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Chapter 2

Theoretical Methods
In section 2.1 the fast (electrons) and slow (nuclei) variables are separated
using the adiabatic (Born-Oppenheimer) approximation. Density Functional
Theory is introduced and excited state methods are discussed. Section 2.2
contains the methods used in this thesis to evolve the nuclei within and
beyond the adiabatic approximation.

2.1 Methods I: The Electronic Problem
The total unperturbed Hamiltonian:

Ĥ(r,R(t)) = −
∑
J

1

2MJ
∇2
J −

∑
j

1

2
∇2
j +

∑
J<K

ZJZK
|RJ −RK |

+
∑
j<k

1

|rj − rk|
−
∑
Jj

ZJ
|RJ − rj |

(2.1)

can be condensed to a nuclear kinetic energy T̂n and an electronic Hamil-
tonian Ĥe(r,R(t)):

Ĥ(r,R(t)) = T̂n + Ĥe(r,R(t)), (2.2)

such that:[
T̂n + Ĥe(r,R(t))

]
ΨI(r,R(t)) = EI(R(t))ΨI(r,R(t)), (2.3)

where the electron-nuclear wavefunctions ΨI(r,R(t)) can be further de-
composed into electronic ψI(r;R(t)) and nuclear χI(R(t)) wavefunctions
using the adiabatic (Born-Oppenheimer) approximation based on the large
difference in mass between nuclei and electrons:

ΨI(r,R(t)) = ψI(r;R(t))χI(R(t)), (2.4)
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leaving the electronic problem:

Ĥe(r,R(t))ψ0(r;R(t)) = E0(R(t))ψ0(r;R(t)), (2.5)

where ψ0(r;R(t)) is the electronic ground state with energy E0 subject to
a static external potential generated by the (positive) nuclei. The equation
for the nuclei then becomes:

(
T̂n + E0(R(t))

)
χ(R(t)) = E(R(t))χ(R(t)). (2.6)

2.1.1 The Ground State

The Electron Density

The scheme of Kohn, Hohenberg and Sham [1,2] for approximating the
ground state of equation 2.5, commonly referred to as Density Functional
Theory (DFT), has become a widespread tool to predict, model and interpret
a large variety of scientific and applied problems. The central quantity in
DFT is the ground state electron density:

ρ0(r) = N

∫ +∞

−∞
dr32 · · ·

∫ +∞

−∞
dr3N ψ0(r, r2, ··, rN )ψ∗0(r, r2, ··, rN ), (2.7)

where N is the number of electrons and the integrals run over N − 1 elec-
tronic coordinates. It has been proven that the ground state electronic
wavefunction is a unique functional of the ground state electron density:
ψ0 = ψ[ρ0]. It follows that the ground state expectation value of any ob-
servable O is a functional of the electron density:

O0[ρ0] =
〈
ψ0[ρ0]

∣∣Ô∣∣ψ0[ρ0]
〉
, (2.8)

including the ground state energy E0:

E0[ρ0] =
〈
ψ0[ρ0]

∣∣Ĥe∣∣ψ0[ρ0]
〉
. (2.9)

The second Hohenberg-Kohn theorem introduces the variational principle
into DFT [1], stating that every guess of the density ρ0 and hence the wave-
function ψ0 will yield an energy that is higher then the true ground state
energy E0. This allows for a practical numerical scheme to minimize the
ground state energy through progressive iterative ’guessing’ of the density.
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The Kohn-Sham Energy Functional

The main difficulty in DFT lies in finding the Kohn-Sham energy functional
EKS [ρ0]. As the electronic problem is considered for a fixed nuclear config-
uration the nuclear-nuclear term is trivial and can be added as a constant.
The electron-nuclear energy functional can be conveniently decomposed
into a sum of single-particle potentials vext(r):

En−el[ρ0] =
〈
ψ0[ρ0]

∣∣Vn−el∣∣ψ0[ρ0]
〉

=

∫
drvext(r)ρ0(r). (2.10)

that may be seen as an external potential generated by the (positive) nuclei
in which the electrons move. The complicated energy term is the electron-
electron energy functional Eel−el[ρ0]. It can be approximated classically
through a Coulomb term involving the electron density ρ(r) with the re-
mainder being an unknown QM energy functional Eqm[ρ0]:

Eel−el[ρ0] =
1

2

∫
dr1

∫
dr2

[
ρ(r1)ρ(r2)

r12

]
+ Eqm[ρ0]. (2.11)

Finally, the kinetic energy Tel[ρ0] is also non-trivial and can be approxi-
mated by summing all the kinetic energies of the Kohn-Sham orbitals φi(r)
with the remainder being some unknown kinetic correlation energy Tc[ρ0]:

