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Colorectal cancer (CRC) is one of the most common cancers in the Western world.[1] In the 
Netherlands, each year around 11,000 patients are diagnosed with colorectal cancer.[2] The 
lifetime risk in the Netherlands for developing colorectal cancer is approximately 6%, with a 
five-year survival of about 55%.1 The age distribution is wide; however, over half of the pa-
tients are diagnosed with colorectal cancer above 70 years of age. 
The risk of CRC is influenced by both genetic and environmental factors. Although most 
colorectal cancer arises on a sporadic basis, in 10-30% of the cases inherited predisposition 
plays a role, as was estimated in twin studies.[3] First-degree relatives of CRC patients are 
at increased risk of developing colorectal cancer, with a relative risk of about 2.2. This risk is 
strongly correlated with the number of affected family members and an early onset of disease.
[4] With two or more affected family members, the relative risk increases to about 4.0.[5,6] 
Individuals with a first-degree relative affected with colorectal adenomas are also at increased 
risk of CRC, with a relative risk of about 2.0.[6] The risk increases when the age at diagno-
sis of colorectal adenomas of the first-degree relative decreases.[7,8] About 6% of the CRC 
cases can be explained by several colorectal cancer syndromes, including Lynch syndrome, 
familial adenomatous polyposis (FAP), and MUTYH-associated polyposis (MAP). However, 
for the other familial cases, the underlying genetics remain elusive. High or moderate risk fac-
tors could play a role in families affected with colorectal cancer. Moreover, co-inheritance of 
several low risk factors could explain the excess risk in such cases. 

Tumorigenesis

The development of colorectal cancer is a multistep process that involves somatic genetic and 
epigenetic changes. Several genes acquire a mutation that provides the cell with a growth 
advantage. The transcription of genes and microRNAs is dysregulated in cancers; tumor sup-
pressor genes are shut down and oncogenes are activated. 
Colorectal cancer generally develops from normal epithelium through different adenoma 
stages with increasing dysplasia into carcinoma.[9] A genetic model for the development of 
sporadic CRC was first postulated by Fearon and Vogelstein in 1990 (Figure 1).[10] They 
described the genetic changes of colorectal tumors along their development from adenoma 
to carcinoma and they assumed that – although the accumulation of mutations seems most 
important - the genetic changes occur in a specific order in most CRCs. Later, more genes 
and genetic aberrations were added to this model.[11,12]
Recent advances have provided more insight in the biology of the colonic crypts and their 
relation to tumorigenesis (reviewed by [13]). Colonic crypts are finger-like invaginations of the 
colonic epithelial layer in the underlying connective tissue of the lamina propria. At the base 
of each crypt stem cells are located that are capable of regenerating all intestinal cell types. 
When a stem cell acquires a mutation it can, through a selective advantage or genetic drift, fill 
1  http://www.ikcnet.nl
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up the whole crypt. Subsequently, crypt fission can lead to spreading of the mutation in neigh-
boring epithelium. Such aberrant crypt foci (ACF), consisting of a cluster of a small number of 
abnormal crypts, are thought to be an early step in the formation of adenomatous polyps.[13]
Colorectal cancer development is often initiated by mutations in APC, which leads to an in-
creased proliferation of the cell. APC mutations and/or loss of heterozygosity at the APC 
locus are found in over 80% of all colorectal cancers.[14-16] Mutations in CTNNB1, encoding 
β-catenin, have also been found to occur in CRC.[17] KRAS mutations are seen with progres-
sion of the adenoma. Later, in the progression from adenoma to carcinoma, additional muta-
tions are acquired in for example SMAD2 and SMAD4, and p53, often accompanied by loss 
of heterozygosity (LOH) of 17p and 18q.[11,18] 
Recent studies show that the majority of mutations in a tumor occur in genes other than these 
commonly mutated genes, leading to a unique mutational signature for each tumor.[19,20] 
However, the role of these other mutations in tumorigenesis still needs to be elucidated. 
The carcinogenesis model described above applies mainly to sporadic CRC. In hereditary 
syndromes, the carcinogenesis model is different depending on the germ-line defect.

Figure 1. Genetic model of colorectal tumorigenesis as proposed by Fearon and Vogelstein 
[10]

Signaling Pathways

Several signaling pathways are involved in colorectal tumorigenesis. These pathways be-
come dysregulated via mutational activation or inactivation of one of its proteins or via other 
ways of (in)activation like methylation. 

Wnt signaling pathway 
Activation of the Wnt signaling cascade is considered to be the initiating event in colorectal 
cancer. In the Wnt signaling cascade, β-catenin functions as a transcription factor upon bind-
ing to nuclear proteins of the Tcf family and regulates genes involved in cellular activation. APC 
is a key regulator of β-catenin because it regulates the levels of cytoplasmic β-catenin. APC 
forms a complex with GSK3β, axin, and β-catenin, that modulates the cytoplasmic β-catenin 
levels by degradation. Mutational inactivation of APC is observed in over 80% of the CRCs 
and leads to accumulation of β-catenin in the cytoplasm.[14-16] This accumulation leads to 
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dysregulation of the transcriptional targets of β-catenin/Tcf.[21] Fifty percent of the tumors that 
lack mutations in APC, display mutations in the β-catenin gene CTNNB1.[22] Examples of 
genes that are regulated by β-catenin/Tcf include cell cycle regulator c-MYC, G1/S-regulating 
cyclin D1, and MMP-7 (matrilysin), a matrix-degrading metalloproteinase.[23-25] Germ-line 
mutations in the APC gene give rise to an inherited cancer predisposing syndrome, familial 
adenomatous polyposis (discussed below). 

