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Chapter 1

Introduction

The theoretical foundation for the work reported on in this thesis is pro-
vided by the scattering theory of electron transport. When a conductor is
small enough, electrons can traverse it without undergoing inelastic pro-
cesses. (Inelastic processes include, among other things, collisions between
electrons and interactions with phonons or photons.) Transport is then
said to be coherent. Such small conductors (typical lengths are between
a few nanometers and a few microns) can be thought of as electron wave
guides. At a given energy, transport takes place through a discrete set of
channels. Transport properties are characterized by a scattering matrix.
This insight is due to Landauer [1].

Figure 1.1. A one-dimensional scattering problem: A wave (2) impinges on a
scattering center (3). As a result, a fraction T of the incident wave intensity is
transmitted and a fraction R = 1 — T is reflected. The conductance G of the
scatterer equals (e?/h)T.

In Fig. 1.1 the three main ingredients of a scattering problem are
schematically indicated. These are (1) a set of reservoirs that emit and
absorb particles, (2) the particles themselves, that propagate as waves be-
tween the reservoirs and (3) a scatterer that obstructs the free propagation
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of waves.

In this thesis, we consider two classes of problems. The first class
results when the physical quantities that characterize the reservoirs or
those that characterize the scatterer are not constant in time. The time-
dependence can have several causes: (1) An experimentalist pressed a but-
ton or turned a nob and changed the value of a system parameter such as
the external bias voltage or the magnetic field. (2) The internal dynamics
of the reservoirs or scatterer causes them to evolve significantly on time-
scales that are of the same order as those associated with the electrons
being transported. (3) The state of a reservoir or of the scatterer changes
due to interactions with the electrons being transported. Situations of this
kind are considered in Chapters 2, 3 and 4. The second class of problems
results when wave propagation is described by the Dirac equation rather
than the Schrédinger equation. The Dirac equation describes excitations
in a recently discovered form of carbon called graphene, and forms the
basis of Chapters 5, 6, and 7.

In this introductory chapter we give some background to the main
topics and methods of this thesis.

1.1 Scattering theory of electron transport

We start by briefly discussing the scattering theory of electron transport,
known as the Landauer-Biittiker formalism [1, 2]. (For a more detailed
review, see [3].)

A coherent conductor such as the one in Fig. 1.2 is characterized by a
scattering matrix. For the purpose of introducing the scattering matrix, we
consider a two terminal device, but note that the theory readily generalizes
to more terminals. We denote the two terminals left and right. The
scattering matrix s(E) is defined at a given energy E. Without loss of
generality we may take the number N of channels for left-incident electrons
to be the same as the number of channels for right-incident electrons. Then
s(F) is a 2N x 2N matrix with four N x N sub-blocks

)= (fm) o) ) ()

The entries of these sub-blocks are reflection and transmission amplitudes.
An electron with energy E that enters the conductor at the left terminal
in channel n has an amplitude r,,,,(E) to be reflected back into the left
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Figure 1.2. One of the very first fabricated coherent conductors. The figure
shows a scanning electron micrograph of a double quantum point contact. The
bright regions are electrostatic gate electrodes. They sit on top of a GaAs-AlGaAs
heterostructure. The heterostructure contains a two dimensional electron gas.
The electrodes deplete charge in the regions underneath them, thus defining a
barrier with two small openings or quantum point contacts. The white lines at
the bottom of the figure denote a length of 1 ym. (From van Houten et al [4].)

terminal in channel m and an amplitude t,,,(F) to be transmitted into
the right terminal in channel m. Similarly, an electron that enters at
the right terminal in channel n has an amplitude 7/,,,(E) to be reflected
back into the right terminal in channel m and an amplitude t',,,,,(E) to be
transmitted into the left terminal in channel m.

Transport properties are expressed in terms of the eigenvalues T,,(F)
of the transmission matrix product

T(E) = t(E)t(E)'. (1.2)

(Our choice of using the left to right transmission amplitudes is arbitrary.
As a consequence of the unitarity of the scattering matrix, the nonzero
eigenvalues of tt! and ¢’ ¢/ T are identical.) The eigenvalues T, lie between
zero and one.

Suppose now that the conductor is connected to two large reservoirs.
In the left (+) and right (—) reservoirs, the electrons are described by
Fermi distributions

f+(E) !

" 1+ exp|(E— Ep ¥ eV/2)/kT]’
where e is the electron charge, V is the voltage bias across the conduc-
tor, EFr is the Fermi energy, kg is Boltzmann’s constant and T is the

(1.3)
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temperature. Let I(¢) be the Heisenberg operator for current through the
conductor. The expectation value for the current through the conductor
I = (I(t)) is time-independent since there are no time-dependent external
fields. A central result of the scattering theory is the Landauer formula,
that relates I to T),. The formula reads

“ 5> [T, B (12E) - (). (1.4)

Due to the difference between Fermi functions, the integrand is non-zero
in an interval of a few times max{eV,kpT} around the Fermi energy.
This has to be compared to the energy scale at which T}, (F) is constant.
This is the Thouless energy Ery. The low-temperature, small-voltage
regime is defined by eV, kgT < E1y. (It must be noted that often great
experimental effort is needed to enter this response regime.) In this regime,
we may evaluate T,,(E) at the Fermi energy Er and take it outside the
integral. Using the fact that [dE [f(E) — f-(E)] = eV independent of
temperature, we obtain I = GV with the linear response conductance

2
(&

Since T, < 1, this result means that each transport channel n contributes
at most Gg = €2/2mh to the conductance.

The conductance only contains information about the time averaged
current I. The current fluctuations contain additional information. The
fluctuations are characterized by the Fourier transform of the current-
current correlation function, which is known as the power spectrum P(w)
of the current noise,

P(w) =2 /Oo dt ™ [(I(t)1(0)) — I?]. (1.6)

— o0

The noise can also be expressed in terms of the transmission eigenvalues
T,. In the regime, w < eV, kpT < Ery, the general result is

>ZT (1-T,

There are two contributions to this result. The first is thermal, i.e. fluc-
tuations induced by the finite temperature of the system. The second

2

e
P=—
7h

(1.7)

Zk:BTZ T2 + eV coth <
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contribution persists at zero temperature and is known as shot noise. The
thermal noise is related to the conductance G by the fluctuation-dissipation
theorem and contains no information not already contained in G. Indeed,
if we take the limit eV/kgT — 0, Eq. (1.7) reduces to

Pthermal = 4kBT’CTV (18)

The shot noise is more interesting because it contains information about
temporal correlations between electrons that is not contained in GG. For a
review of this topic see Ref. [5] or for a tutorial see Ref. [6]. An expression
for the zero temperature shot noise is obtained from Eq. (1.7) by taking
the limit kgT'/eV — 0 to find

2
(&
Papot = %SV;Tn(l - Tn) (19)

The T,,(1 — T,) structure of this result implies that neither a perfectly
reflecting channel (7;, = 0) nor a perfectly transmitting channel (7, = 1)
contributes to shot noise.

1.2 The Keldysh technique

In this section we introduce a method that is used in Chapters 2, 3 and
4 of this thesis. It is a Green function technique suitable for analyzing
many-body systems out of equilibrium. We will use it to investigate time-
dependent scattering as well as interaction phenomena. The technique is
named after its principal inventor L. V. Keldysh [7|. The work of Keldysh
is related to that of Feynman and Vernon [8] and Schwinger [9]. For more
details, references, and applications see the comprehensive review [10].
Tutorial derivations of the theory can be found in Refs. [11, 12, 13]. Here
we discuss only the most basic concepts of the full theory.

A system is in equilibrium when the Hamiltonian H that governs its
dynamics is time-independent and the state of the system is characterized
by a density matrix p = Z e PH-rN) with A the number of particles,
1 the chemical potential, and Z the partition function Z = tr e BH—pN),
For such systems, the equilibrium Green function technique can be used to
calculate expectation values of observables [14]. The central object is the
so-called retarded Green function and the technique provides a systematic
procedure to compute it.
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There are many situations that fall beyond the scope of equilibrium
theory. For instance, a system can be prepared in a non-equilibrium ini-
tial state and its subsequent relaxation studied. An open system can be in
contact with an environment that drives it away from equilibrium. This is
the case when different reservoirs connected to the same system have differ-
ent temperatures or chemical potentials. Non-equilibrium states also arise
when time-dependent external fields are applied. In these situations it is
no longer sufficient to know the retarded Green function only. More infor-
mation is required in order to evaluate expectation values of observables.
This information is contained in an additional Green function, called the
Keldysh Green function. The Keldysh technique provides a procedure, for-
mally similar to the one used in equilibrium theory, with which to compute
all necessary Green functions.

We will consider electron systems, and therefore make definitions ap-
propriate for fermions. The Keldysh Green function K, ,(¢,t') and the
retarded Green function R, ,(t,t") are defined as

Koyt t) = —i < [am(t), a;(t’)] > , (1.10a)
Ronn(t,t)) = —i0(t — t') <{am(t), aL(t')}> , (1.10b)
.

where a},,(t) is the Heisenberg-picture operator that creates an electron in
a single-particle state m. While it does not provide new information, it is
useful to define also the advanced Green function Ay, ,,(t,t") = Ry, m (', t)*.

The key result of Keldysh’s theory is this: The three Green functions
constitute a matrix

Gma(t,¥) = < 0 Apn(tt)

that obeys two integro-differential equations that are formally similar to
those known from equilibrium theory.

At this point it is usual to introduce the Keldysh time contour and con-
tour ordered Green functions [10]|. Since we will simply state rather than
derive the integro-differential equations for GG, we do not need to discuss
contour ordering here. For completeness we only mention that G, (¢, t')
as we have defined it, is related to the contour ordered Green function
Gun(t,t') as defined in Ref. [10] by the transformation Gy, (t,#) =
3L Gy (t,t') L where

73:<(1) _?), L:%<i _i> (1.12)
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In order to find equations that determine G, the system is split up into
a single-particle problem that can be solved exactly and a perturbation.
In the single-particle basis that diagonalizes the unperturbed system, the
equations for G are of the form

(i0r — €m)Gmn(t, t)
= / 4 S (6, )G (B, ) = 8(t — )omnane,  (1.13a)
l
(—i0y — €n)Gmn(t, 1)
-3 / 0 Gt (b1 Sun (1) = 5t — )SmmTanz,  (1.13b)
l

where I5o is the 2 X 2 unit matrix and €, is the energy of level m. The
self-energy

(R) / (K) /
_ Em,n(tvt ) Em,n(t7t )
Zm,n(t,t’) = ( 0 27(;1421@ t/) (1.14)

takes account of the perturbation. The perturbation may for instance be
due to electron-electron interactions, electron-phonon interactions or im-
purity scattering. (See Ref. [10] for details.) The self-energy can also take
into account time dependent external fields. In Chapter 2 we use it to de-
scribe the presence of reservoirs. The formalism is able to deal with reser-
voirs characterized by arbitrary time-dependent distribution functions. As
in equilibrium, the self-energy is the sum of all amputated one-particle-
irreducible diagrams. (See for example Ref. [15] for a detailed exposition
of equilibrium diagrammatics.) The only difference is that now the prop-
agators have an additional 2 x 2 matrix structure.

In equilibrium, the self-energy determines the effective single-particle
spectrum. Outside equilibrium it also dictates how particles are distributed
among the single-particle levels. The reader who wants to know more is
referred to Appendix 1.A where we work through a simple example that
employs the Keldysh technique.

1.3 Photons

In Sec. 1.1 we considered ideal reservoirs. As a result, the voltage across
the conductor did not fluctuate. This was an idealization. A more realistic
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Z . G

e D@

Figure 1.3. Circuit that models fluctuations in the bias voltage across a coherent
conductor with conductance G. The voltage fluctuations are produced by current
fluctuations in the coherent conductor. The external circuit is represented by an
impedance Z. The voltage in node a develops fluctuations when ZG > 1.

model results when one connects an impedance Z in series with the coher-
ent conductor with conductance G and then biases the combined structure
with an ideal voltage |16, 17]. (See Fig. 1.3). The impedance represents the
external circuit to which the coherent conductor is connected. The ideal
bias voltage is divided between the impedance and the coherent conduc-
tor. This division is not constant. Fluctuations in the current through the
coherent conductor are converted into voltage fluctuations in the shared
node. The fluctuations become important when ZG > 1.

One way to describe these fluctuations is to treat the external circuit
as a quantum system [18] in the same way that the coherent conductor is
a quantum system. This was first done in the context of ultra small tunnel
junctions [19, 20, 21]. Generalization to arbitrary coherent conductors was
achieved in Refs. [16, 17, 22]. The construction is based on the theory of
Caldeira and Leggett |23, 24| and exploits the fact that any impedance can
be represented by means of a quadratic Hamiltonian for a set of bosonic
modes. As a result, the description that emerges for a coherent conductor
coupled to an external circuit is that of a quantum system in contact
with a bosonic bath. The bosonic modes that couple to the coherent
conductor are photons [18, 25, 26]. They quantize the energy stored in
electromagnetic fields in the neighborhood of the coherent conductor.

Here we briefly discuss this quantization. We define a variable ¢ such
that the potential difference between the node and infinity (or earth) is
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Figure 1.4. A two level system is placed in the vicinity of node a. The two
level system comnsists of an electron that can hop between two localized states 1
and 2. The photons associated with voltage fluctuations in node a interact with
the electron.

V = dp/dt. This potential difference is related to the charge @ stored on
the node by its capacitance V = @/C. The energy stored in the resulting
electric field is Ho = Q%/2C so that

dp _ OHc

a0 (1.15)

This is a Hamilton equation of motion with ¢ a generalized coordinate and
@ its conjugate momentum. Note that H¢ is not the full Hamiltonian of
the circuit but that we assume it is the only term that contains Q.

Quantization of these degrees of freedom then follows the standard
procedure. @ and ¢ are promoted to operators and the commutation
relation

[@, Q} = il (1.16)

is imposed. This allows us to define operators b and b! through

o [os,
b—\/m W55 # (1.17)

that obey the bosonic commutation relation [b,bf] = 1. The parameter w
is arbitrary at this point, but a natural choice is dictated by the dynamics
of the circuit under consideration. The particles associated with b and b
are photons.

We must next consider the interaction of quantized radiation with other
quantum systems. This interaction can be derived from the fundamental
J - A coupling term of quantum electrodynamics [27]. A simple example
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serves to illustrate the general principle. Consider therefore an electron
that can hop between two localized, spatially separated states |1) and |2)
in the vicinity of the node a. For definiteness, let us say that when the
electron is in state |1) it is closer to node a than when it is in state |2).
(See Fig. 1.4). What happens when the electron is moved closer to or
further from the metallic node a? The electron induces a charge on the
node. (This charge screens the interior of the node from the electric field
produced by the electron.) If the electron is far from the node, it produces
only a small electric field at the node. In this case the induced charge
on the node is also small. When the electron is closer to the node, the
electric field it produces at the node is larger and so too is the charge it
induces on the node. Thus we see that hopping of the electron between
states |1) and |2) is accompanied by a change of the charge on the node a.
The charge on node a in turn produces its own electric field to which the
electron is sensitive. We now develop a quantum mechanical description
of this dynamics.

We start by looking at the electron in the absence of any electromag-
netic fields when its Hamiltonian is H = v|2) (1| +~* |1) (2|. Here 7 is the
hopping amplitude from |1) to |2). How is the Hamiltonian modified in
the presence of electromagnetic fields? First, let us consider classical fields.
We also restrict ourselves to the regime where the electric field dominates,
so that we can neglect the magnetic field by setting V x A = 0. We choose
the gauge in which the scalar potential is zero and the electric field is given
in terms of the vector potential as

0A

E=-"2.
ot

(1.18)

In this gauge, the effect of the electric field is to modify the hopping

amplitude
v — yexp <E/ dl-A> , (1.19)
h 1-2

where the line-integral runs along any path from site 1 to site 2.

The next step is to note that a charge ) on node a produces an electric
field E proportional to Q: If we double the charge, we double the electric
field everywhere in space. From Eq. (1.18) then follows

Q/‘dLA:—/‘dLEmQ:CV (1.20)
ot J1_o 1—2
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Since the voltage V' in node a is related to the phase ¢ through dy/dt =V,
it follows that

/ dl - A = vy, (1.21)
1-2

where « is a dimensionless proportionality constant. This equation allows
us to go over to a quantum description. The classical phase ¢ is replaced
by the quantum mechanical operator ¢. If H, is the Hamiltonian for the
circuit degrees of freedom, then the total Hamiltonian for the circuit plus
electron is H = H. + H., where

H, = 7€/ [2) (1] 4 e e/ 1) (2] (1.22)

describes the hopping of the electron between sites, in the presence of a
quantized electric field.

Note the following: Due to the commutation relation between Q and
¢ (Eq. 1.16), the operator exp(iaep/h) shifts the charge on the node a by
an amount ae. In other words, if |¢) is an eigenstate of @ with eigenvalue
q, then |q + ce) = exp(iaed/h)|q) is an eigenstate of Q with eigenvalue
q + ae. Looking again at Eq. (1.22), we see that electron hopping is
accompanied by a change in the charge on the node as we anticipated
earlier.

Finally, we note that ¢ can be expressed in terms of the boson operators
b and b as ¢ = —i\/h/2Cw(bl — b). Thus, H, is given by

He = 409 12) (1] 4 420D 1) (2 (1.23)

with A = ae/v2hwC'. This makes it clear that processes occur where the
electron absorbs or emits photons while hopping between sites 1 and 2.

In Chapter 3 of this thesis, we use a device similar to the two level
system we have considered above to detect photons at a given energy that
are produced by a voltage biased quantum point contact.

1.4 Graphene: Dirac Fermions

Graphene is a material consisting of a single atomic layer of carbon atoms.
It can be though of as a single layer of graphite. Over several decades, its
unusual band structure has stimulated the interest of theorists [28, 29, 30,
31, 32]. Until recently however, it was not clear whether graphene is sim-
ply a theorist’s toy or whether it exists in nature. This question was only
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\j

Figure 1.5. The two dimensional honeycomb lattice of graphene. The hexagonal
unit cell is indicated by a shaded hexagon. Each unit cell contains two atoms,
one belonging to the A sublattice and one to the B sublattice.

answered in 2004 when the group of Andrei Geim in Manchester reported
the successful fabrication of graphene devices for electron transport experi-
ments [33|. Subsequent experimental studies, particularly those performed
in the quantum Hall regime [34, 35|, confirmed the theoretical prediction
that low energy excitations are described by a two dimensional Dirac equa-
tion. Several tutorials [36, 37, 38, 39, 40| and reviews [41, 42, 43, 44] pro-
vide an overview of recent developments. Here we discuss only the very
basics.

Graphene has a two dimensional honeycomb lattice. A honeycomb
lattice consists of two triangular sublattices denoted A and B. These are
arranged such that each A (B) sublattice site is at the centroid of the
triangle formed by its nearest neighbor sites. These neighboring sites all
belong to the B (A) sublattice. This is illustrated in Fig. 1.5. The distance
between nearest neighbors on the lattice is a ~ 1.42 A.

The Brillouin zone corresponding to this lattice is hexagonal. It is de-
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Figure 1.6. Left panel: The Brillouin zone of the graphene lattice. The K
and K’ points at the corners of the Brillouin zone are indicated by open and
filled circles respectively. The three K points are connected by reciprocal lattice
vectors and are therefore equivalent. The same holds for the K’ points. There
is no reciprocal lattice vector connecting K and K’, and these two corners are
inequivalent. The center of the Brillouin zone is at the point I'. The dashed lines
indicate the contour along which the dispersion is plotted in the right panel. Right
panel: The energy dispersion of graphene along the lines ' K, K K/, and K'T
in the Brillouin zone. At the two inequivalent corners K and K’, the conduction
and valence bands touch at energy E' = 0, the Fermi energy of undoped graphene.
These are called Dirac points. Close to the Dirac points the dispersion of both the
conduction and valence bands are linear. The associated excitations (particles or
holes) are described by the Dirac equation (1.25).

picted in Fig. 1.6. Below we will see that wave vectors in the corners of
the Brillouin zone are relevant for describing low-energy excitation. We
therefore mention that the six corners of the Brillouin zone can be par-
titioned into two sets of three, indicated in Fig. 1.6 by black and white
dots respectively. Members of the same set are connected by basis vectors
of the reciprocal lattice and hence refer to the same physical state. This
means that the Brillouin zone has two inequivalent corners. We take these

to be
2 1 2 1
K=—|z+—g K="—[(-2+—q9). 1.24
o (v gg) =G (e o). 0
The band structure of the conductance and valence bands is obtained
by associating one orbital with each lattice site and constructing a tight
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binding Hamiltonian. To good approximation only nearest neighbor hop-
ping has to be taken into account. The nearest neighbor hopping energy
is t ~ 3eV. The resulting energy dispersion is shown in Fig. 1.6. It is
seen that the conduction and valence bands touch. Touching occurs at
so-called Dirac points situated at the corners of the Brillouin zone. The
energy at which the bands touch is equal to the Fermi energy of undoped
graphene. Like a semi-conductor, undoped graphene therefore has a filled
valence band and an empty conduction band. Unlike a semi-conductor
though, there is no energy gap between the valence and conduction bands.
Graphene is therefore called a semi-metal.

We now examine the dispersion relation close to one of the two in-
equivalent Dirac points. To be definite, let us consider the Dirac point at
K. We define p = h(k — K) as the momentum associated with the wave
vector k and measured from a reference point K. In the vicinity of AkK,
the dispersion relation reads E = +v|p| where v = 3ta/2 ~ 10°m/s is the
Fermi velocity. This describes two cones touching at the Dirac point. The
positive sign refers to the conduction band while the negative sign refers to
the valence band. Excitations travel at a group velocity vy = V,E = Lvp.
The magnitude of the group velocity is equal to the Fermi velocity, inde-
pendent of energy. Electrons in graphene behave like massless relativistic
particles, traveling at the effective speed of light v regardless of their en-
ergy.

For excitations close to the Fermi energy of undoped graphene, the
tight binding Hamiltonian can be expanded in momentum around either
of the Dirac points. We consider here states in the vicinity of the K point.
A continuum description results in which the electron wave function ¥(r)
is defined on the whole z-y plane such that exp(iJ -7) x ¥(r) interpolates
the value of the tight-binding wave function defined on the honeycomb
lattice. The continuum wave function W satisfies EW = HVU where H is
the Dirac Hamiltonian

H=v(p—a) o+ (1.25)

Here « is e times the magnetic vector potential in the x-y plane and ¢
is e times the electric scalar potential. Both of these have to be smooth
on the scale of the inter-atomic distance a. In position representation, the
momentum is p = —ih(0;, dy). The vector o = (0,,0,) contains the Pauli

matrices
0 1 0 —1
O‘x—<1 0), ay—<2. 0). (1.26)
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The Hamiltonian acts on spinors W = (¢ 4,1 p), with 14 the amplitude to
be on the A sublattice and ¥p the amplitude to be on the B sublattice.
This spinor degree of freedom is called pseudospin to distinguish it from
the real electron spin, which does not appear in the Eq. (1.25).

The excitations around the Dirac point at K’ are also described by the
Dirac Hamiltonian of Eq. (1.25). The fact that excitations around both
Dirac points are present in weakly doped graphene results in a two-fold
degeneracy of eigenstates. The associated degree of freedom is called the
valley index. As long as the spatial variation of a and ¢ is smooth on the
scale of the inter-atomic distance a, and we restrict ourselves to energies
E < hv/a, the valleys remain uncoupled in an infinite graphene sheet.
At the edges of a finite sheet however, the valleys can be coupled by the
boundary [45].

The Dirac equation gives rise to unusual transport properties. This is
illustrated by the following example. Consider an electrostatic potential
barrier ¢(r) in the region 0 < z < L. Usually such a potential introduces
scattering. A particle incident on ¢ from the left (x < 0) is reflected back
with probability R and transmitted to the right (x > L) with probability
T =1— R. If the energy F of the incident particle is less than the barrier
height, transmission through the barrier is strongly suppressed and the
reflection probability tends to unity. For energies larger than the barrier
height, the probability for transmission becomes finite. However, only in
the limit £ > max ¢ does the transmission probability approach unity.

Dirac excitations in graphene do not conform to this picture. Due
to Klein tunneling [46, 47|, transmission is no longer strongly suppressed
when the barrier height exceeds the energy of the wave function. This is
illustrated in Fig. 1.7.
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Figure 1.7. Conventional tunneling vs. Klein tunneling. Top panel: A potential
barrier ¢(z) in a conventional metal or semi-conductor. The valence band (dashed
curve) and the conduction band (solid curve) to the left of the barrier (I), in the
barrier region (II) and to the right of the barrier (IIT) are indicated. The region
between the bottom of the conduction band in region (II) and the top of the
valence band in regions (I) and (III) is shaded. In this region there are no
propagating states connecting regions (I) and (III). To get through the barrier,
an electron has to tunnel through the classically forbidden region. The tunneling
amplitude falls off exponentially as a function of the barrier length. As a result
transport between regions (I) and (III) is strongly suppressed. Bottom panel:
A potential barrier ¢(z) in graphene. In each of the regions (I), (II) and (III),
the valence band (dashed curve) and conduction band (solid curve) touch. As
a result there are propagating states connecting the regions (I) and (III) at all
energies. There is no suppression of transport at incident energies below the
barrier height. In fact, as Eq. (1.28) indicates, there is perfect transmission at
normal incidence.
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Furthermore, at normal incidence, transmission is always perfect. To
see this, we solve the Dirac equation with ¢(z) that depends only on the
z-coordinate. We focus on incident waves that propagate normal to the
potential barrier. (Normal incidence means that the wave number in the y-
direction is zero, and the wave function only depends on the z coordinate.)
In this case, the time-independent Dirac equation for given energy E can
be rewritten as

00U () = 20, [E — ¢(a)] ¥ (), (1.27)
and the solution is found by straight-forward integration. Correspond-
ing to any energy E, we find a left-incident (+) and a right-incident (—)
solution

EiBa/h 1 1 . <0
Uy(z) = —o— < > % { exp (Fi [y da'p(x) /i) 0<az <L
V2 +1 exp <$2' fOL d:c’qb(ac’)/hv) x>1L

(1.28)

Remarkably, these wave functions each contain an incident component
and a transmitted component but no reflected component. At normal
incidence, the transmission probability is always unity. This is particularly
striking for incident energies smaller than the height of the potential barrier
where one would normally expect almost perfect reflection.

The phenomenon we have just encountered is sometimes referred to
as the absence of back-scattering in graphene [48|. It has some surprising
consequences. Adding disorder to a graphene sample can enhance the
conductivity [49, 50]. Furthermore, disorder that is smooth on the scale
of the lattice constant cannot turn graphene into an insulator [51, 52, 53|.

1.5 Bilayer graphene

In Chapter 5 of this thesis we consider bilayer graphene, i.e. two layers of
carbon atoms one on top of the other. The way the two layers are stacked
is illustrated in Fig. 1.8. The A sublattice of the one layer is directly above
the B sublattice of the other. Bilayer graphene has a unit cell containing
four atoms (two per carbon layer). The Brillouin zone is identical to that of
monolayer graphene. Close to the K and K’ corners of the Brillouin zone,



18 Chapter 1. Introduction

Figure 1.8. A graphene bilayer consists of two monolayers stacked one on top
of the other. In order to be able to distinguish the two layers, open circles were
used to indicate carbon atoms in the bottom layer while filled circles were used
to indicate carbon atoms in the top layer. The B sublattice of the top layer is
directly above the A sublattice of the bottom layer.

the bilayer is described by a 4 x 4 long wavelength Hamiltonian [54, 55, 56|

¢ v(ps — ipy) ty 0
_ | v(ps +ipy) ¢ 0 v3(pe — iDy)
=1, 0 o wpatipy | O
0 U3 (pm + ipy) U(pm - Z.py) 0]

(We only consider the case of zero magnetic field.) The upper left 2 x 2
block is the Dirac Hamiltonian of Eq. (1.25) and describes the electron
dynamics inside one layer. The lower right 2 x 2 block is obtained by
interchanging the A and B sublattices in the Dirac Hamiltonian and de-
scribes the electron dynamics in the other layer. The two layers are coupled
by matrix elements ¢, and vs(p, & ip,). The interlayer coupling parame-
ters have values t; ~ 0.4eV and v3 ~ 10° m/s. The term proportional to
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vg breaks the isotropy of the dispersion relation, introducing a triangular
distortion known as “trigonal warping”. In Chapter 5 we ignore this com-
plication and calculate the transport properties of the bilayer for vg = 0.
A complete calculation, including the effects of trigonal warping, has sub-
sequently been published in Refs. [57, 58].

