
Borneo : a quantitative analysis of botanical richness, endemicity and floristic regions based on
herbarium records
Raes, N.

Citation
Raes, N. (2009, February 11). Borneo : a quantitative analysis of botanical richness, endemicity and floristic regions based on
herbarium records. Retrieved from https://hdl.handle.net/1887/13470
 
Version: Corrected Publisher’s Version
License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden
Downloaded
from: https://hdl.handle.net/1887/13470

 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/13470


24

CHAPTER 3

25

CHAPTER 3

Niels Raes and Hans ter Steege

Ecography 30 (2007) 727-736

Species’ distribution models (SDMs) attempt  

to predict the potential distribution of species 

by interpolating identified relationships 

between species’ presence/absence, or 

presence-only data on one hand, and 

environmental predictors on the other hand, 

to a geographical area of interest. Currently, 

they are widely applied in biogeography, 

conservation biology, ecology, palaeo-

ecology, invasive species studies, and wildlife 

management (Guisan & Zimmermann, 2000; 

Araújo & Pearson, 2005; Thuiller et al., 2005; 

Araújo & Guisan, 2006; Guisan et al., 2006; 

Peterson, 2006). More recently, vast numbers 

of herbarium and natural history museum 

collections have become available (Graham 
et al., 2004) and techniques to apply this 

special type of presence-only data have been 

developed (Hirzel et al., 2002; Anderson et al., 
2003; Elith et al., 2006; Pearce & Boyce, 2006; 

Phillips et al., 2006). Despite the widespread 

use of SDMs, several high-priority research 

interests remain to be investigated (Guisan & 

Thuiller, 2005; Araújo & Guisan, 2006). One of 

these is the improvement of SDM validation, 

or the quantification of a model’s predictive 

performance (Araújo & Guisan, 2006).  

The fact that the standard validation 

procedures for an SDM are not sufficient 

to assess the applicability of an SDM in a 

predictive context, was first shown by Olden 

et al. (2002). They showed that after SDM 

validation it is critical to assess whether the 

SDM prediction differs from what would be 

expected on the basis of chance alone. SDMs 

producing random predictions are neither 

helpful nor useful (Olden et al., 2002). Thus, 

in this paper we introduce a null-model 

methodology that allows testing whether 

SDMs developed with presence-only data differ 

significantly from what would be expected by 

chance. We also demonstrate that it is critical 

and possible to correct for collector-bias in 

specimen data in this test.

SDM validation and

measures of accuracy

Validation of SDMs can be carried out with 

several different measures of model accuracy. 

The most widely applied measures of model 

accuracy include sensitivity, specificity, Cohen’s 

kappa, and the area under the curve (AUC) of 

the receiver operating characteristic (ROC) 

plot (Fielding & Bell, 1997; Manel et al., 2001; 

McPherson et al., 2004). Most measures of 

SDM accuracy, including the four mentioned 

above, are directly or indirectly derived from 

a confusion matrix (see Fielding and Bell 

1997). Sensitivity quantifies the proportion of 

observed presences correctly predicted as 

presence, the true positive fraction. Specificity 

quantifies the true negative fraction. Cohen’s 

kappa quantifies overall agreement between 

predictions and observations, corrected for 

agreement expected to occur by chance. 

These three measures of accuracy require that 

probabilities of occurrence obtained with SDMs 

are transformed into discrete presences or 

absences, for which purpose a threshold of 0.5 

is commonly used (McPherson et al., 2004; Liu 
et al., 2005; Jiménez-Valverde & Lobo, 2007). 

The AUC value of the ROC plot is a method that 

does not require discrete presence/absence 

predictions, and is therefore a measure of 

accuracy that is threshold independent (Pearce 

& Ferrier, 2000; McPherson et al., 2004).