TGF-β signaling pathway 
The transforming growth factor β (TGF-β) signaling pathway regulates the proliferation and 
differentiation of cells, embryonic development, wound healing, and angiogenesis.[26] TGF- β 
can bind three high-affinity cell-surface receptors (type I, II, and III). The intra-cellular domains 
of receptor type I and II contain serine-threonine protein kinases that initiate phosphorylation 
of SMAD transcription factors. Receptor type III binds TGF-β and transfers it to the signaling 
receptors type II. Upon binding of TGF-β, receptor type II forms a complex with receptor type 
I and phosphorylates the receptor, thereby stimulating the kinase-activity of the receptor.[27] 
The activated receptor type I phosphorylates SMAD2 and SMAD3 which then bind to SMAD4. 
This SMAD-complex then translocates to the nucleus, where it acts as a transcription factor. 
In epithelial cells, TGF-β inhibits cellular proliferation, which explains its tumor suppressor 
function. 
Mutation inactivation of the TGF-β pathway is frequent in colorectal tumors. About 30% of the 
sporadic CRCs have a mutation in the SMAD4 gene.[28] Moreover, the TGF-β receptor type 
II (TGFRB2) is frequently mutated in tumors with DNA mismatch repair deficiency (discussed 
below) and about 15% of DNA mismatch repair proficient colorectal carcinomas display mu-
tational inactivation of TGFBR2.[29,30] Germ-line mutations in SMAD4 are found in patients 
with Juvenile Polyposis (discussed below).[31]
Bone morphogenetic proteins (BMPs) also act in the TGF-β signaling pathway. Similar to 
TGF-β, BMPs bind to serine-threonine kinase receptors type 1 and 2 (BMPR1 and BMPR2). 
BMPR2 then phosphorylates and activates receptor type I. The activated BMPR1 subse-
quently phosphorylates SMAD1, SMAD5, and SMAD8, which associate with SMAD4 and 
translocate to the nucleus (reviewed by [32]). In addition to SMAD4 mutations, germ-line 
mutations in BMPR1A are also found in Juvenile Polyposis patients.[33]

p53 signaling pathway
The p53 pathway is an important pathway that is involved in cell-cycle arrest upon cellular 
stress. It thereby acts as a tumor suppressor.[34] When cellular stresses occur, including DNA 
damage or hypoxia, p53 is stabilized and binds to the DNA to act as a transcription regula-
tor. Genes regulated by p53 regulates are involved in important cellular processes like DNA 
repair, cell-cycle arrest, senescence, and apoptosis. Genes that are transcriptionally activated 
by p53 include p21, MDM2, GADD45, and Bax.[35] The pathway is often inactivated in CRC 
by an inactivating (missense) mutation in the p53 gene and subsequent deletion of the second 
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allele of the p53 gene through physical loss of chromosome arm 17p.[36,37] Inactivation of 
p53 coincides with the transition of an adenoma to the carcinoma stage.[38]

MAPK signaling pathway 
Mitogen-activated protein kinases (MAPK) cascade is an important signaling pathway in-
volved in cellular proliferation. Three major subfamilies of MAP kinases include the extra-cel-
lular-signal-regulated kinases, stress-activated protein kinases, and MAPK14. The subfamily 
of extracellular-signal-regulated kinases (ERK MAPK), including Ras, Raf, MEK, and ERK, is 
important for intestinal epithelial differentiation.[39] Upon binding of extracellular signal pro-
teins the Ras/Raf/MEK/ERK cascade transmits the signal to the nucleus where it regulates 
the transcription of genes involved in proliferation and differentiation. The cascade includes 
several proto-oncogenes and is dysregulated in about 30% of all cancers. Activating muta-
tions in KRAS are found in approximately 38% of colorectal cancer.[40] BRAF mutations are 
observed in about 10% of colorectal cancers and are particularly observed in tumors with 
MLH1 promoter hypermethylation.[41,42] Mutations in KRAS and BRAF appear to be mutu-
ally exclusive.[42,43] 
Activation of the epidermal growth factor receptor (EGFR) stimulates the MAPK signaling 
pathway and is a target for cancer treatment. Oncogenic activation of the Ras/Raf/MEK/ERK 
cascade in colorectal cancer is strongly correlated with impaired response to anti-EGFR treat-
ments like panitumumab and cetuximab.[44]

PI3K signaling pathway
Phosphatidylinositol 3-kinase (PI3K) is an enzyme that phosphorylates inositol phospholipids 
(IPs). The phosphorylated IPs (PIPs) subsequently activate the downstream AKT pathway. 
Activation of AKT leads to increased cell survival, growth and cellular proliferation (reviewed 
by [45]). Protein targets of AKT include mTor, Bad, Caspase 9, Tuberin, and GSK3β.[46] About 
32% of colorectal tumors carry an activating mutation in PIK3CA, encoding the catalytic sub-
unit.[47] PTEN functions as an inhibitor of the PI3K pathway because it dephosphorylates the 
inositol phospholipids. The PI3K pathway is interlinked with the MAPK pathway and is also 
stimulated upon EGFR activation. Consequently, inactivating PTEN mutations or activating 
PI3K mutations have been associated with reduced response to anti-EGFR treatment.[48,49]