Tel[ρ] =
N∑
i

〈
φi(r)

∣∣− 1/2∇2
∣∣φi(r)

〉
+ Tc[ρ]. (2.12)

Exchange-Correlation Functionals

The unknown functional Eqm[ρ] and the kinetic correlation energy Tc[ρ] are
together termed the exchange-correlation energy EXC [ρ]. This functional
requires approximations that are crucial to the accuracy of DFT and that
are becoming ever more sophisticated. The Local Density Approximation
(LDA) was one of the first to be developed and its energy functional reads:

ELDAXC [ρ] =

∫
ρ(r)εXC(ρ(r))dr, (2.13)

where εXC is the exchange-correlation energy of a homogeneous electron
gas. An improvement to this approximation came with the development of
the Generalized Gradient Approximation (GGA) [3] that includes a functional
dependence on the gradient of the density ∇ρ:
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EGGAXC [ρ,∇ρ] =

∫
f(ρ(r),∇ρ(r))dr. (2.14)

The recent accurate class of hybrid approximations combine exact Hartree
Fock exchange EHFX :

EHFX = −1

2

occ∑
i,j

∫
dr′dr

φ∗i (r
′)φ∗j (r)φi(r)φj(r

′)

|r − r′|
, (2.15)

through fitted or calculated parameters (i.e. α) with any number of other
exchange-correlation functionals:

EhybridXC = αEHFX + (1− α)EGGAXC . (2.16)

The Kohn-Sham Equations

The conceptual step in the Kohn-Sham formalism [2] is to define an effective
single-particle potential veff (r) of a non-interacting system of electrons
such that it reproduces the electron density of the true interacting system.
The effective potential contains the functional derivatives of the known ex-
ternal and Coulomb energy terms (vext(r) and vCoul(r)) plus the unknown
vXC(r) that can be approximated through the exchange-correlation func-
tionals discussed above. The density is then constructed through the set
of orbitals φi(r) that minimizes the energy functional. This leads to the
Kohn-Sham equations:

[
−1/2∇2 + veff (r)

]
φi(r) = εiφi(r) (2.17a)

N∑
i

|φi(r)|2 = ρ(r). (2.17b)

In practice 2.17a is solved self-consistently by generating an initial guess
for the density, using the guess to calculate an effective potential veff (r),
solving 2.17a to obtain a set of orbitals φi and calculate a density from these
orbitals with 2.17b that is used to start a new iteration untill a predefined
convergence criterion is met.

Basis sets

The molecular orbitals are constructed through linear combinations of pre-
defined functions ξι called basis sets:
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φi(r) =
k∑
1

ciιξι. (2.18)

with coefficient ciι and where k is the number of basisfunctions. In the ADF
quantum chemical suite [4] used in this thesis the basis functions are of the
Slater type:

ξ(r) = Υlmr
ne−ζr, (2.19)

where Υ are the spherical harmonics, l,m, n the quantum numbers and ζ
determines the long-range decay of the function. The Gaussian program [5]
is named after its basis functions of the contracted form:

ξ(r) = Υlmr
n

p∑
1

cpe
αpr2

, (2.20)

where cp is the contraction coefficient corresponding to the exponent αp.
The CPMD implementation of DFT [6] uses pseudopotentials to describe
the core electrons and plane waves for the valence electrons:

ξ(r) = eiGr, (2.21)

where G is the wave vector. Finally, in OCTOPUS [7], a numerical grid is
used where the functions are represented by values on a set of points in
real-space.

2.1.2 Excited States

Linear Response Time-Dependent DFT

The most general and most rigorous formalism to approximate excited states
within DFT is time-dependent DFT (TDDFT). The theoretical justifica-
tion follows from the theorem of Runge and Gross [8]. Similarly to ground
state DFT the Runge-Gross theorem establishes that the time-dependent
single particle potential veff (r, t) and kinetic term −1/2∇2 acting on the
non-interacting time-dependent orbitals ϕi(r, t) uniquely define the time-
dependent density ρ(r, t) through the time-dependent Kohn-Sham equa-
tions:

17
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[
−1/2∇2 + veff (r, t)

]
ϕi(r, t) = i

∂

∂t
ϕi(r, t) (2.22a)

N∑
i

|ϕi(r, t)|2 = ρ(r, t). (2.22b)

The interaction with a photon is a small perturbation to the time-dependent
density. Therefore, to first order, the linear response of the density will de-
pend only on the ground state density, which can conveniently be found
from the DFT framework considered so far. The poles of the response func-
tion will consequently give the excitation energies and the pole strengths
can be considered the DFT equivalents of QM oscillator strengths.