The ROC plot is obtained by plotting sensitivity 

as a function of the falsely-predicted positive 

fraction, or commission error (1-specificity), 

for all possible thresholds of a probabilistic 

prediction of occurrence. The resulting 

area under the ROC curve provides a single 

measure of overall model accuracy, which is 

independent of a particular threshold. AUC 

values range from 0 to 1, with a value of 0.5 

indicating model accuracy not better than 

random, and a value of 1.0 indicating perfect 

A null-model for significance 

testing of presence-only species 

distribution models
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null hypothesis is true. The position of the 

observed AUC value in the null distribution of 

the ‘randomly’ generated AUC values is then 

used to assign a probability value, just as in a 

conventional statistical analysis (Dolédec et 
al., 2000; Olden et al., 2002; Gotelli & McGill, 

2006). We use a one-sided 95% confidence 

interval (C.I.) since we are only interested in 

whether an SDM performs significantly better 

than expected by chance, rather than assessing 

whether it performs significantly worse. We 

interpret a significant model to indicate that the 

relations between species’ presence localities 

and the predictor variable values at those 

locations are stronger than can be expected by 

chance.

An additional advantage of significance testing 

of an SDM with a null-model is that we can 

use all presence records to develop and test 

the SDM. Common practice in measuring an 

SDM’s accuracy is the split-sample approach. 

This approach splits the available species 

records into a training and test sample 

(Fielding & Bell, 1997). It is assumed that a 

randomly selected test sample from original 

data constitutes independent observations, 

which can be used for statistical testing 

(Araújo et al., 2005). However, such a test 

sample is not fully independent due to spatial 

autocorrelation (Araújo et al., 2005; McPherson 

& Jetz, 2007). Moreover, dependent on the 

random split, different values of SDM accuracy 

may be obtained (Phillips et al., 2006). Phillips 

et al. (2006) showed that SDMs for a species 

represented by 128 records and 10 different 

random splits, yielded AUC values ranging 

from 0.819 until 0.903. More extremely, our 

unpublished results yielded AUC values for 

a species represented by 8 records ranging 

between 0.079 and 0.912 based on 100 random 

splits.

Testing an SDM against a null-model, however, 

could suffer from one more problem. When 

drawing random points from a geographical 

area one assumes that collectors visited all 

localities equally well. If this condition is not 

met, which is likely to be the case (Reddy & 

Davalos, 2003; Romo et al., 2006; Hortal et al., 
2007), the randomly drawn points, that are 

used to develop the null-model, might include 

ecological conditions that are not represented 

by the localities from where actual collections 

were gathered. This bias could results in a 

significant deviation from the null-model for 

species that are randomly distributed over the 

actual collection localities.

The impact of collection 

bias on significance 

testing

SDMs predict the presence and absence of a 

species for a given geographical area, based on 

the localities where the records were collected 

and the values of environmental predictors at 

those sites. SDMs are especially useful when 

only part of the entire geographical area has 

been sampled, as is generally the case. This 

works fine as long as the collection localities 

are randomly spread over the complete 

geographical area. Unfortunately, collectors 

tend to visit areas which are easily accessible, 

such as areas close to cities, roads, rivers, 

and nature reserves resulting in serious 

collection biases (Parnell et al., 2003; Reddy & 

Davalos, 2003; Kadmon et al., 2004; Hortal et 
al., 2007). The influence of collection biases on 

the accuracy of SDMs largely depends on the 

range of values of each of the environmental 

variables covered by the collection localities, 

known as climatic, or environmental bias 

(Kadmon et al., 2003, 2004). Kadmon et al. 
(2003) showed that environmental biases, 

expressed as the degree of sampling bias 

model fit (Fielding & Bell, 1997). An AUC value 

can be interpreted as indicating the probability 

that, when a presence site (site where a species 

is recorded as present) and an absence site 

(site where a species is recorded as absent) 

are drawn at random from the population, the 

presence site has a higher predicted value than 

the absence site (Elith et al., 2006; Phillips et 
al., 2006).

All four measures of model accuracy were 

tested extensively for statistical artefacts, 

and the AUC value was the only measure 

of SDM accuracy that was invariable to the 

proportion of the data representing species’ 

presence, known as prevalence (Pearce & 

Ferrier, 2000; Manel et al., 2001; McPherson 
et al., 2004). Insensitivity to prevalence is of 

special relevance when the AUC values are 

used to assess model accuracy for SDMs that 

have been developed with presence-only data. 