Genetic instability

In addition to acquiring mutations in genes, colorectal tumors become genetically instable. 
The different forms of genetic instability involved in colorectal tumorigenesis are discussed 
below.
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Microsatellite instability
Microsatellites are short repetitive sequences within the DNA. An accumulation of mutations 
in microsatellites, that make them shorter or longer, is called microsatellite instability (MSI or 
MIN). This microsatellite instability is caused by a defective DNA mismatch repair system, 
which fails to repair errors during DNA replication. MSI-H (MSI-high) is typically seen in tumors 
from patients with Lynch syndrome, which carry mutations in DNA mismatch repair genes 
MLH1, MSH2, MSH6, or PMS2. However, MSI is also observed in sporadic colorectal cancers 
due to hypermethylation of the promoter region of MLH1.[50-52] This is observed in about 
15% of all colorectal cancers.[53,54] BRAF mutations are common in sporadic MSI-H tumors, 
whereas no BRAF mutations are observed in MSI-H Lynch tumors.[42]
Mutation rates are at least 100-fold increased in MMR deficient cells as compared to MMR 
proficient cells.[55,56] Via this pathway several genes that contain repeat sequences are 
targeted. Frequently targeted genes include growth factor receptors TGFB-RII and IGFRII, 
pro-apoptotic gene BAX, and Caspase 5.[30,57-59] MSI tumors are generally diploid or near-
diploid and gross chromosomal gains and losses are absent.[60-62] However, some studies 
reported the presence of copy number aberrations in a minor fraction of MSI-H tumors, includ-
ing gains of chromosomes 4, 8, 12, 13, and 20 and losses of chromosomes 1, 9, 11, and 15. 
[63,64]

Chromosomal instability
Chromosomal instability (CIN) is seen in the majority of CRCs and is characterized by nu-
merous chromosomal gains and losses and copy neutral loss of heterozygosity (cnLOH). 
Many studies analyzed the genomic profile of tumors for gains and losses of chromosomes or 
chromosome arms using array comparative genomic hybridization. With recent advances in 
technology, genome-wide LOH studies have become feasible using SNP arrays. These SNP 
arrays not only provide genome-wide LOH information, but can also detect LOH in the ab-
sence of copy number aberrations (copy neutral LOH) which for example can arise via mitotic 
recombination or a physical loss followed by reduplication. CIN tumors are mostly aneuploid, 
reflecting their chromosomal instability.
Based on a comprehensive meta-analysis of tumor genome profiling studies, a model of ge-
netic colorectal tumor progression has been established.[65] Losses of chromosomes 17p 
and 18 and gains of chromosomes 8q, 13q, and 20 occur early during tumor development. 
Losses of chromosomes 4p and 8p, and gains of 7p and 17q are correlated with the transition 
from primary tumor to liver metastasis. Loss of chromosome 14q and gains of chromosomes 
1q, 11, 12p, and 19 are considered to be late events in tumor progression.[65]
Table 2 provides an overview of genomic profiling studies that have been performed since 
this meta-analysis was published. Most studies used metaphase-based CGH or array CGH 
to study genomic aberrations and only a minority of the studies used SNP arrays, which also 
provide information on LOH. Moreover, in most studies sporadic colorectal tumors were ana-
lyzed. Specific subgroups of colorectal cancer – for example MSS familial tumors or tumours 
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from Lynch patients - were studied to a much lesser extent.
Although the molecular basis for CIN is still unknown, several genes have been associated 
with the CIN pathway. Mitotic checkpoint genes hBUB1 and hBUBR1 have been described 
to contribute to chromosomal instability.[66,67] Tumor suppressor gene p53, involved in G1 
arrest and apoptosis, is mutated in about 50% of sporadic colorectal cancers.[36] Inactivation 
of p53 has been associated with the development of aneuploidy in cancers, because of loss of 
the arrest at the G1 checkpoint.[68] Mutations in the adenomatous polyposis coli gene APC, a 
member of the Wnt signal transduction pathway, occur early in tumorigenesis and have been 
linked to chromosomal instability.[69] Other genes that are frequently targeted by point muta-
tions in CIN tumors are oncogene KRAS, whose activation leads to growth promotion, and 
SMAD4, a component of the TGF-β pathway. 

CpG Island Methylator Phenotype
A third type of genetic instability observed in colorectal cancers is the occurrence of aberrant 
methylation of CpG islands, leading to the CpG island methylator phenotypes (CIMP).[70] 
CpG islands are short DNA sequences that are rich in CpG dinucleotides. Such islands are 
found in the 5’ region of about half of all human genes.[71]. Hypermethylation of the cytosines 
in these CpG islands leads to transcriptional inactivation of such genes. Simultaneous hy-
permethylation of CpG islands of several genes has been termed the CIMP phenotype. Two 
subclasses can be distinguished: CIMP1 or CIMP-high with intense methylation of multiple 
genes and CIMP2 or CIMP-low with methylation of a limited number of genes. CIMP1 tumors 
are generally MSI-H and have a high frequency of BRAF mutations, whereas CIMP2 tumors 
are generally MSS and have a high frequency of KRAS mutations.[72] The cause of CIMP is 
currently unknown.

