
Improving the use of donor organs in pancreas and islet of Langerhans
transplantation
Hilling, D.E.

Citation
Hilling, D. E. (2012, November 1). Improving the use of donor organs in pancreas and islet of
Langerhans transplantation. Retrieved from https://hdl.handle.net/1887/20081
 
Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/20081
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/20081


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/20081 holds various files of this Leiden University 
dissertation. 
 
Author: Hilling, Denise Eline 
Title: Improving the use of donor organs in pancreas and islet of Langerhans 
transplantation 
Issue Date: 2012-11-01 

https://openaccess.leidenuniv.nl/handle/1887/1�
http://hdl.handle.net/1887/20081


Chapter 1
Introduction



10 Chapter 1

IntroDuCtIon 

Type 1 diabetes mellitus is caused by autoimmune destruction of insulin-producing 
beta cells in the islets of Langerhans of the pancreas. In patients with type 1 diabetes, 
insulin treatment is the only life-saving therapy. Long-term prognosis and quality 
of life of these patients is largely determined by the occurrence and severity of 
secondary diabetic complications. However, even when insulin treatment is well 
tolerated and carried out in a diligent way, metabolic derangements and long-
term complications still occur, resulting in reduced patient survival (1, 2). Beta cell 
replacement, by transplantation of whole pancreas or isolated islets of Langerhans to 
restore endogenous insulin secretion, has emerged as a logical alternative to insulin 
injections. However, there is a shortage of donor pancreata relative to the needs of 
potential transplant recipients (3). Therefore, optimal use of the available donor organs 
is vital. In contribution to optimize the use of available organs, the focus of this thesis 
was on the improvement of pancreas graft survival in pancreas transplantation and to 
optimize islet isolation outcomes in islet of Langerhans transplantation. Furthermore, 
since porcine islet transplantation is an alternative to compensate for the shortage of 
human donor organs, we focused on optimizing porcine islet isolation outcome as 
well. 

