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Kölcsey Ferenc: Himnusz (1823)

Isten, áldd meg a magyart,
Jó kedvvel, bőséggel,
Nyújts feléje védő kart,
Ha küzd ellenséggel;
Bal sors akit régen tép,
Hozz rá vı́g esztendőt,
Megbűnhődte már e nép
A múltat s jövendőt!

Őseinket felhozád
Kárpát szent bércére,
Általad nyert szép hazát
Bendegúznak vére.
S merre zúgnak habjai
Tiszának, Dunának,
Árpád hős magzatjai
Felvirágozának.

Értünk Kunság mezein
Ért kalászt lengettél,
Tokaj szőlővesszein
Nektárt csepegtettél.
Zászlónk gyakran plántálád
Vad török sáncára,
S nyögte Mátyás bús hadát
Bécsnek büszke vára.

Hajh, de bűneink miatt
Gyúlt harag kebledben,
S elsújtád villamidat
Dörgő fellegedben,
Most rabló mongol nyilát
Zúgattad felettünk,
Majd töröktől rabigát
Vállainkra vettünk.

Hányszor zengett ajkain
Ozmán vad népének
Vert hadunk csonthalmain
Győzedelmi ének!
Hányszor támadt tenfiad
Szép hazám, kebledre,
S lettél magzatod miatt
Magzatod hamvvedre!

Bújt az üldözött s felé
Kard nyúl barlangjában,
Szert nézett, s nem lelé
Honját a hazában,
Bércre hág, és völgybe száll,
Bú s kétség mellette,
Vérözön lábainál,
S lángtenger felette.

Vár állott, most kőhalom;
Kedv s öröm röpkedtek,
Halálhörgés, siralom
Zajlik már helyettek.
S ah, szabadság nem virúl
A holtnak véréből,
Kı́nzó rabság könnye hull
Árvák hő szeméből!

Szánd meg, isten, a magyart
Kit vészek hányának,
Nyújts feléje védő kart
Tengerén kı́njának.
Bal sors akit régen tép,
Hozz rá vı́g esztendőt,
Megbűnhődte már e nép
A múltat s jövendőt!
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This thesis contains material from the following papers.

Chapter 2 is a modified version of

Sz. Tengely, On the Diophantine equation F(x) = G(y),
Acta Arith., 110 (2003), 185-200.

Section 1 in Chapter 3 has, except for some minor modifications, appeared as

Sz. Tengely, On the Diophantine equation x2 + a2 = 2yp,
Indag. Math. (N.S.), 15 (2004), 291-304.



Chapter 1

Introduction

In the thesis we shall solve Diophantine equations effectively by various methods, more

precisely by Runge’s method, Baker’s method and Chabauty’s method. To put our results

in the proper context we summarize some of the relevant history.

A Diophantine equation is an equation of the form f (x1, x2, . . . , xn) = 0, where f is a given

function and the unknowns x1, x2, . . . , xn are required to be rational numbers or to be integers.

As a generalisation of the concept one may consider rational or integral solutions over a

number field. In the study of Diophantine equations there are some natural questions:

• Is the equation solvable?

• Is the number of solutions finite or infinite?

• Is it possible to determine all solutions?

Diophantus was a mathematician who lived in Alexandria around 300 A.D. Six Greek books

out of thirteen of Diophantus’ Arithmetica have been known for a long time. The most famous

Latin translation is due to Bachet in 1621. In 1968 an Arabic manuscript was found in Iran,

which is a translation from a Greek text written in Alexandria, but probable it was written

by some of Diophantus’ commentators. In his works he stated mathematical problems and

provided rational solutions. To give an idea of the kind of problems we mention here two of

them. The first problem is (problem 20 of book 4) to find four numbers such that the product

of any two of them increased by 1 is a perfect square. A set with this property is called a

(rational) Diophantine quadruple. The set with this property which Diophantus constructed

1
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is { 1
16 ,

33
16 ,

17
4 ,

105
16 }. In fact

1
16
· 33

16
+ 1 =

(
17
16

)2

,

1
16
· 17

4
+ 1 =

(
9
8

)2

,

1
16
· 105

16
+ 1 =

(
19
16

)2

,

33
16
· 17

4
+ 1 =

(
25
8

)2

,

33
16
· 105

16
+ 1 =

(
61
16

)2

,

17
4
· 105

16
+ 1 =

(
43
8

)2

.

The second problem is problem 17 of book 6 of the Arabic manuscript of Arithmetica which

comes down to find positive rational solutions to y2 = x6 + x2 + 1. Diophantus constructed

the solution x = 1
2 , y =

9
8 .

Fermat’s Last Theorem concerns the Diophantine equation

xn + yn = zn.

Fermat (1601-1665) wrote in the margin of an edition of Diophantus’ book that he had proved

that there do not exist any positive integer solutions with n > 2. His proof was never found

and in all likelyhood he did not have it. Using the method of descent, which was introduced

by him, Fermat showed that the equation x4 + y4 = z2 has no non-trivial solutions. An

easy consequence is that Fermat’s Last Theorem is true in case of n = 4. By means of the

method of descent Fermat could solve several Diophantine problems. Fermat claimed that

there cannot be four squares in arithmetic progression. If x2, y2, z2,w2 are consecutive terms

of an arithmetic progression, then

x2 + z2 = 2y2,

y2 + w2 = 2z2.

Besides Fermat found the Diophantine quadruple {1, 3, 8, 120} consisting of integers.

Euler (1707-1783) proved Fermat’s Last Theorem in case of n = 3, that is, he showed that the
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equation x3+y3 = z3 has only trivial solutions. Euler conjectured that for every integer n > 2,

the sum of n − 1 n-th powers of positive integers cannot be an n-th power. This conjecture

is an extension of Fermat’s Last Theorem, but it was disproved by Lander and Parkin [47] in

1966. They gave a counterexample,

275 + 845 + 1105 + 1335 = 1445.

Elkies [37] in 1988 found the quartic counterexample

26824404 + 153656394 + 187967604 = 206156734.

Furthermore Euler showed that the only consecutive positive integers among squares and

cubes are 8 and 9. That is, he solved the Diophantine equation

x3 − y2 = ±1, x > 0, y > 0.

In 1844 Catalan conjectured that the Diophantine equation

xm − yn = 1

admits only the solution x = n = 3, y = m = 2 in positive integers. So Euler had already

solved the special case m = 3, n = 2.

Let

P(X, Y) =
m∑

i=0

n∑

j=0

ai, jX
iY j,

where ai, j ∈ Z and m > 0, n > 0, which is irreducible in Q[X, Y]. Let λ > 0. Then the

λ−leading part of P, Pλ(X, Y), is the sum of all terms ai, jXiY j of P for which i+λ j is maximal.

The leading part of P, denoted by P̃(X, Y), is the sum of all monomials of P which appear

in any Pλ as λ varies. Then P satisfies Runge’s condition unless there exists a λ so that

P̃ = Pλ is a constant multiple of a power of an irreducible polynomial in Q[X, Y]. One of the

first general results on Diophantine equations is due to Runge [74] who proved the following

theorem in 1887.

Theorem. If P satisfies Runge’s condition, then the Diophantine equation P(x, y) = 0 has

only a finite number of integer solutions.
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We present two examples for which the theorem implies the finiteness of integer solutions.

The first example is given by

P(X, Y) = X2 − Y8 − Y7 − Y2 − 3Y + 5,

where Pλ(X, Y) = X2, X2−Y8,−Y8 according as λ < 1
4 , λ =

1
4 , λ >

1
4 , thus P̃(X, Y) = X2−Y8 =

(X − Y4)(X + Y4). The second is

P(X, Y) = X(X + 1)(X + 2)(X + 3) − Y(Y + 1) · · · (Y + 5),

where we obtain that P̃(X, Y) = X4 − Y6.

Another general result was given by Thue [89] in 1909 who proved that if F(X, Y) is an

irreducible homogeneous polynomial of degree n ≥ 3 with integer coefficients, and m , 0 is

an integer, then the equation

F(x, y) = m in x, y ∈ Z

has only finitely many solutions. Siegel [78] in 1926 proved that the hyperelliptic equation

y2 = a0xn + a1xn−1 + . . . + an =: f (x)

has only a finite number of integer solutions if f has at least three simple roots. The same

method implies that the equation ym = a0xn + a1xn−1 + . . . + an with m > 2 has only a finite

number of integer solutions. In 1929 Siegel [79] classified all irreducible algebraic curves

over Q on which there are infinitely many integral points. These curves must be of genus 0

and have at most 2 infinite valuations. These results are ineffective, that is, their proofs do

not provide any algorithm for finding the solutions.

In the 1960’s Baker [6], [9] gave explicit lower bounds for linear forms in logarithms of the

form

Λ =

n∑

i=1

bi logαi , 0,

where bi ∈ Z for i = 1, . . . , n and α1, . . . , αn are algebraic numbers (, 0, 1), and

logαi, . . . , logαn denote fixed determinations of the logarithms. Using his estimates Baker

[7] gave an effective version of Thue’s theorem. In [8], [10] he applied the method to the
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class of Diophantine equations

f (x) = ym in x, y ∈ Z, (1.1)

where f is an irreducible polynomial of degree n ≥ 3 with integer coefficients and m ≥ 2

is a given integer. If m = 2, then equation (1.1) is called hyperelliptic equation, otherwise

it is called superelliptic equation. Baker’s method has been applied for many other types of

Diophantine equations, see the papers by Bilu [15],[16], the survey by Győry [42] and the

book by Smart [81] and the references given there. In practice Baker’s method provides very

large upper bounds for the unknowns of a given equation. In 1969 Baker and Davenport

[11] proved that the only Diophantine quadruple of the form {1, 3, 8, x} is {1, 3, 8, 120}, the

one due to Fermat. They used Baker’s method and a reduction algorithm based on continued

fractions.

In 1976 Tijdeman [90] proved that Catalan’s equation xp − yq = 1 has only finitely many

solutions in integers p > 1, q > 1, x > 1, y > 1. He used a refinement of Baker’s estimates

for linear form in logarithms of algebraic numbers.

Schinzel and Tijdeman [76] in 1976 proved that if a polynomial P(X) with rational

coefficients has at least two distinct zeros then the equation P(x) = ym, where x, y ∈ Z with

y , 0, implies that m < c(P) where c(P) is a computable constant.

In 1982 Lenstra, Lenstra and Lovász [50] introduced the so-called LLL-basis reduction

algorithm which enables one in many cases to reduce the high bounds found by applying

Baker’s method considerably. See de Weger [93].