Hereditary Colorectal Cancer Syndromes

Several high penetrance colorectal cancer syndromes have been identified in the past two de-
cades. The genes responsible for these syndromes have been identified using linkage analy-
sis, deletion mapping, positional cloning, and by exploring tumor characteristics (Figure 2). 
The different CRC syndromes are briefly described below. An overview of all CRC syndromes 
as well as of polyposis syndromes is provided in Table 1. For several polyposis syndromes, 
including for example Cowden syndrome and hereditary mixed polyposis syndrome, a firm 
association with CRC has not yet been identified.

Lynch syndrome
Lynch syndrome, formerly called hereditary non-polyposis colorectal cancer or HNPCC, is the 
most prevalent CRC syndrome. It is estimated that Lynch syndrome accounts for at least 3% 
of all colorectal cancers.[73,74] Familial clustering of colorectal cancer, stomach, and uterine 
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cancer was already described by Warthin et al. in 1913.[75] Later, Lynch et al. described two 
additional families with clustering of colorectal cancer and uterine cancer.[76] In the early nine-
ties, the genes predisposing to Lynch syndrome were identified. The syndrome is caused by 
germ-line mutations the DNA mismatch repair genes MLH1, MSH2, MSH6, and PMS2.[77-82] 
In addition, germ-line epigenetic inactivation of MLH1, by hypermethylation of the promoter of 
MLH1, leads to Lynch syndrome.[83] Recently, it was shown that a deletion of the last exons 
of TACSTD1, upstream of MSH2, also predisposes individuals to Lynch syndrome, because 
this deletion leads to epigenetic inactivation of MSH2 in TACSTD1-expressing tissues.[84]
Lynch syndrome is characterized by the development of colorectal carcinomas at a mean 
age of 42 years for men and 47 years for women. The mean age at diagnosis of endometrial 
carcinomas in Lynch syndrome patients is approximately 47
years.[85] The colorectal cancers predominantly develop at the right side of the colon.[86] 
Other manifestations include cancers of the stomach, small bowel, ovaries, and the urinary 
tract.[87,88] The lifetime risk for developing CRC for carriers of amutation in one of the mis-
match repair genes is approximately 66% for men and approximately 43% for women. The 
cumulative risk of endometrial cancer or CRC in women is approximately 73%.[85]

Autosomal dominant inheritable CRC without polyps Genes MIM No

Lynch syndrome MLH1, MSH2, MSH6, 

PMS2 120435

     

Autosomal dominant inheritable CRC with adenomatous polyps    

Familial adenomatous polyposis (FAP) APC 175100

Attenuated FAP (AFAP) APC 175100

     

Autosomal dominant inheritable CRC with hamartomatous/mixed/

hyperplastic polyps    

Peutz-Jeghers syndrome (PJS) STK11 (LKB1) 175200

Juvenile polyposis syndrome (JPS) SMAD4, BMPR1A 174900

Hereditary hemorrhagic telangiectasia syndrome (HHT) * ENG, ACVRL1  187300

Hyperplastic polyposis syndrome (HPT) * MUTYH, MBD4 unassigned

Hereditary mixed polyposis syndrome (HMPS) *   601228

Cowden disease (CD) * PTEN 158350

Birt-Hogg-Dube syndrome (BHT) * FLCN  135150

     

Autosomal recessive inheritable CRC with adenomatous, serrated 

adenomas and hyperplastic polyps    

MUTYH-associated polyposis (MAP) MUTYH 608456

Table 1. Overview of colorectal cancer syndromes and polyposis syndromes

* CRC risk unknown
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Mutations in a DNA mismatch repair gene lead to a failure to repair errors during DNA rep-
lication, especially concerning mismatches and insertion/deletion loops. As a consequence, 
the hallmark of tumors from Lynch patients is an accumulation of errors in short repetitive 
sequences, so-called microsatellite instability (MSI).[54,89-91]
In 1990, clinical guidelines were established to identify Lynch syndrome families for research 
purposes. These so-called Amsterdam Criteria were based on family characteristics, age at 
diagnosis and the type of cancer.[92] However, because these criteria did not account for 
extracolonic cancers, new criteria (Amsterdam Criteria II) were established in 1999.[93] The 
Amsterdam Criteria have a high specificity, but a lower sensitivity to detect Lynch syndrome 
families. About 40% of the tumors from families that fulfill the Amsterdam Criteria II do not 
show an MSI phenotype.[94] Therefore, in 1997 the Bethesda guidelines were developed to 
identify tumors that should be tested for microsatellite instability, as a marker of patients that 
should be screened for germ-line mutations in one of the DNA mismatch repair genes.[95] 
These guidelines also select smaller families. In 2004, the Bethesda guidelines were revised 
to further improve the identification of Lynch syndrome patients.[96] Other criteria, which do 
not take family history into account, but select patients only on basis of early onset of colorec-
tal adenomas and carcinomas, or recurrent disease, have been tested as well. These criteria 
prove a sensitive strategy to identify Lynch syndrome patients.[97] Additionally, immunohis-
tochemical screening of all CRC patients for MLH1, MSH2, MSH6, and PMS2 has also been 
proposed and has so far only been implemented in Denmark. Using this approach, Lynch 
patients in small families and patients diagnosed at older age or with de novo mutations can 
also be identified.[98,99]
When a MMR gene mutation is identified in a family, colonoscopic surveillance is offered to the 
family. This surveillance facilitates early detection of precursor lesions, thereby preventing it 
from developing into a malignant lesion. In the Netherlands, large scale surveillance of Lynch 
syndrome families was introduced in the late 1980s.[100] It has been shown that the mortal-
ity because of CRC has decreased since the introduction of colonoscopic surveillance.[101]
Recently, two genetic factors have been found to modify the colorectal cancer risk in Lynch 
Syndrome families. It has been shown that two common low penetrance risk alleles (dis-
cussed below), located on 8q23.3 and 11q23.1, are associated with increased colorectal can-
cers risks. The latter association (11q23.1) was found in female Lynch syndrome patients only.
[102]

