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Abstract 

 

Global predictions of the secondary structure of coronavirus (CoV) 5’ 

untranslated regions and adjacent coding sequences revealed the presence of 

conserved structural elements. Stem loops (SL) 1, 2, 4, and 5 were predicted in 

all CoVs, while the core leader transcription-regulating sequence (L-TRS) forms 

SL3 in only some CoVs. SL5 in group I and II CoVs, with the exception of group 

IIa CoVs, is characterized by the presence of a large sequence insertion capable 

of forming hairpins with the conserved 5’-UUYCGU-3’ loop sequence. Structure 

probing confirmed the existence of these hairpins in the group I Human 

coronavirus-229E and  the  group  II  Severe acute respiratory syndrome 

coronavirus (SARS-CoV). In general, the pattern of the 5’ cis-acting elements is 

highly related to the lineage of CoVs, including features of the conserved 

hairpins in SL5. The function of these conserved hairpins as a putative 

packaging signal is discussed.  
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Introduction 
 

The emergence of the Severe acute respiratory syndrome coronavirus 

(SARS-CoV) in 2003 has boosted related research and led to the discovery of 

many novel coronaviruses (CoVs) from different hosts such as equines, whales, 

birds, and bats; the latter species are considered as the potential reservoir of 

SARS-CoV (Guan et al., 2003, Ksiazek et al., 2003; Li et al., 2005; Marra et al., 

2003; Mihindukulasuriya et al., 2008; Woo et al., 2007, 2009; Zhang et al., 

2007). In the past few years, also two novel human CoVs, NL63 and HKU1, 

have been identified causing rather severe symptoms in infants and the elderly 

(van der Hoek et al., 2004; Woo et al., 2005). The discovery of so many novel 

CoVs calls for a better understanding of the phylogeny of CoVs.  
 Based on serological patterns and genome organization, the genus 
Coronavirus has been classified into three major groups: the group I, II and III 
(Lai and Cavanagh, 1997; Brian and Baric, 2005). More recently, these groups 
have been further subdivided into, in total, 9 subgroups, based upon amino acid 
similarity of structural and non-structural proteins (nsp) (Snijder et al., 2003; 
Woo et al., 2006, 2007; Woo et al., 2006, 2007). However, other studies 
propose  at  least  5  distinct  lineages  (Tang et al., 2006; Dong et al., 2007; 
Vijaykrishna et al., 2007), and even for SARS-CoV there is discussion whether 
it represents a separate lineage (Rota et al., 2003) or is an early split-off of 
group II CoVs (Snijder et al., 2003; Gibbs et al., 2004). Thus, in addition to the 
conventional pair-wise comparison of viral protein sequences, other genetic or 
structural features may be helpful in the classification of CoVs.  
 In  the  genome  of  CoVs,  like  that  of  most  RNA  viruses,  the  5’  and  3’  

untranslated regions (UTRs) usually harbor important structural elements 

which are involved in replication and/or translation (Chang et al., 1994; Raman 

et al., 2003; Raman and Brian, 2005; Goebel et al., 2007; Züst et al., 2008; Liu 

et al., 2009). In Mouse hepatitis virus (MHV), a group II CoV, a bulged 

stem-loop and a pseudoknot structure were identified in the 3’ UTR (Goebel et 

al., 2004a). Similar pseudoknot structures were found in other group I and II 

CoVs, showing structural conservations of the CoV 3’UTR (Goebel et al., 2004a). 

However, the 3’UTR of MHV could be functionally replaced by the 3’UTR of group 

II SARS-CoV but not by that of the group I Transmissible gastroenteritis virus 

(TGEV) or the group III Avian infectious bronchitis virus (IBV), indicating 

certain group-specific functions for the 3’UTR (Goebel et al., 2004b).  