When the required absences are lacking, they 

are replaced by pseudo-absences. Pseudo-

absences are sites, randomly selected across 

the geographical area of interest, at localities 

where no species presence was recorded and 

for which species occurrence is set as absent 

(Ferrier et al., 2002; Anderson et al., 2003; Elith 
et al., 2006; Phillips et al., 2006). A sufficiently 

large sample of pseudo-absences is needed 

to provide a reasonable representation of 

the environmental variation exhibited by the 

geographical area of interest, typically 1,000-

10,000 points (Stockwell & Peters, 1999; Ferrier 
et al., 2002; Phillips et al., 2006). These large 

numbers of pseudo-absences automatically 

result in low prevalence values. The number 

of records by which a species is represented 

in herbaria and natural history museums 

range from one to 150-200 records (Stockwell 

& Peterson, 2002). Even when a species is 

represented by 200 unique presence-only 

records and 1,000 pseudo-absences are used, 

prevalence is only 16.7% (200/1200).

A major drawback of using pseudo-absences, 

however, is that the maximum achievable 

AUC value indicating perfect model fit, is no 

longer 1, but 1-a/2 (where a is the fraction of 

the geographical area of interest covered by 

a species’ true distribution, which typically is 

not known (Phillips et al., 2004; Phillips et al., 
2006). Nevertheless, random prediction still 

corresponds to an AUC value of 0.5. Therefore, 

standard thresholds of AUC values indicating 

SDM accuracy (e.g., the threshold of AUC>0.7 

that is often used; Pearce and Ferrier 2000, 

Swets et al., 2000, Manel et al. 2001), do not 

apply.

A null-model approach 

for significance testing of

 presence-only SDMs

To test the significance of an SDM we propose 

to test the AUC value (of the SDM) against a 

null distribution of expected AUC values based 

on random collection data (sensu Olden et al. 
2002). A null-distribution, or null-model, is 

a model that is based on randomizations of 

ecological data or random sampling from a 

known or imagined distribution (Swets et al., 
2000; Jetz et al., 2004; Gotelli & McGill, 2006). 

A null-model is straightforward in theory 

and closely resembles hypothesis testing in 

conventional statistical analysis. To build a 

null-model, first the AUC value of the real SDM 

is determined. Next, a null-model is generated 

by randomly drawing collection localities 

without replacement, from the geographical 

area for which the species distribution is 

modelled. The number of randomly drawn 

collection localities is equal to the actual 

number of collections for that species. This is 

repeated 999 times to generate a frequency 

histogram of AUC values, expected if the 
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we added the Walsh’s index (Walsh, 1996;  

Leigh Jr., 2004). This index integrates the 

effects of annual rainfall and its seasonality. 

Finally, the elevation range derived from the 

SRTM 90m Digital Elevation Data (http://srtm.

csi.cgiar.org/) was added. All data layers 

were scaled to 5 arc-minute resolution, and 

resampled to the geographical extent of the 

most restricted FAO soil variable data layers. 

This resulted in 8577 data cells for Borneo. All 

data layer manipulations were performed with 

Manifold GIS (Manifold Net Ltd).

To model Shorea species distributions of 

Borneo we used Maxent (version 2.3.0; http://

www.cs.princeton.edu/~shapire/maxent/) 

(Phillips et al., 2006). Maxent, or the maximum 

entropy method for species’ distribution 

modelling, estimates the most uniform 

distribution (“maximum entropy”) across 

the study area, given the constraint that the 

expected value of each environmental predictor 

variable under this estimated distribution 

matches its empirical average (average values 

for the set of species’ presence records) 

(Hernandez et al., 2006; Phillips et al., 2006). 

Maxent was specifically developed to model 

species distributions with presence-only data 

and has outperformed most other modelling 

applications (Elith et al., 2006; Hernandez et al., 
2006; Pearson et al., 2007). An added advantage 

of Maxent is that it also performs the ROC 

statistical analysis. Since we tested whether 

an SDM’s AUC value deviates significantly from 

a null-model, the ‘random test percentage’ 

was set to zero resulting in training data only. 