Bi-allelic MMR mutations
Heterozygous mutations in the mismatch repair genes give rise to Lynch syndrome; however, 
rare cases of bi-allelic MMR mutations have also been described. Patients with homozygous 
or compound heterozygous mutations in MLH1, MSH2, PMS2, and MSH6 develop juvenile 
leukemia and/or lymphoma associated with neurofibromatosis type 1.[103-109] 
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Muir-Torre syndrome
The Muir-Torre syndrome (MTS) is characterized by a combination of cutaneous lesions (mul-
tiple keratoacanthomas and sebaceous gland tumors) and colorectal, endometrial, urologi-
cal, and upper gastrointestinal tumors.[110] Most MTS patients carry a germ-line mutation in 
MSH2 or MLH1. Therefore, the syndrome is considered to be a clinical variant of the Lynch 
syndrome. In MTS families, mutations in MSH2 are more frequent than mutations in MLH1, 
as compared to Lynch syndrome families.[111] Recently it was shown that sebaceous gland 
tumors can also occur in MUTYH-associated polyposis.[112]

Turcot’s syndrome
Turcot’s syndrome (TS) is a rare disorder that is clinically characterized by primary tumors 
of the central nervous system and colorectal polyposis. The phenotypic spectrum is broad, 
including various types of central nervous tumors and single adenomas are observed as well 
as adenomatous polyposis. In patients affected with this syndrome, germ-line mutations were 
identified in the APC gene or in one of the mismatch repair genes. The disease phenotype 
for patients with an APC mutation differs from that of patients with a mutation in one if the 
mismatch repair genes.[113] 

Familial adenomatous polyposis 
Familial adenomatous polyposis (FAP) is an autosomal dominantly inherited disease which 
hallmark is the development of a hundred to thousands of adenomatous polyps. FAP ac-
counts for approximately 1% of all colorectal cancers.[114] The polyps develop already during 
adolescence, but symptoms usually present in the third decade of life.[115-117] The risk of 
developing carcinomas is nearly 100% if patients are not treated.[115] Extracolonic manifes-
tations include epidermoid cysts, facial osteomas, thyroid carcinoma, duodenal carcinoma, 
and malignancies of the biliary tract.[115,116] Moreover, approximately 10% of FAP patients 
develop desmoid tumors, also referred to as aggressive fibromatoses.[118,119]
Germ-line mutations in the adenomatous polyposis coli (APC) gene were identified to be re-
sponsible for FAP.[120-124] APC is involved in the Wnt signaling pathway and its mutational 
inactivation leads to activation of the Wnt signaling through reduced degradation of β-catenin. 
The majority of the APC mutations in FAP patients concern nonsense mutations or frameshift 
mutations that lead to a truncated protein. Mutations at codons 1061 and 1309 account for 
about a third of all germ-line mutations. The tumors from FAP patients carry an additional so-
matic mutation in APC. The nature of this second-hit appears to be dependent on the type and 
location of the germ-line mutation.[125] The ‘just-right’ signaling model has been put forward 
as an explanation for this phenomenon. This model proposes that selection of APC genotypes 
occurs to retain some downregulation of β-catenin signaling rather than a constitutive activa-
tion of β-catenin signaling.[126]  

General Introduction

C
ha

pt
er

 1



20

Attenuated FAP
Attenuated FAP is a phenotypic variant of classical FAP, in which patients develop less adeno-
matous polyps and have a later onset of colorectal cancer. The number of polyps that patients 
develop can be very variable; within one family some affected members have few polyps while 
other family members have several hundred polyps at young age.[127-129] Attenuated FAP 
seems to be associated with mutations in the 3’ and 5’ end and exon 9 of APC.[129-132] 