In 1983 Faltings [38] proved the following result conjectured by Mordell.

Theorem. Let K be a number field, and let C/K be a curve of genus g ≥ 2. Then C(K) is

finite.

It follows from this theorem that for every integer n ≥ 3 the Fermat equation xn + yn = zn has

only finitely many coprime solutions x, y, z.

In 1993 Wiles claimed to have a proof of a large part of the Taniyama-Shimura conjecture on

the modularity of elliptic curves and thereby of Fermat’s Last Theorem. His proof involved

deep results on elliptic curves and modular forms. Some gap was found in the original proof

but in 1995 Wiles and Taylor managed to nail it down and to complete the proof of Fermat’s

Last Theorem, see [94], [86].
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In 1997 Darmon and Merel [34] proved following Wiles’ approach that Denes’ conjecture is

true, that is there are no 3-term arithmetic progressions of equal powers greater than two.

A common generalisation of Fermat’s equation and Catalan’s equation is

Axr + Bys = Czt (1.2)

in integers r, s, t ∈ N≥2, x, y, z ∈ Z and A, B,C ∈ Z given integers with ABC , 0. In 1995

Darmon and Granville [33] proved the following theorem.

Theorem. Let A, B,C ∈ Z, ABC , 0 and r, s, t ∈ N≥2 such that 1/r + 1/s+ 1/t < 1. Then the

equation (1.2) has only finitely many solutions x, y, z ∈ Z with gcd(x, y, z) = 1.

If r, s, t are positive integers with 1/r + 1/s + 1/t > 1, then there may exist infinitely many

coprime integers x, y, z such that (1.2) holds. The following theorem is due to Beukers [13].

Theorem. Let A, B,C ∈ Z, ABC , 0 and r, s, t ∈ N≥2 such that 1/r + 1/s + 1/t > 1. Then

the equation (1.2) has either zero or infinitely many solutions x, y, z ∈ Z with gcd(x, y, z) = 1.

Moreover, there exists a finite set of triples X, Y, Z ∈ Q[U,V] with gcd(X, Y, Z) = 1 and

AXr + BY s = CZt such that for every primitive integral solution (x, y, z) there is a triple

(X, Y, Z) and u, v ∈ Q such that x = X(u, v), y = Y(u, v), z = Z(u, v).

Moreover Beukers [13] in Appendix A gives sets of parametrizations yielding all integer

solutions in case of A = B = C = 1 for {p, q, r} = {2, 3, 3} and {2, 3, 4}.These parametrizations

were found by Zagier. Explicit parametrizations in case x2 + y3 = z5 have been given by

Edwards [36]. In case 1/r+1/s+1/t = 1 we have (r, s, t) = (3, 3, 3), (4, 4, 2) or (2, 3, 6). In all

three cases one has to study rational points on curves of genus 1. The following conjecture

(also known as the Beal Prize Problem) was made by Tijdeman in a lecture on the Fermat

Day in Utrecht in 1993.

Conjecture. Let x, y, z, r, s, t be positive integers with r, s, t > 2. If xr + ys = zt then x, y, z

have a factor in common.

This conjecture was motivated by computations by Beukers and Zagier made for the same

occasion. The known positive and primitive solutions to xr + ys = zt with 1/r + 1/s+ 1/t < 1
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are as follows:

1r + 23 = 32 (r > 6),

25 + 72 = 34,

73 + 132 = 29,

27 + 173 = 712,

35 + 114 = 1222,

177 + 762713 = 210639282,

14143 + 22134592 = 657,

92623 + 153122832 = 1137,

438 + 962223 = 300429072,

338 + 15490342 = 156133.

They found the five large solutions. Note that always a square is involved.

Catalan’s conjecture was resolved completely in 2002 by Mihǎilescu [60]. In his proof he

used results and tools from classical algebraic number theory, theory of cyclotomic fields,

transcendental number theory and a Runge-type Diophantine argument. Thus 8 and 9 are the

only consecutive positive powers indeed.

In the thesis we report on the following research. In Chapter 2 we consider the Runge-type

Diophantine equation

F(x) = G(y), (1.3)

where F,G ∈ Z[X] are monic polynomials of degree n and m respectively, such that F(X) −

G(Y) is irreducible in Q[X, Y] and gcd(n,m) > 1.We present an upper bound for the size of

the integer solutions to equation (1.3) in case gcd(n,m) > 1. We further give an algorithm

to find all integral solutions of equation (1.3). In Section 2.2.2 we make comparisons with

previously published computational solutions of Diophantine equations by Runge’s method.

It turns out that in some cases our algorithm involves considerably fewer calculations. Our

algorithm was implemented in Magma [21]. Some examples are given in Table 1.1.

In Chapter 3 exponential Diophantine equations (1.2) of the form x2 + a2 = 2yp are studied.
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Equation # Solutions CPU time (sec)
x2 = y8 + y7 + y2 + 3y − 5 4 0.16
x3 = y9 + 2y8 − 5y7 − 11y6 − y5 + 2y4 + 7y2 − 2y − 3 1 0.75
x5 = y25 + y24 + . . . + y + 7 1 5.69
x2 = y8 − 7y7 − 2y4 − y + 5 0 4.79
x2 = y4 − 99y3 − 37y2 − 51y + 100 2 1.83
x2 − 3x + 5 = y8 − y7 + 9y6 − 7y5 + 4y4 − y3 6 0.72
x3 − 5x2 + 45x− 713 = y9 − 3y8 + 9y7 − 17y6 + 38y5 −
199y4 − 261y3 + 789y2 + 234y

1 0.38

x(x + 1)(x + 2)(x + 3) = y(y + 1) · · · (y + 5) 28 0.23

Table 1.1: Results of a run of the procedure Runge.m on an AMD-Athlon 1 GHz PC.

In Section 1 (it is based on [88]) we provide a method to resolve the equation x2 + a2 =

2yn in integers n > 2, x, y for any fixed a. In particular we compute all solutions of the

equations x2 + a2 = yp and x2 + a2 = 2yp for odd a with 3 ≤ a ≤ 501. In Section 2 we

consider the Diophantine equation x2 + q2m = 2yp where m, p, q, x, y are integer unknowns

with m > 0, p and q are odd primes and gcd(x, y) = 1.We prove that there are only finitely

many solutions (m, p, q, x, y) for which y is not of the form 2v2 ± 2v + 1. We also study

the above equation with fixed y and with fixed q. We completely resolve the equation x2 +

q2m = 2 · 17p. At the end of the section it is proved that if the Diophantine equation x2 +

32m = 2yp with m > 0 and p prime admits a coprime integer solution (x, y), then either

p ∈ {59, 83, 107, 179, 227, 347, 419, 443, 467, 563, 587, 659, 683, 827, 947} or (x, y,m, p) ∈

{(79, 5, 1, 5), (545, 53, 3, 3)}.

In Chapter 4 some generalisations of Fermat’s problem on arithmetic progressions of length

4 consisting of squares are discussed. All arithmetic progressions are described which satisfy

one of the following conditions

four consecutive terms are of the form x2
0, x

2
1, x

2
2, x

3
3,

four consecutive terms are of the form x2
0, x

2
1, x

3
2, x

2
3,

four consecutive terms are of the form x3
0, x

2
1, x

3
2, x

2
3.

(1.4)

In the first two cases we show that it is sufficient to find all rational points on certain

hyperelliptic curves of genus 2 to obtain all progressions with gcd(x0, x1, x2, x3) = 1. These

hyperelliptic curves are given by

Y2 = X6 + 18X5 + 75X4 + 120X3 + 120X2 + 72X + 28,

Y2 = X6 − 6X5 + 15X4 + 40X3 − 24X + 12.
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In both cases the rank of the Jacobian is 1, therefore Chabauty’s method can be applied. In

the third case one can obtain a genus 2 curve without using any parametrisation, which enable

us to get rid of the condition gcd(x0, x1, x2, x3) = 1. The curve is given by

C : Y2 = −X6 + 2X3 + 3.

We prove that C(Q) = {(−1, 0), (1,±2)}. These rational points gives rise to two families of

progressions of the form x3
0, x

2
1, x

3
2, x

2
3 given by

x0 = −2t2, x1 = 0, x2 = 2t2, x3 = ±4t3 for some t ∈ Z,

x0 = t2, x1 = ±t3, x2 = t2, x3 = ±t3 for some t ∈ Z.

It follows there are no increasing arithmetic progression of integers of the types (1.4).





Chapter 2

Runge-type Diophantine

Equations

2.1 Introduction

Consider a polynomial

P(X, Y) =
m∑

i=0

n∑

j=0

ai, jX
iY j,

where ai, j ∈ Z and m > 0, n > 0, which is irreducible in Q[X, Y]. We recall Runge’s result

[74] on Diophantine equations:

if there are infinitely many (x, y) ∈ Z2 such that P(x, y) = 0 then the following properties

hold:

• ai,n = am, j = 0 for all non-zero i and j,

• for every term ai, jXiY j of P one has ni + m j ≤ mn,

• the sum of all monomials ai, jXiY j of P for which ni+m j = mn is up to a constant factor

a power of an irreducible polynomial in Z[X, Y],

• there is only one system of conjugate Puiseux expansions at x = ∞ for the algebraic

function y = y(x) defined by P(x, y) = 0.

The latter two properties have been sharpened by Schinzel [75] and by Ayad [5]. The

fourth property implies the three others. If the fourth statement does not hold, we say

that P satisfies Runge’s condition. Runge’s method of proof is effective, that is, it yields

computable upper bounds for the sizes of the integer solutions to these equations provided

11
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Runge’s condition is satisfied. Using this method upper bounds were obtained by Hilliker

and Straus [45] and by Walsh [92]. Grytczuk and Schinzel [41] applied a method of

Skolem [80] based on elimination theory to obtain upper bounds for the solutions. Laurent

and Poulakis [48] obtained an effective version of Runge’s theorem over number fields by

interpolation determinants. Their result extends Walsh’s result which holds for the field of

rational numbers.

If P(X, Y) = Yn − R(X) is irreducible in Q[X, Y], R is monic and gcd(n, deg R) > 1, then P

satisfies Runge’s Condition. Masser [58] considered equation yn = R(x) in the special case

n = 2, deg R = 4, and Walsh [92] gave a bound for the general case. In [73] Poulakis described

an elementary method for computing the solutions of the equation y2 = R(x), where R is a

monic quartic polynomial which is not a perfect square. Szalay [84] generalized the result

of Poulakis by giving an algorithm for solving the equation y2 = R(x) where R is a monic

polynomial of even degree. Recently, Szalay [85] established a generalization to equations

yp = R(x), where R is a monic polynomial and p| deg R.