1.6 This Thesis

1.6.1 Chapter 2

In Chapter 2 we present a derivation of the Keldysh action of a general
multi-channel time-dependent scatterer in the context of the Landauer-
Biittiker approach. This result is then applied in two subsequent chapters.

In general the Keldysh action of a system is defined as A = In Z, where

Z=Tr [T+ exp {—z’/t:l dt H+(t)} poT ~ exp {z /t:1 dt H‘(t)}] :

(1.30)
In this expression, pg is the initial density matrix of the system. This is
evolved forwards and backwards in time with two different time-dependent
Hamiltonians H*(¢). For the purpose of this introduction we set H* =
H + x+(t)Q where H is the actual Hamiltonian of the system, @ is a sys-
tem coordinate and x4 (¢) are arbitrary functions of time. (Generalization
to more fields, each coupling to a different system coordinate, is straight
forward.) Z and A are functionals of x4+. The ordering symbol 7 in-
dicates time-ordering of operators with the largest time-argument to the
left, while 7~ time-orders with the largest argument to the right.

Why are we interested in this object? Let us firstly mention its most
direct application, namely to evaluate time-ordered correlators of the co-
ordinate ). This is done by taking functional derivatives with respect to
X+(t) and x_(t). We obtain

M N
<7— 11@(@) Tt (gQ<t;>)>

ﬁ( >ﬂ<5X )>zm S aay

J=1 k=1
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A less obvious application is the following. Suppose the coordinate @) of the
system for which we know A (call it system A) is coupled to another system
(B). Knowing A[x+], we can then calculate the influence that system A
has on system B. (For this reason Feynman and Vernon [8] call Z the
influence functional.) In chapters 3 and 4 for instance, we calculate how
specific measuring devices respond when coupled to a coherent conductor,
starting from an expression for the Keldysh action A of the conductor.

Previous studies of the Keldysh action focused on weakly interacting
disordered electron systems [59, 60]. We consider the Keldysh action of
an arbitrary coherent conductor connected to electron reservoirs. For such
systems an explicit expression for A[x] was known (see for instance Chap-
ter 3 or Ref. [61]) only in the case where the fields x4 couple to electrons in
the reservoirs rather than in the scattering region. We wanted to consider
a setup where the scattering potential depends on the state of an adjacent
quantum system (Chapter 4). In Chapter 2 we therefore generalized the
known result for the action A to the situation where the fields x4 couple
to electrons inside the scattering region.

1.6.2 Chapter 3

In Chapter 3 we analyze the operation of a quantum tunneling detector
coupled to a coherent conductor. Use is made of the theory developed
in Chapter 2. The coherent conductor is biased with a voltage V. The
circuit that connects the coherent conductor to the voltage biased elec-
tron reservoirs has a finite impedance. As a result, current fluctuations
in the coherent conductor are converted into voltage fluctuations on top
of V. The fluctuations are detected as photons. The detector is capa-
ble of frequency-resolved detection. We demonstrate that for frequencies
larger than eV/2wh, the output of the detector is determined by two-
photon processes, two-interacting-electron processes and the interference
of both processes. Two-photon processes occur when the conductor emits
two photons each with energy < eV and both are detected. The second
process occurs when the electromagnetic environment mediates an inter-
action between electrons in the conductor. As a result, a single photon of
energy > eV is emitted and picked up by the detector. We show how the
individual contributions of these processes can be resolved in experiments.
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1.6.3 Chapter 4

In Chapter 4 we study a charge qubit with level splitting £ coupled to a
quantum point contact (QPC) driven by a bias voltage V. The charge
qubit can be realized by the lowest two eigenstates of an electron trapped
in double quantum dot. The qubit Hilbert space is spanned by a state
|1) representing the electron localized in one dot, together with a state |2)
representing the electron localized in the other dot. Because of the coupling
to the qubit, the scattering matrix of the QPC depends on the state of
the qubit. We define the qubit polarization as the probability to find the
qubit in state |1). For given V', we calculate the the qubit polarization as
a function of the qubit level splitting. Use is made of the theory developed
in Chapter 2. In the limit of weak coupling, the qubit polarization shows
cusps at € = 2eV. We show that, for stronger couplings, a plateau occurs
for |e| < £eV/2. Further increase of the coupling leads to a polarization
pa = [1+exp(Be)]~! corresponding to an effective temperature =1 ~ eV,

1.6.4 Chapter 5

Here we calculate the Fermi energy dependence of the (time-averaged)
current and shot noise in an impurity-free carbon bilayer (length L <
width W), and compare with known results for a monolayer [62]. We
model the interlayer coupling by means of a hopping element t, = hv/l;
between nearest neighbors in different layers. Here [| is the inter-layer
hopping length estimated to be on the order of ten times the inter-atomic
distance. At the Dirac point of charge neutrality, the bilayer (I, finite)
transmits as two independent monolayers in parallel (I, infinite): Both
current and noise are resonant at twice the monolayer value, so that their
ratio (the Fano factor) has the same 1/3 value as in a monolayer — and
the same value as in a diffusive metal. The range of Fermi energies around
the Dirac point within which this pseudo-diffusive result holds is smaller,
however, in a bilayer than in a monolayer (by a factor [, /L). It was
subsequently shown by Moghaddam and Zareyan [58| that this conclusion
holds only for lengths less than about 50 nm (=~ 30 times [ ), because we
ignored the effects of trigonal warping mentioned in Sec. 1.5.

1.6.5 Chapter 6

In Chapter 6 we consider a bipolar junction in a graphene nanoribbon
in the high-magnetic field regime. In a bipolar junction a potential step
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creates two regions, one p-doped and one n-doped. In the p-doped region,
the Fermi energy is in the conduction band while in the n-doped region it
is in the valence band. We consider the regime where the Hall conductance
in both the p-doped and n-doped regions is 2¢?/h. We calculate the two-
terminal conductance G. In the absence of intervalley scattering, the result
G = (€?/h)(1 — cos ®) depends only on the angle ® between the valley
isospins (= Bloch vectors representing the spinor of the valley polarization)
at the two opposite edges. This plateau in the conductance versus Fermi
energy is insensitive to electrostatic disorder, while it is destabilized by
the dispersionless edge state which may exist at a zigzag boundary. A
strain-induced vector potential shifts the conductance plateau up or down
by rotating the valley isospin.

1.6.6 Chapter 7

The Chalker-Coddington network model [63] (introduced originally as a
model for percolation in the quantum Hall effect) is known to map onto the
two-dimensional Dirac equation [64]. In Chapter 7 we show how the net-
work model can be used to solve a scattering problem in a weakly doped
graphene sheet connected to heavily doped electron reservoirs. We develop
a numerical procedure to calculate the scattering matrix with the aide of
the network model. For numerical purposes, the advantage of the network
model over the honeycomb lattice is that it eliminates intervalley scat-
tering from the outset. We avoid the need to include the heavily doped
regions in the network model (which would be computationally expensive),
by means of an analytical relation between the transfer matrix through the
weakly doped region and the scattering matrix between the electron reser-
voirs. We test the network algorithm by calculating the conductance of
an electrostatically defined quantum point contact and comparing with
the tight-binding model of graphene. We further calculate the conduc-
tance of a graphene sheet in the presence of disorder in the regime where
intervalley scattering is suppressed. We find an increase in conductance
that is consistent with previous studies. Unlike the tight-binding model,
the network model does not require smooth potentials in order to avoid
intervalley scattering.
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Appendix 1.A The Keldysh technique: an
example

In this appendix we illustrate the use of the Keldysh technique with the
following example. A quantum dot is connected to two reservoirs by means
of tunnel barriers. One reservoir is grounded and we measure all energies
relative to its Fermi energy. For times ¢ < 0 the other reservoir is held
at zero voltage too, and the dot is neutral and in equilibrium with the
reservoirs. Consequently, the dot’s chemical potential () is zero for ¢ < 0.
For times ¢ > 0, a time-dependent voltage V' (t) is applied to one reservoir.
We want to calculate the expectation value of the charge on the dot, as a
function of time.

The dot can be modeled as a set of independent levels that are con-
nected to reservoirs by tunneling. They are labeled by an integer m. The
Green function G is diagonal in this basis, i.e. Gy pn(t,t') = 9 nGm(t,t').
Note that, since ap,(t) and ain(t) anti-commute to unity at coinciding
times, the Keldysh Green function contains information about the occu-
pation probability of levels. More precisely

E(t,t) = =i [1 = 20,(8)],  n(®) = (aly(Dam(®)),  (132)

with n,,(t) the probability that level m is occupied at time ¢. The to-
tal number of electrons n(t) on the dot is the sum of all the occupation
probabilities n(t) = >, nn(t).

The Green function G,,(t,t") obeys the following equations

10,Gr (£, ) — [em + p(t)] G (8, 1)

_ / At DG (B, 1) = 6(t — ') T, (1.33a)
—i0y G (t,t) — [em + u(t)] Gm(t,t)
_ /dfG;ﬂ(t,f)Z(f, V) = 8t — ) Ips. (1.33D)

A chemical potential p(t) takes into account charging effects: When charge
on the dot fluctuates so that it is no longer neutral, work has to be done
against the electric field of the excess charge Q(¢) in order to add more
charge to the dot. p(t) is proportional to Q(t), the proportionality constant
being the capacitance C' of the dot:

() = ZQU). (1.34)
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Assuming that the dot is neutral at time t = 0, Q(t) = n(t) — n(0). The
self-energy describes the tunneling of electrons between the dot and the
reservoirs. Its components are explicitly

SE ) = —iEBmdt—1t), (1.35a)

SA @) = iBmd(t —t), (1.35b)
2F 1 . '

»E @ty = — ﬂTh P {ae‘l[w(t)_w(t N1 - a} . (1.35¢)

In this equation Ery, is the Thouless energy, or inverse lifetime of an elec-
tron on the dot. It characterizes the time an electron spends on the dot
before tunneling through one of the tunnel barriers. The phase v¥(t) is
the integral of the reservoir voltage ¢ (t) = fg dt' V(t') and a € [0,1] is a
parameter that measures the relative coupling to the reservoirs. The value
a = 0.5 corresponds to equally strong couplings to both reservoirs while
a = 0 corresponds to the dot completely decoupled from the voltage-biased
reservoir and « = 1 corresponds to the dot entirely decoupled from the
grounded reservoir.

We now solve Eq. (1.33), starting with the retarded component, i.e.
the upper-left block, which reads explicitly

), (1.36a)

ot —t
5t —1t). (1.36b)

10, R (t, 1)) — [em + p(t) — iBh] R (¢, 1) = &(
—i0y R (t,1') — [em + p(t) — iBy] Ry (8, 1) = 6(

The retarded Green function R, (t,t’) is defined as an anti-commutator of a
creation and an annihilation operator. Since the creation and annihilation
operators anti-commute at coinciding times, it follows that
lim R, (t,t) = —i. (1.37)
t—t/—0+
Furthermore, by definition, R,,(t,t" > t) = 0. Imposing these conditions
leads to the unique solution

R (t, 1)) = —if(t — t')e Frnlt=t) gmiem(t=t) =ilo(t)=o(t')] (1.38)

where ¢(t) is the integral of the chemical potential p; ¢(t) = fg dt’ u(t').
We see that R,,(t,t") decays exponentially as a function of ¢t — ¢’ with
lifetime EEﬁ To understand why this is, note that the two terms that
constitute the retarded Green function have the following interpretation.

Term <am(t)a;rn(t’ )> is the amplitude that an electron placed in level m
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at time ¢’ will still be there at time ¢. The term <a;rn(t’ )am(t)> is (the

complex conjugate of) the amplitude that, if an electron is removed from
level m at time t’, that level will still be empty at time ¢t. When the
dot is coupled to reservoirs, these can populate and depopulate the levels,
causing the amplitudes represented by R,,(t,t") to decay. Similarly, one
finds that the advanced Green function is given by

A (t, 1) = if(t' — t)e” Brnlt' =t g=iem (t=t) g=ilo() =0 ()] (1.39)

It remains for us to consider the Keldysh component of Eq. (1.33). We
start by taking a brief look at the Keldysh component of the self-energy.
It should be thought of as consisting of two contributions.

STt = 2B, [aov(t,t) + (1 —a)oo(t,t)],  (1.40a)
i e t®)—v(")]
oy(t,t) = ——vw——r. (1.40b)
T t—1t
The o contribution accounts for the coupling to the grounded reservoir.
Note that it can be written as

oo(t,t') = / Z—ie—“(t—t/)u —2f(e)], (1.41)

where fo(e) = 0(—¢) is the zero-temperature Fermi distribution of elec-
trons in the grounded reservoir. The oy contribution similarly accounts
for the presence of the reservoir with fluctuating bias voltage. Suppose for
instance that the bias voltage V is constant. Then ) (t) = Vt and oy can
be written as

oy (t,t") = / j—ie—%@—t/)u —2f(e = V)]. (1.42)

Again the zero-temperature Fermi distribution appears, this time with the
Fermi energy appropriately shifted by V relative to the grounded reservoir.

The fact that the reservoir distribution functions only appear in the
Keldysh component of the self-energy illustrates the following general prin-
ciple. The retarded and advanced functions determine the effective one-
body spectrum, while Keldysh functions determine how states are popu-
lated.

We now solve for the Keldysh component of the dot Green function.
The upper right block of Eq. (1.33a) reads

[10) — e — p(t) + i Brn] Ko (£,2') = / S D) A (E, ). (1.43)
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We invoke Eq. (1.36) which says that R,,(¢,t) is a resolvent for the differ-
ential operator appearing on the left of the above equation. Additionally
we impose the initial condition that the system was in equilibrium before
the time-dependent voltage was switched on. This implies the solution

K (t,t) = /dt1 dta R (t, 1)) (81, t9) Ay (ta, ). (1.44)

So, we have found K,,(t,t'). Are we done yet? Not quite. We still
have to determine the chemical potential p(¢). In order to do this, we have
Eq. (1.34) that relates u(t) to the excess charge Q(t) on the dot, which in
turn is related to the Keldysh Green function at coinciding times. Putting
these together, we have

Qt) = —%ZKm(t,t) — K0 (0,0). (1.45)

We use the solution (Eq. 1.44) for K,,, with the explicit form of R,, and
A, substituted from Eqgs. (1.38) and (1.39) to obtain

. 0
Qt) = ! Z/ dty dty eLrn(ti+t2) ,—iem (t2—t1)
22/ .

x {eW(t*tl)—‘f’(t“Qﬂz(K)(t by bt t) — 2(K>(t1,t2)}, (1.46)

X
where we have explicitly used the fact that u(t) and hence ¢(t) are zero
for t < 0.
Let us assume that the mean level spacing de is much smaller than the
Thouless energy. Then we can replace

Z e—iEm(ta—t1) _ S(ty — tl)i_; (1.47)

m

This is substituted into Eq. (1.46). The delta-function picks out the to —
t1 limit of the expression marked X. The factor 1/(t; —t3) in £ results
in time-derivatives of ¢ and ¢, so that

%E
lim X = ——.—Th
to—t1 T

() — av (). (1.48)
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Using u(t) = Q(t)/C, we obtain an integral equation for u(t) namely

25 t '
nlt) = 552 / dt' 2= [u(e) —av (1) (1.49)

This is converted into a differential equation by multiplying with e*£rnt

and taking a time-derivative. Finally we obtain

Cout) + i) = TV (D), (1.50)

with I' = 2aFE7,/Cde and v = 2E1,(1 + 1/Cde). We solve this, and
multiply by the capacitance, to obtain the charge on the dot as a function

of time
20F
Q) =

It is instructive to compare this result to conclusions drawn from the
following intuitive argument. We suppose that the quantum system we
just analyzed is roughly equivalent to the an electric circuit where a cen-
tral region with capacitance C is connected to leads 1 and 2, by means
of resistors R; and Ry respectively. Lead 2 is grounded while a time-
dependent voltage V (t) is applied to lead 1. The voltage of the central
region is p(t). It is related to the excess charge Q(t) on the central region
by u(t) = Q(t)/C. If I is the current flowing from the lead 1 into the
central region and Iy is the current flowing from the central region into
lead 2 then, Ohm'’s law says

L) = [V() = )] /Ri,  Io(t) = ult)/Re. (1.52)

Charge conservation implies that dQ(t)/dt = I1(t) — Is(t). Putting every-
thing together, we obtain a differential equation for u(t):

t
Lo =y (¢, 1.51
2 /Odte vt (1.51)

Cut) +Aanlt) = TaV (1), (1.53)

where yq = (R;* + Ry 1) /C and Ty = 1/R, C.

This has the same form as the differential equation (1.50) that we ob-
tained previously. However, if we compare the relaxation rates v and ~. we
note an important difference. In the limit deC > 1, the classical relaxation
rate 7 goes to zero, while v obtained with the Keldysh technique remains
finite. There is a good reason for this. + is the rate at which excess charge
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relaxes into the reservoirs. The limit of large capacitance C' corresponds
to a situation where the Coulomb repulsion between electrons on the dot
is weak. Even in this limit, excess charge on the dot should relax into the
leads. The reason is that, due to the dynamics of non-interacting electrons
on the dot, every once in a while, an electron tunnels into a reservoir. This
process does not require that the escaping electron be “pushed off the dot”
by the other electrons. The classical argument ignores the dynamics of
non-interacting electrons, so that the only method for charge to leak off
the dot is through Coulomb repulsion. Hence the classical and quantum
results can only be expected to agree in the de < C~! limit. Beyond this
limit, the quantum mechanical analysis, based on the Keldysh technique
remains valid, while the classical argument breaks down.

We can relate the resistances R; and Ry of the classical theory to the
parameters of the quantum theory in the de < C~! limit. One obtains

ETh 62

R1_1:2045—€E, R2_1:2(1—a)

ETh 62

— 1.54

where e?/h reinstates the units that where dropped in the microscopic
analysis. The quantity Ery,/d¢ is known to characterize the conductance
of a coherent conductor, and is called the dimensionless Thouless conduc-
tance.
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Chapter 2

The Keldysh action of a
time-dependent scatterer

2.1 Introduction

The pioneering works of Landauer [1] and Biittiker [2] lay the foundations
for what is now known as the scattering approach to electron transport.
The basic tenet is that a coherent conductor is characterized by its scat-
tering matrix. More precisely the transmission matrix defines a set of
transparencies for the various channels or modes in which the electrons
propagate through the conductor. As a consequence, conductance is the
sum over transmission probabilities. Subsequently, it was discovered that
the same transmission probabilities fully determine the current noise, also
outside equilibrium, where the fluctuation-dissipation theorem does not
hold [3].

Indeed, as the theory of Full Counting Statistics [4, 5| later revealed,
the complete probability distribution for outcomes of a current measure-
ment is entirely characterized by the transmission probabilities of the con-
ductor. The fact that the scattering formalism gives such an elegant and
complete description inspired some to revisit established results. Thus for
instance interacting problems such as the Fermi Edge Singularity [6, 7|
were recast in the language of the scattering approach [8, 9, 10, 11]. The
scattering approach has further been employed successfully in problems
where a coherent conductor interacts with other elements, including, but
not restricted to, measuring devices and an electromagnetic environment
[12, 13, 14, 15]. It is also widely applied to study transport in mesoscopic
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superconductors [16].

Many of these more advanced applications are unified through a
method developed by Feynman and Vernon for characterizing the effect
of one quantum system on another when they are coupled [17]. The work
of Feynman and Vernon dealt with the effect of a bath of oscillators cou-
pled to a quantum system. It introduced the concept of a time-contour
describing propagation first forwards then backwards in time. By using
the path-integral formalism, it was possible to characterize the bath by
an “influence functional” that did not depend on the system that the bath
was coupled to. This functional was treated non-perturbatively. A related
development was due to Keldysh [18]. While being a perturbative dia-
grammatic technique, it allowed for the treatment of general systems and
shared the idea of a forward and backward time-contour with Feynman
and Vernon.

In general, the Feynman-Vernon method expresses the dynamics of a
complex system in the form of an integral over a few fields x(¢). Each part
of the system contributes to the integrand by a corresponding influence
functional Z[x], or, synonymously, a Keldysh action A[x] = In Z[x]. Thus
the Keldysh action of a general scatterer can be used as a building block. In
this way the action of a complicated nanostructure consisting of a network
of scatterers can be constructed. As in the case of classical electronics, a
simple set of rules, applied at the nodes of the network, suffice to describe
the behavior of the whole network [19, 20].

The essential element of the approach is that the fields x take different
values on the forward /backward parts of the time-contour. One writes this
as x+(t), where + (—) corresponds to the forward (backward) part of the
contour. The Keldysh action for a given sub-system is evaluated as the
full non-linear response of the sub-system to the fields x4 (). (See Eq. 2.6
below for the precise mathematical definition.)

Applications involving the scattering approach require both the notion
of the non-perturbative influence functional and the generality of Keldysh’s
formalism. Until now, the combination of the Feynman-Vernon method
with the scattering approach was done on a case-specific basis: Only those
elements relevant to the particular application under consideration were
developed. In this paper we unify previous developments by deriving gen-
eral formulas for the Keldysh action of a general scatterer connected to
charge reservoirs.

The time-dependent fields x4 (t) and x_(¢) parametrize two Hamiltoni-
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ans H4 (t) and H_(t) that governs forward and backward evolution in time
respectively. Since we are in the framework of the scattering approach,
these field-dependent Hamiltonians are not the most natural objects to
work with. Rather, depending on where the fields couple to the system, it
is natural to incorporate their effect either in the scattering matrix of the
conductor, or in the Green functions of the electrons in the reservoirs: The
fields affecting the scattering potential inside the scatterer are incorporated
in a time-dependent scattering matrix. Since the fields x4 for forward and
backward evolution are different, the scattering matrices for forward and
backward evolution differ. The effect of the fields perturbing the electrons
far form the scatterer is incorporated in the time-dependent Green func-
tions of the electrons in distant reservoirs. A bias voltage applied across
a conductor can conveniently be ascribed to either Green functions of the
reservoirs or to a phase factor of the scattering matrix. The same holds
for the counting fields encounterd in the theory of full counting statistics.
There are however situations where our hand is forced. For instance, in
the example of the Fermi-edge singularity, that we discuss in Sec. 2.6, the
time-dependent fields have to be incorporated in the scattering matrices.

Previous studies of the Keldysh action concentrated on situations
where the fields x4+ could be incorporated in the reservoir Green functions.
These studies therefore assumed stationary, contour-independent scatter-
ing matrices while allowing for a time-dependence and/or time-contour
dependence of the electron Green functions. Early works (Refs. [21] and
[22]) used an action of this type to analize Coulomb blockade phenomena.
Later, the same action was understood in the wider context of arbitrary
Green’s functions [19, 23|. In this form it has been used to treat problems
involving for example interactions and superconductivity. The action em-
ployed in these studies corresponds to Eq. 2.4 and can readily be derived
in the context of non-linear sigma-model of disordered metals [24].

The main innovation of the present work is to generalize the action to
contour- and time-dependent scattering matrices. The only assumption
we make is that scattering is instantaneous: We do not treat the delay
time an electron spends inside the scattering region realistically.

The resulting scattering matrices associated with forward and back-
ward evolution are combined into one big matrix §. It has a kernel
s(a;e,d;t)0q,00(t — t') where the Keldysh indices «, o/ € {4, —} refer
to the forward and backward part of the time contour, ¢ and ¢ are in-
tegers that refer to channel space, and t, t’ are time indices that lie on
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the real line. The forward (backward) scattering matrix 8 ) with kernel

s(a =+ (—);¢,;t) obeys the usual unitarity condition §l§i =1.

With the aide of these preliminary definitions, our main result is sum-
marized by a formula for the Keldysh action.

1+é+§1—é
2 2

Al§] =TrIn —Trlns_. (2.1)

In this formula, G is the Keldysh Green function characterizing the reser-
voirs connected to the scatterer [25]. It is to be viewed as an operator with
kernel G(a, o; ¢;t,t")0  where indices carry the same meaning as in the
definition of §. This formula is completely general.

1. It holds for time dependent scattering matrices that differ on the
forward and backward time contour.

2. It holds for multi-terminal devices with more than two reservoirs.

3. It holds for devices such as Hall bars where particles in a single chiral
channel enter and leave the conductor at different reservoirs.

4. It holds when reservoirs cannot be characterized by stationary filling
factors. Reservoirs may be superconducting, or contain “counting
fields” coupling them to a dynamical electromagnetic environment
or a measuring device.

When the reservoirs can indeed be characterized by filling factors f (e),
the Keldysh structure can explicitly be traced out to yield

Als,, 4] =Tr In [g_(1 P+ s f] -Trms (2.2)

In this expression operators retain channel structure and time structure.
In “time” representation, f is the Fourier transform to time of the reservoir
filling factors, and as such has a kernel f(c;t,¢')d. diagonal in channel
space and depending on two times. In stationary limit, this formula im-
mediately reduces to the Levitov formula for low-frequency Full Counting
Statistics (FCS) [5].

Another formula that can be derived from Eq. (2.1) is valid for two ter-
minal devices and a stationary, time-contour-independent scattering ma-
trix but allows for arbitrary Green functions in the two terminals. Each
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terminal may still be connected to the scatterer by an arbitrary number
of channels. We denote the two terminals left (L) and right (R). In this
case the reservoir Green function has the form

. Gr 0
G = . : 2.3
( 0 GR >Channel space ( )

where G r(r) have no further channel space structure. Matrix structure in
Keldysh and time indices (indicated by a check sign) is now retained in
the trace, but the channel structure is traced out. Thus is obtained

1+7,

{GLx], Grlx+]} — 2
4

Alxs] = % > Trin (2.4)

In this expression, the field dependence x4 is shifted entirely to the Keldysh
Green functions Gy, and Gg of the left and right reservoirs. This formula
makes it explicit that the conductor is completely characterized by its
transmission eigenvalues T5,.

The structure of the chapter is as follows. After making the necessary
definitions, we derive Eq. (2.1) from a model Hamiltonian. The derivation
makes use of contour ordered Green functions and the Keldysh technique.
Subsequently, we derive the special cases of Eq. (2.2) and Eq. (2.4).

We conclude by applying the formulas to several generic set-ups, and
verify that results agree with the existing literature. Particularly, we ex-
plain in detail how the present work is connected to the theory of Full
Counting Statistics and to the scattering theory of the Fermi Edge Singu-
larity.

2.2 Derivation

We consider a general scatterer connecting a set of charge reservoirs. We
allow the scatterer to be time-dependent. A sufficient theoretical descrip-
tion is provided by a set of transport channels interrupted by a potential
that causes inter-channel scattering. We consider the regime where the
scattering matrix is energy-independent in the transport energy window.
Since transport is purely determined by the scattering matrix, all models
that produce the same scattering matrix give identical results. Regard-
less of actual microscopic detail, we may therefore conveniently take the
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3
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Figure 2.1. We consider a general scatterer connected to reservoirs. The top fig-
ure is a diagram of one possible physical realization of a scatterer. Channels carry
electrons towards and away from a scattering region (shaded dark gray) where
inter-channel scattering takes place. Reservoirs are characterized by Keldysh
Green functions Giy (our)- These Green functions also carry a channel index, in
order to account for, among other things, voltage biasing. In setups such as the
the Quantum Hall experiment where there is a Hall voltage, Gy, will differ from
Gout, while in an ordinary QPC, the two will be identical. The bottom figure
shows how the physical setup is represented in our model. Channels are unfolded
so that all electrons enter at 2~ and leave at z™T.