MUTYH-associated polyposis
MUTYH-associated polyposis (MAP) is the only colorectal cancer syndrome described with a 
recessive mode of inheritance. It is caused by bi-allelic mutations in the base excision repair 
gene MUTYH.[133-135] MAP patients develop multiple polyps and cancer in their colon. How-
ever, the number of polyps is generally lower as compared to FAP patients.[134,136,137] The 
MUTYH protein plays a role in the repair of oxidative DNA damage: upon oxidative DNA dam-
age, MUTYH removes incorrectly incorporated adenines opposite to an 8-oxo-guanine. As a 
consequence of MUTYH deficiency, somatic G:C>T:A transversions are seen in MAP patients 
in critical genes such as APC and KRAS. In APC, these transversions occur primarily in GAA 
DNA sequences.[133,134] In KRAS, a specific GGT>TGT mutation (c.34 G>T, p.Gly12Cys) is 
found in about 64% of MAP carcinomas.[138]
The penetrance of colorectal cancer development in MAP patients is nearly 100% at the age 
of 60 years.[139] 
The clinical relevance of heterozygous mutations in MUTYH is still under debate. Recent as-
sociation studies in large series using different approaches found some evidence for a modest 
and late onset increase in CRC risk for heterozygous mutation carriers (odds ratios 1.5-1.7).
[139-141] This risk is comparable to the risk of CRC that first-degree relatives of individuals 
with CRC have. Most studies, however, fail to find significant associations between hetero-
zygous MUTYH mutations and CRC risk. Similarly, two meta-analyses do not find evidence 
for such association.[142,143] However, these meta-analyses analyzed only the two hotspot 
mutations Y179C and G396D.
It has also been hypothesized that MUTYH mutations act as phenotypical modifiers in MMR 
mutation carriers, especially concerning MSH6 mutation carriers. Enrichment of MUTYH mu-
tations in carriers of missense mutations in MSH6 has been described, but could not be con-
firmed in a second study. Furthermore, a strikingly mild phenotype was observed in a patient 
with a bi-allelic mutation in MUTYH and a MSH6 mutation.[144-146]

Juvenile polyposis
Juvenile polyposis syndrome (JPS) is characterized by the development of multiple juvenile 
hamartomatous polyps in the gastrointestinal tract and an increased risk of cancer. It is a rare 
autosomal inherited disease with a penetrance of up to 70%.[147] About 1 in 100,000 indi-
viduals are affected with JPS and the mean age at diagnosis is 16 years.[148] JPS is caused 
by germ-line mutations in SMAD4 and BMPR1A.[31,33] Mutations in these genes explain, 
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however, only about 40% of JPS patients. SMAD4 and BMPR1A are both members of the 
transforming growth factor-β (TGF-β) superfamily. The BMP receptor type 1A activates the 
transcription factor SMAD4 to downregulate cellular growth and division.

Figure 2. Genetic risk factors for colorectal cancer

This graph shows the known CRC risk factors. Rare variants with a low CRC risk are very difficult to find 

(lower left white area) and common variants that confer a high CRC risk are believed not to exist (upper 

right white area).

The MMR genes include MLH1, MSH2, MSH6, and PMS2. For the risk variant identified in genome-wide 

association studies their respective chromosomal locations are depicted in the graph: 8q23, rs16892766; 

8q24, rs6983267; 10p14, rs10795668; 11q23, rs3802842; 14q22, rs4444235; 15q13, rs4779584; 16q22, 

rs9929218; 18q21, novel 1; 19q13, rs10411210; 20p14, rs961253.

Peutz-Jeghers syndrome
The Peutz-Jeghers syndrome (PJS) is an autosomal dominant inherited disease that pre-
disposes to hamartomatous polyposis, affecting mostly the small bowel. It affects approxi-
mately 1 in 200,000 individuals and has a high penetrance. In around 50% of the patients, the 
syndrome is caused by germ-line mutations in STK11 (also named LKB1), encoding serine/
threonine protein kinase 11.[149] STK11 forms a complex with Ste adaptor protein STRAD 
and MO25.[150,151] This complex is involved in the regulation of cellular responses tot en-
ergy stress and cell polarity.[152] In addition to (benign) hamartomatous polyps, PJS patients 
develop mucocutaneous pigmentation and have an increased risk of developing malignancies 
in the gastrointestinal tract.[153] 
Research into the characterization of the pathways in which STK11 is involved have not yet 
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provided a conclusive answer to the question how STK11 exerts its tumor suppressor func-
tion.[128] STK11 has been described to have a regulatory role in control of cell-cycle arrest, 
p53-mediated apoptosis, the Wnt signaling cascade, the ras-pathway, TGF-β signaling, and 
energy metabolism (reviewed by [154]).

Familial Colorectal Cancer of unknown cause

As briefly mentioned above, heritable factors may play a role in up to 30% of all CRC.[3] Fam-
ily history is a strong risk factor for the development of colorectal cancer. About 6% of all CRC 
is explained by the colorectal cancer syndromes described above. However, for the other 
familial cases the underlying genetics remain elusive. Among these familial cases are large 
families with a clear positive family history of CRC. Such Amsterdam Criteria positive families 
without a mismatch repair defect have been termed ‘Familial Colorectal Cancer Type X’ or 
mismatch repair proficient CRC.[155] It has been estimated that about forty percent of the 
families fulfilling the Amsterdam Criteria is not affected with the Lynch syndrome, suggesting 
that other yet to be identified genetic factors predispose these families to CRC.[94] Moreover, 
it can be calculated from a Finnish study that only about 12% of the excess CRC risk associ-
ated with a family history of mismatch repair proficient CRC is explained by the known genes.
[4,156] 
In mismatch repair proficient CRC families, the cancer incidence is generally lower than in 
Lynch families.[4,155] Segregation analysis performed by Lubbe and colleagues suggested 
that aggregation of CRC in mismatch repair proficient families follows a recessive inheritance 
model.[4] Jenkins et al. also reported a role for recessively inherited factors in familial CRC.
[157] The results of the study of Lindor et al. on the other hand, supported a dominant model 
of inheritance.[155] These differences in the suggested model of inheritance might be ex-
plained by differences in patient ascertainment. Lindor et al. included Amsterdam Criteria pos-
itive families, whereas Lubbe et al. included CRC patients diagnosed below 70 years of age. 
Finally, Jenkins et al. included only CRC patients with an age at diagnosis below 24 years.

