostic accuracy. These data are 

mandatory to further determine the predictive value of CTA in various populations. Currently 

64-slice CTA is still associated with a high radiation exposure, although the radiation dose 

of CTA has substantially decreased with the use of dedicated dose reduction techniques 

that have recently become available.14-17 Importantly, low-dose computed tomography 

with prospective ECG-triggering has recently been shown to reduce radiation burden while 

maintaining diagnostic image quality and a high diagnostic accuracy.18, 19 

Conclusion

The current study confirms that CTA has an excellent diagnostic accuracy in the target 

population of patients with an intermediate pre-test likelihood. Notably, the high negative 

predictive value allowed rule out of significant stenosis in a large proportion of patients. CTA 

may therefore be used as a highly effective gatekeeper for invasive coronary angiography.
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Abstract

Preliminary comparisons have suggested that abnormal myocardial perfusion stud-

ies correlate well with significant luminal stenosis on MDCT coronary angiography. 

However atherosclerotic coronary lesions may be detectable by MDCT even in the 

presence of normal myocardial perfusion. The objective of this study was to compare 

the diagnostic information obtained from noninvasive characterization of coronary 

artery disease by multi-detector computed tomography (MDCT) and myocardial 

perfusion imaging (MPI), and to compare findings with invasive coronary angiog-

raphy and intravascular ultrasound (IVUS). MDCT, MPI and conventional coronary 

angiography were performed in 70 patients. In addition, IVUS was performed in 

53 patients. Quantitative information was obtained by quantitative coronary angi-

ography (QCA) and IVUS assessment of plaque burden and minimal luminal area. 

Of 26 patients with an abnormal MPI study, 23 (88%) showed significant stenosis 

on MDCT. As compared to QCA, MDCT showed a sensitivity of 96% and specificity 

of 67% for the detection of stenoses ≥50% diameter narrowing in these patients. 

The mean diameter stenosis on QCA was 76% and the mean minimal lumen area 

in IVUS was 3.3 mm2. On the other hand, 27 (84%) of 44 patients with normal MPI 

had evidence of coronary atherosclerosis on MDCT (luminal stenosis ≥50%: n = 15, 

luminal stenosis <50%: n =12, sensitivity of 100% and specificity of 83% as compared 

to QCA). IVUS showed substantial plaque burden (mean: 58.9% ± 18.1% of cross-

sectional area), but presence of a stenosis (minimal lumen area <4.0 mm2) in only 

14 patients (mean minimal lumen area, 5.8 ± 3.3 mm2). Only 7 patients with normal 

myocardial perfusion scans demonstrated absence of coronary atherosclerosis by 

MDCT. In conclusion, a considerable plaque burden can be observed on MDCT even 

in the absence of myocardial perfusion abnormalities. This does not constitute a 

false-positive MDCT result, but rather reflects the fact that MDCT can detect athero-

sclerotic lesions that are not flow-limiting. Clinically, it is important to make a clear 

distinction between the presence of plaque and the presence of stenosis in MDCT. 
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Introduction

Traditionally, the evaluation and management of patients with suspected coronary artery 

disease (CAD) has been based on the noninvasive detection of ischemia followed by 

invasive coronary angiography to confirm the presence of luminal stenosis. There is gener-

ally a very good correlation between the stress myocardial perfusion or echo studies and 

quantitative angiography. However, it is well established that acute coronary events, usually 

result from voluminous atherosclerotic lesions but may not be associated with significant 

luminal obstruction. Intravascular ultrasound (IVUS) studies have demonstrated that even 

significant atherosclerosis burden may not always result in luminal obstruction, and may 

be frequently associated with normal myocardial perfusion.1, 2 The recent introduction 

of 64-slice multi-detector computed tomography (MDCT) has allowed the opportunity to 

noninvasively characterize the atherosclerotic lesions and define luminal and vessel wall 

alterations alike. The technique has been demonstrated to have a high diagnostic accuracy 

as compared to invasive coronary angiography.3 It is conceivable that the majority of patients 

with abnormal MPI will also show high-grade stenoses on MDCT. In addition, MDCT should 

allow recognition of plaque burden in patients with normal perfusion.4, 5 These patients 

with normal perfusion may only show minimal changes on invasive coronary angiography 

despite definitive atherosclerotic disease. Accordingly, the purpose of the present study was 

to compare the diagnostic information obtained from noninvasive characterization of CAD 

by MDCT and MPI, and to compare findings with invasive coronary angiography and IVUS.

Methods

Patients and study protocol

The study group consisted of symptomatic patients who presented to the outpatient clinic 

(Leiden, the Netherlands and Aalst, Belgium) for the evaluation of chest pain. Noninvasive 

imaging with gated SPECT and MDCT was performed, and based on clinical presentation 

and/or imaging results, 70 of these patients were referred for invasive coronary angiography 

in combination with IVUS and enrolled in the present study. Exclusion criteria were contra-

indications to MDCT,6 and the presence of unstable angina, heart failure, myocardial infarc-

tion or revascularization between the imaging procedures. Data of 15 patients have been 

previously reported in a study comparing MDCT and MPI.5The study protocol was approved 

by the institutional ethics committee and informed consent was obtained in all patients. 

Clinical characteristics of the study population are presented in Table 1. Of the 70 patients 

(mean age, 62 ± 11 years) included in the study, 46 (66%) were male. Diagnosis of CAD 

was established in 5 (7%) and suspected in the remaining 65 (93%) patients. Of the patients 
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with known CAD, 4 had previous percutaneous coronary intervention (with stent placement 

in 2 patients) whereas 1 patient had previous coronary artery bypass grafting (CABG). In the 

latter patients, 2 bypassed (grafted) coronary vascular territories were excluded from analy-

sis. In all patients MPI, MDCT and conventional coronary angiography (with QCA) were 

performed. In 53 patients, additional vascular imaging with IVUS was performed in a total 

of 109 coronary arteries. In the remaining 17 patients, IVUS imaging was not possible due 

to the presence of left main stenoses, severe coronary stenosis or total occlusion (n=10), and 

technical problems or time constraints during conventional coronary angiography (n=7).

Multi-detector computed tomography coronary angiography

MDCT coronary angiography was performed using either an Aquilion 64 (Toshiba Medical 

Systems, Japan) or a Sensation 64 (Siemens, Germany).

First, a prospective coronary calcium scan was performed prior to MDCT angiography with a 

collimation 4 x 3.0 mm, gantry rotation time 500 ms, the tube voltage 120 kV and tube current 

200 mA. The temporal window was set at 75% after the R-wave for electrocardiographically trig-

gered prospective reconstruction. For the contrast enhanced scan, collimation was either 64 x 0.5 

mm or 64 x 0.6 mm, respectively. The tube current was 300 mA, at 120 kV. Non-ionic contrast 

material was administered in the antecubital vein with an amount of 80 to 110 ml for 64-slice 

Table 1. Clinical characteristics of the study population (n=70).

Gender (M/F) 46/24
Age (years) 62 ± 11
Risk factors for CAD
 Diabetes Mellitus 21 (30%)
 Hypertension 46 (66%)
 Hypercholesterolemia 35 (50%)
 Positive family history 27 (39%)
 Current smoking 25 (36%)
 Obese (BMI ≥ 30 kg/m2) 14 (20%)
 Average BMI (30 kg/m2 ) 27.0 ± 4.0
Previous CAD
 Previous myocardial infarction 5 (7%)
 Anterior/inferior 4/1
 Previous PCI 4 (6%)
Agatston calcium score 435 ± 789
Heart rate (bpm) during MDCT 63 ± 9
LVEF on gated SPECT 58 ± 14%
Nr of significantly stenosed vessels on QCA
 0 32 (46%)
 1 17 (24%)
 2 13 (19%)
 3 8 (11%)
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MDCT, depending on the total scan time, and a flow rate of 5 ml/sec (Iomeron 400 ®), followed 

by a saline flush. Subsequently, data sets were reconstructed and transferred to a remote worksta-

tion as previously described.6 Coronary calcium score was derived using dedicated software. 

Coronary calcium was identified as a dense area in the coronary artery exceeding the threshold of 

130 HU. The global Agatston score as well as per coronary artery was recorded for each patient.

MDCT angiographic examinations were evaluated in consensus by 2 experienced readers 

including an interventional cardiologist blinded to the SPECT data for the presence of athero-

sclerosis. Coronary arteries were divided into 17 segments according to the modified American 

Heart Association classification.7Each segment was evaluated for the presence of any athero-

sclerotic plaque using axial images and curved multiplanar reconstructions. Coronary plaques 

were defined as structures >1 mm2 within and/or adjacent to the coronary artery lumen, 

which could be clearly distinguished from the vessel lumen and the surrounding pericardial 

tissue, as previously described.8 To describe the degree of stenosis, abnormal segments were 

further classified as showing 1. non-obstructive disease (<50% luminal narrowing), 2. bor-

derline stenosis (50% to 70% luminal narrowing) or severe stenosis, showing ≥70% luminal 

narrowing. To describe the extent of disease on MDCT, for each patient and vessel, the number 

of segments showing disease as well as significant (≥50% luminal narrowing) was determined. 

Data were recorded on a patient and vessel basis and in the vessel-based analysis, the left 

main coronary artery was considered part of the left anterior descending coronary artery.

Myocardial perfusion imaging

In all patients, stress MPI (using either technetium-99m tetrofosmin or technetium-99m ses-

tamibi) was performed with symptom-limited bicycle exercise or pharmacological (dipyri-

damole, adenosine or dobutamine) stress.9 Data were acquired with either a dual-head 

SPECT camera (Vertex Epic ADAC Pegasus) or a triple-head SPECT camera (GCA 9300/HG, 

Toshiba Corp., Tokyo, Japan) followed by reconstruction into long- and short-axis projections 

perpendicular to the heart-axis; data were presented in polar map format (normalized to 

100%), and a 17-segment model was used in which myocardial segments were allocated to 

the territories of the different coronary arteries as previously described.10, 11 Perfusion defects 

were identified on the stress images (segmental tracer activity less than 75% of maximum) 

and divided into ischemia (reversible defects, with ≥10% increase in tracer uptake on the 

resting images) or scar tissue (irreversible defects).5 Accordingly, examinations were classified 

as being either normal or abnormal, the latter being further divided in those demonstrating 

reversible defects and those demonstrating irreversible defects. The gated images were used 

to assess regional wall motion to improve differentiation between perfusion abnormalities 

and attenuation artifacts.12 The left ventricular ejection fraction was derived from the gated 

SPECT data using previously validated and automated software (quantitative gated SPECT 

[QGS]; Cedars-Sinai Medical Center, Los Angeles, CA); gating was only performed at rest.
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Conventional coronary angiography

Conventional coronary angiography was performed according to standard clinical proto-

cols. Quantitative coronary angiography (QCA) was performed using QCA-CMS 6.0 (Medis, 

Leiden, the Netherlands). For each coronary artery, the most severe stenosis was identified. 

The tip of the catheter was used for calibration and after automated vessel contour detection 

with manual correction if needed, percentage diameter stenosis was calculated. 

Intravascular ultrasound

IVUS imaging was performed with 2.9Fr 20-MHz catheters (Eagle Eye, Volcano, Brussels, 

Belgium). After intracoronary administration of nitrates, the IVUS catheter was advanced 

to the distal portion of coronary artery under fluoroscopic guidance. Using automated 

pullback device, the transducer was withdrawn at a continuous speed of 0.5 mm/s up to the 

coronary ostium. Cine runs before and during contrast injection were performed to confirm 

the position of the IVUS transducer before IVUS evaluation was started. All data were stored 

digitally and were analysed off-line with the use of QCU-CMS 4.0 (Medis, Leiden, The 

Netherlands). After motion correction had been applied, coronary arteries were divided 

into segments according to the modified American Heart Association classification (7 using 

coronary ostia and side branches as landmarks. In each coronary segment, the frame with 

the most severe cross-sectional area of narrowing was selected for analysis. In addition, 

proximal and distal reference sites that had the largest lumen area by IVUS in the proximal 

and distal portion of the vessel segment in the 10 mm adjacent (but before any side-branch) 

to the lesion site were selected. Subsequently, lumen and external elastic membrane (EEM) 

contours were manually traced to determine lumen area and EEM area at the lesion site and 

proximal and distal reference site. EEM area was defined as the area that was circumscribed 

by the border between the hypoechoic media zone and the surrounding echocardiographi-

cally bright adventitia. Plaque plus media area was calculated as the difference between 

the EEM and the lumen area. Based on these parameters, minimal lumen area (MLA), lesion 

plaque area, lesion plaque burden, lumen area stenosis, lumen diameter stenosis and cor-

rected lumen area stenosis were calculated per coronary segment as previously described.1, 

2 Briefly, lesion plaque burden was defined as plaque plus media area divided by the EEM 

area, resulting in the lesion percentage area stenosis due to plaque. Lumen area stenosis 

was calculated by subtracting the lumen area at the lesion site from the lumen area at the 

reference site and subsequently dividing by the lumen area at the reference site. In addition, 

vascular remodelling was determined. The number of lesions with positive remodelling was 

determined by calculating the remodelling index (RI) by dividing the lesion EEM area by the 

average of the proximal and distal reference EEM area. Subsequently, positive remodelling 

was defined as a RI ≥ 1.0, whereas RI < 1.0 was classified as negative remodeling.13
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Statistical analysis

Data were analysed on a per-patient and per-vessel basis and for the corresponding calcula-

tions, the coronary artery and coronary segment showing the most severe stenosis on either 

QCA or IVUS were used respectively. Continuous variables were described by mean ± SD. 

Comparisons between patient groups were performed using the independent samples T test 

for continuous variables and the χ2 test with Yates’ correction was used for comparison of 

categorical variables. A P-value <0.05 was considered statistically significant. All statistical 

analyses were performed using SPSS (SPSS Institute, Chicago, Illinois, USA).

Results

Comparison of MDCT with MPI and invasive angiography

The results of the analysis on a patient basis (n=70) are presented in Table 2 and Figure 1. 

Abnormal perfusion on SPECT was noted in 26 (37%) patients. The abnormal perfusion was 

associated with an average coronary calcium score of 751 ± 1143. Calcium scores ≥400 were 

observed in 11 (42%) patients. MDCT coronary angiography demonstrated atherosclerosis 

in all 26 patients; severe stenosis was observed in 14 patients, 9 patients revealed borderline 

stenosis, and the remaining 3 patients presented with non-obstructive disease. The average 

number of diseased segments was 6.4 ± 3.1, whereas the average number of significantly 

stenosed segments was 2.5 ± 2.5 per patient. Considering the most severe stenosis per patient 

on conventional angiography, QCA showed an average percentage stenosis of 75.9% ± 19.2% 

with 23 patients showing significant stenosis (≥50% luminal narrowing). When validating 

MDCT results against QCA, the sensitivity of MDCT to detect coronary artery stenoses ≥50% 

luminal narrowing was 96% (22/23) and specificity was 67% (2/3). The remaining 44 (63%) of 

70 patients demonstrated a normal myocardial perfusion on SPECT imaging. In these patients, 

Table 2. Angiographic characteristics (MDCT and QCA) for patients with respectively abnormal and 
normal perfusion (patient based analysis).

MPI abnormal 
(n=26 patients)

MPI normal 
(n=44 patients)

P -value

Calcium Score 751 ± 1143 255 ± 415 0.051
MDCT
 Normal 0 7 (16%)
 Abnormal 26 (100%) 37 (84%) 0.083
 Non-obstructive stenosis 3 (12%) 22 (59%)
 Borderline stenosis 9 (35%) 12 (32%)
 Severe stenosis 14 (54%) 3 (8%) <0.001
 Diseased segments 6.4 ± 3.1 5.0 ± 3.0 0.080
 Segments with >50% stenosis 2.5 ± 2.5 0.61 ± 1.2 0.001
QCA 75.9 ± 19.2% 26.7 ± 17.7% <0.001
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average coronary calcium score was 255 ± 415 (P=0.051 as compared to patients with abnor-

mal perfusion). In total, a calcium score ≥400 was observed in 8 (18%). MDCT was abnormal 

in 37 (84%) patients with 22 patients showing non-obstructive disease, 12 borderline stenosis 

and 3 patients showing severe stenosis. The average number of diseased segments (5.0 ± 3.0) 

was statistically insignificantly lower than the patients with abnormal perfusion scans (6.4 ± 

3.1, P=0.08). After excluding patients with completely normal coronary arteries, average num-

ber of diseased segments was 6.0 ± 2.7 (P=0.10). However, average number of segments with 

significant stenosis was significantly lower (0.61 ± 1.2, P<0.01) as compared to patients with 

abnormal perfusion. Average percentage lumen stenosis of the most severe lesion on QCA was 

also considerably lower (26.7% ± 17.7%, P<0.01) compared to patients with abnormal SPECT. 

All 9 patients with significant stenosis on QCA were detected by MDCT (sensitivity 100%), 

while MDCT correctly demonstrated absence of stenosis in 29/35 patients (specificity 83%).

Upon analysis by vascular territories instead of patient basis, abnormal myocardial 

perfusion was noted in 36 (17%) of 208 vascular territories with ischemia in 33 and fixed 

perfusion defects in 3 vascular territories (Table 3). In the remaining 172 (83%) vascular 

territories myocardial perfusion was normal.

 6

4.1

70 patients

44 (63%) normal26 (37%) abnormal

751 ± 1143    
………………..

75.9 ± 19.2% 

MPI

Calcium

QCA

255 ± 415                     
(306 ± 438*)  

26.7 ± 17.7% P<0.01

P=0.051

26 (100%) abnormal

3 (12%) ≤ 50%,                        
9 (35%) 50-70%,                        
14 (54%) ≥ 70% 

MDCT 
Degree

37 (84%) abnormal

22 (59%) ≤ 50%,                        
12 (32%) 50-70%,                        

3 (8%) ≥ 70% 

P=0.083 

P<0.01

Atherosclerosis                     
6.4 ± 3.1 segments    

……….

Stenosis ≥50%                        
2.5 ± 2.5 segments

MDCT   
Extent

Atherosclerosis                     
5.0 ± 3.0 segments               

(6.0 ± 2.7 segments*) 

Stenosis ≥50%                        
0.61 ± 1.2 segments

P=0.080

P<0.01

 

Figure 1. Flow chart describing the MDCT and QCA findings in 70 patients with respectively abnormal and 
normal MPI results. Note the discrepancy between the imaging modalities in patients with normal MPI. In the 
majority of these patients MDCT was abnormal, with no significant difference in the number of segments with 
atherosclerosis either (as compared to patients with abnormal perfusion. However, number of significantly 
stenosed segments was significantly lower in patients with normal MPI, as also reflected by minimal luminal 
narrowing on QCA.
* Average in patients with atherosclerosis on MDCT.

Jaap BW4.indd   58 10-05-11   16:40



C
h

ap
ter 4

Invasive versu
s n

o
n

invasive evalu
atio

n
 o

f C
A

D

59

Comparison of MDCT with MPI, invasive angiography and IVUS 

MPI was abnormal in 17 of 53 (32%) of patients in whom IVUS imaging was available. 

IVUS imaging of the coronary artery corresponding to the territory with abnormal perfu-

sion could not be performed in 4 patients. These patients were therefore excluded from the 

patient based analysis, but the available data were included in the vessel based analysis. 

Accordingly, on a patient basis, MPI was abnormal in 13 of 49 (27%) patients. Average 

coronary calcium score in these patients was 355 ± 355 with 3 (18%) patients showing 

calcium scores ≥400. In all patients, MDCT was abnormal with severe stenosis in 4 (31%), 

borderline stenosis in 7 (54%) and non-obstructive lesions in 2 (31%) patients. The average 

number of MDCT-verified diseased segments was 5.5 ± 3.0, whereas the average number 

of significantly stenosed segments was 1.5 ± 1.2. Average percent luminal narrowing as 

determined by QCA was relatively low in these patients (68.5% ± 18.5%), possibly due 

to the exclusion of patients with severe stenosis in whom IVUS imaging could not be per-

formed. Nonetheless, mean MLA was 3.3 ± 1.2 mm2 with an average lesion plaque area 

and plaque burden of respectively 10.7 ± 4.9 mm2 and 74.3% ± 8.8%, confirming the 

presence of potentially flow-limiting stenoses. Moreover, 9 (69%) lesions were associated 

with constrictive remodelling.

Normal perfusion was observed in the remaining 36 (73%) patients. Average coronary 

calcium score was 247 ± 395 (P=0.41 as compared to patients with abnormal perfusion). 

In these patients, calcium scores exceeded 400 in 7 (19%) patients. MDCT revealed ath-

erosclerosis in 32 (89%), of which 18 patients showed non-obstructive disease, 11 patients 

had borderline stenosis and 3 severe stenosis. Mean number of diseased segments was 

similar to that of patients with abnormal perfusion, 5.4 ± 3.1 (P=0.92) compared to patients 

with abnormal perfusion, but the mean number of significantly stenosed segments was 

Table 3. Angiographic characteristics (MDCT and QCA) of coronary arteries with respectively 
abnormal and normal perfusion in the corresponding vascular territory (vessel based analysis).

MPI abnormal 
(n=36 vessels)

MPI normal (n=172 
vessels)

P –value

Calcium score 281 ± 590 116 ± 232 0.13

MDCT

 Normal 0 45 (26%)

 Abnormal 36 (100%) 127 (74%) <0.01

 Non-obstructive stenosis 10 (28%) 93 (54%)

 Borderline stenosis 10 (28%) 27 (16%)

 Severe stenosis 16 (44%) 7 (4%) <0.01

 Diseased segments 2.6 ± 1.3 1.7 ± 1.3 <0.01

 Segments with >50% stenosis 1.1 ± 1.2 0.29 ± 0.67 <0.01

QCA 71.0% ± 22.1% 22.7% ± 19.1% <0.01
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significantly lower, 0.58 ± 0.91 (P=0.028). Considering only the most severe percent lumi-

nal stenosis per patient, mean luminal narrowing of only 26.2% ± 15.6% was observed on 

QCA, indicating minimal angiographic stenosis. In line with these observations, preservation 

of the lumen was confirmed by IVUS with an average MLA of 5.8 ± 3.3 mm2, significantly 

higher as compared to patients with abnormal MPI (P<0.01). Nonetheless, considerable 

atherosclerosis was identified on IVUS with an average lesion plaque area of 8.7 ± 4.3 mm2, 

not significantly different compared to patients with perfusion abnormalities (P=0.17). Also 

substantial plaque burden was observed, with an average of 58.9% ± 18.1% (P<0.01) of 

the lesion cross-sectional area as compared to abnormal MPI. A positive remodeling was 

identified in 16 (44%) of patients with normal MPI, as compared to 31% in patients with 

abnormal MPI (P=0.39) (Table 4). The results are summarized in Figure 2, whereas in Figure 

3, an example of a patient with MDCT and IVUS-verified significant atherosclerotic burden 

is presented who had normal myocardial perfusion.

Upon analysis by vessel basis, 15 (14%) of 109 coronary arteries were associated with 

abnormal perfusion in the corresponding vascular territory during MPI. The average coro-

nary calcium score was 120 ± 115 per vessel. In all coronary arteries with abnormal perfu-

sion, atherosclerosis was identified on MDCT, with non-obstructive stenosis in 5 (33%), 

borderline stenosis in 6 (40%) and severe stenosis in 4 (27%). With regard to the extent of 

disease on MDCT, a mean of 2.5 ± 1.2 diseased segments per vessel was observed, while 

mean of significantly diseased segments was 1.0 ± 1.0. Mean extent of stenosis on QCA was 

63.4 ± 23.5%. In the remaining 94 (86%) coronary arteries without perfusion abnormalities, 

average coronary calcium score was 94 ± 178 (P=0.62) as compared to coronary arteries 

Table 4. IVUS characteristics of the most severe lesion in patients with respectively abnormal and 
normal perfusion on MPI (patient based analysis).

MPI abnormal 
(n=13 patients)

MPI normal 
(n=36 patients)

P-value

Reference section
 EEM area (mm2) 14.2 ± 5.8 14.6 ± 4.5 0.68
 Lumen area (mm2) 8.5 ± 3.4 9.6 ± 3.7 0.28
Lesion section
 EEM area (mm2) 14.0 ± 5.6 14.5 ± 4.8 0.76
 MLA (mm2) 3.3 ± 1.2 5.8 ± 3.3 <0.01
 Lesion plaque area (mm2) 10.7 ± 4.9 8.7 ± 4.3 0.17
 Lesion plaque burden (%) 74.3 ± 8.8 58.9 ± 18.1 <0.01
 Lumen area stenosis (%) 66.9 ± 13.8 41.7 ± 23.1 <0.01
 Lumen diameter stenosis (%) 44.1 ± 14.1 25.3 ± 15.8 <0.01
 Corrected lumen area stenosis (%) 77.2 ± 9.1 61.5 ±20.1 <0.01
Reference section
 Positive remodeling (n, %) 4 (31%) 16 (44%) 0.39
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with abnormal perfusion. On MDCT, atherosclerosis was absent in 19 (20%), while the 

average degree of luminal stenosis on QCA was 21.4% ± 13.8%. Further details of the 

IVUS measurements on a vessel basis are provided in Table 5. Finally, as shown in Figure 4, 

significant differences in IVUS measurements were observed when comparing patients with 

and without atherosclerosis on MDCT.

Discussion

The present study, upon comparison of MDCT to MPI showed that abnormal perfusion was always 

associated with an abnormal MDCT, with a majority of patients showing significant luminal steno-

sis. In these patients, significant CAD was also observed on invasive imaging verified by an mean 
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49 patients
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P=0.17
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Figure 2. Flowchart describing the observations in 49 patients in whom additional IVUS imaging was performed. 
In almost all patients with normal MPI, the presence of atherosclerosis was observed on MDCT with negligible 
luminal narrowing identified on QCA. IVUS imaging confirmed the presence of substantial atherosclerosis (mean 
lesion plaque burden 58.9%), yet without luminal compromise (mean MLA 5.8 mm2).
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percent diameter stenosis of 75.9 ± 19.2% on conventional invasive angiography as well as a mean 

MLA <4.0 mm2 by IVUS. Thus, in case of advanced CAD, the different imaging modalities appear 

to be in agreement with abnormal results obtained with all invasive and noninvasive techniques. 

However, in symptomatic patients who showed normal myocardial perfusion, MDCT revealed 

significant atherosclerotic burden; in these patients the invasive coronary angiography and QCA 

demonstrated only minor lesions with a mean diameter stenosis 26.7 ± 17.7%. IVUS clarified 

the discrepancy by revealing considerable lesion plaque burden (58.9 ± 18.1% of cross-sectional 

area) which often spared the lumen (mean MLA, 5.8 ± 3.3 mm2) due to positive remodelling. 

These findings are intuitively expected, and pathologically well established, and are reconfirmed 

in the present study by employing multi-modality invasive and noninvasive imaging strategies.

 8

4.3 

 
Figure 3. A 60-year old male presented to the outpatient clinic with dyspnea and an elevated risk profile for 
coronary artery disease, including hypertension, hypercholesterolemia and smoking. Contrast enhanced MDCT 
coronary angiography revealed considerable atherosclerosis in the left anterior descending coronary artery 
(Panel A). Panels B and C are cross-sectional images of the areas indicated by the arrows in Panel A. In contrast, 
myocardial perfusion imaging (Panel D), which was performed during exercise stress (first and third panel) and 
rest (second and fourth panel), showed normal perfusion. However, also during intravascular ultrasound imaging 
(Panels E and F), considerable plaque burden was demonstrated, yet with preservation the coronary lumen.
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Figure 4. Differences in IVUS measurements between coronary arteries with CAD and without CAD as 
determined on MDCT. Panel A: MLA (mm2) and corrected lumen area stenosis (%). Panel B: plaque area (mm2) 
and plaque burden (%). All measurements were significantly different between coronary arteries with and 
without CAD identified on MDCT.

Table 5. IVUS characteristics in coronary arteries with respectively abnormal and normal perfusion 
in the corresponding vascular territory (vessel based analysis).

MPI abnormal 
(n=15 vessels)

MPI normal 
(n=94 vessels)

P-value

Reference section
 EEM area (mm2) 15.6 ± 6.1 15.1 ± 5.4 0.57
 Lumen area (mm2) 9.3 ± 4.1 9.8 ± 3.5 0.45
Lesion section
 EEM area (mm2) 14.4 ± 5.3 14.0 ± 5.2 0.85
 MLA (mm2) 3.6 ± 1.5 6.5 ± 3.6 <0.01
 Lesion plaque area (mm2) 10.8 ± 4.6 7.6 ± 4.0 <0.01
 Lesion plaque burden (%) 73.5 ± 9.0 52.4 ± 17.5 <0.01
 Lumen area stenosis (%) 63.9 ± 18.0 33.2 ± 20.8 <0.01
 Lumen diameter stenosis (%) 41.9 ± 15.8 19.4 ± 13.6 <0.01
 Corrected lumen area stenosis (%) 76.2 ± 10.0 55.1 ± 18.7 <0.01
Remodeling
 Positive remodeling 5 (33%) 49 (52%) 0.17
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Hemodynamically relevant stenoses

The flow-limiting lesions as determined by MPI were also associated with significant focal 

luminal narrowing on MDCT as well as invasive imaging. In total, 14 patients showed severe 

stenosis on MDCT, confirmed by a stenosis ≥70% luminal narrowing on QCA in all patients. 

In all patients with abnormal MPI, a mean percent diameter stenosis of 75.9 ± 19.2% was 

observed whereas IVUS showed mean MLA of 3.3 ± 1.3 mm2. This observation is in con-

sonance with an earlier report that compared IVUS measurements in 70 coronary lesions to 

gated SPECT and observed a 3.3 mm2-MLA of coronary lesions corresponding to a positive 

SPECT study.1 Similar findings have been obtained in other studies employing fractional flow 

reserve (13, 14 indicating an agreement among various imaging modalities in the presence of 

hemodynamically relevant CAD.

Atherosclerosis in the presence of normal perfusion

In 63% of our patients, a normal MPI study was obtained. In these patients, only mild luminal 

narrowing (mean diameter stenosis 26.7% ± 17.7%) was observed during conventional invasive 

coronary angiography; 23% of patients had normal coronary angiograms (QCA<20% luminal 

narrowing). However, MDCT revealed normal coronary arteries only in 7 (16%) patients. In 

addition, the extent of disease, as reflected by a mean number of abnormal segments per 

patient, was not significantly different from patients with abnormal MPI. The presence of exten-

sive atherosclerotic disease in such cases with normal MPI was confirmed by IVUS, which 

showed considerable plaque burden (average 58.9 ± 18.1 of cross-sectional area). These 

lesions were positively remodelled and did not inflict significant luminal stenosis (mean MLA 

of 5.8 ± 3.3 mm2). The presence of extensive atherosclerotic disease in the setting of normal 

myocardial perfusion has been described previously. In a large cohort of 1195 patients without 

historical CAD extensive atherosclerosis, as reflected by a calcium score >400, was observed 

in 31% of patients with normal MPI studies.15 The presence of substantial disease has also been 

previously described in angiographically normal segments; Mintz et al showed in a large series 

of consecutive patients that atherosclerosis was commonly present in angiographic reference 

segments and less than 7% of segments were classified as entirely normal by IVUS imaging.16

Accordingly, various imaging modalities provide distinct morphological and functional informa-

tion about coronary atherosclerotic disease. Conventional coronary angiography and MPI detect 

anatomically significant and hemodynamically relevant stenoses, respectively. In contrast, the 

techniques remain limited in depicting the disease in its earlier stages, or even when the disease 

is mature but does not compromise luminal integrity due to expansive vascular remodelling.

Clinical implications

The current study reconfirms the expectation that the patients with perfusion defects on MPI 

indicating hemodynamically obstructive stenoses and representing advanced CAD, revealed 
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significant stenoses on MDCT as well as invasive angiography with QCA and IVUS. On the 

other hand, patients with (pre-clinical) atherosclerosis may present with normal perfusion 

on MPI, with (nearly) normal invasive angiography/QCA, but many of these patients may 

demonstrate extensive atherosclerosis in absence of obstructive stenoses on MDCT, veri-

fied subsequently by the IVUS observations. Thus, the presence of atherosclerotic plaque 

in MDCT in the setting of a normal MPI does not constitute a false-positive result. Much 

rather, it reflects the fact that MDCT can detect atherosclerotic lesions that are not flow 

limiting - as confirmed by IVUS in our study. Clinically, it is important to make a clear 

distinction between the presence of plaque and the presence of stenosis in MDCT. Since 

the large positively remodelled lesions are harbingers of plaque rupture it remains to be 

determined whether such advanced characterization of atherosclerotic lesions will result in 

superior prognostification of patients.

Study limitations

In the present study, MDCT examinations were visually assessed, as no validated quantifica-

tion algorithms are currently available. Moreover, it is important to realize that interpretation 

of MDCT results is seriously limited in presence of calcific lesions. Also, IVUS imaging was 

not performed in all vessels in every patient. Furthermore, the current observations should 

be confirmed in less selected populations that would decrease the influence of selection 

bias. Finally, as the patients underwent multiple examinations, the radiation burden in the 

current study was high. The radiation dose of MDCT in particular is high, although the 

recent development of dose reduction strategies such as tube modulation or snapshot pulse 

scanning mode will result in considerably lower radiation exposures. 

Conclusion

The current findings demonstrate a good agreement between noninvasive imaging tech-

niques (MPI, MDCT) and invasive techniques (angiography, QCA and IVUS) in patients with 

flow-limiting CAD. These patients exhibited abnormal perfusion on MPI, predominantly 

obstructive atherosclerosis on MDCT, and obstructive stenoses on invasive quantitative 

angiography and IVUS. In another subset of symptomatic patient population with normal 

myocardial perfusion, MDCT uncovered considerable atherosclerosis in a large proportion 

of patients. Although invasive angiography did not confirm severe coronary lesions, the 

presence of MDCT-based atherosclerosis was validated by IVUS examination. 

Accordingly, considerable plaque burden can be observed on MDCT without inducing 

perfusion abnormalities on MPI. Rather than MDCT being false positive, atherosclerosis 

without flow-limiting luminal narrowing is detected.
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Abstract

Both myocardial perfusion imaging (MPI) and multi-slice computed tomography 

(MSCT) are currently used to detect coronary artery disease (CAD). However, MSCT 

permits early detection of atherosclerosis, while myocardial perfusion is still normal. 

In addition, MPI can be normal despite the presence of high risk CAD (left main and 

balanced 3-vessel CAD). In this study, the range of anatomical findings on MSCT 

in patients with a normal MPI was evaluated. In 180 patients presenting with chest 

pain, MPI (with gated single photon emission computed tomography (SPECT)) and 

64-slice MSCT were performed. In patients with a normal MPI, the prevalence of 

completely normal coronary arteries, non-obstructive CAD, and obstructive CAD 

were determined on MSCT. The occurrence of high risk CAD, including left main 

and 3-vessel disease, was also evaluated. A normal MPI and adequate MSCT were 

obtained in 97 (54%) patients (50% female patients, average age 58±12 years, 5% 

known CAD). A total of 38 patients (39%) showed normal coronary anatomy, whereas 

non-significant and significant CAD was observed in respectively 37 (38%), and 18 

(19%) patients. Importantly, only 4 (4%) patients presented with high risk CAD on 

64-slice MSCT, 2 with left main and 2 with 3-vessel disease. In conclusion, a normal 

MPI can be associated with a wide range of anatomical observations and cannot 

exclude the presence of both non-obstructive and obstructive CAD, importantly 

however, the prevalence of high-risk CAD was rare.
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Introduction

Recently, non-invasive coronary angiography using multi-slice computed tomography 

(MSCT) has attracted a lot of attention. Studies using 64-slice MSCT have reported a high 

sensitivity (ranging from 85% to 100%), and even higher specificity (ranging from 92% 

to 97%) to detect significant (≥ 50% luminal narrowing) coronary lesions.1-6 In addition, 

MSCT can also detect subclinical atherosclerosis, in the absence of stenotic coronary 

lesions, resulting in normal perfusion on myocardial perfusion imaging (MPI).7, 8 MSCT thus 

provides anatomical information rather than information on functional consequences of 

coronary artery disease (CAD). To explore the range of anatomical abnormalities underly-

ing a normal MPI, a head-to-head comparison was performed between MSCT and MPI in 

patients with a normal MPI.

Methods

The study population consisted of 180 patients, who underwent MPI and 64-slice MSCT 

sequentially, in random order. Patients presented with suspected or known CAD. Suspected 

CAD was defined as having no history of CAD, and known CAD was defined as having evi-

dence of CAD on previous diagnostic tests prior to the MPI and MSCT examinations in this 

study. Exclusion criteria were: atrial fibrillation, renal insufficiency (serum creatinine > 120 

mmol/L), known allergy to iodine contrast media, and pregnancy. The pre-test likelihood 

of CAD was determined for patients without known CAD using the Diamond and Forrester 

method, with a risk threshold of < 13.4%, for low risk, > 87.2% for high risk, and between 

13.4 and 87.2% for intermediate risk. The study was part of an ongoing study protocol 

comparing MSCT with MPI, 8 and was approved by the hospitals medical ethics committee. 

Informed consent was obtained in all patients.

The included patients were scanned using a 64-slice MSCT scanner (Aquillion 64, Toshiba 

Medical Systems, Tokyo, Japan). Prior to each scan, heart rate and blood pressure were moni-

tored. In the absence of contraindications, patients with a heart rate exceeding the threshold 

of 70 beats per minute were given beta-blocking medication (50-100 mg metoprolol, oral).

Before the helical scan, a non-enhanced prospective electrocardiographically-gated scan, 

prospectively triggered at 75% of the R-R interval with 4 x 3.0 mm collimation, was per-

formed to measure the coronary calcium score, and to determine the start and end positions 

of the helical scan. Optimal rotation time and pitch for the helical scan were automatically 

calculated by the scanner during a breath hold exercise. Subsequently, scan time was based 

on rotation time, pitch, and scan length.
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The following helical scan parameters were used: collimation 64 x 0.5 mm; rotation time 

0.4 s; pitch factor between 0.2 and 0.3; tube voltage 120 kV or 135 kV; tube current 300 

(range 250-400 mA). A bolus of 90-105 ml contrast agent (Iomeron 400 i.v.) was injected at 

5 ml/s followed by 50 ml saline flush.

A region of interest, used for triggering the scan, was placed in the aorta descendens in a 

single slice defined at the upper limit of the scanning field. The helical scan was automati-

cally triggered when the attenuation level in the region of interest reached baseline + 100 

Hounsfield units. All patients were scanned during a single breath hold of 8-11 seconds.

Using electrocardiographically-gated post processing and scanner software, the best phase 

was reconstructed with an interval of 0.3 mm. With a test slice in the various phases of the 

heart cycle other suitable R-R intervals were examined for additional reconstructions. Coro-

nary arteries were evaluated using the reconstruction dataset with the least motion artifacts.

MSCT and calcium score (Agatston) scans were evaluated with a dedicated workstation (Vit-

rea 2, Vital Images, USA). All MSCT scans were interpreted by two experienced observers 

blinded to the results of MPI. Discrepancies in interpretation were resolved by consensus. 

For each patient, total coronary calcium score was determined and graded into four groups: 

0, 1-100, 101-400, and > 400. Coronary anatomy on MSCT was assessed on a patient level 

and on a vessel level using axial slices, and curved multiplanar reconstructions. In each 

patient the presence of CAD was determined. Further differentiation was made between 

non-significant and significant CAD, using a diameter stenosis of ≥ 50% as a threshold for 

significant lesions. Finally, the presence of high risk scans, defined as obstructive left main 

and 3-vessel disease, was also ascertained. 

Each patient underwent a 2-day gated stress-rest MPI using technetium-99 tetrofosmin or 

technetium-99 sestamibi (500 MBq) with a symptom limited bicycle test or pharmacological 

stress using adenosine (0.14 mg/kg/min for 6 minutes), or dobutamine (up to a maximum 

dose of 40 µg/kg/min in 15 min). Patients were instructed to withhold beta-blocking medica-

tion 48 hours prior to exercise or dobutamine stress, and patients were instructed to with-

hold calcium antagonists 24 hours before pharmacological stress using adenosine. Patients 

were also told to withhold caffeine starting the day before adenosine stress testing.

The images were acquired on a triple-head (GCA 9300/HG, Toshiba Corp., Tokyo, Japan) 

single photon emission computed tomography (SPECT) camera equipped with low energy 

high resolution collimators. A 20% window was used around the 140-keV energy peak of 

99mTc. Ninety projections (step-and-shoot mode; 35 s per projection; total imaging time, 

23 min) were obtained over a 360 degree circular orbit. Data were stored in a 64 x 64 
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matrix. The raw scintigraphic data were reconstructed with filtered back projection using a 

Butterworth filter (cutoff frequency, 0.26 cycle per pixel, order 9). Using the gated images, 

attenuation correction was performed by evaluating wall motion in segments with perfusion 

defects thought to be caused by attenuation artifacts.

Gated SPECT examinations were judged by two experienced observers who were blinded to 

the results of MSCT. Quantitative assessment of left ventricular function, and wall thicken-

ing was performed using previously validated, and automated software (quantitative gated 

SPECT (QGS); Cedars-Sinai Medical Center, Los Angeles, CA).9 By estimating and displaying 

the endo- and epicardial surfaces, the left ventricular ejection fraction was derived.

The myocardium was divided into segments using a 17-segment model described else-

where.10 Segmental myocardial perfusion was analyzed quantitatively (QGS software) and 

segmental tracer activity was categorized on a 4-point scale: 1 = normal tracer activity > 

75%; 2 = tracer activity 50%-75%; 3 = tracer activity 25%-50%; 4 = tracer activity < 25%. 

Perfusion defects on stress images were considered present when tracer activity was < 75% 

of maximum. When significant fill-in (> 10%) of perfusion defects was observed on the 

resting images, segments were classified as ischemic, whereas defects without fill-in (≤ 10%) 

were considered scar tissue.11 

Continuous variables were expressed as mean and standard deviation. Proportions were 

expressed in percentages. Continuous variables were compared using one-way Anova, 

and student’s t-test. Proportions were compared using Chi-square with Yates’ correction. A 

P-value of <0.05 was considered to indicate statistical significance. Statistical analysis was 

performed using SPSS 12.0 software.

Results

The study population consisted of 180 patients who had undergone both an MPI study and 

a MSCT examination. A normal MPI was observed in 105 (58%) of these patients. Due 

to an uninterpretable MSCT caused by an irregular heart, 4 patients had to be excluded. 

Also 4 patients with an abnormal left ventricular ejection fraction (< 50%) on MPI were 

excluded, leaving 97 patients for analysis. These patients presented with non-anginal chest 

pain (34%), atypical chest pain (62%), and typical chest pain (4%). A low, intermediate, and 

high likelihood for disease was noted in respectively 6 (7%), 82 (89%), and 4 (4%) of the 92 

patients without known CAD. Patient characteristics of both the patients with a normal and 

abnormal MPI are provided in Table 1.
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During MPI, a bicycle stress test was performed in 53 (55%) patients, whereas pharmaco-

logical stress with adenosine or dobutamine was used in respectively 42 (43%) and 2 (2%) 

patients. In patients undergoing bicycle stress, at least 85% of maximum heart rate was 

achieved if no stress-induced symptoms or changes in electrocardiogram or blood pres-

sure occurred. The two patients undergoing dobutamine stress also reached at least 85% of 

maximum heart rate. In the 97 patients with a diagnostic MSCT scan, 291 vessels could be 

analyzed, of which 2 (1%) were uninterpretable due to motion artifacts caused by a high 

heart rate. The average heart rate during data acquisition was 67±15 bpm. Average calcium 

score was 165±319.

As shown in Figure 1, coronary calcium was absent in 38 (39%) patients. A calcium score 

of 1-100 was observed in 25 (26%) patients, a score of 101-400 in 21 (22%) patients, and 

only 12 (12%) had a calcium score > 400. Of note, one patient (1%) was excluded from the 

calcium score analysis due to a missing calcium scan. Comparison of calcium scores and 

MSCT showed that the average calcium score in patients with a completely normal MSCT 

scan was significantly lower than the average calcium score in patients with non-obstructive 

or obstructive CAD (3.3±11.1 versus 223±363.6, and 306.8±323.3 respectively). The aver-

age calcium score in the high risk CAD group was 559.8±615.5, but due to the low number 

of patients not significantly different from the other groups (Figure 2).

MSCT identified 38 (39%) patients without CAD, 37 (38%) patients with non-obstructive 

CAD, and 22 (23%) patients with obstructive CAD (at least 1 significant (≥50%) stenosis) 

as illustrated in Figure 3. The characteristics of patients without CAD, with non-obstructive 

CAD, and with obstructive CAD are compared in Table 2. Analysis on a vessel basis resulted 

Table 1. Patient characteristics of patients with a normal and abnormal myocardial perfusion scan

Variable Normal
(n=97)

Abnormal
(n=75)

P-value

Male/Female 49/48 51/24 <0.05
Age (years) 58±12 55±12 NS
Suspected coronary artery disease 92 (95%) 61 (81%) <0.05
Known coronary artery disease 5 (5%) 14 (19%) <0.05
Previous coronary angioplasty 2 (2%) 5 (7%) NS
Previous coronary bypass 0 (0%) 4 (5%) <0.05
Previous myocardial infarction 0 (0%) 9 (12%) <0.05
Average ejection fraction 67±10 58±12 <0.05
Diabetes mellitus 45 (46%) 42 (56%) NS
Hypertension 51 (53%) 35 (47%) NS
Hypercholesterolemia 38 (39%) 32 (43%) NS
Current Smoker 30 (30%) 27 (36%) NS
Obesity (BMI ≥ 30) 22 (23%) 15 (20%) NS
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Figure 1. Distribution of coronary calcium score categories in the study population.

 12

5.2 

 
Figure 2. Average coronary calcium scores for patients without CAD, non-obstructive CAD, obstructive CAD and 
high-risk CAD. The extent of coronary calcium increased in parallel to the severity of CAD on MSCT.

 13

5.3 

 
Figure 3. Distribution of anatomical findings observed on MSCT. In the majority of patients, either no CAD or 
non-obstructive CAD was observed, whereas high-risk CAD was demonstrated in only 4% of patients.
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in the following: 139 (46%) vessels without atherosclerosis, 124 (41%) vessels with non-

obstructive CAD, and 39 (13%) vessels with obstructive CAD.

In the 59 patients with both non-obstructive and obstructive CAD, 9 (15%), 13 (22%), and 

37 (63%) had 1-, 2-, and 3-vessel disease respectively. Regarding only patients with non-

obstructive CAD, 1, 2, and 3 vessels were diseased in 8 (22%), 9 (24%), and 20 (54%) 

patients respectively, resulting in an average number of diseased vessels of 2.5±0.8. The 

opposite was observed when the number of coronary arteries with obstructive lesions was 

considered. In patients with obstructive CAD, the majority had either 1 (46%) or 2 (37%) 

significantly diseased vessels (Figure 4). The average number of significantly diseased vessels 

in all patients with obstructive CAD including high risk patients was 1.6±0.7.

Of the 97 patients studied with a normal perfusions scan, only 4 (4%) patients presented 

with high-risk CAD of which 2 patients had obstructive 3-vessel disease, and 2 patients had 

obstructive left main disease (see Figure 4). The various anatomical correlates in patients 

with a normal MPI are shown in Figure 5.

Table 2. Patient characteristics for patients with normal, non-obstructive, and obstructive coronary 
artery disease (CAD)

Variable Normal
(n=38)

Non-obstructive 
CAD

(n=37)

Obstructive 
CAD

(n=22)

P-value

Male/Female 15/23 19/18 15/7 NS
Age (years) 53±10 61±12 62±11 0.001
Diabetes mellitus 12 (32%) 19 (51%) 14 (64%) NS
Hypertension 16 (42%) 22 (60%) 13 (59%) NS
Hypercholesterolemia† 14 (37%) 24 (65%) 13 (59%) NS
Current smoker 10 (26%) 12 (32%) 8 (36%) NS
Obesity 4 (11%) 11 (30%) 7 (32%) NS
Average of risk factors 1.9±1.0 2.6±1.6 2.7±1.2 NS
Average ejection fraction 67±10 67±11 65±8 NS
Known coronary artery 
disease

0 (0%) 3 (8%) 2 (9%) NS

Pre-test likelihood (n=92)
 Low 3 (8%) 1 (3%) 2 (10%) NS
 Intermediate 34 (90%) 30 (88%) 18 (90%) NS
 High 1 (3%) 3 (9%) 0 (0%) NS
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Discussion

Patients with a normal MPI can have a wide range of atherosclerotic burden as reflected by 

the presence of calcium as well as significant stenoses on 64-slice MSCT. Although calcium 

was absent in a large part of the study population (39%), a considerable amount of patients 

(34%) presented with intermediate to high calcium score, indicating the presence of sub-

stantial atherosclerosis. When examined with MSCT, atherosclerosis was absent in 39% of 

the patients, while the majority of the population showed either non-obstructive (38%) or 

obstructive atherosclerosis (19%). Importantly, high risk CAD (defined as obstructive left main 

or 3-vessel disease) was observed only in a small proportion (4%) of the studied patients.