To avoid the inclusion of multiple presence 

records in one grid cell per species we set 

Maxent to ‘remove duplicate presence records’. 

This reduced the total available presence 

records for the 116 Shorea species represented 

Figure 3.1. Δ

C.I. AUC values of the environmentally bias corrected null-models (0

line. Vertical dotted lines indicated the consecutive addition to the initial linear modelling features, of quadratic, and hinge features by Maxent. SDM AUC values 

with respect to the environmental conditions 

under which a species is known to occur, had 

a significant negative effect on the predictive 

accuracy of the SDM. Although this is a serious 

issue of concern (Araújo & Guisan, 2006), it 

is not specific to any methodology used to 

develop SDMs. However, it is relevant when the 

accuracy of an SDM is tested against a null-

model.

When collecting is environmentally biased, 

an SDM is more likely to deviate significantly 

from a random null-model that does not 

include such bias. When, for example, 

collection localities are biased for mean 

annual temperature, a significant part of the 

species’ actual temperature range could 

remain unsampled. When these data are 

used in an SDM that is tested against a null-

model, based on records that were randomly 

drawn from the entire study area, this species 

will possibly show a preferred mean annual 

temperature range compared to the randomly 

drawn points. It will accordingly more likely 

deviate significantly from the null-model than 

its actual range would justify. Such collection 

bias might thus result in certain areas being 

systematically under predicted by the SDM. It 

should be noted, however, that this is true for 

all distribution modelling methods and can only 

be solved by additional data collection.

Fortunately, the problem of having a higher 

chance of significantly deviating from a 

randomly drawn null-model if collections 

are biased, can be solved by restricting the 

randomly drawn points to all known collection 

localities. Thus, drawing the null-model from 

a biased distribution. To test for environmental 

bias in known collection localities a distribution 

model using all known collection localities 

is tested against a null-model developed by 

100 -1000 times drawing an equal number of 

random points from the entire study area. If 

the distribution model’s accuracy of known 

collection localities deviates significantly from 

this ‘second’ null-model, then we conclude that 

the collection localities are environmentally 

biased. If this is the case then the SDMs have to 

be tested against a null-model that is based on 

actual collection localities.

A case study based on 

Bornean plant collections

To illustrate the applicability of a null-

model approach to select SDMs that deviate 

significantly from random expectation, we 

selected all occurrences of the genus Shorea 

(Dipterocarpaceae) on the Malesian island 

Borneo (approx. 8°N - 5°S, 108° - 120°E; 

Fig. 3.3) from the BRAHMS database of plant 

collections present at the National Herbarium 

of the Netherlands, Leiden University, the 

Netherlands. Shorea was selected because 

this genus has been thoroughly taxonomically 

revised and species identifications are reliable 

(Ashton, 1983). The database contained 4466 

records of 147 Shorea species for Borneo. Out 

of these 147 species, 116 were represented 

by 5, or more, unique collection localities. For 

those species, we developed SDMs.

To model the species distributions we used 

environmental predictor variables with a 5 

arc-minutes resolution (~10km at the equator). 

We selected the digital elevation model (DEM) 

and the 19 bioclimatic variables of the current 

conditions (~1950-2000) from the WORLDCLIM 

dataset (hhtp://www.worldclim.org) for Borneo 

(Hijmans et al., 2005). Additionally, we selected 

15 FAO soil variables (FAO, 2002). We also 

included a measure of the effect of the El 

Niño Southern Oscillation Event (ENSO). This 

variable was expressed as the relative average 

annual difference in Normalized Difference 

Vegetation Index (NDVI) between the months of 

an ENSO, and a non-ENSO year. To this dataset 



CHAPTER 3

3130

visited by collectors who actually made any 

collections (Fig. 3.3). The collections are 

clearly geographically biased, as evident from 

the geographical distribution of the dark grey 

squares in Figure 3.3. However, predicting 

species presences or absences in non-visited 

areas is one of the major applications of the 

use of SDMs, so this should not be a major 

problem. More importantly, it is to assess 

whether these localities are environmentally 

biased, or whether certain conditions are 

over- or under-represented with respect to 

the environmental conditions for the entire 

geographical area of Borneo. For this purpose, 

Figure 3.3. Spatial distribution of the 1837 cells, from the 8577 cells for Borneo, where at least one of the 142 097 collections was made (indicated by dark grey 

squares). Light grey squares indicate the remaining 6740 unsampled cells. White cells indicate large lake areas for which no environmental data were available.