Hamiltonian of the scatterer to be

H=vrY / dz 61 (2) {=i0mn®- + tmn(2)} n(2) + Hues + o, (25)

where H,es represents the reservoirs, and Hr takes account of tunneling
between the conductor and the reservoirs. The scattering region and the
reservoirs are spatially separated. This means that the scattering potential
Umn(2) is non-zero only in a region 2~ < z < zT while tunneling between
the reservoirs and the conductor only takes place outside this region. Note
that in our model, scattering channels have been “unfolded”, so that in
stead of working with a channel that confines particles in the interval
(—00,0] and allowing for propagation both in the positive and negative
directions, we equivalently work with channels in which particles propagate
along (—o00,00), but only in the positive direction. Hence, to make contact
with most physical setups, we consider —z and z to refer to the same
physical position in a channel, but opposite propagation directions.
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We consider the generating functional

Z = A

- Tr [T"'exp{—i/t? dt H+(t)},007'_ exp {z/: dt H‘(t)H,

(2.6)

in which H¥ is obtained from H by replacing tu,,, () with arbitrary time-
dependent functions u;, (z,t). In this expression 71 exp and 7~ exp re-
spectively refer to time-ordered (i.e. largest time to the left) and anti-
time-ordered (i.e. largest time to the right) exponentials. In the language
of Feynman end Vernon [17] this is known as the influence functional. It
gives a complete characterization of the effect that the electrons in the scat-
terer have on any quantum system that they interact with. Furthermore,
the functional Z generates expectation values of time-ordered products of
operators as follows. Let () be an operator

Q=Y [ dvhEam(nc). (27)

Choose ut, (2,t) = Umn(2) + X+ (t)@mn(2). Then

M N
<T— [Jew) | Tt (H Q(t2)>>
j=1 k=1
M . 5 N . 5
=11 <_25X_(tj)> 1 <Z5X+(t2)> Zdly=o- 28)

=1 k=1

.

By merging the power of the Keldysh formalism of contour-ordered Green
functions with that of the Landauer scattering formalism for quantum
transport, we obtain an expression for Z in terms of the Keldysh Green
functions in the reservoirs and the time dependent scattering matrices
associated with 4% (z, ).

The argument will proceed in the following steps:

1. Firstly we introduce the key object that enables a systematic analysis
of Z, namely the single particle Green function g of the conductor.
We state the equations of motion that g obeys.

2. We define the Keldysh action A = In Z, and consider its variation
0.A. We discover that §.A can be expressed in terms of g.
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3. We therefore determine g inside the scattering region in terms of the
scattering matrix of the conductor and its value at the edges of the
scattering region, where the reservoirs impose boundary conditions.

4. This allows us to express the variation of the action in terms of the
reservoir Green functions Gy, (our) and the scattering matrix s of the
conductor.

5. The variation 0.A4 is then integrated to find the action A and the
generating functional Z.

2.2.1 Preliminaries: Definition of the Green function

The first step is to move from the Schrédinger picture to the Heisenberg
picture. To shorten notation we define two time-evolution operators:

tr

Ug(ts,t;) =T exp {—2/ dt’ Hi(t’)} . (2.9)
t;

Associated with every Schrodinger picture operator we define two Heisen-

berg operators, one corresponding to evolution with each of the two Hamil-

tonians H*.

Qx(t) = Us(ts, t:) QUx(t, t:). (2.10)

In order to have the tools of the Keldysh formalism at our disposal, we
need to define four Green functions

gz, ;2 t)
— ATy [Ll+(t1,t0)’]'+ (szJr(z',t’)zper(z,t)) 0 (L{_(tl,to))q ,

G (2,1 2", 1")

= ATr (Ut (11, to) o (2, ) podl_ (2, 1) (u—(tl,to))T] :

g;;;(z, t: 2 1)

= eTr (UF (1, to) Y (2, ) potom— (2, 1) (U_(thto))T] ;

I (2,12, 1)

= e'ATI" Z/{+(t1,t0)p0'f— (?ﬂl_(zl,t/)¢m—(zat)) (z/{_(tl’tO))T] .
] (2.11)
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Here the symbol 77 orders operators with larger time arguments to the
left. If permutation is required to obtain the time-ordered form, the prod-
uct is multiplied with (—1)" where n is the parity of the permutation.
Similarly, 7~ anti-time-orders with the same permutation parity conven-
tion.

The Green functions can be grouped into a matrix in Keldysh space

++ v +— Y
T gmn(zvtﬂz’t) gmn(zvtﬂ'z’t)
; = ’ ’ . 2.12
gmn(2 67, 8) ( 917;%(%73 2 1) 9171,_11(»2775; 2 1) ( )

Notation can be further shortened by incorporating channel-indices into
the matrix structure of the Green function, thereby defining an object
g(z,t;2',t"). The element of g that is located on row m and column n, is
the 2 x 2 matrix gp, p.

The Green function satisfies the equation of motion

{i0y + vpid, — vpu(z,t)} gz, t; 2/, 1)
— /dt”Z(z;t —t"g(z,t"; 2ty =0(t —t')o(z — 2/)1. (2.13)

The delta-functions on the right of Eq. (2.13) encode the fact that due to
time-ordering gt and g, have a step-structure

1 ]
(-t —t — T Z

Vomn + F(2,t;2't), (2.14)
s (%3

where F' is continuous in all its arguments. The self-energy

X(z;71) = —1i Gm(T)H(z_ —2z)— Z'LOM(T)

0(z — zT) (2.15)

27, 27,

results from the reservoirs and determines how the scattering channels are
filled. It is a matrix in Keldysh space. The time 7, is the characteristic
time correlations survive in the region of the conductor that is connected
to the reservoirs, before the reservoirs scramble them. G, (out)(T) is the
reservoir Green functions where electrons enter (leave) the scattering re-
gion, summed over reservoir levels and normalized to be dimensionless.
This form of the self-energy can be derived from the following model for
the reservoirs: We imagine every point z in a channel m outside (27, 27)
to exchange electrons with an independent Fermion bath with a constant
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density of states v. The terms H,s and Hr are explicitly
Hies = Z/dEV / dz Eal (B, 2)am(E, 2),
T
m

Ht = Z Cm/dEl/ /Idzzbin(z)am(E,z)+aL(E,z)wm(z),
(2.16)

where the tunneling amplitude ¢,, characterizes the coupling between the
reservoir and channel m. The interval Z = (—o0, z_) [J(24, 00) of integra-
tion excludes the scattering region. More general reservoir models need not
be considered, since, as we shall see shortly, the effect of the reservoirs is
contained entirely in a boundary conditions on the Green function g inside
the scatterer. This boundary condition does not depend on microscopic
detail, but only on the reservoir Green functions G, (out)-

We do not need to know the explicit form of the reservoir Green func-
tions yet. Rather the argument below relies exclusively on the property of
Gin, (out) that it squares to unity [25]:

/dt” é(t - ZL/”)in (out)é(t” - ZL//)in (out) — 5(t - t,)i’ (2'17)
A differential equation similar to Eq. (2.13) holds for g'.

2.2.2 Varying the action

We are now ready to attack the generating functional Z. For our purposes,
it is most convenient to consider A = In Z. We will call this object the
action. Our strategy is as follows: We will obtain an expression for the
variation d.4 resulting from a variation 4(z,t) — a(z,t) + 6a(z,t) of the
scattering potentials. This expression will be in terms of the reservoir
filling factors f and the scattering matrices associated with 4(z,t). We
then integrate to find A.
We start by writing

bA = —ivped 3 /: dt / @z (3t (2, ) (1, 0al2)) (1)

= (5 1) (P GWn(2))_(0),
(2.18)
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where

(s n) <t>=ﬂ[7 o {=i [ at 1)} ol

><T+exp{ dt HE(t )}pO’T_ exp {2 ) dt’ H‘(t’)}],
(U (n(2))_(6) = T[T exp{ /: d’ H+(t’)}p0
« T- exp{ / } b () (2 )T_exp{—i ttl ' H—(t’)}]

(2.19)

2.2.3 Expressing the variation of the action in terms of the
Green function

In terms of the defined Green functions, the variation 6.4 becomes

t1
e ) / dt / dz (5u2,m(z,t)gm(z,t—0+;z,t)
m,n to

R R Ve CRERUSER?)

0A

t1
= z’vp/ dt/dz Tr {5ﬂ(z,t)§(z,t+0k;z,t)} .
to

(2.20)

The object du is constructed by combining the channel and Keldysh in-
dices of the variation of the potential. The trace is over both Keldysh and
channel indices. The symbol 0¥ refers to the regularization explicitly indi-
cated in the first line, i.e. the first time argument of g™ (z,t — 0T; 2, ¢) is
evaluated an infinitesimal time 0" > 0 before the second argument, while
in g~ (2,t+07;2,t), the first time argument is evaluated an infinitesimal
time 0T after the second. This is done so that the time ordering (anti-time
ordering) operations give the order of creation and annihilation operators
required in Eq. (2.18).

It proves very inconvenient to deal with the 0F regularization of Eq.
(2.20). It is preferable to have the first time arguments of both g™ and
g~ evaluated an infinitesimal time 0" before the second. Taking into
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account the step-structure of g+ we have

1 —2 (1 =7
Gz, t+0%; 2t = g(z,t—0+;z’,t’)+—5(t—t’—z : )1 < T3> . (2.21)
a VF 2

Here 73 is the third Pauli matrix < (1) _01 > acting in Keldysh space. The

equations of motion allow us to relate g(z,t — 07;2’,¢') for points z and
2 inside the scattering region where u is non-zero, to the value of g at 2~
where electrons enter the scatterer. For z < 2z’ and ¢ < t/, the equations of
motion give

/ —

Gt 22 ot 2T
UF (%
= 5(z,t)g(z~,t — 0T 2 )l (2, 1), (2.22)

where

z M
5(z,t) = Zexp {—z/ d2"u(2"t + 7)} . (2.23)
z= VF

The symbol Z indicates that the exponent is ordered along the z-axis,
with the largest co-ordinate in the integrand to the left. Note that the
potential 4 at position z is evaluated at the time instant ¢t + (z — z7) /up
that an electron entering the scattering region at time ¢ reaches z. Often
the time-dependence of the potential is slow on the time-scale (z+—27) /vp
representing the time a transported electron spends in the scattering region
and @(z, t+22—) can be replaced with @(z,t). This is however not required

for the analysis that follows to be valid.
Substitution into Eq. (2.24) yields

0A :vp/dt Tr [w(t)g(z~,t — 0F;27,1)]

_ /dt lim 6(t — /) Tr [w(t)i (1 _;3>] . (2.24)

t'—t

with

= 51(t)o5(t). (2.25)
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In this equation z* is located where electrons leave the scatterer. Impor-
tantly, here Tr still denotes a trace over channel and Keldysh indices. We
will later on redefine the symbol to include also a trace over the (con-
tinuous) time index, at which point the second term in Eq. (2.24) will
(perhaps deceptively) look less offensive, but not yet. In the last line of
Eq. (2.25), 5(t) = 5(27,t) is the (time-dependent) scattering matrix. We
sent the boundaries ty and ¢; over which we integrate in the definition
of the action, to —oco and oo respectively, which will allow us to Fourier
transform to frequency in a moment. The action remains well-defined as
long as the potentials u* and u~ only differ for a finite time.

2.2.4 Relating ¢ inside the scattering region to g at reser-
voirs.

Our task is now to find g(z~,t—0%; 27, ¢). Because of the t—#' dependence
of the self-energy, it is convenient to transform to Fourier space, where

G(z,e;27,¢") = /dtdt’eiatg(z,t;z_,t')e_ia/tl,

Gin (out) (E) = /dt eZ'Et(_;(t)in (out) - (2'26)

In frequency domain, the property that Gj, (out) Squares to unity is ex-
pressed as Giy (out) (¢)?> = 1. (Due to the standard conventions for Fourier
transforms, the matrix elements of the identity operator in energy domain
is 276(e — £’).) The equation of motion for z < z~ reads

Gin(E)
27,

{—2’5 +vp0, + }g(z, g;27,&) =0. (2.27)

There is no inhomogeneous term on the right-hand side, because we restrict
z to be less than z—. We thus find

4 Gin(e
gz~ — 0%, g27,¢) = e EAZ/VF oxpy [— ;z( )Az} Gz~ — Az, g;27,€).
C
(2.28)
Here the correlation length I. is the correlation time 7. multiplied by the
Fermi velocity vg. Using the fact that G(e);, squares to unity, it is easy
to verify that

o {-GalEa ) - 1G] (22 12 Gul) (82
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Since spacial correlations decay beyond 27—, g(z— — Az,e;27,¢') does not
blow up as we make Az larger. From this we derive the condition

[1+Gin(e)] g(z~ —07,527,¢") =0. (2.30)
Transformed back to the time-domain this reads

/dt” (6t —t")+ Gt —t")] g(z— =0T, ¢";27,¢') = 0. (2.31)

We can play the same game at 2z where particles leave the scatterer.
The equation of motion reads

éout (5)

{—z’s +vpd, +0(z — 2T1) 5

}g(z, g;27,¢) =2m8(2 — 2)o(e — &).

(2.32)
This has the general solution

(2,7, €')

= exp {isz —2 [(z —2N)0(z — =)
vp

— (& = 2")0(x — z+)} Coule) }

27

X [g(z’ -0, e52 &)+ —0(z — 2)d(e — 5’)] . (2.33)
VF

We will need to relate the Green function evaluated at z < z* to the Green

function evaluated at z > 2z, and so we explicitly show the inhomogeneous

term. The same kind of argument employed at z~ then yields the condition

[1— Gout(e)] [g(zJr — 0", e 27,¢) + 12)—;5(5 — E')] =0, (2.34)

where the inhomogeneous term in the equation of motion is responsible
for the delta-function. In time-domain this reads

/ dt" [6(t —t") = Gou(t = t")] [é(f =07, "2, t)
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It remains for us to relate g(z™ — 0, ¢ + Z=2—; 2 ¢/ 4 %) to
g(z= — 0%, ;27 ,t'). This is done with the help of Eq (2.22), from which
follows
o 2t —zm L, 2t -2z Nl o e Nt
gzm =0Tt ———— 2t + ———) =5(t)g(z” — 07,27, t)5(L).

VR VR
(2.36)
We substitute this into Eq. (2.35), multiply from the right with 5(') and
from the left with 57(¢). If we define G’ (t,t') = 57 (t)Gout (t — t')5(') the
resulting boundary condition is

/dt” [(5(t o t”) - out(t . t”)] [?](Z_ o 0+,t";z_,t’)

L /! _ ! _
+ de(t )| =
(2.37)

2.2.5 Finding the variation of the action in terms of the
reservoir Green functions and the scattering matrix

At this point, it is convenient to incorporate time into the matrix-structure
of the objects Gi,, G. and g. The resulting matrices will be written
without overbars. Thus for instance s will denote a matrix diagonal in
time-indices, whose entry (¢,t') is §(¢t — ¢')5(¢). Similarly the (¢,¢) entry
of Giy (out) 18 Gin (out) (t —1'). Also let g~ be the matrix whose (¢,t') entry
is g(z= — 07, #;27,¢). In this notation G2 = Ggut = [ and Eq. (2.31)
and Eq. (2.37) read

(I+Gin)g_ = 07
(I-Ghw) (9~ +1/op) = 0. (2.38)

These two equations determine g~ uniquely as follows: From the first of
the two equations we have

0 = out(I + GIH)
= (I Gout)g + (I + GgutGiH)g_' (239)
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In the first term we can make the substitution —(I — G )9~ = (I —
G/ )/vF which follows from Eq. (2.38). Thus we find

1 1
— — - I_ /
g r TE GG~ Gow)
1 1
= —(1-Gn)=——or, 2.4
o b~ Gl (240)

and the last line follows from the fact that G2, = Gguf = 1. We have
taken special care here to allow for different reservoir Green functions
at 2~ where particles enter the conductor and z* where they leave the
conductor. In order to proceed we must now absorb the difference between
the two Green functions in the scattering matrix. We define A through
the equation

Gout = A 1GiuA, (2.41)

and drop subscripts on the Green functions by setting G = Gj,. Substi-
tuted back into Eq. (2.24) for the variation of the action yields

SA="Tr|6s'(1 - G)m} Ty [5§_(§_)T] : (2.42)

where the trace is over time, channel and, in the first term, Keldysh indices.
The operator s’ is related to the scattering matrix s through s’ = As.
2.2.6 Integrating the variation to find the action

We now have to integrate 6.4 to find A. This is most conveniently done
by working in a basis where G is diagonal. Since G? = 1, every eigenvalue
of G is £1. Therefore, there is a basis in which

G:(é _OI> (2.43)

In this representation s’ can be written as
/ /
s = < 11 S12 > . (2.44)
So1 S22

Here the two indices of the subscript has the following meaning: The
first refers to a left eigenspace of GG, the second to a right eigenspace. A
subscript 1 denotes the subspace of eigenstates of G with eigenvalue 1. A
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subscript 2 refers to the subspace of eigenstates of G with eigenvalue —1.
In this representation,

1 0 0
-G v = ( 0 (shy)"! > (2.45)
so that
A =Tr [dshy (s37)] — Tr [5§_(§_)T} , (2.46)
and thus

A = Trinsh —Trins_,
e’ = (Det s_) ' Det sh,. (2.47)

In these equations, s_ is the scattering matrix associated with H™ as
defined previously. Its time structure is to be included in the operations
of taking the trace and determinant.

Note that in the representation where G is diagonal, it holds that

1+G /]._G_ I 832
st _<o w ) (2.48)

Due to the wupper-(block)-triangular structure it holds that
Det sh, = Det [14€ + s'15¢] leading to our main result

1+G
2

A=Trln [ +8/1_2G:| —Trins_. (2.49)

where it has to be noted that many matrices have the same determinant
as the above. Some obvious examples include

(I 0 > — (14@)2+(1-G)s(1—G)/4,

0 sh
( L0 > = 1+G)2+(1-G)s /2. (2.50)
S21 S22

2.3 Tracing out the Keldysh structure

Up to this point the only property of G that we relied on was the fact that
it squares to identity. Hence the result (Eq. 2.49) holds in a setting that is
more general than that of a scatterer connected to reservoirs characterized
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by filling factors. (The reservoirs may for instance be superconducting).
In the specific case of reservoirs characterized by filling factors it holds

that
o [de in (1-2f(e) 2f(e)
o= [ (300 g ) 2

Here f(¢) is diagonal in channel indices, and fp,(e) is the filling factor in
the reservoir connected to channel m. We will also assume that electrons
enter and leave a channel from the same reservoir, so that Gi, = Gout
and hence s’ = s. We recall as well as that the Keldysh structure of the

scattering matrix is
50 0
= . 2.52
s < 0 §_> (2.52)

Here §1 have channel and time (or equivalently energy) indices. §i is
diagonal in time-indices, with the entries on the time-diagonal the time-
dependent scattering matrices corresponding to evolution with the Hamil-
tonians H.

With this structure in Keldysh space, we find

A~

A py (14 Ge-Df G -Df
¢ _Dt<(§——1)(f—1) é—(l—f)+f>

x Det( L ! > (2.53)

We can remove the Keldysh structure from the determinant with the aide
of the general formula

A B\ _ .
Det<0 D) — Det(AD — ACA™'B)

= Det(DA - CA™'BA). (2.54)

Noting that in our case the matrices B and A commute, so that
CA~'BA = CB, we have

A =Det| (5-(1- f)+f) (1+G-1F)
(32— )+ F 1) (34 — 1) ] Det (571)
— Det [g_(1 ~ D+ §+ﬂ Det (5-1). (2.55)
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2.4 An example: Full Counting Statistics of
transported charge

A determinant formula of this type appears in the literature of Full Count-
ing Statistics [5] of transported charge. This formula can be stated as fol-
lows: the generating function for transported charge through a conductor
characterized by a time-independent scattering matrix § is

Z(x) = Det [1 + @t s —1) f] , (2.56)

where 3, is a scattering matrix, modified to depend on the counting field
X that, in this case, is time-independent. (The precise definition may be
found below.)

As a consistency check of our results, we apply our analysis to re-
derive this formula. We will consider the most general setup, where every
scattering channel is connected to a distinct voltage-biased terminal. To
address the situation where leads connect several channels to the same
terminal, the voltages and “counting fields” associated with channels in
the same lead are set equal.

The full counting statistics of charge transported through a scatterer
in a time-interval ¢ is defined as

Z(x,t) = (el (2.57)

In this equation, the Hamiltonian H, is given by

=0y 3 [ Ui (2) 100+ tma)}0(2) + 3 xm o),

(2.58)
where I,,(29) is the current in channel m at the point zp which is taken to lie
outside the scattering region. The full counting statistics is thus generated
by coupling counting field x,, to the current operator in a channel m.

Explicitly the current operator in channel m is given by

In(20) = vr (¥ (20)tm (20) = ¥ (—20)0m(—20)) . (2:59)

To understand this equation, recall that the co-ordinates zy and —zg in
channel m refer to the same point in space, but opposite propagation
directions.
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The presence of current operators in Eq. (2.58) can be incorporated in
the potential by defining a transformed potential

Ul (2) = tmn(2) + 5m,nx7m(5(z — 20) — 8(2 + 20)). (2.60)
Introducing counting fields that transform Hy — H, is thus achieved by
transforming u — w0,

The calculation of the full counting statistics has now been cast into
the form of the trace of a density matrix after forward and backward time
evolution controlled by different scattering potentials. Our result, Eq.
(2.55), is therefore applicable, with

Z4
S5+ = Zexp <—z/ dza(iX)(z)>

= TN/ 2g0eT N2 =5, (2.61)

In this equation, y is a diagonal matrix in channel space, with entries
Om.nXm. Substitution into Eq. (2.55) gives

Z(x) =Det |1+ (31, 5, —1)f], (2.62)

in agreement with the existing literature [5].

2.5 Tracing out the channel structure

A large class of experiments and devices in the field of quantum transport
is based on two terminal setups. In such a setup the channel space of the
scatterer is naturally partitioned into a left and right set, each connected
to its own reservoir. We are generally interested in transport between left
and right as opposed to internal dynamics on the left- or right-hand sides.
The scattering matrices have the general structure

A r t -1 o Xit
(D0 k(% L) e

Here r (1) describes left (right) to left (right) reflection, while ¢ (¢')
describes left (right) to right (left) transmission (¢ is not to be confused
with time). These matrices have no time or Keldysh structure but still
have matrix structure in the space of left or right channel indices. The
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operators X7 (7) and X;%(T) have diagonal Keldysh structure (denoted
by the superscript ) and diagonal time structure (here indicated by 7 to
avoid confusion with the transmission matrix ¢). They do not have internal
channel structure and as a result the Keldysh action is insensitive to the
internal dynamics on the left- or right-hand sides. Our shorthand for the
Keldysh scattering matrix will be XsX ! where we remember that s has
no Keldysh structure.

We now consider the square of the generating functional Z and employ
the first expression we obtained for it (Eq. 2.49) which retains Keldysh
structure in the determinant.

1 1-G]°
22 = Det +TG + XsX‘lTG Dets'. (2.64)

Here we exploited the fact that §_ acts on half of Keldysh space together
with the fact that 5§, = §_, i.e. s has no Keldysh structure, to write
exp 2Tr In §_ = Det s. We now shift X to act on G and define

- 1+G 1-G

G-Xx"'6x, P= +T Q=—- (2.65)
The operators P and @ are complementary projection operators i.e. P? =
P,Q?>=Q, PQ=QP =0and P+ Q = I. Because of this, it holds that

Det(P + sQ) = Det(P + Qs). Thus we find
22 = 24 = Det(Ps' + sQ). (2.66)

The left channels are all connected to a single reservoir while the right
channels are all connected to a different reservoir. This means that the
reservoir Green function has channel space structure

G = < Gr Cn > (2.67)

where GGz, and Gr have no further channel space structure. At this point it
is worth explicitly stating the structure of operators carefully. In general,
an operator carries Keldysh indices, indices corresponding to left and right,
channel indices within the left or right sets of channels, and time indices.
However P, () and s are diagonal or even structureless, i.e. proportional
to identity in some of these indices. Let us denote Keldysh indices with
kK € {+,—}, left and right with o, o’ € {L, R}, channel indices within
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the left or right sets with ¢, € Z and time ¢,#' € R. Then P has the
explicit form

Pk, K;a,d5e,d5t,t") = Pk, K a;t,t) 00,0000 - (2.68)

The projection operator () has the same structure. The scattering matrix
s has the structure

s(k, Ko, d5e,d5t,t) = s(o, o e, & )0p 6 (t — t). (2.69)
A B _1
We now use the formula Det cp)= Det(A)Det(D — CA™"B)

to eliminate left-right structure from the determinant.

Prrt+Qrr  Prtt + Qrt’
Pet'T+Qut Prr'T+Qpr

= Det <PL7“Jr + QLT) Det [PR A Qrr’

- (PR e QLt) (PL P QLr—l) (PLtT + Qrt’) ]
= axb, (2.70)

Z2

where a = Det(Prr! + Qpr) and
-1
b = Det [PR(r’T — P Tt T (0 = Qutr Qg
PPt T gt r—lt')QR] . (2.71)
Here it is important to recognize that the reflection and transmission matri-
ces commute with the projection operators P g and Q1 g. Furthermore,
notice that, in term b, the projection operator Pr always appears on the

left of any product involving other projectors, while Qg always appears
on the right. This means that in the basis where

e(40) e (30) e

term b is the determinant of an upper block-diagonal matrix. As such, it
only depends on the diagonal blocks, so that the term Pg(...)Qr may be
omitted. Hence

b= Det [PR(T’T B AR QLtr—lt’)QR] (2.73)
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Now we invoke the so-called polar decomposition of the scattering ma-
trix [26]
r=uV1l—-Tu, t =iuv/Tv,
t =i’ VT, ' =v'\/1—-"Tou,

where u, v/, v and v’ are unitary matrices and T is a diagonal matrix with
the transmission probabilities T}, on the diagonal. We evaluate term a in
the basis where P, and @), are diagonal to find

Al — i
a0 — Det[ U V1—Tu 0
0 uyv1—Tu
Det (I\/l - T) : (2.75)

(2.74)

where I = Py 4+ Qp = Pr+ Qg is the identity operator I(k,k";c,d;t,t') =
Ok k0c,0(t — t') in Keldysh, channel and time indices. For term b we find

b= Det[PR <M+PL\/1T__T>

+ <M+ Qr 11; T) QR]. (2.76)

Combining the expressions for a and b we find
2% = 24 = Det[1 — T(PrQr + PLQR)] . (2.77)

Using the fact that Pppy = (14 Gpry)/2 and Qr(r) = (1— Gr(r))/2 and
taking the logarithm we finally obtain the remarkable result

A= %zﬂ:ﬂln [1+% ({G1,Gr} —2)|. (2.78)

This formula was used in Ref. [12] to study the effects on transport of elec-
tromagnetic interactions among electrons. In Ref. [14] the same formula
was employed to study the output of a two-level measuring device coupled
to the radiation emitted by a QPC.

2.6 An example: The Fermi Edge Singularity

In this section we show how our formulas apply to a phenomenon known as
the Fermi Edge Singularity. The system under consideration is one of the
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most elementary examples of an interacting electron system. The initial
analysis |6, 7] relied on diagrammatic techniques rather than the scattering
approach or the Keldysh technique, and was confined to equilibrium situ-
ations. Several decades later the problem was revisited in the context of
the scattering approach [10, 11]. An intuitive derivation of a determinant
formula was given. Here we apply our approach to confirm the validity of
this previous work. We find exact agreement. This highlights the fact that
the determinant formulation of the FES problem is also valid for multi-
channel devices out of equilibrium, an issue not explicitly addressed in the
existing literature.

The original problem [6, 7| was formulated for conduction electrons
with a small effective mass and valence electrons with a large effective mass,
bombarded by x-rays. The x-rays knock one electron out of the valence
band leaving behind an essentially stationary hole. Until the hole is refilled,
it interacts through the coulomb interaction with the conduction electrons.
The x-ray absorption rate is studied. Abanin and Levitov reformulated the
problem in the context of quantum transport where an electron tunnels
into or out of a small quantum dot that is side-coupled to a set of transport
channels.

Figure 2.2. A schematic picture of the system considered. It consists of a
charge qubit coupled to a QPC. The shape of the QPC constriction, and hence
its scattering matrix, depends on the state of the qubit. A gate voltage controls
the qubit level splitting €. There is a small tunneling rate v between qubit states.