In this study the secondary structures of the 5’ UTRs and the 5’ proximal 

sequences of the ORF1ab gene in all known CoVs were predicted. The structural 

features of this region turned out to reflect the known grouping of CoVs, which 

is based on amino acid similarity. The unique and conserved features were 

further investigated in detail. 
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Results and discussion 
 

The clustering of the 5’ proximal sequence of CoV RNAs shows group 

specificity 

 

The clustering of the CoV 5’-proximal 420 nucleotides (nts) obtained from the 

Kalign webserver (see Materials and Methods) basically resembled the current 

grouping system for CoVs (Fig. 1), though group I CoVs may be further 

subdivided into 4 subgroups, the groups Ia to Id, according to their relatively 

large phylogenetic distances (Fig. 1). Sequence comparison further showed 

conserved and unique features for each CoV group, including: (i) the relative 

location of the core sequence of the leader transcription-regulating sequence 

(L-TRS) is quite conserved in all CoVs, except for the one in group Ia CoVs which 

has a rather long leader sequence upstream of the core TRS; (ii) the potentially 

translatable short ORF upstream of the genomic ORF1ab, the uORF, is present 

in most CoVs except for group IId, IIIb, IIIc, and IIId CoVs; (iii) the 5’ UTR in 

group III CoVs is substantially longer than that in group I and II CoVs, while 

group IIa CoVs have an exclusively short 5’ UTR (Fig. 1). It has to be noted that 

in order to obtain a higher threshold of the phylogenetic distance, strains with 

the  highest  sequence  variation  were  used  for  analysis  (selected  from  the  

genomic  sequences  of  all  CoVs  available  in  GenBank).  This  made  it  more  

promising if homology was found within a cluster. To further examine if 

particular features found in the RNA sequence in each group are relevant to 

specific organization of the 5’ cis-acting elements, we globally predicted the 

secondary structures of the CoV 5’ UTRs, predominantly using computational 

calculations at the mfold web server (Zuker et al., 2003). We have identified 

several conserved stem-loop (SL) structures in this region, some of which are 

organized in a group-specific manner (see Fig. 2, 3, and 4).  

 

The universal presence of SL1 and SL2 in CoV 5’UTR 

 

The very 5' nts of CoV RNAs fold into a hairpin of low thermodynamic stability, 

SL1, which is supported by many co-variations (Fig. 2-4), particularly in group 

IIa and IIIc CoVs. The loop sequences are not strongly conserved although a 

YRYR tetraloop seems to be preferred in most SL1s. A general feature of SL1 is 

the presence of mismatches, bulges (e.g. in group I and II CoV RNAs) and a 

high number of A-U and U-A base-pairs (bps) (e.g. in group IIIa, b, and d CoV 

RNAs). Recent data by Li et al. (2008) suggest that the low thermodynamic 

stability of SL1 is important for the replication of MHV.  

Another conserved hairpin is SL2 which consists of a 5-bp stem and a 

highly conserved loop sequence, 5’-CUUGY-3’, which has an important role in 

MHV replication (Liu et al., 2007), though the motif is less conserved in SL2 of 
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group I and III CoVs (Fig. 2 and 4). Downstream of SL2, an additional hairpin, 

SL2.1,  with  the  stable  UUCG  tetra-loop,  was  predicted  in  group  Ia  CoVs.  

Interestingly, the CUUGY loop was recently shown to adopt the YNMG-type of 

tetraloop-folds (Liu et al., 2009). 
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The diversity of SL3 and SL4 in CoVs 

 

Previously, the core L-TRS in CoVs has either been proposed to be 

non-structured (Stirrups et al., 2000; Wang et al., 2000) or to form a hairpin 

structure (Shieh et al., 1987; Chang et al., 1996). We found that the core L-TRS 

and the adjacent sequence may fold into SL3 in some CoVs, e.g. the group II 

Bovine coronavirus (BCoV), SARS-CoV and Bat coronavirus HKU4 

(BatCoV-HKU4), and the group III coronavirus SW1 (CoV-SW1), Bulbul 

coronavirus HKU11 (BuCoV-HKU11), and Munia coronavirus HKU13 

Figure 1. Clustering and general features of the 5’ 420 nucleotides of CoVs. The tree is based 
on a multiple sequence alignment using ClustalW2 at the European Bioinformatics Institute web 
server. The phylogenetic group, the start of core TRS-L, the region of upstream ORF (uORF), the start 
of ORF1ab, and GenBank accession number of each CoV are listed. 
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(MuCoV-HKU13)  (Fig.  3  and  4).  However,  the  sequence  variations  found  in  

group IIa CoVs are partially in conflict with the lower part of SL3, while in other 