by at least five records to 2552. The modelling 

rules were set to ‘Auto Features’ using only 

linear features when less than 10 records 

were available, adding quadratic features for 

SDMs developed with 10 or more and less 

than 15 records, and including hinge features 

for species with 15 or more records. Maxent 

adds product and threshold features for 

those species represented by 80, or more, 

records. However, we set Maxent to use linear, 

quadratic and hinge features for all species 

represented by at least 15 records, due to 

odd behaviour of Maxent when product and 

threshold features were added (explained in the 

discussion). For each of the 116 Shorea species 

we developed an SDM with Maxent using all 

presence records under the modelling rules as 

described above. The number of unique records 

per species ranged from 5 until 92 (Table S3.1, 

‘# records’). The AUC values of all Shorea 
SDMs are presented as dots in Figure 3.1, and 

under ‘AUC’ in Table S3.1.

Testing SDMs against a null-model

To test whether Shorea SDMs significantly 

differed from what would be expected by 

chance, we calculated the 95% C.I. AUC 

value for each number of records by which 

the Shorea species were represented. We 

developed frequency histograms of expected 

AUC values by randomly drawing points 

without replacement from all 8577 available 

cells of Borneo (999 times), and model these 

with Maxent under the same conditions as 

the Shorea species. We developed frequency 

histograms of expected AUC values for 5 – 30 

records (26 distributions), for 35 – 50 records 

with intervals of 5 records (4 distributions), and 

for 60 – 100 records with intervals of 10 records 

(5 distributions). For each frequency histogram, 

we assessed the 95% C.I. upper limit AUC 

value, by ranking the 999 AUC values and 

selecting the 949th value (0.95 x 999 = 949; Fig. 

3.1, triangles). For each of the three resulting 

sets of 95% C.I. AUC values we applied a curve-

fit (Fig. 3.1, asterisks). The fitted 95% C.I. AUC 

values of the null-models for the number 

of records by which each Shorea species is 

represented, are given in Table S3.1, ‘95% C.I. 

All’.

With the fitted 95% C.I. AUC values, it is now 

easy to assess which of the Shorea species 

has an accuracy of its SDM that is significantly 

higher than expected by chance alone (p<0.05). 

This was the case for 105 of the 116 Shorea 
species (91%) which were modelled (Table S3.1, 

‘95% C.I. All’).

Testing SDMs against a bias corrected null-

model

In order to assess whether the known 

collection localities are environmentally biased, 

we selected all databased and georeferenced 

plant specimen records from Borneo that 

were present in the BRAHMS database of the 

National Herbarium of the Netherlands. In 

total the database contained 142,097 properly 

georeferenced records. These records could be 

assigned to 1837 of the total of 8577 grid cells 

of Borneo This means that only 21.4% of the 

grid cells of Borneo have been 

Figure 3.2. The AUC value of the 

model based on the 1837 collection 

cells (*
of models based on 1837 randomly 

drawn cells from the total 8577 

cells of Borneo, indication the 1837 

collection cells are significantly 
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model, have specific niche requirements that 

were met at the localities where they were 

collected. This agrees with the reasoning of 

Dolédec et al. (2000). They analysed community 

data with a new multivariate method they called 

OMI (for Outlying Mean Index), to measure the 

distance between mean habitat conditions used 

by a species, and the mean habitat conditions 

of the sampling area (Dolédec et al., 2000). The 

OMI value (analogous to the SDM AUC value) of 

a species is tested against the null-distribution 

of ‘1000 random permutation values obtained 

Figure 3.4a-d. Maxent predictions for two significant SDMs (A, C), and two non-significant SDMs (B, D). Collection localities are indicated by dots. A) Shorea 

isoptera P.S. Ashton, (Appendix, Table S3.1, #45), B) S. platycarpa Heim (Appendix, Table S3.1, # 49), C) S. confusa P.S. Ashton (Appendix, Table S3.1, #57), and D) 