Several authors (for references see e.g.[14],[20],[35]) have studied the question if the equation

F(x) = G(y) has finitely or infinitely many solutions in x, y ∈ Z, where F,G are polynomials

with rational coefficients. Bilu and Tichy [20] completely classified those polynomials F,G ∈

Q[X] for which the equation F(x) = G(y) has infinitely many integer solutions. The methods

used in [14],[20],[35] are ineffective so they do not lead to algorithms to find all the solutions.

In this chapter we will prove the following theorem.

Theorem. Let F,G ∈ Z[X] be monic polynomials with deg F = n ≤ degG = m, such that

F(X) −G(Y) is irreducible in Q[X, Y] and gcd(n,m) > 1. Let d > 1 be a divisor of gcd(n,m).

If (x, y) ∈ Z2 is a solution of the Diophantine equation F(x) = G(y), then

max{|x|, |y|} ≤ d
2m2

d −m(m + 1)
3m
2d (

m
d
+ 1)

3m
2 (h + 1)

m2+mn+m
d +2m,

where h = max{H(F),H(G)} and H(·) denotes the classical height, that is the maximal

absolute value of the coefficients.

We provide an algorithm to determine all the solutions, and show by examples how it works

and compare the results with others on the same equations in the literature.
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2.2 The case F(x) = G(y) with gcd(deg G, deg F) > 1

We deal with the Diophantine equation

F(x) = G(y), (2.1)

where F,G ∈ Z[X] are monic polynomials with deg F = n, degG = m, such that F(X)−G(Y)

is irreducible in Q[X, Y] and gcd(n,m) > 1. Then Runge’s condition is satisfied. Let d > 1 be

a divisor of gcd(n,m).Without loss of generality we can assume m ≥ n. By H(·) we denote

the classical height, that is the maximal absolute value of the coefficients.

In the following theorem we extend a result of Walsh [92] concerning superelliptic equations

for which Runge’s condition is satisfied.

Theorem 2.2.1. If (x, y) ∈ Z2 is a solution of (2.1) where F and G satisfy the above mentioned

conditions then

max{|x|, |y|} ≤ d
2m2

d −m(m + 1)
3m
2d (

m
d
+ 1)

3m
2 (h + 1)

m2+mn+m
d +2m,

where h = max{H(F),H(G)}.

In the special case that G(Y) = Ym Walsh [92, Theorem 3] obtained a far better result for the

integer solutions of (2.1), viz.

|x| ≤ d2n−d
(n
d
+ 2

)d
(h + 1)n+d.

In the Corollary of Theorem 1 [92] Walsh has shown that if P(X, Y) satisfies Runge’s

condition, then all integer solutions of the Diophantine equation P(X, Y) = 0 satisfy

max{|x|, |y|} < (2m)18m7
h12m6

,

where m = degY P, and h = H(P). Grytczuk and Schinzel [41] have stated in their Corollary

that if P(X, Y) satisfies Runge’s condition, then

max{|x|, |y|} <



(45h)250 if m = 2,

(
(4m3)8m2

h
)96m11

if m > 2.

Here we cited corollaries from [41] and from [92] because it is easier to compare these results
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with the Theorem. We note that in the special case (2.1) our theorem gives a far better upper

bound.

We will need the concept of resultant. The resultant of two polynomials f , g ∈ C[X, Y] of

degrees r, t in Y, respectively, say f (X, Y) = a0(X)Yr + a1(X)Yr−1 + . . .+ ar(X) with a0(X) . 0

and g(X, Y) = b0(X)Y t + b1(X)Y t−1 + . . . + bt(X) with b0(X) . 0 is defined by

ResY ( f (X, Y), g(X, Y)) =

a0(X) . . . . . . ar(X)

. . .
. . .

a0(X) . . . . . . ar(X)

b0(X) . . . bt(X)

. . .
. . .

. . .
. . .

b0(X) . . . bt(X)

We use the following result in the proof of the Theorem.

Lemma 2.2.1. There exist Puiseux expansions (in this case even Laurent expansions)

u(X) =
∞∑

i=− n
d

fiX
−i and

v(X) =
∞∑

i=− m
d

giX
−i

of the algebraic functions U,V defined by Ud = F(X),Vd = G(X), such that

d2(n/d+i)−1 fi ∈ Z for all i > − n
d , similarly d2(m/d+i)−1gi ∈ Z for all i > −m

d , and f− n
d
= g− m

d
= 1.

Furthermore | fi| ≤ (H(F) + 1)
n
d+i+1 for i ≥ − n

d and |gi| ≤ (H(G) + 1)
m
d +i+1 for i ≥ −m

d .

Proof. See [92] pp. 169-170. �

Proof of the Theorem. Let (2.1) admit a solution (x, y) ∈ Z2. Applying the lemma we write

F(X) =


∞∑

i=− n
d

fiX
−i



d

, G(Y) =


∞∑

i=− m
d

giY
−i



d

,

where | fi| and |gi| are bounded by expressions given in the lemma. It follows from the lemma

that
∣∣∣∣∣
d

2m
d −1 fk
tk

∣∣∣∣∣ < 1
2k+1 for |t| > 4d

2m
d −1(H(F) + 1)

n
d+2 =: x0. Thus we have |∑∞i=1 d

2m
d −1 fit−i| < 1

2 .

Similarly if |t| > 4d
2m
d −1(H(G) + 1)

m
d +2 =: y0 then |∑∞i=1 d

2m
d −1git−i| < 1

2 . Since F(x) = G(y),
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we have u(x)d − v(y)d = 0, that is

(u(x) − v(y))
(
u(x)d−1 + u(x)d−2v(y) + . . . + v(y)d−1

)
= 0, if d is odd,

(
u(x)2 − v(y)2

) (
u(x)d−2 + u(x)d−4v(y)2 + . . . + v(y)d−2

)
= 0, if d is even.

First assume that d is odd and

u(x)d−1 + u(x)d−2v(y) + . . . + v(y)d−1 = 0. (2.2)

Suppose v(y) , 0. In this case we can divide (2.2) by v(y)d−1, and we get

(
u(x)
v(y)

)d−1

+

(
u(x)
v(y)

)d−2

+ . . . +

(
u(x)
v(y)

)
+ 1 = 0.

It suffices to observe that tk−1
t−1 has no real root if k is odd. Thus v(y) = 0 and u(x) = 0.

Now assume that d is even. Note that

u(x)d−2 + u(x)d−4v(y)2 + . . . + v(y)d−2 = 0

can only happen if u(x) = v(y) = 0. By the above considerations we have

u(x) = v(y) if d is odd, and

u(x) = ±v(y) if d is even.

Let |x| > x0, |y| > y0. Then we obtain from

0 = |u(x) ± v(y)| =

∣∣∣∣∣∣∣∣

∞∑

i=− n
d

fi x
−i ±

∞∑

i=− m
d

giy
−i

∣∣∣∣∣∣∣∣

that ∣∣∣∣∣∣∣∣

0∑

i=− n
d

d
2m
d −1 fi x

−i ±
0∑

i=− m
d

d
2m
d −1giy

−i

∣∣∣∣∣∣∣∣
< 1.

Since d
2m
d −1 fi ∈ Z for i = − n

d , . . . , 0 and d
2m
d −1gi ∈ Z for i = −m

d , . . . , 0 we have

Q(x, y) :=

n
d∑

i=0

d
2m
d −1 f−i x

i ±
m
d∑

i=0

d
2m
d −1g−iy

i = 0.

Hence x satisfies ResY (F(X) −G(Y),Q(X, Y)) = 0 and y satisfies
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ResX(F(X) − G(Y),Q(X, Y)) = 0. We note that these resultants are non-zero polynomials

since F(X)−G(Y) is irreducible over Q[X, Y] of degree n in X and of degree m in Y, whereas

degX Q(X, Y) = n
d , and degY Q(X, Y) = m

d . By applying Lemma 1 of Grytczuk and Schinzel

[41] we obtain the following bounds for |x| and |y| :

|x| ≤
(
h(n + 1)

√
m + 1

) m
d

(
d

2m
d −1(h + 1)

n+m
d +2(

n
d
+ 1)

√
m
d
+ 1

)m

,

|y| ≤
(
h(m + 1)

√
n + 1

) n
d

(
d

2m
d −1(h + 1)

n+m
d +2(

m
d
+ 1)

√
n
d
+ 1

)n

.

(2.3)

By combining the bounds x0, y0 and (2.3) obtained for |x|, |y| we get the bound given in the

theorem. �

2.2.1 Description of the algorithm

In this section we give an algorithm to find all integral solutions of concrete Diophantine

equations of the form (2.1) by adapting the proof of the theorem. Let p be the smallest prime

divisor of gcd(m, n). Let u(X) =
∑0

i=− n
p

fiX−i and v(X) =
∑0

i=− m
p

giX−i be the polynomial

part of the Puiseux expansions at ∞ of u(X)p = F(X), v(X)p = G(X), respectively, with

f− n
p
= g− m

p
= 1. Denote by D the least common multiple of both the non-zero denominators

of fi for i ∈ {− n
p , . . . ,−1} and of gi for i ∈ {−m

p , . . . ,−1} and of f0 − g0. Let t be a positive real

number. The leading coefficients of F(X) − (u(X) − t)p and F(X) − (u(X) + t)p have opposite

signs, similarly in the case of the polynomials G(X) − (v(X) − t)p and G(X) − (v(X) + t)p.

Hence we have that either

(u(x) − t)p < F(x) < (u(x) + t)p or (u(x) + t)p < F(x) < (u(x) − t)p,

if |x| is large enough. Similarly we have that either

(v(x) − t)p < G(x) < (v(x) + t)p or (v(x) + t)p < G(x) < (v(x) − t)p,

if |x| is large enough. We note that if p , 2, then the degree of the polynomials F(X)− (u(X)−

t)p and F(X) − (u(X) + t)p is even, so only the case (u(x) − t)p < F(x) < (u(x) + t)p occurs.
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The same holds for G(X) − (v(X) − t)p and G(X) − (v(X) + t)p. Let

x−t = min {{0} ∪ {x ∈ R : F(x) − (u(x) − t)p = 0 or F(x) − (u(x) + t)p = 0}} ,

x+t = max {{0} ∪ {x ∈ R : F(x) − (u(x) − t)p = 0 or F(x) − (u(x) + t)p = 0}} ,

y−t = min {{0} ∪ {x ∈ R : G(x) − (v(x) − t)p = 0 or G(x) − (v(x) + t)p = 0}} ,

y+t = max {{0} ∪ {x ∈ R : G(x) − (v(x) − t)p = 0 or G(x) − (v(x) + t)p = 0}} .