High penetrance risk loci

Generally, linkage analysis is adopted to identify rare alleles that confer a high risk of familial 
colorectal cancer. Several loci have been identified using this approach; however, none of 
these have yet led to the identification of the genes responsible for the increased CRC risk in 
FCC families. 
Wiesner and colleagues reported genetic linkage of CRC to chromosome 9q22.2-31.2 in a 
set of 74 affected sibling pairs.[158] Two other studies provided support for the presence of a 
CRC susceptibility locus in this region.[159,160] Kemp and colleagues described linkage to 
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colorectal cancer susceptibility of a region located on chromosome 3q21-q24.[161] In a later 
extension of this study including 34 additional families, linkage to this region was confirmed. 
However, mutation screening of 30 genes failed to identify pathogenic variants.[162] Further 
support for this region harboring a CRC susceptibility locus was provided by a Swedish link-
age study of Picelli et al.[163] A linkage scan in 18 Swedish colorectal cancer families re-
vealed linkage on chromosome 11, 14 and 22.[164] And finally, linkage to chromosome 7q31 
has been identified using an affected sibling approach.[165] 
Recently, a 111 kb copy number variable region on 3q26 was proposed to contain a regulatory 
element for PPMIL which could cause CRC susceptibility in APC mutation-negative polyposis 
families.[166] This region was identified using copy number analysis in polyps of these pa-
tients and subsequent gene expression analysis in the candidate region.

Low Penetrance Risk Alleles

Two approaches are generally used to identify low penetrance colorectal cancer risk variants. 
The first method is the candidate gene analysis. In candidate gene approaches, the following 
groups of genes are most frequently studied: genes involved in carcinogen metabolism, genes 
involved in methylation, genes encoding DNA repair proteins, microenvironmental modifiers, 
and oncogenes and tumor suppressor genes.[167,168] Two large meta-analyses of studies 
using the candidate gene approach, identified several polymorphisms that are associated 
with an increased or decreased colorectal cancer risk (Figure 2). The C677T polymorphism 
in MTHFR (methylene tetrahydrofolate reductase) is associated with a decreased CRC risk 
for homozygous carriers of the variant allele. HRAS1 is a proto-oncogene that contains a 
variable number of tandem repeats region (VNTR). Rare alleles of this VNTR are associated 
with a moderately increased colorectal cancer risk. For the NAT2 gene, only a phenotypic 
association was identified, i.e. a fast acetylatorship has been associated with an increased 
CRC risk. However, genotypic associations could not be identified. GSTT1, a detoxification 
enzyme, is associated with a small increase in colorectal cancer risk for the null genotype 
(homozygous deletion). ALDH2, a mitochondrial enzyme responsible for oxidation of acetal-
dehyde, is associated with in increased risk both in heterozygous and homozygous carriers of 
the variant allele. And finally, the variant I1307K in APC is associated with an increased CRC 
risk.[167,168] Other low risk variants that have been associated with CRC include CHEK2 
1100delC, AKAP9 M463I, PTGS1 G213G, IL8 c.-352T>A, MTHFR A429E.[169-171]
The second approach to identify low risk variants is genome-wide association studies, which 
have become feasible with the availability of high density single nucleotide polymorphism 
(SNP) arrays. Recent genome-wide association studies have successfully identified sever-
al loci that are associated with an increased risk of developing colorectal cancer. Risk loci 
were identified on chromosomes 8q24.21 (rs6983267), 18q21.1 (rs4939827, rs12953717 and 
rs4464148), chromosome 15q13.3 (rs4779584), 11q23.3 (rs3802842), 10p14 (rs10795668), 
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8q23.3 (rs16892766), 20p12.3 (rs961253), 14q22.2 (rs4444235), 16q22.1 (rs9929218), and 
19q13.1 (rs10411210).[172-181] The next step is to study the mechanisms that underlie CRC 
susceptibility associated with the different loci. Some of the loci are in high linkage disequi-
librium with genes that are strong candidates for the causal relation with colorectal cancer. 
However, for other loci no genes are in the direct vicinity, which makes the interpretation of 
these risk factors much more difficult. For rs6983267 (8q24.21), it has now been shown that it 
is located in a transcriptional enhancer and that it affects the DNA-binding affinity of Wnt-reg-
ulated transcription factor TCF7L2 (or TCF4). The enhancer element interacts with the MYC 
promoter; however, no correlation was observed between the rs6983267 genotype and MYC 
expression.[182,183] Additionally, a role in tumor evolution was suggested for rs6983267; 
tumor studies showed that the risk allele was favored in about 66% of the tumors with allelic 
imbalance at the locus of rs6983267.[184] For the locus on 18q21.1, the causal SNP has been 
identified by resequencing the genomic region. This SNP - named Novel 1 - also maps to a 
transcription factor binding site and has been associated with reduced expression of SMAD7. 
No relation with copy number changes on chromosome 18q21.1 was identified for Novel 1 in 
tumors.[185] 

