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General introduction and outline of thesis

Background

Although important scientific advances have shed some light onto the substrate and 
mechanisms of ventricular arrhythmias in patients with structural heart disease, many 
aspects remain incompletely understood. Meanwhile, a pragmatic approach has been 
adopted, employing implantable cardioverter defibrillators (ICDs) to reduce sudden 
cardiac death in patients who survived cardiac arrest due to sustained ventricular tachy-
cardia (VT) or ventricular fibrillation (VF),1-3 and in selected patients who are considered 
to be at high risk for sudden cardiac death.4-6  ICDs can usually effectively terminate ven-
tricular arrhythmias and have thus saved numerous lives, but it is important to realize 
that they do not prevent the occurrence of arrhythmias. ICD shocks are associated with 
significant morbidity and even with increased mortality,7 although there may not be a 
causal relation with the latter.8,9 Therapies to control recurring ventricular arrhythmias 
and ICD shocks, such as anti-arrhythmic drugs and endocardial or epicardial catheter 
ablation, have thus become even more important and indispensable in the era of ICDs.

In the past, catheter ablation was only applied in patients with hemodynamically 
stable VT.10 The development of substrate and pace mapping has allowed catheter abla-
tion of hemodynamically unstable VTs,11 which are inducible in the majority of patients 
with prior myocardial infarction12 or nonischemic cardiomyopathy (NICM).13 Catheter 
ablation is typically performed in patients with recurrent VT despite anti-arrhythmic 
drugs, but is also recommended in patients who do not prefer or tolerate anti-arrhythmic 
drugs14 and may even be applied after a first episode of VT in patients after myocardial 
infarction, as a direct adjunct to ICD implantation for secondary prevention to prevent 
future appropriate ICD shocks.15,16 Despite these recommendations and potential ap-
plications, the vast majority of clinicians restrict VT ablation to patients who experience 
multiple ICD shocks or electrical storm,17 suggesting that ‘there is a need to catch up with 
current recommendations’.18 One potential reason for the poor implementation rate of 
VT ablation may be the disappointing long-term outcomes, with 6 month recurrence 
rates of 47% in one large multicenter study in patients with VT after myocardial infarc-
tion,12 and 12-month recurrence rates of 43% and 59% in patients after infarction and 
with NICM, respectively, in a large tertiary care facility.19 Notably, although VT ablation 
may not completely prevent VT recurrence in around 50% of patients, the 6-month VT 
burden is reduced by ≥75% in approximately 67% of patients.12 It is unclear whether, 
and to what extent, the high VT recurrence rates are attributable to not identified or not 
reachable substrates, imperfect ablation, lesion recovery, arrhythmogenic substrates 
that evolve over time, progressive heart failure, or other factors.

The key to more effective primary and secondary preventive therapies for ventricular 
arrhythmias may be improved understanding of different types of ventricular arrhyth-
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mias, and of its underlying substrate and mechanisms. Improved understanding may 
lead both to more accurate risk stratification and to development of more effective, 
individualized and substrate-based therapies.

Myocardial Fibrosis and Monomorphic Ventricular Tachycardia

In patients with prior myocardial infarction and other causes of replacement fibrosis 
(e.g., laminopathy20, myocarditis21,22), surviving bundles of myocytes may be located 
within regions of fibrosis, resulting in slow conduction.23,24 Classically, slow conduction 
in fibrotic regions has been attributed to increased path length (so-called zig-zag course 
of activation23), but there is  also emerging evidence for functional components, which 
may be unmasked by premature stimulation.25 The presence of inexcitable barriers, 
slow conduction and unidirectional conduction block may allow for stable re-entrant 
activation through a central slow-conducting critical isthmus, which manifests as VT. For 
hemodynamically stable VTs, activation and entrainment mapping can be performed 
to identify the slow-conducting critical isthmus during ongoing arrhythmia, so that the 
arrhythmia can be slowed and terminated by ablation.26-28 In case of hemodynamically 
unstable VT, substrate mapping and ablation are typically performed to localize and 
eliminate the slow-conducting isthmuses during stable rhythm, thereby preventing VT 
recurrence.11,29-31

Nonischemic scars are different from post-infarct scars as they exhibit less late poten-
tials32 and are frequently located intramurally or subepicardially,32 limiting the efficacy 
of endocardial VT ablation. Epicardial mapping and ablation may therefore be required 
to abolish VT.33,34 Substrate mapping may however be hampered at the epicardium by 
interposed epicardial adipose tissue, which is typically not only present in the atrioven-
tricular and interventricular grooves, but also at the acute margin and in other areas.35,36 
In patients undergoing catheter ablation for ventricular arrhythmias, on average 25% 
of the epicardial surface is covered by >4 mm of fat.36 The integration of CT-derived 
fat thickness during VT ablation procedures has demonstrated that fat reduces bipolar 
electrogram amplitudes,35,36 thereby preventing accurate delineation of scar regions. 
The combined integration of both CT and LGE-MRI may compensate for this limitation, 
allowing distinguishing between scar, viable myocardium and epicardial fat.