Suppose that p is odd. Then we have

(u(x) − t)p < F(x) < (u(x) + t)p for x < [x−t , x
+
t ],

(v(y) − t)p < G(y) < (v(y) + t)p for y < [y−t , y
+
t ].

If (x, y) is a solution (2.1) such that x < [x−t , x
+
t ] and y < [y−t , y

+
t ], then

(u(x) − t)p − (v(y) + t)p < F(x) −G(y) < (u(x) + t)p − (v(y) − t)p.

Thus

(u(x) − v(y) − 2t)


p−1∑

k=0

(u(x) − t)p−1−k(v(y) + t)k

 < 0, (2.4)

(u(x) − v(y) + 2t)


p−1∑

k=0

(u(x) + t)p−1−k(v(y) − t)k

 > 0. (2.5)

Either u(x)−t , 0 or v(y)+t , 0 since otherwise u(x)−v(y)−2t = 0, a contradiction. Similarly,

either u(x)+ t , 0 or v(y)− t , 0 since otherwise u(x)−v(y)+2t = 0, a contradiction. Without

loss of generality we may assume that v(x)− t , 0 and v(x)+ t , 0.We rewrite (2.4) and (2.5)

as follows

(u(x) − v(y) − 2t)
1

(v(y) + t)p−1


p−1∑

k=0

(
u(x) − t
v(y) + t

)k
 < 0,

(u(x) − v(y) + 2t)
1

(v(y) − t)p−1


p−1∑

k=0

(
u(x) + t
v(y) − t

)k
 > 0.

Since p − 1 is even and
∑p−1

k=0 sk ≥ 1
2 for s ∈ R we obtain that

−2t < u(x) − v(y) < 2t.
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There are only finitely many rational numbers with bounded denominator between −2t and

2t. It follows from Lemma 2.2.1 that the denominator of u(x) − v(y) divides p
2m
p −1
, so D |

p
2m
p −1
. Hence x is a solution of ResY (F(X)−G(Y), u(X)− v(Y)−T ) for some rational number

−2t < T < 2t with denominator dividing D. To resolve a concrete equation of the form (2.1)

it is sufficient to find all integral solutions of the following equations

F(x) = G(k) for some k ∈ [y−t , y
+
t ],

G(y) = F(k) for some k ∈ [x−t , x
+
t ],

ResY (F(X) −G(Y), u(X) − v(Y) − T ) = 0 for some T ∈ Q, |T | < 2t

with denominator dividing D.

(2.6)

The number of equations to be solved depends on t, a good choice can reduce the time of the

computation.

In the special case p = 2 if n− n/d and m−m/d are even, then the previous argument works.

Otherwise four cases can occur.

1.

(u(x) − t)2 < F(x) < (u(x) + t)2,

(v(y) − t)2 < G(y) < (v(y) + t)2.

In this case it follows that −2t < u(x) − v(y) < 2t.

2.

(u(x) − t)2 < F(x) < (u(x) + t)2,

(v(y) + t)2 < G(y) < (v(y) − t)2.

We obtain that −2t < u(x) + v(y) < 2t.

3.

(u(x) + t)2 < F(x) < (u(x) − t)2,

(v(y) − t)2 < G(y) < (v(y) + t)2.

In this case we have that −2t < u(x) + v(y) < 2t.
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4.

(u(x) + t)2 < F(x) < (u(x) − t)2,

(v(y) + t)2 < G(y) < (v(y) − t)2.

In this case it follows that −2t < u(x) − v(y) < 2t.

If p = 2 then we can apply the above arguments to conclude that each solution (x, y) ∈ Z2 of

(2.1) satisfies at least one of the following equations:

F(x) = G(k) for some k ∈ [y−t , y
+
t ],

G(y) = F(k) for some k ∈ [x−t , x
+
t ],

ResY (F(X) −G(Y), u(X) − v(Y) − T ) = 0 for some T ∈ Q, |T | < 2t

with denominator dividing D,

ResY (F(X) −G(Y), u(X) + v(Y) − T ) = 0 for some T ∈ Q, |T | < 2t

with denominator dividing D.

(2.7)

In the algorithm we need to compute the approximate values of the smallest real roots and the

largest real roots of certain polynomials. One can apply for example the method of Collins

and Akritas [32], based on Descartes’ rule of signs, or Schönhage’s algorithm [77], which is

implemented in Magma [21]. Denote by NumofEq(t) the number of equations corresponding

with t. It is x+t − x−t + y+t − y−t + 4Dt + 1 if p is odd and x+t − x−t + y+t − y−t + 8Dt if p = 2. The

remaining question is how we should fix the parameter t such that the number of equations to

be solved becomes as small as possible. We perform a reduction algorithm as follows. We let

t = 1
2D . In this way if x < [x−t , x

+
t ], y < [y−t , y

+
t ], we have that −1 < D(u(x) ± v(y)) < 1. Since

D(u(x)±v(y)) is an integer the only possibility is u(x)±v(y) = 0. In this case there is only one

resultant equation to be solved if p is odd and two if p = 2. Then we compute NumofEq(2t),

if it is smaller than NumofEq(t), then we replace t by 2t and proceed, otherwise the procedure

returns the actual values of x+t , x
−
t , y
+
t , y
−
t , t. Finally we compute the integer solutions of the

polynomial equations (2.6) if p is odd, and (2.7) if p = 2.

2.2.2 Examples

I implemented the algorithm in the computer algebra program package Magma [21]. The

program was run on an AMD-K7 550 MHz PC with 128 MB memory.
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t #equations [x−t , x
+
t , y
−
t , y
+
t ]

1/256 1278 [ -350, 353, -253, 318 ]
1/128 628 [ -174, 177, -98, 171 ]
1/64 311 [ -86, 89, -24, 96 ]
1/32 195 [ -42, 45, -20, 56 ]
1/16 158 [ -20, 23, -16, 35 ]

Table 2.1: Information on the reduction.

Example 1. Consider the Diophantine equation

x2 − 3x + 5 = y8 − y7 + 9y6 − 7y5 + 4y4 − y3.

We have

u(X) = X − 3
2
,

v(Y) = Y4 − 1
2

Y3 +
35
8

Y2 − 21
16

Y − 1053
128
.

In Table 2.1 we collect information on the reduction.

It remains to solve the following equations:

ResY (F(X) −G(Y), u(X) − v(Y) − k) = 0, for k ∈ {−15, . . . , 15},

ResY (F(X) −G(Y), u(X) + v(Y) − k) = 0, for k ∈ {−15, . . . , 15},

G(y) = F(x), for x ∈ {−20, . . . , 23},

F(x) = G(y), for y ∈ {−16, . . . , 35}.

The complete list of the integral solutions of these equations turns out to be:

{(−657, 5), (−3,−1), (0, 1), (3, 1), (6,−1), (660, 5)}.

Computation time in seconds: 0.72.

Example 2. We apply the method to the Diophantine equation

x3 − 5x2 + 45x − 713 = y9 − 3y8 + 9y7 − 17y6 + 38y5 − 199y4 − 261y3 + 789y2 + 234y.
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t #equations [x−t , x
+
t , y
−
t , y
+
t ]

1/6 177 [ -86, 45, -32, 11 ]
1/3 95 [ -48, 15, -18, 9 ]
2/3 67 [ -27, 13, -10, 8 ]
4/3 52 [ -16, 11, -2, 6 ]

Table 2.2: Information on the reduction.

We obtain that

u(X) = X − 5
3
,

v(Y) = Y3 − Y2 + 2Y − 4
3
.

In Table 2.2 we collect information on the reduction.

In this case we solve the following equations:

ResY (F(X) −G(Y), u(X) − v(Y) − k) = 0, for k ∈ {−7, . . . , 7},

G(y) = F(x), for x ∈ {−16, . . . , 11},

F(x) = G(y), for y ∈ {−2, . . . , 6},

The only integral solution of these equations is (x, y) = (−11,−2).

Computation time in seconds: 0.38.

Example 3. ([43] Theorem 1. a) Consider the Diophantine equation

x(x + 1)(x + 2)(x + 3) = y(y + 1) · · · (y + 5).

There are many results in the literature concerning similar equations (cf. [14], [57]). We

compute that

u(X) = X2 + 3X + 1,

v(Y) = Y3 +
15
2

Y2 +
115
8

Y +
75
16
.

In Table 2.3 we collect information on the reduction.
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t #equations [x−t , x
+
t , y
−
t , y
+
t ]

1/32 108 [ -6, 3, -50, 45 ]
1/16 62 [ -5, 2, -26, 21 ]
1/8 46 [ -4, 1, -15, 10 ]

Table 2.3: Information on the reduction.

It remains to solve the following equations:

ResY (F(X) −G(Y), u(X) − v(Y) − k) = 0, for k ∈ {−3, . . . , 3},

ResY (F(X) −G(Y), u(X) + v(Y) − k) = 0, for k ∈ {−3, . . . , 3},

G(y) = F(x), for x ∈ {−4, . . . , 1},

F(x) = G(y), for y ∈ {−15, . . . , 10}.

The complete list of non-trivial integral solutions of these equations turns out to be:

{(−10,−7), (−10, 2), (7,−7), (7, 2)}.Computation time in seconds: 0.23.

The following examples are from [85]. The method described in that paper is similar to ours

in the sense that one has to find all the integral solutions of polynomial equations P(x) = 0,

where P ∈ Z[X]. We compare both methods by comparing the number of equations which

have to be solved. We remark that our algorithm works for equations F(x) = G(y), where

F,G ∈ Z[X] are monic polynomials with deg F = n, degG = m, such that F(X) − G(Y) is

irreducible in Q[X, Y] and gcd(n,m) > 1, while Szalay’s algorithm can be applied only for

the special case G(y) = ym.

Equation 1. x2 = y4 − 99y3 − 37y2 − 51y + 100,

Equation 2. x2 = y8 − 7y7 − 2y4 − y + 5,

Equation 3. x2 = y8 + y7 + y2 + 3y − 5,

Equation 4. x3 = y9 + 2y8 − 5y7 − 11y6 − y5 + 2y4 + 7y2 − 2y − 3.

Equation 1 985360 5930

Equation 2 118546 1951

Equation 3 16 22

Equation 4 420 85

In the third column the numbers of equations to be solved by applying our method are stated,
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and in the second column the numbers of equations to be solved by applying the method

described in [85]. In all but the third case one has to solve fewer equations by using our

algorithm.