CoVs there are no co-variations to support the formation of SL3. Thus, the CoV 

SL3 may not structurally resemble the L-TRS Hairpin (LTH) found in the related 

arterivirus, the Equine arteritis virus (EAV), which directs discontinuous 

transcription (van den Born et al., 2004, 2005). In some other CoVs, e.g. TGEV 

and the Human coronavirus 229E (HCoV-229E), the core L-TRS was predicted 

to participate in the stem of SL4 (Fig. 2A and B), although sequence variations 

found in group Ib CoVs do not strongly support the involvement of the core 

L-TRS in the SL4 stem (Fig. 2B). All in all, based on the structural-phylogenetic 

survey, it can be concluded that the core L-TRS and the flanking sequences are 

poorly structured in CoVs. 
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Figure 2. The structural-phylogenetic analysis of the 5’ proximal sequences in group I CoVs.  
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Downstream of the L-TRS, a long hairpin, SL4, was predicted for all CoVs 

(Fig. 2, 3, and 4). The presence of a large number of co-variations seems to 

support  the  existence  of  SL4  strongly,  particularly  the  upper  half  of  this  

structure. Raman et al.  (2003)  have  shown  that  the  structural  integrity,  in  

positive or negative strands or both, of the upper part of SL4 (the SL-III in their 

study) is important for replication of BCoV DI RNA. We also found that the uORF 

predominantly terminates within the SL4 (data not shown), even for those 

uORFs that are in-frame with the downstream ORF1ab (Fig. 1).  

 

 

 

Figure 2. The structural-phylogenetic analysis of the 5’ proximal sequences in group I CoVs 
(continued). The  predicted  secondary  structures  of  the  5’  proximal  sequence  of  (A)  group  Ia  
TGEV-purdue, (B) group Ib HCoV-229E-inf-1, (C) group Ic PEDV-CV777, and (D) group Id BtCoV-1A 
coronaviruses are shown. Nucleotide variations located in the conserved elements in the other 
representative CoVs of each subgroup are indicated. The start codon of the ORF1ab is boxed, the core 
sequence of the transcription-regulating leader (TRS-L CS) is bracketed, and the length of the sequence 
insertion in SL5 is indicated. 
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There has no direct evidence for the translation of uORF in CoV infected 

cells, although Raman et al. (2003) have suggested a positive correlation 

between maintenance of the uORF and maximal BCoV DI RNA accumulation. 

They have also shown that a DI RNA in which this uORF was replaced by a 

totally unrelated uORF could be replicated. Our phylogenetic analysis showed 

that the sequence variations located in SL4, which were found to maintain the 

integrity of the RNA secondary structure, are not always silent at the amino acid 

level (data not shown). Although features of uORFs seem to be conserved and 

group-specific (Fig. 1), the necessity of translation of this ORF needs to be 

determined in the future to understand why certain groups of CoVs do need 

uORF for their propagation and others do not. 
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Figure 3. The structural-phylogenetic analysis of the 5’-proximal sequences 
in group II CoVs.  
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We noticed that the sequence of SL4 is included in the hotspot of the 

5’-proximal genomic acceptor (Wu et al., 2006), suggesting that SL4 may play 

a role in directing the subgenomic RNA synthesis and thereby compensates for 

the absence of a structured L-TRS hairpin (see above). 

 

Features of the inserted sequence in SL5 reflect the lineage of CoVs  

 

A fifth structural element, SL5, was predicted downstream of SL4 in all CoVs 

(Fig.  2-4).  SL5  is  a  homologue  of  SL-IV  of  BCoV  reported  by  Brian  and  

coworkers (Raman and Brian, 2005; Brown et al., 2007) and is supported by 

co-variations in almost all CoV groups with the exception of group Ia, and IIIa, 

b, and d CoVs, where sequence variation is low. 