We prefer to consider a slightly simpler setup that exhibits the same
physics. The setup is illustrated in Fig. (2.2). A Quantum Point Contact
(QPC) interacts with a charge qubit. The shape of the QPC constriction
depends on the state of the qubit. We will consider the same system again
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in Chapter 4 of theis thesis. The Hamiltonian for the system is
H ="Hi[1) (1] + (Ha +2) [2) (2| +~(]1) (2] + [2) (1)) (2.79)

The operators H; (Hz) describe the QPC electrons when the qubit is in
state |1), (|2)). They differ by a potential energy term, describing the the
pinching off of the QPC constriction depending on the state of the qubit.
We may take both Hamiltonians to be of the form (Eq. 2.5) that we wrote
down for a general scatterer. The energy ¢ is the qubit level splitting, an
experimentally tunable parameter. The QPC may be driven by a voltage
bias V.

QPC electrons do not interact directly with each other but rather with
the qubit. This interaction is the only qubit relaxation mechanism included
in our model. We work in the limit v — 0 where the inelastic transition
rates I'12 21 between qubit states are small compared to the energies el and
. In this case, the qubit switching events can be regarded as independent
and incoherent.

Now consider the qubit transition rate I'y1, from state [1) to |2) as a
function of the qubit level splitting €. To lowest order in the tunneling
amplitude v it is given by

to——o0

0
Iy = 272Re/ dreT lim exp A(7),

— o0

exp A(T) = tr [emﬂe_ml(T_to)poe_mlto . (2.80)

This is the usual Fermi Golden Rule. The time 7 over which we integrate
can be interpreted as the time when the qubit switches from |1) to |2).
The trace is over QPC states, and pg is the initial QPC density matrix.
We see that the expression for I's; contains an instance of the Keldysh
action A that we have calculated. The correspondence requires us to set

HE(t) = Hy+ (Ha— H)O(t — 7)0(—1).
Ho(t) = Hi. (2.81)

In order to conform to the conventions of the existing literature, we write
Z in the form where the Keldysh structure has been removed (Eq. 2.4):

A(r) =trln [5.(1— f) + §+(T)f] ~trlng_. (2.82)

In this formula, §_ is the scattering matrix corresponding to H~ = H;
when the qubit is in state |1). It is proportional to identity in time-indices.
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The scattering matrix §, (7) corresponds to H . It is still diagonal in time-
indices but the diagonal elements $;(7); are time-dependent. If we take
the time it takes an electron to traverse the conductor to be much shorter
than other time-scales such as the inverse of the attempt rate of charge
transfers, then

84(7)t =81+ (82 — 81)0(t — 7)0(-1), (2.83)

where $9 is the scattering matrix associated with Ho when the qubit is in
state |2). This expression first appeared in Ref. [10]. In the language of the
original diagrammatic treatment of the FES problem [6, 7|, it represents
the total closed loop contribution.

We may also write this closed loop contribution as

A = Det [1+ (34 — iI(7)f] (2.84)

where II is a diagonal operator in time-domain with a kernel that is a
double step function

(1) = 60(—1)0(t — 7). (2.85)

and the scattering matrices §; and $9 no longer have time-structure. We
may work in the channel space basis where §J{§2 is diagonal. Its eigenvalues
are €. Suppose we are in zero-temperature equilibrium, then the filling
factor f is the same in every channel. In the fourier transformed energy

basis f is simply a step function:

Jeer =0d(e —€0(—¢). (2.86)
Thus one finds
et = [[ Det [1 + (e — 1)TI(r) f] . (2.87)
k

This determinant contains no channel structure any more. Operators only
have one set of indices (time, or after Fourier transform, energy). II is
a projection operator, diagonal in time-domain while f is a projection
operator in energy domain. Such a determinant is known as a Fredholm
determinant.

The resulting transition rate is [6, 7, 10]

o) = (-0 ( ;') , (2.89)
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where E., is a cut-off energy of the order of the Fermi energy measured
from the bottom of the conduction band. The exponent « is known as the
orthogonality exponent. It may be calculated by evaluating the Fredholm
determinant analytically with the Wiener-Hopf method. It is given in
terms of the scattering matrices as [9, 10]

1
a=1s ‘tr In? (SJ{SQ) , (2.89)

with the trace being over channel indices. Inspired by the work of Abanin
and Levitov [10, 11] we considered the case where the QPC is driven by a
voltage bias. The results of our study may be found in Chapter 4 of this
thesis.

2.7 Conclusion

In this paper we have derived several expressions for the Keldysh action
A for a general multi-terminal, time-dependent scatterer. This object
is defined as the (logarithm of the) trace of the density matrix of the
scatterer after evolution forwards and backwards in time with different
Hamiltonians:

t1 t1
eA:Tr[TJrexp{—i/ dtH+(t)}poT_exp{i dt H_(t)}].

t ¢

’ ’ (2.90)
Our main result is a compact formula for the action in terms of reservoir
Green functions and the scattering matrix of the scatterer (Eq. 2.1). We
have shown how to perform the trace over Keldysh indices explicitly when
reservoirs are characterized by filling factors. Thus we obtained a formula
(Eq. 2.2) generalizing the Levitov counting statistics formula. We have
also explicitly performed the trace over channel indices for a two termi-
nal scatterer (Eq. 2.4). In this case we demonstrated that the Keldysh
action only depends on the scattering matrix through the eigenvalues of
the transmission matrix. To illustrate the utility of the Keldysh action,
and confirm the correctness of our results, we considered Full Counting
statistics and the Fermi Edge singularity. We found that our results agree
with the existing literature.
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Chapter 3

Quantum tunneling detection
of two-photon and
two-electron processes

3.1 Introduction

The quantum nature of electron transfer in coherent conductors is seldom
explicitly manifested in averaged current-voltage curves. To reveal it one
should measure current noise and/or the higher-order correlations of cur-
rent comprising the Full Counting Statistics that arise from the transfer [1].
Such measurements not only reveal the discrete nature of the charges trans-
ferred, they also quantify quantum many-body effects in electron transport
and may be used for the detection of pairwise entanglement of transferred
particles [2, 3, 4, 5]. If the noise is measured at frequencies in the quantum
range, hw > kT, the measurement amounts to the detection of photons
produced by the current fluctuations. This aspect is important in view of
attempts to transfer quantum information from electrons to photons and
back [6].

It was demonstrated in Ref. [7] that one needs a quantum detector
to measure quantum noise. Indeed, any classical measurement of a fluc-
tuating quantity would give a noise spectrum symmetric in frequency,
S(w) = S(—w). A quantum tunneling detector is generally a quantum
two-level system with a level separation € > 0. The result of detection are
two transition rates: I'y, from the lower to the higher level and I'qoyy for
the reverse direction. The most probable transitions are accompanied by
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either absorption or emission of a photon of matching energy fiw = . One
can define the noise spectrum in such a way that it is proportional to the
transition rates S(4e/h) o< I'yp down(€). Differences between I'yp down thus
manifest the quantum nature of noise. If the source of noise is a coherent
conductor biased by a voltage V', detector signals in the range ¢ < eV
are readily interpreted in terms of single electron transfers through the
conductor. The maximum energy gain available for electrons in the course
of such transfer is eV. Consequently this value also limits the energy of
the emitted photon. The previous research has not addressed the energy
range € > eV. It remained unclear if the detector detects anything and —
if it does — what it detects.

A first proposal for the experimental realization of a quantum tunneling
detector included transitions between two localized electron states in a
double quantum dot [8]. However it does not matter much if the tunneling
occurs between localized or delocalized electron states and if all tunnel
events are accompanied by the same energy transfer €. In most practical
cases the energy dependence of the rates I'yp, qown can be readily extracted
from the measurement results. This is why quantum tunneling detection
has been experimentally realized in a superconducting tunnel junction [9]
and in a single quantum dot [10].

In this Chapter we study quantum tunneling detection in the range
eV < e < 2eV assuming €, eV > k1. The motivation is that for these en-
ergies the detector is not sensitive to single-electron one-photon processes
described above and its output — the transition rate I',p,— is determined
by much more interesting two-particle processes. It is clear from plain
energy considerations that transitions may originate from two-photon pro-
cesses. Such two-photon absorption can occur given any non-equilibrium
photon distribution bounded by eV, not necessarily produced by a co-
herent conductor. Less obvious and specific for a coherent conductor is
a cooperative two-electron process. Indeed, if two electrons team up in
crossing the conductor they can emit a single photon with an energy up to
2eV. Essential for this cooperation are electron-electron interactions. It
is known [11] that the most important electron-electron interaction in this
energy range is due to the electromagnetic environment of the conductor,
the same environment in which the non-equilibrium photons dwell.

We quantify the signals due to two-photon and two-electron events and
find them to be of the same order of magnitude. We also show that part
of the signal is due to quantum interference of these two processes: We
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Figure 3.1. Model circuit: A coherent conductor with transmission eigenvalues
T, is connected in series with an external impedance Z. This structure is biased
with a voltage V. The shared node A is capacitively coupled to a quantum
tunneling detector. The coupling constant is . The tunneling detector consists
of an electron that can tunnel between the lowest two states of a double quantum
dot. The level splitting € of this two level system can be tuned by a gate voltage.

demonstrate how different contributions can be separated in experiments
thereby facilitating the direct observation of two-particle processes in the
context of quantum transport.

3.2 Model

We concentrate on a model circuit consisting of four elements as given in
Fig. 3.1. A voltage biased coherent conductor characterized by a set of
transmission eigenvalues 7T, is embedded in an electromagnetic environ-
ment with impedance Z,,. The environment transforms the current fluc-
tuations in the conductor to voltage fluctuations in node A which are
conveniently expressed in terms of a phase ¢ = 7 J dtV (t). The most gen-
eral model including the detector and the coherent conductor would be a
four-pole circuit studied in Ref. [12] that couples two poles of the detector
with two poles of the conductor. We use a simplified set-up in which a sin-
gle pole of the detector is coupled to a single pole of the conductor. Here,
we concentrate on the experimentally relevant case of capacitive coupling.
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The detector senses a fraction 0 < a < 1 of the voltage fluctuations in
node A. We will see that changing the “visibility” parameter « enables
the separation of two-electron and two-photon processes in experiments.
The relevant impedance is made up of an environmental impedance com-
bined with that of node A and the coherent conductor. We measure this
impedance z, in units of Rx = 27h/e? and assume the low-impedance
limit z, < 1; this provides us with a physically justified small parameter.

The detector consists of two localized charge states connected by a
tunnel amplitude 7. In the presence of voltage fluctuations in the node
A, the amplitude is modified as follows: 7 (t) — 7€), In perturbation
theory, the inelastic tunneling rate between two states separated by ¢ is
given by correlators of ap(t) [11]

TP
~ 27h?

T(e) / (102 g=iow O et (3.1)
The rate I'(¢) is therefore the Fourier transform of the correlation function
(et (t) g=1a(0))  o(t) being the phase fluctuations over the detector.
From now on we take h = e = kg = 1.

Eq. (3.1) tells us that the inelastic tunneling rates in the detector
are completely determined by the voltage fluctuations over the junction.
Therefore measuring the inelastic current through the dots we are sensitive
to the noise spectrum of the environment.

To evaluate <ei°‘90(t)e_i°“p(0)> we construct a path integral representa-
tion of this quantity using a non-equilibrium Keldysh technique [13] for
quantum-circuits [14]

<eia<p(t) e~ iap(0) )

- / Dlg] exp{—iSonv ] — iSeonalg] + ia[—¢" (0) + o~ (1)]}.
(3.2)

The integration goes over the time-dependent fluctuating fields ¢ (¢) in
node A, + corresponding to the forward (backward) part of the Keldysh
contour. Seny and Sgong are the contributions to the Keldysh action origi-
nating from the environment and the coherent conductor respectively.

Since the environment is linear, its action is quadratic in the fields and
at zero temperature reads (cf. [15])

Sems = / dw ¢, AW) o, (3.3)
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with

Aw=—2( 0 =
7T 2 wRe{L) )
z, being the corresponding impedance. We use Fourier transformed fields
b = (P Xw)" defined with o* = ¢ + Jx.
All non-quadratic contributions to the action originate from the co-
herent conductor. The action Sconq can be expressed in terms of Keldysh

Green functions G L,r of electrons in the reservoirs left and right of the
conductor [15]

cond = ZTI‘ 111 {GL( ) GR} - 2)] (34)
The fields ¢ enter in this action via the gauge transform of G, [15].

3.3 The quadratic part of the action

To understand the physics involved, let us first disregard any non-
quadratic parts and take only the quadratic part of Sconq. In this case
the path integral is Gaussian, and can be evaluated exactly. We recover
the well known result from P(E)-theory (cf. [8, 11]): (¥t e=iev(0)) =
exp[J(t)] with

|Zw|2

J(t) = (ap(t)ap(0)) = o? /dwFK(u})[e—i‘”t —1]. (3.5)

The impedance includes the dimensionless conductance g. = ), T, of the
conductor.
In the limit of "= 0 we find in agreement with results of Ref. |7, 8|

Kw)=g9AFDw+V)+ (2—-2F)D(w)+ FD(w—-V)}

4 2Re{zi}p(w), (3.6)

with D(w) = —wf(—w) and the Fano factor FF =) T,(1—-1T,)/>_, Tn.
The first term in K (w) (o g.) represents the non-equilibrium current noise
spectrum of the coherent conductor that vanishes for w > V. In physical
terms this means that the highest energy w an electron can emit traversing
the conductor is exactly V. The second part represents the spectrum of
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In(T,,V [T )/[In(a?Fy,)

Figure 3.2. n-photon contributions (dashed) to the detector output. Each
contribution dominates in the energy interval (n — 1)V < & < nV. Subsequent
contributions are suppressed by a factor ~ a?z2g.F. This is seen as a staircase
structure in the log plot. The sum of all contributions is given by the solid line.
To produce this plot, we took z,/w =z/V, z=0.01, g.F = 1.75, « = 1.

the environment. It is zero for w > 0, since the environment can only
absorb energy at T'= 0.

The time-dependent part of J(t) is the Fourier transform of
K(w)|z,]?/w? and T'(¢) is in turn the Fourier transform of exp[J(t)]. If we
expand exp[J(t)] in terms of J(t), the n-th term presents the contribution
of a process involving absorption of n photons in the detector. Such an
n-photon process dominates in the interval (n — 1)V < e < nV and its
contribution is proportional to a*”.

The one-photon contribution gives FEIQ /Tdown =~ 2g.F. FEach extra
photon brings in a small factor, such that T+ /1(") ~ ¢222g.F. This is
seen as a staircase in the log plot presented in Fig. 3.2.

3.4 The non-quadratic part of the action

There is in general no justification for approximating e~*cond by a Gaus-
sian. Indeed the non-quadratic part of the action describes interesting
many-electron processes and are — as we show below — of the same or-
der of magnitude. Since the path integral in (3.2) cannot be evaluated in
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(a) (b) ()

Figure 3.3. Typical Feynman diagrams appearing in the expansion of the path
integral representation of the tunneling rate.

general, we proceed by perturbative expansion.

Indeed, since |z| < 1, the Gaussian part of the action, being propor-
tional to z~!, suppresses fluctuations in the path integral and we can treat
the remaining part perturbatively. First we expand —iSconq[¢] around
¢ = 0. As mentioned previously (see the discussion below Eq. (3.5)),
the first and second order terms just renormalize the impedance. The
exponential of the remaining higher order terms is then again expanded
in ¢ around ¢ = 0. This expansion may be represented in terms of di-
agrams such as those in Fig. 3.3. Diagram (a) represents a high order
term, from which the general structure becomes clear: Diagrams consist
of lines, polygons and external vertices. The expansion contains not only
connected diagrams, but all disconnected diagrams as well. A polygon with
n vertices is associated with the symmetrized n-th order coefficient in the
Taylor expansion of —iS¢onq[¢p] multiplied by a factor g.. Lines represent
propagators of ¢ corresponding to the Gaussian action with renormalized
impedance. They are of order z making n-line diagrams z" in leading or-
der. External vertices (indicated by dots in the figure) are associated with
the time-dependent linear term ia[—¢™(0) + ¢~ (¢)] in Eq. (3.2). Thus
a diagram with s external vertices gives a correction proportional to .
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Furthermore, diagrams without external vertices are time-independent and
according to Eq. (3.1) contribute only to elastic tunneling processes. Dia-
grams (b) to (f) represent some of the lowest order terms in the expansion.

We consider transitions in the detector where energies between V and
2V are absorbed. In this interval, the detector output is given by diagrams
(b), (c) and (d), which are proportional to a*, a3 and o? respectively.

From the results presented in Fig. 3.2 we have learned that n-photon
processes come with a coefficient o?”. Hence the a® contribution has to
arise from the interference term between a one- and a two-photon process:
We disregard diagram (e) which only contributes to elastic processes. In
the energy interval considered, the combined 23 contribution of the in-
cluded diagrams is zero and we obtain a tunneling rate that goes as g2z*.
Since a diagram like (f) has four lines, it could potentially contribute to
the current with the same order in z. However, its contribution can only
be proportional to g. and is disregarded.

The expansion of S.ong up to fourth order terms and subsequent eval-
uation of the diagrams is straightforward but requires rather involved and
lengthy calculations. Fortunately in the interval of interest the three con-
tributions can be combined in a compact expression

|20 | @? 2ze_w Ze

)

(3.7)
which is the main result of our work. The rate is proportional to the square
of the zero-frequency current noise Seond(0) = % g.F.

The part proportional to at (diagram b) represents a two-photon pro-
cess originating from the quadratic part of S.onq and was already present
in Fig. 3.2. We have thus shown that there are contributions of the same
order resulting from non-linearities in the conductor. The o2 term (dia-
gram d) is the result of the two-electron and one-photon process expected
from general reasoning presented in the introduction. We see that the a3
term comes from the cross-term in the modulus square. This unambigu-
ously identifies diagram (c) as the result of quantum interference of the
two-electron process and the two-photon processes.

To understand this interference, we note that the photon modes in-
volved are delocalized across the whole circuit. A photon in each mode can
be absorbed in the detector as well as in the environment or the conductor.
An elementary process is such that the final state differs from the initial
state by two photons absorbed in two given modes. The final state can be

1%
Tup :2|’T|2g3F2/ do(V —w)(e -V —w)—;
e=V w

2 ee—w €
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Figure 3.4. Left: Contributions to the detector output due to two-photon
(solid), two-electron (dashed) processes and their interference (dash-dotted) at
a = 0.8 versus detector level splitting. The inset presents a zoom at ¢ — 2V.
Right: Different dependence on the coupling strength « enables experimental
identification of these three contributions. The contributions and their sum (dot-
ted) are plotted for ¢ = 1.3V.

reached by two routes: one with both photons absorbed in the detector
and one with a photon absorbed in the detector and a photon absorbed
in the environment. While the squares of these amplitudes represent the
probabilities of two-photon and two-electron processes respectively, their
cross-term gives rise to an interference contribution o< a.

The simplest concrete model is that of a frequency-independent
impedance, z, = z at w ~ V. The integration in Eq. 3.7 yields for

the three distinct contributions (i =1, 2,3) (€=¢/V,1<£<2)

of [-EEE ImE - 1) - |
—{ 203 [_u In(E—1) — 252 (3.8)

a? [~2In(s — 1) - 422

All contributions scale as (¢ — 2V)3 at the two-photon threshold and log-
arithmically diverge at the one-photon threshold & ~ 1 (see Fig. 3.4).
Eventually this divergence is cut-off in the close vicinity of ¢ = eV at
an energy scale gz2eV where two-particle and one-photon rates become
comparable.

I
ATEGEF
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Here, we have quantified the contributions for a very specific non-
linear quantum noise source: a coherent conductor. However in the case
of any unknown source of this kind the a-dependence of the contributions
allows one to separate and identify them experimentally (right pane of Fig.
3.4). One would measure the detector output changing the coupling to the
detector. Formally, three measurements at three different « are sufficient
to determine the relative strength of all three contributions. In any case, in
the limit of small coupling o« — 0 the detector output is dominated by two-
electron events. Further characterization may be achieved by engineering
of a frequency-dependent impedance. For instance, setting z(w = €) to 0
kills both the interference and the two-electron contribution.

3.5 Conclusion

To conclude, we have shown that the quantum tunneling detector in the
energy interval specified is selectively sensitive to two-particle processes.
The detector output is generally determined by three contributions: two-
photon processes, two-electron processes and the interference of the two.
These three sources can be distinguished experimentally by measuring at
different couplings « to the detector. Our results thus facilitate the direct
observation of many-particle events in the context of quantum transport.
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Chapter 4

Polarization of a charge qubit
strongly coupled to a
voltage-driven quantum point
contact

4.1 Introduction

The quantum point contact [1] has become a basic concept in the field
of Quantum Transport owing to its simplicity. Its common experimental
realization is a narrow constriction that connects two metallic reservoirs.
An adequate theoretical description for this setup is a non-interacting one-
dimensional electron gas interrupted by a potential barrier. The barrier
is completely characterized by its scattering matrix. This enables the
scattering approach to Quantum Transport [2].

Despite the correctness of the non-interacting electron description,
truly many-body quantum correlations in a QPC do exist and are ob-
servable. These manifest themselves in the Full Counting Statistics (FCS)
of electron transfers [3] and allow for detection of two-particle entangle-
ment [4] through the measurement of non-local current correlations. This
suggests that the observation of many-body effects in a QPC crucially
relies on a proper detection scheme.

In this chapter, we probe a QPC with a charge qubit. Such a device has
already been realized using single and double quantum dots. Previously,
the QPC has been used as a detector of the qubit state [5, 6]. We propose
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a scheme in which these roles are reversed. Provided the qubit and QPC
are coupled strongly, switching between the qubit states is accompanied
by severe Fermi-Sea shake-up in the QPC. The ratio of switching rates
determines the qubit polarization. The d.c. current in the QPC reads the
qubit polarization. Thereby we obtain information about the Fermi-Sea
shake-up in the QPC.

For our results to apply, the qubit transition rate induced by the QPC
should therefore dominate the rate due to coupling with other environ-
mental modes. We estimate this requirement to be fullfilled already in the
weak coupling regime.

Before analyzing the system in detail, the following qualitative con-
clusions can be drawn. The qubit owes its detection capabilities to the
following fact: In order to be excited it has to absorb a quantum e of
energy from the QPC. Here ¢ is the qubit level splitting, a parameter that
can be tuned easily in an experiment by means of a gate voltage. The QPC
supplies the energy by transferring charge from the high voltage reservoir
to the low voltage reservoir. The transfer of charge ¢ allows qubit transi-
tions for level splittings € < ¢V, V being the bias voltage applied. Thus,
the creation of excitations in the QPC is correlated with qubit switching.

We can assume that successive switchings of the qubit between its
states |1) and |2) are rare and uncorrelated. The qubit dynamics are
then characterized by the rates I'9; to switch from state |1) to state |2)
and T'j5 from |2) to |1). The stationary probability to find the qubit in
state |2), or polarization for short, is determined by detailed balance to be
p2 = I'91/(T'124+T'21). The polarization can be observed experimentally by
measuring the current in the QPC. The current displays random telegraph
noise, switching between two values I; and I>. These correspond to the
qubit being in the state |1) or |2) respectively. The d.c current I gives the
average over many switches and is thus related to the stationary probability
by I = (1—p2)I1 +p2ls. The values of I, I5 and I are determined through
measurement and ps is inferred.

When the QPC and qubit are weakly coupled [7, 8|, a single electron
is transferred [9]. This liberates at most energy eV, implying that the
rate I'91 is zero when € > eV and the rate I'y5 is zero when ¢ < —eV.
The resulting ps changes from 1 to 0 upon increasing € within the interval
—eV < e < eV. Cusps at € = eV signify that the charge e is transferred.
[See Fig. (2a)]

Guided by our understanding of weak coupling we can speculate as fol-
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lows about what happens at stronger couplings. Apart from single electron
transfers, we also expect the coordinated transfers of groups of electrons. A
group of n electrons can provide up to neV of energy to the qubit. There-
fore, peculiarities in ps should appear at the corresponding level splittings
e = xneV, n = 1,2,3,... [10] However, it is not a priori obvious that
these peculiarities are pronounced enough to be observed. The reason is
the decoherence of the qubit states induced by electrons passing through
the QPC. This smooths out peculiarities at the energy scale that is the
inverse of the decoherence time. In the strong coupling regime, especially
when the qubit couples to many QPC channels, the decoherence time is es-
timated to be short so that smoothing is severe. As a result, it is not clear
whether peculiarities at neV are the dominant feature at strong coupling.

Therefore, strong coupling of the QPC and the qubit requires quan-
titative analysis. We have reduced the problem to the evaluation of a
determinant of an infinite-dimensional Wiener-Hopf operator. We calcu-
lated the determinant numerically for a single channel QPC and found
that peculiarities at multiples of eV are minute. Their contribution to po
does not exceed 10™* and is seen only at logarithmic scale and at mod-
erate couplings. Instead, far more prominent features occur at € = %eV.
General reasoning does not predict this. Straight-forward energy balance
arguments suggest that a charge e/2 has been transferred between the
QPC reservoirs. We are tempted to view this as a fractionally charged ex-
citation generated by the qubit. However, the setup under consideration
does not support an independent determination of the excitation charge.
If we further increase the coupling, by adding channels to the QPC, we
find a pseudo-Boltzmann distribution ps = (1 + exp(Ae/kpT*))~!, with
the effective temperature kgT™ of the order eV. All peculiarities disappear
due to decoherence.

4.2 Model

Let us now turn to the details of our analysis. The system is illustrated in
Fig. (4.1). The Hamiltonian for the system is

H=T+00 1) 1]+ @2 +2)[2) @ +7(1) @+ 2) (1) (@)

The operator T represents the kinetic energy of QPC electrons. The op-
erator U describes the potential barrier seen by QPC electrons when the
qubit is in state £ = 1, 2 and corresponds to a scattering matrix §; in



78 Chapter 4. Polarization of a charge qubit strongly coupled. ..

Figure 4.1. A schematic picture of the system considered. It consists of a
charge qubit coupled to a QPC. The shape of the QPC constriction, and hence
its scattering matrix, depends on the state of the qubit. The QPC is biased at
voltage V. A gate voltage controls the qubit level splitting . There is a small
tunneling rate v between qubit states.

the scattering approach. QPC electrons do not interact directly with each
other but rather with the qubit. This interaction is the only qubit re-
laxation mechanism included in our model. We work in the limit v — 0
where the inelastic transition rates I'12 21 between qubit states are small
compared to the energies eV and e. In this case, the qubit switching events
can be regarded as independent and incoherent.

Now consider the qubit transition rate I'9;. To lowest order in the
tunneling amplitude ~ it is given by

0 X X X
Iy = 27°Re / dre®"x lim tr [eiH?Te_iHl(T_to)poeiHl(T_tO)] . (4.2)
oo to——o0

This is the usual Fermi Golden Rule. The Hamiltonians H 1 and I:IQ are
given by Hy, = T + Uy, and represent QPC dynamics when the qubit is
held fixed in state |k). The trace is over QPC states, and pg is the initial
QPC density matrix.

The evaluation of the integrand is a special case of a general prob-
lem in the extended Keldysh formalism [12]. The task is to evaluate the
trace of a density matrix after “bra’s” have evolved with a time-dependent
Hamiltonian H_(t) and “kets” with a different Hamiltonian H_ (t).

et = tr [T"’e_iffooo dt f{+(t)p07_ei Jo dtH- (t)] . (4.3)
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We implemented the scattering approach to obtain the general formula

A=trln |3 (1—f)+5,f| —trlns_. (4.4)

The operators 5+ and f have both continuous and discrete indices. The
continuous indices refer to energy, or in the Fourier transformed represen-
tation, to time. The discrete indices refer to transport channel space. The
operators §+ = §4(t)6(t — t’) are diagonal in time. The time-dependent
scattering matrices §4(t) describe scattering by the Hamiltonians ﬁi(t)
at instant ¢. (It is the hall-mark of the scattering approach to express
quantities in terms of scattering matrices rather than Hamiltonians.) The
operator f = f (E)0(E — E') is diagonal in the energy representation. The
matrix f (E) is diagonal in channel space, representing the individual elec-
tron filling factors in the different channels. A derivation of Eq. (4.4) is
given in Chapter 2 of this thesis. It generalizes similar relations published
in Refs. [13, 14].