Special Cases

Several methods are also available for targeting specific excited states,
such as approximating the lowest singlet excited state and charge transfer
excited states.

In restricted open-shell Kohn-Sham (ROKS) the lowest excited singlet
state is approximated by considering separately the closed-shell doubly
occupied orbitals and the open-shell singly occupied orbitals [9,10]. This
method is particularly relevant if one is interested in computationally
efficient excited state dynamics of the lowest excited singlet state [11].

In constrained DFT (CDFT) [12] charge transfer energies and geometries
can be assessed by constraining charges on predefined regions of the
molecule. Therefore, if one has some a priori knowledge of where the pho-
toinduced electron and hole could be localized, this method can approximate
the energy of charge transfer excited states.
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2.2 Methods II: Propagating the Nuclei
As a first approximation for propagating the nuclei one can neglect the
quantum mechanical effects and solve Newton’s second law of motion for
the nuclei RI in a classical molecular dynamics framework:

MI
d2RI

dt2
= −∇VC(RI) = F (RI), (2.23)

where F (RI) is the force acting on the nuclei due to the potential VC(RI)
generated by the electrons. Usually this potential is approximated by a
simple parametrized force field [e.g. 13].

2.2.1 Adiabatic Molecular Dynamics
A more sophisticated approach is called first-principles molecular dynamics
(AIMD) and was pioneered by Car and Parrinello, who were the first to unify
electronic structure theory in the form of DFT and molecular dynamics [14].
The basic scheme in AIMD [15,16] is to calculate the adiabatic ground state
energy as the expectation value of the electronic Hamiltonian:

E0 =
〈
ψ0(r;R(t))

∣∣Ĥe∣∣ψ0(r;R(t))
〉
. (2.24)

Using the Hellman-Feynman theorem the force

F (RI) = −∇I
〈
ψ0(r;R(t))

∣∣Ĥe∣∣ψ0(r;R(t))
〉

(2.25)

acting on the nuclei can be calculated from the expectation value of the
derivative of the electronic Hamiltonian with respect to the nuclear coordi-
nates:

F (RI) = − ∂E0

∂RI
=

〈
ψ0(r;R(t))

∣∣∣∣ −∂Ĥe∂RI

∣∣∣∣ ψ0(r;R(t))

〉
. (2.26)

However, in practical numerical applications the employed basis set is in-
complete and additional terms need to be calculated, the so called ’in-
complete basis set correction’ calculated from the gradients of the basis
functions and the ’non-self consistency correction’. The equation of motion
for the nuclei is:

MI
d2RI

dt2
= −∇I

〈
ψ0(r;R(t))

∣∣ Ĥe ∣∣ ψ0(r;R(t))
〉

= −∇IV 0
E(RI), (2.27)
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where V 0
E(RI) is the ground state multidimensional potential energy surface

(PES) that maps the potential as a function of the nuclear coordinates. So
far the electronic structure method was not specified. To incorporate DFT
the expectation value of the electronic Hamiltonian is equated to the Kohn-
Sham energy: 〈

ψ0(r;R(t))
∣∣Ĥe∣∣ψ0(r;R(t))

〉
= EKS [{φi}], (2.28)

where the Kohn-Sham energy functional is:

EKS [{φi}] = Tel[{φi}] +

∫
drVext(r)ρ(r)

+
1

2

∫
drVH(r)ρ(r) + EXC [ρ]. (2.29)

The usual algorithm for propagating the nuclei in AIMD is the velocity
Verlet:

x(t+ ∆t) = x(t) + v(t)∆t+
1

2
a(t)∆t2

v(t+ ∆t) = v(t) +
a(t) + a(t+ ∆t)

2
∆t, (2.30)

where x(t) represents a position vector, v(t) the velocity and a(t) accel-
eration. The typical timestep ∆t used in this thesis is 0.1 fs and most
simulations are performed with a thermostat in a canonical NVT ensemble.

2.2.2 Nonadiabatic Molecular Dynamics

In first-principles molecular dynamics the nuclear motion takes place on a
single adiabatic potential energy surface, the ground state. Nonadiabatic
dynamics is a generalization of this principle for multiple adiabatic states,
including the transitions between states. A general strategy for this in
the Schrödinger picture of QM is to construct the total time-dependent
electronic wavefunction ψ(r, t) from a basis of adiabatic functions [17]:

ψ(r, t) =
∑
i

ci(t)ψi(r;R(t)), (2.31)

where ci(t) are the time-dependent coefficients. Substituting this expansion
into the time-dependent Schrödinger equation for the electrons:

20
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i
∂ψ(r, t)

∂t
= Ĥeψ(r, t) (2.32)

and by projecting both sides of the resulting expression onto the set
Ψj(r,R(t)), the following equation for the time-dependent coefficients cj(t)
is obtained [17]:

i
∂cj(t)