S. macroptera Dyer (Appendix, Table S3.1, #66).

we first developed a distribution model of the 

1837 collection localities and assessed the 

model’s AUC value. Then, we developed a 

frequency histogram of expected AUC values 

on basis of 1837 randomly drawn localities 

from the 8577 cells of Borneo (100 reps). 

Unfortunately the AUC value of the distribution 

model based on the collections localities, is 

significantly different from random expectation 

(p<0.01; Fig. 3.2), hence, the collection localities 

are also environmentally biased.

The implication that collecting effort is 

environmentally biased for Borneo is that 

SDMs cannot be tested with null-models drawn 

randomly from all 8577 grid cells of Borneo. 

To overcome this problem we developed a 

second series of null-models, in the same way 

as described above, but now randomly drawing 

from the 1837 known collection locality cells. 

The resulting 95% C.I. AUC values of these 

null-models are presented as diamonds in 

Figure 3.1. Again, we applied a fit through 

these values to establish the 95% C.I. AUC 

values against which the SDM AUC values were 

tested. These values are given in Table S3.1 

under ‘95% C.I. Bias’. Now only 80 of the 116 

Shorea  species (69%) have a SDM AUC value 

significantly different from a (bias corrected) 

null-model (Table S3.1, ‘95% C.I. Bias’; Fig. 

3.4a,c). This means that an additional 25 SDMs 

were rejected, compared to testing against 

environmentally unbiased null-models.

Discussion

By proposing the use of null-models in the 

field of presence-only species’ distribution 

modelling, we introduce a novel methodology 

that allows for significance testing of SDMs. 

The new methodology makes use of all 

presence records to develop an SDM and to 

test its accuracy with the AUC procedure, a 

threshold- and prevalence-independent single 

measure of SDM accuracy. A significant SDM 

indicates that correlations between species’ 

presence localities and the environmental 

predictor variables, as identified and 

interpolated by Maxent, deviate from random 

chance.

Secondly, we show the importance of 

correcting for environmental biases in data 

collection. Null models which incorporate the 

environmental bias within the collection data 

reject a significant fraction of SDMs which 

are significant based upon a randomly drawn 

null-model. If the collection localities are 

environmentally biased and a species is found 

throughout the subset of values represented 

by the collection localities, this species is likely 

to differ significantly from a null-model which 

is drawn from the total range of values. This 

results in an SDM that is an underestimation 

of the true geographical range of the species. 

This, because under these conditions the full 

range of values under which the species truly 

occurs is not incorporated in the SDM.

Although we introduce a null-model approach 

to the field of presence-only species’ 

distribution modelling, the use of null-models 

for significance testing was successfully 

applied by Olden et al. (2002) for presence-

absence SDM testing, and by Dolédec et al. 
(2000) in the field of community analysis. Our 

methodology differs from Olden et al. (2002) 

in that we adapted the null-model approach 

to make use of presence-only data, and test 

an SDM accuracy with the threshold- and 

prevalence independent AUC procedure (Swets, 

1988; Manel et al., 2001; McPherson et al., 2004; 

Guisan et al., 2006). This is important as in our 

case study the number of species presence 

records ranged from 5 to 92. Combined 

with 1,000 pseudo-absences this resulted in 

prevalence values as low as 0.5 to 8.4%.

We interpret that species, for which the SDM 

AUC value significantly deviates from a null-

32
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Nevertheless, 80 of the 116 Shorea species 

(69%) had an SDM AUC value higher than 

the 95% C.I. AUC value of the bias corrected 

null-model. Dolédec et al. (2000) reported 

that, for their application of a null-model 

for two case studies, 59% and 85% of their 

species respectively, had significant results. 