In order to apply the general result to Eq. (4.2), the time-dependent
scattering matrices §4(t) are chosen as 54 (t) = 81 +0(t — 7)0(—t)(82 — 51)
and §_ = §;. The QPC scattering matrices §1(S2) with the qubit in the
state 1(2) are the most important parameters of our approach.

Without a bias-voltage applied, the QPC-qubit setup exhibits the
physics of the Anderson orthogonality catastrophe [15]. For the equilib-
rium QPC, the problem can be mapped [13] onto the classic Fermi Edge
singularity (FES) problem [16, 17, 18]. In effect the authors of Ref. [13]
computed A in equilibrium. Our setup is simpler than the generic FES
problem since there is no tunneling from the qubit to the QPC. As a re-
sult, out of all processes considered in Ref. [13], we only need the so-called
closed loop diagrams. The relevant part of the FES result for our setup

is an anomalous power law ng) (e) = 9(—5)% ( E‘flo)a for the equilibrium

rate. Here E.,. is an upper cutoff energy. The anomalous exponent « is
Tr In?(3%4;)|. The
logarithm is defined on the branch (—, 7. For a one or two channel point
contact, 0 < o < 1.

determined by the eigenvalues of §;§1 [19] as a = ﬁ
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4.3 Results

We now give the details of our calculation for the rates out of equilibrium.
From Eq. (4.2) and Eq. (4.4) it follows that

Ty (e) = |42 /_  dr e~ Det QW) (7). (4.5)

For positive times 7, the operator Q(V)(7) is defined as [13]
QW)(r) =1+ (858 — DII(r) fV), (4.6)

while for negative 7, Q) (r) = Q) (—7)! The time-interval operator
(7)) = 6(t — t)0(t)0(r — t) is diagonal in time and acts as the identity
operator in channel space for times t = ¢’ € [0, 7] and as the zero-operator
outside this time-interval.

For the purpose of numerical calculation of the determinant we have
to regularize Q(V) (7). This is done by multiplying with the inverse of the
zero-bias operator to define a new operator Q(7) = Q© (r) - QW) (7). Tts
determinant is evaluated numerically. The rate I's1(¢) at bias voltage V
is then expressed as the convolution T'y; () = [ ET5i(e — &/)P(¢') of the
equilibrium rate and the Fourier transform of P(7) = Det QV)(7), that
contains all effects of the bias voltage V.

We implemented this calculation numerically, and computed the prob-
ability ps to find the qubit in state |2). Details about the numerics can
be found in Appendix 4.A Our main results are presented in Fig. (2). We
used 2 x 2 scattering matrices parametrized by 55 5] = exp(i¢o,) and
repeated the calculation for several ¢ € [0,7]. Small ¢ corresponds to
weak coupling. The curve at ¢ = 7/16 is almost indistinguishable from
the perturbative weak coupling limit discussed in the introduction. Cusps
at eV indicate that qubit switching is accompanied by the transfer of
single electrons in the QPC.

The increasing decoherence smooths the cusps for the curve at ¢ = 7 /4
(2b). When the coupling is increased beyond ¢ = 7/2 steps appear at
+eV/2 (c¢). Further increase of the coupling results in a sharpening of the
steps (d).

Let us now briefly consider the limit of strong coupling where the qubit

significantly affects the scattering in many QPC-channels. In this case,

P(E) is approximately a Gaussian, P(E) X exp (—ﬁ) with § a large
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Probability, ps

0.5

‘ ‘ ‘ i ‘ 0.0 : ‘ ‘
15 -05 0.5 15 -15 -05 0.5 15
Level splitting, ¢ [eV]

Figure 4.2. The probability py that the qubit is in state |2) vs. level splitting
e. At weak coupling between the QPC and qubit, (Fig. a, b) the transfer of a
single electron gives rise to cusps in py at £eV. Peculiarities at +eV/2 (Fig. ¢, d)
dominate the signal at strong coupling. Scattering matrices were parametrized
as stated in the text. Fig. a, b, ¢ and d respectively correspond to ¢ = 7/16,
/4, Tr/10 and 47 /5.

dimensionless number proportional to the number of channels. The inter-
pretation of this is that electron fluctuations in the QPC affect the qubit
level splitting. The typical fluctuation induced is de ~ eV+/B. The fre-
quency scale of the fluctuations is eV which is small compared to de. The
fluctuations are therefore quasi-stationary. Their distribution are Gaussian
by virtue of the central limit theorem. This leads to a pseudo-thermal
polarization pa = 1/(1 + exp(e/kpT™*) where the effective temperature
kpT* = 2+/3/aeV is of the order of eV. The constant ( is evaluated
from numerics. For example, for N > 1 identical channels with scattering
matrices exp(igo,) and ¢ = 37/4 we find § ~ N/7 and effective tempera-
ture ~ 0.36eV. The added decoherence inherent in a many-channel QPC
smooths out all peculiarities. Details of the calculation are presented in
Appendix 4.B.



82 Chapter 4. Polarization of a charge qubit strongly coupled. ..

Y

Eigenvalues

T [27/eV]

Figure 4.3. The behavior of eigenvalues (a) and the determinant P(7) (b) at
weak and strong QPC-qubit coupling respectively. The parameter ¢ in equals
47 /5 (top) and /16 (bottom) representing the strong and weak coupling limits
respectively. Deviations from the correct asymptotics are due to finite size effects.
Figure (b) contains the second derivative of P(7) = Det Q) (7)"*Q() (7). (The
second derivative is taken to remove an average slope and curvature.)

4.4 Discussion

Let us speculate about the origin of the e = eV//2 peculiarities. It would
have been easy to explain peculiarities at e = neV, n = 2, 3, 4, ... in ps(e)
as resulting from the transfer of multiple electrons. But for fractional
peculiarities we have to turn to an indirect analogy with the model of
interacting particles on a ring threaded by a magnetic flux [11|. There,
one expects that the energy eigenvalues are periodic in flux with period of
one flux quantum. However, the exact Bethe-Ansatz solution [11] reveals
a double period of eigenvalues with adiabatically varying flux.

For our non-equilibrium setup, energy eigenvalues are not particularly
useful. The natural eigenvalues to describe the phenomenon are those
of the operator Q(V) (7). They depend on the parameter eV 7 which is an
analogue of flux. The product of the eigenvalues, i.e. the determinant P(7)
is not precisely periodic in 7 since it decays at large 7 owing to decoherence.
Still, it oscillates and the period of these oscillations doubles as we go
from weak to strong coupling (Fig. 3b). The doubling can be understood
in terms of the transfer of the eigenvalues of Q(Y)(7) upon increasing 7
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(Fig. 3a) assuming the parametrization §,'4; = exp(i¢o,): In the large
7 limit, energy-time uncertainty can be neglected in a “quasi-classical”
approximation: The operator f[(T) projects onto a very long time interval,
and is replaced by the identity operator. Q") becomes diagonal in energy.
All eigenvalues that are not equal to 1 are concentrated in the transport
energy window 0 < F < eV where the filling factors in the QPC reservoirs
are not the same. For 55 13, parametrized as above, these eigenvalues
equal cos(¢). There are eV 7 /27 of them. In other words, the number of
eigenvalues equal to cos ¢ grows linearly with 7. Numerical diagonalization
of QV)(r) (Fig. 3a) shows that one eigenvalue is transferred from 1 to
cos(¢) during time 27/eV. If cos(¢) > 0 as in the weak coupling case
(bottom of Fig. 3 b), this gives rise to P(7) oscillations with frequency
eV /27 manifesting integer charges. However cos ¢ becomes negative at
stronger couplings, so that P(7) changes sign with each eigenvalue transfer
[Fig. 3b (top)]. Two eigenvalues have to transfer to give the same sign.
The result is a period doubling of the oscillations in P(7). This resembles
the behavior of the wave vectors of the Bethe-Ansatz solution in Ref. [11].

The parametrization of the §£§1 = exp(i¢o,) is not general. However,
the eigenvalue transfer arguments help to understand general scattering
matrices. Eigenvalue transfer still occurs at frequency eV/2m but instead
of traveling along the real line, eigenvalues follow a trajectory inside the
unit circle in the complex plane. Peculiarities at fractional level splittings
eV /2 are pronounced if the end point of the trajectory has a negative real
part. Numerical results for general scattering matrices are presented in
Appendix 4.C.

Results presented so far are for “spinless” electrons. Spin degeneracy
is removed by e.g. high magnetic field. If spin is included, but scatter-
ing remains spin independent, then two degenerate eigenvalues are trans-
ported simultaneously. In this case, the eV//2 peculiarities disappear for the
parametrization exp(i¢o,) but persists for more general scattering matri-
ces. The results of further numerical work that confirm this are presented
in Appendix 4.D.

4.5 Conclusion

We have studied a quantum transport setup that can easily be realized
with current technology, namely that of a quantum point contact coupled
to a charge qubit. The qubit is operated as a measuring device, its output
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signal — the polarization po — is directly seen in the QPC current. When
the qubit is weakly coupled to the QPC, the dependence is dominated
by processes where a single QPC electron interacts with the qubit. For
intermediate couplings, the dependence shows peculiarities at level split-
tings +eV//2. These peculiarities are the result of many-body correlations
induced in the QPC by qubit switching. Decoherence destroys these pecu-
liarities in the limit where the qubit couples many QPC channels, leading
to a pseudo-Boltzmann polarization with effective temperature ~ eV

Appendix 4.A Numerical method

In this section we give a more detailed account of the numerical calculation
of the qubit tunneling rates I'12(¢) and I's1(e) than is presented in the
main text. Our starting point is Eq. (7) of the main text. In order to
discuss qubit transitions from |1) to |2) as well as the reverse transition
simultaneously, we change notation slightly. In what follows, indices ¢
and f refer to the initial and final state of the qubit respectively. We
consider “forward” transitions (f,7) = (2,1) and “backward” transitions
(f,4) = (1,2). The central object of numerical work is the operator

A 815, — —7)fV) T
dwﬁy_{1+<if DI fOE) 7 <0 )

We recall that the matrices 5; and 8y are the scattering matrices of QPC
electrons when the qubit is in state ¢ or f. II(7) is a time-interval operator,

1 o<t<r

0 otherwise (4.8)

MU = 3t — )i {

fV) (EF) is diagonal in energy. It contains the filling factors of QPC-
electrons in the various channels, including any bias voltage that may
be present. Its form in the time-basis (at zero temperature) is given below
in Eq. (4.15). The operator Q?Z/) (7) has an infinite number of eigenvalues
outside the neighborhood of 1 in the complex plain. This implies that a
regularization of the determinant is needed. Indeed, if one naively assumes
the unregularized determinant to be well-defined and possessing the usual
properties of determinants, such as Det(AB) = Det(A)Det(B), one may

show that [Det QS}Z/)(T)}* = Det QS{) (7). Were this true, it would have
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implied that I'12(¢) = I's1(¢). This cannot be correct. At low tempera-
tures, the qubit is far more likely to emit energy than to absorb it, meaning
that one of the two rates should dominate the other.

Regularization is achieved by multiplying with the inverse of the equi-
librium operator. The operator Q () = QSCOZ.) (7’)_16??;)(7') only has a
finite number of eigenvalues for finite 7 that are not in the neighborhood
of 1, and so its determinant can be calculated numerically in a straight-
forward manner. (In this expression, Qgg) (1) is the operator @@ when the
QPC is initially in equilibrium, i.e. the bias voltage V is zero.) We there-
fore proceed as follows: We define

P(r) = Det | Q5! (1) Q8 ()] (49)

and P(e) = [ dr €7 P(7) as its Fourier transform. The equilibrium rate
I‘?}(s) is known from the study of the Fermi Edge singularity. It is

&7

! , (4.10)

T°%(e) = |7[20(—c 1) — | —
e = |y <ef>|€"Ew

where ep; = ¢ if (f,i) = (2,1) and e5; = —¢ if (f,4) = (1,2). Furthermore
E. . is a cut-off energy of the order of Fr and

B 1
472

The logarithm is defined on the branch (—m,7]. With the help of these
definitions we have

a (ﬁ m*(5h8)]

(4.11)

d{-:/ eq/ /\ D /
Iy = %Fﬁ(e )P(e—¢), (4.12)

where our task is to calculate P(e) numerically.

The operator Qg‘l/) (1) will be considered in the time (i.e. Fourier trans-
form of energy) basis. We restrict ourselves to the study of single channel
QPC’s, in which case the scattering matrices §; and §o are 2 X 2 matrices
in QPC-channel space. We work in the standard channel space basis where

8 = < Tkt > (4.13)

/

with ¢, ¢’ the left and right transmission amplitudes and r, 7’ the left and
right reflection amplitudes. Because II(7) is a projection operator that
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commutes with the scattering matrices, we can evaluate the determinant
in the space of spinor functions 1 (t) defined on the interval ¢ € [0,7]. (We
consider 7 > 0.) Then

@] 0=+ 6 -0 [CaFOe- ), @)

M = /(;_fe—iEt < H(BE) H(eVO_ . >

i (1—=6,\ eV 1
_ , 4.15
ot +i0t) ( 2 > ot (4.15)

where

is the Fourier transform of the zero-temperature filling factors of the reser-
voirs connected to the QPC and 07 is an infinitesimal positive constant.
Discretization of this operator proceeds as follows. We choose a time step
At < 7 such that N = 7/At is a large integer. We will represent le/)(T)

(and Qg? (1)~1) as 2N x 2N dimensional matrices. We define a dimension-
less quantity 7 = eV At. P(r) can only depend on 7 in the combination
TeV because there are no other time- or energy scales in the problem. We
will therefore vary 7 by keeping N fixed and varying n. Using the identity

1 1 )
m =P <Z> + ZF(S(t), (416)
we find a discretized operator
.\ 1
1+ (818 — DITF| =6+ (818 — 1) |Lo 1-6
+ (8551 — 1) f} ; o+ (8581 )[2 ot = k:)( kl)

1—6,( n ell=kn _ 1
5 (%&el + m(l — o) | |- (4.17)

nonequilibrium correction

To test the quality of the discretization as well as its range of validity
we do the following. When §;§1 is close to identity, we can calculate
P(T) perturbatively, both for the original continuous operators and for its
discretized approximation. If we take §£§1 = €% then to order ¢ we

find

Poont. (1) =1+2 <2£>2 /ON PG Yy (4.18)

T 22
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where 7 = Nn/eV for the continuous kernel while for the discretized ver-
sion we find

2 N—-1
¢ > cosem =L (419)

Pise.(m) =1+2 (% 2

¢=1

which indicates that the range of validity is n < 2.

In practice we take N = 28. Larger N would demand the diagonaliza-
tion of matrices that are too large to handle numerically. We find results
suitably accurate up to = /4, thereby giving us access to P(r) for
|| € [0,647/eV].

To summarize, the procedure for calculating the transition rates I'o;
and Flg is

1. For given scattering matrices §; and &, calculate P(7) numerically

using the discrete approximations for the operators QS{)(T) and
) g%) (7). Use a fixed large matrix size, and work in units [r] = [eV] 1.

Generate data for many positive values of .

2. Extend the results to negative 7 by exploiting the symmetry P (1) =
P(—7)*, and Fourier transform the data.

3. Form the convolutions of Eq. 4.12 with the known equilibrium rates
to obtain the non-equilibrium rates.

Appendix 4.B Many channels

To understand the behavior of the system when the QPC has many chan-
nels, the starting point is to consider the transfer of eigenvalues that make
up the determinant P (7). For an N channel QPC, N eigenvalues are simul-
taneously transferred to positions inside the unit circle in a time 27/eV .
The initial velocity of each eigenvalue is zero, so that for small times 7,
P(7) is a Gaussian with peak-width ~ 1/v/N. For many channels, it is
therefore sufficient to consider small times only 7 <~ 1/ VNeV, leading
to

B 2
P(e) xx exp <—W> , (4.20)

with § proportional to the number of channels, and thus large. As ex-
plained in the main text, this can be understood as the result of quasi-
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stationary Gaussian fluctuations of the qubit level splitting, induced by
electron fluctuations in the QPC.
The expression for the qubit switching rate then reads

I'(—¢) x /000 de’ &' exp (—%) . (4.21)

The Fermi-edge Singularity exponent « also scales like the number of chan-
nels, and is therefore large. We will now show that it is sufficient to do
the integral in the saddle point approximation. First we find the maximal
value of the integrand in the interval &’ € [0, c0),

€ g2
Eopt = 5 + Z + aﬁ(eV)2 (422)
Then we rewrite

oo () oo )

w2 0 (_)k—l w
X exp W—akzzz ’ < > , (4.23)

3 opt

'

with € = g5pt +w. The term marked by the underbrace can be neglected.
The reason is that eqpt is of the order /afBeV ~ NeV while the Gaussian
term cuts of the w integral at w ~ /BeV ~ /NeV. Consequently one

finds

_ 2
I'(—¢) x exp [—% + aln (sopt)} , (4.24)

where it should be remembered that e,p; depends on €. In order to cal-
culate the polarization ps(e) we need to know I'(¢) and I'(—¢) for those
energies € where the one rate does not dominate the other. If we set

s = EZ + af(eV)?, (4.25)
then we find
I(-e) _ ox [ 5 ol (23—1—5)}
T(e) P Bev)e 2% — ¢

~ exp [2@%] +0O (%) . (4.26)
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The last line was obtained by expanding in N~! and recalling that «, 3 ~
N. The polarization ps(e) is then given by

1
1 + exp(2y/a/Be/eV)’

p2(e) (4.27)

which is identical to the polarization of a qubit coupled to a reservoir at

temperature 2,/5/aeV .

Appendix 4.C Choice of scattering matrices

Nonequilibrium correction, P

-1 o B -
Level splitting, € [eV]

Figure 4.4. The function P(c) that contains the effect of the bias

voltage V. As explained in the text, §;§1 was parametrized as in Eq. (4.29).

A value ¢ = § is used throughout. The values of 6 in (a), (b), (c) and (d) are

respectively &, %, 27” and %’T. When 6 < 7/2, then P(¢) has a fairly symmetric
peak centered at —eV6/2m. The tails of this peak vanish at ¢ ~ (—60/27 £ 1)eV.
When 6 > /2, there are two asymmetric peaks at —eV8/2m and (1 — 6/2m)eV.
The value of P(e) is significantly larger for e € [—eV6/2x, (1 — 6/27)eV] than

outside this interval.

In the main text we confined our attention to the one parameter family
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of scattering matrices

§£§1 _ < cos¢ ising > . (4.28)

ising coso

For this choice, P(7) is a real function of time. For § < /2 its fluctuations
are associated with energies ~ +eV” due to the transfer of eigenvalues from
1 to cos ¢ at a rate of one per h/eV. For ¢ > 7 /2 however, cos ¢ is negative
and two eigenvalues have to be transferred before the sign of P(7) returns
to its initial value. The period of fluctuations of P(7) doubles and becomes
associated with energies £eV/2. Because P(7) is real, the fluctuations with
positive and negative energies are equal: P(e) = P(—¢). This translates
into the following feature of the probability ps to find the qubit in state |2).
For ¢ < m/2, pa(e) changes from 1 to 0 in an energy interval of length 2eV'.
For ¢ > 7/2, this interval shrinks to eV. The boundary of the interval is
defined more sharply the closer ¢ is to 0 or 7, where decoherence happens
slowly.

Since the QPC scattering matrices contain parameters that are not
under experimental control, it is relevant to ask how the results are altered
when a more general choice

—0 .
§£§1 _ < e Wcosp ising >7 (4.29)

ising  e?cos¢

with ¢ € [-7, 5] and 6 € [0, 7] is made for the scattering matrices. With
this choice, eigenvalues travel from 1 to e? cos ¢ at a rate of one per h/eV.
This means that the period doubling of ]3(7') no longer takes place. The
phase of P(7) does not return to its original value after the transfer of two
eigenvalues. Rather, one expects fluctuations associated with an energy
(n — %)eV, n = 0,+1,+2,... Because P(7) is no longer real, positive
and negative frequencies don’t contribute equally. However, while the
eigenvalue trajectories lie close to the real line, one can expect results
similar to those obtained for real P(7). We obtained numerical results for
four scattering matrices of the form (4.29). We chose 6 = %71‘, %71‘, %77 and
%71. To sharpen abrupt features we chose ¢ = 7/9 so that the exponential
decay of P(7) is associated with a long decoherence time: ~ 0.06h/eV .
As depicted in Fig. (4.4), we found P(e) to behave as follows. For 6 close
to zero, P(e) consists of one peak situated at e = —%eV. The tails of
this peak vanish at € = (:l:l — %) eV. The closer to zero that 6 is taken,
the more abrupt this behavior of the tails become. As 6 is increased, a



4.C Choice of scattering matrices 91
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Occupation probability, po

0.0

T 0 1 -1 0 1
Level splitting, € [eV]

Figure 4.5. The qubit polarization py(c). 853, is chosen as in Fig. (4.4):
A value ¢ = § is used throughout. The values of 6 in (a), (b), (c) and (d) are
respectively &, %, %’r and %’r. When 6 < /2, the occupation probability py is
significantly different from its asymptotic values 0 and 1 in an ¢ interval of 2eV.
When 6 > 7/2, this interval shrinks to eV. The boundaries of the interval are
more sharply defined the closer 6 is to 7/2.

second peak starts appearing at € = (1 — %) eV. When 6 = 7, the height
(and width) of this peak exactly equals that of the peak at —%eV. In
the interval € € [—%eV, (1 - %) eV] that is bounded by the peaks, P(7)
is significantly larger than in the region outside the peaks. This behavior
of P(¢) translates into the occupation probabilities ps(e) depicted in Fig.
(4.5). For 8 < 7/2, pa(e) still changes from unity to zero in an interval
of length 2eV while for # > 7/2 the interval shrinks to eV. The closer 6
moves to 0 or m, the sharper the interval becomes defined. We therefore
conclude that the peculiarities reported on in the main text is not confined
to the special choice (4.28) of scattering matrices.
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1.0

0.5

Occupation probability, ps

0.0

T 0 1 -1 0 1
Level splitting, & [eV]

Figure 4.6. The probability ps(¢) with spin included. 5551 is chosen as in
Fig. (4.4) and (4.5): A value ¢ = § is used throughout. The values of 6 in (a),
(b), (c) and (d) are respectively Z, Z, 2% and 3Z. The eV/2 peculiarities are
still clearly visible for > 7/2.

Appendix 4.D Inclusion of spin

Up to this point we have considered spinless electrons in the QPC. In this
section we investigate the effect of including spin. We still take the interac-
tion between the QPC and the qubit to be spin independent. However, the
mere existence of a spin degree of freedom for QPC electrons doubles the
dimension of channel space. The narrowest QPC now has two channels in
stead of one and ]55:%(7') = P,o(7)?, i.e. the determinant ]58:%(7') with

spin included is the square of the determinant ]53:0(7') without spin. For
real determinants, squaring kills the phase. This means that the observed
period doubling for the parametrization of Eq. (4.28) disappears and with
it the ¢ = eV/2 peculiarities of ps. However, the peculiarities survive for
more general scattering matrices due to the fact that, for 6 # 0, ]53:0(6)
has two peaks with different heights. Suppose the relative peak heights
are A and 1 — A, i.e.

. 0 0
Poeo(7) ~ (1 — A)e'2m VT 4+ Ae~ 720V, (4.30)
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where A is a real number between 0 and % (A = 0 corresponds to § =0

while A = } corresponds to § = m.) It follows that P_1(c) has three
S:§
peaks at

1. e = —2£eV with height (1 — A)2,
2. ¢ = (1—2L) eV with height 24(1 — A),
3. and € = (2 — 2%) eV with height A2

As long as A is small, i.e. 6 is not too close to m, the first two peaks
will dominate the third, and the signature eV/2 peculiarities may still
be observable in po(e). Fig. (4.6), contains ps calculated for the same
scattering matrices as in Fig. (4.5), but with spin included. The cases
when 0 = %77 and 6 = %77 still contain clear peculiarities. For 8 very close
to 7 (not shown) these features disappear.
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Chapter 5

Ballistic transmission through
a graphene bilayer

5.1 Introduction

Undoped graphene has no free electrons, so an infinite sample cannot con-
duct electricity. A finite sample can conduct, because electrons injected
at one end can be transmitted a distance L to the other end via so-called
evanescent modes. These are modes that decay o e %/* with a penetra-
tion depth A bounded from above by the width W of the sample. For
a wide and narrow sample (W > L), there are many evanescent modes
that contribute appreciably to the conductance. Because the transmission
of an electron via an evanescent mode is a stochastic event, the current
fluctuates in time — even in the absence of any scattering by impurities
or lattice defects. Tworzydlo et al. [1] found that the shot noise produced
by the evanescent modes in an undoped carbon monolayer (of length L <«
width W) is pseudo-diffusive: The Fano factor F' = P/2el (ratio of noise
power P and time-averaged current I) has the same value F' = 1/3 as in
a diffusive metal (while F' =1 for independent current pulses) [2].

A carbon bilayer has an additional length scale, not present in the
monolayer of Ref. [1], namely the interlayer coupling length [, . It is an
order of magnitude larger than the interatomic distance d within the layer:
3, 4, 5
_h ﬂ d

S ~11d 5.1
t. 2t (5.1)

L

(with v ~ 10m/s, d ~ 1.4A and t| ~ 3eV, respectively the carrier ve-
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locity, interatomic distance and nearest-neighour hopping energy within a
single layer and | ~ 0.4 eV the nearest-neighbour hopping energy between
two layers [6]). Since L is typically large compared to [, the two layers
are strongly coupled. In this chapter we investigate what is the effect of
interlayer coupling on the average current and shot noise.

The model and calculation are outlined in Secs. 5.2 and 5.3. Our main
conclusion, presented in Sec. 5.4, is that an undoped graphene bilayer
has the same current and noise as two monolayers in parallel. The Fano
factor, therefore, still equals 1/3 when the Fermi level coincides with the
Dirac point (at which conduction and valence bands touch). However, the
interval AEp ~ hvl, /L? in Fermi energy around the Dirac point where
this pseudo-diffusive result holds is much narrower, by a factor [; /L, in a
bilayer than it is in a monolayer.

Our results for the mean current I, and hence for the conductance
in a ballistic system, agree with those of Cserti, [7] but differ from two
other recent calculations in a (weakly) disordered system |8, 9]. (The shot
noise was not considered in Refs. [7, 8, 9].) A ballistic system like ours
was studied recently by Katsnelson, [12] with different results for both
conductance and shot noise. We discuss the origin of the difference in Sec.
5.5. We conclude by connecting with experiments [11] in Sec. 5.6.

5.2 Model

We use the same setup as in Refs. |1, 10], shown schematically in Fig. 5.1.
A sheet of ballistic bilayer graphene in the x — y plane contains a weakly
doped strip of width W and length L and heavily doped contact regions
for # < 0 and = > L. The doping is controlled by gate voltages, which
induce a potential profile of the form

Uy if <0 or x> 1L,
U(x)_{ 0 if0<wz<L. (52)

We use an abrupt potential step for simplicity, justified by the fact that
any smoothing of the step over a distance small compared to L becomes
irrelevant near the Dirac point, when the Fermi wave length 2 L.

While Refs. 1, 10| considered a graphene monolayer, governed by the
2 x 2 Dirac Hamiltonian, here we take a bilayer with 4 x 4 Hamiltonian
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Figure 5.1. Schematic of the graphene bilayer. Left: Two stacked honeycomb
lattices of carbon atoms in a strip between metal contacts. Right: Variation of
the electrostatic potential across the strip.

3, 4, 5]
U v(pg + ipy) te 0
v(pz — ipy) U 0 0
H = . , 5.3
ty 0 U v(ps — ipy) (53)
0 0 v(pz + ipy) U
with p = —ihd/0r the momentum operator. The Hamiltonian acts on

a four-component spinor (V4,,Vp,,Up,, V4,) with amplitudes on the A
and B sublattices of the first and second layer. Only nearest-neighbor
hopping is taken into account, either from A to B sites within a layer or
between different layers. (Sites from the same sublattice but on different
layers are not directly adjacent.) The Hamiltonian (5.3) describes low-
energy excitations near one of the two Dirac points in the Brillouin zone,
where conduction and valence bands touch. The other Dirac point and the
spin degree of freedom contribute a four-fold degeneracy factor to current
and noise power.