Pancreas transplantation
Transplantation of the whole pancreas is a complex procedure that can lead to good long 
term metabolic control and prolong survival of both nephropathic and neuropathic 
diabetic patients (4-7). The first clinical pancreas transplantation was performed 
in 1966, simultaneous with a kidney transplant in an uremic diabetic patient at the 
University of Minnesota (8). The success rate (long-term insulin independence) of 
pancreas transplantation was initially low, but increased dramatically in the 1980’s. 
Pancreas graft and patient survival have further improved in recent years due to 
improved procurement and transplantation techniques, immunosuppression regimes 
and more emphasis on donor management and careful recipient selection (9-12).
The majority of pancreas transplantations are performed simultaneously with a kidney 
transplantation (simultaneous pancreas kidney transplantation: SPK), in patients with 
type 1 diabetes with end-stage or pre-emptive renal disease. Other possibilities are: 
pancreas after kidney transplantation (PAK), in which a pancreas from a deceased 
donor is transplanted in an insulin-dependent diabetic patient with a good functioning 
kidney transplant, and pancreas transplantation alone (PTA), in a type 1 diabetic patient 
with frequent and severe episodes of hypoglycemia, hyperglycemia or ketoacidosis but 
with preserved renal function. SPK transplants are performed more frequently than 
solitary pancreas transplants (211 SPK vs. 92 solitary pancreas transplants, in 2010 
in the Eurotransplant region (3)). However, there is an increase in solitary pancreas 
transplantations, particularly PAK, reflecting an emphasis on living donor kidney 
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transplants in uremic diabetic patients to preempt the need for dialysis (13). This is 
also seen in the Netherlands where in 2005 a single solitary pancreas transplantation 
was performed, with an increase to 11 in 2010, as reported by Eurotransplant (3). 
The International Pancreas Transplant Registry (IPTR) maintains a database of all 
reported pancreas transplants worldwide. In their annual report of 2004, they reported 
1 year pancreas graft survival rates of 80-85% and patient survival rates 95% for both 
SPK and PAK and 98% for PTA (13). In the Leiden University Medical Center, where 
85% of all pancreas transplantations in the Netherlands are performed, even better 
graft survival rates are obtained, in particular with primary bladder-drainage followed 
by elective enteric conversion 6-12 months later, used in most of the patients. In these 
patients 1 year pancreas graft survival rate was 88% (14). 
Pancreas graft and patient survival rates are influenced by several factors, e.g. 
procurement, transplantation technique, immunosuppression regimes and donor and 
recipient related factors. Many donor and recipient characteristics have been reported 
to influence pancreas graft survival (11, 12, 14-30). This raises the question on how the 
impact of donor characteristics relate to that of the recipient. In order to further improve 
pancreas graft and patient survival, do we have to focus on donor selection, optimize 
recipient condition or donor-recipient matching? No studies so far have examined the 
contribution of donor and recipient factors to graft survival. We therefore aimed in 
chapter 2 to identify donor and recipient factors influencing pancreas graft survival, 
to evaluate the impact of donor and recipient factors on pancreas graft survival, and to 
compare their contribution in explaining graft survival differences between pancreas 
recipients. 
The procurement technique of a pancreas graft has also been shown to influence 
pancreas graft and patient survival. Surgical injuries that occur during pancreas 
procurement may lead to complications after transplantation, impaired function of 
the allograft, graft loss or even death of the patient. These injuries may be so severe 
that the pancreas is not transplanted in order to protect the recipient. Liposis of the 
graft and critical vessel injuries have been reported as reasons for pancreas refusal 
after procurement (31). However, only few studies have addressed this issue. We 
therefore assessed how often pancreata were refused for transplantation during back-
table inspection in our center and which type of problems were responsible for the 
decision not to transplant the pancreas (chapter 3). A better understanding of the type 
of problems that occur could lead to a higher awareness for injuries. In combination 
with training this could potentially lead to avoidance of these injuries. This would 
result in the use of more donor pancreata that would otherwise have been discarded 
because of the injuries. Furthermore the quality of the transplanted pancreata with 
minor injuries would improve when these are avoided. This would eventually result in 
better pancreas graft and patient survival.
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Islet transplantation
Whole pancreas transplantation, however, is not devoid of complications, mainly 
secondary to surgery and immunosuppressive therapy (24). The alternative to 
transplantation of the pancreas is transplantation of isolated islets as a free graft. Islet 
transplantation is minimally invasive and has low morbidity because the islets are 
infused percutaneously into the hepatic portal vein. Furthermore, a pancreas graft 
can still be used for islet isolation and transplantation when rejected for pancreas 
transplantation. The first clinical islet allograft was performed in 1974 in a diabetic 
recipient who previous to the islet transplant received a kidney transplant (32). Since 
the late 1980s, the feasibility of isolating and purifying human islets from pancreatic 
organs of deceased donors raised hope that purified pancreatic islet cells, rather 
than an entire gland, could cure diabetes (33). However, a limiting factor in islet 
transplantation is the islet isolation yield that can be obtained from donor pancreata. 
In some cases, sufficient islet numbers can be obtained from a single donor, but even 
in the most successful studies, multiple transplantations are necessary to obtain 
(temporary) normalization of hyperglycemia in the recipients (34-39). Therefore, the 
supply of human donor pancreata as source of islets is insufficient.
In order to potentially enable the use of a single organ, several strategies were developed 
to maximize islet yield, e.g. by choosing better culture conditions, and improving donor 
and recipient selection. Many donor and recipient factors have been reported to have 
an influence on islet isolation yield (40-72). However, no uniformity is to be found in 
factors that are reported. Because of the scattered information, valuable information 
is potentially missed because there is insufficient power to determine the independent 
effect of the donor factors on islet isolation outcome in a single study. Chapter 4 offers 
a review of the literature; identifying donor and recipient factors influencing islet 
isolation yield and provides recommendations for standardized reports of donor and 
recipient factors in order to provide better comparisons in the future and to improve 
the power by providing enough data to perform a meta-analysis.
Despite significant efforts to improve the yield of isolated islets by optimizing donor 
and recipient factors, isolation protocols and culture conditions, islet isolation yields 
in human pancreata remain unpredictable and variable. Histomorphological aspects 
(e.g. collagen and other matrix elements) of the pancreas are thought to play a role in 
these variations (73-79). When studying histological characteristics of human donor 
pancreata, a remarkably high number of hyperemic islets (HIs) was encountered. 
Similar islets have only been reported anecdotally in the literature but no mechanisms 
were described regarding their origin and no relevance has been determined from 
the perspective of islets isolation for transplantation (80-84). We therefore aimed to 
determine the relevance of the presence of HIs in human donor pancreata for isolation 
outcome and to identify donor and procurement factors associated with the occurrence 
of HIs (chapter 5). 