Pearson et al. (2006) report values from 62-

100% depending on the modelling application 

and thresholds that were used. Our testing 

against a randomly drawn null model resulted 

in a comparably high percentage (91%) of 

significant SDM AUC values (p<0.05). All these 

results are higher than the 50% reported by 

Olden et al. (2002).

Both the AUC values of the two null-models, 

and the SDMs, show a decreasing trend 

with increasing number of records (Fig. 3.1; 

Table S3.1). This is most likely the result of 

applying ROC plots to SDMs, developed with 

presence-only data, reducing the maximum 

AUC value dependent on the species’ true 

distribution (Phillips et al., 2006). Assuming 

that the predicted species’ distributions are a 

good proxy for the species’ true distributions, 

we assessed the area for which species were 

predicted to be present by converting the 

continuous probabilistic Maxent predictions 

of occurrence to discrete presence-absence 

values. We used the maximized sensitivity-

specificity sum threshold for this purpose 

(Liu et al., 2005). Regressing significant SDMs 

AUC values against the area for which they 

were predicted to be present (Table S3.1; 

‘Area (in %)’) revealed a significant negative 

linear correlation (AUC=0.9913-0.0029*Area; 

p<0.001; R2 = 0.576). We consider this as a 

strong indication that it is not the accuracy of 

the models that is reduced but merely that the 

maximum achievable AUC value is reduced due 

to an increased true distribution of the species. 

We therefore do not support the statement that 

the predictive accuracy of the model decreases 

when the extent of a species distribution 

increases, as suggested by Hernandez et 
al. (2006). When an increased predicted 

distribution and related lower SDM AUC value 

is caused by a broad niche amplitude, however, 

as is the case for habitat generalists, an SDM 

accuracy is more likely not to deviate from a 

null-model and the SDM can therefore not be 

used. This is possibly the case for the SDMs 

presented in Figure 3.4b,d (Table S3.1; #49 and 

#66).

A consequence of implementing the proposed 

use of null-models for SDM evaluation, is that 

SDM accuracy is tested with the same data 

used to develop models, i.e., a form of model 

verification (Araújo & Guisan, 2006). A problem 

with this approach is that SDMs may over-fit 

the calibration, or training data (Araújo et al., 
2005). Over-fitting, however, is not considered 

a problem if the goal is to describe a pattern 

and simultaneously reduce false negatives: 

i.e., true observations that are not predicted 

by the model (Araújo & Guisan, 2006). An 

advantage is that all observations are used 

to develop the SDMs, making optimal use 

of all available information. If the modelled 

species’ distributions are intended to be used 

for conservation planning, verification is an 

approved method to test whether an SDM 

performs as intended. However, if the models 

are used to predict range shifts under different 

climate change scenario’s, or to assess the 

possible invasiveness of a species, an SDM’s 

ability to correctly predict independent test data 

is preferred (Araújo & Guisan, 2006). It should 

be kept in mind, however, that SDMs, as they 

are applied in this study, predict the potential 

distribution of a species and do not take into 

account competition, and historical or present 

geographical barriers (Soberón & Peterson, 

2005; Peterson, 2006). Most studies addressing 

these issues use data partitioning methods to 

allocate records to training and test datasets. 

The most familiar technique is one-time data-

splitting (Araújo et al., 2005). Our unpublished 

under the null hypothesis that the species is 

indifferent to its environment’. For species that 

significantly deviated from this, ‘theoretical 

ubiquitous species that tolerates the most 

general habitat conditions’, it was concluded 

that the observed species position in habitat 

differed significantly from what would be 

expected by chance. This OMI-methodology 

was later implemented in a species distribution 

modelling technique called Ecological-Niche 

Factor Analysis (ENFA) (Hirzel et al., 2002), but 

testing against a null-distribution was never 

formalized.

The first to notice that accuracy assessment of 

presence-only SDMs alone was not sufficient, 

and SDMs should be tested against a random 

null hypothesis were Anderson et al. (2002). 