We have taken the same electrostatic potential U in both layers. In
general, the potentials will differ, [13, 14| but to study the special physics
of undoped graphene it is necessary that they are both tuned to the Dirac
point of each layer. This can be achieved by separate top and bottom
gates (not shown in Fig. 5.1).

For free electrons in bilayer graphene, the relation between energy e
and total momentum k = (k2 + ki)l/ 2 as described by this Hamiltonian
consists of four hyperbolas, defined by

e =3t +4/3t3 + k2, (5.4a)
e=Fit, £4/32 + k2, (5.4b)
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plotted in Fig. 5.2. (For notational convenience, we use units such that
hv =1 in most equations.)

L TR I N L 0y L
0.0 0.5 1.0 1.5 2.0 25
k [tl/fw]

Figure 5.2. Energy spectrum (5.4) of the graphene bilayer, according to the
Hamiltonian (5.3).

We calculate the transmission matrix ¢ through the graphene strip at
the Fermi energy, and then obtain the conductance and noise power from
the Landauer-Biittiker formulas [2]

G =Gy Trtt’, P = PyTrit'(1— tth), (5.5)
Tretf(1 — ttf
— L, (5.6)
Tr ttf

with Gg = 4e?/h, Py = 2e|V|Gy and V the voltage applied between
the contact regions. The results depend on the degree of doping in the
graphene strip (varied by varying Ef), but they become independent of
the degree of doping of the contact regions if Uy, >t .
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5.3 Transmission probabilities

We calculate the transmission matrix by matching eigenstates of the
Hamiltonian (5.3) at the two interfaces + = 0 and = = L. This proce-
dure is similar to a calculation of non-relativistic scattering by a rectan-
gular barrier in a two-dimensional waveguide. There are two differences.
Firstly, the Hamiltonian (5.3) is a first-order differential operator, and
hence only the wavefunction and not its derivative is continuous at the in-
terface. Secondly, the spectrum contains both positive and negative energy
eigenstates.

The eigenstates of H for U = 0 have been given in Ref. [13]. They may
be characterized as follows. For given energy € and transverse momentum
ky, we define two longitudinal momenta

hos = /(e £ 311)? - 163 — k2. (5.7)

The square root is taken with argument in the interval [0, 7). Associated
with each real k., there are two propagating modes, one left-going gbé i
and one right-going gbg .. Two more propagating modes ¢£ _and qbf,_ are
associated with each real k,_. The eigenstates of H are

Fe
:Fk:c:l: + iky
e
kyt +iky
Fe
tkyq £ iky
S
—kzt + ik,

¢ (2,y) = N gilkezathyy) (5.8a)

¢5L¢(1’7 y) = Nt ¢! hozathyy) (5.8b)

1
with Ny = (4Weky1) 2 a normalization constant such that each state

carries unit current
w
_ 1 O 0
I ev/o dy¢<0 ax>¢’ (5.9)

in the positive or negative z-direction.
For each k, we have two left-incident scattering states 1. + at energy
€. In the region x < 0 to the left of the strip they have the form

Ve = OF y + + (e k)8 +rE(e kol (5.10)
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while to the right of the strip (x > L) one has

Vet =t (e, ky) @l 4+ (e hy) 0 (5.11)

For & # 0 the form of the solution in the region x € [0, L] is self-evidently
a linear combination of the four solutions ¢, , ¢, . Care must however be
taken in analytical work to use proper linear combinations of these modes
that remain linearly independent exactly at € = 0 (the Dirac point). (See
Appendix 5.A explicit formulas.)

The four transmission amplitudes 3 for given ¢ and k, can be com-
bined in the transmission matrix

_ th(eky) th(e,ky) >
ek = (FO0 o ) (512)
We consider a short and wide geometry L < W, in which the boundary
conditions in the y-direction become irrelevant. For simplicity, we take
periodic boundary conditions, such that &, is quantized as k, , = 2mn/W,
n = 0,£1,42,.... In the regime L < W, |¢| < Uy considered here,
both the discreteness of the modes in the contact region can be ignored.

As a consequence, the traces in Eqgs. (5.5) and (5.6) may be replaced by
integrals through the prescription

Tr (tth)? —>—/ dk, Z o (B, k)P, (5.13)

where T are the two eigenvalues of ¢!,

5.4 Results

Fig. 5.3 contains a grey-scale plot of the total transmission probability
Tr(tt") as a function of k, and e. Darkly shaded regions indicate reso-
nances of high transmission, similar to those found in Ref. [15].

The location ee5 of resonances can be estimated by equating k, L/ to
an integer n. This yields the curves

™ 2
elw)(ky) = Fhto + \/ﬁti + () +#, (5.14)

indicated in the figure by dashed lines. It is seen that good agreement is
reached for |k,| < 1/L and again for |k,| > 1/L. For |k,L| ~ 1 there is
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Figure 5.3. Total transmission probability Tr(¢t") as a function of € and ky for
Usx = 50t; and L = 501;. Darkly shaded regions indicate high transmission.
Grey dashed lines indicate the estimate (5.14) for the occurrence of resonances in
regions (a) and (b), while solid lines indicate the boundary between propagating
and evanescent modes. Arrows point to the resonances of evanescent modes close
to the Dirac point, responsible for the pseudo-diffusive transport.

a cross over. In regions (c) and (d), demarkated by the curves gﬁgg, the
transmission generally drops to zero, since in these regions the longitudinal
momentum k, is imaginary.

There is however a curious feature close to €,k, = 0. The resonance
closest to the Dirac point behaves differently from all the other resonances.
When |k, | is increased, it moves closer to the Dirac point rather than away
from it, eventually crossing into regions (c) and (d) of evanescent modes.
It is this resonance of evanescent modes that is responsible for the pseudo-
diffusive transport at the Dirac point.

At e = 0, the exact formula for the eigenvalues of tt' in the Uy, — oo
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Figure 5.4. Solid curves: Transmission coeflicients Ty of the bilayer according to
Eq. (5.15) at L =501, . These coefficients are displaced copies of the monolayer
result (dashed).

limit is
To(e = 0,ky) = ! (5.15)
T cosh2(ky F ko)L '
]. . -1 L
kc = Zsmh <m> . (516)

In Fig. 5.4 the two transmission coefficients T4(0,k,) are compared to
the single transmission coefficient Tionolayer (0, ky) = 1/ cosh2(kyL) of the
monolayer [1, 10]. Details of the calculation may be found in Appendix
5.A.

Since the two bilayer coefficients are displaced copies of the monolayer
coefficient, any observable of the form A = Tr f(tt!), with f an arbitrary
function is twice as large in a bilayer as it is in a monolayer. From Egs.
(5.5) and (5.13) we obtain

2Go W

Gbilayer = 2G'monolayer = 70f7 (517)
4e|V|Go W

Pbilayer = 2Pmonolayer = %77 (518)

1
Fbilayer = L'monolayer — 3- (519)
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Figure 5.5. Conductivity o (top) and Fano factor F' (bottom) of the bilayer, as
a function of the Fermi energy Er measured from the Dirac point for U, = 50t
and L = 501, . Abrupt features occur at Ep ~ e§35) (ky = 0) [vertical lines, given
by Eq. (5.20)].
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Figure 5.5 contains plots of both the conductivity ¢ = GL/W and
Fano factor of the bilayer around the Dirac point. At energies associated
with resonances at normal incidence,

2 h li

eM(0) =+ |7

{n) n?+ 0L /L)*|, (5.20)
the conductivity and Fano factor show abrupt features. The width AEr =
255};2 = 27%hvl, /L? of the energy window between the resonances that
straddle the Dirac point in the bilayer is smaller by a factor [, /L than in
the monolayer.

5.5 Dependence on the potential in the contact
region

So far we have assumed that the potential Uy, in the contact region is large
compared to the band splitting ¢ near the Dirac point of the graphene
bilayer. We believe that this is the appropriate regime to model a normal
metal contact to the graphene sheet, which couples equally well to the two
sublattices on each layer.

It is of interest to determine how large the ratio Uy /t; should be to
reach the contact-independent limit of the previous section. Note that for
Usx > t) there are two left-incident propagating modes in the leads for
each € and ky. When Uy, becomes smaller than ¢; one of the two modes
becomes evanescent, leading to an abrupt change in the conductivity and
the Fano factor. This is evident in Fig. 5.6. For Uy, — ¢ g hv/L, the con-
ductivity and Fano factor have almost reached their Uy, — oo limits. For
Uso <ty the conductivity is smaller and the Fano factor larger than when
Us > t;. Both quantities vanish when the Fermi momentum /Ut /v
in the contact region drops below h/L and the contact region is effectively
depleted of carriers.
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Figure 5.6. Dependence of the conductivity and Fano factor at the Dirac point
on the potential Uy, in the contact region, for L = 100 [, . Thin horizontal lines
indicate the values of Ref. [12]. The values obtained in this chapter correspond

to a plateau reached for Uy /t ) 1.
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These finite-U,, results can be used to make contact with the previous
calculation of Katsnelson [12], who found a conductivity o = G¢/2 and
a Fano factor F' = 1 — 2/m at the Dirac point, in the regime hv/L <
VUt < t). These values are indicated in Fig. 5.6 by horizontal lines.
The intersection point with our curves occurs at nearly the same value of
Uso/t. for both quantities. The intersection point moves closer and closer
to Us = 0 as the sample length L is increased, but there is no clear plateau
around the intersection point. Moreover, as shown in the Appendix, the
intersection point does not correspond to a minimum or maximum as a
function of the Fermi energy, so that these values would be difficult to
extract from a measurement.

We do believe that the results of Ref. [12] describe the asymptotic
limit L/l — oo at Erp = 0, however, because in this limit the width
AFEp ~ hvly /L? of the resonance at the Dirac point vanishes, it seems
unobservable.

5.6 Conclusion

In conclusion, we have demonstrated that the pseudo-diffusive transport
at the Dirac point, discovered in Ref. [1] for a carbon monolayer, holds in
a bilayer as well. All moments of the current fluctuations have the same
relation to the mean current as in a diffusive metal. In particular, the Fano
factor has the 1/3 value characteristic of diffusive transport, even though
the bilayer is assumed to be free of impurities or lattice defects.

Although we found that an undoped bilayer transmits as two undoped
monolayers in parallel, the two systems behave very different away from
charge neutrality. The resonance of evanescent modes around the Dirac
point of zero Fermi energy has width AEr ~ hvl /L? in a bilayer, which
is smaller than the width in a monolayer by the ratio of the interlayer
coupling length [, and the separation L of the metal contacts.

Since /| ~ 1.5nm, one would not be able to resolve this resonance in
the pm-size samples of Ref. [11]. These experiments found no qualitative
difference in the conductance-versus-gate-voltage dependence of monolayer
and bilayer graphene, both showing a minimum conductivity at the Dirac
point of Gg. Smaller junctions in the 10-100 nm range as are now being
fabricated should make it possible to resolve the transmission resonance
of evanescent modes predicted here, and to observe the unusual pseudo-
diffusive dynamics associated with it.
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Appendix 5.A Transmission eigenvalues

In this Appendix we give some detail of the calculation that leads to the
transmission coefficients T4 (¢ = 0, k) of Eq. (5.15). At the Dirac point
and in the limit of large U, the left-incident eigenstates of the Hamilto-
nian (5.3) are of the form

etkyy [ﬁ_@ewwz + (rf{_% + rf&f) e_iU“z] x <0,
bi(z) = ethvy [(cf)@ + cétxg) et + (c?jfxg + cffx4) e kv
O<z<lL,
ethyy gilUoo(z—L) [tf&f + tj_tﬁl_%] x> L,
(5.21)
with the definitions
F1 F1
Fl1 +1
el = , ¢k = : (5.22)
1 1
1 -1
0 0 1 0
1 —'itJ_.T 0 0
X1 = 0 ,y X2 = 1 y X3 = 0 y X4 = 0
0 0 —itJ_a: 1

(5.23)
These eigenstates must be continuous at x = 0 and « = L, leading to an
8 x 8 system of linear equations Mbi = c4 with

1 -1 0 0 1 0 0 0

-1 11 0 0 0 0 0

-1 -1 0 0 0 1 0 0

1 10 1 0 0 0 0
M=1"95 00 o0 10 oz - | O

0 0 z —ilt|z 0 0 1 -1

0 0 0 z 0 0 —1 -1

0 00 0 —iLt; 1 —z —=z

and

b:t = (7“_::3,7"%,01,CQ,C3,C4,t$7t:E)T, (525&)

c: = (¥1,71,1,1,0,0,0,0)". (5.25b)
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We abbreviated z = e#»Z. By solving these equations, one finds the trans-
mission matrix

. 21

24 (L/11)? + 2 cosh(2k, L)

< (L/l; —2i)cosh(kyL) (L/l)sinh(k,L) >
—(L/ly)sinh(kyL)  —(L/ly + 2i)cosh(k,L) )~

(5.26)

The eigenvalues of tt' are then given by Eq. (5.15).

Appendix 5.B Four- vs. two-band Hamiltonian

In this Appendix we verify that the difference in the results obtained here
and in Ref. [12] is to the different order of limits in the two calculations.In
Ref. [12] the limit ¢} — oo was taken at the beginning of the calculation,
i.e. before the potential in the leads U, was sent to infinity. This reduces
the 4 x 4 Hamiltonian (5.3) to the effective 2 x 2 Hamiltonian [4]

Herr = _g ( (pa +Oz'py)2 o _owy)2 > +U(@) ( (1) (1) > - (527)

Only the two lowest bands near the Dirac point are retained in Heg, as is
appropriate for the regime Uy, <t .

We have repeated the calculation of conductance and Fano factor using
both Hamiltonians (5.3) and (5.27), for parameter values corresponding to
the intersection point of Fig. 5.6, and find good agreement (see Fig. 5.7).
The implication is that the result of Ref. [12] is applicable in the ¢ > U
regime.
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Figure 5.7. Conductivity (top) and Fano factor (bottom) around the Dirac
point, for L = 1001, and Uy = 0.2¢,. (These parameter values correspond to
the intersection point of our curves with the prediction of Ref. [12] in Fig. 5.6.)
The solid lines were obtained using the four-band Hamiltonian (5.3), while the
dashed lines were obtained from the two-band Hamiltonian (5.27).
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Chapter 6

Valley-isospin dependence of
the quantum Hall effect in a
graphene p-n junction

6.1 Introduction

Recent experiments [1, 2, 3] have succeeded in fabricating junctions be-
tween p-doped and n-doped graphene, and have begun to investigate the
remarkable properties predicted theoretically [4, 5, 6, 7]. The conductance
G of a p-n junction measures the coupling of electron-like states from
the conduction band to hole-like states from the valence band, which in
graphene is unusually strong because of the phenomenon of Klein tunneling
[4, 5].

In the zero-magnetic field regime of Huard et al. [1] this coupling
depends on the length scales characteristic of the p-n interface. In the
high-magnetic field regime of Williams, DiCarlo, and Marcus, [2| the p-n
junction has a quantized conductance, which has been explained by Abanin
and Levitov [7] as the series conductance Gyeries = GpGrn /(Gp + Gy) of the
quantum Hall conductances G, G, in the p-doped and n-doped regions
(each an odd multiple of the conductance quantum Gy = 2¢2/h). (The
p-n-p junction experiments of Ozyilmaz et al. [3| are also explained in
terms of a series conductance.)

These results apply if the system is sufficiently large that mesoscopic
fluctuations in the conductance can be ignored, either as a consequence
of self-averaging by time dependent electric fields or as a consequence of
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suppression of phase coherence by inelastic scattering |7]. In a sufficiently
small system mesoscopic conductance fluctuations as a function of Fermi
energy are expected to appear. In particular, in the quantum Hall effect
regime, the conductance of a p-n junction is expected to fluctuate around
the series conductance Ggeries in a small conductor (nanoribbon) at low
temperatures.

In this chapter we show that a plateau in the conductance versus Fermi
energy survives in the case of fully phase coherent conduction without
intervalley scattering. When both p-doped and n-doped regions are on
the lowest Hall plateau (G = G, = Gg), we find a plateau at

G = 1Go(1 — cos @), (6.1)

with ® the angle between the valley isospins at the two edges of the
nanoribbon. A random electrostatic potential is not effective at produc-
ing mesoscopic conductance fluctuations, provided that it varies slowly on
the scale of the lattice constant — so that it does not induce intervalley
scattering. The dispersionless edge state that may exist at a zigzag edge
(and connects the two valleys at opposite edges) is an intrinsic source of
intervalley scattering when the edge crosses the p-n interface. The angle
® that determines the conductance plateau can be varied by straining the
carbon lattice, either systematically to shift the plateau up or down, or
randomly to produce a bimodal statistical distribution of the conductance
in an armchair nanoribbon.

Our analysis was inspired by an analogy between edge channel trans-
port of Dirac fermions along a p-n interface [7] and along a normal-
superconducting (NS) interface [8]. The analogy, explained in Fig. 6.1,
is instructive, but it is only a partial analogy — as we will see. We present
analytical results, obtained from the Dirac equation, as well as numerical
results, obtained from a tight-binding model on a honeycomb lattice. We
start with the former.

6.2 Analytical theory
The Dirac equation for massless two-dimensional fermions reads

T @[v(p+ed) o+ UV =EY, (6.2)

where F is the energy, v the Fermi velocity, p = (h/i)(0/0x,0/0y) the
canonical momentum operator in the z-y plane of the graphene layer, U(x)
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Figure 6.1. Schematic top view of a graphene nanoribbon containing an inter-
face between an n-doped and p-doped region (left panel) and between a normal
(N) and superconducting (S) region (right panel). Electron-like and hole-like
edge states in the lowest Landau level are indicated by solid and dashed lines, re-
spectively, with arrows pointing in the direction of propagation. The electron-like
and hole-like valley-polarized edge states hybridize along the p-n or NS interface
to form a valley-degenerate electron-hole state. The two-terminal conductance
G = GoTep is determined by the probability T.; that an electron-like state is
converted into a hole-like state at the opposite edge (with Go = 2¢2/h in the
p-n junction and G = 4e2/h in the NS junction). In the absence of intervalley
scattering, T,p, = 5(1 — cos ®), with ® the angle between the valley isospins of
the electron-like state at the two edges [8§].

the electrostatic potential step at the p-n interface (shown in Fig. 6.2), and
A the vector potential corresponding to a perpendicular magnetic field B.
The Pauli matrices o; and 7; act on the sublattice and valley degree of
freedom, respectively (with op and 7 representing the 2 X 2 unit matrix).

The Dirac equation (6.2) is written in the valley-isotropic representa-
tion, in which the boundary condition for the wave function W at the edges
of the nanoribbon (taken at y = 0, W) has the form [§]

U= -17)® (sinfo, + cosbo,)¥, (6.3)

parameterized by an angle 6 and by the three-dimensional unit vector v
on the Bloch sphere. The vector v is called the valley isospin because it
represents the two-component spinor of the valley degree of freedom [9].
An armchair edge has v - 2 = 0, § = /2 (modulo 7), while a zigzag
edge has [v - 2| = 1, § = 0 (modulo 7). Confinement by an infinite mass
has |v- 2| =1, § = 7/2 (modulo 7). Intermediate values of v- 2 and 6 are
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U

0

Figure 6.2. Potential step at the p-n interface (with the shaded area indicating
the energy range in the valence band). The electrostatic potential U(x) increases
from 0 to Uy, over a distance L around x = 0. The Fermi level at Er € (0, Uy)
lies in the conduction band for negative x (n-doped region) and in the valence
band for positive z (p-doped region).

produced, for example, by a staggered edge potential (having a different
value on the two sublattices) [10, 11]. If the edge is inhomogeneous, it is
the value of v and 6 in the vicinity of the p-n interface (within a magnetic
length I, = \/h/eB from x = 0) that matters for the conductance.

The boundary condition (6.3) breaks the valley degeneracy of quantum
Hall edge states [12, 13, 14|, with different dispersion relations E*(q) for
the two eigenstates |+ v) of v-7. (We use the Landau gauge in which A is
parallel to the boundary and vanishes at the boundary. In this gauge the
canonical momentum hq parallel to the boundary is a good quantum num-
ber.) In the n region (where U = 0) the dispersion relation is determined
by the equations [§]

fi(0) = tam(6/2), fi-(a) = —cotin (9/2). (6.42)
felq) = Hero{alm)

e — Bl he, 4b
el 1 () © fhw (6.4b)

with H,(z) the Hermite function. The dispersion relation in the p region
is obtained by E*(q) — E*(q) + Us.

The dispersion relation near the Dirac point (F = 0) is plotted in
Fig. 6.3 for three values of 6. (It does not depend on v.) For any 6 # 0
(modulo 7) there is a nonzero interval AEp of Fermi energies in which just
two edge channels of opposite valley isospin cross the Fermi level (dotted
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E [hv/l,]

Figure 6.3. Dispersion relation E*(q) according to Eq. (6.4) of edge states
near the Dirac point in the n region (solid curves) and in the p region (dashed
curves). The color of the curves indicates the valley polarization (blue: +v, red;
—v). The three panels correspond to three different boundary conditions, and
illustrate the transition from an armchair edge (leftmost panel) to a zigzag edge
(rightmost panel).

line), one electron-like edge channel from the n region (blue solid curve)
and one hole-like edge channel from the p region (red dashed curve). The
case 0 = 0 is special because of the dispersionless edge state which extends
along a zigzag boundary [15]. As 6 — 0 the interval AEp shrinks to zero,
and at # = 0 (modulo 7) the electron-like and hole-like edge channels
in the lowest Landau level have identical valley isospins. It is here that
the analogy with the problem of the NS junction [8] stops, because in
that problem the electron and hole edge channels at the Fermi level have
opposite valley isospins irrespective of 6.

The two valley-polarized edge channels from the n and p regions are
coupled by the potential step at the p-n interface. Edge states along a
potential step which is smooth on the scale of the lattice constant a are
valley degenerate [16, 17|, because an electrostatic potential in the Dirac
equation does not couple the valleys. The dispersion relation, for the case
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E [ho/l)]

Figure 6.4. Dispersion relation at the p-n interface, calculated numerically
from the Dirac equation for a step function potential profile. Each Landau level
has a twofold valley degeneracy.

of an abrupt potential step (¢ < L < l,,), is plotted in Fig. 6.4. (It is
qualitatively similar for L > [,,,.) The Fermi level now intersects with a
two-fold valley degenerate edge channel of mixed electron-hole character.

The two-terminal conductance of the p-n junction is given by [7] G =
GoTep, in terms of the probability T, that an electron incident in an
electron-like edge channel along the left edge is transmitted to a hole-like
edge channel along the right edge. We now show that this probability takes
on a universal form, dependent only on the valley isospins at the edge, in
the absence of intervalley scattering. The argument is analogous to that in
the NS junction [8], and requires that the electron-like and hole-like edge
channels at the same edge have opposite valley isospins (v, for the left
edge and +wp for the right edge) [18].

Since the unidirectional motion of the edge states prevents reflections,
the total transmission matrix tiota1 = trtpntr from one edge to the other
edge is the product of three 2 x 2 unitary matrices: the transmission matrix
tr, from the left edge to the p-n interface, the transmission matrix t,,
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along the interface, and the transmission matrix ¢t from the p-n interface
to the right edge. In the absence of intervalley scattering t,, = ey is
proportional to the unit matrix, while

tx = X[+ vx)(+ux| + 5| — vx)(—vx] (6.5)

(with X = L, R) is diagonal in the basis | £ vx) of eigenstates of vx - T.
The phase shifts ¢,,, ¢x, ¢’y need not be determined. Evaluation of the
transmission probability

Ton = [(+VL|ttotal| — VR) [ (6.6)

leads to the conductance (6.1) with cos ® = vy, - vg.

6.3 Numerical theory

G [26*/h]

-1 -0.5 0 0.5 1 1.5 2 2.5
UOO_EF [hv/lm]

Figure 6.5. Conductance of an armchair nanoribbon containing the potential
step U(x) = 1[tanh(2z/L)+1]Us, calculated numerically from the tight-binding
model in a perpendicular magnetic field (I,,, = 5a). The step height U is varied
from below Er (unipolar regime) to above Er (bipolar regime), at fixed Ep =
hw/ly and L = 50a. The solid curves are without disorder, while the dashed
curves are for a random electrostatic potential landscape (Ko = 1, £ = 10a).
The number A of hexagons across the ribbon is 97 (red curves), 98 (blue), and

99 (green). The dashed horizontal line marks the plateau at G = 1 x 2e2/h.
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Figure 6.6. Same as Fig. 6.5, for the case of a zigzag nanoribbon (N = 114 for
the green curves and 115 for the red curves).

To test the robustness of the conductance plateau to a random elec-
trostatic potential, we have performed numerical simulations. A random
potential landscape is introduced in the same way as in Ref. [19], by ran-
domly placing impurities at Vi, sites IR; on a honeycomb lattice. Each
impurity has a Gaussian potential profile U; exp(—|r — R;|?/2¢2) of range
¢ and random height U; € (—9,d). We take £ equal to the mean separa-
tion d of the impurities and large compared to the lattice constant a. The
strength of the resulting potential fluctuations dU(r) is quantified by the
dimensionless correlator

A 1 Not
Ko = (o) N2, > (0U(ry)sU (ry)), (6.7)
tot ij=1

where the sum runs over all Ny lattice sites r; in a nanoribbon of area
A.

Results are shown in Figs. 6.5 and 6.6 for an armchair and zigzag
nanoribbon, respectively. The angle ® between the valley isospins at two
opposite armchair edges depends on the number N of hexagons across
the ribbon: ® = 7 if A/ is a multiple of 3, |®| = 7/3 if it is not [20].
Fig. 6.5 indeed shows that the conductance as a function of Uy, — Ep
switches from a plateau at the ®-independent Hall conductance G in the
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unipolar regime (Uy, < Ep) to a ®-dependent value given by Eq. (6.1)
in the bipolar regime (Usx, > EF). The plateau persists in the presence
of a smooth random potential (compare solid and dashed curves in Fig.
6.5). By reducing the potential range we found that the plateaus did not
disappear until £ < 3a (not shown).

As expected in view of the intervalley scattering produced by the dis-
persionless edge state in a zigzag nanoribbon, no such robust conductance
plateau exists in this case (Fig. 6.6). In the presence of disorder the con-
ductance oscillates around its ensemble average Gy/2, in a sample specific
manner. The numerics for any given realization of the disorder potential
satisfies approximately the sum rule G(N) + G(N + 1) =~ Gy, for which
we have not yet found an analytical derivation.

The valley-isospin dependence of the quantum Hall effect in a p-n junc-
tion makes it possible to use strain as a means of variation of the height
of the conductance plateaus. Strain introduces a vector potential term
evT, @ (0A - o)V in the Dirac equation (6.2), corresponding to a fictitious
magnetic field of opposite sign in the two valleys |21, 22, 23, 24|. This term
rotates the Bloch vector of the valley isospin around the z-axis, which in
the case of an armchair nanoribbon corresponds to a rotation of the valley
isospin in the z-y plane. Strain may appear locally at an armchair edge
by passivation of the carbon bonds [10]. (The resulting change 7 of the
hopping energy 7 changes ® by an amount [25] 6® = 2v/367/7.) Random
strain along the p-n interface, resulting from mesoscopic corrugation of
the carbon monolayer [24], corresponds to a random value of the angle ®
in the conductance formula (6.1). A uniform distribution of ® implies a
bimodal statistical distribution of the conductance,

P(G) = 1 /7r d® §[G — £Go(1 — cos P)]
™ Jo
=[7*G(Go ~ G)]7'%, 0 <@ < Gy, (6:8)

distinct from the uniform distribution expected for random edge channel
mixing [7].

6.4 Conclusion

In summary, we have presented analytical and numerical evidence for the
existence of a valley-isospin dependent conductance plateau in a p-n junc-
tion in the quantum Hall effect regime. In recent experiments |2, 3| the
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conductance was simply the series conductance of the p-doped and n-
doped regions, presumably because of local equilibration. We have shown
that the mesoscopic fluctuations, expected to appear in the phase coher-
ent regime [7], are suppressed in the absence of intervalley scattering. The
conductance plateau is then not given by the series conductance, but by
Eq. (6.1). The same formula applies to the conductance of a normal-
superconducting junction in graphene [8|, revealing an intriguing analogy
between Klein tunneling in p-n junctions and Andreev reflection at NS
interfaces [26, 27].
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Chapter 7

Calculation of the
conductance of a graphene

sheet using the
Chalker-Coddington network
model

7.1 Introduction

The low-energy and long-wave-length properties of conduction electrons
in a carbon monolayer (graphene) are described by the two-dimensional
Dirac equation [1|. In one-dimensional geometries this partial differential
equation can be solved analytically, but fully two-dimensional problems
typically require a discretization to permit a numerical solution. The tight-
binding model on the honeycomb lattice of carbon atoms provides the most
obvious and physically motivated discretization [2|. The band structure
of a honeycomb lattice has two valleys, coupled by potential variations on
the scale of the lattice constant. Smooth potentials are needed if one seeks
to avoid inter-valley scattering and obtain the properties of a single valley.