Although the ‘grass may appear greener’ on the opposite (i.e., epicardial) side of the 
wall during endocardial mapping (Tung et al.37), not all patients with NICM have VTs 
originating from the epicardium34 and as a consequence, pericardial puncture and its 
associated risks (including RV perforation, severe pericardial bleeding, coronary steno-
sis and occlusion, and liver injury38) are not required in all patients with NICM. Also, even 
if the arrhythmogenic substrate is located subepicardially, it may not be amenable to 
epicardial ablation because of overlying coronary arteries and/or epicardial fat.36 Pa-
tients with isolated septal substrates are unlikely to  benefit from epicardial ablation.39 
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Pre-procedural imaging studies, scar patterns, and associated VT morphologies may be 
very helpful to identify patients who are not expected to benefit from epicardial VT 
ablation.

During VT ablation procedures, the slow-conducting critical isthmuses that cause VT 
are typically located in or adjacent to regions with low bipolar voltage based on electro-
anatomical mapping studies,11,29-34,40,41 and in or adjacent to regions with late gadolinium 
enhancement (LGE) on MRI based on image integration studies,42-46 which are both 
considered to be indicative of focal myocardial fibrosis, based on histological correlation 
studies.47-49 There is however limited data on more specific features of the area harboring 
critical isthmuses of VT. Some evidence suggests that fibrosis density may play a role,50 
and that higher scar transmurality is related to slow conduction.43,50,51 Improved insights 
into LGE characteristics at critical isthmuses may improve our understanding of VT 
and the integration of LGE-MRI-derived data may be of significant added value during 
catheter ablation procedures if MRI-derived features can lead to critical isthmus sites, in 
particular in the setting of hemodynamically unstable VT,12 inducibility of multiple VTs,12 
intramural re-entry circuits52,53 and epicardial fat overlying the area of interest.35,36 Finally, 
LGE-MRI characteristics at critical isthmus sites may facilitate improved risk stratification 
for VT in broader populations and in particular in patients with non-myocardial infarc-
tion scars in the future. The potential benefits of image integration during VT ablation 
are discussed in more detail in Chapter 2.

From Substrate and VT Features to Therapy and Outcome

The 12-lead ECG of epicardial VTs has been reported to exhibit specific features that may 
be useful for identification of VTs with an epicardial origin,54-59 and for guidance of the 
procedural strategy (i.e., endocardial, epicardial, or both). Based on these ECG features, 
specific criteria have been developed, which all indicate either the  initial direction of the 
activation wave front from epicardium to endocardium (e.g., initial Q-waves in the infe-
rior leads in VTs with a superior axis), or a delayed and slurred onset of the QRS-complex 
in the precordial leads consistent with late activation of the endocardially located con-
duction system (e.g. pseudodelta wave, intrinsicoid deflection time in lead V2).54-59 The 
ECG criteria have however previously only been analyzed during pacing and in induced 
VTs, using electronic calipers at a sweep speed of 200 mm/second on electrophysiology 
recording systems. To guide the procedural strategy and to select patients that need an 
epicardial approach, the criteria should be derived from regular 25 mm/second ECGs of 
clinically documented VTs. The accuracy of the criteria in this setting is unclear.

If epicardial mapping and ablation are performed, post-procedural pericarditic chest 
pain,38,60 atrial fibrillation61 and adhesions62 may occur. Animal experiments demon-
strated that intrapericardial installation of triamcinolone can reduce the development of 
adhesions.62 In humans, the effects of intrapericardial triamcinolone or systemic steroids 
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on pericarditic chest pain and on ECG changes after epicardial mapping has never been 
investigated.

After VT ablation, programmed electrical stimulation is typically performed to assess 
for inducibility of clinical and non-clinical VTs. The value of programmed electrical 
stimulation (PES) after ablation as a procedural endpoint is however unclear in patients 
with NICM; it has mainly been analyzed in patients after myocardial infarction.63,64 Pa-
tients after infarction do however have a different substrate, higher acute success rates 
and lower VT recurrence rates.32,63 Moreover, even in patients after infarction data are 
inconsistent, possibly due to differences in induction protocols, incomplete application 
of protocols but also changes in VT ablation populations over time.12,25,63-65 The predic-
tive value of PES as a procedural endpoint in NICM has only been analyzed in two small 
studies.32,66 Also, VT ablation is now more frequently performed in patients without an 
ICD and off amiodarone, and fast hemodynamically unstable VTs are typically induc-
ible, with uncertain clinical significance. Novel substrate-based endpoints have been 
proposed as an alternative to post-ablation PES,25,67 but are arbitrarily defined and to 
date, their independent predictive value for long-term outcomes has not been reported.

Post-infarct scar features such as transmurality are known to be influenced by reperfu-
sion therapy,68 which may have important implications for VT. In patients undergoing 
VT ablation, it has recently been demonstrated that reperfused patients had non-
transmural, patchy scars that were associated with faster VTs, whereas non-reperfused 
patients typically had more transmural, confluent scars that were associated with slower 
VTs.69 The effect of reperfusion therapy on VT characteristics has not yet been analyzed 
in a broader population of patients at risk for VT after myocardial infarction.

Ventricular Arrhythmias: Are All the Same?