Environmental Factors

Several environmental factors can influence the risk of the development of colorectal cancer. 
First, diet is an important factor that influences the CRC risk. Intake of vegetables and fruits 
is found to reduce the risk of CRC. The effect of raw vegetables, green vegetables, and cru-
ciferous vegetables has been particularly consistent in different studies.[186] The degree of 
risk reduction however, varies in the different studies. Fiber intake has also been suggested 
to decrease colorectal cancer risk, however existing data are inconsistent.[186] Consumption 
of red meat and processed meat has, on the other hand, been associated with an increased 
risk of colorectal cancer.[186,187] Moreover, alcohol consumption has been associated with 
an increased colorectal cancer risk.[186,188] Secondly, physical activity and body mass can 
influence CRC risk. Physical activity is known to reduce the risk of colon cancer, whereas obe-
sity increases the risk of colon cancer. However, both factors do not seem to influence the risk 
of rectal cancer.[186,188,189] Thirdly, non-steroidal anti-inflammatory drugs (NSAIDs) and 
hormone replacement therapy (HRT) are described to lower the risk of colorectal cancer.[186] 
Fourthly, smoking of cigarettes, cigars, and pipes increases the risk of developing colorectal 
cancer.[186,188] And finally, recent studies in mice suggest that commensal colonic bacteria 
can promote colorectal tumorigenesis via inflammation.[190]
The influence of environmental factors differs per individual, based on their individual lifestyle. 
However, environmental factors can in part be shared by individuals from the same family. For 
example, dietary habits are part of a shared environment or ‘inherited environment’ within a 
family. In a study that analyzed cancer risk in monozygotic and dizygotic pairs of twins it was 
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estimated that shared environmental factors contribute up to 5% to the total colorectal cancer 
risk.[3]

New fields in CRC research, prevention, and treatment

Recent studies that identified colon cancer tumor-initiating cells, provide support for the can-
cer stem cell hypothesis.[191-193] The stem cell model proposes that tumorigenesis is initi-
ated by dysregulation of the process of self-renewal of colonic stem cells and that as a conse-
quence tumors contain a subcomponent that retains stem cell properties.[194] These cancer 
stem cells have been suggested to exhibit a greater plasticity that the stem cells populating 
the normal crypts. The stem cell properties (“stemness”) of certain subpopulations of cancer 
cells can therefore also be seen as an extreme plasticity of tumors to adapt to and survive 
variable and constantly changing environmental conditions.[195] The concept of cancer stem 
cells has several consequences for cancer prevention and treatment. Cancer stem cells are 
more resistant to cytotoxic chemotherapy, because an intrinsic property of stem cells is that 
they promote survival and are resistant to apoptosis. Additionally, stem cells express multi-
drug resistant genes, including multifunctional efflux transporters that have an important role 
in drug distribution.[196] This indicates that novel treatments should be developed that can 
eradicate the cancer stem cells. Moreover, it has been proposed that stem cells are capable 
of metastasizing and can remain quiet until the appropriate signals activate them to develop 
into a macroscopic metastasis.[194]
Current topic in cancer prevention is the possible installation of population-based screening 
for colorectal cancer. The fecal occult blood test (FOBT) provides a non-invasive and sensitive 
method (sensitivity: ~65%) for detecting invasive colorectal cancer.[197] The Health Council 
of the Netherlands has advised to implement biennial immunochemical FOBT in men and 
women of 55-75 years of age as a nationwide screening program.[198] Another potential 
non-invasive screening method is a DNA test in stool, in which a panel of genetic markers is 
tested.[199]
New strategies in the diagnosis and treatment of colorectal cancer have been developed 
in recent years. For rectum cancer a more standardized way of treatment by the so-called 
total mesorectal excision (TME) in combination with preoperative radiotherapy has led to a 
reduction of local recurrence.[200] Furthermore, transanal endoscopic microsurgery (TEM) 
was introduced. Initially it was solely used as an approach to curatively remove large sessile 
adenomas of the rectum.[201] However, trials are now underway to also use the TEM tech-
nique in combination with neoadjuvant (preoperative) radio-chemotherapy to treat early rectal 
cancer. Biomarkers and imaging modules are being further developed to predict and monitor 
therapy response. 
Surgeons more and more use endoscopic techniques to remove colorectal cancer with 
great benefit for the patients in terms of reduction of morbidity and decrease of hospital stay.  
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Whereas 15 years ago a patient with liver metastases would soon die of this condition, nowa-
days partial liver resections are being performed, sometimes in combination with isolated 
liver perfusions and/or radiofrequency ablation (RFA).[202,203] These developments have 
thereby increased the lifespan of such CRC patients.[204] Furthermore, the use of new che-
motherapeutic regimens such as the addition of oxaliplatin and irinotecan has led to improved 
patient outcomes.[205-207] The introduction of orally given 5-fluorouracil (5-FU) derivatives 
is of major benefit for patients in terms of tolerability.[208] As a second line of therapy the use 
of targeted drugs i.e. inhibitors of cancer transduction pathways have shown its effects in cer-
tain groups of CRC patients.[209] Biomarkers are identified that predict treatment response. 
An example for the latter is that the presence of a somatic KRAS mutation predicts a lack of 
response upon treatment with epidermal growth factor receptor (EGFR) inhibitors.[210] There 
is a peculiar subgroup of CRC patients with peritoneal carcinomatosis patterns that benefit 
from cytoreductive surgery in combination with hyperthermic intraperitoneal chemotherapy 
(HIPEC). This therapy had shown to increase the overall survival of such patients.[211] More 
recently, it has been discussed whether HIPEC should be offered as a prophylactic treatment 
to prevent the progression of carcinomatosis.[212]
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