13Introduction

Xenotransplantation
Xenotransplantation of porcine islets of Langerhans is another way to overcome the 
shortage of human donor pancreata. For various reasons, the pig is considered to be the 
preferred source of pancreatic xeno-islets. Pig insulin, which differs from the human 
type by only one amino acid, is active and well tolerated in humans. For years prior 
to the production of human recombinant insulin, patients were successfully treated 
with insulin injections extracted from swines. Transplantation of porcine islets has 
been proven to be successful in non-human primates as well as in humans (85-88). 
Moreover, pig islets can be successfully isolated and purified from adult pigs with a 
method that is similar to the one used for human islets (89). Advantages of using pigs 
as a source of islets for transplantation are, at least in theory, numerous. Besides the 
benefit of unlimited tissue supply, a higher quality of donor organs could be expected 
by planned elective organ harvesting, therefore minimizing cold ischemia and 
consequently improving islet yields. However, porcine islet isolation procedures have 
been shown to be notoriously difficult and provide unpredictable and variable islet 
isolation yields, even more so than in human pancreata (90-92). Because pancreata 
from adult pigs have resulted in large yields, a possible explanation could be related 
to donor age and to the relative fragility of the islets of juvenile pigs islet isolation 
procedures (90-94).
Furthermore, the amount of endocrine tissue present in a specific pancreas is 
undoubtedly an important factor in determining the islet isolation outcome. However, 
a high endocrine content does not ensure a high isolation yield. Despite improvement 
of isolation procedures, islet isolation is still associated with a considerable loss of 
endocrine tissue. This indicates that collagenase digestion of the pancreas is not limited 
to the exocrine pancreas but affects the islets as well. Because collagen is the major 
target in the enzymatic dissociation of the pancreas, the collagen substrate within 
the pancreas is one of the variables that could account for the unpredictable, highly 
variable islet yields. Also other matrix elements are thought to play a role (77-79, 92, 
95). We have assessed the total amount and distribution of collagen within a large 
study population of adult and juvenile porcine pancreata and assessed the relation of 
these determinants to the outcome of islet isolation in adult pigs in chapter 7. 
Another explanation for the unpredictable islet isolation outcomes could lie in 
morphological characteristics of porcine islets. Similar to human pancreata, we found 
a high number of hyperemic islets (HIs) when studying histological characteristics of 
porcine pancreata. We assessed the frequency of HIs in porcine pancreata compared 
to human pancreata. Furthermore, we studied the occurrence of HIs in relation to 
the outcome of islet isolation similar to the study in human pancreata (chapter 6). 
Besides the presence of HIs, we have observed morphological changes of islets after 
infusing the pancreas with collagenase during the isolation process. Previous studies 
have shown collagenase located within the islets after standard intraductal infusion 
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of collagenase in human and also at lower perfusion pressures in porcine pancreata 
(96, 97). The observed morphological changes could therefore be a result of either 
volume expansion of collagenase entering in the islet, leading to disruption of cell-cell 
contacts or be the result of the digestive effect of collagenase, subsequently leading 
to islet fragmentation. Both scenarios would eventually lead to lower islet isolation 
outcomes. In chapter 8 we aimed to discriminate between these two hypotheses.

Finding answers to these questions will contribute to further optimization of pancreas 
graft survival in pancreas transplantation and improved islet isolation outcomes in 
islet of Langerhans transplantation, eventually leading to better use of available organs.
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