∂t
=

[
Ĥji(r,R(t))− i

〈
ψj(r;R(t))

∣∣∣∣∂ψi(r;R(t))

∂t

〉]
ci(t), (2.33)

where the electronic Hamiltonian matrix elements between state j and i
are:

Ĥji(r,R(t)) =
〈
Ψj(r;R(t))

∣∣Ĥe(r,R(t))
∣∣Ψi(r,R(t))

〉
. (2.34)

The nonadiabatic coupling between adiabatic state functions is contained
in the second term between brackets in 2.33, which can easily be seen by
using the chain rule:

dji(r,R(t)) =
〈
ψj(r;R(t))

∣∣∇Rψi(r;R(t))
〉
· dR

dt
, (2.35)

Thus, in this framework there are essentially two terms that promote tran-
sitions, the off-diagonal Hamiltonian matrix elements Ĥji(r,R(t)) and the
nonadiabatic coupling dji(r,R(t)). As discussed in the introduction the
process of interest in this thesis is the evolution of a pure exciton state
(cex(0) = 1) into a charge transfer state (cct(τ) = 1). To achieve this
some nuclear motion is required, as Ĥji(r,R(t)) and dji(r,R(t)) will only
change in time through their dependence on R(t).

Tully’s Surface Hopping

A commonly used algorithm to approximate this time-dependent problem
was developed by Tully [18]. In Tully’s nonadiabatic dynamics the nuclear
motion takes place on a single potential energy surface, while evolving mul-
tiple adiabatic states simultaneously. The nonadiabatic coupling between
all states is evaluated along the trajectories to calculate transition proba-
bilities. If the probability reaches above a certain threshold generated by
a random number, the algorithm will invoke an instantaneous nonadiabatic
transition between states. Although this method is accurate in describing
equilibrium behaviour on long timescales [19], the description of gradual co-
herent charge transfer from an excitonic state to a charge transfer state is

21



CHAPTER 2. THEORETICAL METHODS

limited by the instantaneous nature of the transitions in this framework. Re-
cent experimental and theoretical work indicates that the oscillatory charge
transfer process has an associated nonzero timescale and involves a mixing
of adiabatic states.

Ehrenfest TDDFT

In Ehrenfest dynamics, the electronic motion originates directly from solving
the time-dependent electronic Schrödinger equation for the time-dependent
electronic wavefunction ψ(r, t).

i
∂ψ(r, t)

∂t
= Ĥeψ(r, t). (2.36)

Consequently, for every newly obtained electronic wavefunction ψ(r, t+∆t),
where ∆t is very small (∼ 10−18s) forces can be calculated to evolve the
nuclei according to:

MI
d2RI

dt2
= −∇I

〈
ψ(r, t)

∣∣ Ĥe ∣∣ ψ(r, t)
〉
, (2.37)

which includes nonadiabatic transitions and the possibility of mixing
between (adiabatic) states. In this way coherent evolution of an exciton
into a charge transfer state can be simulated in real-time.

The implementation of the Ehrenfest formalism within TDDFT is through
the time-dependent Kohn-Sham equations that give the time evolution of
the time-dependent Kohn-Sham orbitals φi(r, t) and the time dependent
density ρ(r, t):

i
∂

∂t
ϕi(r, t) =

[
−1/2∇2 + veff (r, t)

]
ϕi(r, t)

N∑
i

|ϕi(r, t)|2 = ρ(r, t). (2.38)

The time-dependent Kohn-Sham orbitals ϕi(r, t) can subsequently be ex-
panded in terms of adiabatic Kohn-Sham orbitals φi(r;R(t)):

ϕ(r, t) =
∑
i

ci(t)φi(r;R(t)), (2.39)

that are obtained through a regular time-independent DFT optimization
(section 2.1). The time evolution of the coefficients then becomes [20]:
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i
∂ci(t)

∂t
=
∑
j

cj(t)(εjδij − dij), (2.40)

where εj is the energy of adiabatic orbital j and dij the nonadiabatic
coupling 〈φi(r;R(t))|∇R|φj(r;R(t))〉 · dR/dt between orbital i and j.

As in adiabatic dynamics, the classical equation of motion for the nuclei
follows from the time derivative of the Kohn-Sham energy functional:

MI
d2RI

dt2
= −∂EKS [ρ(r, t)]

∂RI
. (2.41)

Now, by modifying the nonadiabatic coupling dij between adiabatic orbitals
the nuclear motion can invoke nonadiabatic transitions. Thus, a framework
is in place to approximate in real-time the photoinduced charge transfer in
molecules.
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