The relation between MPI and calcium has been previously investigated in several studies. 

Berman et al. explored the relation between atherosclerosis determined by electron beam 

 14

5.4 

 Figure 4. Bar graph showing the number of obstructively diseased vessels in patients with obstructive CAD (at 
least 1 significant stenosis).

 15

5.5 

 
Figure 5. The anatomical correlates of a normal MPI included normal coronary anatomy (right coronary artery, 
panel A), non-obstructive CAD (circumflex artery, panel B), obstructive CAD (left anterior descending artery, panel 
C), and high risk CAD (left main artery, panel D).
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computed tomography calcium scoring and MPI in a large group of predominantly low 

risk, asymptomatic patients (n = 1,195). Coronary calcifications were absent in only 22% of 

individuals with a normal MPI.12 Moreover, extensive calcifications (calcium score >400) 

were observed in a considerable higher proportion of patients with normal MPI (31%) as 

compared to 13% in the current study. This discrepancy may partially be explained by dif-

ferences in patient populations; for example, more women (who had lower calcium scores) 

were included in the present study. A study by Blumenthal et al. had a comparable out-

come.13 Like our results, these studies revealed only a modest relation between the extent of 

coronary calcium and ischemia with a widespread distribution of calcium scores in patients 

with normal MPI.

Høilund-Carslen et al. recently published observations on the anatomical correlates of MPI 

using conventional coronary angiography.14 Obstructive CAD was reported in 18% of the 

235 patients with a normal MPI. Thus far, only a few studies have non-invasively evaluated 

the coronary anatomy with MSCT in patients undergoing MPI. Hacker et al. studied a cohort 

of 38 patients in which 55% had no perfusion defects on MPI.15 MSCT detected one or more 

significant lesions in 8 (38%) of those 21 patients. A recent study by Schuijf et al. reported 

similar findings.8

The available evidence indicates that a normal MPI is associated with a wide range of 

atherosclerotic findings on MSCT and cannot be used to rule out the presence of athero-

sclerosis. Still, a normal MPI is associated with an excellent long-term prognosis and a hard 

annual event rate < 1%.16 Future studies are thus needed to understand the prognostic value 

of a normal MPI in the presence of coronary atherosclerosis.

Homogeneously reduced perfusion in patients with high-risk CAD (3-vessel and left main 

disease) is thought to be a potential cause of a “false” normal MPI study.17-19 In the current 

study, the prevalence of high risk CAD in patients with a normal MPI was evaluated, and 

the results revealed that left main or 3-vessel disease was only present in a small amount 

of patients (4%). Only limited comparative data using coronary angiography are thus far 

available. Fujimoto et al. determined the lesion characteristics in 58 ischemic heart disease 

patients with false negative MPI examinations.20 No patients with 3-vessel disease were 

observed, and only 1 (2%) patient presented with obstructive left main CAD. Høilund-

Carslen et al., encountered only 5 (2%) cases of 3-vessel disease, in line with the current 

findings.14 Accordingly, these observations suggest that balanced 3-vessel disease may not 

be a frequent cause of “false” normal MPI findings.

Several limitations need to be acknowledged. No direct comparison with invasive coronary 

angiography was available. However, previous studies have reported on the diagnostic 
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accuracy of 64-slice MSCT in direct comparison with invasive angiography.1-6 Despite the 

excellent diagnostic accuracy of MSCT, uninterpretable segments due to calcium or motion 

remain problematic. For this reason, 4 (4%) patients with uninterpretable MSCT examina-

tions were excluded in the current analysis. Thus, the uninterpretablility of a small propor-

tion of MSCT examinations must be taken into account when comparing MSCT and MPI for 

their efficacy in detecting CAD. Moreover, the proportion of diabetic patients was relatively 

high in the current study, resulting in an increased likelihood of CAD. Whether the current 

findings apply to a non-diabetic population remains to be determined. Finally, the radiation 

burden of MSCT remains a limitation of this imaging modality. However, a reduction in 

radiation burden is anticipated with the new generation 128- and 256-slice MSCT scanners 

and dose-modulation strategies that are currently being developed.Conclusion

A normal MPI can be associated with a wide range of anatomical observations and cannot 

exclude the presence of both non-obstructive and obstructive CAD, importantly however, 

the prevalence of high-risk CAD was rare.
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Abstract

Computed tomography coronary angiography (MSCT) can accurately detect the 

presence of atherosclerosis non-invasively. However, a discrepancy has been 

observed between MSCT and non-invasive functional imaging. The purpose of the 

present study was to evaluate the correlation between MSCT and invasive fractional 

flow reserve (FFR) in men with known coronary artery disease (CAD). 33 patients 

(average age 57±11 years) clinically referred for coronary angiography underwent 

MSCT and FFR. Coronary angiography and MSCT were evaluated for non-significant 

(30-50% luminal narrowing) and significant stenosis (>50% luminal narrowing). 

Abnormal FFR was defined as ≤ 0.75. A total of 36 vessels were evaluated with FFR, 

with 8 (22%) showing reduced FFR. MSCT was normal (completely normal or <30% 

luminal narrowing in 11 (31%), non-significant lesions were observed in 13 vessels 

(36%), and significant stenosis in 12 vessels (33%). Abnormal FFR was observed 

in only 58% of vessels with lesions >50% on MSCT. Nevertheless, the agreement 

between normal MSCT and FFR was excellent; FFR was normal in all 11 vessels with 

normal MSCT. In conclusion, significant stenoses on MSCT frequently do not result 

in reduced FFR. A normal MSCT study however can accurately rule out the presence 

of hemodynamically significant lesions in men with known CAD.
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Introduction

Multi-slice computed tomography coronary angiography (MSCT) is increasingly used as a 

non-invasive imaging technique capable of accurately detecting the presence of athero-

sclerosis.1-6 However, a considerable discrepancy has been observed when comparing 

anatomic imaging with MSCT to myocardial perfusion imaging (MPI).7-10 In these compara-

tive studies, a large proportion of significant lesions on MSCT were not associated with a 

perfusion defect on MPI. Possibly, invasive functional testing using fractional flow reserve 

(FFR) may provide a more accurate comparison, since measurements are performed directly 

in the coronary arteries.11 Only one previous study has addressed the diagnostic accuracy 

of MSCT to predict the presence of reduced FFR.12 The purpose of the present study was to 

further assess the relationship between the anatomic information observed on MSCT and 

invasive functional testing using FFR in men with known coronary artery disease (CAD).

Methods

In total 33 patients were included in the study. Patients were clinically referred for coronary 

angiography and underwent additional testing including 1) FFR measurements during the 

cardiac catheterization procedure and 2) MSCT within 2 months before or after conven-

tional coronary angiography. Conventional coronary angiography, FFR and MSCT results 

were obtained in 36 vessels. Patients were excluded from the study if they met one of 

the following exclusion criteria for MSCT: cardiac arrhythmia, renal insufficiency (serum 

creatinine > 120 mmol/L), known allergy to iodine contrast media, and pregnancy. Patients 

were also excluded if a cardiac event (worsening angina, revascularization, or myocardial 

infarction) occurred between the procedures. The study was part of an ongoing research pro-

tocol approved by the hospitals medical ethics committee, and all patients gave informed 

consent.

Patients were scanned using a 64-slice scanner (Aquillion 64, Toshiba Medical Systems, 

Tokyo, Japan) using a previously published scan protocol.13 Before each examination, heart 

rate and blood pressure were monitored. In the absence of contraindications, patients with a 

heart rate exceeding the threshold of 65 beats per minute were given beta-blocking medica-

tion (50-100 mg metoprolol, oral).

The presence of calcium and the status of the coronary arteries were both evaluated using 

a dedicated workstation (Vitrea 2, Vital Images, USA, and Advantage, GE healthcare, 

USA). All studies were interpreted by two experienced observers blinded to the results of 

coronary angiography and FFR. Discrepancies in interpretation were resolved by consensus. 
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The coronary calcium score was calculated using the Agatston method. MSCT coronary 

angiography studies were evaluated using an intention to diagnose strategy regardless of 

image quality. In each vessel the presence of atherosclerosis was evaluated, and lesions 

were graded as having a diameter stenosis of either >30% or >50% luminal narrowing. 

Lesions with a stenosis >50% were deemed significant. A normal MSCT was defined as 

completely normal or <30% luminal narrowing.

Conventional coronary angiography was performed according to standard techniques. 

Quantitative analysis by an observer blinded to the MSCT and FFR results using an offline 

software program (QCA-CMS, version 6.0, Medis, Leiden, The Netherlands). After cath-

eter based calibration, quantitative coronary angiography of the most severe lesions was 

performed with automated vessel contour detection in end-diastolic frames. Vessels were 

classified as having a diameter stenosis of either >30% or >50% luminal narrowing, and 

lesions with a stenosis >50% were deemed significant. A normal coronary angiography 

was defined as completely normal or <30% luminal narrowing. FFR measurements were 

performed in the distal and very proximal coronary artery during maximal hyperaemia 

obtained by intravenous injection of a bolus of adenosine (6 ug/ml in 7 ml). A 0.014 inch 

pressure guidewire (Brightwire 2, Volcano Corps., San Diego, USA) was advanced 1-2 mm 

into the proximal artery to measure proximal pressure, and advanced further, into the distal 

coronary artery to measure distal pressure. The FFR of the vessel was calculated as the ratio 

of distal pressure to proximal pressure, and a value of ≤ 0.75 was used as a cutoff point for 

significantly impaired coronary function.

Continuous variables were expressed as mean with standard deviation, and where compared 

using the student’s t-test. Proportions were expressed in percentages. First MSCT observa-

tions were compared to coronary angiography. Secondly, MSCT and conventional coronary 

angiography were compared to FFR to determine the relation between stenotic lesions and 

FFR measurements. All comparisons were performed on a vessel basis. Statistical analyses 

were performed using SPSS software (version 12.0, SPSS Inc, Chicago, IL, USA). A p-value 

<0.05 was deemed significant.

Results

In total 33 patients were included in the study. An overview of the characteristics of these 

patients is provided in Table 1. During conventional coronary angiography, an FFR measure-

ment was obtained in the left anterior descending artery (n= 25), the right coronary artery (n 

= 9), and the left circumflex artery (n = 2), resulting in 38 vessels for analysis.
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Using the contrast enhanced MSCT images, 11 (31%) of 36 vessels were classified as normal 

(completely normal or <30% luminal narrowing). Atherosclerotic lesions exceeding 30% 

luminal narrowing were detected in 25 (69%) vessels. Of these 25 vessels, 13 (36%) vessels 

had atherosclerotic disease between 30% and 50% diameter stenosis, and in 12 (33%) 

vessels the diameter stenosis exceeded 50% luminal narrowing.

A total of 18 (50%) coronary arteries were normal (completely normal or <30% luminal nar-

rowing) on conventional coronary angiography. Lesions with a diameter stenosis >30% were 

detected in the remaining 18 vessels (50%), of which 9 (25%) showed a non-significant stenosis 

(30-50% luminal narrowing) and 9 (25%) a significant stenosis (>50% luminal narrowing). 

Using the pressure guidewire, an average FFR of 0.83 ± 0.13 was measured. Normal FFR (>0.75) 

was observed in 28 (78%) vessels while FFR was abnormal in the remaining 8 (22%) vessels.

On MSCT 11 vessels were graded as normal (completely normal or <30% luminal narrow-

ing). All 11 vessels were also graded normal on conventional coronary angiography. MSCT 

showed non-significant lesions (30-50% diameter stenosis) in 13 vessels, of which 5 were 

normal and 8 showed non-significant disease on conventional coronary angiography. Thus 

MSCT correctly identified 30-50% luminal narrowing in 8 of 13 vessels (62%). A significant 

lesion was observed in 12 vessels on MSCT. All 9 vessels with luminal narrowing >50% 

on conventional coronary angiography were detected; however MSCT overestimated the 

severity of disease in 3 vessels. Significant lesions were therefore correctly identified in 9 of 

12 vessels (75%). Although an overestimation of disease was observed in some cases, MSCT 

correctly ruled out significant disease in all 25 vessels classified as <50% on MSCT.

Hemodynamically significant disease on FFR was observed in 7 of 12 vessels (58%) with >50% 

luminal narrowing on MSCT. Of note, abnormal FFR was also observed in 1 of 13 vessels (8%) 

with atherosclerosis between 30% and 50% luminal narrowing. Importantly, FFR was normal 

Table 1. Patient characteristics

Age (years) 57±11
Known coronary artery disease 30 (91%)
Diabetes mellitus 3 (9%)
Hypertension 14 (42%)
Hypercholesterolemia† 12 (36%)
Current Smoker 7 (21%)
Positive family history of cardiovascular disease 12 (36%)
Body mass index ≥ 30 Kg/m2 8 (24%)
Heart rate during scan (beats per minute) 59±12 
Average calcium score (Agatston units) 554±1588
Significant stenosis on coronary angiography 19 (58%)
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in all 11 coronary arteries classified as normal on MSCT. Finally, on average FFR decreased 

significantly with increasing stenosis severity; further details are provided in Figure 1.

When evaluating the relation between conventional coronary angiography and FFR, 7 

of 9 vessels with >50% luminal narrowing on conventional coronary angiography were 

associated with hemodynamically significant disease on FFR.(Figure 2) Abnormal FFR was 

observed in 1 of 18 vessels (6%) with normal or <30% luminal narrowing on conventional 
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Figure 2. Scatter plot of FFR values in vessels with <30%, 30-50% and >50% luminal narrowing on conventional 
coronary angiography. Average FFR was significantly reduced in patients with >50% luminal narrowing on 
conventional coronary angiogrpahy.
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Figure 1. Scatter plot of FFR values in vessels with <30%, 30-50% and >50% luminal narrowing on MSCT. 
Average FFR was significantly reduced in patients with >50% luminal narrowing on MSCT.
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coronary angiography. On average the FFR was significantly decreased in vessels with >50% 

stenosis on conventional coronary angiography compared to vessels with normal or non-

significant CAD.

Discussion

The main findings of this comparative study between MSCT and coronary angiography with 

FFR in men with known CAD are as follows: Although non-invasive anatomical imaging 

with MSCT correlates well with conventional coronary angiography, the agreement between 

an abnormal MSCT (>50% luminal narrowing) and FFR is relatively low. A large proportion 

(42%) of significant (>50%) lesions on MSCT did not result in a functional abnormality on 

FFR. Importantly however, the absence of any lesion exceeding 30% luminal narrowing on 

MSCT, was associated with consistent normal FFR values, suggesting that normal coronary 

anatomy on MSCT can accurately rule out the presence of hemodynamically significant 

CAD.

One previous study has been published comparing non-invasive anatomical imaging with 

64-slice MSCT to FFR.12 In this retrospective study the diagnostic accuracy of MSCT and 

coronary angiography using FFR as the reference standard was assessed. In total 89 stenoses 

were evaluated and a poor correlation was observed between MSCT and FFR. These results 

are in line with the current study in which a large proportion of significant stenoses on MSCT 

did not result in reduced FFR as well.

The inaccuracy of MSCT to precisely estimate degree of stenosis has been suggested as a 

potential cause of this discrepancy. Indeed, several studies have shown that MSCT has a 

tendency to overestimate the degree of stenosis.1 Also in the present study, MSCT more fre-

quently classified patients as having stenosis either 30-50% or >50% luminal narrowing as 

compared to conventional coronary angiography. However, similar to MSCT, conventional 

coronary angiography also fails to accurately predict reduced coronary flow reserve. In 

the current study 78% of vessels with a significant stenosis (>50% luminal narrowing) on 

conventional coronary angiography were associated with reduced FFR. In a meta-analysis 

by Christou et al. combining 18 studies with 1316 patients, a concordance of 61% between 

the presence of intermediate lesions of 30-70% luminal narrowing on coronary angiography 

and an abnormal FFR (using a cutoff value of 0.75) was observed.14 When considering 

only lesions exceeding 70% luminal narrowing, the concordance increased slightly to 67%, 

indicating still a poor relation between degree of stenosis and reduced flow reserve. In 

the current study the concordance between significant stenosis on conventional coronary 

angiography and abnormal FFR seemed higher compared to the concordance between 
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significant stenosis on MSCT and FFR. To some extent this may be explained again by the 

tendency of MSCT to overestimate the degree of stenosis. Nevertheless, also conventional 

coronary angiography still frequently failed to accurately predict reduced FFR.

Comparable values have been reported in previous studies comparing MSCT to non-invasive 

MPI. In general, abnormal MSCT studies were associated with ischemia in approximately 

only 40% to 60% of studies.7-10 In line with these observations, only 58% of significant 

(>50% stenosis) lesions on MSCT resulted in abnormal FFR in our current study as well. 

These findings highlight the fact that even on a vessel basis using invasive measurements, 

the relation between significant epicardial coronary stenosis and functional consequences 

is poor. Accordingly, in the presence of an abnormal MSCT study, functional testing remains 

essential to determine appropriate management. 

An important finding of this study is that a normal MSCT (completely normal or <30% 

luminal narrowing) was consistently associated with a normal FFR. Also in previous com-

parisons of MSCT to MPI, MSCT has been shown to have a high negative predictive value 

for ischemia.15 However, in contrast to our study, still small but not negligible proportions of 

normal MSCT studies were associated with abnormal MPI studies in these investigations.8, 10 

A recent study reported that abnormal MPI was observed in 10% of patients having coronary 

arteries without any evidence of luminal narrowing or coronary plaque on MSCT.10 In some 

of these patients, the occurrence of attenuation artefacts may have hampered accurate 

evaluation of myocardial perfusion. More likely however, findings may have been influ-

enced by intrinsic differences between FFR and MPI. While FFR detects epicardial coronary 

lesions that are severe enough to result in ischemia, MPI is also affected by abnormalities 

occurring at smaller levels of the coronary circulation. As a consequence, dysfunction of 

microvascular arterioles - which can occur in the presence of longstanding arterial hyper-

tension and diabetes mellitus – can also result in abnormal MPI despite the absence of 

epicardial stenosis.16 Accordingly, one may intuitively expect a higher agreement between 

MSCT and FFR as both technique evaluate and exclude CAD at macrovascular level. Indeed, 

comparisons of conventional coronary angiography and FFR have also indicated excellent 

concordance over 95% between normal coronary arteries and FFR values, 14 in line with the 

current study. These are important observations, as a normal FFR has been demonstrated to 

confer excellent prognosis and can safely defer patients from percutaneous intervention.17, 

18 Consequently, one may presume that also patients with a normal MSCT study have a 

low likelihood of coronary events and do not require invasive coronary angiography with 

possible intervention. Thus far only limited prognostic data on MSCT are available although 

preliminary data suggest that a normal MSCT study is indeed associated with excellent 

prognosis.19-21
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Conclusion

Significant stenoses on MSCT frequently do not result in reduced FFR. A normal MSCT study 

however can accurately rule out the presence of hemodynamically significant lesions in 

men with known CAD.

Jaap BW4.indd   91 10-05-11   16:40



Pa
rt

 1

92

 References
 1. Hamon M, Biondi-Zoccai GG, Malagutti P, et al. Diagnostic performance of multislice spiral 

computed tomography of coronary arteries as compared with conventional invasive coronary 
angiography: a meta-analysis. J Am Coll Cardiol 2006;48:1896-910.

 2. Hausleiter J, Meyer T, Hadamitzky M, et al. Non-invasive coronary computed tomographic 
angiography for patients with suspected coronary artery disease: the Coronary Angiography by 
Computed Tomography with the Use of a Submillimeter resolution (CACTUS) trial. Eur Heart J 
2007;28:3034-41.

 3. Leber AW, Knez A, von Ziegler F, et al. Quantification of obstructive and nonobstructive coronary 
lesions by 64-slice computed tomography: a comparative study with quantitative coronary angi-
ography and intravascular ultrasound. J Am Coll Cardiol 2005;46:147-54.

 4. Mollet NR, Cademartiri F, Van Mieghem CAG, et al. High-resolution spiral computed tomography 
coronary angiography in patients referred for diagnostic conventional coronary angiography. 
Circulation 2005;112:2318-23.

 5. Raff GL, Gallagher MJ, O’Neill WW, et al. Diagnostic accuracy of noninvasive coronary angiog-
raphy using 64-slice spiral computed tomography. J Am Coll Cardiol 2005;46:552-7.

 6. Schuijf JD, Pundziute G, Jukema JW, et al. Diagnostic accuracy of 64-slice multislice computed 
tomography in the noninvasive evaluation of significant coronary artery disease. Am J Cardiol 
2006;98:145-8.

 7. Gaemperli O, Schepis T, Koepfli P, et al. Accuracy of 64-slice CT angiography for the detection of 
functionally relevant coronary stenoses as assessed with myocardial perfusion SPECT. Eur J Nucl 
Med Mol Imaging 2007;34:1162-71.

 8. Hacker M, Jakobs T, Hack N, et al. Sixty-four slice spiral CT angiography does not predict the 
functional relevance of coronary artery stenoses in patients with stable angina. Eur J Nucl Med 
Mol Imaging 2007;34:4-10.

 9. Rispler S, Keidar Z, Ghersin E, et al. Integrated single-photon emission computed tomography and 
computed tomography coronary angiography for the assessment of hemodynamically significant 
coronary artery lesions. J Am Coll Cardiol 2007;49:1059-67.

 10. Schuijf JD, Wijns W, Jukema JW, et al. The relationship between non-invasive coronary angiogra-
phy with multi-slice computed tomography and myocardial perfusion imaging. J Am Coll Cardiol 
2006;48:2508-14.

 11. Pijls NH, De Bruyne B, Peels K, et al. Measurement of fractional flow reserve to assess the func-
tional severity of coronary-artery stenoses. N Engl J Med 1996;334:1703-8.

 12. Meijboom WB, Van Mieghem CA, Van Pelt N, et al. Comprehensive assessment of coronary artery 
stenoses: computed tomography coronary angiography versus conventional coronary angiogra-
phy and correlation with fractional flow reserve in patients with stable angina. J Am Coll Cardiol 
2008;52:636-43.

 13. Schuijf JD, Pundziute G, Jukema JW, et al. Diagnostic accuracy of 64-slice multislice computed 
tomography in the noninvasive evaluation of significant coronary artery disease. Am J Cardiol 
2006;98:145-8.

 14. Christou MA, Siontis GC, Katritsis DG, et al. Meta-analysis of fractional flow reserve versus quan-
titative coronary angiography and noninvasive imaging for evaluation of myocardial ischemia. Am 
J Cardiol 2007;99:450-6.

 15. Di Carli MF, Hachamovitch R. New technology for noninvasive evaluation of coronary artery 
disease. Circulation 2007;115:1464-80.

 16. Camici PG, Crea F. Coronary microvascular dysfunction. N Engl J Med 2007;356:830-40.
 17. Pijls NH, van Schaardenburgh P, Manoharan G, et al. Percutaneous coronary intervention of 

functionally nonsignificant stenosis: 5-year follow-up of the DEFER Study. J Am Coll Cardiol 
2007;49:2105-11.

Jaap BW4.indd   92 10-05-11   16:40



C
h

ap
ter 6

C
o

m
p

ariso
n

 o
f C

TA
 w

ith
 invasive co

ro
n

ary an
g

io
g

rap
hy an

d
 FFR

93

 18. Silber S, Albertsson P, Aviles FF, et al. Guidelines for percutaneous coronary interventions. The 
Task Force for Percutaneous Coronary Interventions of the European Society of Cardiology. Eur 
Heart J 2005;26:804-47.

 19. Gilard M, Le Gal G, Cornily J, et al. Midterm Prognosis of Patients With Suspected Coronary 
Artery Disease and Normal Multislice Computed Tomographic Findings. Arch Intern Med 
2007;165:1686-9.

 20. Min JK, Shaw LJ, Devereux RB, et al. Prognostic value of multidetector coronary computed tomo-
graphic angiography for prediction of all-cause mortality. J Am Coll Cardiol 2007;50:1161-70.

 21. Pundziute G, Schuijf JD, Jukema JW, et al. Prognostic value of multislice computed tomography 
coronary angiography in patients with known or suspected coronary artery disease. J Am Coll 
Cardiol 2007;49:62-70.

Jaap BW4.indd   93 10-05-11   16:40



Chapter 7

Jaap BW4.indd   94 10-05-11   16:40



Combined non-Invasive anatomic and functional 

assessment with MSCT and MRI for the detection 

of significant coronary artery disease in patients 

with an intermediate pre-test likelihood

JM van Werkhoven, MW Heijenbrok, JD Schuijf, JW Jukema,  

EE van der Wall, JHM Schreur, JJ Bax.

Jaap BW4.indd   95 10-05-11   16:40



Pa
rt

 1

96

Abstract

The objective of this study was to compare magnetic resonance myocardial perfu-

sion imaging (MRI) to anatomical assessment with multi-slice computed tomog-

raphy coronary angiography (MSCT) and conventional coronary angiography. 53 

patients (60% male, average age 57±9 years, 83% intermediate pre-test likelihood) 

underwent 1.5 Tesla MRI, 64-slice MSCT, and conventional coronary angiography. 

The presence of significant stenosis (≥50% luminal narrowing) was determined on 

MSCT and conventional coronary angiography. Ischemia on MRI was defined as a 

stress perfusion abnormality in the absence of delayed contrast enhancement. A 

significant stenosis was observed on MSCT in 15 (28%) patients, while ischemia 

on MRI was observed in 19 (36%). In the 38 patients without significant stenosis on 

MSCT, normal perfusion was observed in 29 (76%). In patients with a significant ste-

nosis on MSCT, ischemia was observed in 10 (67%). In all patients without significant 

stenosis on MSCT and normal perfusion on MRI (n=29), significant stenosis was 

absent on conventional coronary angiography. All patients with both MSCT and MRI 

abnormal (n=10) had significant stenoses on conventional coronary angiography. 

In conclusion, the anatomic and functional data obtained with MSCT and MRI is 

complementary for the assessment of CAD. These findings support the sequential 

or combined assessment of anatomy and function.
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Introduction

Coronary artery disease (CAD) remains one of the leading causes of morbidity and mortality 

in the Western world. In this regard, non-invasive imaging modalities play an increasingly 

important role. Following the recent development of non-invasive anatomic imaging using 

multi-slice computed tomography coronary angiography (MSCT), non-invasive imaging 

of atherosclerosis has received particular interest. Using this technique, fast evaluation of 

coronary anatomy has become possible, enabling stenosis detection with a high diagnostic 

accuracy compared to conventional coronary angiography.1, 2 Notably, also subclinical 

atherosclerosis, possibly warranting more targeted anti-atherosclerotic therapy, can easily 

be identified with this technique.

However, non-invasive anatomic imaging (MSCT angiography) is unable to predict ischemia, 

which is needed to guide decisions concerning potential revascularization. Several studies 

comparing the relationship between MSCT and functional imaging of myocardial perfu-

sion using single photon emission computed tomography (SPECT) and positron emission 

tomography (PET) have indeed shown a discrepancy between non-invasive anatomic and 

functional imaging, suggesting that these techniques may provide complementary informa-

tion regarding the presence, extent and severity of CAD.3, 4 

In addition to the currently available nuclear imaging techniques, myocardial perfusion 

abnormalities reflecting ischemia may also be appreciated using magnetic resonance 

imaging (MRI).5, 6 Myocardial perfusion imaging using stress MRI has a good diagnostic 

accuracy compared to non-invasive functional imaging using SPECT and PET, and invasive 

imaging using fractional flow reserve.7-9 Because of its high spatial resolution and the lack 

of ionizing radiation, MRI may possibly be used as an alternative to SPECT and PET for 

combined anatomic and functional imaging in combination with MSCT. Currently, the 

potential complementary relation between MSCT and MRI perfusion imaging has not been 

investigated. Therefore the purpose of this study was to compare myocardial perfusion imag-

ing with MRI to anatomical assessment with MSCT and conventional coronary angiography. 

Methods

Patient population and study protocol

In this prospective cohort study, 53 consecutive patients referred for conventional diagnostic 

coronary angiography because of suspected CAD underwent additional evaluation with 

MSCT and cardiovascular MRI within a period of 14 days. Patients were excluded from 

the study if they met one of the following exclusion criteria for MSCT: cardiac arrhythmias, 
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renal insufficiency (serum creatinine >120 mmol/L), known hypersensitivity to iodine con-

trast media, and pregnancy. Further exclusion criteria for MRI were: cardiac pacemakers 

or intracranial aneurysm clips, and claustrophobia. Finally patients were excluded in the 

occurrence of a cardiac event (worsening angina, revascularization, or myocardial infarc-

tion) in the period between the 3 examinations.

Baseline characteristics of the patients were recorded, and their pre-test likelihood of CAD 

was determined using the Diamond and Forrester method, with a risk threshold of <13.4% 

for low risk, >87.2% for high risk, and between 13.4% and 87.2% for intermediate risk, 

as previously described.10 The study was approved by the local medical ethics committee 

(Medical Centre Haaglanden, The Hague, The Netherlands) and all patients gave written 

informed consent.

Quantitative coronary angiography

Conventional coronary angiography was performed according to standard techniques. 

Quantitative coronary angiography (QCA) analysis of the most severe lesion was performed 

for each coronary artery by an observer blinded to the MSCT and MRI results using an offline 

software program (QCA-CMS, version 6.0, Medis, Leiden, The Netherlands). Coronary arter-

ies were divided into 17 segments according to the modified American Heart Association 

classification and QCA was performed in lesions exceeding 30% luminal narrowing on 

visual assessment.11 A significant stenosis was defined on a patient and vessel level as ≥50% 

luminal narrowing on QCA. 

Multi-slice computed tomography

All examinations were performed using a 64-slice MSCT scanner (Lightspeed VR 64, Gen-

eral Electrics, Milwaukee, MI, USA). Patient’s heart rate and blood pressure were monitored 

before each scan. In the absence of contraindications, patients with a heart rate exceeding 

the threshold of 65 beats per minute were administered beta-blocking medication (50-100 

mg metoprolol, oral or 5-10 mg metoprolol, intravenous).

Before the helical scan, a non-enhanced electrocardiographically (ECG)-gated scan, pro-

spectively triggered at 75% of the R-R interval, was performed to measure the coronary 

calcium score (CS). The retrospectively ECG gated helical scan was performed using the 

following scan parameters: collimation 64 x 0.625 mm; rotation time 0.35 s; tube voltage 

120 kV, and tube current 600 mA (with tube modulation to reduce the radiation dose). A 

bolus of 80 ml iomeprol (Iomeron 400, Bracco, Milan, Italy) was injected at 5 ml/s followed 

by 40 ml saline flush. Datasets were reconstructed from the retrospectively gated raw data 

with an effective slice thickness of 0.625 mm. 

Jaap BW4.indd   98 10-05-11   16:40



C
h

ap
ter 7

C
o

m
b

in
ed

 C
TA

 an
d

 M
R

I fo
r d

etectio
n

 o
f co

ro
n

ary artery d
isease

99

Post-processing of the MSCT calcium scans and coronary angiograms was performed on a 

dedicated workstation (Advantage, GE Healthcare, Waukesha, Wisconsin, USA). The total 

CS was calculated using the Agatston method. Coronary anatomy was evaluated using the 

contrast-enhanced helical examinations. Coronary arteries were divided into 17 segments 

according to the modified American Heart Association classification.11 All studies were 

interpreted by two experienced observers blinded to the results of coronary angiography and 

MRI with an intention to diagnose strategy. Discrepancies in interpretation were resolved by 

consensus. MSCT results were classified on a patient and vessel level as normal (no iden-

tifiable plaque or wall irregularities), non-significant, non-obstructive CAD (<50% luminal 

narrowing) or significant, obstructive CAD (≥50% luminal narrowing).

Magnetic resonance imaging

MRI was performed with a 1.5 Tesla scanner (Symphony, Siemens, Erlangen, Germany), 

using a multi-channel surface coil array. A first pass MRI perfusion scan was performed 

during adenosine stress to determine the presence of hypo-enhancement indicative of a 

perfusion defect during stress. After first pass perfusion imaging delayed contrast-enhanced 

MRI was performed to determine the presence of areas with hyper-enhancement indicating 

scar tissue. The integration of the 2 datasets provides differentiation between ischemia and 

scar tissue.12, 13 Studies were analyzed per patient and per vascular territory. To assess MRI 

results per vascular territory, the myocardium was divided into segments using a modified 

17-segment model described elsewhere, without the apex.14 Segments 1, 2, 7, 8, 13, and 

14 were allocated to the left anterior descending artery, segments 3, 4, 9, 10, and 15 to the 

right coronary artery, and finally segments 5, 6, 11, 12, and 16 were allocated to the left 

circumflex artery.

First pass stress perfusion MRI

During the examination, pharmacological stress was applied using adenosine infusion. In 

order to obtain maximum vasodilatory effect, patients were instructed to abstain from smok-

ing, tea, and coffee, and were asked to stop anti-anginal medication and beta-blockers for 

24 hours before the examination.

The first pass of 0.1 mmol/kg gadolinium-DOTA (Dotarem, Guerbet, Gorinchem, the Neth-

erlands) injected at a rate of 3 ml/s was assessed after 6 minutes of adenosine infusion 

(140 µg/kg/min) in 3 short-axis slices at the basal, mid and apical level of the LV. Using the 

following parameters: TrueFISP with a notched saturation pulse, inversion time 230 ms, 

repetition time/echo time 427 ms/ 1.53 ms, flip angle 8º, matrix 256 by 122, field of view 

341 by 420 mm, slice thickness of 8 mm with a slice gap of 8 mm.
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The images were evaluated by 2 experienced observers blinded to the MSCT and QCA 

results using dedicated software (MASS, version 5.1, Medis, Leiden, The Netherlands). 

Using the short-axis acquisitions, first pass stress perfusion MRI scans were visually scored 

using the proposed modified 17-segment model, without the apex.14 Each segment was 

graded on a 5-point scale (0=no hypo-enhancement, 1=hypo-enhancement 1 to 25% of 

left ventricular (LV) wall thickness, 2=hypo-enhancement 26 to 50% of LV wall thickness, 

3=hypo-enhancement 51-75% of LV wall thickness, and 4=hypo-enhancement 76-100% of 

LV wall thickness.15 

Delayed contrast-enhanced MRI

Delayed contrast-enhanced MRI was obtained 15 minutes after infusion of gadolinium in 3 

short-axis slices at the basal, mid and apical level of the LV, using inversion recovery Turbo-

Flash technique (repetition time/echo time 705 ms/ 4.30 ms, flip angle 25º, matrix 256 by 

166, field of view 341 by 420 mm, and a slice thickness of 6 mm). The inversion time was 

adjusted to null normal myocardium.

The images were evaluated by 2 experienced observers blinded to the MSCT and QCA 

results using dedicated software (MASS, version 5.1, Medis, Leiden, The Netherlands). 

Hyper-enhancement on the delayed contrast-enhanced MR images was scored according 

to the same segment model used for the analysis of first pass stress perfusion MRI.14 Each 

segment was graded on a 5-point scale (0 = no hyper-enhancement, 1=hyper-enhancement 

1 to 25% of LV wall thickness, 2=hyper-enhancement 26 to 50% of LV wall thickness, 

3=hyper-enhancement 51-75% of LV wall thickness, and 4=hyper-enhancement 76-100% 

of LV wall thickness.15 

Differentiation between ischemia and scar

Ischemia was defined as the presence of hypo-enhancement during first pass stress perfusion 

in the absence of hyper-enhancement on the delayed contrast-enhanced MRI. In segments 

with scar the degree of hyper-enhancement (1% through 100% of LV wall thickness) was 

subtracted from the degree of hypo-enhancement during the first pass perfusion to differ-

entiate between partially reversible defects and total irreversibility. Segments with partial 

reversibility were subsequently graded as ischemic.

Data analysis

Continuous variables were expressed as mean with standard deviation, and proportions 

were expressed in percentages. MSCT observations were compared to QCA to evaluate the 

ability of MSCT to detect significant stenosis (≥50% luminal narrowing). Secondly, MSCT 

was compared to MRI to determine the relation between anatomic assessment with MSCT 
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and ischemia on MRI. Finally flow charts were created to determine the relationship between 

MSCT, MRI and QCA. Comparisons were performed on a patient and vascular territory level. 

Results

Patients were clinically referred for invasive coronary angiography because of chest pain 

suspect for CAD. All characteristics of the study population are listed in Table 1. Briefly, 

the average age was 57±9 years, and the population consisted of 60% male patients. The 

majority of patients (83%) presented with an intermediate pre-test likelihood of CAD.

Multi-slice computed tomography

The heart rate exceeded 65 beats per minute in 35 patients (66%), and in these patients 

additional beta-blocking medication was administered. As a result, the average heart rate 

during MSCT was 59±8 beats per minute. The average CS of the population was 251±487. 

Calcifications were present in 37 patients (70%), and a CS > 400 was observed in 10 patients 

(19%).

On a patient level, the MSCT angiogram was classified as normal in 14 (26%) patients, 

non-significant, non-obstructive CAD (<50% luminal narrowing) in 24 (45%), and signifi-

cant, obstructive CAD (≥50% luminal narrowing) was observed in the remaining 15 (28%) 

patients. On a vessel level, normal coronary anatomy was present in 83 (52%) vessels, 

Table 1. Patient characteristics

Gender (male) 32 (60%)
Age (yrs) 57±9
Risk Factors
 Diabetes 8 (15%)
 Hypertension 30 (57%)
 Hypercholesterolemia 29 (55%)
 Family history CAD 23 (43%)
 Current Smoking 16 (30%)
 Obesity (BMI ≥ 30) 9 (17%)
Pre-test likelihood of CAD
 Low 3 (6%)
 Intermediate 44 (83%)
 High 6 (11%)
Significant CAD on QCA 15 (28%)
 1-vessel disease 7 (13%)
 2-vessel disease 6 (11%)
 3-vessel disease 2 (4%)
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non-significant disease (<50% luminal narrowing) in 51 (32%), and significant disease 

(≥50% luminal narrowing) in 25 (16%) vessels.

Magnetic resonance imaging

First pass perfusion MRI during adenosine stress revealed normal myocardial perfusion in 34 

patients (64%). A perfusion defect was observed in the remaining 19 patients (36%). During 

the delayed contrast-enhanced scan hyper-enhancement was observed in 3 patients (6%). 

In these patients the first pass perfusion defects were only partially attributable to scar. Thus 

on a patient level ischemia was absent in 34 (64%) patients while a perfusion abnormality 

indicative of ischemia was observed in the remaining 19 (36%) patients. On a vascular level, 

126 (79%) territories showed no hypo-enhancement during first pass perfusion MRI. Thus, 

hypo-enhancement was seen in the remaining 33 (21%) vascular territories. During delayed 

contrast-enhanced MRI hyper-enhancement was observed in 4 of the territories showing first 

pass perfusion abnormalities. In one territory partial reversibility was observed while in the 

remaining 3 territory the abnormalities observed during first pass perfusion were entirely 

attributable to scar tissue. Accordingly, on a vascular territory level, perfusion abnormalities 

indicative of ischemia were present in 30 (19%) vascular territories.

Relation between anatomic and functional imaging

Relation between MSCT and QCA

The agreement between MSCT and QCA for the detection of significant CAD is shown 

in Table 2A. MSCT correctly identified 13 of 15 (87%) significant, obstructive lesions on 

QCA (≥50%) and accurately ruled out the presence of significant disease in 36 of 38 (95%) 

patients without significant lesions on QCA. In Table 2B the relationship between MSCT and 

QCA is illustrated on a vessel level. MSCT correctly identified 20 of 25 (80%) significant, 

obstructive stenoses and was able to correctly rule out a significant lesion in 129 of 134 

(96%) vessels without significant lesions on QCA.

Relation between MSCT and MRI

Figure 1 (Panel A) illustrates the complementary value of MSCT and MRI. Only 67% of 

patients with a significant, obstructive lesion (≥50% luminal narrowing) on MSCT showed 

ischemia on MRI. Vice versa, a significant, obstructive stenosis was observed in 15% of 

patients with normal perfusion on MRI. A similar complementary value between MSCT 

and MRI was observed when assessing the relation between MSCT and MRI on a vascular 

territory level (Figure 1, Panel B).

Figure 2 further illustrates the complimentary value of MRI to MSCT. In this Figure, the 

results of MRI and QCA are presented in patients with a normal MSCT, non-significant, 
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Table 2a. Agreement between MSCT and QCA on a patient level.

QCA <50% QCA ≥50%
MSCT
 <50% (n = 38) 36 (95%) 2 (13%)
 ≥50% (n = 15) 2 (5%) 13 (87%)
Total 38 15

Table 2b. Agreement between MSCT and QCA on a vessel level.

QCA <50% QCA ≥50%
MSCT
 <50% (n = 134) 129 (96%) 5 (20%)
 ≥50% (n = 25) 5 (4%) 20 (80%)
Total 134 25

 18

7.1.a 

 

 19

7.1.b 

 
Figure 1. Pie charts depicting the relationship between the anatomic information obtained by MSCT and the 
functional information from MRI on a patient level (Panel A) and on a vascular territory level (Panel B).
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non-obstructive CAD (MSCT <50% luminal narrowing) and in patients with significant, 

obstructive CAD (MSCT ≥50% luminal narrowing). Importantly, MRI was normal in 

all patients with a normal MSCT (n=14, 100%). Furthermore, no significant stenoses 

were observed on QCA in these patients as well. In the 24 patients with non-significant, 

non-obstructive CAD (<50% luminal narrowing) on MSCT, MRI was normal in 15 (63%) 

while ischemia was observed in 9 (37%). Thus, approximately 1 out of 3 people with non-

significant, non-obstructive CAD (<50% narrowing) had ischemia on perfusion MRI. In 

two patients classified as having non-significant CAD on MSCT a significant stenosis was 

observed on QCA. Importantly, ischemia was observed on MRI in both of these patients. 

Nevertheless, in all patients without significant stenosis on MSCT and normal perfusion on 

MRI, absence of a significant stenosis was confirmed on QCA.

Finally, in the 15 patients with a significant stenosis on MSCT (≥50% luminal narrowing), 

MRI was normal in 5 (33%) and ischemia was observed in 10 (67%). In other words, 1 out 

of 3 patients with a significant stenosis on MSCT had normal perfusion on MRI. Two patients 

were classified as having a significant stenosis on MSCT while QCA was non-significant. 

Ischemia on MRI was absent in both of these patients. Importantly however, in all patients 

with both a significant stenosis on MSCT and ischemia on MRI the presence of a significant 

 20

7.2.a 

 

 21

7.2.b 

 

Figure 2. Flow charts describing the relationship between MSCT, MRI and QCA on a patient level (Panel A) and 
on a vascular territory level (Panel B). These flow charts illustrate the complimentary value of MRI in patients with 
non-significant and significant stenosis on MSCT.
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stenosis was confirmed on QCA. Similar findings were observed on a vascular territory level. 

An example of a patient with a perfusion defect on MRI, a significant stenosis on MSCT and 

a significant stenosis on QCA is presented in Figure 3.

Discussion

The main finding of the current study is that MSCT coronary angiography and MRI perfu-

sion imaging may provide complementary information regarding the presence, extent and 

severity of CAD.

Complementary value of MSCT and MRI

In patients with a significant stenosis on MSCT, normal perfusion on MRI was observed in 

33%, suggesting that still a large proportion of significant stenoses on MSCT have no effect 

on myocardial perfusion (not associated with stress-inducible ischemia). Simultaneously, 

these findings indicate that normal perfusion on MRI cannot rule out the presence of signifi-

cant atherosclerosis. Indeed a significant stenosis was still observed in approximately 1 out 

 22

7.3 

 
Figure 3. Case example of a patient with a large perfusion defect in the inferior wall on MRI during first pass 
perfusion (Panel A) and a small area showing delayed enhancement (Panel B) suggesting the presence of 
predominantly ischemia in addition to a small region of scar tissue. On MSCT a corresponding high-grade 
stenosis was identified in the right coronary artery (Panel C). On coronary angiography the right coronary 
angiography was occluded with collaterals originating from the right ventricular branch (Panel D).
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of 6 of patients without evidence of ischemia on MRI. Although currently no comparison has 

been available between MSCT and MRI perfusion imaging, several previous studies have 

assessed the relationship between conventional coronary angiography and MRI.13, 16-18 In a 

meta-analysis by Nandalur et al. significant stenosis on conventional coronary angiography 

was associated with abnormal perfusion on MRI in 58% to 97% of patients.18 Initially, this 

correlation seems higher than that observed in the current study when comparing MSCT 

to MRI. However, differences in methodology such as the use of different cut-offs (50%, 

70% and 75% luminal narrowing) for significant stenosis as well as a differences in disease 

prevalence (on average ≈60% in the meta-analysis by Nandalur et al. compared to ≈30% in 

the current study) may have exerted major influence on individual observations.19 

In patient populations more comparable to our current study in patients with an intermediate 

pre-test likelihood, the relationship between coronary anatomy and myocardial perfusion 

has been studied by comparing MSCT to SPECT or PET imaging.3, 4 In the study by Schuijf 

et al., only 50% of patients with a significant (≥50%) lesion on MSCT had an abnormal 

perfusion on SPECT.4 Conversely, normal perfusion on SPECT was unable to rule out the 

presence of significant CAD or atherosclerosis in general. In a more recent study by Gaem-

perli et al. the MSCT observations were corroborated by invasive coronary angiography.20 

The predictive value of obstructive CAD on MSCT was 58% for the prediction of a reversible 

perfusion defect on SPECT. Importantly, the accuracy of MSCT to identify abnormal perfu-

sion on SPECT was similar to that of quantitative coronary angiography. These observations 

support the notion that the low predictive value of MSCT for reversible perfusion defects is 

not caused by inaccuracies in stenosis detection with MSCT but merely reflects inherent 

differences of the techniques. The results of the current study comparing MSCT to MRI perfu-

sion imaging are in line with those observed when comparing MSCT to nuclear perfusion 

imaging, and further support that MSCT and MRI may provide complementary information 

with regard to the identification of the presence, extent and severity of CAD.

Combined anatomic and functional imaging

The combined assessment of coronary anatomy and myocardial perfusion may not only pro-

vide complementary information regarding different aspects of CAD, but may also result in a 

higher diagnostic accuracy for the detection of hemodynamically significant coronary artery 

lesions as has been suggested in preliminary work by Rispler et al.21 In a study population 

of 56 patients, hybrid imaging using a SPECT MSCT scanner resulted in improved specificity 

and positive predictive value for the identification of hemodynamically significant coronary 

lesions. In line with these results the addition of MRI to MSCT improved identification of sig-

nificant stenosis on QCA in the current study; all patients with both a significant stenosis on 

MSCT and ischemia on MRI were associated with a significant stenosis on QCA. Conversely, 
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in all patients without significant stenosis on MSCT and normal perfusion on MRI, absence 

of a significant stenosis was confirmed on QCA. 

Possibly, diagnostic accuracy may improve even further on a vessel basis by fusing both 

MSCT and MRI perfusion datasets into a single, three-dimensional anatomic representation 

of the heart with overlying coronary anatomy. This approach may enable accurate allocation 

of perfusion defects to the corresponding stenosis. Gaemperli et al. assessed the accuracy 

of cardiac image fusion by combining MSCT and SPECT.22 The authors concluded that in 

almost one third of patients, fusion of MSCT and SPECT resulted in increased diagnostic 

performance, especially in functionally relevant lesions in distal segments and diagonal 

branches and in vessels with extensive disease or calcifications. Fusion of MSCT and MRI 

perfusion datasets may potentially provide similar information in the future.