They used the split sample approach, dividing 

the available presence records of a species 

in a 75% training and 25% test dataset. After 

SDM development using the training data, 

they tested whether test points fell into areas 

predicted presence more often than expected 

at random, given the overall proportion 

of pixels predicted presence vs. predicted 

absence for that species (Anderson et al., 
2002). The latest advances in this methodology 

were recently made, by introducing a jack-

knife (or ‘leave-one-out’) procedure for SDM 

accuracy assessment and a combined p-value 

significance test for significance testing of the 

presence-only SDMs (for details see Pearson 

et al. 2007). However, this methodology does 

not take into account possible environmental 

bias in collection localities. If the full niche of 

a species is not represented by the collection 

localities, the species’ predicted distribution 

will be smaller than its true distribution. 

Modelling applications, such as Maxent, are 

very well capable of predicting the species’ 

distribution based on the available presence 

records without model under-fitting. A smaller 

predicted species’ distribution automatically 

results in higher chance of significantly 

deviating from the random null hypothesis, 

the same way as in our case study more 

species significantly deviate from a randomly 

drawn null-model than from a null-model 

that is corrected for environmental bias (Fig. 

3.1; Table S3.1). Additionally, the jack-knife 

validation approach may lead to overoptimistic 

estimates of the predictive power with larger 

sample sizes (Pearson et al., 2007).

Our results showed the importance of 

correcting for environmental bias in known 

collection localities when null-models are 

used for significance testing of presence-

only SDMs. However, at the same time this 

requirement hampers the general applicability 

of the methodology. In our case study, we 

could make use of the full herbarium record 

database of the National Herbarium of the 

Netherlands, containing 142,097 georeferenced 

plant specimen records found in 1837 of the 

8577 grid cells of Borneo. We recognize that 

this amount of data will not always be available. 

However, since the majority of collections has 

been made in close proximity to roads, rivers, 

cities, and nature reserves (Reddy & Davalos, 

2003; Kadmon et al., 2004; Hortal et al., 2007), 

an alternative could be to use a distance 

buffered road-river map, including cities and 

nature reserves, to select the grid cells and 

test these cells for environmental biases. If 

these cells are environmentally biased, the 

SDMs can then be tested against a null-model 

drawn from this pool of cells. However, this 

approach is less accurate and requires further 

testing.

Our results showed that for low prevalence 

values very high AUC values can be expected 

from randomly drawn points (Fig. 3.1; Table 

S3.1). Olden et al. (2002) too reported such high 

accuracy values for low (and high) prevalence. 

The 95% C.I. AUC value of the bias corrected 

null-model for 15 records (prevalence = 1.48%) 

was as high as 0.9622 (Fig. 3.1; Table S3.1). 
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results indicated, however, that dependent on 

the spatial distribution and the random split 

of the records, SDM accuracies could be very 

different.

An advantage of Maxent is its ability to 

counteract the tendency of SDMs to over-fit 

when few presence records are available, due 

to its regularization procedure (Hernandez et 
al., 2006; Phillips et al., 2006). Therefore, we 

used the standard settings of Maxent. However, 

the null-models developed for 80, 90, and 100 

records developed with the modelling rules 

set to ‘auto features’ and the regularization 

multiplier set to 1, resulted in increasing 95% 

C.I. AUC values indicating over-fitting of the 

models (data not shown). For this reason, 

we set the modelling rules to use linear, 

quadratic and hinge functions to develop the 

null-distributions for those numbers of records 

and the SDMs developed with more than 79 

records.

We are aware that spatial autocorrelation 

in the distribution of the species records 

and environmental variables may also 

influence SDM accuracy. Our intention was 

not to investigate the influence of spatial 

autocorrelation on SDM accuracy, however, 

but to provide a methodology for significance 

testing of presence-only SDMs. Simultaneously 

we showed that the evaluation of presence-

only SDM quality based on subjective ROC plot 

thresholds (e.g. AUC≥0.7 = useful), cannot 

be applied. With this contribution, we hope 

to provide SDM users with a valuable tool to 

identify those species that can be accurately 

modelled, while providing an additional reason 

for being cautious about interpretations of 

SDMs that are not tested for significance.
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