Acknowledgement. I thank Robert Tijdeman and Jan-Hendrik Evertse for their valuable

remarks and suggestions and Frits Beukers for his comments on the algorithm which led to a

significant improvement.





Chapter 3

Exponential Diophantine

Equations

3.1 On the Diophantine equation x2 + a2 = 2yp

A common generalisation of Fermat’s equation and Catalan’s equation is

Axp + Byq = Czr

in integers r, s, t ∈ N≥2, x, y, z ∈ Z and A, B,C ∈ Z given integers with ABC , 0. Darmon and

Granville [33] wrote down a parametrization for each case when 1/p + 1/q + 1/r > 1 and

A = B = C = 1. Beukers [13] showed that for any nonzero integers A, B,C, p, q, r for which

1/p + 1/q + 1/r > 1 all solutions of Axp + Byq = Czr can be obtained from a finite number

of parametrized solutions. The theory of binary quadratic forms (see e.g. [61], Chapter 14)

applies to the case {p, q, r} = {2, 2, k} and a set of parametrizations can be found easily. We

will make use of the fact, that in case of the title equation the parametrization is reducible.

It follows from Schinzel and Tijdeman [76] that for given non-zero integers A, B,C the

equation Ax2 + B = Cyn has only a finite number of integer solutions x, y, n > 2, which

can be effectively determined. For special values of A, B and C this equation was investigated

by several authors see e.g. [12], [28], [31], [46], [51], [53], [54],[67], [83] and the references

given there.

There are many results concerning the more general Diophantine equation

Ax2 + pz1
1 · · · p

zs
s = Cyn,

25
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where pi is prime for all i and zi is an unknown non-negative integer, see e.g. [1], [64], [2],

[65], [66], [4], [3], [22], [26], [30], [55], [56], [59], [63], [62], [70]. Here the elegant result

of Bilu, Hanrot and Voutier [19] on the existence of primitive divisors of Lucas and Lehmer

numbers has turned out to be a very powerful tool. In [70] Pink considered the equation

x2 + (pz1
1 · · · p

zs
s )2 = 2yn, and gave an explicit upper bound for n depending only on max pi

and s.

In [52] Ljunggren proved that if p is a given prime such that p2 − 1 is exactly divisible by an

odd power of 2, then the equation x2 + p2 = yn has only a finite number of solutions in x, y

and n with n > 1. He provided a method to find all the solutions in this case.

The equation x2 + 1 = 2yn was solved by Cohn [29]. Pink and Tengely [71] considered the

title equation and they gave an upper bound for the exponent n depending only on a, and they

completely resolved the equation with 1 ≤ a ≤ 1000 and 3 ≤ n ≤ 80. The theorems in the

present section provide a method to resolve the equation x2 + a2 = 2yn in integers n > 2, x, y

for any fixed a. In particular we compute all solutions for odd a with 3 ≤ a ≤ 501.

3.1.1 Equations of the form x2 + a2 = 2yp

Consider the Diophantine equation

x2 + a2 = 2yp, (3.1)

where a is a given positive integer and x, y ∈ N such that gcd(x, y) = 1 and p ≥ 3 a prime.

Put

δ =



1 if p ≡ 1 (mod 4),

−1 if p ≡ 3 (mod 4).

(3.2)

After having read the paper [71], Bugeaud suggested to use linear forms in only two

logarithms in order to improve the bound for the exponent. Following this approach we

get a far better bound than Pink and Tengely did in [71], that is, than p < 291527a10.

Theorem 3.1.1. If (x, y, p) is a solution of x2 + a2 = 2yp with y > 50000 then

p ≤ max
{
1.85 log a, 4651

}
.

Since Z[i] is a unique factorization domain, (3.1) implies the existence of integers u, v with
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y = u2 + v2 such that

x = <((1 + i)(u + iv)p) =: Fp(u, v),

a = =((1 + i)(u + iv)p) =: Gp(u, v).

Here Fp and Gp are homogeneous polynomials in Z[X, Y].

In the proof we will use the following result of Mignotte [19, Theorem A.1.3]. Let α be

an algebraic number, whose minimal polynomial over Z is A
∏d

i=1(X − α(i)). The absolute

logarithmic height of α is defined by

h(α) =
1
d

log |A| +
d∑

i=1

log max(1, |α(i)|)
 .

Lemma 3.1.1. Let α be a complex algebraic number with |α| = 1, but not a root of unity, and

logα the principal value of the logarithm. Put D = [Q(α) : Q]/2. Consider the linear form

Λ = b1iπ − b2 logα,

where b1, b2 are positive integers. Let λ be a real number satisfying 1.8 ≤ λ < 4, and put

ρ = eλ, K = 0.5ρπ + Dh(α), B = max(13, b1, b2),

t =
1

6πρ
− 1

48πρ(1 + 2πρ/3λ)
, T =

(
1/3 +

√
1/9 + 2λt
λ

)2

,

H = max
{
3λ,D

(
log B + log

(
1
πρ
+

1
2K

)
− log

√
T + 0.886

)
+

+
3λ
2
+

1
T

(
1

6ρπ
+

1
3K

)
+ 0.023

}
.

Then

log |Λ| > −(8πTρλ−1H2 + 0.23)K − 2H − 2 log H + 0.5λ + 2 logλ − (D + 2) log 2.

We shall use the following statement in the proof of Theorem 3.1.1. The result can be found

as Corollary 3.12 at p. 41 of [68].

Lemma 3.1.2. If Θ = 2πr for some rational number r, then the only rational values of the

tangent and the cotangent functions at Θ can be 0,±1.

Proof of Theorem 3.1.1. Without loss of generality we assume that p > 2000, y > 50000,We
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compute an upper bound for | x+ai
x−ai − 1| :

∣∣∣∣∣
x + ai
x − ai

− 1
∣∣∣∣∣ ≤
√

2a

yp/2
. (3.3)

We have
x + ai
x − ai

=
(1 + i)(u + iv)p

(1 − i)(u − iv)p
= i

(u + iv)p

(u − iv)p
.

If
∣∣∣∣i (u+iv)p

(u−iv)p − 1
∣∣∣∣ > 1

3 then p ≤ 4 log 6
log 50000 < 2000, a contradiction. Thus

∣∣∣∣∣i
(u + iv)p

(u − iv)p
− 1

∣∣∣∣∣ ≤
1
3
.

Since | log z| ≤ 2|z − 1| for |z − 1| ≤ 1
3 , we obtain

∣∣∣∣∣i
(u + iv)p

(u − iv)p
− 1

∣∣∣∣∣ ≥
1
2

∣∣∣∣∣log i
(u + iv)p

(u − iv)p

∣∣∣∣∣ .

Consider the corresponding linear form in two logarithms (πi = log(−1))

Λ = 2kσπi − p log

(
δ

( u − iv
−v + iu

)σ)
,

where logarithms have their principal values, |2k| ≤ p and σ = sign(k). We apply Lemma

3.1.1 with α = δ( u−iv
−v+iu )σ, b1 = 2kσ and b2 = p.

Suppose α is a root of unity. Then

( u − iv
−v + iu

)σ
=
−2uv

u2 + v2
+
σ(−u2 + v2)

u2 + v2
i = exp

(
2πi j

n

)
,

for some integers j, n with 0 ≤ j ≤ n − 1. Therefore

tan

(
2π j
n

)
=
σ(−u2 + v2)
−2uv

∈ Q.

Hence, by Lemma 3.1.2, (u2−v2)
2uv ∈ {0, 1,−1}. This implies that uv = 0 or |u| = |v|, but this

is excluded by the requirement that the solutions x, y of (3.1) are relatively prime and that

y > 50000. Therefore α is not a root of unity.

Note that α is irrational, |α| = 1, and it is root of the polynomial (u2+v2)X2+4δuvX+(u2+v2).
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Therefore h(α) = 1
2 log y. Set λ = 1.8.We have D = 1 and B = p and

14.91265 ≤ K < 9.5028 +
1
2

log y,

0.008633 < t < 0.008634,

0.155768 < T < 0.155769,

H < log p + 2.285949,

log y > 10.819778,

(3.4)

By applying (3.3)-(3.4) and Lemma 3.1.1 we obtain

log 2
√

2a − p
2

log y ≥ log |Λ| ≥ −(13.16H2 + 0.23)K − 2H − 2 log H − 0.004. (3.5)

This yields by (3.4) an upper bound C(a, y) for p depending only on a and y. If yp < a20, then

p < 20
log y log a < 1.85 log a, otherwise we obtain that

0.9p ≤ 36.32 log(p)2 + 166.39 log(p) + 0.37 log(log(p) + 2.29) + 190.96.

Hence we conclude that p ≤ 4651.Thus we obtain the bound p ≤ max
{
1.85 log a, 4651

}
. �

Theorem 3.1.2 gives us a tool to resolve Diophantine equations of type (3.1) for given a

completely. We make use of the fact that the parametrization is reducible and one of the

factors is linear. This linear factor, u + δv, is a divisor a0 of a. If u + δv , a, then we have

p | a − a0, which provides a bound for p. This case is covered by the set S 1. In the remaining

cases we deal with u + δv = a. The set S 2 contains solutions of Gp(u, v) = a for which p is

small. We need to consider these cases separately because the later arguments do not work

for p = 3, 5, 7. To have a better bound for p we consider the equation x2 + a2 = 2yp for each

y < 50000 separately. In all cases we obtain a bound for p and we test if 2yp − a2 is a square

or not for all primes p up to this bound. The set S 3 covers this case. It remains to deal with

the ”large” solutions, where y = u2 + v2 ≥ 50000. If there is such a large solution (u, v) with

|v| > 1 of Gp(u, v) = a, then a
v is a convergent of β+δ, where β is a root of Gp(X, 1). Therefore

we compute the convergents and check whether the numerator is a.
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Theorem 3.1.2. Let

A(C) =
⋃

p≤C

{
tan

(4k + 3)π
4p

: 0 ≤ k ≤ p − 1

}
,

T =



lcm(ordu(v), ordv(u)) if min{|u|, |v|} ≥ 2,

max{|u|, |v|} otherwise,

and δ is defined by (3.2). If (x, y, p) is a solution of x2 +a2 = 2yp such that gcd(x, y) = 1, then

there exist integers u, v satisfying (u, v, p) ∈ S 1 ∪ S 2 ∪ S 3 ∪ S 4 ∪ S 5 where

S 1 =
{
(u, v, p) : u + δv = a0, a0 , a, a0|a, p|a − a0,Gp(−δv + a0, v) = a

}
,

S 2 =
{
(u, v, p) : u + δv = a, p ∈ {3, 5, 7},Gp(−δv + a, v) = a

}
,

S 3 =
{
(u, v, p) : u + δv = a, u2 + v2 ≤ 50000, 11 ≤ p ≤ C(a, u2 + v2),

p ≡ ±1 mod T
}
,

S 4 =
{
(u, v, p) : u + δv = a, |u| > 223, |v| = 1, 11 ≤ p ≤ C(a, 50000),

p ≡ ±1 mod T
}
,

S 5 =
{
(u, v, p) : u + δv = a, u2 + v2 > 50000, |v| ≥ 2, 11 ≤ p ≤ C(a, 50000),

a
v

is a convergent of β + δ for some β ∈ A(C(a, 50000))
}
.