Clinical implications

The combination of anatomic imaging for identification of atherosclerosis and functional 

imaging for assessment of myocardial perfusion may improve risk stratification and have 

important implications for patient management.23 Recently, a flow chart incorporating 

anatomic an functional imaging has been suggested which separates patients into three 

groups for management: the first group with normal coronary anatomy who can be safely 

discharged, a second group with non-flow limiting stenosis requiring medical treatment and 

aggressive risk factor modification and a final group of patients with a flow-limiting stenosis 

requiring further evaluation with conventional coronary angiography with potentially revas-

cularization.24 

Such diagnostic strategies initially proposed the use of SPECT imaging for assessment of 

ischemia in combination with anatomical assessment using MSCT. Indeed, SPECT imag-

ing remains the most robust and extensively used modality for assessment of ischemia. 

However, the combination of SPECT and MSCT, although having the potential to improve 

patient management, is associated with an increased radiation burden.25 Because of the 

lack of ionizing radiation, MRI may be considered a promising alternative to SPECT for 

combined anatomic and functional assessment with MSCT, although the limited availability 

of MRI perfusion imaging and the associated costs currently inhibit the widespread use of 

this technique. Therefore the utilization of MRI in this setting will remain largely dependent 

on local availability.

Study limitations

Both MSCT and MRI have some general limitations. Even though the diagnostic accuracy 

of MSCT is high, images are of poor quality in still a small percentage of patients. This 

percentage is expected to continue to decrease with newer generation scanners. Another 
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limitation of MSCT is the considerable radiation dose associated with the currently used 

64-slice system. Radiation burden can however be decreased using newer generation scan-

ners and protocols.26, 27 

A general limitation of MRI includes the relatively longer examination times which can 

be uncomfortable for some patients. Furthermore a limitation of the clinical applicabil-

ity of MRI perfusion imaging is the wide variation in scan protocols, scanners and data 

analysis methodologies that currently exist. In the present study a qualitative approach was 

used similar to previously published studies.9, 13, 28, 29 Other studies have used quantitative 

methodologies which have the advantage of decreased inter-observer variability. However 

their disadvantages include that quantification may be time consuming while optimal and 

standardized approaches have not yet been defined.

Conclusion

The anatomic and functional data obtained with MSCT and MRI provide complementary 

information regarding the assessment of CAD. These findings support the sequential or 

combined assessment of anatomy and function in patients presenting with suspected CAD. 
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Abstract

Previous studies have shown that the presence of stenosis alone on multislice com-

puted tomography (MSCT) has a limited positive predictive value for the presence 

of ischemia on myocardial perfusion imaging (MPI). The purpose of this study was 

to assess which variables of atherosclerosis on MSCT angiography are related to 

ischemia on MPI. Both MSCT and MPI were performed in 514 patients. On MSCT, 

the calcium score, degree of stenosis (≥50% and ≥70% stenosis), plaque extent 

and location were determined. Plaque composition was classified as non-calcified, 

mixed or calcified. Ischemia was defined as a summed difference score ≥2 on a per 

patient basis. Ischemia was observed in 137 patients (27%). On a patient basis, mul-

tivariate analysis showed that the degree of stenosis (presence of ≥70% stenosis, 

OR 3.5), plaque extent and composition (mixed plaques ≥3, OR 1.7 and calcified 

plaques ≥3, OR 2.0) and location (atherosclerotic disease in left main coronary artery 

and/or proximal left anterior descending coronary artery, OR 1.6) were independent 

predictors for ischemia on MPI. In addition, MSCT variables of atherosclerosis such 

as plaque extent, composition and location had significant incremental value for the 

prediction of ischemia over the presence of ≥70% stenosis. In conclusion, in addi-

tion to the degree of stenosis, MSCT variables of atherosclerosis describing plaque 

extent, composition and location are predictive of the presence of ischemia on MPI.
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Introduction

Over the past decade, multislice computed tomography (MSCT) angiography has emerged 

as a non-invasive modality for visualization of the coronary arteries. Recently, several stud-

ies have addressed the diagnostic accuracy of MSCT as compared to invasive coronary 

angiography reporting high accuracies for the detection of 50% stenosis.1 Importantly, the 

high negative predictive value of 99% indicates that the technique may be particularly useful 

for ruling out the presence of coronary artery disease (CAD) in patients with lower likelihood 

of CAD. On the other hand, while MSCT angiography provides insight into the severity 

and extent of anatomical disease, it is currently unable to evaluate the hemodynamical 

relevance of CAD. In fact, previous studies have revealed a large discrepancy between the 

presence of atherosclerosis on MSCT angiography and the presence of ischemia during 

functional testing.2-5 These investigations demonstrated that approximately only half of 

obstructive stenoses (≥50% luminal narrowing) on MSCT were associated with abnormal 

perfusion, whereas a large proportion of obstructive lesions on MSCT did not result in perfu-

sion abnormalities. Therefore, identification of anatomical MSCT variables of atherosclerosis 

that are associated with ischemia on MPI, in addition to the presence of obstructive CAD, 

may improve selection of further diagnostic and/or therapeutic management. Thus, the 

purpose of this study was to identify variables of atherosclerosis on MSCT angiography that 

are related to ischemia on MPI, in addition to the presence of obstructive CAD.

Methods

Patients and study protocol

The study population consisted of 524 patients who were clinically referred for functional 

and anatomical imaging because of chest pain or an elevated risk profile as part of an ongo-

ing registry addressing the relative merits of MSCT in relation to other imaging techniques. 

Patients underwent both myocardial perfusion imaging (MPI) with stress-rest gated single 

photon emission computed tomography (SPECT) and MSCT within 3 months in two different 

institutions. Patients were included at the University Hospital in Zurich, Switzerland (n=263) 

and at the Leiden University Medical Center, Leiden, the Netherlands (n=261). Exclusion 

criteria were: known CAD (previous myocardial infarction, percutaneous coronary interven-

tion and coronary artery bypass surgery), atrial fibrillation, renal insufficiency (glomerular 

filtration rate <30 ml/min), known allergy to iodine contrast and pregnancy. The clinical 

symptoms of included patients were recorded and patients were further classified as hav-

ing a low, intermediate or high pre-test likelihood of obstructive CAD using the method 

described by Diamond and Forrester.6 
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Stress-rest gated MPI

Patients were instructed to withhold beta-blocking medication and calcium antagonists 48 

hours before examination and caffeine 12 hours before examination. For each center a 

different gated MPI protocol was used. In Leiden (n=261) a two-day gated stress-rest SPECT 

protocol was performed using either technetium-99 tetrofosmin (500 MBq) or technetium-

99m sestamibi (500 MBq). In patients that were able to exercise, symptom-limited bicycle 

test was performed and in patients unable to exercise pharmacological stress was performed 

using adenosine or dobutamine. In Zurich (n=263) a one day gated stress-rest SPECT was 

performed using adenosine stress and technetium-99m tetrofosmin (300 MBq at peak stress 

and 900 MBq at rest). The images were acquired on a triple-head SPECT camera (GCA 9300/

HG, Toshiba Corp., Tokyo, Japan) or a dual-head detector camera (Millennium VG & Hawk-

eye, General Electric Medical Systems, Milwaukee, WI, USA; or Vertex Epic ADAC Pegasus, 

Philips Medical Systems, Eindhoven, the Netherlands). All cameras were equipped with low 

energy high resolution collimators. A 20% window was used with a 140-keV energy peak 

of technetium-99m, and data were stored in a 64x64 matrix. Subsequently, stress-rest gated 

MPI datasets were quantitatively evaluated using previously validated automated software.7 

The data were reconstructed into long- and short-axis perpendicular to the heart axis. A 

20-segment model was used in which the myocardial segments were assigned to the differ-

ent perfusion territories. Each segment was scored by an experienced observer according to 

the standard scoring scale of 0-4 (normal, mild, moderate, severe reduction or absence of 

uptake). The total segmental perfusion scores during stress and rest were added to calculate 

the summed stress score (SSS) and the summed rest score (SRS), respectively. The summed 

difference score (SDS) was calculated as the sum of difference between the SRS and SSS. 

Ischemia was defined as a SDS ≥2 and severe ischemia was defined as a SDS ≥8.8 On 

a per vessel basis, the presence of ischemia was assessed visually in the corresponding 

vascular territory. Consequently, ischemia in the anterior and septal wall was allocated to 

the left anterior descending coronary artery, ischemia in the lateral wall was allocated to the 

left circumflex coronary artery and ischemia in the inferior wall was allocated to the right 

coronary artery.9 

MSCT coronary angiography

Heart rate and blood pressure were evaluated before each scan. If a patient’s heart rate was 

above 65 beats per minute and no contra-indications existed, beta-blocking medication was 

administered one hour before the examination (50-100 mg metoprolol orally or 5-10 mg 

metoprolol intravenously). 

In the first 41 patients data acquisition was performed using a 16-slice MSCT scanner 

(Aquilion 16, Toshiba Medical Systems, Tokyo, Japan) with a collimation of 16 x 0.5 mm, a 

gantry rotation time of 400 ms, tube voltage of 120 kV and tube current of 250 to 350 mA. 
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A 64-slice MSCT scanner (Aquilion 64, Toshiba Medical Systems, Tokyo, Japan or General 

Electrics Lightspeed VCT, Milwaukee, WI, USA) was used for the remaining 483 patients 

with a collimation of 64 x 0.5 mm, a gantry rotation time of 400 ms, tube voltage of 100 to 

135 kV and tube current of 250 to 350 mA, depending on body shape. First, a non-contrast 

enhanced low dose scan prospectively triggered at 75% of the R-R interval was performed 

before helical scanning. This examination was used for calcium scoring and followed by 

a triggered helical scan. For the 16-slice MSCT non-ionic contrast (Iomeron 400, Bracco, 

Milan, Italy) was administered in the ante-cubital vein, with a dose of 130 to 140 ml and a 

flow-rate of 4 ml/s, followed by a saline flush. For 64-slice MSCT, 80 to 110 ml contrast was 

administered with a flow rate of 5 ml/s followed by a saline flush. Automatic detection of 

peak enhancement in the descending aorta was used for timing. Subsequently data sets were 

reconstructed at the best phase of the R-R interval and transferred to dedicated work stations 

(Vitrea2, Vital Images, USA, or Advantage, GE Healthcare, USA). 

The non-contrast enhanced CT images were used to calculate the calcium score using the 

Agatston method.10 MSCT angiographic examinations were evaluated in consensus by 2 

experienced readers including an interventional cardiologist blinded to stress-rest SPECT 

findings. A 17-segment model modified according to the American Heart Association was 

used and for each segment was determined if atherosclerosis was present using axial and/or 

orthogonal images and curved multiplanar reconstructions. If atherosclerosis was present, 

the degree of stenosis was graded as non-obstructive (<50% stenosis), obstructive (≥50% 

stenosis) and severely obstructive (≥70% stenosis). Additionally, the extent of atherosclerosis 

was determined by assessing the number of diseased segments. Consequently, plaques were 

scored according to plaque composition (non-calcified, mixed or calcified). Non-calcified 

plaques were regarded as plaques having a lower CT attenuation compared to the contrast 

lumen and no visible calcifications, calcified plaques were plaques with predominantly 

high CT attenuation and without non-calcified plaque elements, and mixed plaques were 

plaques consisting of both non-calcified and calcified elements. Lastly, the location of 

disease was classified as being present in left main coronary artery (LM) and/or proximal left 

anterior descending coronary artery (LAD) or not (example provided in Figure 1).

Statistical analysis

Continuous data were expressed as mean and standard deviation, and categorical data were 

expressed in numbers and percentages. Binary logistic regression analysis was performed to 

determine the predictive value of MSCT variables of atherosclerosis for presence of ischemia 

on MPI on both a patient and vessel basis. First univariate analysis of baseline clinical risk 

variables (age and gender), calcium score and MSCT variables was performed. To analyze 

the predictive value of variables of atherosclerosis on MSCT (degree of stenosis, plaque 
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extent, composition and location), optimal binary cutoffs were created for analysis. For each 

variable, an odds ratio with 95% confidence interval (OR (CI 95%) was calculated. 

The current study used 2 generations of MSCT scanners (16-slice and 64-slice), thus to 

correct for scanner type, scanner type was included in the univariate analysis. In addi-

tion, interaction was assessed between scanner type and MSCT variables of atherosclerosis 

(describing degree of stenosis, plaque extent, composition and location). In this analysis, no 

interaction was demonstrated between MSCT scanner type and MSCT variables of athero-

sclerosis (data not shown).

The intention was to build a multivariate model that combines clinical variables and MSCT 

variables of atherosclerosis for the prediction of ischemia on MPI, in a stepwise fashion. The 

first model consisted of clinical risk variables only. Consequently, the presence of (severely) 

obstructive CAD was added, followed by plaque extent and composition (≥3 mixed plaques 

and ≥3 calcified plaques). Finally, plaque location (atherosclerotic disease in the LM and/

or proximal LAD) was added to the model. For each next iterative step, variables may not 

remain statistically significant. Thus, all variables with a p-value <0.15 were kept in the 

model in order not to miss clinically relevant predictors of ischemia. 

 23

8.1 

 

Figure 1. Examples of the classification of different variables of atherosclerosis on MSCT. Panel A: Assessment 
of the presence of atherosclerosis: curved multiplanar reconstruction (MPR) of right coronary artery (RCA) 
revealing the absence of atherosclerosis. Panel B: Assessment of the degree of stenosis: MPR showing a 
lesion resulting in ≥50% stenosis in the mid RCA (arrow). Panel C: Assessment of the extent and composition 
of atherosclerotic disease: MPR of the left anterior descending coronary artery (LAD) revealing a single mixed 
plaque (arrow). Panel D: Assessment of location of atherosclerosis: MPR of the LAD demonstrating the presence 
of an atherosclerotic lesion in the left main coronary artery and proximal LAD (arrow).
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The performance of the final multivariate model for prediction of ischemia on both a patient 

and vessel basis was studied with respect to discrimination and calibration. Discrimination 

was quantified by a measure of concordance, the c-index. For binary outcomes the c-index 

is identical to the area under the receiver operating characteristic (ROC) curve. The c-index 

lies between 0.5 and 1, and is better if closer to one.11 Calibration refers to whether the 

predicted risks agree with the observed risk frequencies. Calibration was measured with 

the Hosmer-Lemeshow goodness-of-fit test (p>0.10 considered to indicate lack of devia-

tion between the model and observed event rates). Statistical analysis was performed using 

SPSS software (version 16.0, SPSS inc., Chicago, IL, USA) and SAS software (The SAS system 

6.12, Cary, NC, USA: SAS Institute Inc). A p-value <0.05 was considered statistically sig-

nificant.

Results

Patient characteristics

In total, 524 patients were enrolled in the present study. In 10 patients (2%) the MSCT data 

set was not interpretable because of an irregular or elevated heart rate and these patients 

were excluded from the analysis. Therefore, 514 patients were included in the analysis. 

Baseline patient characteristics are described in Table 1.

Table 1. Baseline patient characteristics

Male 302 (59%)
Age (years) 60 ±11
Obesity (BMI ≥30 kg/m2) 111 (22%)
Diabetes 155 (30%)
Hypercholesterolemia 209 (41%)
Hypertension 287 (56%)
Positive family history for CAD 191 (37%)
Smoking currently 153 (30%)
Pre-test likelihood
Low pre-test likelihood 113 (22%)
Intermediate pre-test likelihood 334 (65%)
High pre-test likelihood 67 (13%)
Symptoms patient population
Typical chest pain 78 (15%)
Atypical chest pain 146 (28%)
Non-anginal chest pain 41 (8%)
Asymptomatic 181 (35%)
Other (dyspnea, tiredness, dizziness ect.) 68 (13%)
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Stress-rest gated MPI results

In 87 patients symptom-limited bicycle test was performed and in the remaining 427 patients 

pharmacological stress was applied using either adenosine (n=395) or dobutamine (n=32). 

MPI imaging results are presented in Table 2. The mean SSS was 2.8 ±4.5, the mean SRS was 

1.5 ±3.0 and the mean SDS was 1.3 ±3.6. Ischemia (SDS ≥2) was observed in 137 patients 

(27%). Within this group, 16 patients (3%) were shown to have severe ischemia (SDS ≥8). 

Baseline MSCT results

Average heart rate during MSCT acquisition was 63 ±10 beats per minute. The baseline 

calcium score and MSCT imaging results are shown in Table 2. The mean calcium score 

was 324±751. 

MSCT predictors for ischemia on MPI: patient based analysis

Results of the univariate analysis regarding the predictive value of MSCT variables for 

ischemia on MPI (patient basis) are listed in Table 3. As demonstrated, scanner type (16-

slice or 64-slice) was not related to the presence of ischemia on MPI. To determine the 

independent predictive value of MSCT variables of atherosclerosis for ischemia on MPI, 

multivariate models were created including MSCT variables of atherosclerosis corrected for 

baseline clinical variables and the presence of severely obstructive CAD (Table 4). Interest-

ingly, several MSCT variables of atherosclerosis remained predictive of ischemia on MPI in 

Table 2. Imaging results of MPI, calcium score and MSCT angiography

MPI
 Normal perfusion (SDS <2) 374 (73%)
 Ischemia (SDS ≥2) 137 (27%)
 Severe ischemia (SDS ≥8) 16 (3%)
Calcium score
 0 174 (34%)
 1-100 140 (27%)
 101-400 88 (17%)
 >400 112 (22%)
MSCT angiography
Degree
 Presence of non-obstructive CAD 354 (69%)
 Presence of obstructive CAD (≥50%) 157 (31%)
 Presence of severely obstructive CAD (≥70%) 83 (16%)
Extent and Composition
 Non-calcified plaques ≥3 39 (8%)
 Mixed plaques ≥3 93 (18%)
 Calcified plaques ≥3 126 (25%)
Location
 LM and/or proximal LAD diseased 74 (15%)
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the multivariate model. Regarding contrast enhanced MSCT coronary angiography, degree 

of stenosis (presence of ≥50% and ≥70% stenosis), extent and composition (presence of ≥3 

mixed plaques and/or ≥3 calcified plaques) and location (atherosclerotic disease in LM and/

or proximal LAD) remained independent predictors of ischemia. An example of a patient 

with all predictors on MSCT is provided in Figure 2. 

MSCT predictors for ischemia on MPI: vessel based analysis

Results of the univariate analysis regarding the predictive value of MSCT variables for 

ischemia on MPI (vessel basis) are listed in Table 5. To determine the independent pre-

dictive value of MSCT variables of atherosclerosis for ischemia on MPI on a vessel basis, 

multivariate models were created including MSCT variables of atherosclerosis which were 

corrected for baseline clinical risk variables (Table 6). Interestingly, several MSCT variables 

of atherosclerosis remained predictive of ischemia on MPI in the multivariate model on a 

vessel basis. Indeed, degree of stenosis (presence of ≥50% and ≥70% stenosis) and extent 

and composition (presence of ≥2 mixed plaques and/or ≥2 calcified plaques) remained 

significant independent predictors of ischemia. 

Table 3. Univariate analysis for prediction of ischemia on MPI on patient basis

OR (CI 95%) P-value
Clinical 2.0 (1.4-3.8) <0.001
Calcium score
1-100 0.6 (0.4-0.9) 0.02
101-400 1.2 (0.7-2.0) 0.48
>400 4.8 (3.1-7.5) <0.001
MSCT angiography
MSCT scanner type (64-slice) 1.3 (0.7-2.6) 0.46
Degree
Number of obstructive segments 1.4 (1.3-1.6) <0.001
Presence obstructive CAD 5.4 (3.5-8.3) <0.001
Presence severely obstructive CAD 6.8 (4.1-11.2) <0.001
Extent and Composition
Number of non-calcified plaques 1.1 (1.0-1.2) 0.15
Number of mixed plaques 1.3 (1.2-1.4) <0.001
Number of calcified plaques 1.3 (1.2-1.4) <0.001
Non-calcified plaques ≥3 0.9 (0.4-2.0) 0.86
Mixed plaques ≥3 3.9 (2.5-6.3) <0.001
Calcified plaques ≥3 3.3 (2.2-5.1) <0.001
Location
LM and/or proximal LAD diseased 3.4 (2.2-5.3) <0.001
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Incremental value of angiographic MSCT variables of atherosclerosis to 
predict ischemia on MPI

In total, 157 patients (31%) had obstructive CAD and 83 patients (16%) had severely 

obstructive CAD on MSCT. Regarding these patients, 80 patients (51%) and 52 patients 

(63%) revealed ischemia on MPI, respectively. Moreover, of the 259 patients with at least 

one of the significant predictors on MSCT, only 119 patients (33%) showed ischemia on 

MPI. Example of a patient demonstrating only one significant predictor and a normal MPI is 

provided in Figure 3. In addition, of the 22 patients with all of the significant predictors on 

MSCT (describing degree of stenosis, plaque extent, composition, and location), 18 patients 

(82%) showed ischemia on MPI. 

Finally, the performance of the multivariate models for prediction of ischemia on both a 

patient (model V in Table 4) and vessel basis (model IV in Table 6) were studied with respect 

to discrimination and calibration. Discrimination was quantified by a measure of concor-

dance, the c-index. In this model, plaque extent, composition and location had significant 

incremental value over clinical risk stratification and the presence of severely obstructive 

Table 4. Multivariate models for prediction of ischemia on MPI on patient basis

OR (CI 95%) P-value
Model I
 Clinical 2.0 (1.4-3.8) <0.001
Model II
 Clinical 1.6 (1.1-2.3) 0.01
 Presence obstructive CAD 5.0 (3.3-7.7) <0.0001
Model III
 Clinical 1.7 (1.2-2.5) 0.006
 Presence severely obstructive CAD 6.2 (3.7-10.4) <0.0001
Model IV
 Clinical 1.6 (1.1-2.3) 0.02
 Presence severely obstructive CAD 3.8 (2.2-6.7) <0.0001
 Mixed plaques ≥3 2.0 (1.2-3.5) 0.012
 Calcified plaques ≥3 2.3 (1.5-3.7) <0.0001
Model V
 Clinical 0.7 (1.1-2.4) 0.008
 Presence severely obstructive CAD 4.2 (2.5-7.3) <0.0001
 Calcified plaques ≥3 1.9 (1.2-3.1) 0.01
 LM and/or proximal LAD diseased 1.8 (1.1-3.0) 0.03
Model VI
 Clinical 1.6 (1.1-2.4) 0.01
 Presence severely obstructive CAD 3.5 (2.0-6.3) <0.0001
 Mixed plaques ≥3 1.7 (0.9-3.1) 0.053
 Calcified plaques ≥3 2.0 (2.2-3.3) 0.007
 LM and/or proximal LAD diseased 1.6 (0.9-2.7) 0.107
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CAD (p<0.05) for the prediction of ischemia on both a patient and vessel basis (Figure 4 

and Figure 5, respectively). The performance of the model (calibration) was assessed by 

the Hosmer-Lemeshow goodness-of-fit test (p>0.10 considered to indicate lack of devia-

tion between the model and observed event rates). As demonstrated in Figure 6, on both a 

patient and vessel basis, the estimated risk of the models showed good agreement with the 

observed risk frequencies.

 24

8.2 

 

Figure 2. Example of a 72 year-old male patient exhibiting all the significant predictors on multislice computed 
tomography (MSCT) for prediction of ischemia on myocardial perfusion imaging (MPI). In panel A, a 3D volume 
rendered reconstruction is provided, showing the left anterior descending coronary artery (LAD). Panel B: A curved 
multiplanar reconstruction (MPR) of the LAD is shown demonstrating the presence of obstructive CAD (≥50%) in 
the proximal segment (arrow). Panel C: Another curved MPR of the LAD is shown in a different view, revealing the 
presence of multiple diseased segments (cross sectional images a, b and c), the presence of obstructive lesion 
in the LAD (arrow c) and the presence of mixed plaque (cross sectional images a, b and c). Panel D: Stress single 
photon emission computed tomography (SPECT) short axis image showing the presence of a perfusion defect, 
particularly evident in the antero-septal region (arrow). Panel E: Rest SPECT short axis image demonstrating 
normal perfusion.
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Discussion

The main findings of the present study can be summarized as follows. In a population 

with predominantly low-to-intermediate pre-test likelihood for CAD, MSCT variables of 

atherosclerosis such as plaque extent, composition and location were significant predic-

tors of ischemia on MPI, over the presence of obstructive CAD. Moreover, the incremental 

value of angiographic MSCT variables of atherosclerosis over clinical risk stratification and 

the presence of severely obstructive CAD was investigated. In this model, plaque extent, 

composition (presence of ≥3 mixed plaques and/or ≥3 calcified plaques) and location (ath-

Table 5. Univariate analysis for prediction of ischemia on MPI on vessel basis

OR (CI 95%) P-value
Clinical 1.9 (2.5-1.4) <0.001
MSCT angiography
Degree
 Number of obstructive segments 2.0 (1.7-2.4) <0.001
 Presence obstructive CAD 4.0 (3.0-5.3) <0.001
 Presence severely obstructive CAD 5.3 (3.6-7.8) <0.001
Extent and Composition
 Number of non-calcified plaques 1.2 (1.0-1.4) 0.08
 Number of mixed plaques 1.6 (1.4-1.8) <0.001
 Number of calcified plaques 1.4 (1.2-1.6) <0.001
 Non-calcified plaques ≥2 1.0 (0.6-1.9) 0.91
 Mixed plaques ≥2 3.0 (2.1-4.2) <0.001
 Calcified plaques ≥2 2.1 (1.5-2.9) <0.001

Table 6. Multivariate models for prediction of ischemia on MPI on vessel basis

OR (CI 95%) P-value
Model I
 Clinical 1.9 (2.5-1.4) <0.001
Model II
 Clinical 1.8 (1.4-2.2) <0.001
 Presence obstructive CAD 3.8 (2.8-5.0) <0.001
Model III
 Clinical 1.8 (1.5-2.2) <0.001
 Presence severely obstructive CAD 5.0 (3.3-7.3) <0.001
Model IV
 Clinical 1.8 (1.4-2.2) <0.001
 Presence severely obstructive CAD 3.5 (2.3-5.3) <0.001
 Mixed plaques ≥2 1.9 (1.3-2.8) <0.001
 Calcified plaques ≥2 1.8 (1.3-2.5) <0.001
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8.3 

 

Figure 3. Example of a 69 year-old female patient exhibiting an obstructive lesion on multislice computed 
tomography (MSCT) while myocardial perfusion imaging (MPI) showed normal perfusion. A 3D volume rendered 
reconstruction is provided in panel A, showing the left anterior descending coronary artery (LAD) and left 
circumflex coronary artery (LCx). Panel B: A curved multiplanar reconstruction (MPR) of the right coronary artery 
(RCA) is shown demonstrating the presence of non-obstructive non-calcified plaque (arrow). Panel C: A curved 
MPR of the LAD is shown revealing the presence of a single non-obstructive mixed plaque (arrow). Panel D: 
A curved MPR of LCx is shown demonstrating the presence of obstructive lesion (however <70%) in the mid 
LAD (arrow). Panel E: Single photon emission computed tomography (SPECT) short axis image showing normal 
perfusion in stress and rest (panel F).

 26

8.4 

 
Figure 4. Bars representing the c-index (area under the curve) on the y-axis illustrating the incremental predictive 
value of angiographic multislice computed tomography (MSCT) variables of atherosclerosis for the prediction 
of ischemia on myocardial perfusion imaging (MPI) on a patient basis. The addition of the degree of stenosis 
(presence of ≥70% stenosis) provided incremental predictive information to baseline clinical variables for 
the prediction of ischemia on MPI on a patient basis. Furthermore the addition of extent and composition of 
atherosclerosis (≥3 calcified plaques) and location (atherosclerotic disease in the left main coronary artery and/or 
proximal left anterior descending coronary artery) on MSCT resulted in further incremental predictive value over 
baseline clinical variables, and degree of stenosis on MSCT.
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8.5 

 Figure 5. Bars representing the c-index (area under the curve) on the y-axis illustrating the incremental 
predictive value of angiographic multislice computed tomography (MSCT) variables of atherosclerosis for the 
prediction of ischemia on myocardial perfusion imaging (MPI) on a vessel basis. The addition of the degree of 
stenosis (presence of ≥70% stenosis) provided incremental predictive information to baseline clinical variables 
for prediction of ischemia on MPI on a vessel basis. Furthermore the addition of extent and composition of 
atherosclerosis (≥2 mixed plaques and ≥2 calcified plaques) on MSCT resulted in further incremental predictive 
value over baseline clinical variables, and degree of stenosis on MSCT.

 28

8.6 

 
Figure 6. Hosmer-Lemeshow plot of estimated risk for ischemia on multislice computed tomography (MSCT) 
(x-axis) versus observed risk for ischemia on myocardial perfusion imaging (MPI) (y-axis) by decile of risk, on a 
patient (A) and vessel (B) basis. A calibration plot is shown for the prediction of ischemia on MPI (myocardial 
perfusion imaging) by the multivariate model of atherosclerosis variables on MSCT. Patient basis analysis is shown 
in panel A, describing model VI in Table 4. Vessel basis analysis is demonstrated in panel B, describing model IV in 
Table 5. The diagonal line in both plots demonstrates a good fit on both a patient and vessel basis. The Hosmer-
Lemeshow goodness-of-fit test statistic was p=0.93 on a patient basis and p=0.11 on a vessel basis.
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erosclerotic disease in LM and/or proximal LAD) further significantly enhanced prediction 

of ischemia over clinical risk stratification and the presence of severely obstructive CAD.

Previous investigations assessing the relation between MSCT and MPI demonstrated that 

normal coronary arteries on MSCT were highly associated with normal perfusion on MPI.12 

Accordingly, patients with normal coronary arteries on MSCT may be reassured and in 

general do not require further testing. Nevertheless, in a substantial number of patients 

MSCT will reveal the presence of atherosclerotic disease. However, previous comparisons 

demonstrated that only half of patients with stenosis of 50% or greater showed abnormal 

perfusion, resulting in a low positive predictive value of merely 50%.4, 5 Accordingly, with 

the expanding use of MSCT, clinicians will be increasingly confronted with patients hav-

ing an obstructive lesion detected on MSCT but without information on the hemodynamic 

relevance. To determine further management, additional evaluation with functional imaging 

techniques remains necessary in these patients. However, if the likelihood of ischemia on 

MPI can be estimated more accurately based on MSCT results, a more appropriate selection 

of further testing and management can be achieved. Possibly, knowledge of the extent, 

composition, and location of atherosclerotic disease, as can be derived from MSCT, may 

enhance prediction of the presence of ischemia over the mere assessment of the degree of 

stenosis.

Extent and composition of atherosclerosis 

In addition to the presence of a single stenotic lesion in the coronary arteries, previous stud-

ies have reported that diffuse atherosclerosis also contributes to ischemia.13, 14 By measuring 

coronary flow reserve, de Bruyne et al. demonstrated that diffuse atherosclerotic disease can 

cause a decline in coronary flow despite the absence of obstructive CAD.13 These findings 

suggest that the severity of perfusion abnormalities not only depends on the presence of 

obstructive disease but is also influenced by the atherosclerotic burden in the coronary 

artery. The current study is in line with these observations, suggesting that more extensive 

atherosclerotic plaque burden indicates a higher likelihood for ischemia. Moreover, the 

present results parallel previous studies comparing MPI with coronary calcium scoring.15, 16 

He et al. studied the relationship between the presence of stress-induced ischemia on MPI 

and coronary artery calcium (CAC) and demonstrated in approximately 4000 asymptom-

atic patients that CAC was predictive of ischemia on MPI.16 However, only a minority of 

patients (22%) with an abnormal CAC had abnormal perfusion on MPI. Similarly, Berman 

et al. established that the frequency of abnormal perfusion was related to the magnitude 

of CAC abnormality.17 However, patients with normal MPI results frequently had extensive 

atherosclerosis on the basis of CAC criteria, indicating that a normal MPI did not exclude 

the presence of CAD. Conversely, the presence of CAC did not necessarily result in per-

fusion abnormalities on MPI. Therefore, although a relation exists between the extent of 
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atherosclerosis and ischemia, the extent alone may not be a strong predictor of ischemia. 

Importantly, to improve agreement of MSCT and MPI, integration of the extent of CAD with 

other variables of atherosclerosis identified on MSCT can refine identification of patients 

with ischemic MPI. 

In the present study, extent of mixed and calcified plaque independently predicted the 

presence of ischemia on MPI. Indeed, mixed and calcified lesions are thought to typically 

represent the more advanced stages of atherosclerosis and thus linked with larger plaque 

volume and a higher extent of ischemia. Additionally, plaque composition on MSCT has 

previously been linked to abnormal perfusion on SPECT by Lin et al. in 163 patients.18 The 

authors demonstrated that the presence of mixed plaques was found to be the strongest 

independent predictor of abnormal perfusion (OR 1.6, p=0.01). The current and previous 

studies indicate that an association between extent and composition of atherosclerosis and a 

higher likelihood of ischemia may exist. Accordingly, plaque extent and composition should 

be taken into consideration when evaluating and reporting coronary MSCT angiograms. 

However, the exact underlying mechanisms remain largely unknown and should be further 

investigated. 

Location of atherosclerosis 

Location of atherosclerotic disease has been shown to influence myocardial perfusion. In 

general, the more proximal the location of stenosis, the more severe and extensive the 

corresponding perfusion abnormality will be. Conversely, the effect of distal lesions on 

myocardial perfusion will be limited as a smaller amount of myocardium is involved. In the 

current study, location of atherosclerotic disease in the LM and/or proximal LAD was dem-

onstrated to be a predictor for the presence of ischemia on MPI. Similarly, previous studies 

have shown that patients with angiographically observed atherosclerotic disease in the LM 

and/or proximal LAD are at higher risk for events. Califf et al. developed the jeopardy score 

(an angiographic risk stratification score) which, in addition to severity of disease, incorpo-

rated location of atherosclerotic disease to estimate the amount of myocardium at risk.19 

As more proximally located lesions were associated with a higher occurrence of events, 

the jeopardy score demonstrated to allow improved risk stratification as compared to other 

angiographic scoring techniques. Interestingly, Lin et al. adapted this scoring technique for 

MSCT angiography; the MSCT segment-at-risk score.18 Using this method, individuals with 

reversible defects could be more accurately identified. 

Clinical implications

Recently, MSCT cardiac imaging has been increasingly applied for the evaluation of patients 

presenting with suspected CAD. The reported high negative predictive values of almost 

100% precipitate MSCT as a particularly effective technique for ruling out the presence 
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of obstructive CAD. Accordingly, if patients show normal coronary arteries on MSCT angi-

ography further testing is not required, whereas if atherosclerotic disease has been verified 

on MSCT, unfortunately no information is provided on the hemodynamical relevance. As 

a result, the decision which patient requires further functional testing or direct invasive 

evaluation with potential revascularization currently remains largely dependent on indi-

vidual interpretation of the coronary arteries on MSCT angiography combined with pre-test 

likelihood and clinical judgment. Preferably, more information than merely presence of 

luminal narrowing is required from this technique. In our study several MSCT variables of 

atherosclerosis were identified which were associated with a higher likelihood of ischemia. 

Moreover, integration of all MSCT variables of atherosclerosis significantly improved predic-

tion of the presence of ischemia on MPI. Possibly, these results may allow a more refined 

and individualized assessment of patients undergoing MSCT angiography and provide the 

basis for the development of an algorithm to improve identification of patients requiring 

more aggressive therapy or intervention. 

However it is important to realize that in the current study, MSCT and MPI data were 

acquired in two different institutions with slightly different image acquisition protocols, 

which may have influenced our findings. 

Conclusion

The results of the current study demonstrate that in addition to the presence of obstructive 

CAD, anatomical MSCT variables describing plaque extent, composition and location of 

atherosclerosis are independent predictors for the presence of ischemia on MPI. 
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Abstract

The purpose of the current study was to assess the impact of clinical presentation 

and pre-test likelihood on the relationship between calcium score (CCS) and com-

puted tomography coronary angiography (CTA), to determine the role of CCS as 

a gatekeeper to CTA in patients presenting with chest pain. In 576 patients with 

suspected coronary artery disease (CAD), CCS and CTA were performed. CCS was 

categorized as CCS 0, CCS 1-400 and CCS >400. On CTA the presence of significant 

CAD (≥50% luminal narrowing) was determined. Significant CAD was observed in 14 

(5.8%) of 242 patients with CCS 0, in 94 (36.2%) of 260 patients with CCS 1-400, and 

in 60 (81.1%) of 74 patients with CCS >400. In patients with CCS 0, the prevalence of 

significant CAD increased from 3.9% to 4.1% and 14.3% in respectively non-anginal, 

atypical and typical chest pain, and from 3.4% to 3.9% and 27.3% with respectively 

a low, intermediate and high pre-test likelihood. In patients with CCS 1-400, the 

prevalence of significant CAD increased from 27.4% to 34.7% and 51.7% in respec-

tively non-anginal, atypical and typical chest pain, and from 15.4% to 35.6% and 50% 

in respectively low, intermediate and high pre-test likelihood. In patients with CCS 

>400, the prevalence of significant CAD on CTA remained high (>72%) regardless of 

clinical presentation and pre-test likelihood. In conclusion, the relation between CCS 

and CTA is influenced by clinical presentation and pre-test likelihood. These factors 

should be taken into account when using CCS as a gatekeeper for CTA.
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Introduction

Non-contrast enhanced computed tomography (CT) visualizes coronary calcium as a marker 

for coronary artery disease (CAD), and quantifies the presence and extent of coronary cal-

cium by use of the coronary calcium score (CCS). More recently, contrast enhanced CT 

coronary angiography (CTA) has been introduced. This technique provides direct visualiza-

tion of the coronary arteries and allows more detailed assessment of coronary atheroscle-

rosis and stenosis severity. Several studies have suggested that CCS might be useful as a 

gatekeeper to CTA in diagnosis of significant CAD in patients presenting with chest pain. The 

absence of calcium could exclude the presence of significant CAD, indicating no need for 

further imaging, whereas patients with elevated CCS could be referred for CTA for additional 

information on stenosis severity. In order to evaluate the feasibility of such an approach, 

several comparative studies have been performed addressing the relationship between CCS 

and CTA in patients presenting with chest pain.1-5 However, large discrepancies have been 

observed, which have been ascribed to differences in clinical characteristics of the studied 

populations. The purpose of the current study was therefore to systematically assess the 

impact of clinical presentation and pre-test likelihood on the relationship between CCS and 

CTA, to determine the role of CCS as a gatekeeper to CTA for diagnosis of significant CAD 

in patients presenting with chest pain.

Methods

The study population consisted of patients with suspected CAD who were clinically referred 

for further cardiac assessment because of chest pain. The included patients underwent both a 

CCS and CTA scan. Exclusion criteria were cardiac arrhythmias, renal insufficiency (defined 

as a glomerular filtration rate <30mL/min), known hypersensitivity to iodine contrast media, 

severe claustrophobia and pregnancy. In addition, patients with an uninterpretable CTA 

examination were excluded. Symptoms were classified as: typical angina, atypical angina, 

or non-anginal chest pain. Typical anginal chest pain was defined as combination of: 1) 

discomfort in the anterior chest, neck, shoulders, jaw, or arms; 2) precipitated by physical 

exertion or emotional stress; and 3) relieved by rest or nitroglycerin within minutes. Atypical 

chest pain was defined as chest pain with two 2 of these 3 factors and non-anginal chest pain 

was defined as chest pain with less than 2 of these 3 factors.6 Pre-test likelihood was defined 

according to Diamond and Forrester criteria, which are based on previously observed preva-

lence’s of significant CAD in age, gender and chest pain subgroups.7 Thresholds for low, 

intermediate and high pre-test likelihood were respectively; ≤13.4, 13.5-87.2, and ≥87.3.
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The examination was performed using either a 64-detector row helical scanner (Aquilion 

64; Toshiba Multi-slice system, Toshiba Medical Systems, Otawara, Japan) or a 320-detector 

row volumetric scanner (Aquilion ONE, Toshiba Medical Systems, Otawara, Japan). Before 

CCS and CTA examinations, the patients’ heart rate and blood pressure were monitored. In 

the absence of contraindications, patients with a heart rate exceeding the threshold of 65 

bpm were administered beta-blocking medication (50-100 mg metoprolol oral). Prior to the 

helical scan, a non-enhanced low-dose electrocardiographically gated scan was performed 

to measure CCS. The CCS scan was prospectively triggered at 70% or 75% of the R-R inter-

val and performed using the following scan parameters: 4 x 3.0 mm or 2.5 mm collimation 

for 64-row CT, and single rotation wide volume acquisition (320 x 0.5 mm, reconstructed to 

3 mm slices) for 320-row CT; gantry rotation time, 350-500 ms; tube voltage, 120 kV; and 

tube current, 200-250 mA. 

For the 64-row contrast enhanced scan, collimation was 64 x 0.5 mm, tube voltage 100 to 

135 kV and tube current 250 tot 350 mA, depending on body mass index (BMI) and thoracic 

geometry. Non-ionic contrast material (Iomeron 400, Bracco, Milan) was administered with 

an amount of 80 tot 110 ml followed by a saline flush with a flow rate of 5 ml/sec. For the 

320-row contrast enhanced scan the heart was imaged in a single heartbeat, using prospec-

tive triggering with exposure interval depending on the heart rate. Scan parameters were: 

320 X 0.5 mm collimation; 350 ms gantry rotation time, 100 to 135 kV tube voltage and a 

tube current of 400 to 580 mA, depending on body mass index. In total, 60 to 90 ml contrast 

material was administered with a rate of 5-6 ml/sec followed by a saline flush. 

Post-processing of the CCS and CTA examinations was performed on dedicated workstations 

(Vitrea 2.0 or Vitrea FX 1.0, Vital Images, Minnetonka, MN, USA). The CCS was calculated 

using the Agatston method and patients were divided in three categories: CCS 0, CCS 1-400 

and CCS >400. CTA angiograms were examined using the axial slices, curved multiplanar 

reconstructions, and maximum intensity projections. All CTA scans were interpreted by 2 

experienced observers blinded to the results of CCS. CTA exams were classified according 

to the most severe lesion. In each patient, the presence of CAD was determined. Further 

differentiation was made between non-significant and significant CAD using a diameter 

stenosis ≥50% as a threshold for significant lesions. 

Continuous variables were expressed as mean values (± standard deviation) and categorical 

baseline data were expressed in numbers and percentages. Differences in baseline clinical 

variables between the CCS subgroups were compared using Anova, Student t and chi-square 

tests.The prevalence of significant CAD on CTA in each CCS category was determined 

according clinical presentation and pre-test likelihood. All statistical analyses were per-

formed using SPSS software version 16.0 (SPSS, Chicago, Illinois, USA). 
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Results

The study population consisted of 602 patients presenting with chest pain who had 

undergone both CCS and CTA. In 26 (4.3%) of these patients, the CTA examination was 

uninterpretable because of the presence of motion artefacts, increased noise owing to a high 

body mass index, and breathing. After exclusion of these patients, a total of 576 remained 

for further analysis. The baseline characteristics of the patient population are presented in 

Table 1.

The median CCS of the study population was 7 (25th-75th percentile: 0-133). Calcium was 

absent in 242 patients (42%), a CCS of 1-400 was present in 260 patients (45.1%), and a 

CCS >400 in 74 patients (12.8%). Significant CAD was observed on CTA in 168 patients 

(29%). In the remaining 408 patients (71%) non-significant CAD was observed in 184 

patients (32%) and 224 patients (39%) were classified as normal.

Figure 1 illustrates the CTA findings in the different CCS groups. In patients without any 

coronary calcium (CCS 0), significant CAD was observed in 14 patients (5.8%). In the group 

of patients with a CCS of 1-400, 94 patients (36.2%) had significant CAD on CTA. In patients 

with a high CCS >400, significant CAD was observed in 60 patients (81.1%).

Figures 2 and 3 illustrate the prevalence of significant CAD in the different CCS groups 

according to clinical presentation and pre-test likelihood.

Table 1. Patient characteristics.

Variable All
(n=576)

CS 0
(n=242)

CS 1-400
(n=260)

CS >400
(n=74)

P-value

Men 273 (47%) 93 (38%) 137 (53%) 43 (58%) 0.001
Age (years) 56 ± 12 50 ± 11 59 ± 11 66 ± 9 <0.001
Diabetes Mellitus 105 (18%) 33 (14%) 49 (19%) 23 (31%) 0.003
Hypertension  254 (44%) 66 (27%) 136 (52%) 52 (70%) <0.001
Hypercholesterolemia 199 (35%) 57 (24%) 106 (41%) 36 (49%) <0.001
Current smokers 115 (20%) 49 (20%) 40 (15%) 26 (35%) 0.001
BMI ≥ 30 kg/m2 109 (19%) 43 (18%) 48 (19%) 18 (24%) 0.48
Symptoms 0.017
Non-anginal chest pain 205 (36%) 103 (43%) 84 (32%) 18 (24%) 0.005
Atypical chest pain 249 (43%) 97 (40%) 118 (45%) 34 (46%) 0.42
Typical chest pain 122 (21%) 42 (17%) 58 (22%) 22 (30%) 0.06
Pre-test likelihood <0.001
Low 117 (20%) 89 (37%) 26 (10%) 2 (3%) <0.001
Intermediate 370 (64%) 131 (54%) 188 (72%) 51 (69%) <0.001
High 89 (16%) 22 (9%) 46 (18%) 21 (28%) <0.001
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The impact of clinical presentation on the prevalence of significant CAD in each CCS cat-

egory is illustrated in Figure 2. In patients with CCS 0, the prevalence of significant CAD 

was similar among patients with non-anginal and atypical complaints (respectively 3.9% 

and 4.1%, Figure 2). However, the prevalence increased to 14.3% in patients with typical 

chest pain. Accordingly, a CCS of 0 may not be useful to rule out significant CAD in patients 

presenting with typical chest pain complaints.

In patients with CCS 1-400, significant CAD was observed in 27.4% of patients with 

non-anginal chest pain. The prevalence increased to 34.7% and 51.7% in patients with 

atypical and typical chest pain, respectively. However, although there was an increase in 

 29

9.1 

 

Figure 1. The prevalence of significant CAD on CTA per CCS category.

 30

9.2 

 

Figure 2. Prevalence of significant CAD on CTA in the various CCS categories according to patients’ symptoms.

 31

9.3 

 
Figure 3. Prevalence of significant CAD on CTA in the various CCS categories, according to pre-test likelihood.
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the prevalence of significant CAD according to the increase in severity of symptoms, the 

prevalence remained in an intermediate range.

In patients with a CCS >400, significant CAD was observed in 72.2% of patients with 

non-anginal complaints. The prevalence increased to 79.4% in atypical chest pain patients, 

and was highest (90.9%) in patients with typical chest pain. Although the prevalence of 

significant CAD increased with more severe chest pain symptoms, the prevalence was high 

in all patients with a CCS >400 regardless of clinical presentation.

The impact of pre-test likelihood on the prevalence of significant CAD in each CCS category 

is illustrated in Figure 3. In patients with a CCS 0, significant CAD was observed in 3.4% 

and 3.8% of patients with respectively a low and intermediate pre-test likelihood. The 

prevalence increased to 27.3% in patients with a high pre-test likelihood. Accordingly, a 

CCS of 0 may not be useful to rule out significant CAD in patients presenting with a high 

pre-test likelihood.

In patients with CCS 1-400, 15.4% of patients with a low pre-test likelihood had significant 

CAD. The prevalence of significant CAD increased to 35.6% in patients with intermediate 

pre-test likelihood and up to 50% in the high pre-test likelihood group. Although a large 

variance was observed in the prevalence of significant CAD on CTA according to increas-

ingly higher pre-test likelihoods in patients with a CCS 1-400, the prevalence remained at 

an intermediate level.

In the group of patients with a CCS >400, a high prevalence of significant CAD was observed 

regardless of pre-test likelihood (Figure 3).

Discussion

The main finding of the current study is that the relation between CCS and CTA is highly 

influenced by clinical presentation and pre-test likelihood in patients presenting with chest 

pain. In each CCS category, the prevalence of significant CAD on CTA increased proportional 

to the severity of clinical presentation and pre-test likelihood. Clinical presentation and 

pre-test likelihood should therefore be taken into account when using CCS as a gatekeeper 

for CTA.

Several previous studies have assessed the relation between CCS and CTA in patients 

presenting with chest pain. A large proportion of these studies have specifically focused 

on the prevalence of significant CAD on CTA in patients with a CCS of 0. Within these 
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studies varying prevalences have been described, ranging between 1.7% in a recent study 

by Nieman et al. to 28% in a study by Haberl et al.1-5 As a result of this large variation in 

reported prevalences, the value of a CCS of 0 to rule out significant CAD on CTA in chest 

pain patients has remained unclear.