 

Figure 3. The structural-phylogenetic analysis of the 5’-proximal sequences in group 
II CoVs (continued). The predicted secondary structures of the 5’ proximal sequence of (A) 
group IIa BCoV, (B) group IIb SARS-CoV-Tor2, (C) group IIc BtCoV-HKU5-1, and (D) group IId 
BtCoV-HKU9-1 are shown. For details see Fig. 2. 
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Figure 4. The structural-phylogenetic analysis of the 5’ proximal sequences in group III 
CoVs. The  predicted  secondary  structures  of  the  5’  proximal  sequence  of  (A)  group  IIIa  
IBV-Beaudette,  (B)  group  IIIb  CoV-SW1,  (C)  group  IIIc  BuCoV-HKU11/796,  and  (D)  group  IIId  
HKU13/3514 are shown. For further details see Fig. 2. 
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Compared  to  group  IIa  and  III  CoVs,  the  other  CoVs  have  sequence  

insertions in the top of SL5, which are about 110-nt long in group I CoVs and 

between 55 and 94 nt in group IIb, c, and d CoVs (Fig. 2, 3, and 4). Secondary 

structure predictions of these inserts revealed hairpins displaying the 

conserved  5’-UUYCGU-3’  loop  motif  (Fig.  5).  We  note  that  some  of  these  

hairpins resemble the predicted structures for four group I CoVs and SARS-CoV 

reported by Raman and Brian (2005), which were proposed to be homologues 

of  BCoV  SL5  (SL-IV  in  their  report).  Nevertheless,  our  comprehensive  

structural-phylogenetic analysis indicates that these conserved structural 

motifs are not SL5 homologues as such but are substructural hairpins within 

SL5 (Fig. 2, 3, and 5). 

In group I CoVs, a large number of co-variations, particularly in group Ib 

CoVs, was observed, supporting the existence of these substructural hairpins at 

the  top  of  SL5  (Fig.  5).  We  noticed  that  4  different  patterns  of  the  SL5  

substructural hairpins were found in group I CoVs. This finding supports the 

idea that group I  CoVs may be clustered into 4 subgroups, groups Ia to d.  

Nonetheless, the structural homology of SL5 within the lineage of the group I 

CoVs is still higher than that of the group II CoVs; three hairpins, SL5a, b, and 

c, with mainly the conserved 5’-UUCCGU-3’ loop sequence, were found in all 

group I CoVs. This is in agreement with the shorter phylogenetic distances 

found between each subgroup (group Ia-d) in group I CoVs compared to group 

II CoVs, which feature more diverse sequence insertions, in terms of length, the 

presence of 5’-UUYCGU-3’ motifs, and secondary structure. The greater 

structural variation in SL5 of group II CoVs is as follows: (i) the substructural 

hairpins are replaced by an 8-nt sequence in group IIa CoVs (Fig. 5E); (ii) one 

of the three substructural hairpins in SL5, SL5c, contains a GNRA tetra-loop 

sequence (group IIb) or a non-conserved hepta-loop sequence (group IIc) but 

not the UUYCGU motif (Fig. 5F and G); (iii) only two substructural hairpins are 

folded on top of SL5 in group IId CoVs, yet an additional conserved UUCCGU 

motif is present in SL5.1 located further upstream, in between the L-TRS and 

SL4 (Fig. 3D and 5H). Thus, the pattern of the SL5 substructures is strongly 

related to the lineage and the phylogenetic distance of the group I and II CoVs. 

Similar hairpins with a conserved loop motif could not be identified in 

group III CoVs (Fig. 4). Here, SL5 has a rod-like shape as in group IIa. Also in 

the remainder of the 5’UTR of group III CoVs no hairpins could be identified that 

featured a UUYCGU sequence or another motif. 
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Figure 5. The sub-structural hairpins of SL5 in group I and II CoVs. 
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Figure 5. The sub-structural hairpins of SL5 in group I and II CoVs (continued).  The secondary 
structure of the SL5 sub-structural hairpins, SL5a-c, in (A) group Ia TGEV-purdue, (B) group Ib HCoV-229E-inf-1, 
(C) group Ic PEDV-CV777, (D) group Id BtCoV-1A, (E) the group IIa BCoV, (F) the group IIb SARS-CoV-Tor2, (G) 
the  group  IIc  BtCoV-HKU5-1,  and  (H)  the  group  IId  BtCoV-HKU9-1  are  shown.  The  start  codon  of  the  
BtCoV-HKU5-1 ORF1ab is located in SL5b as indicated. SL5.1 which is located upstream of SL5 in BtCoV-HKU9-1 
also contains the conserved UUUCGU motif. 
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Structure probing of the SL5 substructure in HCoV-229E and SARS-CoV 

 

To verify the secondary structures of the proposed substructural hairpins in 

group  I  and  II  CoVs,  the  corresponding  RNA transcripts  of  HCoV-229E  and  