To prove Theorem 3.1.2 we need the following lemmas.

Lemma 3.1.3. If l is an odd positive integer, then

(u − δv) | Fl(u, v),

(u + δv) | Gl(u, v).

Proof. If l ≡ 1 (mod 4) then

Fl(u, u) =
ul

2
((1 + i)l+1 + (1 − i)l+1) = 0,

and also

Gl(u,−u) =
ul

2i
((1 − i)l−1 − (1 + i)l−1) = 0.

The proof of the other case is similar. �
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Lemma 3.1.4. We have

Gp(X, 1) =
p−1∏

k=0

(
X − tan

(4k + 3)π
4p

)
.

Proof. By definition Gp(X, 1) = =((1 + i)(X + i)p).We have

2i

(
cos

(4k + 3)π
4p

)p

Gp(tan
(4k + 3)π

4p
, 1) =

= ip(1 + i)(−1)k

(
exp

(−3iπ
4

)
− i exp

(
3iπ
4

))
= 0.

Hence Gp(tan (4k+3)π
4p , 1) = 0 for 0 ≤ k ≤ p − 1. Since Gp(X, 1) has degree p and Gp is monic,

the lemma follows. �

Proof of Theorem 3.1.2. We have seen that a = =((1+ i)(u+ iv)p) =: Gp(u, v).Hence Lemma

3.1.3 implies that u + δv|a, that is, there exists an integer a0 such that a0|a and u + δv = a0.

Define a function s : N→ {±1} as follows:

s(k) =



1 if k ≡ 0, 1 (mod 4),

−1 if k ≡ 2, 3 (mod 4).

It follows that

a = Gp(−δv + a0, v) =
p∑

k=0

s(k)

(
p
k

)
(−δv + a0)p−kvk,

hence

a ≡ (−δv + a0)p + δvp ≡ a0 (mod p).

If a0 , a then it remains to solve the polynomial equations

Gp(−δv + a0, v) = a, for a0|a, a0 , a and p|a − a0. (3.6)

That is the first instance mentioned in Theorem 3.1.2.

From now on we assume that a0 = a = u + δv.We claim p ≡ ±1 mod T.We note that

1 ≡
Gp(u, v)

u + δv
≡ up−1 + (p − δ)up−2v mod v2,

1 ≡
Gp(u, v)

u + δv
≡ vp−1 + (p − δ)vp−2u mod u2.
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Suppose that |u| = 1. Then either v = 0 or (p − δ)v ≡ 0 mod v2, that is p ≡ δ mod v and the

claim is proved. The case |v| = 1 is similar. Now assume that min{|u|, |v|} ≥ 2. In this case we

obtain that

up−1 ≡ 1 mod v,

vp−1 ≡ 1 mod u,

and therefore ordv(u)|p − 1 and ordu(v)|p − 1. Hence

T = lcm(ordu(v), ordv(u))|p − 1.

If y ≤ 50000 then we have |u| ≤ 224, |v| ≤ 224, therefore a belongs to the finite set {u + δv :

|u| ≤ 224, |v| ≤ 224, u2 + v2 ≤ 50000}. For all possible pairs (u, v) we have p ≤ C(a, u2 + v2)

and p ≡ ±1 mod T. Thus (u, v, p) ∈ S 3.

Consider the case y > 50000. Let βi, i = 1, . . . , p be the roots of the polynomial Gp(X, 1),

such that β1 < β2 < . . . < βp. Let γi = u − βiv, and γi1 = mini |γi|. From Lemma 3.1.3 it

follows that there is an index i0 such that |βi0 | = 1. From Gp(u, v) = a we obtain

p∏

i=1
i,i0

(u − βiv) = 1. (3.7)

Using the mean-value theorem one can easily prove that

∣∣∣∣∣tan
(4k1 + 3)π

4p
− tan

(4k2 + 3)π
4p

∣∣∣∣∣ ≥ |k1 − k2|
π

p
.

Hence, by Lemma 3.1.4

|γi − γ j| = |(βi − β j)v| ≥
|i − j|π

p
|v|.

If γi1 and γi1+k have the same sign then we obtain that

|γi1+k| ≥
|k|π
p
|v|,

otherwise

|γi1+k| ≥
(2|k| − 1)π

2p
|v|.
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Hence, from (3.7) we get

1 =
p∏

i=1
i,i0

|u − βiv| =
p∏

i=1
i,i0

|γi| ≥ (p − 2)!|γi1 |
(
π|v|
2p

)p−2

.

If |γi1 | < 1
2|v| , then | av − (βi1 + δ)| < 1

2v2 , hence a
v is a convergent of βi1 + δ. If |γi1 | ≥ 1

2|v| , then

1 ≥ 1
2|v| (p − 2)!

(
π|v|
2p

)p−2

>

√
2π

2|v|

(
π(p − 2)|v|

2ep

)p−2

, (3.8)

where we used the inequality (p − 2)! >
√

2π( p−2
e )p−2. From (3.8) it follows that

|v| ≤

√

2√
π

(
2e
π
+

4e
π(p − 2)

)
1

p−3
(

2e
π
+

4e
π(p − 2)

)
,

it is easy to see that the right-hand side is a strictly decreasing function of p and that |v| < 2

for p ≥ 19.We get the same conclusion for p ∈ {11, 13, 17} from (3.8). Now, if p ∈ {3, 5, 7},

then it remains to solve Gp(−δv + a, v) = a. If |v| < 2, then we have to check only the cases

v = ±1, because in case of v = 0 we do not obtain any relatively prime solution. Hence

(u, v, p) ∈ S 4. If |v| > 2, then |γi1 | < 1
2|v| , that is a

v is a convergent of βi1 + δ.We conclude that

(u, v, p) ∈ S 5, and the theorem is proved. �

The Diophantine equation x2 + a2 = yp

We recall that Ljunggren proved that if a is a given prime such that a2 − 1 is exactly divisible

by an odd power of 2, then the equation x2 + a2 = yn has only a finite number of solutions in

x, y and n with n > 1. He provided a method to find all the solutions in this case. We shall

only require that a , 0. In this case we get the following parametrization

x = <((u + iv)p) =: fp(u, v),

a = =((u + iv)p) =: gp(u, v).

Here fp and gp are homogeneous polynomials in Z[X, Y].

Theorem 3.1.3. If (x, y, p) is a solution of x2 + a2 = yp with y > 50000 then

p ≤ max
{
1.85 log a, 4651

}
.

Proof. The proof goes in the same way as that of Theorem 3.1.1, so we indicate a few steps
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only. Without loss of generality we assume that p > 2000, y > 50000.We have

∣∣∣∣∣
x + ai
x − ai

− 1
∣∣∣∣∣ ≤

2a
yp/2

(3.9)

Consider the corresponding linear form in two logarithms

Λ = 2kσπi − p log

((u − iv
u + iv

)σ)
,

the where logarithms have their principal values, |2k| ≤ p and σ = sign(k).We apply Lemma

3.1.1 with α = δ( u−iv
u+iv )σ, b1 = 2kσ and b2 = p. As in the proof of Theorem 3.1.1 we find that

α is not a root of unity. It is a root of the polynomial (u2 + v2)X2 − 2(u2 − v2)X + (u2 + v2).

Therefore h(α) = 1
2 log y. Set λ = 1.8.We have D = 1 and B = p and K ≤ 9.503+ 1

2 log y. By

applying Lemma 3.1.1 we obtain

log 4a − p
2

log y ≥ log |Λ| ≥ −(13.16H2 + 0.23)K − 2H − 2 log H − 0.004. (3.10)

We have the bound (3.4) for H, this yields an upper bound C1(a, y) for p depending only on

a and y which is decreasing with respect to y. If yp < a20, then p < 20
log y log a < 1.85 log a,

otherwise we obtain that

0.9p ≤ 36.32 log(p)2 + 166.39 log(p) + 0.37 log(log(p) + 2.29) + 191.02.

From the above inequality we conclude that p ≤ 4651. Thus we obtain the bound p ≤

max
{
1.85 log a, 4651

}
. �

Theorem 3.1.4. If (x, y, p) is a solution of x2 + a2 = yp such that gcd(x, y) = 1, a , 0, then

there exist integers u, v satisfying (u, v, p) ∈ S 1 ∪ S 2 ∪ S 3 where

S 1 =
{
(u, v, p) : v = a0, a0 , δa, a0|a, p|a − δa0, gp(u, a0) = a

}
,

S 2 =
{
(u, v, p) : v = δa, u2 + a2 ≤ 50000, 3 ≤ p ≤ C(a, u2 + a2), ap−1 ≡ 1 mod u2

}
,

S 3 =

{
(u, v, p) : v = δa, |u| ≤ cot

(
π

p

)
a + 1 and 3 ≤ p ≤ C1(a, 50000)

}
.

We have similar lemmas as we applied to prove Theorem 3.1.2.
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Lemma 3.1.5. If l is an odd positive integer, then

u | fl(u, v),

v | gl(u, v).

Proof. By definition gl(u, v) = =((u+ iv)l) = (u+iv)l−(u−iv)l

2i , therefore gl(u, 0) = 0. Similarly for

fp. �

Lemma 3.1.6. We have

gp(X, 1) = p
p−1∏

k=1

(
X − cot

kπ
p

)
.

Proof. We have

2i

(
sin

kπ
p

)p

gp(cot
kπ
p
, 1) = exp (ikπ) − exp (−ikπ) = 0.

Hence gp(cot kπ
p , 1) = 0 for 1 ≤ k ≤ p − 1. �

In the proof of Theorem 3.1.1 it is clear from (3.7) that there exists an index j such that

|u − β jv| ≤ 1. Since u + δv = a it follows that

|v| ≤ a + 1
|β j + δ|

.

The denominator can be quite small, therefore we do not get a useful bound for |v|. In the

present case we are lucky, since we can use the equation

p
p−1∏

k=1

(
u − δa cot

kπ
p

)
= 1 (3.11)

to get a bound for |u| and resolve x2 + a2 = yp completely.