Only a few comparative studies between CCS and CTA have been performed in chest pain 

patients with a CCS >0.2,4 In patients with a CCS 1-400, Nieman et al. observed significant 

CAD on CTA in 35.4% of patients.4 The authors observed a high prevalence of 94% in 

patients with a CCS >400. When using CCS as a gatekeeper for CTA, Nieman et al. propose 

that further downstream testing with CTA is necessary in patients with a CCS 1-400 and that 

the value of CTA may be limited in patients with a CCS >400 as the likelihood of subsequent 

significant CAD is high.

In patients with a CCS of 0, the prevalence of significant CAD on CTA increased from 

3.9% and 4.1% in patients with non-anginal chest pain and atypical chest pain respec-

tively to 14.3% in patients with typical chest pain. The prevalence of significant CAD don 

CTA in patients with a CCS of 0 increased from 3.4% and 3.8% in patients with a low 

and intermediate pre-test likelihood respectively to 27.3% in patients with a high pre-test 

likelihood. These observations may provide a valuable link between the discrepant find-

ings described in previous comparative studies between CCS and CTA in patients with a 

CCS of 0. In the study by Haberl et al. all patients had an indication for invasive coronary 

angiography because of chest pain and signs of ischemia on conventional stress tests.3 As 

a result, the pre-test likelihood in this population was high, explaining the high prevalence 

(28%) of significant CAD in patients without calcium. In contrast, in a low to intermediate 

pre-test probability population, Nieman et al. observed a low prevalence of significant CAD 

similar to the prevalence observed in the subgroup of patients with a low or intermediate 

pre-test likelihood in the current study. Our observations suggest that when using CCS as a 

gatekeeper for CTA, the presence of significant CAD may be effectively ruled out in patients 

with non-anginal or atypical chest pain and in patients with a low or intermediate pre-test 

likelihood. However, a CCS of 0 may not reliably rule out the presence of significant CAD 

in patients with typical symptoms (17% of patients with a CCS 0 in the current) and patients 

with a high pre-test likelihood (9% of patients with a CCS 0 in the study population). In 

these patients additional evaluation with CTA may be necessary to confirm the presence or 

absence of significant CAD with more diagnostic certainty.

When assessing the relationship between CCS and CTA in patients with a CCS >0, we 

observed that the prevalence of significant CAD on CTA in patients with a CCS 1-400 

increased from 27.4% to 34.7% and 51.7% in patients with non-anginal, atypical and typi-

cal chest pain respectively. When regarding pre-test likelihood, the prevalence of significant 
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CAD on CTA in patients with a CCS 1-400 increased from 15.4% to 35.6% and 50% in 

patients with respectively a low, intermediate and high pre-test likelihood. Although the 

prevalence of significant CAD in patients with a CCS 1-400 was therefore influenced by 

clinical presentation and pre-test likelihood, the likelihood of significant CAD following 

a CCS 1-400 remained intermediate. When using CCS as a gatekeeper for CTA, further 

downstream testing with CTA therefore remains necessary in all patients with a CCS 1-400 

(45% of current study population) to rule out the presence of significant CAD, regardless of 

clinical presentation and pre-test likelihood. In patients with a CCS >400, the prevalence 

of significant CAD on CTA remained high regardless of clinical presentation and pre-test 

likelihood. When using CCS as a gatekeeper, the value of CTA following a CCS >400 may 

be limited, as the presence of significant CAD can be ruled out in only a small proportion 

of patients. In patients with a CCS >400 (13% of total study population), it may therefore 

be more appropriate to proceed directly to functional imaging by means of myocardial 

perfusion imaging or to invasive coronary angiography to further determine the extent and 

severity of CAD, regardless of clinical presentation or pre-test likelihood.

The radiation dose remains a cause of concern for CTA. Currently traditional 64-row CTA 

protocols are still associated with high radiation exposure, although the radiation dose of 

CTA has recently decreased substantially.8-11 Importantly, low-dose CTA with prospective 

ECG-triggering has recently been shown to reduce radiation burden while maintaining 

image quality and a high diagnostic accuracy.12, 13 The radiation burden with these novel 

acquisition techniques is approaching the level of diagnostic catheterization or even lower.14 

Conclusion

The relation between CCS and CTA is influenced by clinical presentation and pre-test likeli-

hood. These factors should be taken into account when using CCS as a gatekeeper for CTA.
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Abstract

Multi-slice computed tomography coronary angiography (CTA) provides direct non-

invasive anatomic assessment of the coronary arteries allowing for early identifica-

tion of coronary artery disease (CAD). This information is useful for diagnosis of 

CAD, particularly the rule out of CAD. In addition, early identification of CAD with 

CTA may also be useful for risk stratification. The purpose of this review is to provide 

an overview of the current literature on the prognostic value of CTA and to discuss 

how the prognostic information obtained with CTA can be used to further integrate 

the technique into clinical practice. Non-invasive anatomic assessment of plaque 

burden, location, composition and remodeling using CTA may provide prognosti-

cally relevant information. This information has been shown to be incremental to the 

Framingham risk score, coronary artery calcium scoring and myocardial perfusion 

imaging. Characterization of atherosclerosis non-invasively has the potential to pro-

vide important prognostic information enabling a more patient tailored approach 

to disease management. Future studies assessing outcome after CTA based risk 

adjustments are needed to further understand the value of detailed non-invasive 

anatomic imaging.
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Introduction

The introduction of multi-slice computed tomography coronary angiography (CTA) has 

changed the field of non-invasive imaging. In addition to existing functional imaging 

techniques assessing myocardial perfusion and wall motion, CTA currently provides direct 

non-invasive anatomic assessment of the coronary arteries. This allows for detection of 

coronary artery disease (CAD) at an earlier stage compared to functional imaging, 1 which 

may have important implications for the diagnosis as well as prognosis of CAD. For diag-

nosis, numerous studies support the use of CTA for rule out of the presence of CAD with a 

high accuracy.2-8 As a result the technique is increasingly used as a gatekeeper for further 

diagnostic testing. In addition, data are emerging that early identification of CAD with CTA 

may be useful for risk stratification. Since the first publications on the prognostic value of 

CTA in 2007 a number of studies have been published providing further insight into the 

potential value of non-invasive anatomic imaging for risk stratification.8-21 The purpose of 

this review is to provide an overview of the literature on the prognostic value of CTA and to 

discuss how the prognostic information obtained with CTA can be used to further integrate 

the technique into clinical practice.

Accuracy for risk stratification

Shift from stenosis to atherosclerosis

Diagnostic accuracy studies assessing the value of CTA have determined its ability to iden-

tify the presence or absence of significant stenosis (≥ 50% luminal narrowing).22-27 This 

threshold is important from a diagnostic point of view, as it can identify a cause for the 

patient’s complaints as well as a treatment target for revascularization. Furthermore, patients 

with a significant stenosis on CTA may have worse outcome as compared to patients without 

significant CAD (14, 15, 18, 20). Indeed, an annualized event rate for the occurrence of all cause 

mortality and myocardial infarction ranging between approximately 1% and 5%(14, 15, 18, 

20 has been observed in patients with significant CAD compared to approximately 0% to 

2% in patients without significant CAD. However CTA can further differentiate patients as 

having non-significant CAD or completely normal coronary arteries. This is important as the 

presence of non-significant CAD may not necessarily be considered benign. (28-30 Indeed, 

myocardial infarction and unstable angina are frequently caused by lesions deemed to be 

non-significant prior to the event.31-34 In line with this notion, the presence of non-significant 

CAD on CTA has been associated with an increased annualized event rates up to 1.5%, (14, 

18, 20) compared to a very low annualized event rates of <0.7% in patients with completely 

normal coronary anatomy.8-10, 12-14, 18, 20, 35 Accordingly, classification of patients as hav-

ing normal anatomy, non-significant CAD or significant CAD may allow straightforward 
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and reliable risk stratification. However, it is conceivable that the prognostic information 

may be refined by further characterization of the observed atherosclerosis on segmental or 

plaque level. Potentially, such analysis may include identification of certain characteristics 

of lesions that may have a higher likelihood to cause thrombotic occlusion of the vessel and 

subsequent coronary events. 

In the past, numerous histological studies have addressed the mechanism underlying 

coronary occlusion, thereby identifying three major causes, namely plaque erosion, the 

presence of calcified nodules and, in the majority of cases, plaque rupture.36 In the setting 

of plaque rupture, the underlying plaque at the site of thrombus formation has been typically 

characterized as a lesion with a large lipid rich atheromatous necrotic core, with a ruptured 

thin fibrous cap and expansive remodeling. These findings have subsequently led to the 

hypothesis that plaque rupture is caused by rupture of the thin fibrous cap overlying a lesion 

with a large lipid-rich atheromatous necrotic core.(Figure 1) In addition to morphological 

characteristics of the plaque, the presence of inflammation, as reflected by macrophages 

and lymphocytes infiltration, also plays an important role. An overview of morphological 

 32

10.1 

 

Figure 1. Thin capped fibroatheroma as a cause of plaque rupture. The top panel shows a histological specimen 
of a ruptured plaque. As can be observed in the specimen, the lumen is completely occluded by a large 
thrombus. The underlying plaque contains a large necrotic core (nc) and is covered by a thin fibrous cap (fc) 
which has ruptured (pr). These findings have subsequently led to the hypothesis that plaque rupture is caused by 
rupture of the thin fibrous cap of thin capped fibroatheroma plaques. A histological specimen of a thin capped 
fibroatheroma can be observed in the bottom panel. The plaque is characterized by a large necrotic atheromatous 
core (similar to the necrotic core observed in sites of plaque rupture), covered by a thin non-ruptured fibrous cap. 
Adapted and reprinted with permission from Jain et al. (80)
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plaque characteristics associated with vulnerability is provided in Table 1.37 Due to its 

ability to visualize the vessel wall, CTA may allow non-invasive identification of several 

characteristics associated with vulnerability including plaque burden, location, composition 

and remodeling.38-49 

Non-invasive characterization of atherosclerosis with CTA

Plaque burden and location

By combining plaque extent and severity throughout the coronary system, plaque burden 

can be either assessed quantitatively or semi-quantitatively with CTA by summation of the 

number of diseased and significantly diseased vessels or segments. Although plaque burden 

in itself does not directly imply plaque vulnerability, an increase in plaque burden is associ-

ated with an increased risk for vulnerable plaques. Several studies have attempted to create 

models of plaque burden using a modified AHA segment model of the coronary artery 

tree. In the study by Pundziute et al., increased number of segments with plaque as well 

as increased number of segments with significant stenosis were independent predictors of 

events when corrected for baseline clinical variables.8 Using similar scoring methods, other 

studies have also observed a higher risk for events in patients with increased number of 

segments with atherosclerosis.10, 16 Min et al. observed that a segmental involvement score 

allowed good differentiation between patients with a low and high risk for future events. In 

patients with more than 5 segments involved, an absolute event rate of 8.4% was observed 

compared to 2.5% in patients with a score ≤5.16 In a next step, the extent and severity of 

atherosclerosis throughout the coronary artery tree was incorporated into the segmental 

severity score. Each coronary segment was graded according to stenosis severity (absent 

to severe plaque (0-3)) and the scores for all segments were combined. When using this 

segmental severity score an absolute event rate of 6.6% was observed in patients with a 

score >5 compared to 1.6% in patients with a score ≤5.

Table 1. Morphological markers of plaque vulnerability. Based on the table from Naghavi et al. (37)

Plaque
 Plaque cap thickness
 Plaque lipid core size
 Plaque stenosis 
 Color
 Collagen content versus lipid content, mechanical stability
 Calcification burden and pattern
Pan arterial
 Total coronary calcium burden
 Total arterial burden of plaque including peripheral
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In addition to plaque burden, plaque location should be considered as well, as vulnerable 

plaques are most often observed in proximal segments of the coronary artery tree.50 The 

presence of proximal lesions is therefore associated with an increased risk of vulnerable 

plaques. Furthermore, plaque rupture in a proximal segment also increases the risk of a 

major cardiac event, due to the larger volume of myocardium that is at risk. Indeed, Pun-

dziute et al. observed that the presence of left main plaque or proximal LAD plaque was 

an important independent predictor of events associated with a high event rate.8 Likewise, 

in the study by Min et al. the presence of any left main stenosis was also an independent 

predictor of events.16 Subsequently, the authors created a modified version of the Duke 

coronary artery score by combining both plaque burden and location into a single predic-

tive model. As illustrated in Figure 2, events rates paralleled increasing disease severity as 

determined with this hierarchic model.

Plaque remodeling and plaque composition

To some extent, CTA allows assessment of plaque composition. A differentiation can be 

made between non-calcified plaques having low attenuation, calcified plaques with high 

attenuation and mixed plaques with both non-calcified and calcified elements.(Figure 3)48 

Furthermore, plaque remodeling, a marker of vulnerability, can also be appreciated.(Figure 

4) In retrospective studies comparing observations on CTA between patients presenting with 

stable CAD and patients with suspected acute coronary syndrome (ACS), more outward 

plaque remodeling, non-calcified plaque and mixed plaque were observed in the latter.42, 

51, 52 In subsequent prognostic investigations these characteristics have been further studied. 

Pundziute et al. assessed the prognostic value of different plaque characteristics and observed 
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Figure 2. Prognostic value of CTA. Cumulative survival curves illustrating the risk of events in each category of 
the Duke Prognostic Coronary Artery Disease Index. The risk of events increases with increasingly higher disease 
severity categories. Reprinted with permission from Min et al. (16)
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that increased number of segments with mixed plaques was an independent predictor of 

events.8 Non-calcified plaque however has also been associated with an increased risk for 

events. Both the number of segments with mixed plaques as well as the number of segments 

with non-calcified plaque were independent predictors of events in a recent study by Van 

Werkhoven et al.20 Furthermore, the presence of substantial non-calcified plaque burden 

was demonstrated to provide incremental prognostic value over the presence of significant 

stenosis on CTA. In a recent study by Motoyama et al. the concept of plaque morphol-

ogy was investigated more extensively in 1059 patients during an average follow up of 27 

months.17 The authors assessed the presence of two plaque characteristics, low attenuation 

plaque and positive remodeling, and recorded the occurrence of ACS during follow-up. 

In patients with a normal CTA study no events occurred. In patients with atherosclerosis 
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 Figure 3. Plaque composition assessed with CTA. Curved multi-planar reconstructions showing three distinct 
plaque characteristics observed on CTA with non-calcified plaque (arrow, left panel), mixed plaque (arrow, mid 
panel) and calcified plaque (arrow, right panel).
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Figure 4. Example of a positively remodeled plaque. A multi-planar reconstruction of the left anterior descending 
coronary artery. In the proximal section of the vessel a large plaque can be observed between the lumen (purple 
line) and the vessel wall (yellow line). The diameter of the vessel at the plaque site is clearly larger compared 
to the diameter at the reference section (r), indicating positive remodeling (p). Adapted and reprinted with 
permission from Motoyama et al. (17)
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but without either high risk plaque feature (e.g. absence of both low attenuation plaque 

tissue and positive remodeling) the event rate was 0.49% whereas in patients with plaques 

positive for 1 high risk feature (either low attenuation or positive remodeling) the event rate 

increased to 3.7%. Finally, the majority of events occurred in patients with both high risk 

plaque features. In these patients an event rate as high as 22.2% was observed.(Figure 5) 

Accordingly, these findings may provide a proof of concept for the assessment of plaque 

composition on CTA for risk stratification.

Integration into clinical practice

Relation to existing tools for risk stratification

As outlined above, several investigations have demonstrated the feasibility of CTA for risk 

stratification. An important question however remains whether the technique provides 

incremental prognostic information to existing risk stratification methods. To a large extent, 

prognosis is determined using baseline clinical characteristics. To this end the Framingham 

score is widely used and provides an estimate of the risk of developing adverse coronary 

events.53 The disadvantage of this method is that it is a population based screening tool, 

whereas CTA may provide a more patient specific approach. In a recent investigation by 

Hadamitzky et al., the value of risk stratification with CTA was compared to the Framingham 

risk score in a population of 1256 patients during an average follow-up of 18 months.15 
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Figure 5. Prognostic value of low attenuation plaque and plaque remodeling features. Survival curves illustrating 
the prognostic value of 2 plaque features (low attenuation plaque and remodeling) associated with acute coronary 
syndrome. The event rate increased in patients with 1 feature positive plaques and was highest in patients with 
both high risk features. Reprinted with permission from Motoyama et al. (17)
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Figure 6 illustrates the difference between the predicted risk based on the Framingham risk 

score and the observed risk according to findings on CTA. In patients without obstructive 

CAD on CTA, the observed risk was significantly lower than predicted by the Framingham 

risk score. In contrast significantly more events were observed in patients with obstructive 

CAD compared to the predicted event rate. CTA may therefore further refine risk stratifica-

tion over conventional risk assessment alone.

Of note, the incremental value of atherosclerosis over traditional risk assessment has been 

shown in the past for coronary artery calcium scoring (Figure 7).54-57 Based on numer-

ous trials, coronary artery calcium scoring - performed either by electron beam computed 

tomography or CT - has been accepted as a robust tool for prognostification, especially 

in asymptomatic individuals.58 In addition, the technique may be used in symptomatic 

patients to identify the presence and the extent of atherosclerosis.59 However, the technique 

can only provide an estimate of total calcified plaque burden, and does not provide any 

information on the stenosis severity nor the presence and extent of non-calcified plaque 

burden. An important advantage of CTA therefore is the additional information on stenosis 

severity and plaque composition. In a study by Ostrom and colleagues, the incremental 

value of non-invasive coronary angiography with electron beam computed tomography 

over coronary calcium was assessed.18 The authors demonstrated that CTA-derived plaque 

burden, defined as the number of non-significantly or significantly diseased vessels, had 

independent and incremental value in predicting all-cause mortality independent of age, 

gender, conventional risk factors, and coronary artery calcium score. Similar findings were 

recently reported by Rubinshtein et al.19 In a more recent study the incremental prognostic 

value of both stenosis severity and plaque composition on CTA over the coronary artery 

calcium score was determined.21 In addition to stenosis severity the number of segments 

with non-calcified plaque as well as the number of segments with mixed plaque was shown 

 37

10.6 

 

Figure 6. Prognostic value of CTA in addition to the Framingham risk score.
In patients without obstructive CAD, the observed risk was significantly lower than predicted by the Framingham 
risk score. In contrast significantly more events were observed in patients with obstructive CAD compared to the 
predicted event rate. Reprinted with permission from Hadamitzky et al. (15)
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to be independently associated with increased risk for events. Accordingly, it appears 

that non-invasive measures of plaque extent, severity and composition not only provide 

improved diagnostic information but also incremental prognostic information over coronary 

artery calcium scoring.

Although risk stratification using non-invasive anatomic imaging is gaining momentum, tra-

ditionally functional imaging has been used extensively for this purpose. Particularly myo-

cardial perfusion imaging is an established and important technique for prognosis. Patients 

with a normal perfusion have a very low event rate compared to increased event rates in 

patients with abnormal perfusion.60-66 Comparative studies between CTA and myocardial 

perfusion imaging have shown that CTA provides complementary information to myocar-

dial perfusion imaging when regarding the diagnosis of CAD. (67-70 The added value of this 

complementary information for risk stratification was recently determined.20 Several CTA 

variables were able to provide prognostic information independent of myocardial perfusion 

imaging. On a patient level the presence of significant CAD (≥50% stenosis) was identified 

as a robust independent predictor. In addition to stenosis severity, plaque composition was 

shown to further enhance risk stratification, as illustrated in Figure 8.
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 Figure 7. Prognostic value of coronary calcium scoring. Cumulative survival curves illustrating the event rate in 
increasingly higher calcium score categories. Reprinted with permission from Budoff et al. (55) 
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Patient populations

Symptomatic populations

CTA has been proposed for diagnosis of significant CAD in symptomatic patients presenting 

with an intermediate pre-test likelihood for significant stenosis. Based on the diagnostic 

accuracy of CTA for the detection of significant CAD on conventional coronary angiography, 

the comparative studies between CTA and myocardial perfusion imaging, and the limited 

prognostic data at the time, an algorithm has been proposed which integrates the use of 

these techniques for the diagnosis and management of this patient population.71 (Figure 9) 

The algorithm separates patients into three strategies for management: first, patients with 

normal coronary anatomy can be safely discharged, secondly patients with non-flow limit-

ing atherosclerosis requiring medical treatment and aggressive risk factor modification and 

finally patients with a flow-limiting stenosis requiring further evaluation with conventional 

coronary angiography with potentially revascularization. The currently available outcome 

data support that the discharge of patients with a normal CTA study is safe as low events 

rates have been confirmed in these patients. (8-10, 12-14, 18, 20, 35 However in patients with 

atherosclerosis regardless of stenosis severity, assessment of plaque extent, composition, 
 39
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Figure 8. Incremental prognostic value of CTA over MPI. Bar graph illustrating the incremental prognostic 
value (depicted by chi-square value on the y axis) of CTA. The addition of CTA provides incremental prognostic 
information to baseline clinical variables and MPI. Furthermore, the addition of non-calcified plaque on CTA 
results in further incremental prognostic information over baseline clinical variables, MPI, and significant CAD 
(≥50% stenosis) on CTA. Reprinted with permission from Van Werkhoven et al. (20)
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location and remodeling may further improve risk stratification. As indicated by initial data, 

this information can be valuable both in patients with or without ischemia.20 

CTA is currently not recommended for diagnosis in other populations than those with an 

intermediate pre-test likelihood for significant CAD. It is however conceivable that in the 

future CTA may be used in other populations with the purpose of risk stratification. In symp-

tomatic patients with a low pre-test likelihood for significant stenosis non-invasive imaging 

is generally not indicated for diagnosis. However assessment of atherosclerosis can be use-

ful in identifying patients at increased risk of future events. As shown by Henneman et al., 

the prevalence of atherosclerosis in patients with a low pre-test likelihood is approximately 

40% which illustrates that, although the pre-test likelihood for significant stenosis is low, 

atherosclerosis is nevertheless present in a large proportion of these patients. In patients with 

a high pre-test likelihood for significant stenosis functional data may be more relevant than 

CTA to determine need for revascularization. However, CTA can potentially be used as a 
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Figure 9. Algorithm illustrating the sequential use of CTA and functional imaging in patients with an intermediate 
pre-test likelihood. Reprinted with permission from Schuijf et al. (71)
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second line test for risk stratification as the anatomic information has been shown to provide 

incremental prognostic information to myocardial perfusion imaging alone.20 

Asymptomatic populations

Although only limited data are available in asymptomatic patient populations it is possible 

that CTA is valuable for risk stratification in these patients. On the one hand, CTA can 

be used to identify patients with severe CAD, such as triple vessel disease or left main 

disease, and who may benefit from aggressive intervention. On the other hand, CTA can 

be performed to document atherosclerosis for long-term risk assessment. In a recent study 

in 1000 asymptomatic individuals undergoing CTA the prevalence of atherosclerosis was 

reported to be 22%.11 During a follow-up of 17 months, coronary events (unstable angina 

and revascularization) occurred in 15 (1.5%) individuals, all of which had atherosclerosis on 

CTA. However, the majority of events were revascularizations, triggered by the CTA results. 

In combination with the low overall event rate, these observations indicate the limited value 

of screening for atherosclerosis with CTA in this population. Accordingly, CTA is currently 

not acceptable as a general screening tool and CS testing or truly non-invasive approaches 

may be preferable. However, as proposed by Naghavi et al., non-invasive coronary angi-

ography may potentially be used as a downstream test in the workup of asymptomatic 

individuals with high risk characteristics, following home- or office-based screening.37 

(Figure 10) Through selection of high risk patients with truly non-invasive techniques only a 

small subgroup of high risk patients remains in which further non-invasive and subsequent 

invasive imaging may be beneficial. Future studies will need to determine the value and 

feasibility of such a screening strategy.

Limitations

Although the available data support the potential clinical relevance of assessment of plaque 

characteristics on CTA, accurate quantification of plaque remains challenging, while requir-

ing optimal image quality. Leber et al. have reported on the accuracy of 64-slice CTA to 

classify and quantify plaque volumes in the proximal coronary arteries as compared to 

intravascular ultrasound.72 CTA detected calcified and mixed plaque with high accuracy 

(95% and 94%, respectively) but accuracy was lower for non-calcified lesions (83%). When 

regarding plaque volume, non-calcified plaque and mixed plaque volumes were systemati-

cally underestimated whereas calcified plaque volume was overestimated by CTA. Novel 

software packages aimed at assessing plaque volume and plaque composition are currently 

being developed and may improve not only accuracy but also reproducibility of measure-

ments.
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In addition, the radiation dose remains a cause of concern for CTA. Currently traditional 

64-slice CTA protocols are still associated with high radiation exposure, although the 

radiation dose of CTA has recently decreased substantially.73-76 Importantly, low-dose 

CTA with prospective ECG-triggering has recently been shown to reduce radiation burden 

while maintaining image quality and a high diagnostic accuracy.77, 78 Currently, the radia-

tion burden with these novel acquisition techniques is approaching the level of diagnostic 

catheterization or even lower.79 
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Figure 10. Potential screening algorithm for the identification of vulnerable plaque in asymptomatic individuals. 
An example of an algorithm with potential usefulness in the workup of high risk patients, to identify the presence 
of plaques with vulnerable characteristics. At the bottom of the pyramid individuals are selected for further 
non-invasive evaluation with CS testing and CTA based on home-based screening questionnaires and biomarker 
assessment. At the top of the pyramid a small subgroup remains warranting further invasive assessment. 
Ideally such an algorithm can be used to identify a subgroup of the general asymptomatic populations in need of 
aggressive primary prevention strategies. Reprinted with permission from Naghavi et al.(37)
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Conclusion

Non-invasive anatomic assessment of plaque burden, location, composition and remodel-

ing using CTA may provide prognostically relevant information, incremental to not only the 

Framingham risk score, but also to other imaging approaches as coronary artery calcium 

scoring and myocardial perfusion imaging. Thus, non-invasive characterization of athero-

sclerosis has the potential to provide a more patient tailored approach to disease manage-

ment. Future studies assessing outcome after CTA based risk adjustments are needed to 

further understand the value of detailed non-invasive anatomic imaging.
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Abstract

Although MSCT is used for the detection of (CAD) in addition to MPI, its incremental 

prognostic value is unclear. The purpose of this study was therefore to study whether 

multi-slice computed tomography coronary angiography (MSCT) has incremental 

prognostic value over single photon emission computed tomography (SPECT) myo-

cardial perfusion imaging (MPI) in patients with suspected coronary artery disease 

(CAD). In 541 patients (59% male, age 59±11years) referred for further cardiac evalu-

ation, both MSCT and MPI were performed. The following events were recorded: all 

cause death, non-fatal infarction, and unstable angina requiring revascularization. 

In the 517 (96%) patients with an interpretable MSCT, significant CAD (MSCT ≥50% 

stenosis) was detected in 158 (31%) patients, while abnormal perfusion (SSS≥4) was 

observed in 168 (33%) patients. During follow-up (median 672 days, 25-75th percen-

tile:420-896), an event occurred in 23 (5.2%) patients. After correction for baseline 

characteristics in a multivariate model, MSCT emerged as an independent predictor 

of events with an incremental prognostic value to MPI. The annualized hard event 

rate (all-cause mortality and non-fatal infarction) in patients with none or mild CAD 

(MSCT <50% stenosis) was 1.8% versus 4.8% in patients with significant CAD (MSCT 

≥50% stenosis). A normal MPI (SSS<4) and abnormal MPI (SSS≥4) were associated 

with an annualized hard event rate of 1.1% and 3.8% respectively. MSCT and MPI 

were synergistic and combined use resulted in significantly improved prediction 

(Log-rank test p-value<0.005). In conclusion: MSCT is an independent predictor of 

events and provides incremental prognostic value to MPI. Combined anatomical 

and functional assessment may allow improved risk stratification.
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Introduction

With the arrival of multi-slice computed tomography coronary angiography (MSCT), the 

focus of non-invasive imaging has shifted from functional imaging to a combination of both 

anatomical and functional imaging. Several studies have addressed the association between 

the anatomical and functional information obtained with MSCT and myocardial perfusion 

imaging (MPI) using single photon emission computed tomography (SPECT) respectively.1-3 

These comparative studies have shown that MSCT may provide complementary rather than 

overlapping diagnostic information when used in combination with MPI. Whether MSCT 

provides complementary information to MPI with regard to risk stratification remains to 

be determined. Interestingly, studies in the past have shown that MPI provides substantial 

incremental value over anatomical information obtained with invasive coronary angiog-

raphy. However no studies have addressed this issue more recently.4, 5 Moreover, MSCT 

may have an important advantage over invasive coronary angiography due to its ability to 

provide information on plaque composition in addition to stenosis severity.6 Accordingly, 

the information obtained by MSCT may potentially enhance risk stratification by MPI. The 

aim of this study was therefore to assess in patients presenting with suspected coronary 

artery disease (CAD) whether MSCT has incremental prognostic value over MPI.

Methods

Patient selection

The study population consisted of 541 patients who prospectively underwent both MPI and 

MSCT within 3 months of each other. Enrollment of patients started in June 2003 and con-

tinued until December 2007. Follow-up information was obtained from the start of the study 

until August 2008. Patients were included at the University Hospital in Zurich, Switzerland 

(n=269); the Cardiovascular Center in Aalst, Belgium (n=17); and at the Leiden University 

Medical Center, The Netherlands (n=255). Patients were referred because of chest pain com-

plaints, a positive exercise ECG test, or a high risk profile for cardiovascular disease. Exclu-

sion criteria were: cardiac arrhythmias, renal insufficiency (serum creatinine >120 mmol/L), 

known hypersensitivity to iodine contrast media, and pregnancy. In addition, patients with a 

cardiac event in the period between MSCT and MPI, or an uninterpretable MSCT scan were 

excluded. The pre-test probability of CAD was determined using the Diamond and Forrester 

method, as previously described.7 The study was approved by the local ethics committees in 

all 3 participating centers and informed consent was obtained in all patients.
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Myocardial perfusion imaging

Myocardial perfusion imaging was performed using gated SPECT. Two ECG-gated MPI 

protocols were used. A total of 272 patients underwent a 2-day gated stress-rest MPI using 

technetium-99m tetrofosmin (500 MBq), or technetium-99m sestamibi (500 MBq) with 

either a symptom limited bicycle test or pharmacological stress using adenosine (140 mcg/

kg/min for 6 minutes) or dobutamine (up to 40 mcg/kg/min in 15 min). The remaining 269 

patients underwent a 1-day stress-rest protocol with adenosine stress (140 mcg/kg/min dur-

ing 7 minutes) using technetium-99m tetrofosmin (300 MBq at peak stress and 900 MBq at 

rest).

The images were acquired on a triple-head SPECT camera (GCA 9300/HG, Toshiba Corp., 

Tokyo, Japan) or a dual-head detector camera (Millennium VG & Hawkeye, General Electric 

Medical Systems, Milwaukee, WI, USA; or Vertex Epic ADAC Pegasus, Philips Medical 

Systems, Eindhoven, the Netherlands). All cameras were equipped with low energy high 

resolution collimators. A 20% window was used around the 140-keV energy peak of 

technetium-99m, and data were stored in a 64x64 matrix.

Stress and rest SPECT perfusion datasets were quantitatively evaluated using previously vali-

dated automated software.8 The myocardium was divided into a 20 segment model and for 

each segment myocardial perfusion was evaluated using a standard 5-point scoring system. 

The segmental perfusion scores during stress and rest were added together to calculate the 

summed stress score (SSS) and the summed rest score (SRS). The summed difference score 

(SDS) was calculated by subtracting the SRS from the SSS. Abnormal MPI was defined as 

SSS≥4 and severely abnormal MPI was defined as SSS≥8.

MSCT coronary angiography

In 33 patients the MSCT examination was performed using a 16-slice scanner (Aquillion16, 

Toshiba Medical Systems, Tokyo, Japan). The remaining 508 (94%) patients were scanned 

using a 64-slice MSCT scanner (Aquillion64, Toshiba Medical Systems, Tokyo, Japan; Gen-

eral Electrics LightSpeed VCT, Milwaukee, WI, US; or Sensation64, Siemens, Forchheim, 

Germany). Patient’s heart rate and blood pressure were monitored before each scan. In the 

absence of contraindications, patients with a heart rate exceeding the threshold of 65 beats 

per minute were administered beta-blocking medication (50-100 mg metoprolol, oral or 

5-10 mg metoprolol, intravenous).

Before the helical scan, a non-enhanced low dose prospective ECG-gated scan, prospec-

tively triggered at 75% of the R-R interval was performed to measure the coronary calcium 

score (CS). The helical scan parameters have been previously described.3, 9 
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Post-processing of the MSCT and CS scans was performed on dedicated workstations 

(Vitrea2, Vital Images, USA; Advantage, GE healthcare, USA; Syngo InSpace4D applica-

tion, Siemens, Germany; and Aquarius, TeraRecon, USA). The CS was calculated using the 

Agatston method. Coronary anatomy was assessed in a standardized manner by dividing the 

coronary artery tree into 17 segments according to the modified American Heart Association 

classification. For each segment both the presence of atherosclerotic plaque as well as its 

composition was determined. Atherosclerotic lesions were deemed significant if the diameter 

stenosis was ≥50%. Lesions below this threshold were considered to be non-significant or 

mild. Plaque composition was graded as non-calcified plaque (plaques having lower density 

compared with the contrast-enhanced lumen), calcified plaque (plaques with high density), 

and mixed plaque (containing elements from both non-calcified and calcified plaque).

Follow-up

Patient follow-up data were gathered by three observers blinded to the baseline MSCT and 

MPI results using clinical visits or standardized telephone interviews. The following events 

were regarded as clinical endpoints: all cause mortality, non-fatal myocardial infarction, 

and unstable angina requiring revascularization. Non-fatal infarction was defined based 

on criteria of typical chest pain, elevated cardiac enzyme levels, and typical changes on 

the ECG. Unstable angina was defined according to the European Society of Cardiology 

guidelines as acute chest pain with or without the presence of ECG abnormalities, and nega-

tive cardiac enzyme levels.10 Patients with stable complaints undergoing an early elective 

revascularization within 60 days after imaging with MSCT or MPI were excluded from the 

survival analysis. Annualized event rates were calculated based on events per patient year 

follow-up.

Statistical analysis

Continuous variables were expressed as mean and standard deviation, and categorical 

baseline data were expressed in numbers and percentages. Cox regression analysis was used 

to determine the prognostic value of CS, MSCT, and MPI variables. First univariate analysis 

of baseline characteristics, CS, MSCT and MPI variables was performed using a composite 

endpoint of all cause mortality, non-fatal infarction, and unstable angina requiring revascu-

larization. For each variable a hazard ratio with a 95%-confidence interval (95%-CI) was 

calculated. Using univariate analysis, optimal cutoffs (based on the number of segments 

affected) were created for plaque composition on MSCT. Finally multivariate models were 

created correcting MSCT and MPI for baseline risk factors. The incremental value of MSCT 

over baseline clinical variables and MPI was assessed by calculating the global chi-square.

Cumulative event rates for MSCT, MPI, and for MSCT and MPI combined were obtained 

by the Kaplan-Meier method using a composite endpoint of all cause mortality, non-fatal 
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infarction, and unstable angina requiring revascularization, and a hard composite endpoint 

of all cause mortality and non-fatal infarction. Statistical analyses were performed using SPSS 

software (version 12.0, SPSS Inc, Chicago, IL, USA) and SAS software (The SAS system 6.12, 

Cary, NC, USA: SAS Institute Inc). A p-value <0.05 was considered statistically significant.

Results

Patient characteristics

In the study population of 541 patients an uninterpretable MSCT examination was present 

in 24 patients (4%). Reasons for uninterpretability were the presence of motion artifacts, 

increased noise due to high body mass index, and breathing. In patients with an unin-

terpretable MSCT, MPI was abnormal (SSS≥4) in 9 (38%) patients and normal (SSS>4) in 

the remaining 15 (62%) patients. After exclusion of these patients, a total of 517 patients 

remained for analysis. A complete overview of the baseline characteristics of these patients 

is presented in Table 1. The average age of the study cohort was 59±11 years and 59% of 

patients were men. The majority of patients (65%) presented with an intermediate pre-test 

probability for of CAD, and a low or a high probability was present in respectively 22% and 

13% of patients.

MSCT and SPECT results

An exercise test was performed in 88 patients (17%), while pharmacological stress with 

adenosine was used in 397 patients (77%), and with dobutamine in 30 patients (6%). All 

MPI results are listed in Table 2. The gated SPECT images during rest and stress were normal 

(SSS <4) in 349 (67%) patients. An abnormal MPI (SSS≥4) was present in 192 (33%) patients 

and severely abnormal MPI (SSS≥8) was present in 64 (13%) patients. During MSCT image 

Table 1. Patient characteristics.

Gender (male) 303 (59%)
Age (yrs) 59±11
Risk Factors
 Diabetes 156 (30%)
 Hypertension 290 (56%)
 Hypercholesterolemia 209 (40%)
 Family history CAD 191 (37%)
 Current Smoking 154 (30%)
 Obesity (BMI ≥ 30) 111 (22%)
Pre-test likelihood of CAD
 Low 113 (22%)
 Intermediate 336 (65%)
 High 68 (13%)
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acquisition, an average heart rate of 63±11 beats per minute was recorded. CS and MSCT 

results are listed in Table 2. The average CS was 325±751 Agatston units. A CS >400 was pres-

ent in 113 (22%) patients and CS was normal or ≤400 in 404 patients (78%). A CS >1000 was 

observed in 47 (9%) patients, while a CS ≤1000 was observed in the remaining 470 patients 

(91%). During the contrast enhanced helical scan, a completely normal MSCT examination 

was observed in 155 (30%) of patients. Atherosclerosis, both mild (<50% stenosis) and signifi-

cant (≥50% stenosis), was observed in 362 (70%). Significant CAD with lesions ≥50% stenosis 

was observed in 158 (31%) patients. Non-calcified plaques were observed in 130 patients 

(25%), mixed plaques in 204 patients (40%), and calcified plaques in 270 patients (52%).

The results of MSCT in relation to MPI are illustrated in Figure 1. This figure illustrates the 

complementary value of MSCT and MPI. Only approximately 50% of patients with a sig-

nificant lesion (≥50% stenosis) showed a perfusion defect on MPI (SSS ≥4). Importantly, a 

significant stenosis was observed in 22% of patients with normal perfusion on MPI (SSS<4).

Follow-up results

Of the cohort of 517 patients, 35 (6.8%) were lost to follow-up, while 43 (8.3%) patients 

underwent early revascularization (within 60 days of MSCT or MPI). In the remaining 439 

patients the median follow-up time achieved was 672 days (25-75th percentile: 420-896). 

During this time period an event occurred in 23 patients (5.2%). Death by any cause 

occurred in 8 patients (1.8%); in 2 the cause of death could be ascertained as cardiac. 

Non-fatal myocardial infarction occurred in 8 patients (1.8%) and 7 patients (1.6%) were 

hospitalized due to unstable angina pectoris.

Table 2. Imaging results.

Calcium Score 
 CS > 400 113 (22%)
 CS > 1000 47 (9%)
MSCT 
 Atherosclerosis 362 (70%)
 Significant CAD 158 (31%)
 Patients with non-calcified plaques 130 (25%)
 Patients with mixed plagues 204 (40%)
 Patients with calcified plaques 270 (52%)
MPI
 SSS <4 (normal) 349 (67%)
 SSS 4-7 104 (20%)
 SSS 8-12 44 (9%)
 SSS ≥ 13 20 (4%)
 SDS 0-1 378 (73%)
 SDS 2-3 72 (14%)
 SDS ≥ 4 67 (13%)
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Univariate and multivariate analysis

Baseline univariate predictors of events are listed in Table 3. CS, MSCT and MPI were 

significant univariate predictors of events. Both CS >400 and CS >1000 were significant 

predictors. When regarding the MSCT results on a patient level, the presence of significant 

CAD (≥50% stenosis) was a strong significant predictor (hazard ratio 3.683 (95%-confi-

dence interval (95%-CI): 1.611-8.420)), whereas the presence of any atherosclerosis was 

not (hazard ratio 3.087 (95%-CI: 0.917-10.388). Importantly, plaque composition on MSCT 

was also identified as a predictor of events. On a patient level, the presence of ≥2 segments 

with non-calcified plaque (n=65) (hazard ratio 5.0 (95%-CI: 2.2-11.7)) or ≥3 segments with 

mixed plaque (n=68) (hazard ratio 3.5 (hazard ratio (95%-CI: 1.5-8.1) were both significant 

predictors of events. Of the MPI variables, the SSS ≥4 was the strongest significant predictor 

of events (hazard ratio 4.0, 95% CI 1.7-9.3).

After univariate analysis multivariate models were created for both MSCT and MPI cor-

recting for baseline risk factors. MSCT (≥50% stenosis) remained a significant predictor 

when corrected for CS > 400 or CS > 1000. However CS > 400 and CS > 1000 did not 

reach statistical significance. MPI also remained a significant predictor when corrected for 

CS > 400 or CS > 1000. In this model, CS > 1000 however also remained a significant 

independent predictor of events. 

 42

11.1 

 
Figure 1. Pie charts depicting the relationship between the anatomic information obtained by MSCT and the 
functional information from MPI.

Jaap BW4.indd   176 10-05-11   16:40



C
h

ap
ter 11

Pro
g

n
o

stic valu
e o

f C
TA

 an
d

 S
P

E
C

T

177

Subsequently, several multivariate models were created to assess the independent predictive 

value of different MSCT variables, corrected for MPI and baseline risk factors. On a patient 

level, no independent prognostic value over MPI and baseline risk factors was observed for 

the presence of any atherosclerosis on MSCT. In contrast, the observation of significant CAD 

on MSCT was however shown to provide independent prognostic value over MPI. When 

regarding plaque composition only the presence of 2 or more segments with non-calcified 

plaque was an independent significant predictor. Importantly, MPI remained an independent 

significant predictor of events in each multivariate model.

To assess the incremental prognostic value of these MSCT variables over baseline clinical 

variables and MPI, global chi-square scores were calculated. The results of this analysis 

are presented in Figure 4. This figure shows that information on the presence of significant 

stenosis obtained by MSCT has incremental prognostic value to both baseline clinical 

variables alone and baseline clinical variables and MPI combined. Finally the addition of 

non-calcified plaque on a patient basis resulted in further enhancement of risk stratification 

incremental to the combination of clinical variables, MPI, and significant stenosis on MSCT.

Event rates

The Kaplan-Meier survival curves in Figures 2 and 3 illustrate the different survival rates of 

the MPI and MSCT test outcomes both for the composite endpoint of all cause mortality, 

non-fatal myocardial infarction and unstable angina requiring revascularization (Log Rank 

p-value <0.001) as well as for the combined hard endpoint of all cause mortality and non-

fatal myocardial infarction (Log Rank p-value <0.05). The annualized event rate (annualized 

Table 3. Univariate predictors of events,

HR (95%-CI) p-value
Calcium Score
 CS > 400 3.007 (1.318-6.860) 0.009
 CS > 1000 3.752 (1.392-10.114) 0.009
MSCT 
 Atherosclerosis 3.087 (0.917-10.388) 0.069
 Significant CAD 3.683 (1.611-8.420) 0.002
 ≥2 non-calcified plaques 5.0 (2.2-11.7) <0.001
 ≥3 mixed plagues 3.5 (1.5-8.1) <0.005
 ≥4 calcified plaques 1.5 (0.6-4.1) 0.409
MPI
 SSS ≥ 2 3.500 (1.513-8.094) 0.003
 SSS ≥ 4 4.029 (1.742-9.319) 0.001
 SSS ≥ 8 1.922 (0.653-5.656) 0.236
 SDS ≥ 2 1.853 (0.783-4.381) 0.160
 SDS ≥ 4 2.142 (0.724-6.336) 0.169
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11.2

 
Figure 2. Bar graphs illustrating the incremental prognostic value (depicted by chi-square value on the y-axis) 
of MSCT. The addition of MSCT provides incremental prognostic information to baseline clinical variables and 
MPI. Furthermore the addition of non-calcified plaque on MSCT (≥2 segments with non-calcified plaque) results 
in further incremental prognostic information over baseline clinical variables, MPI, and significant CAD (≥50% 
stenosis) on MSCT.
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11.3.a 

 
Figure 3a. Kaplan-Meier curves for all events (all cause mortality, non-fatal infarction, and unstable angina 
requiring revascularization) in patients with a normal MPI (SSS<4) or an abnormal MPI (SSS≥4).
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11.3.b 

 
Figure 3b. Kaplan-Meier curves for hard events (all cause mortality and non-fatal infarction) in patients with a 
normal MPI (SSS<4) or an abnormal MPI (SSS≥4).
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event rate for hard events between parentheses) in patients with a normal MPI examination 

(SSS <4) was 1.5% (1.1%); the annualized event rate in patients with an abnormal MPI (SSS 

≥4) was 6.0% (3.8%). The annualized event rate in patients with none or mild CAD (MSCT 

<50% stenosis) was 3.0% (1.8%). When these patients were further divided into patients 

with mild atherosclerosis and patients without any evidence of atherosclerosis, the annual-

ized event rates were 2.0% (1.4%), and 1.1% (0.3%) respectively. The annualized event rate 

for patients with a significant stenosis (≥50%) on MSCT was 6.3% (4.8%). When regarding 

plaque composition, the annualized event rate in patients with 2 or more segments with 

non-calcified plaque was 8.4% (6.7%) compared to 1.9% (1.2%) in patients with no or less 

than 2 segments with non-calcified plaque.

Combined use of MSCT and MPI resulted in significantly improved prediction of the 

composite hard endpoint of all cause mortality and non-fatal myocardial infarction (Log 

rank test p-value <0.005), as illustrated in the Kaplan-Meier survival curve in Figure 5. In 

patients with none or mild CAD (MSCT <50% stenosis) and a normal MPI (SSS <4) (n=256) 

the annualized event rate (annualized hard event rate in parenthesis) was 1.0% (0.6%). 

In patients with none or mild CAD (MSCT <50% stenosis) but an abnormal MPI (SSS ≥4) 

 46

11.4.a 

 

 
Figure 4a. Kaplan-Meier curves for all events (all cause mortality, non-fatal infarction, and unstable angina 
requiring revascularization) in patients with no CAD (MSCT normal), mild CAD (MSCT <50% stenosis) or 
significant CAD (MSCT ≥50% stenosis).
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11.4.b 

 
Figure 4b. Kaplan-Meier curves for hard events (all cause mortality and non-fatal infarction) in patients with no 
CAD (MSCT normal), mild CAD (MSCT <50% stenosis) or significant CAD (MSCT ≥50% stenosis).
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(n=72), the annualized event rate increased to 3.7% (2.2%), whereas patients with signifi-

cant CAD (MSCT ≥50% stenosis) and a normal MPI (SSS <4) (n=57) were associated with 

an annualized event rate of 3.8% (3.8%). Interestingly, the event rates between patients 

with none or mild CAD (<50%) stenosis and an abnormal MPI and patients with significant 

CAD (MSCT ≥50% stenosis) did not differ significantly. In patients with both significant CAD 

(MSCT ≥50% stenosis) and an abnormal MPI (SSS <4) (n=54), the annualized event rate was 

9.0% (6.0%). In these patients the addition of plaque composition (presence of 2 or more 

segments with non-calcified plaque (n=20)) resulted in the highest event rate 10.8% (8.2%). 

Discussion

The main finding of the current study is that when used in combination with MPI, MSCT not 

only provides complementary information about the presence, extent, and composition of 

atherosclerosis, but importantly, also results in improved risk stratification as compared to 

the use of MPI alone.

Risk stratification with MPI

A wealth of data have been published on the diagnostic accuracy and prognostic value of 

MPI.11-16 In an extensive review of the available literature a low risk scan was associated 

with a low annualized hard event rate (cardiac death and non-fatal myocardial infarction) of 

0.6% in a population of 69,655 patients.17 In a recent meta-analysis, Metz et al specifically 

focused on the prognostic value of a normal MPI.18 The pooled summary absolute event 

rate in their study was 1.21 (95%-CI: 0.98-1.48) for the occurrence of cardiac death and 

non-fatal myocardial infarction. The slightly higher absolute hard event rate in the current 

Figure 5. Kaplan-Meier curves for hard events (all cause mortality and non-fatal infarction) in patients with a 
normal MPI (SSS <4) and none or mild CAD (<50% stenosis) on MSCT, in patients with an abnormal MPI (SSS ≥ 
4) and with none or mild CAD (<50% stenosis) on MSCT, in patients with a normal MPI (SSS <4) and significant 
CAD (MSCT ≥50% stenosis), and finally in patients with an abnormal MPI (SSS ≥ 4) and significant CAD (MSCT 
≥50% stenosis).