SARS-CoV were subjected to enzymatic and chemical structure probing (see 

Materials and Methods).  
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Figure 6. Structure probing of the inserted sequences in SL5 of group Ib HCoV-229E and group 
IIb SARS-CoV-Tor2. The secondary structures of the SL5 sub-structural hairpins of (A) the HCoV-229E 
and (B) the SARS-CoV are analyzed by enzymatic and chemical structure probing. Annotation of the 
denaturing electrophoresis: Un, untreated; D, DMS treated; R, RNase A treated,; T1, RNase T1 treated; V1, 
RNase V1 treated; S1, S1 nuclease treated; G, U, C and A, the RNA sequencing ladder. 
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Clearly, the single-stranded 5’-UUUCGU-3’hexa-loop sequences in 
HCoV-229E  SL5a,  SL5b,  and  SL5c  can  be  recognized  by  the  single-strand  
specific  probes,  DMS,  RNase  A,  S1  nuclease  and/or  RNase  T1  (Fig.  6A),  
suggesting that these nucleotides are unpaired. The presence of RNase V1 cuts, 
an enzyme that cuts double-stranded RNA, in the predicted stem regions is also 
in  agreement  with  the  model.  Probing  results  of  SARS-CoV  were  also  in  
agreement with the existence of SL5a, b, and c (Fig. 6B). 

Notably, the U:U mismatches located in the stems of these substructures 
seem to form non-canonical base pairs since RNAse V1 recognized U222 and 
U221 in HCoV-229E SL5b, as well as U193 in SARS-CoV SL5a. In fact, several 
(tandem) U:U mismatches were identified in the SL5 sub-structural hairpins, 
e.g. the SL5a in the group Ic Porcine epidemic diarrhea virus (PEDV) (Fig. 5C) 
and the group Id Bat coronavirus 1A (BtCoV-1A) (Fig. 5 D), as well as in other 
5’ cis-acting elements, e.g. the  MHV  SL1  (Li  et al., 2008). Interestingly, 
co-variations  were  frequently  found  at  the  positions  of  these  tandem  U:U  
mismatches, e.g. SL4 (Fig. 2B, 3C, 4C) and SL5a-c (Fig. 5B, 5C, 5D, and 5H). 
This suggests the formation of (tandem) U:U base pairs similar to what has 
been reported for the 5’CU3’/5’UU3’ non-canonical base pairs found in the Y 
stem of polio-like enterovirus 3’UTRs (Lescrinier et al., 2003).  
 
Are the SL5 substructural hairpins the counterparts of the group IIa 
packaging signal? 
 

It  has  been  generally  found  that  a  strong  packaging  signal  (PS)  or  
encapsidation signal, which directs specific packaging or encapsidation of 
genomic RNA, usually encompasses repetitions of conserved (structural) motifs 
(Hellendoorn et al., 1996, Chen et al., 2007). This leads us to propose that the 
SL5 substructures bearing the highly conserved UUYCGU repeats function as 
genomic PS for group I and II CoVs, including SARS-CoV. 

Studies of the genomic PSs in CoVs have been mainly focused on group IIa 
CoVs in the past, e.g. MHV and BCoV (Fosmire et al., 1992; Makino et al., 1990; 
van der Most et al., 1991; Woo et al., 1997; Chen et al., 2007; Cologna & Hogue, 
2000). For other groups of CoVs, e.g. SARS-CoV, the identification of a putative 
PS has been reported by Hsieh et al.  (2005).  This  PS  was  thought  to  be  a  
homologue of the MHV PS located in the corresponding region near the 3’ end of 
ORF1ab.  However,  it  has  to  be  noted  that  the  specificity  of  the  proposed  
SARS-CoV PS to direct RNA packaging was not determined in their study, and 
the predicted secondary structure of their “homologue of MHV PS” lacks the 
conserved features of the MHV PS structure reported by Chen et al. (2007). Also 
we doubt the possibility of identifying a MHV-like PS in the “corresponding 
region” of SARS CoV genomic RNA because an alignment of nsp15 sequences 
clearly shows that the sequence corresponding to the MHV PS is absent in SARS 
and other non-group IIa CoVs (Fig. 7).  
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Interestingly, the presence or absence of the region corresponding to the 

group IIa PS may not interfere with the function of nsp15 as the functional 

domains remain intact in both MHV and SARS-CoV nsp15 (Joseph et al., 2007). 