Proof of Theorem 3.1.4. From Lemma 3.1.5 we obtain that v | a, therefore there exists an

integer a0 such that a0 | a and a0 = v. Thus

gp(u, a0) = a,

which implies that p | a−δa0. If a0 , δa then we get (u, v, p) ∈ S 1. Consider the case a0 = δa.

If y ≤ 50000 then we have u2 + a2 ≤ 50000 and (3.10) provides a bound C1(a, u2 + a2) for

p. Now we prove the congruence condition on p using the equation gp(u, δa) = a. Hence, by
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δ2 = 1,

1 = a−1gp(u, δa) =

p+1
2∑

k=1

s(2k − 1)

(
p

2k − 1

)
up−2k+1δa2k−2.

This implies that

s(p)δap−1 ≡ 1 mod u2.

Thus (u, v, p) ∈ S 2. If y > 50000 then from (3.10) we obtain that p < C1(a, 50000).By (3.11)

there is an integer 1 ≤ j ≤ p − 1 such that |u − δa cot jπ
p | < 1. Hence

|u| < a cot
π

p
+ 1,

so (u, v, p) ∈ S 3. �

Remark. We note that the method that we apply in this paper works for some equations of

the type

x2 + a2 = cyp

with a , 0, c , 1, 2 an even integer, as well.

3.1.2 Resolution of x2 + a2 = byp

Applying Theorem 3.1.2 we obtain the following result.

Corollary. Let a be an odd integer with 3 ≤ a ≤ 501. If (x, y) ∈ N2 is a positive solution of

x2 + a2 = 2yp such that x ≥ a2, gcd(x, y) = 1 then

(a, x, y, p) ∈ {
(3, 79, 5, 5), (5, 99, 17, 3), (19, 5291, 241, 3), (71, 275561, 3361, 3)

(99, 27607, 725, 3), (265, 14325849, 46817, 3), (369, 1432283, 10085, 3)
}
.

Proof. Finding the elements of the five sets in Theorem 3.1.2 provides the solutions of (3.1).

We describe successively how to find the elements of these sets.

I. For a given a one has to resolve (3.6), that means several polynomial equations. One can

perform this job either by factoring the polynomial or by testing the divisors of the constant

term of the polynomial. Nowadays the computer algebra programs contain procedures to

find all integral solutions of polynomial equations. We used Magma [21] to do so. The

total CPU time for step I was about 44 minutes. For example when a = 249 then a0 ∈

{−249,−83,−3,−1, 1, 3, 83}, therefore p ∈ {3, 5, 7, 31, 41, 83}. There is only one solution:
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(x, y, p) = (307, 5, 7). It took 0.4 sec to solve this case completely. In the list only the last

solution is derived from this part.

II. The cases p = 3, p = 5 and p = 7. If p = 3 then we have only to solve quadratic equations

of the form

6v2 + 6av + a2 − 1 = 0.

We obtained the following solutions indicated in the list

(5, 99, 17, 3), (19, 5291, 241, 3), (71, 275561, 3361, 3), (265, 14325849, 46817, 3).

If p = 5 then we get the Thue equation

G5(X, Y)
X + Y

= X4 + 4X3Y − 14X2Y2 + 4XY3 + Y4 = 1

which has only the solutions (±1,±2), (±2,±1), (±1, 0), (0,±1). Therefore the solutions of

(3.1) with p = 5 and u + v = a are given by (a, x, y) ∈ {(1, 1, 1), (3, 79, 5)}. If p = 7 then the

corresponding Thue equation has only trivial solutions, hence the only solution of (3.1) with

p = 7, u − v = a is (a, x, y) = (1, 1, 1). The total CPU time for step II was about 1.8 seconds.

III. If (u, v, p) belongs to S 3, then |u| ≤ 224 and |v| ≤ 224. Since we are interested only

in relatively prime solutions of (3.1), we have to check only those pairs (u, v) for which

u+δv = a, gcd(u, v) = 1, 2 - u−v and u2+v2 ≤ 50000. For such a pair (u, v) one can compute

T easily, and from (3.5) one gets C(a, u2 + v2). So we obtain the set S 3. It remains to check

which triples yield a solution of (3.1). To do so we compute y = u2 + v2 and we examine

whether 2yp − a2 is a square. This last step can be done efficiently, see [25], pp. 39-41. We

used the appropriate procedure of Magma [21]. We did not obtain any solution in this case

with p ≥ 11. The total CPU time for step III was about 24.4 hours.

IV. In case of S 4 and S 5 we have a common bound for p which can be obtained from (3.5).

It turns out that this bound is 4079. Since v = ±1 we have y = a2 ± 2a+ 2.We check whether

2(a2 ± 2a+ 2)p − a2 is a square for all primes p ≤ 4079, p ≡ ±1 mod T. There is no solution.

The total CPU time was about 3.6 minutes.

V. To get S 5 we have to compute approximate values of some real numbers of the form

tan
(4k + 3)π

4p
.

We note that we do not need very high precision, since the numerators of the convergents are

bounded by a, in our case at most 501. We computed all convergents of the real numbers
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contained in A(C(a, 50000)) with numerator at most 501. From the triples (u, v, p) of S 5 we

got the solutions of (3.1) as in the previous cases. For example, for a = 501 we obtained

several convergents, one of them being

501
45848

≈ 0.010927412319,

which is a convergent of

tan
(4 · 993 + 3)π

4 · 4003
≈ 0.010927412156.

We did not get any solution of (3.1) from this part. The total CPU time for step IV was about

4.5 days. �

Applying Theorem 3.1.4 we obtain the following result in case yp has coefficient 1.

Corollary. Let a be an odd integer with 3 ≤ a ≤ 501. If (x, y) ∈ N2 is a positive solution of

x2 + a2 = yp such that x ≥ a2, gcd(x, y) = 1 then

(a, x, y, p) ∈ {(7, 524, 65, 3), (97, 1405096, 12545, 3), (135, 140374, 2701, 3)}.

3.1.3 Remark on the case of fixed p

Let I(N) denote the set of odd integers less than or equal to N. To resolve (3.1) completely

for a fixed prime p and a ∈ I(N) an obvious method is to find all integral solution of the

polynomial equations

Gp(−δv + a0, v) = a, for a0|a and a0 ≡ a mod p.

We will refer to this method as method I. Method II will mean that we solve the polynomial

equations (3.6) and determine all integral solutions of the Thue equation

Gp(X, Y)

X + δY
= 1.

Solving Thue equations of high degree is a difficult task, but in certain cases it is possible (see

[17],[18],[19],[44]). In the following table in the first row we indicate the run times needed

to resolve (3.1) for p = 5, 7 and 11, and for odd integers a ∈ {1, . . . , 5001} using method I.

The second row contains the run times in case of method II. We note that in case of p = 3



3.2. On the Diophantine equation x2 + q2m = 2yp 39

method II does not apply, since the degree of the polynomial Gp(X,Y)
X+δY is 2.

1 ≤ a ≤ 5001 p = 5 p = 7 p = 11

method I. 7.26 sec 52 sec 310 sec

method II. 3.34 sec 8.34 sec 100 sec

The complete lists of solutions in these cases are given by:

• p = 5 :

(a, x, y) ∈ {(3, 79, 5), (79, 3, 5), (475, 719, 13), (475, 11767, 37), (717, 1525, 17),

(2807, 5757, 29), (2879, 3353, 25), (3353, 2879, 25)},

• p = 7 :

(a, x, y) ∈ {(249, 307, 5), (307, 249, 5), (2105, 11003, 13)},

• p = 11 :

(a, x, y) ∈ {(3827, 9111, 5)}.

3.2 On the Diophantine equation x2 + q2m = 2yp

There are many results in the literature concerning the Diophantine equation

Ax2 + pz1
1 · · · p

zs
s = Byn,

where A, B are given non-zero integers, p1, . . . , ps are given primes and n, x, y, z1, . . . , zs are

integer unknowns with n > 2, x and y coprime and non-negative, and z1, . . . , zs non-negative,

see e.g. [1], [64], [2], [65], [66], [4], [3], [22], [26], [30], [55], [56], [59], [63], [62], [70].

Here the elegant result of Bilu, Hanrot and Voutier [19] on the existence of primitive divisors

of Lucas and Lehmer numbers has turned out to be a very powerful tool. Using this result

Luca [56] solved completely the Diophantine equation x2 + 2a3b = yn. Le [49] obtained

necessary conditions for the solutions of the equation x2 + p2 = yn in positive integers x, y, n

with gcd(x, y) = 1 and n > 2. He also determined all solutions of this equation for p < 100. In

[70] Pink considered the equation x2 + (pz1
1 · · · p

zs
s )2 = 2yn, and gave an explicit upper bound

for n depending only on max pi and s. The equation x2 + 1 = 2yn was solved by Cohn [29].

Pink and Tengely [71] considered the equation x2 + a2 = 2yn. They gave an upper bound for
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the exponent n depending only on a, and completely resolved the equation with 1 ≤ a ≤ 1000

and 3 ≤ n ≤ 80. In the present section we study the equation x2+q2m = 2yp where m, p, q, x, y

are integer unknowns with m > 0, p and q odd primes and x and y coprime. In Theorem 3.2.1

we show that all but finitely many solutions are of a special type. Theorem 3.2.2 provides

bounds for p. Theorem 3.2.3 deals with the case of fixed y, Theorem 3.2.5 with the case of

fixed q.

3.2.1 A finiteness result

Consider the Diophantine equation

x2 + q2m = 2yp, (3.12)

where x, y ∈ N with gcd(x, y) = 1,m ∈ N and p, q are odd primes and N denotes the set of

positive integers. Since the case m = 0 was solved by Cohn [29] (he proved that the equation

has only the solution x = y = 1 in positive integers) we may assume without loss of generality

that m > 0. If q = 2, then it follows from m > 0 that gcd(x, y) > 1, therefore we may further

assume that q is odd.

Theorem 3.2.1. There are only finitely many solutions (x, y,m, q, p) of (3.12) with gcd(x, y) =

1, x, y ∈ N, such that y is not of the form 2v2 ± 2v + 1,m ∈ N and p > 3, q odd primes.

Remark. The question of finiteness in case of y = 2v2 ± 2v + 1 is interesting. The following

examples show that very large solutions can exist.

y p q

5 5 79

5 7 307

5 13 42641

5 29 1811852719

5 97 2299357537036323025594528471766399

13 7 11003

13 13 13394159

13 101 224803637342655330236336909331037067112119583602184017999

25 11 69049993

25 47 378293055860522027254001604922967

41 31 4010333845016060415260441
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In these examples m = 1.