Jaap BW4.indd   180 10-05-11   16:40



C
h

ap
ter 11

Pro
g

n
o

stic valu
e o

f C
TA

 an
d

 S
P

E
C

T

181

study (2.2%) may have been caused by the inclusion of all cause mortality, and the fact that 

the majority of patients underwent pharmacological testing.17, 19 Importantly, event rates 

were significantly higher in patients with abnormal MPI (SSS ≥4), in line with the previous 

literature.17 

Risk stratification with MSCT

While MSCT coronary angiography is a relatively new technique, a considerable amount 

of evidence is available with calcium scoring.20-27 Moreover, in a systematic review of the 

available literature (n=27,622 patients) the presence of any coronary artery calcium was 

shown to confer a 4-fold increased risk of cardiac death or myocardial infarction (p<0.0001) 

as compared to the absence of coronary artery calcifications.24 In contrast, an extremely low 

event rate of 0.4% was observed in patients without any coronary artery calcium. 

Only limited data are available on the prognostic value of anatomic imaging with MSCT 

coronary angiography.28-30 In the present study, annual hard event rates of 0.3%, 2.0%, and 

4.8% were observed in patients with respectively completely normal, non-significant and 

significant CAD on MSCT. Min et al evaluated 1,127 patients undergoing 16-slice MSCT 

with a mean follow-up of 15.3±3.9 months. In line with our study, event rates for all cause 

mortality ranging between 0.3% for none or mild atherosclerosis (stenosis <50%) to 15% for 

mild to moderate left main disease were observed in a period of 2 years.29 

Currently one previous study by Pundziute et al. has addressed the prognostic value of 

plaque components assessed by MSCT.30 The number of mixed plaques was a significant 

predictor when corrected for baseline clinical variables. In the current study only non-

calcified plaque remained an independent predictor of events. The discrepancy between 

the current results and the study by Pundziute et al. may be explained by differences in the 

studied patient populations as well as the use of optimized cutoffs and correction for MPI 

results in the current study.

Combination of MSCT and MPI

In previous studies, the prognostic value of anatomic imaging using calcium scoring in 

relation to MPI has been addressed.31-34 Recently, Schenker et al showed that the risk of all 

cause mortality and myocardial infarction increased with increasing CS, both in patients 

with normal and in patients with abnormal perfusion on MPI.34 The present study is the 

first to address the incremental prognostic value of MSCT when used in combination with 

MPI. Previous studies have shown that MPI provides incremental prognostic information 

over invasive coronary angiography.4, 5 Vice versa, the current study has revealed that the 

anatomic information on MSCT is not only an independent predictor of events but also 

provides incremental prognostic information over baseline clinical variables and MPI, 
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particularly in patients with a normal MPI. Although several MSCT variables were able to 

provide prognostic information, on a patient level the presence of significant CAD (≥50% 

stenosis) was identified as a robust independent predictor. This is an important finding as 

diagnostic MSCT examinations are often graded in this manner. In addition to stenosis sever-

ity, plaque composition was also identified to further enhance risk stratification. Indeed, 

the presence of non-calcified plaques provided incremental prognostic information over 

baseline clinical variables, MPI, and significant CAD on MSCT. This finding suggests that 

potentially assessment of plaque composition on MSCT may provide clinically relevant 

information in addition to stenosis severity.

Study limitations

Even though the diagnostic accuracy of MSCT is high, images are still uninterpretable in a 

small percentage of patients. It is however anticipated that the amount of uninterpretable 

studies will continue to decrease with newer generation scanners.35, 36 In contrast, none 

of the SPECT examinations were uninterpretable in this study. Another potential limitation 

is that the MSCT studies were evaluated visually; no validated accurate quantitative algo-

rithms are currently available. In the current study a composite endpoint including all cause 

mortality was used, which is not a direct cardiac endpoint. An important advantage of all 

cause mortality however is the fact that it is not affected by verification bias.37 Furthermore 

most deaths in adults are linked to cardiovascular disease. All cause mortality is therefore a 

commonly used endpoint allowing comparison of the current results to previous investiga-

tions.21, 26, 29, 34 Finally, the radiation burden associated with combined MSCT and MPI 

imaging is a limitation. However the radiation dose can decrease significantly when using 

dedicated dose reduction MSCT acquisition techniques that have recently become avail-

able.38-41 

Conclusion

MSCT is an independent predictor of events and provides incremental prognostic value 

to MPI. Furthermore, addition of plaque composition to stenosis severity was shown to 

provide incremental prognostic information. The results of this study suggest that combined 

anatomical and functional assessment may allow improved risk stratification.
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Abstract

The purpose of this study was to assess the relationship between calcium scoring 

(CS) and multi-slice computed tomography coronary angiography (MSCTA) and to 

determine if MSCTA has an incremental prognostic value to CS. In 432 patients (59% 

male, age 58±11 years) referred for cardiac evaluation due to suspected coronary 

artery disease (CAD), CS and 64-slice MSCTA were performed. The following events 

were combined in a composite endpoint: all cause mortality, non-fatal infarction, 

and unstable angina requiring revascularization. CS was 0 in 147 (34%) patients, 

CS 1-99 was present in 122 (28%), CS 100-399 in 75 (17%), CS 400-999 in 56 (13%), 

and CS≥1000 in 32 (7%). MSCTA was normal in 133 (31%) patients, MSCTA 30-50% 

stenosis was observed in 190 (44%), and MSCTA ≥50% stenosis in 109 (25%). During 

follow-up (median 670 days (25-75th percentile:418-895), an event occurred in 21 

patients (4.9%) patients. After multivariate correction for CS, MSCTA≥50% stenosis, 

the number of diseased segments, obstructive segments, and non-calcified plaques 

were independent predictors with an incremental prognostic value to CS. In con-

clusion, MSCTA provides additional information to CS regarding stenosis severity 

and plaque composition. This additional information was shown to translate into 

incremental prognostic value over CS.
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Introduction

Non-invasive imaging plays an important role in the diagnosis and prognosis of coronary 

artery disease (CAD). The development of non-invasive anatomic imaging techniques such 

as coronary calcium scoring (CS) and multi-slice computed tomography coronary angiog-

raphy (MSCTA) have resulted in substantially increased interest in non-invasive imaging of 

atherosclerosis.

Extensive data are available supporting the value of CS in risk stratification and patients 

with increased CS are generally considered to have a higher likelihood of future cardiac 

events. The majority of data however have been obtained in asymptomatic patients at low 

to intermediate risk although the technique may also be useful in symptomatic patients.1-4 

Direct non-invasive detection of luminal narrowing has become possible with the intro-

duction of MSCTA. Preliminary studies addressing the prognostic value of MSCTA have 

demonstrated a low risk for events in case of a normal MSCTA study compared to a higher 

risk in the presence of significant CAD on MSCTA.5-8 Importantly, MSCTA is not restricted 

to luminography and the technique allows simultaneous visualization of the vessel wall. As 

a result, also non-stenotic lesions can be identified and even some information on plaque 

composition can be derived.9 This may be an important feature of the technique as several 

plaque characteristics observed on MSCTA have been linked to acute coronary syndromes 

in retrospective studies.10, 11 Nevertheless, only limited prospective data are currently avail-

able supporting this notion.

Accordingly, both CS and MSCTA may be useful for risk stratification in patients with sus-

pected CAD, it is unclear however if the information regarding stenosis severity and plaque 

composition on MSCTA may provide additional prognostic information to CS. To answer this 

clinical question amongst others we have started a prospective registry that addresses the 

prognostic value of MSCTA in relation to baseline characteristics as well as other imaging 

techniques.12 The purpose of the present study was to assess the relationship between obser-

vations on CS and MSCTA and to determine whether the information regarding stenosis 

severity and plaque composition on MSCTA translates into incremental prognostic value 

over CS alone.
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Methods

Patient selection

The study population consisted of patients with suspected coronary artery disease (CAD) 

who were clinically referred for further cardiac assessment because of chest pain, a positive 

exercise ECG test, or a high risk profile for cardiovascular disease as part of an ongoing study 

protocol addressing the prognostic value of MSCTA in relation to other imaging techniques. 

From this prospective registry, results addressing the incremental prognostic value of MSCTA 

over myocardial perfusion imaging have been recently published.12 Patients were enrolled 

at the University Hospital in Zurich, Switzerland, and at the Leiden University Medical 

Center, The Netherlands. The included patients prospectively underwent a CS scan followed 

by MSCTA. Exclusion criteria were: cardiac arrhythmias, renal insufficiency (defined as a 

glomerular filtration rate <30 ml/min), known hypersensitivity to iodine contrast media, 

and pregnancy. In addition, patients with an uninterpretable MSCTA examination were 

excluded. The pre-test likelihood of CAD was determined using the Diamond and Forrester 

method, with a risk threshold of <13.4% for low risk, >87.2% for high risk, and between 

13.4 and 87.2% for intermediate risk, as previously described.13 The study was approved by 

the local ethics committee in both participating centers. 

CS and MSCTA protocol

Patients were scanned using a 64-slice CT scanner (Aquillion64, Toshiba Medical Systems, 

Tokyo, Japan; or General Electrics LightSpeed VCT, Milwaukee, WI, US). Before CS and 

MSCTA examinations, the patient’s heart rate and blood pressure were monitored. In the 

absence of contraindications, patients with a heart rate exceeding the threshold of 65 beats 

per minute were administered beta-blocking medication (50-100 mg metoprolol, oral or 

5-10 mg metoprolol, intravenous). Before the helical scan, a non-enhanced low dose ECG-

gated scan was performed to measure CS. The CS scan was prospectively triggered at 70% 

or 75% of the R-R interval and performed using the following scan parameters: 4x3.0 mm or 

2.5 mm; gantry rotation time, 350-500 milliseconds; tube voltage, 120 kV; and tube current, 

200-250 mA.

The CS scan was used to determine the start and end positions of the MSCTA examination. 

The helical scan was performed using a collimation of 64 x 0.5 mm or 64x0.625 mm. All 

scan parameters have been previously published.14, 15 

Datasets were reconstructed from the retrospectively gated raw data. Images were recon-

structed with an effective slice thickness of 0.3 or 0.5. Coronary arteries were evaluated 

using the reconstruction dataset with the least motion artifacts, typically an end-diastolic 

phase. 
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The effective dose of the CS and MSCTA scans was estimated from the product of the dose-

length product and an organ weighing factor [k=0.014 mSv x (mGy x cm)-1) for the chest as 

the investigated anatomical region.16 

Data Analysis

Post-processing of the CS and MSCTA examinations was performed on dedicated worksta-

tions (Vitrea2, Vital Images, USA and Advantage, GE healthcare, USA). The CS was cal-

culated using the Agatston method.17 MSCTA angiograms were examined using the axial 

slices, curved multiplanar reconstructions (MPR), and maximum intensity projections (MIP). 

Coronary anatomy was assessed in a standardized manner by dividing the coronary artery 

tree into 17 segments according to the modified American Heart Association classification. 

First segments were classified based on the maximum luminal diameter stenosis. Normal 

MSCTA was defined as completely normal anatomy or minimal wall irregularities <30%, 

non-significant CAD was defined as the presence of luminal narrowing with a maximal 

luminal diameter stenosis <50%, and significant CAD was defined as the presence of an 

atherosclerotic lesion exceeding the threshold of 50% maximal luminal diameter stenosis. 

After assessment of stenosis severity, plaque composition was determined in all diseased 

segments (non-significant or significant CAD on MSCTA). Plaque composition was graded as 

non-calcified plaque (plaques having lower density compared with the contrast-enhanced 

lumen), calcified plaque (plaques with high density), and mixed plaque (containing ele-

ments of both non-calcified and calcified plaque).

Follow-up

Patient follow-up data were gathered using clinical visits or standardized telephone inter-

views. A composite endpoint was construed using the following events: all cause mortality, 

non-fatal myocardial infarction, and unstable angina requiring revascularization. Non-fatal 

infarction was defined based on criteria of typical chest pain, elevated cardiac enzyme 

levels, and typical changes on the ECG. Unstable angina was defined according to the 

European Society of Cardiology guidelines as acute chest pain with or without the presence 

of ECG abnormalities, and negative cardiac enzyme levels.18 Patients with stable complaints 

undergoing an early elective revascularization within 60 days after imaging with CS and 

MSCTA were excluded from the survival analysis.

Statistical analysis

Continuous variables were expressed as mean and standard deviation, and categorical 

baseline data were expressed in numbers and percentages. Cox regression analysis was 

used to determine the prognostic value of CS, and MSCTA variables. First univariate analysis 

of baseline CS and MSCTA variables was performed using the composite endpoint of all 

cause mortality, non-fatal infarction, and unstable angina requiring revascularization. For 

Jaap BW4.indd   191 10-05-11   16:40



Pa
rt

 2

192

each variable a hazard ratio with a 95%-confidence interval (95%-CI) was calculated. 

The predictive value of CS was assessed using binary cutoff values (CS >0, CS ≥100, CS 

≥ 400, and CS ≥ 1000). For the survival analysis of MSCTA, plaque burden (number of 

(non) significantly diseased segments) and plaque composition (number of segments with 

non-calcified, mixed or calcified plaque) were analyzed as continuous variables. Finally, 

multivariate models were created to assess the independent predictive value of MSCTA 

corrected for CS and baseline clinical variables. The incremental value of MSCTA over CS 

and baseline clinical variables was assessed by calculating the global chi-square. Statistical 

analyses were performed using SPSS software (version 12.0, SPSS Inc, Chicago, IL, USA). A 

p-value <0.05 was considered statistically significant.

Results

The current study population, derived from our prospective registry, 12 consisted of 533 

patients presenting with suspected CAD at the University Hospital Zurich (n=270) and at the 

Leiden University Medical Center (n=263). The demographics in the two populations were 

similar. In 24 (4.5%) of these patients the MSCTA examination was uninterpretable due to 

the presence of motion artifacts, increased noise due to a high body mass index, and breath-

ing. In addition, 35 patients (6.9%) were lost to follow-up, and an early revascularization 

occurred in 42 (8.3%) patients. After exclusion of these patients, a total of 432 remained for 

further analysis. The baseline characteristics of the patient population are presented in Table 

1. In summary, the average age of the study cohort was 58±11 years and 58% of patients 

were men. A low or intermediate pre-test likelihood was observed in respectively 24% and 

65% of patients. A high pre-test likelihood was observed in 11%.

Table 1. Patient characteristics

Gender (male) 59%
Age (yrs) 58±11
Risk Factors
 Diabetes 121 (28%)
 Hypertension 244 (57%)
 Hypercholesterolemia 170 (39%)
 Family history CAD 157 (36%)
 Current Smoking 119 (28%)
 Obesity (BMI ≥ 30) 92 (21%)
Pre-test likelihood of CAD
 Low 102 (24%)
 Intermediate 281 (65%)
 High 49 (11%)
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CS and MSCTA results

The average CS of the cohort was 290±730. Calcium was absent in 117 (34%) patients, 

a CS of 1-99 was observed in 122 (28%), a CS between 100 and 399 in 75 (17%), a CS 

between 400 and 999 in 56 (13%), and a CS ≥ 1000 was present in 32 (7%) patients. MSCTA 

was normal in 133 (31%) patients, and atherosclerosis (non-significant or significant CAD) 

was present in the remaining 299 (69%) patients. Within the patients with atherosclerosis, 

non-significant CAD was observed in 190 (44%), and significant CAD was present in 109 

(25%) patients. For the GE scanner the estimated average radiation dose for the MSCTA 

protocol was 18.3±5.9 mSv, and the average radiation dose for the CS protocol was 1.2±0.6 

mSv. For the Toshiba scanner the estimated average radiation dose for the coronary angiog-

raphy protocol was 17.6±5.6 mSv and the estimated radiation dose for the CS protocol was 

1.5±0.7 mSv.

Relationship between CS and stenosis severity and plaque composition 
assessed on MSCTA

Stenosis severity

Figure 1 illustrates the MSCTA findings in patients with increasing CS values. In patients 

without any coronary calcium, MSCTA was normal in 80%. Non-calcified plaque was 

observed in the remaining 20% of patients (7% of the total study population). Importantly, 

significant CAD was observed in 4% of patients with a CS of 0. An example of a patient with 

a CS of 0 and a large non-calcified plaque on MSCTA, confirmed on conventional coronary 
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Figure 1. The relationship between increasingly higher CS categories and the prevalence of normal coronary 
anatomy (completely normal or minor wall irregularities), non-significant CAD (MSCTA < 50% stenosis) and 
significant CAD (MSCTA ≥ 50% stenosis) on MSCTA.
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angiography is shown in Figure 2. In patients with coronary calcifications non-significant 

and significant lesions were present in all but a few patients. However the relationship 

between CS and significant CAD on MSCTA was less evident. Particularly in patients with 

an intermediate CS between 100 and 1000, significant CAD was observed in approximately 

50% of patients. In patients with a high CS ≥ 1000, non-significant CAD was observed in 

30% of patients.

Plaque composition

MSCTA enables assessment of plaque composition in addition to stenosis severity. Figure 3 

shows the distribution of segments with non-calcified plaque, mixed plaque and calcified 

plaque in each CS category as a percentage of the total diseased segments. In patients 

with CS of 0 all 76 diseased segments showed non-calcified plaque. With increasing CS 

categories the percentage of segments with calcified plaque contributing to the total of 

diseased segments increased. MSCTA was however able to identify a large proportion of dis-

eased segments with elements of non-calcified plaque (either mixed plaque or non-calcified 

plaque) in each category. 

 50
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Figure 2. Case example of a 54-year old male patient presenting with atypical complaints. On CS no coronary 
calcifications were observed. However a large significant non-calcified plaque was detected in the left anterior 
descending artery on MSCTA (Panels A-C), which was confirmed on conventional coronary angiography (Panel D).
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Follow-up results

A median follow-up time of 670 days (25-75th percentile: 418-895) was obtained, during 

which the composite endpoint occurred in 21 patients (4.9%). All cause death was reported 

in 6 patients (1.4%), whereas non-fatal myocardial infarction occurred in 8 patients (1.8%) 

and 7 patients (1.6%) were revascularized due to unstable angina pectoris.

Survival analysis

Univariate analysis of CS and MSCTA categories is shown in Table 2. Within the CS cutoff 

categories CS ≥ 100, CS ≥ 400 and CS ≥ 1000 were significant predictors of events. The 

Table 2. Univariate CS and MSCTA predictors of coronary events

HR (95%-CI) p-value
CS
 Calcium score (per unit increase in CS score) 1.00 (1.00-1.01) 0.019
 Any calcium 3.2 (0.9-10.9) 0.062
 Calcium score ≥100 3.9 (1.5-10.2) 0.005
 Calcium score ≥400 3.5 (1.5-8.3) 0.004
 Calcium score ≥1000 4.1 (1.5-11.3) 0.006
MSCTA
 Atherosclerosis 4.3 (1.0-18.6) 0.048
 Significant CAD 3.9 (1.7-9.3) 0.002
 Nr. of Diseased segments 1.2 (1.08-1.3) <0.001
 Nr. Segments with significant CAD 1.4 (1.2-1.6) <0.001
 Nr. Segments with non-calcified plaque 1.2 (1.07-1.4 ) 0.003
 Nr. Segments with mixed plaque 1.3 (1.07-1.5) 0.005
 Nr. Segments with calcified plaque 1.09 (0.9-1.3) 0.254
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Figure 3. The distribution of segments with non-calcified plaque, mixed plaque and calcified plaque as a 
percentage of the total diseased segments on MSCTA per CS category. In patients with a CS 0, all 76 diseased 
segments showed non-calcified plaque. With increasing CS categories the percentage of diseased segments 
with calcified plaque increased. Nevertheless, non-calcified plaque and mixed plaque were still observed in a 
large proportion of diseased segments in each CS category.
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highest hazard ratio was observed when using a cutoff of 1000. On MSCTA several variables 

reached statistical significance. The presence of any stenosis (non-significant (30-50% steno-

sis) or significant (≥50% stenosis) as well as the presence of significant CAD (≥50% stenosis) 

both were strong significant predictors. When regarding plaque burden, both the number of 

diseased segments as well as the number of segments with significant CAD were significant 

univariate predictors. When regarding plaque composition, the number of segments with 

non-calcified plaque and the number segments with mixed plaque were also significant 

predictors of events. The number of segments with calcified plaque was not a significant 

predictor of events.

Event rates

The annualized event rate in patients without any coronary calcium was 1.1%. Increasingly 

higher CS was associated with increasingly higher annualized event rates, the annualized 

event rate was 1.4% in patients with a CS 1-99, 3.7% in patients with a CS 100-399, and 

4.8% in patients with a CS 400-999. The highest annualized event rate of 8.5% was observed 

in patients with a CS ≥ 1000.

When regarding MSCTA, an event rate of 0.8% was observed in patients with a normal 

MSCTA (completely normal or minor wall irregularities); while in patients with atherosclero-

sis (non-significant and/or significant CAD) the annualized event rate was 3.5%. In patients 

with non-significant CAD the annualized event rate was 2.1%, versus 5.9% in patients with 

significant CAD. 

Independent and incremental prognostic value of MSCTA over CS

To determine the independent prognostic value of MSCTA, multivariate models were cre-

ated including all MSCTA variables corrected for age, gender and CS ≥ 1000. Table 3 shows 

that the presence of significant CAD, the number of diseased segments, obstructive seg-

ments, segments with non-calcified plaque, and the number of segments with mixed plaque 

remained independent predictors. Furthermore plaque burden and plaque composition pro-

vided incremental prognostic value over clinical variables and MSCTA as shown in Figures 

4 and 5. These results suggest that MSCTA may provide additional prognostic information. 

In particular, the number of segments with significant CAD and and the number of segments 

with non-calcified plaque provided significant incremental prognostic value over CS. The 

number of mixed plaques provided borderline significant (p=0.058) incremental prognostic 

value to CS. 
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Discussion

The main finding of the current study was that MSCTA may provide additional anatomic 

information regarding stenosis severity and plaque composition compared to CS. Further-

more this information offers important prognostic information which is incremental to CS 

for risk stratification.

Table 3. Multivariate models for the prediction of coronary events

HR (95%-CI) p-value
Model 1 Atherosclerosis 4.5 (0.9-21.3) 0.056

Calcium score ≥1000 4.0 (1.3-12.4) 0.016
Model 2 Significant CAD 3.6 (1.4-9.4) 0.009

Calcium score ≥1000 2.9 (0.9-9.3) 0.064
Model 3 Nr. Diseased segments 1.2 (1.1-1.3) 0.006

Calcium score ≥1000 2.0 (0.6-6.9) 0.268
Model 4 Nr. Segments with significant CAD 1.3 (1.1-1.5) 0.003

Calcium score ≥1000 2.6 (0.7-9.3) 0.148
Model 5 Nr. Segments with non-calcified plaque 1.3 (1.1-1.4) 0.001

Calcium score ≥1000 5.8 (1.9-18.2) 0.003
Model 6 Nr. Segments with mixed plaque 1.2 (1.0-1.4) 0.039

Calcium score ≥1000 3.6 (1.1-11.6) 0.029
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Figure 4. Bar graphs illustrating the incremental prognostic value (depicted by chi-square value on the y-axis) of 
significant CAD (≥50% stenosis) on MSCTA and plaque burden (defined as the number of diseased or segments 
with significant CAD on MSCTA) over age, gender and CS. CS has a significant incremental prognostic value 
over age and gender (#). A further incremental prognostic value over age, gender and CS was observed with the 
addition of MSCTA (*).
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CS and MSCTA for atherosclerosis detection

In asymptomatic patients, CS may be useful to identify the presence of atherosclerosis and 

thus identify patients that may be at higher risk than recognized based on traditional risk 

assessment.19 Vice versa, absence of calcium on the other hand in general implies a low 

likelihood of events.20 However in a small proportion of patients with a negative CS, non-

calcified plaque has been observed.21, 22 Indeed, in certain subpopulations, such as those 

at higher risk or in symptomatic patients the prevalence of non-calcified plaque may be 

higher.23-25 Akram et al. specifically studied the relationship between symptomatic status 

and the prevalence of non-significant and significant CAD in patients with a CS of 0 and 

observed 22% non-significant and significant CAD and 8% significant CAD in symptomatic 

patients.23 In the current study non-significant or significant CAD was identified on MSCTA 

in 20% of patients with a CS of 0, whereas significant CAD was observed in 4%. Accordingly, 

particularly in symptomatic populations a small proportion of patients with atherosclerosis 

may not be recognized by CS. 

Considering patients with evidence of coronary calcifications, a positive association has 

been observed between CS and the presence of significant CAD on MSCTA and conventional 

coronary angiography.26, 27 Indeed in the current study the prevalence of significant CAD 

paralleled increasing CS categories. Nevertheless, in a substantial proportion of patients with 

extensive calcifications, significant CAD was absent on MSCT, indicating somewhat lower 

specificity of CS to diagnose significant CAD in line with previous investigations.28, 29 Since 
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Figure 5. Bar graphs illustrating the incremental prognostic value (depicted by chi-square value on the y-axis) of 
MSCTA plaque composition variables over age, gender and CS. CS has a significant incremental prognostic value 
over age and gender (#). A further incremental prognostic value over age, gender and CS was observed with the 
addition of MSCTA (*).
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particularly in symptomatic patients identification of significant CAD is of importance for 

guiding clinical management (including decisions for potential revascularization), MSCTA 

may provide incremental diagnostic information to CS in this regard.

Prognostic value of CS and MSCTA

A considerable amount of evidence regarding risk stratification is available with CS in 

asymptomatic patients.19, 20, 30-33 Although less frequently studied, also in symptomatic 

patients CS has been shown to provide important prognostic information (1-4 In the study 

by Detrano et al. a 6 times higher event rate was observed in patients with a CS above the 

median compared to those with a CS below the median.1 

The prognostic value of MSCTA has been studied less extensively.5-8 In the largest study thus 

far by Min et al, a cohort of 1,127 patients undergoing 16-slice MSCT was evaluated.6 The 

prognostic value of the Duke Prognostic Coronary Artery Disease Index was assessed and 

event rates for all cause mortality ranging between 0.3% for none or mild atherosclerosis 

(stenosis <50%) to 15% for mild to moderate left main disease were observed in a period 

of 2 years. Similar findings were reported in smaller studies by Gilard et al and Pundziute 

et al.5, 7 Furthermore, recently published results from our current prospective registry have 

demonstrated an incremental prognostic value of MSCTA over myocardial perfusion imag-

ing using single photon emission computed tomography.12 

To our knowledge the current study is the first study assessing the incremental prognostic 

value of both stenosis severity and plaque composition on MSCTA over CS. In a previous 

study however, the incremental value of plaque burden, derived by non-invasive coronary 

angiography with electron beam computed tomography, over CS was assessed by Ostrom 

and colleagues.34 The authors showed that plaque burden, defined as the number of non-

significantly or significantly diseased vessels, had independent and incremental value in 

predicting all-cause mortality independent of age, gender, conventional risk factors, and CS. 

Similar findings were recently reported by Rubinshtein et al.8 Accordingly, in combination 

with our own observations, it appears that non-invasive measures of the extent and severity 

of stenosis provide incremental prognostic information over CS.

Importantly, assessment of plaque composition may further enhance risk stratification. 

However, only limited prospective data are available addressing the potential relationship 

between plaque composition on MSCTA and outcome. When exploring plaque composi-

tion in the current study, the number of segments with non-calcified plaque as well as the 

number of segments with mixed plaque was shown to be independently associated with 

increased risk for events. Interestingly, no such relation was observed for the number of seg-

ments with calcified plaque. An explanation may be that CS is more accurate at quantifying 
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calcium burden. Furthermore when regarding only the number of calcified plaques on 

MSCT the calcium in mixed plaques is disregarded. Secondly, another explanation may be 

that non-calcified plaque is more important from a prognostic standpoint. Currently two 

previous studies have addressed the prognostic value of plaque composition assessed by 

MSCTA.7, 12 Pundziute et al observed that the number of mixed plaques was a significant 

predictor when corrected for baseline clinical variables.7 In addition, we recently showed 

that plaque composition on MSCTA provides incremental prognostic value over myocardial 

perfusion imaging.12 

Limitations

Even though the diagnostic accuracy of MSCTA is high, uninterpretable images are still 

encountered in a small percentage of patients due to motion because of high or irregular 

heart rates or breathing during the examination. It is however anticipated that the number of 

uninterpretable studies will continue to decrease with newer generation scanners. Another 

potential limitation of MSCTA is the use of iodinated contrast media. As a result MSCTA 

is contraindicated in patients with renal insufficiency or known hypersensitivity to iodine 

contrast media. Currently 64-slice MSCTA is still associated with a significantly higher radia-

tion exposure than CS, although the radiation dose of MSCTA will decrease with the use of 

dedicated dose reduction techniques that have recently become available.35-38 

Conclusion

Non-invasive anatomic imaging using CS and MSCTA is useful for the detection of ath-

erosclerosis; MSCTA however provides additional information to CS regarding stenosis 

severity and plaque composition. This additional information was shown to translate into 

incremental value for risk stratification.
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Abstract

The purpose of this study was to determine the prognostic value of CTA derived 

left ventricular (LV) function analysis and to assess its incremental prognostic value 

over the detection of significant stenosis using CTA. In 728 patients (400 males, 

mean age 55 ± 12 years) with known or suspected CAD the presence of significant 

stenosis (≥ 50% stenosis) and LV function were assessed using CTA. LV end-systolic 

volume (LVESV), LV end-diastolic volume (LVEDV) and LV ejection fraction (LVEF) 

were calculated. LV function was assessed as a continuous variable and using cutoff 

values (LVEDV > 215 ml, LVESV > 90 ml, LVEF < 49%). The following events were 

combined in a composite end-point: all-cause mortality, non-fatal myocardial infarc-

tion, and unstable angina pectoris requiring hospitalization. On CTA, a significant 

stenosis was observed in 221 patients (30%). During follow-up [median 765 days, 

25th–75th percentile: 493–978) an event occurred in 45 patients (6.2%). After multi-

variate correction for clinical risk factors and CTA, LVEF < 49% and LVESV > 90 ml 

were independent predictors of events with an incremental prognostic value over 

clinical risk factors and CTA. In conclusion, the present results suggest that LV func-

tion analysis provides independent and incremental prognostic information beyond 

anatomic assessment of CAD using CTA. 
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Introduction

Multidetector computed tomography coronary angiography (CTA) has emerged as an impor-

tant non-invasive imaging modality by providing direct anatomic assessment of coronary 

artery disease (CAD).1-3 Recently, several studies have shown that, in addition to its value for 

the diagnosis of CAD, stenosis detection with CTA may also be useful for risk stratification.4-7 

Furthermore, besides the assessment of coronary anatomy, left ventricular (LV) function may 

be evaluated using information derived from the same CTA data set.8-10 LV function is an 

established prognostic marker, as has been demonstrated using several imaging modalities 

including left ventriculography, echocardiography, magnetic resonance imaging (MRI) and 

single photon emission computed tomography (SPECT).11-14 However, no data are currently 

available concerning the prognostic significance of CTA derived LV function assessment. The 

purpose of the present study was therefore to determine the prognostic value of CTA derived 

LV function analysis and to assess its incremental prognostic value over the detection of 

significant coronary artery stenosis using CTA.

Methods

The study group consisted of consecutive patients with suspected or known CAD who were 

clinically referred for CTA because of chest pain, a positive or inconclusive exercise elec-

trocardiogram (ECG) test, or an elevated risk profile for cardiovascular disease. The study 

population is part of a large ongoing registry exploring the prognostic value of CTA.15 For the 

current analysis, only patients with a CTA examination of diagnostic image quality and with 

additional LV function data were included. Exclusion criteria for CTA examination were: 1) 

(supra)ventricular arrhythmias, 2) renal failure (glomerular filtration rate < 30 ml/min), 3) 

known allergy to iodine contrast material, 4) severe claustrophobia or 5) pregnancy.

CTA Data Acquisition

CTA studies were performed using a 64-row (n=647) or 320-row (n=81) multidetector 

scanner (Aquilion 64, and Aquilion ONE, respectively, Toshiba Medical Systems, Otawara, 

Japan). One hour prior to the examination, a single dose of oral beta-blocker medication 

was administered to patients with a heart rate ≥ 65 bpm, unless contraindicated. Based on 

a pre-defined beta-blocking medication administration protocol, patients with a heart rate 

between 65 and 75 bpm received 50 mg metoprolol while patients with a heart rate ≥ 75 

bpm received 100 mg metoprolol. The total amount of non-ionic contrast media (Iomeron 

400; Bracco, Milan, Italy) injected into the antecubital vein was 60-100 ml (depending on 

body weight and scanner type) at a flow rate of 5.0 ml/s or 6.0 ml/s, followed by a saline 

flush of 25-50 ml. In order to synchronize the arrival of the contrast media, bolus arrival was 
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detected using a real-time bolus tracking technique.16 All images were acquired during a 

single inspiratory breath-hold of maximally 12 seconds. For 64-row CTA, a helical-scanning 

technique was used as previously described.17, 18 In brief, during the scan, the ECG was 

registered simultaneously for retrospective gating of the data. A collimation of 64 x 0.5 

mm was used. Additional scan parameters were: 400 ms or 500 ms gantry rotation time 

depending on cardiac frequency, 120 kV tube voltage and 300-350 mA (depending on 

body-mass index (BMI) and thoracic geometry). During 320-row CTA, the ECG was regis-

tered simultaneously for prospective triggering of the data. In order to perform LV function 

analysis, ECG-triggered tube modulation was used, as previously described.19 

The entire heart was imaged in a single heart beat, attaining maximal tube current during 

75% of R-R interval (in patients with stable heart rate < 60 beats per minute (bpm)), during 

65-85% of R-R interval (in patients with a heart rate 60-65 bpm) or during 30-80% of R-R 

interval (in patients with a heart rate >65 bpm). Outside the pre-defined interval, tube current 

was 25% of the maximal tube current. In patients with a heart rate > 65 bpm images were 

acquired during multiple heart beats (typically two). A collimation of 320 x 0.5 mm was used. 

Additional scan parameters were: 350 ms gantry rotation time, 120-135 kV tube voltage and 

400-580 mA (depending on BMI and thoracic geometry). For the 64-row CTA scanner, the 

estimated average radiation dose for CTA was 17.6 ± 5.6 mSv. For the 320-row CTA scanner, 

the estimated average radiation dose for single heart beat CTA’s using ECG-triggered tube 

modulation was 10.7 ± 3.6 mSv. In patients in whom CTA image acquisition was performed 

during multiple heart beats average estimated radiation dose was 16.7 ± 6.3 mSv.

Coronary arteries were evaluated using the reconstruction dataset with the least motion 

artifacts, typically acquired during an end-diastolic phase. To assess LV function and LV 

volumes, 10 series of 2.0-mm slices were reconstructed from the same dataset at every 10% 

throughout the cardiac cycle, starting at early systole (0% of cardiac cycle) to end-diastole 

(90% of cardiac cycle).

Data Analysis

CTA and LV function reconstructions were transferred to a remote workstation with dedicated 

analysis software (for 64-row CTA reconstructions: Vitrea 2, Vital Images, Minnetonka, MN, 

USA; for 320-row CTA reconstructions: Vitrea FX 1.0, Vital Images, Minnetonka, MN, USA). 

The presence of coronary stenosis was assessed by scrolling through axial images, combined 

with visual assessment of curved multiplanar reconstructions in ≥ 2 orthogonal planes. CTA 

examinations were evaluated on a patient basis for the presence of a significant stenosis 

(≥ 50% luminal narrowing) by two experienced observers. Discrepancies in interpretation 

were resolved by consensus.
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For the purpose of LV function analysis, appropriate phases for LV end-systolic volume 

(LVESV) and LV end-diastolic volume (LVEDV) were acquired, by selecting the smallest and 

largest cross-sectional LV cavity areas respectively. Upper limit of the LV was determined 

at the basal level of the mitral valve and the start of the LV outflow tract, as previously 

described.20 Endocardial borders were outlined using a semi-automated method from the 

base to the apex on the short-axis cine images by an independent observer. Papillary muscles 

were excluded from the ventricular cavity. The LVEDV and LVESV volumes were calculated 

and the LVEF was derived by subtracting the LVESV from the LVEDV and dividing the result 

by the LVEDV.9 Observers for LV function analysis were blinded to CTA data.

End-points

Patient follow-up data were gathered by a single observer, blinded to the baseline CTA 

results, using clinical visits and/or standardized telephone interviews. A composite end-

point was constructed using the following events: all-cause mortality, non-fatal myocardial 

infarction, and unstable angina pectoris requiring hospitalization. Non-fatal infarction was 

defined based on criteria of typical chest pain, elevated cardiac enzyme levels, and typical 

changes on the ECG.21 Unstable angina was defined according to the European Society of 

Cardiology guidelines as acute chest pain with or without the presence of ECG abnormali-

ties, and negative cardiac enzyme levels.22

Statistical Analysis

Statistical analysis was performed using SPSS software (version 16.0, SPSS Inc., Chicago, Illinois). 

Quantitative data were expressed as mean ± standard deviation (SD). Categorical variables 

were described as numbers and percentages. Cox regression analysis was used to determine 

the prognostic value of the presence of significant stenosis and LV function parameters on CTA. 

First, univariate analysis of baseline characteristics, the presence of significant stenosis and LV 

function parameters was performed using a composite end-point of all-cause mortality, non-fatal 

infarction, and unstable angina. For each variable, a hazard ratio (HR) with a 95%-confidence 

interval (CI) was calculated. Increased LVEDV and LVESV were defined as LVEDV > 215 ml, 

LVESV > 90 ml and reduced LVEF was defined as LVEF < 49%, as described previously.23 These 

values were determined using the 95% confidence interval boundaries for 3-dimensional LV 

dimensions and function as determined by CTA.23 After univariate analysis, several multivariate 

models were created to correct LV function parameters for clinical risk factors and the presence 

of significant stenosis on CTA. In case variables showed strong interrelation (Pearson’s correla-

tion coefficient >0.8), variables were excluded from the same multivariate model. Finally, the 

incremental value of LV function variables over clinical risk factors (age, gender, smoking and 

known CAD) and the presence of significant stenosis on CTA was assessed by calculating the 

global chi-square values. A p-value < 0.05 was considered statistically significant.
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Results

From the registry, additional LV function measurements (derived from CTA) were available 

in 813 patients. In 29 patients (3.6%) the CTA examination was of non-diagnostic image 

quality and these patients were excluded from the study. Furthermore, a total of 56 patients 

(6.9%) were lost to follow up. As a result, the patient group consisted of 728 individuals. The 

main clinical characteristics of the population are listed in Table 1. In summary, 55% was 

male and the mean age was 55 ± 12 years.

Baseline CTA and LV function

In the study population of 728 patients, a significant stenosis (luminal narrowing ≥ 50%) was 

identified on CTA in 221 patients (30%). When evaluating LV volumes, an average LVEDV 

of 138 ± 38 ml was observed. For LVESV an average value of 52 ± 29 ml was observed. As a 

result, average LVEF was 64 ± 10%. Increased LVEDV (> 215 ml) and LVESV (> 90 ml) were 

present in 31 patients (4.3%) and 50 patients (6.9%), respectively. A reduced LVEF (< 49%) 

was present in 43 patients (7.3%).

Follow-up

The median follow-up period was 765 days (25th–75th percentile: 493–978); an event 

occurred in 45 patients (6.2%). All-cause death was reported in 23 patients (3.2%), non-fatal 

myocardial infarction occurred in 7 patients (1.0%), and 15 patients (2.0%) were admitted 

to the hospital due to unstable angina.

Table 1. Patient characteristics

Gender (male / female) 328 / 400
Age (years) 55 ± 12
Reason for Referral
 Typical chest pain 83 (12%)
 Atypical chest pain 189 (26%)
 Non-anginal chest pain 132 (18%)
 Elevated risk profile 213 (29%)
 Positive or inconclusive exercise ECG 111 (15%)
Clinical Risk Factors
 Diabetes 222 (31%)
 Hypercholesterolemia 261 (36%)
 Hypertension 317 (44%)
 Family history of coronary artery disease 309 (42%)
 Smoking 137 (19%)
 Obesity (BMI ≥ 30 kg/m2) 143 (20%)
 Known CAD 96 (13%)
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Survival Analysis

Univariate analysis of clinical risk factors, significant stenosis on CTA and LV function 

analysis parameters is depicted in Table 2. Of the clinical risk factors, age, smoking and 

known CAD were significant predictors of events. Also, the presence of a significant stenosis 

on CTA was identified as a significant predictor of events. Regarding LV function, all three 

parameters (LVEDV, LVESV and LVEF) were significant univariate predictors when assessed 

as continuous variables and categorical variables, using predefined cutoff values.

Multivariate models were created correcting for clinical risk factors (age, gender, smoking 

and known CAD) and significant stenosis on CTA. The prognostic value of LV volumes and 

LVEF are shown in Table 3. A total of six models were created. In the first three models 

LVEDV, LVESV and LVEF were assessed as continuous variables. In the last three models the 

predictive value of LV function was determined using the pre-defined cutoff values to indi-

cate reduced LV function. Although none of the continuous LV function variables remained 

independent predictors of events, using the pre-defined cutoff values as markers for reduced 

LV function, increased LVESV and reduced LVEF provided additional prognostic information 

over clinical risk factors (age, gender, smoking, known CAD) and significant stenosis on 

CTA. Figure 1 illustrates the incremental prognostic value, depicted by chi-square value, of 

LVESV > 90 ml over age, gender, smoking, known CAD and significant stenosis on CTA (p < 

Table 2. Univariate predictors of events

HR (95%-CI) p-value
Baseline clinical Characteristic
 Age 1.04 (1.01-1.07) 0.005
 Male gender 1.36 (0.75-2.49) 0.315
 Diabetes 1.03 (0.55-1.93) 0.939
 Hypercholesterolemia* 0.73 (0.38-1.39) 0.333
 Hypertension† 0.89 (0.53-1.73) 0.958
 Family history of coronary artery disease‡ 0.61 (0.32-1.15) 0.125
 Smoking 2.31 (1.25-4.25) 0.007
 Obesity (BMI ≥ 30 kg/m2) 0.55 (0.22-1.39) 0.205
 Known CAD 2.74 (1.46-5.13) 0.002
CTA
 Significant stenosis 3.52 (1.59-7.83) 0.002
LV function (continuous)
 LVEDV (per 10 ml increase) 1.07 (1.00-1.14) 0.048
 LVESV (per 10 ml increase) 1.10 (1.03-1.18) 0.006
 LVEF (per % increase) 0.97 (0.94-0.99) 0.006
LV function (categorical)
 LVEDV > 215 ml 2.89 (1.22-6.86) 0.016
 LVESV > 90 ml 3.95 (1.99-7.84) <0.001
 LVEF < 49% 3.82 (1.93-7.57) <0.001
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0.05). Similarly, Figure 2 shows that LVEF < 49% has incremental value (p < 0.05), and thus 

enhanced risk stratification beyond the detection of significant stenosis using CTA.

Discussion

The main finding of the current study is that CTA derived LV function may provide important 

prognostic information beyond the detection of significant stenosis on CTA.

Table 3. Multivariate models for the prediction of events

HR (95%-CI) p-value
LV function (continuous)
 LVEDV (per 10 ml increase) 1.05 (0.99-1.13) 0.123
 LVESV (per 10 ml increase) 1.06 (0.98-1.15) 0.119
 LVEF (per % increase) 0.98 (0.96-1.01) 0.177
LV function (categorical)
 LVEDV > 215 ml 1.98 (0.79-4.95) 0.143
 LVESV > 90 ml 3.11 (1.45-6.67) 0.004
 LVEF < 49% 2.61 (1.22-5.60) 0.014

 54

13.1 

 
Figure 1. Bar graph illustrating the incremental prognostic value (depicted by chi-square values on the y-axis) 
of LVESV > 90 ml over age, gender, smoking, known CAD and significant stenosis. The presence of significant 
stenosis on CTA has a significant incremental prognostic value over age, gender, smoking and known CAD (*). A 
further incremental prognostic value over clinical risk factors and significant stenosis on CTA is observed with the 
addition of LVESV > 90 ml (#).
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LV volumes and LVEF are used extensively as clinical markers of cardiac function. In patients 

with known CAD, LV function analysis provides important information for risk assessment 

and further management.11, 24 Post myocardial infarction patients with a normal LVEF have a 

relatively good prognosis, whereas the risk of future events has been shown to increase with 

deteriorating LVEF.25 LV function analysis may also be useful in patients with suspected CAD. 

Using 2-dimensional echocardiography in 2,948 patients without prevalent CAD, Devereux 

and colleagues showed that LVEF < 40% was a strong predictor of cardiovascular death (RR 

6.9, CI 3.0-15.9, p<0.001) and all-cause mortality (RR 4.8, CI 2.8-8.1, p<0.001), indepen-

dent of clinical risk factors.12 In a study by Sharir and colleagues, evaluating 1680 patients 

referred for gated SPECT, LVEF < 45% and ESV > 70 ml were identified as optimal thresholds 

to accurately stratify patients into high risk and low risk groups.14 Importantly, patients with 

a normal LVEF or LVESV had a substantially lower annual mortality rate (regardless of the 

degree of perfusion abnormalities on SPECT) than patients with reduced LVEF or increased 

LVESV. In the current study, the prognostic value of LV function measurements on CTA was 

evaluated. LV volumes and LVEF provided prognostic information independent of baseline 

clinical variables. These findings illustrate that measurements of LV function (and volumes) 

from CTA acquisitions can be beneficial in defining patient risk and if available, should be 

incorporated into the clinical report.

 55

13.2 

 

 
Figure 2. Bar graph illustrating the incremental prognostic value (depicted by chi-square values on the y-axis) of 
LVEF < 49% over age, gender, smoking, known CAD and significant stenosis on CTA. The presence of significant 
stenosis on CTA has a significant incremental prognostic value over age, gender, smoking and known CAD (*). A 
further incremental prognostic value over clinical risk factors and significant stenosis on CTA is observed with the 
addition of LVEF < 49% (#).
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Importantly, patients undergoing CTA are primarily referred for assessment of CAD. As 

this anatomic information has been established to provide prognostic information, (4-6 an 

important objective of the current study was to determine the additional value of LV function 

analysis beyond the detection of significant CAD. Limited information is available regarding 

the additional prognostic value of LV function over the non-invasive angiographic assess-

ment of CAD using CTA. In a recent study by Min and colleagues, evaluating 5330 consecu-

tive patients without known CAD with a mean follow up of 2.3 ± 0.6 years, the addition of 

LV function measured by CTA significantly increased risk correlation for death. Annualized 

mortality rates in patients with significant CAD and LVEF ≤ 50% was significantly higher 

(3.79%) than in patients with significant CAD and LVEF > 50% (1.76%).26 Furthermore, 

Chow and co-workers recently determined the incremental prognostic value of LV function 

measured with CTA in 2,076 consecutive patients with a mean follow up of 16 ± 8 months. 

It was shown that LVEF had incremental prognostic value over CAD severity (HR 1.47, 95% 

CI 1.17-1.86).27 These data indicate that LV function is an important predictor of survival 

with incremental value to CTA. In line with these results, the present study suggests that, 

although the assessment of significant CAD on CTA is a powerful predictor, LV function 

parameters provide independent incremental value in predicting adverse events. Thus, the 

addition of LV function analysis to CTA may further improve risk stratification of patients 

with known of suspected CAD referred for stenosis detection.

Limitations

Several limitations of the present study merit consideration. First, 6.9% of patients were lost 

to follow-up. Second, regional wall motion abnormalities were not assessed in the present 

study. Third, the present study is limited by a relatively small patient number. Fourth, CTA 

is inherently associated with radiation exposure.28 As a result, prospective ECG triggering 

was recently introduced for the purpose of radiation reduction.29, 30 This technique allows 

image acquisition during a small portion of the cardiac cycle which significantly reduces the 

radiation exposure. However, as a result data are no longer acquired throughout the entire 

cardiac cycle, thereby eliminating the possibility of simultaneous LV function analysis from 

the same dataset. Although LV function may still be assessed, it has become at the expense 

of increased radiation exposure, also when using ECG-triggered tube current modulation. 