Discrete representations of the Dirac equation that eliminate from the
outset the coupling to a second valley may provide a more efficient way
to isolate the single-valley properties. Alternative tight-binding models
[3, 4, 5, 6] have been introduced for that purpose. One method of dis-
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cretization which has received much attention is the network model, origi-
nally introduced by Chalker and Coddington as a model for percolation in
the quantum Hall effect |7]. Ho and Chalker [8] showed how a solution of
this model can be mapped onto an eigenstate of the Dirac equation, and
this mapping has proven to be an efficient way to study the localization of
Dirac fermions [9].

The recently developed capability to do transport measurements in
graphene 10| has renewed the interest in the network model [11] and also
raises some questions which have not been considered before. The specific
issue that we address in this chapter is how to introduce metallic contacts
in the network model of graphene. Metallic contacts are introduced in
the Dirac equation by means of a downward potential step of magnitude
Uso- The limit Uy, — oo is taken at the end of the calculation. (It is an
essential difference with the Schrédinger equation that an infinite potential
step produces a finite contact resistance in the Dirac equation.) This
phenomenological model of metallic leads, introduced in Ref. [12], is now
commonly used because 1) it is analytically tractable, 2) it introduces no
free parameter, and 3) it agrees well with more microscopic models [13, 14].
A direct implementation of such a metallic contact in the network model is
problematic because the mapping onto the Dirac equation breaks down in
the limit Uy, — oco. Here we show how this difficulty can be circumvented.

To summarize then, there is a need to develop numerical methods for
Dirac fermions in graphene when the potential landscape does not allow
analytical solutions. If one implements a method based on the honeycomb
lattice of graphene, intervalley scattering is present, unless the potential
is smooth on the scale of the lattice. Smooth potential landscapes are
experimentally relevant, but computationally expensive, because they re-
quire discretization with a large mesh. It is therefore preferable to develop
a numerical method that eliminates intervalley scattering from the out-
set. The known correspondence between the Chalker-Coddington network
model and the Dirac equation provides such a method, as we show in this
chapter. The key technical result of our work is an analytical method to
include heavily doped reservoirs. (Including these reservoirs numerically
would have been prohibitively expensive, computationally.)

In Secs. 7.2 and 7.3 we summarize the basic equations that we will need,
first regarding the Dirac equation and then regarding the network model.
Our key technical result in Sec. 7.4 is a relationship between the scattering
problems for the Dirac equation in the limit U,, — oo and for the network
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Figure 7.1. Top panel: Schematic of a graphene sheet contacted by two elec-
trodes. A voltage source drives a current through the sheet. The bottom panel
shows the potential profile V' (x,y) for fixed y.

model at Uy, = 0. We test the method in Sec. 7.5 by calculating the
conductance of an electrostatically defined constriction (quantum point
contact) in a graphene sheet. We also study the effect of disorder on
conductance. We confirm the results of previous studies [15, 16, 17, 18|
that smooth disorder (that does not cause intervalley scattering) enhances
the conductivity of undoped graphene. We conclude in Sec. 7.6.

7.2 Formulation of the scattering problem

7.2.1 Scattering Matrix

A scattering formulation of electrical conduction through a graphene sheet
was given in Ref. [12]. We summarize the basic equations. The geometry,
shown in Fig. 7.1, consists of a weakly doped graphene sheet (length L
and width W) connected to heavily doped graphene leads. A single valley
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has the Dirac Hamiltonian
H=vo [p—eA(r)+V(r)+o.u(r), (7.1)

where A(r) is the magnetic vector potential, V(r) is the electrostatic
potential, and p(r) is a substrate-induced mass term. The vector o =
(04, 0y) contains the standard Pauli matrices

az=<? é) ay=<2 BZ> (7.2)

We assume that the fields A, V', and p are smooth on the scale of the
lattice constant, so that the valleys are uncoupled.

In the heavily doped leads (for x <0 and x > L) we set V(r) = —Ux
and take the limit Uy, — oo. For simplicity we set g = 0 in the leads
and we also assume that the magnetic field is zero in the leads (so A is
constant there). The Dirac equation

HVU = EV (7.3)

has to be solved subject to boundary conditions on the wave function ¥ (r)
at y =0 and y = W. We will consider two types of boundary conditions
which mix neither valleys nor transverse modes. The first is the periodic
boundary condition \Il|y:0 = \II\y:W. The second is the infinite-mass
boundary condition®

U, o=0n Ul o, | = —0u U]y (7.4)

We consider a scattering state W¥,, that has unit incident current from
the left in mode n and zero incident current from the right. (The quantum
number n labels transverse modes.) In the leads ¥,, has the form

Uo(r) = Xim () €+ rn Xm(y) €%, 2 <0, (7.52)
U, (r) = Ztmn Xt (y) efn@=L e s L (7.5b)

nfinite mass boundary conditions are obtained by sending the mass to infinity for
y < 0 and y > W. Particles are thus excluded from this region, much as an infinite
potential excludes Schrodinger particles. As a result the boundary condition of Eq. (7.4)
is imposed at the boundaries y = 0 and y = W between the finite (or zero) mass and
the infinite mass regions. For more details, see Ref. [19].
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We have introduced transmission and reflection amplitudes t,,, and 7,,,
and the longitudinal component k, of the wave vector of mode n. The
right-propagating component in mode n has a spinor x; and the left-
propagating component has a spinor x,, .

In the limit Uy — o0, the form of the scattering state in the leads
can be simplified considerably. The n-dependence of k,, can be neglected,
since ky, ~ Us/hv — o0 as Uy, — oo. The number Ny, ~ U, W/hv
of propagating modes in the leads can be taken infinitely large. When
Ny, — 00, the choice of boundary condition in the leads (not in the sample)
becomes irrelevant and we choose periodic boundary conditions in the leads
for simplicity. Modes that are responsible for transport through the weakly
doped sample have transverse momenta |g,| < Us. The corresponding
spinors xI are

1 ; 1 2n
+ _ igny _

withn =0, £1, +£2, .... While it is important not to neglect the finiteness
of ¢, in the phase factor exp(ig,y) of these modes, the spinor structure is
proportional to (1,£1) independent of n, because ¢,/Usx, — 0. We note
the orthogonality relation

!

%%
/0 Ay X)L @) = Smnbo. (77)

We also note that the definition of x:=(y) ensures that each scattering state
W, carries unit incident current.

In a similar way, we can define a scattering state incident from the right
in mode n with transmission and reflection amplitudes ¢/, and r/ . The
transmission and reflection amplitudes constitute the scattering matrix

S:<Z j) (7.8)

which is a unitary matrix that determines transport properties. For ex-
ample, the conductance G follows from the Landauer formula

4e? 4e?
G = %Tr #h = %Tr s (7.9)

where the factor of 4 accounts for spin and valley degeneracies.
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7.2.2 Transfer matrix

The information contained in the scattering matrix S can equivalently be
represented by the transfer matrix T'. While the scattering matrix relates
outgoing waves to incoming waves, the transfer matrix relates waves at
the right,

anxn yelokn(@=L) s T (7.10)
to waves at the left,

Z aZx%(y)e otz < 0. (7.11)

The relation takes the form

b, =Y _Tgoas. (7.12)

n,o’

The four blocks T°  of the transfer matrix are related to the transmission
and reflection matrices by

ro= —(T77)7'TH, )

t = Tt Tt (7)) T, )

t = (1), (7.13¢c)

fo= T (1) )
Unitarity of .S implies for T the current conservation relation

T l=%.7%,, (7.14)

where X, is a matrix in the space of modes with entries (Zz)m’n = Omn 0z
that are themselves 2 x 2 matrices. In terms of the transfer matrix the
Landauer formula (7.9) can be written as

G = 4%Tr [(T“TT__)_I} . (7.15)
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7.2.3 Real-space formulation

In order to make contact with the network model, it is convenient to change
from the basis of transverse modes (labeled by the quantum number n) to
a real space basis (labeled by the transverse coordinate y). The real space
transfer matrix X, s is defined by

%%
W(L,y) = /O dy X,y U (0,4), (7.16)

where U(z,y) is any solution of the Dirac equation (7.3) at a given energy
E. The kernel X, s is a 2 x 2 matrix, acting on the spinor V. Because
the integral (7.16) extends only over the weakly doped region, X does not
depend on the potential Uy, in the leads.

In view of the orthogonality relation (7.7) the real-space transfer matrix
X is related to the transfer matrix 71" defined in the basis of modes in the
leads by a projection onto Xi,

/ W W ’
Ton = /0 dy /O dy' X () Xy X (Y)- (7.17)

We now substitute the explicit form of x¢ from Eq. (7.6). The integrals
over y and 3 in Eq. (7.17) amount to a Fourier transform,

1w w ‘ .
X = —/ dy / dy' e "ImY X, ety (7.18)
) W 0 0 )
From Eq. (7.17) we conclude that the 2 x 2 matrix structure of the
transfer matrix,
T++ T+—
Tm,n Tm,n
is related to the 2 x 2 matrix structure of the real-space transfer matrix
by a Hadamard transformation:

1 1 1
Tm,n = HXm,nH7 H= ﬁ < 1 -1 > . (720)

(The unitary and Hermitian matrix H is called the Hadamard matrix.) In
view of Eq. (7.14), the current conservation relation for X reads

X' =% XT50, (Z2)mn = OminOa, (7.21)

where we used Ho, H = o,.
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Figure 7.2. Square lattice (dots), with circulating current loops that form
the network model. The loops are coupled to nearest neighbors at the black
rectangles. The lattice vectors a; and as (each of length v/21) are indicated.

7.3 Formulation of the network model

The Chalker-Coddington network model [7, 9] was originally introduced
in order to analyze the localization transition in the quantum Hall effect.
Our interest in this model stems from the fact that it is known to map onto
the two-dimensional Dirac equation [8]. We briefly recall how the network
model is defined and how the mapping to the Dirac equation works. We
consider the square lattice shown in Fig. 7.2, with lattice constant /21
and lattice vectors

a =& +9), a»=I1{— %) (7.22)

The integers (m,n) label the lattice site ry,, = ma; + naz. With each
site is associated a single current loop circling the site without enclosing
any neighboring sites, say clockwise if viewed from the positive z axis.
The radii of these loops are expanded until states associated with nearest
neighboring sites overlap. At these points of overlap, states on adjacent
loops can scatter into each other.
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As illustrated in Fig. 7.3, four current amplitudes Z,glf,)n, k=1,...,4
are associated with each site (m,n). These are amplitudes incident upon
points of overlap, ordered clockwise, starting from the point of overlap
with site (m + 1,n). Each incident wave amplitude ZT(,If)n has picked up a
phase ¢££Z?n since the previous point of overlap. With the point of overlap
between loop (m,n) and (m + 1,n) is associated a 2 x 2 scattering matrix
sh.n» While s is associated with the point of overlap between (m, n) and
(m,n —1).

® (m+1,n)

z3,

Figure 7.3. Segment of the network of Fig. 7.2 with the wave amplitudes Zfﬁ)n

and scattering matrices s  indicated.
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The matrix elements of s}, ,, and s, ,, are arranged such that

z2, et - zh,
= ;1 (4) m,n )
Zr(r%—)i-l,n O ez¢m+1,n Zr(r?—)i-l,n

(7.23a)

Z1(7i)n—l _ ew’(’ll?"_l 0 5= Zr(r%,)n
Zr(r?,)n 0 eiqsg’i?” " ngi)n—l
(7.23b)

Ho and Chalker [8] showed how this model can be mapped onto the
Dirac equation for two-dimensional fermions. Firstly, one parametrizes the

scattering matrices s . in terms of Pauli matrices o,
k)

Spn = sin <% + Bm,n) o, + cos <% + Bm,n) Ous

(7.24a)
sfnm = cos <% + Bm,n) o, + sin <% + Bm,n) Oz

(7.24b)

(The same matrix of coefficients (3, , is used for s , and s, ,.) For
given fields V(r), A(r), and p(r) in the Dirac equation, the mapping
then dictates a corresponding choice of parameters in the network model,

namely ¢£,’§)n and G, have to satisfy (8]

4
1 l
k=1
fn g _ 4 (Fann) (7.25D)
2 - T m,n h'l)’ .
G —bnn S (7.250)
2 - Y Tm,n h’U’ . C
l
2ﬁm,n = M(Tm,n)ﬁ- (7.25d)

With this choice of parameters there is an approximate equality between
a solution ¥(r) of the Dirac equation and the current amplitudes of the
network model,

(1) .
Zm,n o 1 1 7
\I/(T‘m,n) ~ Q < Zr(ri)n ) y g = ﬁ < 1 — > . (7.26)



7.4 Correspondence between scattering matrices of ... 137

The accuracy of the approximation is improved by making the lattice con-
stant v/2 [ smaller and smaller.

As mentioned in Sec. 7.2, we will be considering two types of boundary
conditions at y = 0 and y = W in the sample region 0 < z < L. The
periodic boundary condition is realized in the network model by putting
the square lattice on a cylinder of circumference W = 2N oriented along
the z-axis. The infinite-mass boundary condition is realized [8] by termi-
nating the square lattice at y =0 and y = W and adjusting the scattering
phases along the edge. The edge y = 0 lies at sites (n, —n) and the edge
y = W lies at sites (N —14n, N —1—n). As shown in App. 7.A, for sites
(n,—n) Eq. (7.23) must be replaced with

4 3 3 2
z0 =29 7 = 7? (7.27)
while for sites (N +n, N —n) it must be replaced with
(2) _ 7D (4) ()
ZN+”7N—71 - ZN+n,N—n’ ZN—i—n,N—n - ZN-i-n,N—n‘ (728)

7.4 Correspondence between scattering matrices
of Dirac equation and network model

In this section we combine the known results summarized in the previous
two sections to construct the scattering matrix S of a graphene strip with
heavily doped leads from a solution of the network model. This construc-
tion does not immediately follow from the correspondence (7.26) because
the limit Uy, — oo of heavily doped leads still needs to be taken. At first
glance it would seem that, in order to preserve the correspondence be-
tween the network model and the Dirac equation, we must simultaneously
take the limit [ — 0 so that Uyl/hv remains small. (The correspondence
between the network model and the Dirac equation is correct only to first
order in this quantity.) This would imply that very large networks are
required for an accurate representation of the graphene strip.

It turns out, however, that it is not necessary to model the heavily
doped leads explicitly in the network model, as we now demonstrate. We
define the real-space transfer matrix Y as the matrix that relates Z(!) and
Z®) at the right edge of the network to Z(1) and Z() at the left edge of the
network. The left edge (z = 0) lies at sites (n,n) withn =0,1,2, ..., N—
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1. The right edge at x = L = 2M1 lies at sites (n + M,n — M). The real-
space transfer matrix Y relates

1) (1)

Z Z ! ,nl

(Z’{?M" M) ZYM <Z” ) (7.29)
n+M,n—M n’'=0 n’,n’

We define the Fourier transform

1 N-1 N-1 '
quqn — N Z Z e—2zlqmm Y e2zlqnn , (730)

m/=0n'=0

with g, =2mn/W.

In view of the relation (7.26) between the Dirac wave function ¥ and
the network amplitudes Z(), Z®) | the real space transfer matrix X of the
Dirac equation is related to Y by a unitary transformation,

1
Xy=2ln,y/:2ln’ = 2_l g Yn,n/ gT (731)

We can now use the relation (7.20) between X and the transfer matrix 7'

to obtain
10 1 0

where we have used
10
HG = ( 0 i > . (7.33)

From Eq. (7.32) it follows that the lower right blocks of 7" and Y are
equal: T =Y, = . Substitution into the Landauer formula (7.15) gives

G = 42 Tv [(Y“TY“)_I} . (7.34)

The Landauer formula applied to the network model thus gives the con-
ductance of the corresponding graphene sheet connected to heavily doped
leads. For later use, we note the current conservation relation for Y, which
follows from Egs. (7.14) and (7.32)

Yy l=xy%.. (7.35)
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Figure 7.4. Transmission probability of a clean graphene sheet, at energy F =
7.85 hv/L as a function of transverse wave number ¢g. The solid line is the result
(7.38) from the Dirac equation, while the open circles were numerically calculated
using the network model with periodic boundary conditions (when ¢ = 27wn/W).
The discretization parameter of the network was e = El/hv = 0.28.

7.5 Numerical Solution

In this section we test the accuracy and efficiency of the solution of a scat-
tering problem in graphene by means of the network model. As explained
in Sec. 7.4 we need to calculate the real space transfer matrix Y through
the weakly doped region. The conductance of the corresponding graphene
sample then follows from Eq. (7.34).

We calculate the real-space transfer matrix recursively by adding slices
to the network and multiplying the transfer matrices of individual slices.
Since a multiplication of transfer matrices is numerically unstable we sta-
bilize the algorithm as explained in App. 7.B. We limit the numerical
investigation in this section to the case A(r) =0, u(r) = 0 where only the
electrostatic potential V' (r) is non-zero.

We have found that the efficiency of the algorithm can be improved by
using the fact that, according to Eq. (7.25), there is some arbitrariness in
the choice of the phases ¢(),... ¢®). For A(r) = 0 and u(r) = 0, one
choice of the phases could be

o) = |E - V(may +nay)]l/2, k=1,...,4. (7.36)

m,n
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Another choice is
¢£fll?n - ¢£r?;?n = [E =V (rmn)ll, ¢ = ¢ =0. (7.37)

The correspondence (7.26) between the network model and the Dirac equa-
tion holds for both choices of the phases, however the corrections for finite
[ are smaller for choice (7.37). More precisely, as shown in App. 7.C, if
#@ and ¢® are zero, the network model does not contain corrections to
the Dirac equation of order 9, V1.

Let us first consider the analytically solvable case of a clean graphene
sheet that is obtained by setting V' = 0 in the weakly doped region. The
Dirac equation gives transmission probabilities [12]

B Esinél -2
T(E,q) = (:085[)4-1,177}§ , (7.38a)
2
£ = (%) sy (7.38b)

For periodic boundary conditions the transverse wave vector is discretized
as qp, = 2mn /W, with n =0, £1, 2, ...

In Fig. 7.4 we compare Eq. (7.38) to the results from the network model
for periodic boundary conditions in the weakly doped region. The small
parameter that controls the accuracy of the correspondence is € = El/hv.
We find excellent agreement for a relatively large e ~ (0.3.

Fig. 7.5 shows the conductivity

e2
P > T(E,q) (7.39)

at the Dirac point (E = 0) as a function of the aspect ratio W/L. We do
the calculation both for periodic and infinite mass boundary conditions in
the weakly doped region. (In the latter case ¢, = (n + 3)7/W with n =
0,1,2,...) Again we see excellent agreement with the analytical results
from the Dirac equation [12].

We now apply the network model to a case that cannot be solved
analytically, because it involves inter-mode scattering. We take the elec-
trostatic potential landscape shown in Fig. 7.6, which produces a narrow
constriction or quantum point contact of width D and length L.. In the
weakly doped region, of length L, electrons have an energy Fr measured
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Figure 7.5. Conductivity o = G x L/W at E =0 for a clean graphene sheet as
a function of the aspect ratio. The data points were calculated from the network
model for fixed L = 401 with periodic boundary conditions (circles) and infinite
mass boundary conditions (squares) in the weakly doped region. The solid lines
are the result [12] from the Dirac equation. The dashed line indicates the limiting
value oh/4e? = 1/7 for short wide samples.

from the Dirac point. The barrier potential is tuned so that electron trans-
port through the barrier takes place at the Dirac point, where all waves
are evanescent. As the constriction is widened, the number of modes at
a given energy that propagates through the opening increases. For fixed
FEr, this should lead to steps in the conductance as a function of opening
width, at intervals of roughly 7/Fpr. The steps are smooth because the
current can also tunnel through the barrier.

We have calculated the conductance with the network model (solid
curve in Fig. 7.7) and using the tight-binding model of graphene (dashed
curve). In the tight-binding calculation we did not connect heavily doped
leads to the weakly doped region. This does not affect the results, as long
as L > L.

Both calculations show a smooth sequence of steps in the conductance.
The agreement is reasonably good, but not as good as in the previous
cases. This can be understood since the tight-binding model of graphene
is only equivalent to the Dirac equation on long length-scales.

The final numerical study that we report on in this chapter involves
transport at the Dirac point through a disordered potential landscape. Re-
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Figure 7.6. Potential landscape V (z, y) that produces a quantum point contact.
The Fermi energy Er is indicated.

cent experimental studies [23] have observed electron and hole puddles in
undoped graphene. The correlation length of the potential is larger than
the lattice constant, hence intervalley scattering is weak. We are there-
fore in the regime of applicability of the network model (which eliminates
intervalley scattering from the outset).

To model the electron and hole puddles, we devide the sample into an
array of square tiles (Fig 7.8), where each tile has size 101 x 101, v/2[ being
the lattice constant of the network model. The electrostatic potential is
constant on a single tile, but uncorrelated with the potential on the other
tiles. We take the values of the potential on any given tile to be a random
variable uniformly distributed between — V. and Vinax. To make contact
with previous studies [15, 16|, we quantify the disorder strength by the
dimensionless number

1 / l4
Ky = (e /dr (V(rv(r')). (7.40)

(The average (V (7)) is zero.) With tiles of dimension 107 x 101, the re-
lation between Ko and Viay is Ko = 100(Vipaxl/hv)?/3 and the network
model faithfully represents the Dirac equation for values up to Ky ~ 10.
We use a sample with aspect ratio W/L = 5 and average over 100 disor-
der realizations. We repeat the calculation for two different sample sizes
namely W = 5L = 300l and W = 5L = 450l. The calculation is per-
formed for transport at energy E = 0, i.e. the Dirac point of a clean,
undoped sample. In Fig. 7.9 we show the average conductance. Remak-

ably enough the conductance increases with increasing disorder strength.
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G [4¢2 /1]

Figure 7.7. Conductance through the constriction of Fig. 7.6 as a function of
the width of the opening in the constriction. The solid line was obtained using the
network model, while the dashed line was obtained using the tight-binding model
of graphene. We used parameters W = 35hv/Ep, L. = 8.7hv/Epr. For the
network model we set the length of the weakly doped region to L = 49 hv/EF and
used a lattice constant V21 = 0.24 fw /Er, while in the tight-binding calculation
we used a lattice constant 0.17 hv/EFp.

This is consistent with the results obtained in Refs. [15, 16, 17, 18]. The
effect should not depend on the shape of the tiles in our model for the
disorder. We have therefore repeated the calculation with rhombic instead
of square tiles. We find deviations of less than 5%.

The increase in conductance is explained by the non-zero density of
states at the Dirac point that is induced by the disorder, together with the
absence of back-scattering for Dirac electrons. While we do not make a
detailed study of the dependence of conductance on sample size (at fixed
aspect ratio), we note that the conductance of larger samples (squares in
Fig. 7.9) is larger than the conductance of the smaller samples (circles in
Fig. 7.9). This is consistent with the scaling behavior found in Refs. [16,
17, 18.

7.6 Conclusion

In conclusion, we have shown how the Chalker-Coddington network model
can be used to solve a scattering problem in a weakly doped graphene
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Figure 7.8. Illustration of the model of electron and hole puddles in a graphene
strip that we have studied. The sample is divided into tiles. The value of the
potential on a tile is a constant, here indicated in gray-scale, uniformly distributed
between —Vijax and Viax. The potential on different tiles is uncorrelated. We
choose a mesh for the network such that each tile has size 101 x 10, where the
network lattice constant is v/21.

sheet between heavily doped electron reservoirs (which model the metallic
contacts). The method is particularly useful when the scattering prob-
lem does not allow an analytical solution, so that a numerical solution is
required. The network model eliminates intervalley scattering from the
outset. Thus, with a given mesh size, a larger graphene sample can be
modeled with the network model than with methods based on the honey-
comb lattice. The key technical result of our work is that an infinitely high
potential step at the contacts can be implemented analytically by a unitary
transformation of the real-space transfer matrix, without having to adjust
the lattice constant of the network model to the small values needed to ac-
commodate the small wave length in the contacts. We have demonstrated
that the algorithm provides an accuracy and efficiency comparable to the
tight-binding model on a honeycomb lattice. In agreement with the exist-
ing literature [15, 16, 17, 18] we have found that disorder that is smooth
on the scale of the graphene lattice constant enhances conductivity at the
Dirac point. The absence of intervalley scattering in the network model
may prove useful for the study of these and other single-valley properties.
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Figure 7.9. Conductivity ¢ = G L/W averaged over 100 disorder realizations
versus disorder strength K at the Dirac point £ = 0. The circles are for samples
of size 60 [ x 300 [ while squares are for samples of size 90 [ x 450 [. The statistical
error is of the order of the size of the data points. The dotted line indicates the
ballistic limit G L/W = 4e?/7h.

Appendix 7.A Infinite-mass boundary condition for
the
network model

In this appendix we consider the boundary condition imposed on the Dirac
equation by termination of the network along a straight edge. We consider
the eight orientations shown in Fig. 7.10 which have the shortest period-
icity along the edge. Since we want to discuss the long wave-length limit,
each edge needs to be much longer than the lattice constant v/21. (In this
respect the figure with its relatively short edges is only schematic.) The
orientations are defined by the vector fi() = —& sina+9g cos o, a = jm /4,
j=1,...,8 which is perpendicular to the edge and points outwards.
We wish to impose the infinite mass boundary condition [19]

\Ijedge = [’fL(O&) X 2] "o \Iledge

= (0zcosa+ oysina)Vedge (7.41)

on the Dirac wavefunction at the edge. In view of the correspondence
(7.26) between the Dirac equation and the network model, Eq. (7.41) im-
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Figure 7.10. Network of circulating current loops, as in Fig. 7.2, but now
terminated with straight edges. The letters a, b, ... label the orientation of the
edge.

plies the boundary condition

AS, - Z(1)
< 7(®) > = (—o0g sina + 0, cos ) < 7(3) > (7.42)
edge edge

on the network amplitudes.

Away from the edge, the network amplitudes obey the equations (7.23).
For u, A, V, and E all equal to zero (Dirac point) these reduce to

Z5n Ziyn
( (4) ’ ) = H < (3) ' 5 (743&)
Zm+1,n Zm+1,n

Zyhis Zyh
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We can eliminate the amplitudes Z) and Z® to arrive at the equations

1 a 1 3

Zin =5 (20 o+ 2 =2+ 29 ] (7.44a)
1 1 3 3

Z8), = 5120, - 20+ 28 2 . (7.44b)

) )

There are two linearly independent solutions (Z$7H,Z,g§,n) x (1,0) and
(ZT(,?”, Z,Sif’)n) x (0,1). When the network is truncated along an edge, the
bulk equations (7.44) do not hold for the amplitudes along the edge. We
seek the modified equations that impose the boundary condition (7.42) up
to corrections of order (E — V')I/hv.

The edge orientation a was previously considered by Ho and Chalker
[8]. We consider here all four independent orientations a, b, ¢, and d.
The other four orientations a’, b, ¢/, and d’ are obtained by a symmetry
relation.

Figure 7.11. Network amplitudes at an edge with orientation a. The dashed
current loops are removed.