Importantly, patients with prior infarction and NICM are not only at risk for monomorphic 
VT, but also for potentially fatal polymorphic VT and VF.70,71 Myocardial scar on LGE-MRI 
has been identified as an important novel predictor of sudden cardiac death, appropri-
ate ICD therapy and combined arrhythmic endpoints in patients after infarction and in 
NICM.72-78 In the setting of NICM, the absence of LGE on MRI has been associated with 
(very) low arrhythmic event rates,73,75,77 which has led to questions regarding the benefit 
of ICD implantation in these patients. However, none of these studies has analyzed the 
predictive value of LGE for monomorphic VT and polymorphic VT/VF separately. Based 
on LGE-MRI studies in patients with and without inducible VT,79 and on LGE-MRI inte-
gration during VT ablation procedures,42 monomorphic VT is expected to be related to 
regions of LGE on MRI. It is unclear whether LGE on MRI also contributes to the initiation 
and/or maintenance of polymorphic VT/VF.

Polymorphic VT and VF have been attributed to different causes, such as conduction 
and repolarization abnormalities and electrolyte imbalances.80-83 For example, progres-
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sive activation delay after premature stimulation was associated with a history of VF in 
the setting of various nonischemic heart diseases.83 More specifically, the increase in 
RV intracardiac electrogram duration was larger in patients with prior VF than in those 
without VF, and the premature stimulus coupling intervals at which the electrogram 
durations started to increase were longer. There are limited data on the underlying sub-
strate and mechanisms of this electrophysiological phenomenon. An in vitro study has 
found tissue discontinuities as a cause for abnormal conduction velocity restitution,84 
studies in Langendorff-perfused mouse hearts have demonstrated that reduced sodium 
channel expression and severely reduced Cx43 expression can affect conduction veloc-
ity restitution,85 and finally, two studies in 5-6 explanted hearts from patients with end-
stage heart failure have demonstrated conduction abnormalities to occur in regions 
with long fibrotic strands.82,86 The underlying substrate and mechanisms of activation 
delay after premature stimulation have however never been studied in humans with 
NICM before end-stage heart failure developed.

Aim and outline of thesis

The present thesis aims to contribute to an improved understanding of different types of 
ventricular arrhythmias, in both ischemic and nonischemic heart disease. An improved 
understanding is mandatory for the development of  novel, more effective, individual-
ized and substrate-based therapies in the future.

In part I, it is demonstrated how image integration strategies can provide insights 
into the substrate for monomorphic VT in patients with ischemic and nonischemic heart 
disease. Chapter 2 provides a detailed overview of the current literature on this topic. 
Computed tomography-derived epicardial fat thickness and MRI-derived scars are inte-
grated with epicardial substrate maps in chapter 3 in order to obtain insights into the 
effects of scar, viable myocardium and epicardial fat on bipolar and unipolar voltages and 
on electrogram characteristics during epicardial substrate mapping. Chapter 4 analyzes 
typical MRI-derived scar patterns in patients with nonischemic cardiomyopathy, the 
associated 12-lead ECG morphologies of VTs, and their potential use to assess the need 
for epicardial VT ablation. Specific MRI-derived scar characteristics at electroanatomical 
mapping-based critical isthmus sites of monomorphic VTs are analyzed in chapter 5. 
These scar characteristics may be used to restrict VT substrate mapping and ablation to 
limited MRI-identified areas  that are likely to contain the critical isthmus for VT.

In part II, additional strategies are used to improve our understanding of sustained 
monomorphic VT and of polymorphic VT and VF. Previously proposed 12-lead ECG cri-
teria to identify an epicardial origin of VTs in nonischemic cardiomyopathy are analyzed 
in chapter 6. The study focuses on the effect of amiodarone and VT cycle length on the 
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reliability of ECG criteria, and more importantly, on its value in clinical practice. If epicar-
dial substrate mapping and VT ablation are performed, patients may experience post-
procedural pericarditic chest pain and pericarditic ECG changes. Chapter 7 analyzes the 
effects of systemic and intrapericardial steroids on these adverse procedural effects. The 
outcomes of VT ablation and the predictive value of post-ablation programmed electri-
cal stimulation are analyzed in chapter 8, with a special emphasis on the predictive 
value of persistent inducibility of non-clinical VTs for VT recurrence during follow-up. 
In chapter 9, it is demonstrated how early reperfusion therapy may have an important 
impact on monomorphic VTs late after myocardial infarction. The last two chapters will 
focus on distinct substrates for different types of arrhythmias in nonischemic cardio-
myopathy. In chapter 10, the predictive value of the presence and extent of MRI-based 
myocardial scar for monomorphic VT and for polymorphic VT and VF is analyzed. Several 
mechanisms have been proposed as potential causes for polymorphic VT and VF. In 
chapter 11, it is demonstrated how activation delay after premature stimulation can be 
quantified simply by measuring the QRS duration during a standard electrophysiologi-
cal study, and how it relates to inducible polymorphic VT and to underlying fibrosis in 
endomyocardial biopsy specimens. Finally, a summary, conclusions and future perspec-
tives are provided in chapter 12.
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