Therefore, the necessity of LV function analysis using CTA should be carefully weighed 

against the increase in radiation burden. Importantly, LV function analysis may also be 

performed using radiation free modalities, such as echocardiography or magnetic resonance 

imaging. Accordingly, although in the present study LV function was derived from CTA, LV 

function analysis may enhance risk stratification beyond the presence of significant stenosis 

on CTA regardless of the modality used to derive this information. Additional studies are 

warranted to gain better understanding of the integration of angiographic and LV function 

data to refine risk stratification.
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Conclusion

The present results suggest that LV function analysis provides independent and incremental 

prognostic information beyond anatomic assessment of CAD using CTA.
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Abstract

The purpose of this study was to assess whether MSCTA may be useful for risk 

stratification of patients with suspected CAD at intermediate pre-test likelihood 

according to Diamond and Forrester. MSCTA images were evaluated for the pres-

ence of significant CAD in 316 included patients (60% male, average age 57±11 

years) with suspected CAD and an intermediate pre-test likelihood according to 

Diamond and Forrester. Patients were followed in time for the occurrence of an 

event. A combined endpoint of all cause mortality, non-fatal infarction, and unstable 

angina requiring revascularization. Significant CAD was observed in 89 patients 

(28%), whereas normal MSCTA or non-significant CAD was observed in the remain-

ing 227 (72%) patients. During follow-up (median 621 days (95%-confidence interval: 

408-835) an event occurred in 13 patients (4.8%). The annualized event rate was 0.8% 

in patients with normal MSCT, 2.2% in patients with non-significant CAD and 6.5% 

in patients with significant CAD. Moreover, MSCTA remained a significant predictor 

(p<0.05) of events after multivariate correction. In conclusion, our results suggest 

that in an intermediate pre-test likelihood population, MSCTA is highly effective in 

re-stratifying patients into either a low or high post-test risk group. These results fur-

ther emphasize the usefulness of non-invasive imaging with MSCTA in this patient 

population.
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Introduction

Coronary artery disease (CAD) is a leading cause of mortality and morbidity worldwide. 

The diagnosis and management of this disease is increasingly dependent on non-invasive 

imaging strategies. With the introduction of multi-slice computed tomography coronary 

angiography (MSCTA) non-invasive assessment of coronary anatomy has become possible, 

allowing early identification of atherosclerosis. MSCTA has a high diagnostic accuracy 

for the detection of significant CAD (≥50% luminal narrowing) on conventional coronary 

angiography, 1-7 and may be particularly useful for diagnosis in patients with an intermediate 

pre-test likelihood for significant CAD.8 Although the prognostic value of MSCTA has been 

evaluated in previous studies (7, 9-16 , no studies have specifically addressed the target popu-

lation for MSCTA. The purpose of this study therefore was to assess if MSCTA may be useful 

for risk stratification in patients with suspected CAD and an intermediate pre-test likelihood.

Methods

The study population consisted of 331 patients with suspected CAD and an intermediate 

pre-test likelihood. Patients were clinically referred for further cardiac assessment as part of 

an ongoing study protocol addressing the prognostic value of MSCTA. From this prospective 

registry, results addressing the incremental prognostic value of MSCTA over myocardial 

perfusion imaging have been recently published.13 

Baseline clinical demographic values were recorded from the electronic patient file based 

on physician documented history. Symptoms were classified as typical angina, atypical 

angina, non-anginal chest pain and asymptomatic. Typical anginal chest pain was defined 

as combination of: 1) discomfort in the anterior chest, neck, shoulders, jaw, or arms; 2) 

precipated by phycial exertion or psychic stress; and 3) relieved by rest or nitroglycerin 

within minutes. Atypical chest pain was defined as chest pain with two 2 of these 3 factors 

and non-anginal chest pain was defined as chest pain with less than 2 of these 3 factors.17 

Pre-test likelihood was defined according to Diamond and Forrester criteria which are based 

on age, gender and symptomatic status.18 Intermediate likelihood was defined as a pre-test 

likelihood between 13.4 and 87.2%. In addition, asymptomatic diabetic patients were also 

classified as having an intermediate pre-test likelihood according to the increased preva-

lence of CAD and increased risk of events in this population.19-21 Exclusion criteria were: 

cardiac arrhythmias, renal insufficiency (defined as a glomerular filtration rate <30 ml/min), 

known hypersensitivity to iodine contrast media, and pregnancy. In addition, patients with 

an uninterpretable MSCTA examination were excluded from further analysis. The study was 

approved by the local ethics committee in both participating centers.
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Patients were scanned using a 64-slice CT scanner (Aquillion64, Toshiba Medical Systems, 

Tokyo, Japan; General Electrics LightSpeed VCT, Milwaukee, WI, US; or Sensation64, 

Siemens, Forchheim, Germany). For each patient, the heart rate and blood pressure were 

monitored before the scan. In the absence of contraindications, patients with a heart rate 

exceeding the threshold of 65 beats per minute were administered beta-blocking medication 

(50-100 mg metoprolol, oral or 5-10 mg metoprolol, intravenous). The contrast enhanced 

helical scan was performed using 80-140 ml of non-ionic contrast agent (Xenetix 300; 

Iomeron 400; or Iodixanol 370) administered at a flow rate of 3.5-5 ml/s followed by a 

bolus of saline flush (30-50 ml at 3.5-5 ml/s). All scan parameters have been previously 

published.22-24 

Datasets were reconstructed from the retrospectively gated raw data. Images were recon-

structed with an effective slice thickness of 0.3, 0.5 or 0.625 mm with the Toshiba, Siemens, 

and GE systems respectively. Coronary arteries were evaluated using the reconstruction 

dataset with the least motion artifacts, typically an end-diastolic phase. Post-processing was 

performed on dedicated workstations (Vitrea2, Vital Images, USA , Advantage, GE health-

care, USA, Leonardo, Siemens, Germany). The interpretation of MSCTA angiograms was 

performed in a standardized manner using the axial slices, curved multiplanar reconstruc-

tions (MPR), and maximum intensity projections (MIP). MSCTA examinations were scored on 

a patient basis by two experienced observers in each center, based on the maximum luminal 

diameter stenosis. Discrepancies in interpretation were resolved by consensus. Normal 

MSCTA was defined as completely normal anatomy, non-significant stenosis was defined 

as the presence of luminal narrowing with a maximal luminal diameter stenosis <50%, 

and significant stenosis was defined as the presence of an atherosclerotic lesion exceeding 

the threshold of ≥50% luminal narrowing. The effective dose of the CS and MSCTA scans 

was estimated from the product of the dose-length product and an organ weighing factor 

[k=0.014 mSv x (mGy x cm)-1] for the chest as the investigated anatomical region.25 

Patient follow-up data were gathered using clinical visits or standardized telephone 

interviews. The following events were regarded as clinical endpoints: all cause mortality, 

non-fatal myocardial infarction, and unstable angina requiring revascularization. Two 

combined endpoints were used: a combined endpoint of all events; and a combined hard 

endpoint including only all cause mortality and non-fatal myocardial infarction. Non-fatal 

infarction was defined based on criteria of typical chest pain, elevated cardiac enzyme 

levels, and typical changes on the ECG. Unstable angina was defined according to the 

European Society of Cardiology guidelines as acute chest pain with or without the presence 

of ECG abnormalities, and negative cardiac enzyme levels.26 Patients with stable complaints 

undergoing an early elective revascularization within 60 days after MSCTA were excluded 

from the survival analysis.
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Continuous variables were expressed as mean and standard deviation, and categorical 

baseline data were expressed in numbers and percentages. Cox regression analysis was used 

to determine the prognostic value of MSCTA. First univariate analysis of baseline clinical 

variables and MSCTA variables was performed using a composite endpoint of all cause 

mortality, non-fatal infarction, and unstable angina requiring revascularization. For each 

variable a hazard ratio with a 95%-confidence interval (95%-CI) was calculated. Finally a 

multivariate model was created using backward stepwise selection to assess the independent 

predictive value of MSCTA corrected for baseline clinical variables. At each step, the least 

significant variable was discarded from the model, until all variables in the model reached 

a p-value <0.25.

Cumulative event rates for MSCTA were obtained by the Kaplan-Meier method, and the 

survival curves were compared using the log-rank test. Statistical analyses were performed 

using SPSS software (version 12.0, SPSS Inc, Chicago, IL, USA). A p-value <0.05 was con-

sidered statistically significant.

Results

Patient characteristics

The study population, derived from our prospective registry, 27 consisted of 331 patients 

with suspected CAD and an intermediate pre-test likelihood. The MSCTA examination was 

uninterpretable in 15 patients (4.5%). Reasons for uninterpretability were the presence of 

motion artifacts, increased noise due to high body mass index, and breathing. After exclu-

sion of these patients, a total of 316 patients remained for analysis. The average age of 

the study cohort was 57±11 years and 60% of patients were men. Patients presented with 

asymptomatic diabetes (25%) non-anginal chest pain (22%), atypical chest pain (48%), and 

typical chest pain (5%). A complete overview of the baseline characteristics of the study 

population is presented in Table 1.

MSCT results

During MSCTA image acquisition, an average heart rate of 63±10 beats per minute was 

recorded. MSCTA was classified as normal in 85 (27%) of patients. Atherosclerosis was 

detected in the remaining 231 (73%) patients, classified as non-significant CAD (<50% 

luminal narrowing) in 142 (45%) and significant CAD (≥50% luminal narrowing) in 89 

(28%) patients.(Figure 1) The estimated average radiation dose for the coronary angiogra-

phy protocol was 18.1±5.9 mSv and the estimated radiation dose for the CS protocol was 

1.4±0.6 mSv.
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Follow-up results

In total, 26 (8%) patients were lost to follow-up and 21 (7%) patients underwent early 

revascularization. In the remaining 269 patients the median follow-up time achieved was 

621 days (25-75th percentile: 408-835). During the follow-up period an event occurred 

in 13 patients (5%). All cause mortality was reported in 5 patients (2%), whereas non-fatal 

myocardial infarction occurred in 3 patients (1%) and 5 patients (2%) were revascularized 

due to unstable angina pectoris. In the excluded patients with an early revascularization 

myocardial infarction occurred in 1 of 21 patients.

Table 1. Patient characteristics.

Gender (male) 190 (60.1%)
Age (yrs) 57±11
Risk Factors
 Diabetes 127 (40.2%)
 Hypertension 174 (55.1%)
 Hypercholesterolemia 125 (39.6%)
 Family history CAD 123 (38.9%)
 Current Smoking 102 (32.3%)
 Obesity (BMI ≥ 30) 71 (22.5%)
Symptoms
 Asymptomatic 78 (24.7%)
 Dyspnoea 34 (10.8%)
 Non-anginal chest pain 36 (11.4%)
 Atypical chest pain 151 (47.8%)
 Typical chest pain 17 (5.4%)

 56
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 Figure 1. Pie chart illustrating the distribution of MSCTA findings.
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Event rates

In patients with a normal MSCTA an annualized event rate (annualized event rate for hard 

events between parentheses) of 0.8% (0%) was observed, while in patients with athero-

sclerosis (non-significant and/or significant CAD) the annualized event rate was 3.5% 

(2.6%). Significant CAD (≥50% luminal narrowing) on MSCTA resulted in an event rate of 

6.5% (4.6%). The total event rates (all cause mortality, non-fatal myocardial infarction and 

unstable angina requiring revascularization) and the hard event rates (all cause mortality 

and non-fatal myocardial infarction) in all patients and stratified according to MSCTA are 

shown in Figure 2.

 57

14.2.a 
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14.2.b 

 

Figure 2. The annualized event rate in all patients and stratified according to MSCTA results. Panel A: Bar graph 
for all events (all cause mortality, non-fatal myocardial infarction, and unstable angina requiring revascularization); 
Panel B: Bar graph for hard events (all cause mortality, and non-fatal myocardial infarction).
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Survival analysis

Baseline univariate predictors of events are listed in Table 2. Significant CAD (≥50% luminal 

narrowing) was the best univariate predictor of events with a hazard ratio of 3.9 (95%-con-

fidence interval: 1.3-11.7). After correcting for smoking in a multivariate model this variable 

remained an independent predictor of events.Table 2) The Kaplan-Meier survival analysis 

in Figure 3 further illustrates the usefulness of ≥50% luminal narrowing on MSCTA as a 

cutoff for risk stratification. A significant difference (Logrank P-value 0.008) in survival was 

observed between patients with normal or non-significant CAD and patients with significant 

CAD (≥50% luminal narrowing) on MSCTA. Similar results were obtained when using a 

combined hard endpoint of all cause mortality and non-fatal myocardial infarction (Logrank 

P-value 0.0077).(Figure 3)

Discussion

The main finding of the current study is that in an intermediate pre-test likelihood popula-

tion, MSCTA has a good prognostic value and may effectively identify patients at higher or 

lower risk for coronary events. These results further emphasize the usefulness of non-invasive 

imaging with MSCTA in this patient population.

MSCTA is increasingly used in the diagnosis of CAD, and may be specifically useful for the 

rule out of CAD. The diagnostic accuracy of MSCTA has been studied extensively, and in 

early single center studies an average weighted sensitivity of 97.5 (95%-confidence interval 

96-99) and specificity of 91 (95%-confidence interval 87.5-95) has been observed.5 More 

recently several prospective multi-center studies have been published showing similar 

Table 2. Univariate and Multivariate predictors of events.

Univariate analysis Multivariate analysis
HR (95%-CI) p-value HR (95%-CI) p-value

Risk factors
 Gender (male) 0.84 (0.28-2.50) 0.754
 Age (yrs) 1.00 (0.95-1.05) 0.814
 Diabetes 0.98 (0.32-3.01) 0.981
 Hypertension 0.85 (0.28-2.55) 0.781
 Hypercholesterolemia 1.25 (0.42-3.72) 0.685
 Family history CAD 0.96 (0.31-2.95) 0.951
 Current Smoking 2.54 (0.85-7.57) 0.093
 Obesity (BMI ≥ 30) 1.27 (0.34-4.65) 0.714
MSCTA
 Atherosclerosis 4.71 (0.61-36.30) 0.136
 Significant CAD 3.92 (1.31-11.68) 0.014 3.46 (1.14-10.48) 0.028
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sensitivities and specificities.1, 3, 4 Importantly however, in the majority of these diagnostic 

accuracy studies patients were included who were referred for conventional diagnostic 

coronary angiography and thus with high pre-test probability. Accordingly, when inter-

preting these observations, it is important to take into account the pre-test probability, as 

according to Bayes theorem, pre-test probability may have a major influence on the positive 

and negative predictive value. With increasingly higher pre-test probability, the prevalence 

of disease is higher and as a consequence the positive predictive value will increase, with a 

subsequent decrease in negative predictive value. Conversely, in lower pre-test probability 

populations, with lower disease prevalence, positive predictive value will decrease, but 

negative predictive value will improve. 

The relationship between pre-test probability and the diagnostic accuracy of MSCTA was 

recently studied by Meijboom et al. among patients with a high, intermediate, or low pre-

test likelihood. In patients with a high pre-test likelihood for CAD, the post-test probability 

 59

14.3 

 Figure 3. Kaplan-Meier survival curves in patients with normal or non-significant CAD (<50% luminal narrowing) 
compared to patients with significant CAD (≥50% luminal narrowing). Panel A: Kaplan-Meier curves for all events 
(all cause mortality, non-fatal myocardial infarction, and unstable angina requiring revascularization); Panel B: 
Kaplan-Meier curves for hard events (all cause mortality, and non-fatal myocardial infarction).
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for significant CAD after MSCT was not substantially different from the pre-test probability. 

As a result, a normal examination did not result in sufficient reduction of post-test prob-

ability to reliably rule out the presence of significant CAD. These observations indicate that 

the clinical value of MSCTA is limited in this patient group. In contrast, in patients with a low 

and intermediate pre-test likelihood, a negative MSCTA scan was able to reduce the post 

test probability of CAD to 0%.28 The effectiveness of MSCTA in patients with an intermedi-

ate pre-test likelihood was also confirmed by Henneman et al.29 The authors assessed the 

prevalence of completely normal MSCTA, and thus the efficacy to rule out CAD, in patients 

with suspected CAD and related these observations to the pre-test likelihood of CAD. The 

authors showed that normal MSCTA was observed in only 17% of patients with a high pre-

test likelihood further underlining the limited clinical value in those patients. Conversely, 

MSCTA was able to rule out the presence of atherosclerosis in 33% of patients with an 

intermediate pre-test likelihood.

However, in addition to diagnosis, prognostification is an important component of imag-

ing tests and determines subsequent management. Thus far, several prognostic studies 

have addressed the potential prognostic value of MSCTA. (7, 9-11, 13 However, most of these 

observations have been derived from heterogeneous patient populations including patients 

with known CAD. In several more recent publications the prognostic value of MSCT has 

been determined specifically in patients with suspected CAD.14-16 In the study by Carrigan 

et al. 227 patients without documented CAD were included.16 The absence of obstructive 

CAD was associated with a 99% freedom from cardiac death, myocardial infarction and 

revascularization during an average of 2.3 years of follow-up. In patients with one or more 

vessels with obstructive CAD a significantly increased event rate was observed (Log rank 

p-value 0.01). Similar findings were recently reported by Hadamitzky et al.14 

Although these observations underline the usefulness of MSCT for prognosis in patients 

with suspected CAD, dedicated data in the target population for MSCT, patients with an 

intermediate pre-test likelihood, are lacking. Importantly, the results of the current study 

confirm the prognostic value of MSCT in this particular patient population as MSCTA was 

shown to be highly effective for risk stratification. Indeed, hard event rates were <1% for 

patients without significant stenosis on MSCTA, indicating that these patients may be safely 

reassured. In contrast, the presence of a significant stenosis implied a substantially increased 

risk approaching 5% of coronary events. 

Limitations

Several limitations need to be acknowledged. Even though the diagnostic accuracy of MSCTA 

is high, uninterpretable images are still being encountered in a small percentage of patients 

due to motion because of high or irregular heart rates or breathing during the examination. It 
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is however anticipated that the number of uninterpretable studies will continue to decrease 

with newer generation scanners. Currently 64-slice MSCTA is still associated with a high 

radiation exposure, although the radiation dose of MSCTA will decrease with the use of 

dedicated dose reduction techniques that have recently become available.30-33 Importantly, 

low-dose computed tomography with prospective ECG-triggering has recently been shown 

to reduce radiation burden while maintaining diagnostic image quality and a high diagnos-

tic accuracy.34, 35 

Conclusion

These results suggest that in an intermediate pre-test likelihood population, MSCTA is highly 

effective in re-stratifying patients into either a low or high post-test risk group. These results 

further emphasize the usefulness of non-invasive imaging with MSCTA in this patient popu-

lation.
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Abstract

The purpose of this study was to evaluate the prognostic value of multi-detector 

computed tomography coronary angiography (MDCT-CA) in a diabetic population 

with known or suspected coronary artery disease (CAD) compared with non-

diabetic individuals. 313 type-2 Diabetes Mellitus (DM) patients, group I (males 

213; age 62±11 years), and 303 non DM patients, group II (males 203; age 63±11 

years), underwent 64-row MDCT with a non-contrast enhanced calcium score 

followed by CT angiography. MDCT-CA were retrospectively classified as normal, 

non-obstructive CAD (≤50% luminal narrowing, and obstructive CAD (>50% luminal 

narrowing). During follow-up after CTA, major events (cardiac death, nonfatal myo-

cardial infarction, and unstable angina requiring hospitalization) and total events 

(major events plus coronary revascularizations) were recorded in each patient. Cox 

proportional hazards analysis and Kaplan-Meier analysis were used to compare 

survival. The number of diseased segments (mean, 5.6 vs. 4.4, p=0.001) and the rate 

of obstructive CAD (>50% luminal narrowing (51% vs. 37%, p<0.001)) were higher 

in DM patients. Patients were followed for a mean of 20±5 (range 6-44) months. 

At multivariate analysis DM (p<0.001) and evidence of obstructive CAD (p<0.001) 

were independent predictors of outcome. Obstructive CAD remained a significant 

multivariate predictor both in DM and in non DM patients. Both in DM and non DM 

patients with absence of disease the event rate was 0%. The event rate increased to 

36% in non-DM patients with obstructive CAD and was highest (47%) in DM patients 

with obstructive CAD. In conclusion, both in DM and non DM patients, MDCT-CA 

provides incremental prognostic information over baseline clinical variables, and 

the absence of atherosclerosis on MDCT-CA is associated with an excellent progno-

sis. MDCT-CA might be a clinically useful tool to improve risk stratification in both 

DM and non DM patients.
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Introduction

Type-2 Diabetes Mellitus (DM) is a major public health concern. At present, 200 million 

people worldwide have DM and its prevalence is expected to continue increasing expo-

nentially.1 It is well established that DM is associated with coronary artery disease (CAD), 

cardiovascular disease and total mortality that is two-to-four times higher than that occurring 

in non-diabetic patients.2 Previous studies have shown that patients with DM but no history 

of CAD have a similar risk of cardiovascular death as non-diabetic patients who have a 

history of myocardial infarction (MI).3 In order to select appropriate management strategies, 

risk stratification is therefore essential in this population.

Due to the high prevalence of CAD, the role of coronary imaging in diabetic patients may 

not be to document the presence of coronary atherosclerosis but rather to identify those 

patients with more extensive disease versus those without any atherosclerosis. In patients 

with extensive CAD, further testing may be warranted to identify those with significant induc-

ible myocardial ischemia who may be candidates for coronary angiography and subsequent 

revascularization.4, 5 The prognostic utility of stress imaging studies, including myocardial 

perfusion scintigraphy and dobutamine stress echocardiography, have been validated in 

numerous studies and, in general, patients with a normal imaging study have an annual 

cardiac ischemic event rate of <1%. However this risk is increased more than two-fold in 

diabetic patients.6 Therefore, assessing prognosis in patients with DM remains challenging 

and further refinement of risk stratification is necessary in this high-risk population

Recently, multi-detector computed tomography coronary angiography (MDCT-CA) has 

emerged as a non-invasive tool for the diagnosis of CAD, which enables assessment of the 

vascular lumen together with the arterial wall. As a result, the technique allows accurate 

assessment of the presence or absence of CAD with sensitivity and negative predictive value 

near to 100%.7-11 Therefore the purpose of our study was to evaluate the prognostic value 

of MDCT-CA in a diabetic population with known or suspected CAD compared with non-

diabetic individuals that underwent MDCT-CA with the aim of excluding CAD. 

Methods

Study Group

The study group consisted of 646 eligible patients: 328 consecutive diabetic patients and 

318 consecutive non-diabetic patients. All patients were imaged between January 2005 

and June 2006, and were referred for further evaluation of suspected CAD on the basis 

of symptoms, elevated risk profile or abnormal diagnostic test results at the Azienda 

Ospedaliero-Universitaria di Parma, Italy, and at the Leiden University Medical Center, the 
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Netherlands. The study was a double-center prospective observational study as a part of 

a larger on-going registry. In all patients MDCT-CA was performed as part of the standard 

clinical diagnostic work up involving exercise electrocardiogram, myocardial scintigraphy, 

and/or echocardiography. The study was approved by the institutional review boards of both 

participating centers, and patients gave informed consent. 

From the 646 patients who had an MDCT-CA scan, 30 (5%) were lost to follow-up resulting 

in a final study cohort of 616 individuals. Of these 616 patients, 313 had DM while 303 

were without DM. At the baseline examination, demographic information, CAD risk factors, 

and clinical signs were collected by F.C., E.M., A.P., and J.D.S. 

History of CAD was defined as history of myocardial infarction or coronary revascular-

ization and/or presence of at least one angiographically documented coronary stenosis of 

>50% lumen narrowing. DM was defined as a fasting plasma glucose level of ≥126 mg/

dL treated currently with either diet intervention, oral glucose-lowering agents or insulin.12 

Information as to the following risk factors were acquired: systemic hypertension (blood 

pressure of ≥140/90 mmHg or the use of antihypertensive medication), 13 hypercholester-

olemia (total cholesterol level of ≥200 mg/dL or treatment with lipid-lowering drugs);(14 

obesity (body mass index of ≥30 kg/m2);(15 positive family history of CAD (presence of CAD 

in a first-degree female [<65 years] or male [<55 years] relative;(16 and smoking (previous or 

current smoking). We classified typical and atypical chest pain according to the criteria of 

Diamond.17 In the category “other symptoms” we included patients with dyspnea. 

Exclusion criteria for the scan were previous allergic reaction to iodine contrast medium, 

renal insufficiency (creatinine clearance <60 mL/min), pregnancy, respiratory impairment 

and unstable clinical status. 

MDCT-CA scan protocol

All examinations were performed with a 64-detector row CT scanner (Sensation 64, Sie-

mens, Forchheim, Germany or Aquilion 64, Toshiba Medical Systems, Tokyo, Japan). If the 

heart rate was >65bpm, oral or intravenous beta-blockers were provided when tolerated. 

In 511 patients (83%) sublingual nitroglycerin (0.3 mg) was also administered immediately 

prior to the exam to optimize visualization of small coronary vessels.

Examinations were performed as follows. First, a prospectively ECG triggered coronary 

calcium CT data set was obtained using standardized 20×1.2mm collimation for the Sie-

mens scanner and 4 × 3.0-mm collimation for the Toshiba scanner. Then, MDCT-CA was 

performed after administration of 100 ml of non ionic contrast material (Iomeprol 400mgI/

ml, Iomeron 400®, Bracco, Milan, Italy) at a flow rate of 4-6 ml/s depending on patient 
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status. All injections were performed by dual head power injector (Stellant®, MedRad, USA) 

via an antecubital vein and were followed by 50 ml of saline bolus chaser at the same flow 

rate. A bolus tracking technique was used to determine the initiation of CT data acquisition. 

Using the Siemens scanner MDCT-CA was performed with: collimation (32x2)×0.6mm, 

gantry rotation time 330ms, tube voltage 120kV, tube current 700-900mAs, pitch 0.24, and 

Field-of-view 140-160mm. The Toshiba protocol consisted of: 64 × 0.5-mm collimation, 

gantry rotation time 400ms, tube voltage 120 or 135 kV, tube current 300 mA (range 250 to 

400), and pitch 0.2 to 0.3. Datasets were reconstructed at least at two points of the cardiac 

cycle using a retrospective ECG gating algorithm (one diastolic cardiac phase usually at 

-350 msec from the R waves and one end-systolic phase at +275 msec). In the presence 

of motion artifacts, as in the case of cardiac arrhythmias, additional reconstructions were 

made at different time points of the R-R interval (steps of ±50ms). At the time of the study, 

tube current modulation was not used in both centers. The radiation dose estimated was 

15-21mSv. Axial data sets were transferred to a remote workstation for post-processing and 

subsequent evaluation.

MDCT-CA data analysis

An overall Agatston score was recorded for each patient. All MDCT-CA angiograms were 

evaluated by two experienced observers in each center (F.C. Radiologist with 9 years of 

experience in cardiac CT/coronary CTA interpretation, E.M. Radiologist with 4 years of 

experience in cardiac CT/coronary CTA interpretation, J.D.S. cardiovascular researcher with 

7 years of experience in cardiac CT/coronary CTA interpretation, and J.W.J. Interventional 

Cardiologist with 8 years of experience in cardiac CT/coronary CTA interpretation) unaware 

of the clinical history of the patients. Images were assessed on a dedicated workstation 

(MMWS®, Siemens Medical Solutions, Forchheim, Germany; Vitrea 2; Vital Images, Min-

netonka, Minnesota) using different software tools. Axial images, multiplanar reformats, 

coronary cross-section views, curved multiplanar reconstructions, maximum intensity 

projections and volume rendering of the coronary arterial circulation were used for the 

assessment. The individual readings were performed retrospectively in approximately 20 

sessions of 30 patients each. In case of disagreement, a joint reading was performed and 

a consensus decision was reached. All 16 coronary segments as established in the Ameri-

can Heart Association classification (18 were considered in the analysis. All interpretable 

segments were evaluated for the presence of any atherosclerotic plaque.19 Atherosclerotic 

lesions were classified visually as obstructive (>50% luminal narrowing) or non-obstructive 

(≤50% luminal narrowing).

Follow-up

All patients were followed up for a minimum of 6 months after the MDCT-CA examination. 

Telephone interviews were performed with each patient, with his or her direct relative or 
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with the referring physician to discuss symptoms, the occurrence of new events or coronary 

revascularization procedures, any change in clinical status, and hospital admission (E.M., 

S.S., J.D.S., J.M.vW.). Hospital records of all patients were carefully screened to confirm 

the information obtained (E.M., S.S., J.D.S., J.M.vW.). The principal study end-point was a 

composite endpoint of cardiac death, non fatal MI, unstable angina and the need for elective 

revascularization. Major cardiac events included cardiac death, non fatal MI, and unstable 

angina requiring hospitalization. MI was defined based on criteria of typical chest pain, 

elevated cardiac enzyme levels, and typical changes on the electrocardiogram.20 

Statistical analysis

Continuous variables are expressed as mean values (±SD). Differences between groups were 

compared using the Student t and chi-square tests. Cumulative event rates of the composite 

end-point and major cardiac events were estimated using the Kaplan-Meier method and 

compared using the log-rank test. A parallel survival model was constructed in which total 

cardiac events included cardiac death, nonfatal MI, unstable angina and late coronary 

revascularization (>60 days from the MDCT-CA examination). Patients undergoing coronary 

revascularization were censored at the time of the procedure. Only the first event was taken 

into account.

The association of selected variables with outcome was assessed using Cox’s proportional 

hazards survival model involving univariate and stepwise multivariate procedures. A 

composite end-point of cardiac revascularization, cardiac death, nonfatal MI and unstable 

angina was used. A significance level of 0.05 was required for a MDCT-CA variable to be 

included in the multivariate model, whereas a level of 0.1 was the cut-off value for exclu-

sion. Multivariate analysis was corrected for all baseline clinical patient characteristics. 

Hazard ratios with the corresponding 95% confidence intervals were estimated. Statistical 

analysis were performed with SPSS software (version 16.0, SPSS Inc., Chicago, Illinois) and 

significance was set at p<0.05.

Results

All 616 patients included in the study underwent MDCT-CA without complications. The 

clinical and demographic characteristics of the patients are given in Table 1. The diabetic 

group consisted of 213 male patients and the average age was 62±11 years. The non-diabetic 

group consisted of 203 male patients and the average age was 63±11 years. Overall, 210 

(67%) diabetic patients and 203 (67%) non-diabetic patients had no history of CAD at the 

time of the MDCT-CA examination.

Jaap BW4.indd   238 10-05-11   16:40



C
h

ap
ter 15

Pro
g

n
o

stic valu
e C

TA
 in

 d
iab

etics co
m

p
ared

 to
 n

o
n

 d
iab

etics

239

MDCT-CA findings

A total of 189 (2%) coronary segments were considered to be of non-diagnostic quality 

(n=158 with motion artifacts due to elevated heart rate, n=31 with extensive calcification) 

and were excluded from evaluation. Plaque burden was therefore evaluated in 9297 seg-

ments. As shown in Table 2, significant differences were observed between diabetic and 

non-diabetic patients concerning the prevalence of normal coronary arteries (19% vs. 26%, 

respectively, p=0.04) and the prevalence of obstructive disease (51% vs. 37%, respectively, 

p<0.001). Furthermore, diabetic patients showed a higher average number of diseased 

coronary segments (5.6 vs. 4.4, respectively, p=0.001), with either obstructive (1.7 vs. 1.2, 

respectively, p=0.01) or non-obstructive (3.9 vs. 3.1, respectively, p=0.005) CAD. The total 

Agatston calcium score, which reflects plaque burden, was higher in diabetic patients than 

non-diabetic patients (440 vs. 195, respectively, p<0.001). 

Table 1. Baseline Characteristics of Diabetics Compared with Non-diabetics

Diabetics Non-diabetics p Value
(n = 313) (n = 303)

Clinical characteristics
 Age (years; mean [SD]) 62 (11) 63 (11) 0.25
  Age male 62 (11) 62 (11) 0.91
  Age female 63 (11) 66 (10) 0.03
 Male gender (%) 213 (68) 203 (67) 0.85
 BMI (kg/m²; mean [SD]) 28 (4) 26 (3) < 0.001
 Mean heart rate (bpm; mean [SD]) 61 (10) 62 (10) 0.28
 Follow-up (months; mean [SD]) 20 (7) 20 (3) 0.96
History of CAD
 Absent (%) 210 (67) 203 (67) 0.95
 Present (%) 103 (33) 100 (33) 0.95
 Previous MI (%) 19 (6) 22 (7) 0.66
 Previous revascularization (%) 28 (9) 31 (10) 0.68
 Previous MI + revascularization (%) 56 (18) 47 (15) 0.49
Risk factors
 N. of risk factors (mean [SD]) 2.3 (1.2) 2.4 (1.1) 0.46
 Hypertension 214 (68) 196 (65) 0.38
 Hypercholesterolemia (%) 169 (54) 180 (59) 0.20
 Obesity (BMI ≥ 30 kg/m²) (%) 100 (32) 54 (18) < 0.001
 Current smoking (%) 91 (29) 136 (45) < 0.001
 Family history of CAD (%) 142 (45) 150 (49) 0.34
Symptoms
 Asymptomatic (%) 103 (33) 96 (32) 0.81
 Typical angina pectoris (%) 61 (19) 42 (14) 0.08
 Atypical angina pectoris (%) 92 (29) 101 (33) 0.33
 Other symptoms (%) 57 (18) 64 (21) 0.42
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Follow-up results

During a mean follow-up period of 20±5.4 months (range: 6-44 months), 88 cardiac events 

occurred in diabetic patients compared with 45 in non-diabetic patients (28% vs. 15%, 

p<0.001). A total of 27 major cardiac events were observed, 22 among DM patients (fatal 

acute MI, n=7 [2%], non-fatal acute MI, n=8 [3%], unstable angina requiring hospitalization 

n=7 [2%]) and 5 among non DM patients (non-fatal acute MI, n=4 [1%], unstable angina 

requiring hospitalization n=1 [0.3%]). The overall difference in incidence was significant 

(7% vs. 2%, p=0.002).

As shown in Table 3, patients with cardiac events (n=133) had a greater baseline risk fac-

tor profile than patients without cardiac events (n=483). The principal risk factors among 

patients with events were a more advanced age and prevalence of male gender (101 [76%] 

subjects), the presence of known CAD (76 [57%] subjects) or DM (88 [66%] subjects), a 

higher number of risk factors (mean, 3.3 vs. 2.7, respectively, p<0.001) and a higher preva-

lence of symptoms, with typical pain the more frequent (58 [44%] subjects). Furthermore, 

patients with cardiac events had a larger plaque burden as CAD tended to be more severe 

and extensive (Table 4).

Of the 88 diabetic patients who had cardiac events, 74 (46%) had obstructive disease while 

14 (15%) had non-obstructive disease (p<0.001). Conversely, the 45 non-diabetic patients 

to suffer cardiac events comprised 40 (36%) with obstructive disease, and 5 (4%) with non-

obstructive disease (p<0.001).

A total of 78 (25%) diabetic and 42 (14%) non-diabetic patients (p<0.001) underwent coro-

nary revascularization (16 surgical and 114 percutaneous coronary interventions). Fourteen 

revascularizations were performed after the occurrence of a major cardiac event in 12 DM 

Table 2. MDCT-CA Characteristics of Diabetics compared with Non-diabetics 

Diabetics Non-diabetics p Value
(n=313) (n=303)

Patients
Absence of CAD (%) 59 (19) 79 (26) 0.04
Non-obstructive CAD (%) 94 (30) 112 (37) 0.08
Obstructive CAD (%) 160 (51) 112 (37) < 0.001
Total Agaston CS (mean [SD]) 440 (786) 195 (404) < 0.001
Segments
No. of diseased segments (mean [SD]) 5.6 (4.8) 4.4 (4.5) 0.001
No. of segments (mean [SD]) with
 obstructive plaques 1.7 (2.8) 1.2 (2.4) 0.01
 non-obstructive plaques 3.9 (3.9) 3.1 (3.3) 0.005
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patients and in 2 non DM patients. Sixty-four (53%) patients underwent revascularization 

because of single vessel disease. Fifty-nine (49%) patients underwent early revascularization 

(<60 days from the MDCT-CA examination).

Table 3. Baseline Characteristics of Patients with Events compared with Patients without Events

Patients
With Events

(n = 133)

Patients
Without Events

(n = 483) p Value
Clinical characteristics
 Age (years; mean [SD]) 66 (10) 62 (11) < 0.001
 Male gender (%) 101 (76) 318 (66) 0.03
 BMI (kg/m²; mean [SD]) 27 (4) 27 (4) 0.81
 Mean heart rate (bpm; mean [SD]) 60 (9) 61 (11) 0.21
 Follow-up (months; mean [SD]) 20 (4) 20 (3) 0.76
History of CAD
 Absent (%) 57 (43) 356 (74) < 0.001
 Present (%) 76 (57) 127 (26) < 0.001
 Previous MI (%) 18 (13) 23 (5) < 0.001
 Previous revascularization (%) 18 (13) 41 (8) 0.11
 Previous MI + revascularization (%) 40 (30) 63 (13) < 0.001
Risk factors
 N. of risk factors (mean [SD]) 3.3 (1.1) 2.7 (1.3) <0.001
 Diabetes Mellitus 88 (66) 225 (47) < 0.001
 Hypertension 97 (73) 313 (65) 0.09
 Hypercholesterolemia (%) 99 (74) 250 (52) < 0.001
 Obesity (BMI ≥ 30 kg/m²) (%) 27 (20) 127 (26) 0.19
 Current smoking (%) 60 (45) 167 (35) 0.03
 Family history of CAD (%) 67 (50) 225 (47) 0.49
Symptoms
 Asymptomatic (%) 16 (12) 183 (38) < 0.001
 Typical angina pectoris (%) 58 (44) 45 (9) < 0.001
 Atypical angina pectoris (%) 26 (19) 167 (35) 0.001
 Other symptoms (%) 33 (25) 88 (18) 0.12

Table 4. MDCT-CA Characteristics of Patients with Events compared with Patients without Events

Patients
with events

(n=133)

Patients
without events

(n=483) p Value
Patients  
Absence of CAD (%) 0 (0) 138 (28) < 0.001
Non-obstructive CAD (%) 19 (14) 187 (39) < 0.001
Obstructive CAD (%) 114 (86) 158 (33) < 0.001
Total Agatston CS (mean [SD]) 657.4 (883) 226.8 (517) < 0.001
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Outcome prediction

Univariate and multivariate predictors of total events in all patients and for DM and non DM 

patients are reported in Tables 5 and 6. Both diabetes, and obstructive CAD were indepen-

dently associated with cardiac events in all patients (n=616). When assessing the predictive 

value of MDCT-CA in DM patients and in non DM patients, obstructive CAD was a strong 

predictor of events (p<0.0001) corrected for baseline clinical variables.

Survival analysis

In both DM and non DM patients a higher total event rate occurred in patients with obstruc-

tive CAD (51.1% in DM patients vs. 35.7% in non DM patients) compared with patients 

with non-obstructive CAD (14.8% in DM patients vs. 4.5% in non-DM patients) or normal 

coronary arteries (0% vs. 0% in both DM and non DM patients)(p value <0.001)(Fig 1).

Excluding the overall revascularizations, major cardiac event rates of 18.5% and 3.6% were 

observed in DM and non DM patients with obstructive disease, respectively, which was 

higher than the corresponding rates observed in patients with non-obstructive disease (1.2% 

vs. 0.9%) and normal coronary arteries (0% vs. 0%), respectively (Fig 1). This difference in 

survival according to stenosis severity was significant in DM patients (p<0.001) but did not 

reach statistical significance in non DM patients (p=0.1).

As shown in Fig 2 Panel A, the total event rate was significantly higher (p<0.05) in DM 

patients with presence of atherosclerosis (non-obstructive or obstructive disease) compared 

to non DM patients with presence of atherosclerosis (35% vs. 21%) (p<0.001). Notably, the 

cardiac event rate among patients with absence of disease was 0% both in DM and non DM 

Table 5. Univariate and Multivariate Predictors of Total Cardiac Events in All Patients

All Patients (n=616)
Univariate Analysis Multivariate Analysis

Clinical Characteristics HR (95% CI) p Value HR (95% CI) p Value
Age (>65 yrs) 1.81 (1.29-2.55) <0.001
Male gender 1.53 (1.03-2.28) 0.03
Diabetes Mellitus 2.06 (1.44-2.96) <0.001 1.94 (1.33-2.84) 0.001
Hypertension 1.41 (0.96-2.06) 0.08
Family history 1.13 (0.81-1.59) 0.46
Smoking 1.45 (1.03-2.04) 0.03
Hypercholesterolemia 2.46 (1.67-3.62) <0.001 1.63 (1.08-2.46) 0.02
Obesity 0.73 (0.48-1.11) 0.14
Previous infarction 2.83 (2.01-3.98) <0.001
Previous revascularization 2.35 (1.67-3.31) <0.001
MDCT-CA Characteristics
Obstructive CAD 9.59 (5.91-15.6) <0.001 7.66 (4.34-13.43) <0.001
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patients. Similar findings were observed when assessing the predictive value of MDCT-CA 

for major cardiac events both in DM and non DM patients. When assessing the predictive 

value of obstructive disease, as shown in Fig 2 Panel B, an increased event rate of 47% 

was observed in DM patients with obstructive CAD compared to 36% in non DM patients 

with obstructive CAD which reached borderline statistical significance (p=0.052). When 

assessing the predictive value of obstructive disease on MDCT-CA for major cardiac events 

this difference was statistically significant (p<0.05) with a major event rate of 13% in DM 

patients with obstructive CAD compared to 4% in non DM patients with obstructive CAD.

Discussion

DM is associated with a substantially elevated risk of cardiovascular morbidity and mortal-

ity. However identifying CAD at an early stage in diabetic patients is challenging.6 Small-

vessel and diffuse disease may not be detected easily by myocardial perfusion scintigraphy 

and dobutamine stress echocardiography. Furthermore, potential confounders are a high 
 60
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 Figure 1. Kaplan-Meier Survival Curves for Total and Major Events According to the Severity of CAD on MDCT-CA 
in Diabetics and Non-diabetics. Statistically significant differences in survival according to the severity of CAD 
on MDCT-CA were observed in diabetics and non-diabetics when assessing total event free survival (Log Rank 
p-value <0.001). When assessing major event free survival the difference in survival according to severity of CAD 
on MDCT-CA was statistically significant in diabetics (Log Rank p value <0.001), but did not reach a statistically 
significant difference in non-diabetics (Log Rank p value 0.1).
Major cardiac events indicate cardiac death, nonfatal infarction, and unstable angina requiring hospitalization. Total 
cardiac events indicate major events and cardiac revascularizations.
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threshold for pain owing to autonomic dysfunction, the often multivessel nature of CAD, 

baseline electrocardiographic abnormalities, the frequently poor exercise performance 

of diabetic patients, the coexistence of peripheral artery disease, and the use of multiple 

medications.21 Numerous previous studies have confirmed that diabetics with normal stress 

imaging results have an annual cardiac event rate (myocardial infarction or cardiac death) 

of 3–6%, which is more than twice that of non-diabetic patients with normal stress imaging 

findings.22-24 

To our knowledge this is the first study to address the prognostic value of MDCT-CA in 

diabetic patients. In our study a normal MDCT-CA examination was associated with a 100% 

event-free survival in both diabetic and non-diabetic patients. MDCT-CA allows for assess-

ment of coronary atherosclerosis at an earlier stage compared to imaging techniques that 

assess myocardial perfusion. As a result MDCT-CA has a high negative predictive value for 
 61
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Figure 2. Kaplan-Meier Survival Curves for Total and Major Events in Diabetics and Non-diabetics Stratified for 
the Presence of Atherosclerosis on MDCT-CA (non-obstructive or obstructive disease) in Panel A, and Stratified 
for the presence of Obstructive disease on MDCT-CA in Panel B. A statistically higher event rate was observed 
in diabetics compared to non-diabetics in the presence of atherosclerosis on MDCT-CA (Log Rank p value <0.05), 
both when assessing total and major event free survival. When assessing total event free survival in diabetics 
with obstructive disease a borderline significantly higher event rate was observed compared to non-diabetic 
patients with obstructive disease (Log Rank p value 0.052). The higher event rated observed in diabetic patients 
with obstructive disease was however significantly higher when assessing major event free survival (Log Rank p 
value <0.05) 
Major cardiac events indicate cardiac death, nonfatal infarction, and unstable angina requiring hospitalization. 
Total cardiac events indicate major events and cardiac revascularizations. Statistical comparisons between curves 
are indicated by arrows. An asterisk indicates statistical significance (p value <0.05). A borderline statistical 
significance (p=0.052) was observed between the DM – CT >50% and DM + CT >50% groups, as indicated by #.

Jaap BW4.indd   245 10-05-11   16:40



Pa
rt

 2

246

the rule out of CAD both in non-diabetic as well as in diabetic patients.25, 26 As is shown 

in our study this high negative predictive value for CAD translates into an excellent nega-

tive predictive value for future events. Previous studies in general populations referred for 

MDCT-CA have also demonstrated very low event rates in patients with normal MDCT-CA 

examinations with annualized event rates of <0.7%.27-35 The excellent outcome in diabetic 

patients with completely absent CAD is of clinical relevance, because it suggests that 

MDCT-CA can identify truly low risk patients in contrast to other modalities. These findings 

are similar to those observed in a study addressing the prognostic value of coronary calcium 

score testing, patients suffering from diabetes with no coronary artery calcium demonstrated 

a survival similar to that of non-diabetics and no detectable calcium (98.8% and 99.4%, 

respectively, p = 0.5).36 Survival analysis showed that both diabetic and non-diabetic 

patients with non-obstructive CAD had a higher risk as compared with patients without 

CAD. Indeed, it is known that acute coronary syndromes are frequently attributable to non-

obstructive lesions (<50%) owing to plaque disruption with superimposed thrombosis.37 

Nonetheless, severe lesions have the highest progression compared with non-obstructive 

lesions. Serial angiographic studies have indicated that the more obstructive a plaque is, 

the more frequently it progresses to coronary occlusion (38 and/or gives rise to myocardial 

infarction.39 In agreement, our analysis revealed that a higher event rate occurred among 

patients with obstructive CAD. Recently, several studies have reported on the prognostic 

value of obstructive CAD on MDCT-CA in general populations.31, 33, 34, 40) In our study 

assessing the prognostic value in diabetic and non-diabetic patients, multivariate analysis 

demonstrated that evidence of obstructive disease on MDCT-CA remained a strong indepen-

dent predictor of events in both groups (p<0.0001) 

When comparing the predictive value of atherosclerosis and obstructive CAD in DM and 

non DM, significantly increased event rates were observed in DM patients. These findings 

are in agreement with those made in previous larger multicenter studies. For any degree of 

perfusion abnormality, diabetics had a much greater risk of cardiac events and death com-

pared to non-diabetics for any degree of demonstrable perfusion abnormality.41, 42 Similar 

findings have been reported for stress echocardiographic techniques (43 and electron-beam 

computed tomography studies. In the study by Raggi et al. similar findings to our study were 

observed when assessing the prognostic value of coronary calcium score in diabetics and 

non-diabetics.36 In their study the average coronary calcium score for subjects with and for 

those without diabetes was 281±567 and 119±341, respectively (p < 0.0001). The observed 

death rate in diabetics was higher for every increase in calcium score compared to non-

diabetics.p < 0.0001). Taken together, these findings suggest that for any extent of plaque 

burden cardiovascular risk is higher in diabetic patients than in non-diabetic individuals. 

Thus, MDCT-CA may be a useful tool to risk-stratify diabetic and non-diabetic subjects with 

the objective being to better define appropriate individual management.
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Limitations

There are some limitations of our study. Complete information concerning the degree of 

metabolic control of DM, the status of secondary organ involvement, and of autonomic 

dysfunction, were not obtained. This limitation was mainly due to the exploratory nature of 

the study, which was aimed at investigating the prognostic role of MDCT-CA on outcome in 

“real world” DM patients with or without CAD rather than on the degree of diabetes control. 