Edge a is constructed by removing all sites (m,n) with n > m. (See
Fig. 7.11.) This means that the network amplitudes Z,g’)m are prevented
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(2)

from scattering into the non-existent amplitudes Z,;” , |, belonging to the

)

removed sites (m — 1,m). Similarly, the amplitudes Zr(,fjm are prevented
To do this one

from scattering into the non-existent amplitudes Zﬁ)m 41

)

must modify the scattering matrices 8;_1 o SO that Z,(g’,m can only scatter

)

into Z,gi)m and s, ..q so that Z,gi)m can only scatter into Z,S},,m. As a
consequence, for n = m + 1 Eq. (7.43) is replaced by

20— _g® g0 ) (7.45)

m m,m>

We eliminate Z) and Z® to arrive at Eq. (7.44) for n < m and Eq. (7.44b)
for n = m. Eq. (7.44a) for n = m is replaced by

z0 ., =-Z9 . (7.46)

m,m

The solution (Z,Si?n,zﬁ,i)n) o (1,—1) indeed satisfies the infinite mass
boundary condition (7.42) with oo = 7/2.

T T T TN

[ |

I I

| ° |

| (mvl)

: ¢ 72 7O
\4 —_ = A

VAS) 74)

Figure 7.12. Edge with orientation b.

Edge b is constructed by removing all sites (m,n) with n > 0. (See
Fig. 7.12.) This means that the network amplitudes Zfﬁ,)o are prevented
from scattering into the non-existent amplitudes Zg’?l belonging to the
removed sites (m,1). For n = 1, we replace Eq. (7.43b) by

(7.47)
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If we now eliminate the amplitudes Z(?) and Z*) we find that Eq. (7.44) is
still valid for all n < 0. For n = 0, Eq. (7.44b) still holds, while Eq. (7.44a)
is changed to

1 1 1
Zr(n,)O = ﬁ (Zr(n,)—l 0 Zr(n)O) (7-48)

The solution (Zﬁ,}) Z,(g’,)n)T o (1,1—1+/2) satisfies the infinite mass bound-

M

ary condition (7.42) with a = 7 /4.

Figure 7.13. Edge with orientation c.

Next, we consider edge ¢, which results from the removal of all sites

(m,n) with m > —n. (See Fig. 7.13.) In this case, s, ., must be
3)

modified to prevent Zr(,j)_m from scattering into Z,(n _m41- Furthermore,

Sﬁ_m must be modified to prevent Z,(,i)_m from scattering into Z,gqul _

For n = —m + 1 we replace Eq. (7.43) by
(7.49)

)

2= 2 2= 28

and eliminate Z® and Z® to verify that the boundary condition holds.
The condition (7.49) modifies three of the equations (7.44):

Zf(iv)—m = % (Zr(ri)—l,—m Zr(r?) m) ; (750&)
Zr(ri)—m = %(Zr(ri)—m—l - Zf(i 1,—m—1 + \/_ ), (750b)

1
Zf(fi)—m—l 5( - Zr(j,)—m 1T Z,Sql,) 1,—m—1 + \/_Z(l ) (750(3)
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For m < —n — 1 Eq. (7.44) holds without modification and Eq. (7.44b)

also holds for m = —n — 1. The solution
Zr(;,)n<—m = \/iZﬁ?_m = constant, Zr(ri)n =0 (7.51)

implies (Zr(,i)n, Z,(?i’)n) x (1,0) for m < —n, which satisfies the infinite mass
boundary condition (7.42) with o = 0.

Figure 7.14. Edge with orientation d .

Edge d results from the removal of all sites (n,m) with m > 0. (See
Fig. 7.14.) We must modify S(—{m such that Z(g’l,ij does not scatter into Zﬁ)n.
To do this we replace Eq. (7.43a) for sites (0,m) by

Z5) =234 (7.52)

o,m —

We again eliminate Z? and Z® to arrive at

1 1 1 1 3
Z(()J)n = ﬁ(ﬂz(g,r)n+l+z(—l),m_ (g,r)n,)’
(7.53a)
3 1 1 1 3
A = (a2 7).
(7.53b)

while for m < 0 Eq. (7.44) still holds. The solution (Z1),, Z\¥) « (1,v2—
1) obeys the infinite mass boundary condition (7.42) with o = —7/4, as
required.



7.B Stable multiplication of transfer matrices 151

This completes the boundary conditions for the four orientations a, b,
¢, and d. The orientations o', V', ¢/, and d' are obtained by the following
symmetry: The network model is left invariant by a 7 rotation in coordi-
nate space (which takes r to —r) together with the application of o, in
spinor space (which takes Z(1) to —iZ®) and Z®) to iZM).

Appendix 7.B Stable multiplication of transfer
matrices

To construct the transfer matrix of a conductor one can divide it into
slices, compute the transfer matrix of each slice, and multiply the indi-
vidual transfer matrices. This recursive construction is numerically unsta-
ble, because products of transfer matrices contain exponentially growing
eigenvalues which overwhelm the small eigenvalues relevant for transport
properties. Chalker and Coddington [7] used an orthogonalisation method
[20, 21| to calculate the small eigenvalues in a numerically stable way.
To obtain both eigenvalues and eigenfunctions we employ an alternative
method [22, 16]: Using the condition of current conservation, the prod-
uct of transfer matrices can be converted into a composition of unitary
matrices, involving only eigenvalues of unit absolute value.

We briefly outline how the method works for the real space transfer
matrices Y of the network model, defined by Eq. (7.29). For the recursive
construction it is convenient to rewrite this definition as

Dyt N 2
A § :Y (L, L') AW (7.54)
m m— n_;’_ I,TL_ /

The numbers L, L’ are integers, so that Y (L,L’) is the transfer matrix
from ' = 2L/l to x = 2LI. The composition law for transfer matrices is
matrix multiplication,

Y(L,0)=Y(L,L - 1)Y(L — 1,0), (7.55)

with initial condition Y (0,0) = identity matrix.

The unstable matrix multiplication may be stabilized with the help
of the condition Y~™! = £.VTS, of current conservation (see Sec. 7.4).
Because of this condition, the matrix U constructed from Y by

a b —d e d—t
Y= <c d> U= <a ~bdle bd—1> (7.56)
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is a unitary matrix (U~' = UT). Matrix multiplication of ¥’s induces a
nonlinear composition of U’s,

Y1Ys < Uy @ Us, (7.57)
defined by
ar by az by _[a3 b3
Goa)era)-(a) o
a3 = a;+b1(1— agdl)_lagcl, (7.59a)
b3 = b1(1 — a2d1)_1b2, (7.59b)
Cc3 = 02(1 — dlag)_lcl, (7.59C)
d3 = do+ 02(1 — dlag)_ldle. (7.59d)

The algorithm now works as follows: Multiply a number of transfer
matrices and stop well before numerical overflow would occur. Transform
this transfer matrix into a unitary matrix according to Eq. (7.56). Con-
tinue with the next sequence of transfer matrices, convert to a unitary
matrix and convolute with the previous unitary matrix. At the end, we
may transform back from U to Y by the inverse of relation (7.56)

A B C —-DB'A DB™!

In practice this final transformation is unnecessary.  According to
Eq. (7.56) the upper-right block of U is d=! = (Y~7)7!, which is all
we need to calculate the conductance using the Landauer formula (7.34).

Appendix 7.C Optimal choice of phases in the
network model

In Sec. 7.5 we noted that the same long-wavelength correspondence be-
tween the Dirac equation and the network model can be obtained for dif-
ferent choices of the phases ¢£f§)n Among these choices, the choice (7.37)
avoids corrections of order 8,V to the Dirac equation. Here we show
why.
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For y = A =0 Eq. (7.25) reduces to

ﬁm,n = 07 (761&)
¢£rl7,?n = ¢£r?7’,?n = (1 - a)gm,na (761b)
¢£r27,?n = ¢£ﬁ?n = Q&m,n, (7.61c)

where we have defined the dimensionless quantity
Emn = [E—V(rma)|l/hw. (7.62)

The parameter o can be chosen arbitrarily. We wish to show that the
choice @ = 0 is optimal. We substitute Eq. (7.23a) into Eq. (7.23b) of
Sec. 7.3, with this parametrization, and obtain

eiem,n

Z1(7%,)n = 2 [e_ia(5m7n+l_5m’n) (Z1(7i,)n+l + Z1(7§-)|—1,n+1) + Zf?i)—l,n - Zr(ri)n] ’
(7.63a)

glemn 3 —iaemn1—emn) ¢ (1 3
Zr(r?,)n = 9 [Zr(r%,)n + Zr(n,-)i-l,n —¢€ (Em.n-1=em, )(Zr(n,)—l,n—l - Zr(n,,)n—l):| .
(7.63b)

Now we expand in &y, ,, keeping terms to first order, and take Z 1) and
Z®) to be functions defined for all » and smooth on the scale of the lattice.
From Eq. (7.63) we then obtain

YAS)
0=[E+0.ps + 0zpy — V(r)] < 7(3) >

a(Virta)-V(r) Virtay)-V(r)\ (20
2 ( V(r) - V(r—a) V(r-as)-V(r) ) < 7 ) o (764)

After transforming to ¥ = G(Z(1), ZGNT | with G as in Eq. (7.26), the first
term on the r.h.s. of Eq. (7.64) becomes the desired Dirac equation. If we
choose a # 0 then the potential V' has to be smooth on the scale of the
lattice, for the second term to be negligible in comparison with the first.
We conclude that a = 0 is the optimal choice.
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Samenvatting

Verstrooiingstheorie is een breed veld met een lange geschiedenis. Nog voor
de geboorte van quantummechanica hebben natuurkundigen reeds de ver-
strooiing van klassieke golven en van klassieke deeltjes bestudeerd. Een
groot deel van onze huidige kennis van de bouwstenen van materie is ver-
worven met verstrooiingsexperimenten. Eén van de eerste was het bekoge-
len met heliumionen van een goudfilm door Rutherford in 1909, waaruit hij
het bestaan van positief geladen atoomkernen kon afleiden. Verstrooiings-
verschijnselen zien we ook in het dagelijks leven: vleermuizen, dolfijnen en
piloten zouden blind zijn zonder radar. Tegenwoordig worden verstrooi-
ingsexperimenten dagelijks uitgevoerd, in uiteenlopende opstellingen als
de reusachtige versneller bij CERN (typische energieschaal ~ 10%eV) en in
nanometer-brede geleiders (typische energieschaal ~ 10~3eV).

De overeenkomst tussen al deze experimenten is een bron die deeltjes
of golven uitzendt. De deeltjes of golven bewegen dan onverstoord door
totdat ze in contact komen met een obstructie, die de verstrooier wordt
genoemd. De verstrooier beinvloedt de deeltjes of golven. Hun bewe-
gingsrichting of hun energie kan bijvoorbeeld veranderd worden. Ver van
de verstrooier worden de deeltjes of golven weer opgevangen. Door de
eigenschappen van de deeltjes of golven voor en na de verstrooiing te ver-
gelijken, kunnen we informatie verkrijgen over de verstrooier. Andersom,
wanneer de aard van de verstrooier bekend is, kunnen we de verandering
in de eigenschappen van de deeltjes of golven voorspellen.

In dit proefschrift wordt de vestrooiing van electronen in geleiders on-
derzocht. De geleiders zijn klein: typische groottes variéren van micro-
meters (honderdmaal dunner dan een menselijke haar) tot nanometers
(honderdduizend maal dunner dan een haar). De geleider treedt op als
verbinding tussen electronenreservoirs. Deze verbinding laat transport van
electronen tussen de reservoirs toe, maar verstrooit ook de electronen die
tussen de twee reservoirs proberen te bewegen. De weerstand van de ge-
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leider duidt aan hoe moeilijk het voor de electronen is van het ene naar
het andere reservoir te bewegen. De weerstand wordt gedefinieerd door de
verhouding tussen het potentiaalverschil tussen de reservoirs en de (elec-
tronen)stroom door de geleider. Wanneer de geleider zo klein is dat elec-
tronen geen energie verliezen tijdens de periode dat ze zich in de geleider
bevinden, wordt de weerstand bepaald door de elastische verstrooiingsei-
genschappen van de geleider. (Elastisch verwijst hier naar het behoud van
energie.) Hoe groter de kans dat electronen in de geleider teruggekaatst
worden naar het reservoir waar ze vandaan kwamen, hoe groter de weer-
stand. Dit nu vormt de basis voor Landauer—Biittiker verstrooiingstheorie
van electrongeleiding, als ook van dit proefschrift.

De natuurwetten die de verstrooiing van electronen in bovengenoemde
systemen bepalen is reeds tachtig jaar bekend. Het is dus een gegronde
vraag waarom er vandaag de dag een proefschrift over dit onderwerp ver-
schijnt. Het antwoord hierop ligt in de doorbraken die de laatste twee de-
cennia plaatsgevonden hebben in de experimentele nanowetenschap. Dik-
wijls zijn de verschijnselen die door de quantummechanica voorspeld wor-
den zo subtiel, dat ze gemakkelijk door ongewenste wisselwerking met de
omgeving teniet gedaan worden, en die verder moeilijk waar te nemen zijn.
Tegenwoordig zijn experimentele natuurkundigen echter in staat om gelei-
ders en halfgeleiders op nanometerschaal te beheersen, en om electronen
beter en beter van hun omgeving af te schermen. Nieuwe materialen en
methodes worden regelmatig ontdekt. Zodoende worden gebieden die voor-
heen uitsluitend het domein van theoretici waren, voor experimentatoren
ontsloten.

Twee voorbeelden uit dit proefschrift kunnen genoemd worden:

1. Het systeem dat in Hoofdstuk 4 onderzocht wordt, is gebaseerd op
een model dat reeds in de zestiger jaren van de vorige eeuw theore-
tisch bestudeerd is. In die tijd waren voorstelbare realisaties van dit
model echter beperkt tot halfgeleiders van macroscopische afmetin-
gen. Dit gegeven heeft er ongetwijfeld aan bijgedragen dat de aan-
vankelijke onderzoekingen beperkt bleven tot systemen in evenwicht.
De studie van niet-evenwichts verschijnselen zou kunstmatig en zon-
der toepassing geweest zijn. In dit proefschrift wordt een realisatie in
een kleine, één-dimensionale geleider onderzocht. Dit geeft ons een
mogelijkheid die in 1960 nog ontbrak, namelijk om niet-evenwichts
verschijnselen te bekijken die meetbaar zijn met de huidige techno-
logie.
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2. In Hoofdstukken 5, 6 en 7 beschouwen we de verstrooiing van Dirac-
fermionen. Deze deeltjes zijn massaloos en onderhevig aan het Pauli
uitsluitingsbeginsel. Ze komen voor in relativistische quantumtheo-
rieén en leveren bijvoorbeeld in goede benadering een beschrijving
van de dynamica van neutrino’s. De opstellingen die wij bekijken
(bijvoorbeeld een quantum-Hall systeem) hebben binnen die context
echter geen enkele kans op experimentele realisatie. Wederom is het
de experimentele nanowetenschap die de theoretische onderzoekin-
gen in dit proefschrift relevant maakt. Ditmaal is het te danken aan
experimenten aan een vorm van koolstof, grafeen genaamd, die in
2004 ontdekt is, en waarin Dirac-fermionen voorkomen.

Hier volgt een opsomming van de inhoud van de verschillende hoofd-
stukken in dit proefschrift. Na een inleidend hoofdstuk, en Hoofdstuk
2 waarin het nodige gereedschap ontwikkeld wordt, komen niet-elastische
processen, waar electronen tijdens de geleiding energie uitwisselen met hun
omgeving, aan de orde. In Hoofdstuk 3 onderzoeken we welke metingen
een fotondetector zal doen in de nabijheid van een kleine geleider waarover
een potentiaalverschil V' is aangelegd. Als gevolg van stroomfluctuaties in
de geleider zijn er ook fluctuaties in de electromagnetische velden in de
omgeving van de geleider. De detector neemt deze fluctuaties waar als
discrete quanta genaamd fotonen. We laten zien dat er tot op laagste orde
twee processen (één-foton en twee-foton) zijn die bijdragen aan detector-
metingen in het energie-interval tussen 1 eV en 2 eV (waar e de lading
van het electron is), en berekenen de grootte van deze bijdrages.

In Hoofdstuk 4 onderzoeken we wat er gebeurt wanneer electronen
en hun verstrooier energie kunnen uitwisselen en de uitwisseling de ei-
genschappen van de verstrooier veranderen. Er wordt weer een potenti-
aalverschil V' over de geleiders aangelegd. We bestuderen de stroom die
door de geleider vloeit, en vinden dat er een regime met sterke wisselwer-
king is, van welk het gedrag noemenswaardig verschilt van het zwakke-
wisselwerkingregime. In het laatste is de waarschijnlijkheid dat de toe-
stand van de verstrooier verandert groter naar mate de energie voor de
overgang kleiner is. In het sterke-wisselwerkingregime zijn er minstens
twee resonante energieén waarbij de verstrooier gemakkelijk van toestand
verandert. Het verschil tussen die energieén bedraagt eV.

In Hoofdstuk 5 onderzoeken we de geleiding van electronen door een
dubbellaag grafeen, en vergelijken de resultaten met die voor een enkele
laag grafeen.
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In Hoofdstuk 6 onderzoek we de randtransporteigenschappen van een
strook grafeen in gekruiste electrische en magnetische velden. Het elec-
trisch veld wordt over de lengte van de strook aangelegd, en geconcentreerd
in een klein gebied. Het magneetveld is constant en loodrecht op het
grafeenoppervlak. In een parametergebied waar een conventioneel twee-
dimensionaal electronensysteem geen stroom parallel aan het electrisch
veld kan geleiden en waar het geleidingsvermogen in grafeen in de richting
loodrecht op het electrisch veld Gy = 2€?/h bedraagt, vinden wij een ge-
leidingsvermogen van Go(1 — cos ®)/2 parallel aan het electrisch veld. De
fase @ wordt bepaald door het aantal eenheidscellen van het atoomrooster
over de breedte van de strook. Wanneer dit aantal een veelvoud van drie
is dan geldt ® = 7, anders geldt |®| = /3.

In Hoofdstuk 7 bespreken we het probleem van numerieke berekening
van de verstrooiingsmatrix van een grafeenvel gekoppeld aan reservoirs.
We kijken specifiek naar het geval waar de geleidingselectronen in de re-
servoirs een veel kortere golflengte hebben dan in het grafeen. Onze nu-
merieke methode maakt gebruik van een equivalentie tussen de Diracver-
gelijking die electronen in grafeen beschrijft, en een netwerkmodel uit de
quantum-Hall literatuur. We gebruiken de methode om een electrostatisch
gedefinieerd puntcontact in grafeen te bestuderen. (Een electrostatisch
puntcontact is een nauwe ‘poort’ van lage potentiéle energie, tussen twee
‘heuvels’ van hoge potentiéle energie). We vinden plateaus in het gelei-
dingsvermogen als functie van de breedte van de contactopening. In een
andere onderzoek bevestigen we dat het geleidingsvermogen van een graf-
eenvel toeneemt in de aanwezigheid van wanorde die langzaam varieert op
schaal van het atoomrooster.
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Verstrooiingsteorie is 'n breé veld met 'n lang geskiedenis. Nog voor die
geboorte van kwantummeganika het fisici reeds die verstrooiing van klas-
sieke golwe en van klassieke deeltjies soos kanonkoeéls bestudeer. 'n Groot
deel van ons huidige kennis van die boustene van materie is verwerf in ver-
strooiingseksperimente. Een van die eerste hiervan is Rutherford se bom-
bardering van 'n goudfilm met helium ione in 1909 waaruit die bestaan van
die positief-gelaaide atoomkern afgelei is. Verstrooiingseksperimente is ook
van praktiese nut in die alledaagse lewe. Vlermuise, dolfyne en vlieeniers
sou blind gewees het sonder radar. Vandag word verstrooiingseksperimen-
te steeds daagliks uitgevoer en dan in sulke uiteenlopende omgewings soos
die reusagtige versnellersentrum by CERN (tipiese energieé ~ 10° eV) en
in nanometer breé geleiers (tipiese energieé ~ 1073 V).

Wat hierdie eksperimente in gemeen het is dat 'n bron deeltjies of golwe
uitstraal. Die deeltjies of golwe beweeg dan ongehinderd voort totdat hulle
in kontak kom met 'n obstruksie waarna verwys word as die verstrooier.
Die verstrooier beinvloed die deeltjies of golwe. Hul rigting van beweging
of hul energie kan byvoorbeeld verander. Ver van die verstrooier word
die verstrooide deeltjies of golwe opgevang. Deur die eienskappe van die
deeltjies of golwe voor en na verstrooiing te vergelyk, bekom ons inligting
oor die verstrooier. Omgekeerd, as die aard van die verstrooier bekend is,
kan ons die verandering in die eienskappe van die deeljies of golwe voorspel.

In hierdie tesis word die verstrooiing van elektrone in geleiers onder-
soek. Die geleiers is klein. Tipiese groottes wissel van mikrometers ('n
honderd maal dunner as 'n menslike haar) tot nanometers ('n honderddui-
send maal dunner as 'n menslike haar). Die geleier tree op as 'n verbinding
tussen elekronreservoirs. Die verbinding laat transport van elektrone tus-
sen die reservoirs toe, maar verstrooi ook elektrone wat tussen die reser-
voirs probeer beweeg. Die geleier se weerstand dui aan hoe moeilik dit vir
elektrone is om deur die geleier te beweeg. Dit word gedefinieer as die ver-
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houding van die potensiaalverskil tussen die reservoirs tot die stroom deur
die geleier. As die geleier klein genoeg is dat elektrone nie energie verloor
terwyl hulle binne die geleier is nie, word die weerstand bepaal deur die
geleier se elastiese verstrooiingseienskappe. (Elasties verwys hier na die
behoud van energie.) Hoe groter die kans dat elektrone binne die geleier
teruggereflekteer word na die reservoir waaruit hulle gekom het, hoe groter
is die weerstand. Hierdie insig vorm die basis van die Landauer-Biittiker
verstrooiingsteorie van elektrongeleiding as ook van hierdie tesis.

Die natuurwette wat die verstrooiing van elektrone in bogenoemde sis-
teme bepaal is reeds vir tagtig jaar bekend. Dit is dus redelik om te vra
hoekom daar vandag juis 'n tesis oor hierdie onderwerp verskyn. Die ant-
woord is te vind in die deurbrake wat in die afgelope twee dekades gemaak
is in die veld van eksperimentele nano-wetenskap. Dikwels is die vers-
kynsels wat deur kwantummeganika voorspel word so delikaat dat hulle
maklik deur ongewenste wisselwerkings met die omgewing vernietig word
en verder moeilik is om te meet. Huidiglik is eksperimentele fisici egter
in staat om geleiers en halfgeleiers op die nanometer skaal te beheer en
elektrone beter en beter van hul omgewing te beskerm. Nuwe materiale en
metodes word gereeld ontdek. Sodoende word gebiede wat voorheen die
uitsluitlike domein van teoretici was vir eksperimentaliste ontsluit.

Twee voorbeelde uit hierdie tesis kan genoem word.

1. Die sisteem wat in Hoofstuk 4 ondersoek word is gebasseer op 'n mo-
del wat reeds in die 1960’s teoreties bestudeer is. In daardie jare was
denkbare realisasies van die model egter beperk tot halfgeleiers van
makroskopiese dimensies. Hierdie feit het ongetwyfeld daartoe byge-
dra dat die aanvanklike studies beperk was tot ekwilibrium sisteme.
Die studie van nie-ekwilibrium verskynsels sou kunsmatig en sonder
toepassing gewees het. In hierdie tesis word 'n realisasie in 'n klein
een-dimensionele geleier ondersoek. Dit gee ons 'n geleentheid wat
in die 1960’s ontbreek het, naamlik om nie-ekwilibrium verskynsels
te ondersoek wat meetbaar is met huidige tegnologie.

2. In Hoofstukke 5, 6 en 7 beskou ons die verstrooiing van Dirac fer-
mione. Hierdie deeltjies is massaloos en gehoorsaam Fermi se uit-
sluitingsbeginsel. Hulle kom voor in relatiwistiese kwantumteorieé
en verskaf byvoorbeeld tot 'n goeie benadering 'n beskrywing van
die dinamika van neutrino’s. Die opstellings wat ons ondersoek (by-
voorbeeld 'n kwantum Hall sisteem) is egter binne hierdie konteks
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sonder enige kans op eksperimentele realisasie. Weereens is dit eks-
perimentele nano-wetenskaplikes wat die teoretiese studies in hierdie
tesis relevant maak. Hierdie keer is dit te danke aan eksperimente
op 'n vorm van koolstof genaamd grafeen wat in 2004 ontdek is, en
waarin Dirac fermione voorkom.

Hier volg 'n kort opsomming van die inhoud van die onderskeie hoof-
stukke van die tesis. Na 'n inleidende hoofstuk en Hoofstuk 2 waarin die
nodige gereedskap ontwikkel word, kom nie-elastiese prosesse, waar elek-
trone gedurende geleiding energie uitruil met hul omgewing, aan die beurt.
In Hoofstuk 3 ondersoek ons die metings wat 'n fotondetektor sal maak
in die nabyheid van 'n klein geleier waaroor 'n potensiaalverskil V' aangelé
is. As gevolg van stroomfluktuasies in die geleier is daar fluktuasies in
die elektromagnetiese velde in die omgewing van die geleier. Die detektor
gewaar hierdie fluktuasies as diskrete kwanta, genaamd fotone. Ons wys
dat daar in leidende orde twee prosesse (een-foton en twee-foton) is wat
bydra tot detektormetings in die energie-interval vanaf eV tot 2eV (waar
e die lading van 'n elektron is), en bereken die groottes van beide bydra’s.

In Hoofstuk 4 ondersoek ons wat gebeur as elektrone en hul verstrooier
energie kan uitruil en hierdie uitruiling die eienskappe van die verstrooier
verander. Daar word 'n potensiaalverskil V' oor die geleier aangelé. Ons
bestudeer die stroom wat deur die geleier vloei en vind dat daar ’'n sterk-
wisselwerkingsregime is waar die sisteem se gedrag noemenswaardig verskil
van die swak-wisselwerkingsregime. In laasgenoemde is die waarskynlik-
heid dat die verstrooier se toestand verander groter hoe kleiner die nodige
energie vir die oorgang. Verder is geen verandering in die verstrooier se
toestand moontlik as die benodigde energie groter is as eV nie. In die
sterk-wisselwerkingsregime is daar minstens twee resonante energieé¢ waar-
by die verstrooier maklik van toestand verander. Die verskil tussen die
twee energieé is eV

In Hoofstuk 5 ondersoek ons die geleiding van elektrone deur 'n dub-
bellaag grafeen en vergelyk met die resultate van 'n studie van 'n enkele
grafeenlaag.

In Hoofstuk 6 ondersoek ons die randtransport eienskappe van 'n graf-
eenstrook in gekruisde elektriese en magneetvelde. Die elektriese veld word
oor die lengte van die strook aangelé en gekonsentreer in 'n kort interval.
Die magneetveld is konstant en loodreg op die grafeenvlak. In 'n para-
metergebied waar 'n konvensionele tweedimensionele elektronsisteem geen
stroom parallel aan die elektriese veld kan gelei nie en waar die geleidings-
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vermoeé in grafeen in die rigting loodreg op die elektriese veld Gy = 2¢?/h
bedra, vind ons 'n geleidingsvermoé van Go(1 — cos ®)/2 parallel aan die
elektriese veld. Die fase ® word bepaal deur die aantal eenheidselle van die
atoomrooster oor die breedte van die strook. As hierdie aantal 'n veelvoud
van drie is dan geld ® = 7 anders geld |®| = /3.

In Hoofstuk 7 spreek ons die probleem aan van hoe om die verstrooi-
ingsmatriks numeries te bereken van 'n grafeen vel gekoppel aan reservoirs.
Ons kyk spesifiek na die geval waar die geleidingselektrone in die reservoirs
'n veel korter golflengte het as binne die grafeen vel. Ons numeriese metode
maak gebruik van 'n ekwivalensie tussen die Dirac vergelyking wat elektro-
ne in grafeen beskryf en 'n netwerkmodel uit die kwantum-Hall literatuur.
Ons gebruik die metode om ’'n elektrostaties gedefinieerde puntkontak in
grafeen te bestudeer. ('n Elektrostatiese puntkontak is 'n nou poort van
lae potensieéle energie, tussen twee heuwels van hoé potensiele energie.)
Ons vind plato’s in die geleidingsvermoé as 'n funksie van die kontakope-
ning se wydte. In 'n aparte studie bevestig ons dat die geleidingsvermoé
van 'n grafeen vel toeneem in die teenwoordigheid van wanorde wat stadig
varieer op die skaal van die atoomrooster.
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