There seems to be however a strong correlation between the lack of a MHV 

PS-corresponding region and the presence of SL5 substructures and vice versa 

(Fig. 5). This correlation strongly suggests that the SL5 substructural hairpins 

located in the 5’UTR are the counterparts of the genomic PS present in group IIa 

CoVs, and presumably the UUCCGU structural repeats (Fig. 5A) are responsible 

for the packaging activity reported by Escors et al. (2003) for the first 649 nts 

of TGEV genomic RNA. 

 

Conclusions 
 

The diversity of the genomic RNA sequence provides a wealth of structural and 

phylogenetic information on the lineage of CoVs and improves our 

understanding of the evolution of the 5’ cis-acting elements. We have shown 

that the pattern of these cis-acting elements in the 5’ UTR is highly related to 

the phylogenetic distance based on the viral protein sequences, suggesting that 

the viral proteins and the RNA sequence evolved simultaneously, possibly to 

maintain functional RNA-protein interactions. 

The unique and conserved features of the 5’UTR and SL5 highlight the role 

of RNA structure in the evolution of CoVs and may serve as a roadmap for 

further studies. Future experiments should also verify whether the conserved 

UUYCGU motifs in SL5 function as PS in group I and II CoVs by interacting with 

nucleocapsid and/or membrane proteins (Molenkamp and Spaan, 1997; 

Narayanan et al., 2001; 2003). The absence of these or other conserved motifs 

in the 5’ UTR of group III CoVs suggests that their PSs are located elsewhere in 

the genome. This possibility is currently being explored.  

Figure 7. Multiple alignment of the CoV nsp15 sequence corresponding to the group IIa 
packaging signal. The  amino  acid  sequences  of  the  group  IIa  CoV  nsp15  are  aligned  with  the  
sequences of other CoV groups, showing the underlined sequence insertion of the packaging signal 
corresponding region in group IIa CoVs. 
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Materials and Methods  
 

Strutural-phylogenetic analysis 

 

Multiple alignment of all CoV 5’ proximal sequences avalable in GenBank was 

used to select coronaviruses with the highest sequence diversity. Sequences of 

the 5’ 420 nts of these variants were clustered by ClustalW2 on EBI webserver 

(Larkin et al., 2007). Secondary structures of this region were predicted by the 

Mfold webserver (Zuker et al., 2003). The alignment of CoV nsp15 was done by 

Kalign webserver (Lassmann and Sonnhammer, 2006) (Fig. 7). 

 

 

Structure probing and primer extension 

 

The RNA transcripts encompassing the entire HCoV-229E and SARS-CoV SL5 

region (about 180 nt) were synthesized in vitro using RibomaxTM RNA 

production system (Promega). The corresponding cDNA templates with an 

upstream T7 promoter were amplified by PCR using oligo-nucleotides 

5’-TAATACGACTCACTATAGGGCATGCCTAGTGCACCTACGCAG-3’ (the T7 

promoter sequence is underlined) and 5’-CAAACTGAGTTGGACGTGTG-3’ for 

SARS-CoV SL5 and oligo-nucleotides 5’-TAATACGACTCACTATAGGGTAATT 

GAAATTTCATTTGGG-3’  (the  T7  promoter  sequence  is  underlined)  and  

5’-GTGTGACACTTGCCGTAGC-3’ for HCoV-229E SL5. Purified RNA transcripts 

were subjected to chemical and enzymatic probing as described in Chen et al. 

(2007). In general, 0.001% dimethylsulfate (DMS), 1 pg Rnase A, 0.001 units 

RNase T1, 0.1 units RNase V1, and 0.8 units S1 nuclease were used for the 

probing reactions (1X), followed by serial dilutions with a factor 1/5 (1/5X and 

1/25X) or 1/8 (1/8X and 1/64X). The primer extension was carried out with 

0.01 μg of treated transcripts, 0.5 μl of a 0.1 mM concentration of the MHV1 

primer, 1 μl of 5 mM dGAT, 1 μl of 25 μM dCTP, 0.1 μl of �-32P-labeled dCTP (10 

mCi/ml), 1 μl of 5x reverse transcriptase buffer, and 20 units of Moloney murine 

leukemia virus reverse transcriptase (Promega). 
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