Furthermore, a more detailed analysis of the group of patients without known CAD may 

have been interesting. However, due to the relatively low number of events this analysis 

was not possible. Another potential limitation of our study was that we included in the mul-

tivariate model patients who underwent early revascularization procedures (<60 days after 

the exam) that generally are performed as a direct consequence of the MDCT-CA imaging 

findings. Conversely, decisions to perform late revascularization procedures (≥60 days after 

MDCT-CA exam) usually are not significantly influenced by the results of the exam. Late 

revascularization are the result of worsening clinical status, such that late revascularizations 

represent a surrogate for disease progression. This issue has been recently addressed by 

another study in which the prognostic ability of MDCT-CA was assessed including patients 

who underwent early revascularization procedures.28

However, it is worthwhile noting that all decisions regarding revascularization were 

based on symptoms and/or the presence of concomitant ischemia on non-invasive testing, 

rather than the arbitrary evidence of obstructive CAD on MDCT-CA. In our study, how-

ever, a parallel survival model for total cardiac events excluding early revascularizations 

demonstrated that DM patients remained associated with worse outcome; furthermore, the 

presence of obstructive CAD on MDCT-CA remained associated with outcome in both DM 

and non DM patients. Therefore, our results do not appear to be affected by treatment bias.

Conclusion

This is the first study to our knowledge to assess the prognostic value of MDCT-CA in diabetic 

patients with known or suspected CAD compared with non-diabetic individuals. MDCT-CA 

provides incremental prognostic information over baseline clinical variables in both groups 

of patients when obstructive CAD is present. The absence of atherosclerosis on MDCT-CA is 

associated with an excellent prognosis in both groups of patients. MDCT-CA might therefore 

be a clinically useful tool to improve risk stratification in DM patients.
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Abstract

Computed tomography coronary angiography (CTA) is an important non-invasive 

imaging modality increasingly used for the diagnosis and prognosis of coronary 

artery disease (CAD). The purpose of the current study was to determine the influ-

ence of smoking status on the prognostic value of CTA in patients with suspected 

or known CAD. In 1207 patients (57% male, age 57±12 years) referred for CTA, the 

presence of significant CAD (≥50% stenosis) was determined. During follow-up 

the following events were recorded: all cause mortality, and non-fatal infarction. 

The prognostic value of CTA in smokers and non-smokers was compared using 

an interaction term in the Cox proportional hazard regression analysis. Significant 

CAD was observed in 327 patients (27%), and 273 patients (23%) were smokers. 

During a median follow-up time of 2.2 years, an event occurred in 50 patients. After 

correction for baseline characteristics including smoking in a multivariate model, 

significant CAD remained an independent predictor of events. Furthermore, a sig-

nificant interaction (p<0.05) was observed between significant CAD and smoking. 

The annualized event rate in smokers with significant CAD was 8.78% compared to 

0.99% in smokers without significant CAD (p<0.001). In non-smokers with signifi-

cant CAD the annualized event rate was 2.07% compared to 1.01% in non-smokers 

without significant CAD (p=0.058). In conclusion, the prognostic value of CTA was 

significantly influenced by smoking status. The event rates in patients with signifi-

cant CAD were approximately 4-fold higher in smokers compared to non-smokers. 

These findings suggest that smoking cessation needs to be aggressively pursued, 

especially in smokers with significant CAD.
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Introduction

The introduction of multi-slice computed tomography coronary angiography (CTA) has 

changed the field of non-invasive imaging. In contrast to functional imaging techniques 

assessing myocardial perfusion and wall motion, CTA can provide direct non-invasive ana-

tomic assessment of the coronary arteries. Because of the high negative predictive value for 

detection of significant CAD (defined as ≥50% stenosis), 1 the technique is increasingly used 

as a gatekeeper for further diagnostic testing. In the last 3-4 years, several single and multi-

center studies have suggested that CTA may also provide important prognostic information. 

These studies have shown that patients with significant CAD detected on CTA are associated 

with worse outcome compared to patients without significant CAD.2-7 

Although the prognostic value of CTA and its incremental value over baseline clinical 

variables have thus been previously described, no reports have specifically focused on the 

prognostic value of CTA in smokers. This may be of interest, as smoking is an important 

but also modifiable risk factor resulting in an approximately 2 to 4 times increased risk of 

coronary heart disease compared to non-smokers.8, 9 Furthermore, smoking has recently 

been shown to significantly increase the risk of events in asymptomatic individuals with 

evidence of atherosclerosis according to the coronary calcium score (CS), when compared 

to non-smokers with a similar calcium burden.10 It is conceivable that smoking has a similar 

effect on risk stratification with CTA. The purpose of the current study was therefore to 

determine the influence of smoking status on the prognostic value of CTA in patients with 

suspected or known CAD. 

Methods

The study population consisted of patients who were clinically referred for CTA because of 

chest pain symptoms or a high risk profile for cardiovascular disease. Patients were enrolled 

at the University Hospital in Zurich, Switzerland, and at the Leiden University Medical Cen-

ter, The Netherlands. Results from this prospective registry have been previously published.5 

Exclusion criteria were: cardiac arrhythmias, renal insufficiency (defined as a glomerular 

filtration rate <30 ml/min), known hypersensitivity to iodine contrast media, and pregnancy. 

In addition, patients with an uninterpretable CTA examination or coronary artery bypass 

grafts were excluded. Clinical patient characteristics were collected by the referring physi-

cian. Patients provided informed consent and the study was approved by the local ethics 

committees in both participating centers.
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CTA acquisition and data analysis

Patients were scanned using a 64-row CT scanner (Aquilion64, Toshiba Medical Systems, 

Otawara, Japan; and General Electrics LightSpeed VCT, Milwaukee, WI, US) or with a 

320-row CT scanner (Toshiba Multi-slice Aquilion ONE system, Toshiba Medical Systems, 

Otawara, Japan). Before the examination, the patient’s heart rate and blood pressure were 

monitored. In the absence of contraindications, patients with a heart rate exceeding 65 beats 

per minute were administered beta-blocking medication (50-100 mg metoprolol, oral or 

5-10 mg metoprolol, intravenous). All scan parameters have been previously published.11-13 

Post-processing of the CTA examinations was performed on dedicated workstations (Vitrea2 

and VitreaFx, Vital Images, USA; and Advantage GE Healthcare, USA). CTA examinations 

were read by two experienced readers at both participating centers, blinded to follow-up 

results. Coronary anatomy was assessed using a 17 segment model according to a modi-

fied American Heart Association classification.14 Normal CTA was defined as completely 

normal anatomy or minimal wall irregularities <30%, non-significant CAD was defined as 

the presence of luminal narrowing with a maximal luminal diameter stenosis <50%, and 

significant CAD was defined as the presence of a lesion exceeding ≥50% maximal luminal 

diameter stenosis.

Follow-up results

Patient follow-up data were gathered using clinical visits or standardized telephone 

interviews. A composite endpoint was constructed using all cause mortality, and non-fatal 

myocardial infarction. Non-fatal infarction was defined based on criteria of typical chest 

pain, elevated cardiac enzyme levels, and typical changes on the ECG.15 Patients with stable 

complaints undergoing an early elective revascularization within 60 days after CTA were 

excluded from the survival analysis.

Statistical analysis

Normally distributed continuous variables were expressed as mean values (± standard 

deviation). Non-normally distributed continuous variables were expressed as median values 

with a 25th-75th percentile. Categorical baseline data were expressed in numbers and per-

centages. Differences between smokers and non-smokers were compared using the Student 

t and chi-square tests. Cox regression analysis was used to determine the prognostic value 

of significant (≥50% luminal narrowing) CAD on CTA. First univariate analysis of baseline 

clinical variables, and CTA was performed using a composite endpoint of all cause mortal-

ity, and non-fatal infarction. For each variable a hazard ratio with a 95%-confidence interval 

(95%-CI) was calculated. A multivariate model was created to assess the independent 

prognostic value of CTA. To compare the prognostic value of CTA in smokers and non-

smokers a final multivariate model was constructed to test for interaction between smoking 
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and CTA. Multivariate models were created using stepwise backward elimination; first all 

baseline clinical variables were included in the model, subsequently the least significant 

variable was excluded one at a time until all variables in the model reached a p-value <0.5. 

Annualized event rates were calculated based on the number of events per 100 patient 

years follow-up (FU). Survival curves were estimated with the Kaplan-Meier method, and 

curves were compared using the log-rank test. Statistical analyses were performed using 

SPSS software (version 16.0, SPSS Inc, Chicago, IL, USA). A p-value <0.05 was considered 

statistically significant.

Results

The study population consisted of 1467 patients presenting at the University Hospital Zurich 

(n=468), and at the Leiden University Medical Center (n=999). In 44 (3%) patients the CTA 

examination was uninterpretable due to the presence of motion artifacts, increased noise 

due to a high body mass index, and breathing. In addition, 117 patients (8%) were lost 

to follow-up. Finally 99 patients (7%) were excluded due to early revascularization. After 

exclusion, a total of 1207 remained for analysis. The majority of patients were symptomatic 

(67%), the remaining 33% of patients were referred because of a high risk profile with or 

without an abnormal exercise ECG. An overview of the baseline characteristics of the study 

population is presented in Table 1.

CTA results

Significant CAD was observed on CTA in 327 patients (27%). In the remaining 880 patients 

(73%) non-significant CAD was observed in 425 patients (35%) and 455 patients (38%) were 

Table 1. Patient characteristics

Total 
(n = 1207)

Non-smokers 
(n=934)

Smokers 
(n=273)

P-value

Age (years) 56.8±11.9 57.4±12.2 54.8±10.9 0.002
Gender (male) 690 (57%) 514 (55%) 176 (64%) 0.006
Risk Factors
 Diabetes 299 (25%) 226 (24%) 73 (27%) 0.39
 Hypertension 587 (49%) 455 (49%) 132 (49%) 0.92
 Hypercholesterolemia 461 (38%) 341 (37%) 120 (44%) 0.03
 Family history of CAD 475 (39%) 342 (37%) 133 (49%) <0.001
 Obesity (BMI ≥ 30 kg/m2) 220 (18%) 176 (19%) 44 (16%) 0.26
History
 Previous MI 96 (8%) 68 (7%) 28 (10%) 0.11
 Previous PCI 116 (10%) 82 (9%) 34 (13%) 0.07
 Known CAD 135 (11%) 96 (10%) 39 (14%) 0.07
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classified as normal. Figure 1 illustrates the prevalence of significant CAD on CTA according 

to smoking status. In non-smokers (n=934), significant stenosis was observed on CTA in 229 

patients (25%), compared to 98 (36%) of the 273 patients who smoked (p<0.001).

Follow-up results

The median FU time was 2.2 years (25-75th percentile: 1.3-3.2 years). During the FU period 

a myocardial infarction occurred in 12 patients and all cause mortality was registered in 40 

patients. The composite endpoint of all cause mortality and myocardial infarction occurred 

in 50 patients. This resulted in an event rate of 1.8 per 100 patient years FU.

Survival analysis

The presence of significant CAD on CTA was a significant univariate predictor of events 

(Table 2). After correction for baseline clinical variables including smoking status, significant 

CAD remained an independent predictor of events (Table 2). An event rate of 4.01 events per 

100 patient years FU was observed in patients with significant CAD compared to 1.0 event 

per 100 patient years FU in patients without significant CAD.

To assess the prognostic value of significant CAD on CTA in smokers and non-smokers, a 

second multivariate model was constructed to test for interaction (Table 3). The prognostic 

value of CTA was significantly higher in smokers compared to the prognostic value of CTA 

in non-smokers (interaction p = 0.031, and p = 0.045 adjusted for age, diabetes, hypercho-

lesterolemia, obesity, and known CAD). The event rate in smokers with significant CAD was 

8.78 events per 100 patient years FU compared to 0.99 events per 100 patient years FU in 

smokers without significant CAD (p<0.001). In non-smokers with significant CAD the event 

rate was 2.07 events per 100 patient years FU compared to 1.01 events per 100 patient 

years FU in non-smokers without significant CAD (p=0.058). The survival rate following CTA 

according to smoking status is illustrated in Figure 2. 62

16.1 

 
Figure 1. Relationship between CTA findings and Smoking.
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Discussion

The main finding of the current study comparing the prognostic value of CTA in smokers and 

non-smokers is that the prognostic value of significant CAD on CTA was significantly influ-

enced by smoking status. The event rate in patients with significant CAD was approximately 

4-fold higher in smokers compared to non-smokers. On the other hand, in patients without 

significant CAD, the event rate was similar in smokers and non-smokers.

Although several studies have been published on the prognostic value of CTA, to our knowl-

edge this is the first report to describe the effect of smoking on risk stratification with CTA. 

The effect of smoking on the prognostic value of atherosclerosis as detected by CS has been 

studied.10 CS is generally used in asymptomatic cohorts as a measure of atherosclerotic 

plaque burden, and elevated CS are associated with an increased risk of events. In the study 

by Shaw et al. in a large cohort of 10,377 asymptomatic individuals, the value of CS for risk 

stratification has been compared between smokers and non-smokers. The authors observed 

a significant interaction between smoking and CS for the prediction of all cause mortality. 

In each CS category the event rates in smokers were higher than observed in non-smokers. 

In addition to this imaging study in asymptomatic individuals, elevated event rates in 

Table 2. Univariate and Multivariate predictors of events

Univariate Multivariate
HR (95%-CI) p-value HR (95%-CI) p-value

Age (years) 1.1 (1.0-1.1) <0.001 1.1 (1.0-1.1) <0.001
Gender (male) 1.1 (0.6-1.9) 0.68
Diabetes 1.6 (0.9-2.9) 0.11 1.8 (1.0-3.5) 0.07
Hypertension 1.2 (0.7-2.2) 0.46
Hypercholesterolemia 1.1 (0.6-1.9) 0.67
Family history CAD 0.9 (0.5-1.6) 0.68
Obesity (BMI ≥ 30 kg/m2) 0.49 (0.2-1.2) 0.13 0.5 (0.2-1.3) 0.2
Known CAD 2.3 (1.2-4.3) 0.01 1.8 (0.9-3.5) 0.1
Current Smoking 2.9 (1.6-4.9) <0.001 2.6 (1.4-4.7) <0.05
Significant CAD 4.1 (2.3-7.2) <0.001 2.4 (1.3-4.4) <0.05

Table 3. Interaction between Smoking and significant CAD on CTA

Exposure Patients Event HR (95%-CI) p-value
No Smoking
 CTA <50% 705 16 1.0 (reference)
 CTA ≥50% 229 11 2.1 (0.9-4.5) 0.06
Smoking
 CTA <50% 175 4 1.0 (reference)
 CTA ≥50% 98 19 8.9 (3.0-26.5) <0.001
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smokers as compared to non-smokers have also been reported in symptomatic patients with 

established CAD. For instance, several studies have shown that following revascularization, 

smokers have a higher event rate than non-smokers.16-18 The results of the current study are 

in line with these findings and further strengthen the evidence that smokers with CAD have 

a higher risk of events than non-smokers with similar levels of CAD.

The observations in the current study may be explained in part by the influence of smoking 

on the formation and progression of atherosclerosis through its negative effects on vasomotor 

dysfunction, inflammation and lipid modification.19 Indeed multiple reports have described 

the effects of smoking on the formation of atherosclerosis both at autopsy, 20 as well as 

in clinical studies using coronary angiography, 21, 22 CS 23-25 and intima media thickness 

(IMT) measurements.26, 27 Coronary angiography studies have described that smoking is an 

important and independent predictor of CAD, which is in line with the increased preva-

lence of significant CAD observed in the current study.21, 22 Of interest, the atherosclerotic 

process seems to occur earlier in life in smokers.25, 28 Earlier formation of CAD explains the 

 63
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Figure 2. Survival according to CTA in non-smokers (panel a) and smokers (panel b).
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increased levels of CAD observed in smokers; however this may also be linked to increased 

progression of CAD. Smoking has been associated with CAD progression both on coronary 

angiography, IMT, and CTA. In a sub study of the CCAIT trial, Waters et al. observed that 

smoking resulted in both plaque progression and new plaque formation on serial quantita-

tive coronary angiography.29 

The rapid decrease in the risk of myocardial infarction observed after smoking cessation sug-

gests that in addition to the effects of smoking on CAD formation and progression, smoking 

may also be seen as a trigger for myocardial infarction.30 Smoking may affect all three major 

factors defining high risk patients that are vulnerable to myocardial infarction or sudden car-

diac death: vulnerable plaque, vulnerable blood, and vulnerable myocardium.31 Smoking 

has been associated with inflammatory processes, and endothelial dysfunction which may 

increase plaque vulnerability resulting in a higher risk of intracoronary thrombus formation. 

In addition platelet function, antithrombotic/prothrombotic and fibrinolytic factors may be 

altered by smoking resulting in an increased thrombotic tendency which in turn may cause 

more frequent and severe thrombus formation in response to plaque rupture.32-35 Finally, 

smoking results in activation of the sympathetic nervous system thereby increasing heart 

rate and myocardial contractility resulting in increased oxygen demand, while at the same 

time decreasing myocardial oxygen supply due to vasoconstriction of the coronary arter-

ies.36 This mismatch in oxygen demand/supply may increase the myocardial vulnerability to 

ischemia thereby unfavorably altering myocardial response to thrombotic occlusions.

Clinical implications

Further studies are needed to confirm our finding that the relative risk of events associated 

with significant CAD on CTA is significantly higher in smokers compared to non-smokers. 

Nevertheless, our results do suggest that strategies aimed at preventing future cardiovascular 

events should be intensified in patients with significant CAD who smoke. This is further 

strengthened by the fact that smoking is a modifiable risk factor, and that smoking cessation 

has been shown to improve survival.37, 38 

Interestingly, when regarding patients without significant CAD, the risk of events in smokers 

without significant CAD was similar to the risk observed in their non-smoking counterparts. 

Based on previous studies assessing effect of smoking on CAD, it is expected that new 

formation and progression of (non-significant) CAD should also be increased in patients 

without significant CAD who smoke. The similar event rates observed in the current study 

suggest that this effect may be more gradual. Longer follow-up studies are necessary to 

determine the influence of smoking status in patients without significant CAD.
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Limitations

A limitation of the current study is that no exact data regarding quantification of smoking 

were available. This would have been of interest as several studies have suggested a dose 

response relationship between smoking and the severity of CAD. In addition, the occurrence 

of passive smoking in the non-smoking sub group was not systematically recorded. Because 

passive smoking has also been associated with an increased risk of events, 39-42 a similar 

interaction as observed between significant CAD and active smoking may exist in passive 

smokers. Future studies are necessary to further study these concepts.

A general limitation of CTA imaging is the high radiation dose associated with traditional 

64-slice CTA protocols, although the radiation dose of CTA has decreased substantially 

with the implementation of dose saving algorithms and novel acquisition techniques.43-46 

Importantly, low-dose CTA with prospective ECG-triggering has recently been shown to 

reduce radiation burden while maintaining image quality and a high diagnostic accuracy.47 

Currently, the radiation burden with these novel acquisition techniques is approaching ≤2 

mSv.48 

Conclusion

The prognostic value of CTA was significantly influenced by smoking status. The event rates 

in patients with significant CAD were approximately 4-fold higher in smokers compared to 

non-smokers. These results need to be confirmed in larger follow-up studies, but suggest that 

smoking cessation needs to be aggressively pursued, especially in smokers with significant 

CAD.
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Abstract

Multi-slice computed tomography (MSCT) coronary angiography is an accurate 

non-invasive imaging technique, but cannot determine the functional relevance of 

the lesions it detects. However, MSCT perfusion imaging can detect the presence of 

myocardial infarction during rest and can assess viability using delayed enhance-

ment. With recent developments in MSCT scanner technology it has become pos-

sible to image myocardial perfusion and the capability of MSCT to determine the 

presence of ischemia through perfusion imaging during stress is currently investi-

gated. Although only limited data are available, non-invasive imaging with MSCT 

has the potential to assess both coronary anatomy and myocardial perfusion in one 

procedure. This review describes the feasibility of myocardial perfusion imaging 

using MSCT and its potential use in clinical practice.
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Introduction

Imaging plays an important role in the diagnosis of coronary artery disease (CAD). In the 

last decades several non-invasive techniques such as single photon emission computed 

tomography (SPECT), MRI and contrast echocardiography have become readily available 

to assess myocardial perfusion in order to demonstrate the presence of ischemia. In recent 

years, non-invasive assessment of cardiac anatomy has also become possible with the intro-

duction of multi-slice computed tomography (MSCT). MSCT coronary angiography (MSCTA) 

has emerged as an accurate and robust imaging technique, 1-4 which is able to detect the 

presence of atherosclerosis at an early stage and can accurately rule out the presence of 

significant CAD.5 However, when significant CAD is detected, MSCTA is unable to assess 

the hemodynamic consequences, i.e. the effect on myocardial perfusion.6-9 Accordingly, 

treatment decisions remain uncertain in case of a positive MSCTA as information on the 

presence of ischemia is needed.

The combination of this important limitation and recent progress in scan technology has 

renewed interest in the innovation of MSCT perfusion imaging. This review describes the 

feasibility and technical aspects of myocardial perfusion imaging using state of the art MSCT. 

In addition, the currently available evidence and its potential use in clinical practice will 

be discussed.

Feasibility of myocardial perfusion imaging 
using MSCT

CT perfusion imaging is based on myocardial tissue attenuation changes during the infusion 

of contrast medium. The ability to assess myocardial perfusion using CT technology was first 

studied around 1980.10, 11 Following this breakthrough, others have studied CT perfusion 

imaging using electron beam computed tomography (EBCT) scanners first in animal models, 
12-14 and later in humans.15,16 The introduction of MSCT scanning technology resulted in 

a higher spatial resolution and enabled increasingly larger volume coverage in shortened 

acquisition times. With each new generation MSCT scanner the number of detectors 

increased, from 4 to 16 to 64, and up to 320 with the current state of the art systems. These 

advancements have enabled fast acquisition of coronary anatomy, and may also allow reli-

able visualization of myocardial perfusion. Moreover, because of its high spatial resolution 

MSCT perfusion imaging may even allow assessment of transmural perfusion.
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MSCT acquisition techniques for perfusion imaging

Depending on the scanner system, different protocols can be applied to assess myocardial 

perfusion. Early studies have used a dynamic imaging protocol for absolute quantification of 

myocardial perfusion. With dynamic imaging the table is fixed and image data are acquired 

during the entire infusion of contrast. By measuring the changes in tissue attenuation over 

time, attenuation curves of the myocardium can be calculated.(Figure 1, panel A) In a recent 

study by George et al. myocardial perfusion was quantified in 6 mongrel dogs using dynamic 

64-slice MSCT.17 The authors employed two methods to quantify myocardial perfusion. The 

first approach was a semi-quantitative method based on the upslope of the time attenuation 

 64

17.1 

 
Figure 1. MSCT signal density time curves during infusion of adenosine and iodinated contrast agent using a 
dynamic imaging approach (panel A). The highlighted regions in panels A and B illustrate the acquisition window of 
retrospective ECG gated 64-slice helical scanning mode (panel B) and the acquisition window for prospective ECG 
gated 320-slice volumetric scanning mode (panel C). Adapted and reprinted with permission from reference 17.
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curves of ischemic myocardium, normalized for the arterial/input function by dividing 

myocardial upslope by the left ventricular blood flow upslope or the upslope in a remote 

myocardial region. With the second approach the authors aimed to perform absolute quan-

tification of myocardial blood flow by combining the time attenuation curves in a model 

representing the blood tissue exchange in the myocardium. Both methods resulted in an 

excellent correlation with microsphere derived myocardial blood flow. Although dynamic 

MSCT allows quantification of myocardial blood flow it is dependant on a prolonged acqui-

sition time which is associated with a high radiation dose. Furthermore dynamic imaging 

with the current industry standard 64-slice MSCT only provides limited coverage; selected 

slices are acquired rather than the entire heart which limits its clinical utility.

A second approach to myocardial perfusion imaging with MSCT is ECG gated helical scan-

ning or spiral imaging. This approach is currently used in 64-slice MSCTA protocols and 

can be used to cover a large area by moving the table slowly through the MSCT tube during 

acquisition of several heart beats. By gating the images to the ECG, it is possible to create 

reconstructions of the entire heart during different phases of the R-R interval. By selecting a 

phase with the least motion the heart can essentially be ‘frozen’ allowing motion free assess-

ment of the coronary arteries but also of myocardial perfusion. With helical scanning data 

acquisition is started when a sufficiently high concentration of contrast agent has reached the 

coronary arteries. As a result, myocardial perfusion can be assessed with this approach only 

during the upslope of the contrast infusion and at the peak of contrast enhancement.(Figure 1, 

panel B) The cardiac reconstructions that are derived in this manner combine the information 

obtained from different heart beats, therefore absolute quantification is not possible. How-

ever myocardial perfusion may be assessed semi-quantitatively by measuring myocardial 

signal density in hypoenhanced regions of the myocardium and normalizing it to the signal 

density in remote myocardial segments or the left ventricular cavity.18 This approach results in 

a signal density ratio which has been shown to correlate very well with microsphere derived 

blood flow measurements in animal models. Helical scanning enables larger coverage and 

reduces the scan time and therefore the radiation dose as compared to dynamic imaging. 

Nevertheless, imaging is still performed during several heart beats resulting in attenuation 

variations between base and apex. Furthermore helical scanning employs a considerable 

overlap; accordingly, radiation exposure remains substantial with this technique.

With the introduction of the novel 256- and 320-slice MSCT scanners, allowing true volu-

metric imaging, the difficulties associated with dynamic and helical scanning using current 

64-slice scanners may be eliminated.19-22 These state-of-the-art scanners have sufficient 

coverage to scan the entire heart within a single rotation. Through scanning in a dynamic 

mode, myocardial perfusion of the entire ventricle can be quantified. Furthermore, a full 

volume scan of the heart can be performed within a single heart beat, thereby reducing scan 

Jaap BW4.indd   273 10-05-11   16:40



Pa
rt

 3

274

time and radiation dose compared to helical scanning. The implementation of prospective 

ECG-triggering allows further reduction in radiation dose by scanning only during a small 

part of the R-R interval. The short scan time also results in more homogenous attenuation 

of the myocardium. With this new technique myocardial perfusion can be assessed during 

the upslope of contrast infusion by comparing uptake in stenosed and remote regions either 

visually, or semi-quantitatively using signal density ratios (Figure 1, panel C).23, 24 

Rest and stress imaging

Assessment of myocardial perfusion at rest has been performed in animals and humans 

in several studies using first pass perfusion to determine the presence of resting perfusion 

defects indicating myocardial infarction.25-30 Hypodense areas during arterial phase CT 

imaging may represent viable as well as necrotic myocardium. A distinction between viable 

and necrotic myocardium may however be made using delayed enhancement imaging.31-34 

In a study by Henneman et al. MSCT perfusion imaging was compared to SPECT imaging 

in 69 patients with previous infarction, of which 62 (90%) displayed a perfusion defect on 

SPECT.25 The presence of hypoenhanced regions was identified on MSCT in all 62 patients. 

Nieman et al. showed that MSCT can also accurately detect late enhanced regions in a 

comparative study with MRI.34 

Only few studies have evaluated stress imaging protocols for detection of inducible perfusion 

defects. In the previously mentioned studies by George et al. in dogs, 17,18 MSCT was able to 

assess ischemia during hyperemia in comparison to microsphere derived myocardial blood 

flow both quantitatively in dynamic mode as well as semi-quantitatively in helical scan 

mode. When using the semi-quantitative approach, mean myocardial signal density was 

significantly lower in stenosed (92.3±39.5 HU) versus remote myocardium (180.04±41.9), 

and a significant linear relationship was observed between the signal density ratio on MSCT 

and microsphere derived myocardial blood flow in both stenosed and remote territories 

within the clinically important range of flows (<8ml/g/min). Importantly, further research 

is needed to assess the accuracy of flow measurements also at lower ranges. An example 

of a myocardial perfusion abnormality observed on MSCT is shown in Figure 2. Recently, 

reports have been published on the feasibility of stress/rest myocardial perfusion imaging 

with MSCT in humans.23, 35, 36 Kurata et al. performed a study in 12 patients undergoing both 

stress and rest perfusion imaging using 16-slice MSCT.36 Myocardial perfusion was visually 

assessed and compared to SPECT. The authors observed an agreement of 83% between 

the MSCT and SPECT perfusion scans. In preliminary work by George et al. myocardial 

perfusion was assessed during rest and stress using a prototype 256-slice MSCT scanner.24 

Myocardial perfusion was quantified by comparing the attenuation values between sub-

endocardial and subepicardial regions. This resulted in a transmural perfusion ratio which 

accurately detected the presence of significant CAD as compared to SPECT.
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Alternative approaches

In preliminary studies with dual source CT myocardial tissue iodine content could be 

evaluated by using two detectors with different X ray spectra. Ruzsics et al showed in 35 

patients with suspected or known CAD a good correlation between observations on MSCT 

and SPECT data.37 A limitation of dual source CT technology however is the lack of cardiac 

coverage which may result in longer scan time with increased risk of contrast variations from 

base to apex. Another approach to perfusion imaging is the use of perfusion weighted color 

maps. Although they do not represent true perfusion imaging, they provide a surrogate of 

perfusion and enhance the ability to detect perfusion deficits.38 Future research is however 

needed to further develop these techniques and establish their feasibility in clinical practice.

Potential clinical implications

Although only limited data are available, the studies that have been performed illustrate the 

potential of MSCT perfusion imaging. Because of its high spatial resolution and fast acquisi-

tion time MSCT may potentially have an advantage over conventional perfusion imaging 

using SPECT. Furthermore the ability to investigate patients with metal implants provides an 

advantage over MR perfusion imaging. Potentially, MSCT may serve as an alternative myo-

cardial perfusion imaging technique in patients with contraindications to MRI. However, the 

major advantage of MSCT perfusion imaging may be the ability to combine perfusion with 

anatomy. This could allow comprehensive assessment of coronary anatomy and perfusion 
 65
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Figure 2. An example of a perfusion defect observed on MSCT using a helical acquisition mode. The stenosis 
in the left anterior descending coronary artery results in a perfusion defect of the anteroseptal, anterior, and 
anterolateral wall of the myocardium (arrows) as observed in the axial slice in panel A. In the long axis multi-
planar reconstruction in panel B, the perfusion defect extends from the anteroseptal wall to the apex. Reprinted 
with permission from reference 17.
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during a single imaging procedure. With the use of new generation wide coverage scanners 

and prospectively triggered scan protocols, myocardial perfusion can potentially be assessed 

semi-quantitatively in combination with MSCTA with an acceptable radiation dose.39 Such 

an integrated imaging approach has several advantages for the diagnosis and potentially the 

prognosis of CAD.

Complementary value for diagnosis of CAD

Anatomic and functional imaging modalities provide complementary information as has 

been demonstrated by previous studies comparing MSCTA to conventional perfusion imaging 

using SPECT.6-9 In the study by Schuijf et al., only 50% of patients with a significant (>50%) 

lesion on MSCTA had an abnormal perfusion on SPECT.9 Conversely, normal perfusion on 

SPECT was unable to rule out the presence of significant CAD or atherosclerosis in general.

(Figure 3) The combination of anatomic and functional imaging in a single procedure may 

facilitate patient management. Patients with normal coronary anatomy without perfusion 

abnormalities can be discharged, while patients with significant CAD and abnormal perfu-

sion may be directly referred for conventional coronary angiography followed by revascu-

larization. Finally, those with (significant) atherosclerosis but without evidence of perfusion 

abnormalities will most likely benefit from risk factor modification and strict control at the 

 66
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 ̀

Figure 3. Case example of a patient with significant atherosclerotic lesions in both the left anterior descending 
coronary artery (arrows panels A, and B) as well as in the right coronary artery (arrows panels C, and D), while 
normal myocardial perfusion was observed (panel E).
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outpatient clinic. Although improved management has not yet been proven, initial data 

support the notion that combined assessment of anatomy and perfusion may result in a 

higher diagnostic accuracy for the detection of hemodynamically significant coronary artery 

lesions.40 By fusing both anatomic and perfusion datasets into a single, three-dimensional 

anatomic representation of the heart with overlying coronary anatomy, diagnostic accuracy 

may also improve on a vessel basis. This approach may enable accurate allocation of perfu-

sion defects to the corresponding arteries. Gaemperli et al. assessed the accuracy of cardiac 

image fusion by combining MSCTA and SPECT.41 The authors concluded that in almost one 

third of patients, fusion of MSCTA and SPECT provided additional diagnostic information, 

especially in functionally relevant lesions in distal segments and diagonal branches and 

in vessels with extensive disease or calcifications. Fusion of MSCTA and MSCT perfusion 

datasets may provide similar information with higher accuracy as misalignment between 

datasets will occurs less frequently.

Complementary value for prognosis

MSCT is a relatively new imaging technique. So far only limited studies are available assess-

ing the prognostic value of MSCTA. Preliminary work by Pundziute et al. and by Min et al. 

has shown promising results.42, 43 The presence of significant CAD is associated with an 

increased risk for cardiac events, while a completely normal MSCTA confers a very low risk. 

Conversely, perfusion imaging using SPECT has been well validated for risk stratification, 

and can accurately distinguish between patients at low and high risk for future cardiac 

events.44-46 As MSCT and SPECT provide complementary information about the presence 

and extent of CAD, it is intuitively expected that their combined use may further improve risk 

stratification.47 Although no prognostic data are available, combined assessment of myocar-

dial perfusion imaging and coronary anatomy with MSCT may also provide increased risk 

stratification compared to the use of MSCTA or MSCT perfusion imaging alone.

Limitations

Several issues need to be resolved before MSCT perfusion imaging can be added to MSCTA in 

clinical practice. An important issue is radiation dose. Dynamic mode scanning is attractive 

since it allows quantification of myocardial blood flow, but is associated with a high radia-

tion dose. Therefore imaging during first pass infusion of contrast using a semi-quantitative 

approach will probably be more feasible as exposure time and resulting radiation dose is 

less. Further developments in wide coverage scanners and prospective ECG-triggering, can 

potentially reduce the radiation dose to 7-11 mSv for combined perfusion and coronary 

angiography imaging.39 
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Secondly, when combining MSCTA with perfusion imaging, the combination of beta block-

ade - which is frequently required for MSCTA - and pharmacological stress needed for stress 

imaging may pose a problem. The use of beta blockers may alter the resting and hyperemic 

myocardial blood flow resulting in increased myocardial flow reserve, which may decrease 

the sensitivity for the detection of myocardial ischemia.48, 49 Furthermore MSCTA will be 

less reliable during stress imaging as image quality decreases with increasing heart rates. 

Finally a general limitation of MSCT is its limited temporal resolution, which can result 

in motion artefacts in the myocardium that can be mistaken for perfusion deficits. Other 

artefacts that may be observed are those caused by beam hardening. To circumvent this 

problem, extensive effort is currently invested to develop and validate beam hardening cor-

rection algorithms.50 Furthermore temporal resolution has increased with dual source CT 

technology.51, 52 

Conclusion

With the introduction of wide volume scanners enabling prospective ECG-triggering, MSCT 

perfusion imaging has become increasingly feasible. MSCT has the potential to visualize 

myocardial perfusion during rest and stress in combination with anatomic assessment of 

the coronary arteries. This may enable use of MSCT as a “one stop shop” for the diagnosis 

and potentially the prognosis of CAD. However, before MSCT perfusion imaging can be 

implemented in clinical practice, more clinical data are needed.
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Abstract

Diastolic left ventricular (LV) function plays an important role in patients with car-

diovascular disease. Currently, 2D echocardiography using TDI has been used most 

commonly to evaluate diastolic LV function. Although the role of MDCT imaging for 

evaluation of coronary atherosclerosis has been explored extensively, its feasibility 

to evaluate diastolic function has not been studied.The purpose of this study was 

to demonstrate the feasibility of multidetector row computed tomography (MDCT) 

for assessment of diastolic function in comparison with 2-dimensional (2D) echocar-

diography using tissue Doppler imaging (TDI). Seventy patients who had undergone 

64-MDCT and 2D echocardiography with TDI were enrolled. Diastolic function was 

evaluated using early (E) and late (A) transmitral peak velocity (cm/s) and peak mitral 

septal tissue velocity (Ea) (cm/s). Peak transmitral velocity (cm/s) was calculated by 

dividing peak diastolic transmitral flow (mL/s) by the corresponding mitral valve 

area (cm2). Mitral septal tissue velocity was calculated from changes in LV length per 

cardiac phase. Subsequently, the estimation of LV filling pressures (E/Ea) was deter-

mined. Good correlations were observed between MDCT and 2D echocardiography 

for assessment of E (r=0.73, p<0.01), E/A (r=0.87, p<0.01), Ea (r=0.82, p<0.01) and E/

Ea (r=0.88, p<0.01). Moreover, a good diagnostic accuracy was found for detection of 

diastolic dysfunction using MDCT (79%). In conclusion, MDCT imaging is a feasible 

technique to evaluate diastolic LV function. MDCT imaging showed good correlation 

for the estimation of LV filling pressures when compared to 2D echocardiography. 

Additionally, a good agreement was found for detection of diastolic dysfunction 

using MDCT.
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Introduction

Diastolic left ventricular (LV) function plays an important role in the evaluation of clinical 

symptoms, therapeutic options and prognosis in patients with cardiovascular disease.1-4 

More specifically, it has been shown that diastolic dysfunction represents an important 

pathological condition in patients with coronary artery disease (CAD).5, 6 

Currently, the concept of diastology has been explored with different imaging techniques, 

wherein Doppler echocardiography represents the most commonly used approach for evalu-

ation of diastolic function.7-12 For the evaluation of diastolic function, transmitral velocity has 

been used frequently as a non-invasive alternative to directly measured LV filling pressures.7, 

9 However, it is important to note that several confounding factors may influence transmitral 

velocity and consequently transmitral velocity alone may not be the best marker for diastolic 

LV dysfunction.8, 9, 13 Combined assessment of early peak transmitral velocity and early 

peak mitral septal tissue velocity may be more accurate for the evaluation of diastolic LV 

function, predominantly in patients with depressed or increased LV filling pressures.8, 12, 

13 Multidetector row computed tomography (MDCT) has emerged as a potent non-invasive 

imaging modality for evaluation of coronary atherosclerosis.14, 15 Despite the introduction 

of prospective triggering techniques to lower the radiation dose, retrospective electrocardio-

graphic gating remains at present the most frequently applied approach to perform cardiac 

MDCT in clinical practice.16 Furthermore, it is important to note that prospective triggering 

can only performed in selected patients with stable and low heart rates. Accordingly, in a 

large number of patients MDCT images may still be acquired using retrospective ECG gating 

to ensure diagnostic image quality of the coronary arteries. Importantly, in these patients, 

functional analysis can be performed retrospectively without additional image acquisitions.

Thus far, studies have been restricted to LV systolic function analysis, 17 and no information 

is available on the feasibility of MDCT imaging to assess diastolic LV function. Accordingly, 

the present study aimed to evaluate the feasibility of MDCT for assessment of diastolic 

function in a direct comparison with 2D echocardiography using TDI.

Methods

Patient population, study design

Seventy consecutive patients who had been referred for 64-MDCT imaging were retrospec-

tively selected from our clinical registry. MDCT imaging was performed to evaluate known or 

established CAD, and 2D echocardiography with TDI was performed to evaluate therapeutic 

options. Both examinations had been performed sequentially, in random order. Known CAD 
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was defined as previous myocardial infarction, revascularization or evidence of CAD on 

previous diagnostic tests. Patients without evidence of CAD on previous diagnostic tests 

were suspected to have CAD (and therefore referred for CT angiography). Study exclusion 

was based on: (1) poor MDCT image quality (2) absence of Doppler echocardiography 

examination within 3 months (3) valvulopathy (mitral or aortic valve dysfunction), and (4) 

(supra) ventricular arrhythmias. Additionally, patients with unstable angina pectoris or acute 

coronary syndrome were excluded from further analysis. Our Institutional Review Board 

does not require its approval for retrospective technical analysis of clinically obtained data, 

as was the case in this study.

MDCT - Data Acquisition and Analysis

MDCT imaging was performed with a 64-slice MDCT scanner (Aquilion 64, Toshiba Medi-

cal Systems, Otawara, Japan). Prior to MDCT imaging, patients were monitored for blood 

pressure and heart rate. Patients with a heart rate ≥65 beats/min were given metoprolol 50 

or 100 mg orally, unless contra-indicated.

For the contrast-enhanced helical scan, collimation was 64x0.5 mm with a rotation time of 

400 ms. Tube current and voltage were 350 mA and 120 kV. At an injection rate of 5 mL/

min, 95 to 130 mL of nonionic contrast medium (Iomeron 400; Bracco, Milan, Italy) was 

infused in the antecubital vein. After start of contrast infusion, recurrent low-dose examina-

tions were performed to monitor contrast arrival within the region of interest, placed in 

the descending aorta. The electrocardiogram (ECG) gated helical scan was automatically 

triggered once the predetermined threshold level of baseline +100 Hounsfield units was 

reached. After a preset delay of 2 seconds, scanning was performed during an inspiratory 

breath hold of 8 to 12 seconds.

Data were reconstructed with a slice thickness of 1 mm and a reconstruction interval of 1 

mm. With the use of half reconstruction algorithms, the actual temporal resolution was 200 

milliseconds. Segmented reconstruction algorithms yielded a temporal resolution of up to 

50 milliseconds, depending on the actual imaging acquisition conditions (pitch, rotation 

time and heart rate). ECG-gated post processing software was used for to reconstruct data 

in short-axis orientation. Images were reconstructed at 20 intervals (0% to 95% of the R-R 

interval) and transferred to a separate workstation with dedicated cardiac function analysis 

software (Mass V2008-EXP, LKEB, Leiden, The Netherlands).18 Contrast-enhanced scans 

were analyzed by an independent observer who was blinded to all other data. Significant 

coronary artery stenosis was defined as ≥50% luminal narrowing, whereas non-significant 

stenosis was defined as <50% luminal narrowing.
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MDCT - Transmitral velocity

Peak transmitral velocity (cm/s) was measured in early (E) and late (A) diastole. The peak value 

represents the highest mean value of the measurements obtained during early and late diastole. 

Late peak transmitral velocity (cm/s) was measured at atrial contraction. Transmitral velocity 

(cm/s) measurements were based on several processing steps (Figure 1). At first, LV volumes 

were calculated for 20 cardiac phases (each phase represented 5% of the cardiac cycle). For 

each phase, automatic contour detection was performed on 1 mm sliced reconstructed short-

axis images ranging from mitral valve annulus to the cardiac apex (Figure 1A, left panel). 

Manual corrections could be made to improve contour detection. Papillary muscles were 

regarded as part of the LV cavity and were included in the LV volume analyses.19 Automatic 

contour detection was performed using dedicated in-house developed MASS research soft-

ware package (Mass V2008-EXP, LKEB, Leiden, The Netherlands).18 Next, LV volumes were 

plotted in a volume versus time curve (Figure 1A, right upper curve). In addition, changes 

in LV volumes between two consecutive phases (first derivative) were derived and used to 

calculate the transmitral flow (mL/s) per phase (Figure 1A, right lower curve). Subsequently, 

the maximal transmitral flow (mL/s) in early and late diastole was derived using the transmitral 

flow versus time curve. To allow direct comparison with 2D echocardiography, the maximal 

transmitral flow (mL/s) in early and late diastole was divided by their corresponding mitral 

valve area (cm2) (which was measured during early and late diastole, as described below), 

yielding an early and late peak transmitral velocity (cm/s) and the E/A.

MDCT - Mitral septal tissue velocity

Myocardial tissue velocity (cm/s) was measured at the septal level of the mitral valve annulus 

attachment. Measurements of peak mitral septal tissue velocity (cm/s) during early diastole 

(Ea) are illustrated (Figure 1B). For 20 phases, LV length (mm) was calculated as the distance 

between two anatomical markers, positioned at the mitral septal annulus (MA) and cardiac 

apex (AP) (Figure 1B, left panel). Anatomical markers were positioned at reconstructed 

4-chamber views. Reconstruction of a 4-chamber view was based on several reconstruction 

steps. At first, a 2-chamber view was reconstructed from axial slices, directing the image slice 

(cardiac axis) through the cardiac apex. Consecutively, a 4-chamber view was reconstructed 

by positioning the image slice at two-third of the mitral valve annulus (perpendicular to the 

interventricular septum) using the 2-chamber view.

The LV length (mm) per phase was plotted in a LV length versus time curve (Figure 1B, right 

upper panel). Changes in LV length between two consecutive phases were calculated and 

used to generate a velocity versus time curve (Figure 1B, right lower panel). In this curve, 

mitral septal tissue velocities were plotted against time. For each phase, mitral septal tissue 

velocity (cm/s) was computed using changes in LV length and heart rate. The maximal tis-
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Figure 1. Diastolic left ventricular (LV) function assessed with multidetector row computed tomography (MDCT).

A Transmitral flow. LV volumes (mL) were measured for 20 phases per cardiac cycle. LV volumes (mL) were 
measured using short-axis images by outlining endocardial contours in each phase. LV volumes (mL) were plotted 
in a volume versus time curve (right upper panel). These curves were used to define the diastole, ranging from 
end-systolic (ES) to end-diastolic (ED) phase. Consecutively, changes in LV volumes between two consecutive 
phases were plotted against time (transmitral flow versus time curve) (right lower curve). Subsequently, early and 
late peak transmitral flow (mL/s) were derived.

B Mitral septal tissue velocity. Anatomical markers were positioned at the mitral septal annulus (MA) and the 
cardiac apex (AP). LV length (mm) (the distance between anatomical markers) was calculated for each phase 
(left panel). The LV length (mm) was plotted in a LV length versus time curve (right upper curve). Next, changes 
in LV length between two consecutive phases were calculated. Based on these numbers, mitral septal tissue 
velocities (cm/s) were calculated for each phase (velocity versus time curve, right lower panel). The early peak 
mitral septal tissue velocity (cm/s) (Ea) represented the maximal tissue velocity during early diastole.

C Mitral valve area. Measurements were performed at the most distal level of the mitral valve leaflets (smallest 
mitral valve area) using reconstructed images at peak early and late transmitral velocity. LV axis was positioned 
perpendicular to mid-mitral valve annulus on sagital and coronal views (left panel), yielding a 2-chamber view 
(panel 1). Consecutively, the 4-chamber view was reconstructed (panel 2) and mitral valve area was measured at 
the tip of the leaflets (panels 3 and 4) on short-axis views. To allow direct comparison, transmitral velocity (cm/s) 
was calculated using the following formula: peak diastolic transmitral flow (mL/s) divided by the corresponding 
mitral valve area (cm2).
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sue velocity (cm/s) during early diastole represented early peak mitral septal tissue velocity 

(cm/s) (Ea). Measurements were performed using the MASS research software package.18 

Finally, the estimation of LV filling pressures (E/Ea) was calculated by dividing early transmi-

tral velocity (E) (cm/s) by the mitral septal tissue velocity (Ea) (cm/s).

Reproducibility of the mitral septal tissue velocity measurements was evaluated in a 

subset of 15 patients who were randomly selected from the patient population. Mitral septal 

tissue velocity was measured twice in the subset of 15 patients according to the standard-

ized protocol, as described above.

MDCT - Mitral valve area

Mitral valve area (cm2) was measured to enable direct comparison of volumetric indices 

derived from MDCT with velocity-based parameters as assessed with 2D echocardiography. 

In Figure 1C, the processing steps involved in mitral valve area (cm2) measurements are 

illustrated. Images were reconstructed with a slice thickness of 0.5 mm and a reconstruction 

interval of 0.3 mm.

Mitral valve area (cm2) measurements were based on different steps: the LV axis was posi-

tioned perpendicular to mid-mitral valve annulus on sagital and coronal views, yielding a 

2-chamber view (panel 1). Subsequently, a 4-chamber view (panel 2) was reconstructed 

and manual contour detection was performed at the most distal level of the mitral valve 

leaflets in short-axis views (panel 3 and 4). Measurements were performed during early 

and late peak transmitral flow (mL/s) using a dedicated workstation (Vitrea 2; Vital Images, 

Minnetonka, Minnesota, USA).

The mitral valve area (cm2) was calculated to enable direct comparison with 2D echocar-

diography. Transmitral velocity (cm/s) was calculated by the following formula: transmitral 

velocity = transmitral flow (mL/s) / corresponding mitral valve area (cm2) (Figure 1). Repro-

ducibility of the mitral valve area measurements was evaluated in a subset of 20 patients 

who were randomly selected from the patient population. In these patients, the mitral valve 

area was measured twice using the same processing steps, as described above.

Transthoracic 2D echocardiography using tissue Doppler imaging

Acquisition

Transthoracic 2D echocardiography was performed in left lateral decubitus position using a 

commercially available system (Vingmed Vivid-7, General Electric, Horten, Norway). Stan-

dard parasternal (long- and short-axis) and apical views (2- and 4-chamber) were obtained. In 

addition, continuous-wave and pulsed-wave Doppler examinations were performed. From the 
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4-chamber view, TDI was obtained with color Doppler frame rates exceeding 115 frames/sec-

ond, depending on the sector width of the range of interest. Aliasing velocities varied between 

16 and 32 cm/s and resulted from pulse repetition frequencies ranging from 500 Hz and 1 

kHz. Echocardiographic analyses were performed by an independent and blinded observer.

2D echocardiography - Transmitral velocity

Transmitral velocity (cm/s) was recorded at the end of respiratory expiration (Figure 2, upper 

panel). Transmitral velocity (cm/s) measurements were performed using dedicated offline 

software (EchoPAC 7.0.0.; General Electric, Horten, Norway. Standard pulsed-wave Doppler 

imaging was performed to assess early (E) and late (A) peak transmitral peak velocity (cm/s). 

Early and late peak transmitral velocity (cm/s) were used to calculate the E/A. Doppler 

sample volume was placed at the tip of the mitral valve leaflets, on a 4-chamber view (20). 

Subsequently, early and late peak transmitral velocities (cm/s) were obtained in diastole.

2D echocardiography - Mitral septal tissue velocity

Early peak mitral septal tissue velocity (cm/s) (Ea) was assessed using color-coded TDI on a 

4-chamber view. Images were obtained in end-expiration in a patient in left lateral decubitus 

position. Doppler velocities (cm/s) were measured from the apical 4-chamber view using 

a 6x6 mm sample volume positioned at the basal septal mitral valve annulus, as illustrated 

in Figure 2 (lower panel) (20). Color-coded images from three consecutive heartbeats were 

analyzed using dedicated offline software (EchoPAC 7.0.0.; General Electric, Horten, Nor-

way). Reliable tissue Doppler curves were obtained in 67 patients.

Detection of diastolic dysfunction

To evaluate the accuracy of MDCT to detect diastolic dysfunction, diastolic function was 

graded in four categories using the following criteria; normal diastolic function (≥1 E/A 

<2 and E/Ea ≤8), impaired relaxation pattern (diastolic dysfunction grade I) (E/A <1 and E/

Ea ≤8), pseudonormal pattern (diastolic dysfunction grade II) (≥1 E/A <2 and ≥9 E/Ea ≤12) 

and restrictive filling pattern (diastolic dysfunction grade III) (E/A ≥2 and E/Ea ≥13).21 Based 

on these criteria, the patient population was divided into two groups; patients with normal 

diastolic function and patients with diastolic dysfunction (including impaired LV relaxation, 

pseudonormal and restrictive LV filling pattern).

Statistical analysis

Continuous data are presented as mean ± standard deviation, and categorical data are presented 

as absolute numbers or percentages. Comparison of MDCT and 2D echocardiography with TDI 

was performed using Pearson’s linear regression analysis. The 95% limits of agreement were 

calculated using Bland-Altman analysis that plotted the mean value of differences of each pair 

against the average value of similar pair of data. MDCT was subtracted from 2D echocardiography 

Jaap BW4.indd   290 10-05-11   16:40



C
h

ap
ter 18

Feasib
ility o

f d
iasto

lic h
eart fu

n
ctio

n
 assessm

en
t w

ith
 C

T

291

with TDI as the latter was considered the clinical standard. Reproducibility was evaluated by cal-

culating the intraclass correlation coefficients (ICC) and an excellent agreement was defined as 

an ICC >0.8. Diagnostic accuracy of MDCT for detection of diastolic dysfunction was assessed 

using a binary approach; normal diastolic function and diastolic dysfunction (including impaired 

LV relaxation, pseudonormal and restrictive LV filling pattern). Corresponding sensitivity and 

specificity values were calculated. For these values, the 95% confidence intervals (CI) were cal-

culated using the following formula: p ± 1.96 x standard error (SE) and the SE was estimated by 

√ [p (1 – p) / n]. Statistical analyses were performed with SPSS release 16.0 (SPSS Inc, Chicago, 

Illinois, USA). All tests p<0.05 were considered statistically significant.

 68

18.2 

 
Figure 2. Evaluation of diastolic function with 2-dimensional (2D) echocardiography using tissue Doppler imaging 
(TDI). 2D echocardiographic assessment of pulsed-wave Doppler of early (E) transmitral velocity (cm/s) (panel A) 
and early diastolic peak mitral septal tissue velocity (cm/s) (Ea) at basal septal segment by TDI (panel B). The E 
(white arrow, panel A) and Ea (white arrow, panel B) were 0.80 m/s and -7.1 cm/s. Accordingly, the E/Ea was 11.27.
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Results

Patient population

A total of 70 patients (46 (66%) men, mean age 55±11 years) were included. Baseline char-

acteristics of the patient population are listed in Table 1. MDCT and 2D echocardiography 

were performed within 3 months and no acute coronary events or worsening of angina 

occurred between the examinations. No changes in the use of medication occurred between 

both examinations. Clinical referral for MDCT was based on suspected CAD in 58 patients 

and known CAD in 12 patients. Patients with known CAD included patients with previous 

myocardial infarction (n=10), percutaneous coronary intervention (n=7) and patients with 

indications of CAD on earlier diagnostic tests (n=3). Significant coronary artery stenosis 

(≥50% luminal narrowing) was reported in 21 (30%) patients. In total, 31 (44%) patients 

received beta-blocking therapy prior to MDCT imaging.

Transmitral velocity

Transmitral flow versus time curves were obtained in all patients. Mean LV end-systolic 

and LV end-diastolic volumes were 70±50 mL and 149±52 mL on MDCT. Accordingly, the 

mean LV ejection fraction was 56±13% (Table 1). Mean values for transmitral velocity are 

shown in Table 2. Pearson’s correlation showed a good correlation for E (r=0.73, p<0.01) 

and E/A (r=0.87, p<0.01) (Figures 3A and 4A). Bland-Altman analysis for E showed a mean 

difference of 2.4±12.0 cm/s, with 95% limits of agreement ranging from -21.2 to 26.0 cm/s, 

whereas for E/A the mean value of difference was -0.1±0.2 with 95% limits of agreement 

ranging from -0.5 to 0.4 (Figures 3B and 4B). An excellent reproducibility was observed for 

assessment of mitral valve area (ICC 0.85, 95% CI 0.67 - 0.94).

Mitral septal tissue velocity

Velocity versus time curves were obtained for all patients. Mean values for Ea and E/Ea are 

shown in Table 2. A good correlation (r=0.82, p<0.01) (Figure 5A) for Ea was found. Bland-

Altman analysis showed a mean value of difference of -0.5±1.6 cm/s with 95% limits of 

agreement ranging from -3.6 to 2.5 cm/s (Figure 5B). In addition, good correlation (r=0.88, 

p<0.01, Figure 6A) was reported for E/Ea with a mean value of difference of 1.0±2.9 and 

95% limits of agreement ranging from -4.6 to 6.7 (Figure 6B).

An excellent reproducibility was observed for assessment of mitral septal tissue velocity 

(ICC 0.94, 95% CI 0.80 - 0.99).

Detection of diastolic dysfunction

Finally, diagnostic accuracy of MDCT to detect diastolic dysfunction in comparison to 

Doppler echocardiography was calculated (21). In total, 19 (27%) patients showed normal 

diastolic function, whereas 51 (73%) patients showed diastolic dysfunction using Doppler 
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echocardiography. Of the patients with diastolic dysfunction on Doppler echocardiogra-

phy, 40 patients were scored similarly using MDCT, yielding a sensitivity of 78% (95% 

CI 67-89%). Normal diastolic function was found in 15 of the 19 patients using MDCT, 

yielding a specificity of 79% (95% CI 61-97%). Overall, diagnostic accuracy for assessment 

of diastolic dysfunction was 79% (95% CI 69-89%).

Table 1. Baseline characteristics of study population

Men 46 (66)
Age (yrs) 55 ± 11
Suspected CAD 58 (83)
Known CAD 12 (17)
Significant coronary stenosis 21 (30)
Cardiovascular risk factors
 Diabetes mellitus 35 (50)
 Systemic hypertension 43 (61)
 Hypercholesterolemia 40 (57)
 Current smoking 11 (16)
 Positive family history 27 (39)
Medication use
 β-blockers 24 (34)
 ACE-I / AT II antagonists 35 (50)
 Statins 29 (41)
 Diuretics 15 (21)
 Anticoagulants 30 (43)
MDCT
 Heart rate (bpm) 58 ± 10
 LV end-systolic volume (mL) 70 ± 50
 LV end-diastolic volume (mL) 149 ± 52
 LV ejection fraction (%) 56 ± 13

Table 2. Diastolic function parameters for MDCT and 2D echocardiography

MDCT 2D echocardiography P-value
Transmitral velocity
 E (cm/s) 59.0 ± 16.6 61.8 ± 14.5 <0.05
 A (cm/s) 56.2 ± 17.4 64.8 ± 18.2 <0.05
 E/A 1.1 ± 0.4 1.1 ± 0.5 <0.05
Mitral septal tissue velocity
 Ea (cm/s) 6.6 ± 2.7 6.2 ± 2.3 <0.05
 E/Ea 10.5 ± 5.5 11.6 ± 6.0 <0.05
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Discussion

This study demonstrated good correlations for transmitral velocity (E and E/A) and mitral 

septal tissue velocity (Ea). Additionally, combined assessment of transmitral and mitral septal 

tissue velocity (E/Ea) representing an estimation of LV filling pressures showed good correla-

tion between MDCT and 2D echocardiography with TDI. Finally, a good agreement was 

found for the detection of diastolic dysfunction using MDCT. Accordingly, the current study 

showed that MDCT is a feasible method for assessment of diastolic function. 69

18.3 

 Figure 3. Comparison between 2-dimensional (2D) echocardiography and multidetector row computed 
tomography (MDCT) for assessment of early maximal diastolic transmitral velocity (E). A. Good correlation was 
observed between both techniques. B. Bland-Altman analysis showing the difference of each pair plotted against 
the average value of same pair of values.

 70

18.4 

 
Figure 4. Comparison between 2-dimensional (2D) echocardiography and multidetector row computed 
tomography (MDCT) for E/A. A. Good correlation was observed between both techniques. B. Bland-Altman 
analysis showing the difference of each pair plotted against the average value of same pair of values.
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The importance of diastolic function in patients with coronary atherosclerosis has been 

demonstrated in several studies.5, 6 A recent meta-analysis pooled 3396 patients with docu-

mented myocardial infarction from 12 prospective studies and demonstrated that patients 

with a restrictive LV filling pattern had a significantly higher mortality rate than patients with 

a non-restrictive LV filling pattern (11.3 % vs. 28.7%, p<0.01).5, 6 

Although invasive measurements of LV filling pressure are considered the most accurate 

approach for evaluation of diastolic LV function, they are not ideal for widespread appli-

cation and follow-up examinations. Consequently, several cardiac imaging techniques 

(particularly Doppler echocardiography) have been used to assess transmitral velocity as a 

 71
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Figure 5. Comparison between 2-dimensional (2D) echocardiography and multidetector row computed 
tomography (MDCT) for assessment of early peak mitral septal tissue velocity (Ea). A. Good correlation was 
observed between both imaging techniques. B. Bland-Altman analysis showing the difference of each pair plotted 
against the average value of same pair of values.
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Figure 6. Comparison between 2-dimensional (2D) echocardiography and multidetector row computed 
tomography (MDCT) for E/Ea. A. Good correlation for E/Ea was observed between both techniques. B. Bland-
Altman analysis showing the difference of each pair plotted against the average value of same pair of values.
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noninvasive alternative.7, 9 Even though complex interacting pathophysiologic mechanisms 

may underlie diastolic dysfunction, evaluation of diastolic LV function is most frequently 

based on transmitral velocity measurements alone.7, 9, 13 

Transmitral velocity

Doppler echocardiography has been validated for the assessment of transmitral velocity as a 

noninvasive alternative of direct LV filling pressures.7 Additionally, Doppler echocardiogra-

phy has been compared to magnetic resonance imaging (MRI) for assessment of transmitral 

velocity.11, 12 Hartiala and colleagues evaluated whether velocity-encoded cine MRI was 

feasible for evaluation of transmitral velocity in 10 normal volunteers.11 Good correlations 

were found between Doppler echocardiography and MRI for early and late transmitral veloc-

ity and E/A ratio. In the present study, the feasibility of MDCT was demonstrated indicating 

good correlations between MDCT and Doppler echocardiography for early transmitral 

velocity (r=0.73, p<0.01) and E/A ratio (r=0.87, p<0.01). In line with the study by Hartiala et 

al., 11 a systematic underestimation of transmitral velocity was observed when compared to 

Doppler echocardiography (Table 2). These findings may be related to technical differences 

between MDCT and Doppler echocardiography; in particular differences in temporal resolu-

tion may play a role in the systematic underestimation of transmitral velocity with MDCT. In 

both studies, correlations were not excellent for transmitral velocity and this may be related 

to other parameters that could influence transmitral velocity measurements, including filling 

pressures, degree of LV relaxation, myocardial elastic recoil and stiffness.9, 10 To overcome 

these limitations, additional measurements have been proposed, including the evaluation of 

pulmonary venous velocity, M-mode echocardiography flow velocity curves, and altering 

pre- and afterload conditions (Vasalva maneuver or nitroglycerin administration).22, 23 In 

the current study however, these measurements were not performed as this study was only 

performed to evaluate the feasibility of MDCT.

Additionally, it has been suggested to combine transmitral velocity and mitral septal tissue 

velocity measurements when evaluating diastolic heart function. Importantly, the combined 

assessment of transmitral velocity and mitral septal tissue velocity represents a better 

estimate of LV filling pressures as it is a normalization of LV filling gradient for filling LV 

volume.8, 12, 13 

Mitral septal tissue velocity

Ommen and colleagues (8 studied the clinical use of TDI for evaluation of diastolic LV 

function in 100 patients. Comparison between invasive LV filling pressures and combined 

assessment of early transmitral velocity and mitral septal tissue velocity showed improved 

correlation (r=0.64) as compared to transmitral velocity (r=0.59) or mitral septal tissue 

velocity (r=0.36) alone.8 In addition, MRI has been compared to TDI for assessment of 
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tissue velocities.12 Paelinck et al.12 used phase-contrast MRI and Doppler echocardiography 

to measure transmitral and mitral septal tissue velocities in 18 patients with hypertrophic 

cardiomyopathy. Importantly, combined assessment of early transmitral velocity and mitral 

septal tissue velocity (E/Ea) showed a good correlation between Doppler echocardiography 

and MRI (r=0.89, p<0.01). Moreover, invasive measurements were well correlated to E/

Ea derived from Doppler echocardiography (r=0.85, p<0.01) and MRI (r=0.80, p<0.01). 

Likewise, the current study reported good correlations for transmitral velocity (E/A, r=0.87, 

p<0.01) and E/Ea (r=0.88, p<0.01). Furthermore, both studies showed that mitral septal tis-

sue velocity was slightly overestimated when compared to Doppler echocardiography. With 

Doppler echocardiography, tissue velocities are quantified using changes in Doppler signal 

over time. Doppler patterns are only displayed for the region of interest (sample volume), 

located at the basal septal mitral valve annulus. With MDCT however, tissue velocities are 

measured using a different region of interest; ranging from the basal septal mitral valve 

annulus to the apex. The different regions of interest may have caused a slight overestimation 

of tissue velocity using MDCT.

Diastolic left ventricular function

Good agreement for detection of diastolic dysfunction was found when compared to Dop-

pler echocardiography. This represents an important finding as the assessment of diastolic 

dysfunction provides important diagnostic, therapeutic and prognostic information in 

patients with cardiovascular disease, and more specifically, in patients with coronary ath-

erosclerosis.1-6 Additionally, it has been shown that patients with coronary atherosclerosis 

and normal LV systolic function may already exhibit diastolic dysfunction.24 Accordingly, 

additional post-processing for diastolic dysfunction may have the potential to enhance 

the clinical evaluation derived from cardiac CT, particularly in patients with evidence of 

coronary atherosclerosis but normal LV systolic function. Moreover, the feasibility of MDCT 

for assessment of diastolic function is of particular interest as the number of patients referred 

for noninvasive evaluation of known or suspected coronary atherosclerosis with MDCT 

imaging has increased substantially over the recent years. In these patients, retrospective 

gating represents the most commonly used approach for cardiac CT.16 In a large multicenter 

observational study, including 21 university hospitals and 29 community hospitals, Haus-

leiter et al.16 recently showed that retrospective electrocardiographic gating was still applied 

in 94% of the 1965 enrolled patients. Importantly, in patients imaged with retrospective 

gating evaluation of diastolic LV function provides important additional information without 

additional radiation exposure.

Limitations

Some limitations need to be considered. At first, transmitral velocity parameters were 

assessed with Doppler echocardiography and MDCT as a noninvasive alternative to directly 
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measured LV filling pressures. Although direct measurements of LV filling pressures would 

have been preferred, they are not ideal for routine clinical examination. In addition, the 

assessment of LV filling pressures was performed by measuring early diastolic mitral septal 

tissue velocity with color-coded TDI. This technology provides lower values of tissue veloci-

ties as compared to pulsed-wave TDI.25 Second, patients with valvular regurgitation were 

excluded. Severe valvular regurgitation may disturb accurate velocity measurements, lead-

ing to an inaccurate diastolic LV function analysis. Additional studies are needed to evaluate 

this potential confounding effect. Finally, one has to take into consideration that the effect 

of intravenous infusion of contrast media for cardiac CT angiography imaging on diastolic 

function indices is currently unknown. 

Conclusions

Good correlations were observed for transmitral velocity, mitral septal tissue velocity and 

estimation of LV filling pressures when compared to 2D echocardiography using TDI. 

Moreover, a good agreement was found for detection of diastolic dysfunction using MDCT. 

Accordingly, MDCT is a feasible technique for assessment of diastolic function.
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Summary and Conclusions

The general introduction of the thesis (Chapter 1) describes the epidemiology of CAD world-

wide, and specifically in the Netherlands. The concepts underlying atherosclerosis forma-

tion and progression are briefly discussed followed by an overview of different invasive 

and non-invasive imaging techniques available to identify CAD, including novel anatomic 

imaging using CTA. This introduction of the different imaging techniques is followed by the 

objective and outline of the thesis.

Part 1

In Part 1 of the thesis the value of CTA for diagnosis of CAD, and its relationship to existing 

diagnostic imaging modalities is described. Chapter 2 provides an overview of the advances 

in CTA technique, and describes the potential value of CTA in clinical practice compared 

to existing non-invasive imaging techniques. Based on this review, it was concluded that 

the combined use of these techniques may enhance the assessment of the presence and 

extent of coronary artery disease. The diagnostic accuracy of CTA for detection of significant 

CAD on invasive coronary angiography, in patients with an intermediate pre-test likelihood 

is evaluated in Chapter 3. On a segmental level, sensitivity, specificity, positive predictive 

value and negative predictive value were 79%, 98%, 61%, and 99% respectively. On a 

patient level, sensitivity, specificity, positive predictive value, and negative predictive value 

were respectively 100%, 89%, 76%, and 100%. CTA therefore has an excellent diagnostic 

accuracy in the target population of patients with an intermediate pre-test likelihood. Impor-

tantly, CTA allowed accurate rule out of significant CAD in 66% of the total population. 

In Chapters 4-7, the anatomic data obtained on CTA is compared to functional imaging 

techniques (SPECT, FFR, and MRI). In Chapter 4 the diagnostic information obtained from 

CTA is compared to SPECT. These findings are further correlated to invasive coronary angi-

ography and IVUS. Of 26 patients with an abnormal MPI study, 23 (88%) showed significant 

stenosis on CTA. As compared with QCA, CTA showed a sensitivity of 96% and specificity of 

67% for the detection of stenoses ≥50% diameter narrowing in these patients. On the other 

hand, 27 (84%) of 44 patients with normal MPI had evidence of coronary atherosclerosis 

on CTA (luminal stenosis ≥50%: n = 15, luminal stenosis <50%: n = 12, sensitivity of 100% 

and specificity of 83% as compared with QCA). Using IVUS, we found substantial plaque 

burden (mean 58.9 +/- 18.1% of cross-sectional area). It was concluded that a considerable 

plaque burden can be observed with CTA even in the absence of myocardial perfusion 

abnormalities. This finding reflects the fact that CTA can detect atherosclerotic lesions that 

are not flow-limiting. In Chapter 5 the presence of atherosclerosis on CTA in patients with 

a normal MPI is further explored. In 97 patients with a normal MPI, a total of 38 patients 
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(39%) showed normal coronary anatomy, whereas non-significant and significant CAD was 

observed in respectively 37 (38%), and 18 (19%) patients. Importantly, only 4 (4%) patients 

presented with high risk CAD (2 with left main and 2 with 3-vessel disease). These results 

suggest that a normal MPI can be associated with a wide range of anatomical observations 

and cannot exclude the presence of both non-obstructive and obstructive CAD. In Chapter 

6 CTA is compared to invasive functional imaging using FFR in 36 vessels of men with 

known CAD. An abnormal FFR was observed in only 58% of vessels with lesions >50% on 

CTA. Nevertheless, the agreement between normal CTA and FFR was excellent; FFR was 

normal in all 11 vessels with normal CTA. It was concluded that significant stenoses on 

CTA frequently do not result in reduced FFR. A normal CTA study however can accurately 

rule out the presence of hemodynamically significant lesions in men with known CAD. In 

Chapter 7 the anatomic findings observed on CTA are compared to MRI perfusion imaging 

and conventional coronary angiography. In the 38 patients without significant stenosis on 

CTA, normal perfusion was observed in 29 (76%). In patients with a significant stenosis 

on CTA, ischemia was observed in 10 (67%). In all patients without significant stenosis on 

CTA and normal perfusion on MRI (n=29), significant stenosis was absent on conventional 

coronary angiography. All patients with both CTA and MRI abnormal (n=10) had significant 

stenoses on conventional coronary angiography. As a result the anatomic and functional 

data obtained with CTA and MRI is complementary for the assessment of CAD and these 

findings support the sequential or combined assessment of anatomy and function.

Several studies have correlated the presence of significant CAD on CTA to the presence 

of myocardial perfusion defects on SPECT. In Chapter 8 multiple CTA variables of athero-

sclerosis are compared to SPECT imaging in order to determine the different predictors of 

ischemia. On a patient basis, multivariate analysis showed that the degree of stenosis (pres-

ence of ≥70% stenosis, OR 3.5), plaque extent and composition (mixed plaques ≥3, OR 1.7 

and calcified plaques ≥3, OR 2.0) and location (atherosclerotic disease in left main coronary 

artery and/or proximal left anterior descending coronary artery, OR 1.6) were independent 

predictors for ischemia on MPI. Therefore, in addition to the degree of stenosis, CTA variables 

of atherosclerosis describing plaque extent, composition and location are predictive of the 

presence of ischemia on MPI. In Chapter 9 the impact of clinical presentation and pre-test 

likelihood on the relationship between CS and CTA was determined in order to determine 

the role of CS as a gatekeeper to CTA. In patients with CS 0, the prevalence of significant 

CAD increased from 3.9% to 4.1% and 14.3% in respectively non-anginal, atypical and 

typical chest pain, and from 3.4% to 3.9% and 27.3% with respectively a low, intermediate 

and high pre-test likelihood. In patients with CS 1-400, the prevalence of significant CAD 

increased from 27.4% to 34.7% and 51.7% in respectively non-anginal, atypical and typical 

chest pain, and from 15.4% to 35.6% and 50% in respectively low, intermediate and high 

pre-test likelihood. In patients with CS >400, the prevalence of significant CAD on CTA 
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remained high (>72%) regardless of clinical presentation and pre-test likelihood. It was 

concluded that the relation between CCS and CTA is influenced by clinical presentation 

and pre-test likelihood, and these factors should be taken into account when using CS as a 

gatekeeper for CTA.

Part 2

In Part 2 of the thesis the value of CTA for risk stratification is evaluated; in addition, the 

prognostic value of CTA is compared to other non-invasive imaging techniques used for 

risk stratification. Chapter 10 reviews published data on the prognostic value of CTA. Based 

on this literature overview it was concluded that characterization of atherosclerosis non-

invasively has the potential to provide important prognostic information enabling a more 

patient tailored approach to disease management. Chapters 11-13 describe the incremental 

prognostic value of CTA over SPECT perfusion imaging, coronary CS, and CT derived LV vol-

umes and LV function respectively. In Chapter 11, CTA emerged as an independent predictor 

of events with an incremental prognostic value to SPECT. CTA and MPI were synergistic and 

combined use resulted in significantly improved prediction (Log-rank test p-value<0.005). 

It was therefore concluded that combined anatomical and functional assessment may allow 

improved risk stratification. In Chapter 12, after multivariate correction for CS, CTA ≥50% 

stenosis, the number of diseased segments, obstructive segments, and non-calcified plaques 

were independent predictors with an incremental prognostic value to CS. The additional 

information on stenosis severity and plaque composition obtained using CTA was shown 

to translate into incremental prognostic value over CS. When assessing the incremental 

prognostic value of CTA over CT derived LV volumes and LV function in Chapter 13, LVEF < 

49% and LVESV > 90 mL were independent predictors of events with an incremental prog-

nostic value over clinical risk factors and CTA. These results suggest that LV function analysis 

provides incremental prognostic information beyond anatomic assessment of CAD using 

CTA. Chapters 14-16 discuss the prognostic value of CTA in patients with an intermediate 

pre-test likelihood, patients with diabetes mellitus (DM) and in smokers. In patients with an 

intermediate pre-test likelihood for CAD the annualized event rate was 0.8% in patients with 

normal CTA, 2.2% in patients with non-significant CAD and 6.5% in patients with signifi-

cant CAD (Chapter 14). Moreover, CTA remained a significant predictor (p<0.05) of events 

after multivariate correction. These results suggest that CTA is highly effective in re-stratifying 

patients into either a low or high post-test risk group. These results further emphasize the 

usefulness of non-invasive imaging with CTA in this patient population. In Chapter 15 the 

prognostic value of CTA was compared between DM and non-DM patients. Obstructive 

CAD was a significant multivariate predictor both in DM and in non DM patients. Both in 

DM and non DM patients with absence of disease the event rate was 0%. The event rate 
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increased to 36% in non-DM patients with obstructive CAD and was highest (47%) in DM 

patients with obstructive CAD. CTA might therefore be a clinically useful tool to improve risk 

stratification in both DM and non DM patients. The influence of smoking on the prognostic 

value of CTA was assessed in Chapter 16. A significant interaction (p<0.05) was observed 

between significant CAD and smoking for the prediction of events. The annualized event 

rate in smokers with significant CAD was 8.78% compared to 0.99% in smokers without 

significant CAD (p<0.001). In non-smokers with significant CAD the annualized event rate 

was 2.07% compared to 1.01% in non-smokers without significant CAD (p=0.058). The 

prognostic value of CTA was significantly influenced by smoking status. These findings sug-

gest that smoking cessation needs to be aggressively pursued, especially in smokers with 

significant CAD. 

Part 3

In Part 3 of the thesis potential future perspectives of CTA imaging are discussed. In addition 

to non-invasive coronary angiography and LV volume and function assessment, CTA also 

has the potential to assess myocardial perfusion imaging. Chapter 17reviews the limited 

data available regarding the feasibility of CTA perfusion imaging and discusses its potential 

clinical value. The evaluation of both coronary anatomy and myocardial perfusion using 

a single imaging modality has the potential to allow for accurate and quick assessment of 

the presence of coronary artery stenosis and its effects on myocardial hemodynamics. In 

Chapter 18assessment of diastolic function on CTA is compared with 2-dimensional (2D) 

echocardiography using tissue Doppler imaging (TDI). Good correlations were observed 

between CTA and 2D echocardiography for assessment of E (r=0.73, p<0.01), E/A (r=0.86, 

p<0.01), Ea (r=0.82, p<0.01) and E/Ea (r=0.88, p<0.01). It was therefore concluded that CTA 

imaging is a feasible technique to evaluate diastolic LV function.

Conclusions

The objective of the thesis was to explore the value of CTA for diagnosis and risk stratifica-

tion of CAD in patients presenting with suspected and known CAD, in order to further define 

the role of non-invasive anatomic imaging in clinical practice. CTA has a good diagnostic 

accuracy for the detection of significant CAD on conventional coronary angiography, and an 

especially high negative predictive value in patients with an intermediate pre-test likelihood 

for CAD, the target population for non-invasive imaging. As a result it may be used as an 

effective gatekeeper to invasive coronary angiography. 
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In order to define the role of CTA relative to other non-invasive imaging techniques used for 

this purpose, several comparative studies were performed. These studies have demonstrated 

that CTA is capable of identifying atherosclerosis at an early stage, and can distinguish 

between atherosclerosis and completely normal coronary anatomy. Completely normal 

coronary anatomy is associated with normal coronary blood flow on FFR and with an excel-

lent prognosis. In patients with atherosclerosis, CTA is able to define the extent, severity, 

location and composition of atherosclerotic lesions throughout the coronary artery tree and 

can identify atherosclerosis even in a large proportion of patients with normal perfusion on 

SPECT or MRI. The detailed assessment of atherosclerosis provides important prognostic 

information incremental to perfusion imaging, and can be used to guide medical treatment 

decision making. However, decision making regarding referral to revascularization proce-

dures cannot be made solely on the basis of anatomical information. Although significant 

CAD on CTA is associated with abnormal blood flow, approximately half of patients with 

significant CAD do not show any perfusion defects. Functional imaging therefore remains 

mandatory in order to determine which patients will benefit from revascularization.

CTA supplies complementary information to existing non-invasive imaging techniques, 

and has the potential to provide a more patient tailored approach to patient management. 

What remains to be determined is how CTA and non-invasive functional imaging should be 

integrated into clinical practice. The concept of combined imaging in all patients referred for 

non-invasive imaging has led to the introduction of hybrid SPECT/CTA or PET/CTA scanners 

and to the further development of perfusion imaging with CTA in order to obtain anatomical 

and functional imaging from a single procedure. Dual testing however may be redundant in 

some patients and may increase the cost of diagnostic testing. Sequential imaging approaches 

have therefore been proposed in which the decision to undergo further testing is based on 

preceding test results. Prospective follow-up studies assessing both the efficacy and more 

importantly cost-effectiveness of such algorithms are highly anticipated and necessary to 

further define the role of non-invasive anatomic imaging in clinical practice.
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Samenvattingen en Conclusies

De algemene inleiding van het proefschrift (Hoofdstuk 1) beschrijft de epidemiologie van 

CAD wereldwijd, en specifiek in Nederland. De onderliggend principes van atherosclerose 

vorming en progressie worden kort besproken, gevolgd door een overzicht van de verschil-

lende invasieve en niet-invasieve beeldvormingstechnieken die beschikbaar zijn om CAD 

te identificeren, inclusief de anatomische beeldvorming met behulp van CTA. Dit overzicht 

van de verschillende beeldvormende technieken wordt gevolgd door de doelstelling en de 

opzet van het proefschrift.

Deel 1

In Deel 1 van het proefschrift wordt de waarde van CTA voor diagnose van CAD, en de 

relatie tot bestaande diagnostische beeldvormende technieken beschreven. Hoofdstuk 2 

geeft een overzicht van de ontwikkelingen op het gebied van CTA techniek en beschrijft de 

potentiële klinische waarde van CTA ten opzicht van bestaande niet-invasieve functionele 

beeldvormende technieken. Op basis van deze review, werd geconcludeerd dat de combi-

natie van deze technieken de beoordeling van de aanwezigheid en de omvang van coronaire 

hartziekten vergroten. De diagnostische waarde van CTA voor de beoordeling van signifi-

cant coronairlijden op invasieve coronair angiografie, bij patiënten met een intermediaire 

“pre-test likelihood” wordt geëvalueerd in Hoofdstuk 3. Op een segmentaal niveau, waren 

sensitiviteit, specificiteit, positief voorspellende waarde en negatief voorspellende waarde 

respectievelijk 79%, 98%, 61% en 99%. Op patiënt niveau, waren de sensitiviteit, specific-

iteit, positief voorspellende waarde en negatief voorspellende respectievelijk 100%, 89%, 

76% en 100%. CTA heeft dus een uitstekende diagnostische nauwkeurigheid in de doel-

groep van patiënten met een intermediaire “pre-test likelihood”. CTA kon de aanwezigheid 

van significant coronairlijden nauwkeurig uitsluiten in 66% van de onderzoekspopulatie. 

In de Hoofdstukken 4-7, wordt de anatomische informatie verkregen met CTA vergeleken 

met functionele beeldvormingstechnieken (SPECT, FFR, en MRI). In Hoofdstuk 4 wordt de 

diagnostische informatie verkregen uit CTA vergeleken met SPECT. Deze bevindingen zijn 

verder gerelateerd aan invasieve coronair angiografie en IVUS. Van 26 patiënten met een 

abnormaal MPI onderzoek, hadden 23 (88%) een aanzienlijke vernauwing op CTA. Bij de 

vergelijking met invasieve coronair angiografie had CTA een sensitiviteit van 96% en een 

specificiteit van 67% voor de beoordeling van significant stenosen (≥50% vernauwing van het 

lumen). In 27 (84%) van 44 patiënten met een normale MPI werd atherosclerose op de CTA 

gevonden (stenose ≥ 50%: n = 15, stenose <50%: n = 12, met een sensitiviteit van 100% en 

specificiteit van 83% ten opzichte van QCA). Met behulp van IVUS, werd een aanzienlijke 

“plaque burden” gevonden (gemiddeld 58,9±18,1% van het dwarsdoorsnede oppervlakte). 
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Er werd geconcludeerd dat een aanzienlijke “plaque burden” kan worden waargenomen 

met CTA, zelfs bij het ontbreken van perfusie afwijkingen. Deze bevinding weerspiegelt de 

mogelijkheid van CTA om atherosclerose op te sporen die nog geen beperking oplevert voor 

de myocard perfusie. In Hoofdstuk 5 wordt de aanwezigheid van atherosclerose op CTA 

bij patiënten met een normale MPI verder onderzocht. In 97 patiënten met een normale 

MPI, hadden in totaal 38 patiënten (39%) een normale coronaire anatomie, terwijl niet-

significante en significante CAD werd waargenomen bij respectievelijk 37 (38%) en 18 

(19%) patiënten. Een belangrijke bevindinge was dat slechts 4 (4%) patiënten presenteerden 

met hoog risico CAD (2 met een hoofdstam stenose en 2 met 3-vats lijden). Deze resultaten 

suggereren dat een normale MPI is geassocieerd met een breed scala aan anatomische afwi-

jkingen op CTA en daarmee de aanwezigheid van zowel niet-obstructieve als obstructieve 

CAD niet kan uitsluiten. In Hoofdstuk 6 wordt CTA vergeleken met invasieve functionele 

beeldvorming met FFR in 36 vaten mannen met bekend coronairlijden. Een abnormale FFR 

werd waargenomen in slechts 58% van de vaten met ≥ 50% stenose op CTA. Echter, de 

overeenkomst tussen normale CTA en FFR was uitstekend; FFR was normaal bij alle 11 vaten 

met een normale CTA. Geconcludeerd werd dat een significante stenose op CTA vaak niet 

resulteert in een verminderde FFR. Een normale CTA onderzoek kan echter nauwkeurig de 

aanwezigheid van hemodynamisch significante laesies uitsluiten bij mannen met bekend 

coronairlijden. In Hoofdstuk 7 werden de anatomische bevindingen waargenomen op CTA 

vergeleken met MRI perfusie beeldvorming en conventionele coronaire angiografie. In de 

38 patiënten zonder significante stenose op de CTA, werd normale perfusie waargenomen 

in 29 (76%) patiënten. Bij patiënten met een significante stenose op CTA werd ischemie 

waargenomen in 10 (67%) patiënten. Bij alle patiënten zonder significante stenose op de 

CTA en normale perfusie op de MRI (n = 29), was significante stenose afwezig op conven-

tionele coronair angiografie. Alle patiënten met zowel een abnormale CTA en abnormale 

MRI (n = 10) hadden een significante stenose op conventionele coronaire angiografie. De 

anatomische en functionele gegevens, verkregen met CTA en MRI geven complementaire 

informatie bij de beoordeling van CAD. Deze bevindingen ondersteunen sequentiële of 

gecombineerde beeldvorming strategieën waarbij zowel anatomische als functionele infor-

matie wordt verkregen.

Verschillende onderzoeken hebben atherosclerose gedetecteerd met CTA gecorreleerd aan 

de aanwezigheid van myocard perfusie defecten op SPECT. In Hoofdstuk 8 werden meerdere 

CTA variabelen voor atherosclerose vergeleken met SPECT-beeldvorming om verschillende 

voorspellers van ischemie te bepalen. Op patient niveau bleek uit de multivariate analyse 

dat de mate van stenose (aanwezigheid van, een ≥70% stenose, OR 3.5), de uitgebreidheid 

en de samenstelling van plaque (mixed plaque, ≥3 OR 1,7 en verkalkte plaques, ≥3, OR 

2.0) en de locatie (atherosclerose in de hoofdstam en / of proximale ramus descendens 

anterior, OR 1,6) onafhankelijke voorspellers waren voor ischemie op MPI. Naast de mate 

Jaap BW4.indd   314 10-05-11   16:40



315

S
am

envattin
g

en
 en

 C
o

n
clu

sies

van stenose, zijn de uitgebreidheid en samenstelling van plaque en de locatie belangrijke 

voorspellers voor de aanwezigheid van ischemie op MPI. In Hoofdstuk 9 wordt het effect 

van klinische presentatie en “pre-test likelihood” op de relatie tussen CS en CTA beoordeeld, 

om de rol van CS als poortwachter voor CTA te bepalen. Bij patiënten met CS 0, steeg de 

prevalentie van significant coronairlijden van 3,9% tot 4,1% en 14,3% in respectievelijk 

niet-angineuze, atypische en typische pijn op de borst, en van 3,4% tot 3,9% en 27,3% in 

respectievelijk een lage, middelhoge en hoge “pre-test likelihood”. Bij patiënten met CS 

100-400, steeg de prevalentie van significant coronairlijden van 27,4% tot 34,7% en 51,7% 

in respectievelijk niet-angineuze, atypische en typische pijn op de borst, en van 15,4% 

tot 35,6% en 50% in respectievelijk lage, middelhoge en een hoge “pre-test likelihood”. 

Bij patiënten met CS> 400, bleef prevalentie van significant coronairlijden op CTA hoog 

(> 72%), ongeacht de klinische presentatie en “pre-test likelihood”. Geconcludeerd werd 

dat de relatie tussen CS en CTA wordt beïnvloed door de klinische presentatie en “pre-test 

likelihood”. Deze factoren moeten daarom in acht worden genomen bij het gebruik van CS 

als poortwachter voor CTA.

Deel 2

In Deel 2 van het proefschrift wordt de waarde van CTA voor risicostratificatie geëvalueerd; 

daarnaast wordt de prognostische waarde van CTA vergeleken met de prognostische waarde 

van andere niet-invasieve beeldvormende technieken. Hoofdstuk 10 geeft een overzicht 

van de artikelen die zijn gepubliceerd over de prognostische waarde van CTA. Op basis 

van dit literatuuronderzoek werd geconcludeerd dat de non-invasieve karakterisering 

van atherosclerose belangrijke prognostische informatie geeft die potentieel gebruikt kan 

worden om een meer patiëntgerichte aanpak voor ziekte management mogelijk te maken. 

Hoofdstukken 11-13 beschrijven de incrementele prognostische waarde van CTA bovenop 

SPECT perfusie beeldvorming, coronaire CS, en CT-afgeleide LV volumina en LV functie 

bepaling. In Hoofdstuk 11, bleek CTA een onafhankelijke voorspeller van cardiovasculaire 

eindpunten te zijn met een incrementele prognostische waarde bovenop SPECT. CTA en 

MPI waren synergetische en het gecombineerde gebruik van de twee resulteerde in een 

significant betere voorspelling van de prognose (log-rank test p-waarde <0,005). Derhalve 

werd geconcludeerd dat de gecombineerde anatomische en functionele evaluatie mogelijk 

de risicostratificatie van mensen verwezen voor niet-invasieve beeldvorming verbeterd. In 

Hoofdstuk 12, bleken na multivariate correctie voor CS, zowel CTA ≥50% stenose, het aantal 

aangetaste segmenten, het aantal significant aangetaste segmenten, en het aantal segmenten 

met niet-verkalkte plaques onafhankelijke voorspellers, met een incrementele prognostische 

waarde bovenop CS. De incrementele prognostische waarde van CTA bovenop LV functie 

bepalingen van LV volume en LV functie wordt besproken in Hoofdstuk 13. LVEF <49% en 
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LVESV> 90 ml waren onafhankelijke voorspellers van eindpunten met een incrementele 

prognostische waarde bovenop klinische risicofactoren en CTA. Deze resultaten sugger-

eren dat LV functie analyse incrementele prognostische informatie bovenop anatomische 

beoordeling van CAD met behulp van CTA biedt. Hoofdstukken 14-16 bespreken de 

prognostische waarde van CTA bij patiënten met een intermediaire “pre-test likelihood”, 

patiënten met diabetes mellitus (DM) en bij rokers. Bij patiënten met een intermediaire 

“pre-test likelihood” was bedroeg de incidentie van eindpunten 0,8% per jaar bij patiënten 

met een normale CTA, 2,2% bij patiënten niet-significante CAD en 6,5% bij patiënten met 

significant coronairlijden (Hoofdstuk 14). Bovendien, CTA bleef een significante voorspeller 

(p <0,05) na multivariate correctie. Deze resultaten suggereren dat CTA zeer effectief is in 

de re-stratificatie van patiënten in ofwel een laag danwel een hoog risico. Deze resultaten 

onderstrepen het nut van niet-invasieve beeldvorming met CTA bij deze patiëntenpopulatie. 

In Hoofdstuk 15 wordt de prognostische waarde van CTA vergeleken tussen de DM en 

niet-DM patiënten. Obstructieve CAD was een belangrijke multivariate voorspeller zowel 

in DM als in niet DM patiënten. Zowel in DM en niet DM patiënten zonder atherosclerose, 

was de incidentie van eindpunten 0% per jaar. De incidentie 36% in niet-DM patiënten 

met obstructieve CAD en was het hoogst (47%) in DM patiënten met obstructieve CAD. 

Dit onderzoek toont aan dat CTA van nut kan zijn bij risicostratificatie zowel in DM als 

in niet-DM patiënten. De invloed van roken op de prognostische waarde van CTA, werd 

onderzocht in Hoofdstuk 16. Een significante interactie (p <0,05) voor het voorspellen van 

het eindpunt werd waargenomen tussen significante CAD en roken. Op jaarbasis bedroeg 

de incidentie bij rokers met significant CAD 8,78% in vergelijking met 0,99% bij rokers 

zonder significant CAD (p <0,001). Bij niet-rokers met significant CAD was de incidentie 

op jaarbasis 2,07% in vergelijking tot 1,01% bij niet-rokers zonder significant CAD (p = 

0,058). De prognostische waarde van CTA werd significant beïnvloed door rookgedrag. 

Deze bevindingen suggereren dat stoppen met roken agressief moet worden nagestreefd, 

met name bij rokers met significant CAD. 

Deel 3

In Deel 3 van het proefschrift worden potentiële toekomstige mogelijkheden van CTA 

beeldvorming besproken. In aanvulling op niet-invasieve coronaire angiografie en LV func-

tie bepaling, heeft CTA ook het potentieel om myocardperfusie te beoordelen. Hoofdstuk 

17 beschrijft het beperkt aantal onderzoeken die zijn gepubliceerd over de mogelijkheid 

van CTA perfusie beeldvorming en bespreekt de potentiële klinische waarde hiervan. De 

evaluatie van zowel coronair anatomie en myocard perfusie met behulp van één beeldvor-

mende modaliteit heeft het potentieel om nauwkeurig en snel zowel de aanwezigheid van 

een stenose alsmede het effect van deze stenose op myocard hemodynamiek te bepalen. 
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In Hoofdstuk 18 wordt de beoordeling van diastolische functie op CTA vergeleken met 

2-dimensionale (2D) echocardiografie met tissue Doppler imaging (TDI). Goede correlaties 

werden waargenomen tussen CTA en 2D-echocardiografie voor de beoordeling van E (r = 

0,73, p <0,01), E / A (r = 0,86, p <0,01), EA (r = 0,82, p <0,01) en de E / EA (r = 0,88, p 

<0,01). Daarom werd geconcludeerd dat het mogelijk is om met CTA de diastolische LV 

functie te evalueren.

Conclusies

Het doel van dit proefschrift was om de waarde van CTA voor de diagnose en risicostratifi-

catie van CAD te evalueren bij patiënten met verdenking op coronairleiden en met bekend 

coronairlijden, om de rol van niet-invasieve anatomische beeldvorming te begrijpen in 

de kliniek. CTA heeft een goede diagnostische waarde voor de detectie van significant 

coronairlijden op conventionele coronaire angiografie, en een bijzonder hoge negatief 

voorspellende waarde bij patiënten met een intermediaire “pre-test likelihood” voor CAD, 

de doelgroep van niet-invasieve beeldvorming. Daardoor kan CTA worden gebruikt als een 

effectieve poortwachter voor invasieve coronairangiografie. 

Om de rol van CTA te bepalen ten opzichte van andere niet-invasieve beeldvormingstechie-

ken die worden gebruikt als poortwachter voor invasieve coronaire angiografie zijn verschil-

lende vergelijkende onderzoeken uitgevoerd. Deze onderzoeken hebben aangetoond dat 

CTA in staat is om atherosclerose te detecteren in een vroeg stadium, en onderscheid kan 

maken tussen atherosclerose en normale coronair anatomie. Normale coronair anatomie is 

geassocieerd met een normale coronaire bloedstroom op de FFR en met een uitstekende 

prognose. Bij patiënten met atherosclerose is CTA in staat om de uitgebreidheid, de ernst, de 

locatie en samenstelling van atherosclerotische laesies te definiëren, ook in een groot deel 

van de patiënten met een normale perfusie op SPECT of MRI. De gedetailleerde beoordeling 

van atherosclerose levert belangrijke incrementele prognostische informatie bovenop perfu-

sie beeldvorming, en kan worden gebruikt als handleiding voor pharmacologische therapie. 

Echter, de keuze om patiënten te verwijzen voor een revascularisatieprocedure kan niet 

alleen worden gemaakt op basis van de anatomische informatie. Hoewel significant CAD 

op de CTA is geassocieerd met abnormale perfusie, vertonen maar ongeveer de helft van de 

patiënten met significant coronairlijden een perfusie defect. Functionele beeldvorming blijft 

dus nodig om te kunnen bepalen welke patiënten zullen profiteren van revascularisatie.

CTA levert aanvullende informatie ten opzichte van bestaande niet-invasieve beeldvor-

mende technieken, en heeft het potentieel om een meer patiëntgerichte ziekte management 

mogelijk te maken. Wat echter nog moet worden bepaald, is hoe CTA en niet-invasieve 
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functionele beeldvormingstechnieken moeten worden geïntegreerd in de kliniek. Het 

concept van de gecombineerde beeldvorming bij alle patiënten die worden verwezen 

voor niet-invasieve beeldvorming heeft geleid tot de introductie van hybride SPECT / CTA 

en PET / CTA scanners en tot de verdere ontwikkeling van de perfusie beeldvorming met 

CTA om anatomische en functionele beeldvorming te verkrijgen uit een enkele procedure. 

Dubbele testen kunnen echter overbodig zijn in sommige patiënten en kunnen de kosten 

van diagnostiek onnodig verhogen. Sequentiële beeldvorming benaderingen zijn daarom 

voorgesteld waarin het besluit tot verwijzing voor verdere diagnostiek, is gebaseerd op de 

voorgaande onderzoeksresultaten. Prospectieve follow-up onderzoeken zijn nodig om te 

kijken welk aanpak het beste en meest kosten-effectief is. Dergelijke algoritmen zijn hoogst 

nodig om de klinische rol van niet-invasieve anatomische beeldvorming beter te definiëren.
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