All solutions of (3.12) with small qm have been determined in [88].

Lemma 3.2.1. Let q be an odd prime and m ∈ N ∪ {0} such that 3 ≤ qm ≤ 501. If there exist

(x, y) ∈ N2 with gcd(x, y) = 1 and an odd prime p such that (3.12) holds, then

(x, y, q,m, p) ∈ {
(3, 5, 79, 1, 5), (9, 5, 13, 1, 3), (55, 13, 37, 1, 3), (79, 5, 3, 1, 5),

(99, 17, 5, 1, 3), (161, 25, 73, 1, 3), (249, 5, 307, 1, 7), (351, 41, 11, 2, 3),

(545, 53, 3, 3, 3), (649, 61, 181, 1, 3), (1665, 113, 337, 1, 3), (2431, 145, 433, 1, 3),

(5291, 241, 19, 1, 3), (275561, 3361, 71, 1, 3)
}
.

Proof. This result follows from Corollary 1 in [88]. �

For qm > 501 we shall derive a good bound for p by Baker’s method.

We introduce some notation. Put

δ4 =



1 if p ≡ 1 (mod 4),

−1 if p ≡ 3 (mod 4).

(3.13)

and

δ8 =



1 if p ≡ 1 or 3 (mod 8),

−1 if p ≡ 5 or 7 (mod 8).

(3.14)

Since Z[i] is a unique factorization domain, (3.12) implies the existence of integers u, v with

y = u2 + v2 such that

x = <((1 + i)(u + iv)p) =: Fp(u, v),

qm = =((1 + i)(u + iv)p) =: Gp(u, v).
(3.15)

Here Fp and Gp are homogeneous polynomials in Z[X, Y].

Lemma 3.2.2. Let Fp,Gp be the polynomials defined by (3.15). We have

(u − δ4v) | Fp(u, v),

(u + δ4v) | Gp(u, v).

Proof. This is Lemma 3 in [88]. �
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Lemma 3.2.2 and (3.15) imply that there exists a k ∈ {0, 1, . . . ,m} such that either

u + δ4v = qk,

Hp(u, v) = qm−k,

(3.16)

or

u + δ4v = −qk,

Hp(u, v) = −qm−k,

(3.17)

where Hp(u, v) = Gp(u,v)
u+δ4v .

For all solutions with large qm we derive an upper bound for p in case of k = m in (3.16) or

(3.17) and in case of q = p.

Theorem 3.2.2. If (3.12) admits a relatively prime solution (x, y) ∈ N2 then we have

p ≤ 3803 if u + δ4v = ±qm, qm ≥ 503,

p ≤ 3089 if p = q,

p ≤ 1309 if u + δ4v = ±qm,m ≥ 40,

p ≤ 1093 if u + δ4v = ±qm,m ≥ 100,

p ≤ 1009 if u + δ4v = ±qm,m ≥ 250.

We shall use the following lemmas in the proof of Theorem 3.2.2. The first result is due to

Mignotte [19, Theorem A.1.3]. Let α be an algebraic number, whose minimal polynomial

over Z is A
∏d

i=1(X − α(i)). The absolute logarithmic height of α is defined by

h(α) =
1
d

log |A| +
d∑

i=1

log max(1, |α(i)|)
 .

Lemma 3.2.3. Let α be a complex algebraic number with |α| = 1, but not a root of unity, and

logα the principal value of the logarithm. Put D = [Q(α) : Q]/2. Consider the linear form

Λ = b1iπ − b2 logα,
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where b1, b2 are positive integers. Let λ be a real number satisfying 1.8 ≤ λ < 4, and put

ρ = eλ, K = 0.5ρπ + Dh(α), B = max(13, b1, b2),

t =
1

6πρ
− 1

48πρ(1 + 2πρ/3λ)
, T =

(
1/3 +

√
1/9 + 2λt
λ

)2

,

H = max
{
3λ,D

(
log B + log

(
1
πρ
+

1
2K

)
− log

√
T + 0.886

)
+

+
3λ
2
+

1
T

(
1

6ρπ
+

1
3K

)
+ 0.023

}
.

Then

log |Λ| > −(8πTρλ−1H2 + 0.23)K − 2H − 2 log H + 0.5λ + 2 logλ − (D + 2) log 2.

The next result can be found as Corollary 3.12 at p. 41 of [68].

Lemma 3.2.4. If Θ ∈ 2πQ, then the only rational values of the tangent and the cotangent

functions at Θ can be 0,±1.

Proof of Theorem 3.2.2. Without loss of generality we assume that p > 1000 and qm ≥ 503.

We give the proof of Theorem 3.2.2 in the case u + δ4v = ±qm, qm ≥ 503, the proofs of the

remaining four cases being analogous. From u + δ4v = ±qm we get

503
2
≤ qm

2
≤ |u| + |v|

2
≤

√
u2 + v2

2
=

√
y
2
,

which yields that y ≥ q2m

2 > 126504. Hence

∣∣∣∣∣
x + qmi
x − qmi

− 1
∣∣∣∣∣ =

2 · qm

√
x2 + q2m

≤
2
√

y

yp/2
=

2

y
p−1

2

. (3.18)

We have
x + qmi
x − qmi

=
(1 + i)(u + iv)p

(1 − i)(u − iv)p
= i

(u + iv
u − iv

)p

. (3.19)

If
∣∣∣∣i
(

u+iv
u−iv

)p − 1
∣∣∣∣ > 1

3 then 6 > y
p−1

2 , which yields a contradiction with p > 1000 and y >

126504. Thus
∣∣∣∣i
(

u+iv
u−iv

)p − 1
∣∣∣∣ ≤ 1

3 . Since | log z| ≤ 2|z − 1| for |z − 1| ≤ 1
3 , we obtain

∣∣∣∣∣i
(u + iv
u − iv

)p

− 1
∣∣∣∣∣ ≥

1
2

∣∣∣∣∣log i
(u + iv
u − iv

)p∣∣∣∣∣ . (3.20)
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Suppose first that α := δ4

(
u−iv
−v+iu

)σ
is a root of unity for some σ ∈ {−1, 1}. Then

( u − iv
−v + iu

)σ
=
−2uv

u2 + v2
+
σ(−u2 + v2)

u2 + v2
i = ±α = exp

(
2πi j

n

)
,

for some integers j, n with 0 ≤ j ≤ n − 1. Therefore

tan

(
2π j
n

)
=
σ(−u2 + v2)
−2uv

∈ Q or (u, v) = (0, 0).

The latter case is excluded. Hence, by Lemma 3.2.4, u2−v2

2uv ∈ {0, 1,−1}. This implies that

|u| = |v|, but this is excluded by the requirement that the solutions x, y of (3.12) are relatively

prime, but y > 126504. Therefore α is not a root of unity.

Note that α is irrational, |α| = 1, and it is a root of the polynomial (u2 + v2)X2 + 4δ4uvX +

(u2 + v2). Therefore h(α) = 1
2 log y.

Choose l ∈ Z such that |p log(iδ4 u+iv
u−iv )+2lπi| is minimal, where logarithms have their principal

values. Then |2l| ≤ p. Consider the linear form in two logarithms (πi = log(−1))

Λ = 2|l|πi − p logα. (3.21)

If l = 0 then by Liouville’s inequality and Lemma 1 of [91],

|Λ| ≥ |p logα| ≥ | logα| ≥ 2−2 exp(−2h(α)) ≥ exp(−8(log 6)3h(α)). (3.22)

From (3.18) and (3.22) we obtain

log 4 − p − 1
2

log y ≥ log |Λ| ≥ −4(log 6)3 log y.

Hence p ≤ 47. Thus we may assume without loss of generality that l , 0.

We apply Lemma 3.2.3 with σ = sign(l), α = δ4( u−iv
−v+iu )σ, b1 = 2|l| and b2 = p. Set λ = 1.8.

We have D = 1 and B = p. By applying (3.18)-(3.21) and Lemma 3.2.3 we obtain

log 4 − p − 1
2

log y ≥ log |Λ| ≥ −(13.16H2 + 0.23)K − 2H − 2 log H − 0.004.
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We have

15.37677 ≤ K < 9.5028+
1
2

log y,

0.008633 < t < 0.008634,

0.155768 < T < 0.155769,

H < log p + 2.270616,

log y > 11.74803,

From the above inequalities we conclude that p ≤ 3803. �

The following lemma gives a more precise description of the polynomial Hp.

Lemma 3.2.5. The polynomial Hp(±qk − δ4v, v) has degree p − 1 and

Hp(±qk − δ4v, v) = ±δ82
p−1

2 pvp−1 + qk pĤp(v) + qk(p−1),

where Ĥp ∈ Z[X] has degree < p − 1. The polynomial Hp(X, 1) ∈ Z[X] is irreducible and

Hp(X, 1) =
p−1∏

k=0
k,k0

(
X − tan

(4k + 3)π
4p

)
,

where k0 =
[

p
4

]
(p mod 4).

Proof. By definition we have

Hp(u, v) =
Gp(u, v)

u + δ4v
=

(1 + i)(u + iv)p − (1 − i)(u − iv)p

2i(u + δ4v)
. (3.23)

Hence

Hp(±qk − δ4v, v) =
(1 + i)(±qk + (i − δ4)v)p − (1 − i)(±qk + (−i − δ4)v)p

±2iqk
.

Therefore the coefficient of vp is (1 + i)(−δ4 + i)p + (1 − i)(δ4 + i)p. If δ4 = 1, then it

equals −2(−1 + i)p−1 + 2(1 + i)p−1 = −2(−4)
p−1
4 + 2(−4)

p−1
4 = 0, since p ≡ 1 (mod 4). If

δ4 = −1, then it equals (1 + i)p+1 − (−1 + i)p+1 = (−4)
p+1

4 − (−4)
p+1

4 = 0. Similarly the

coefficient of vp−1 is ± (1+i)(δ4−i)p−1−(1−i)(δ4+i)p−1

2i p = ±δ82
p−1

2 p. It is easy to see that the constant

is qk(p−1). The coefficient of vt for t = 1, . . . , p − 2 is ±
(

p
t

)
(qk)p−t−1ct, where ct is a power of

2. The irreducibility of Hp(X, 1) follows from the fact that Hp(X − δ4, 1) satisfies Eisenstein’s
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irreducibility criterion. The last statement of the lemma is a direct consequence of Lemma 4

from [88]. �

Lemma 3.2.6. If there exists a k ∈ {0, 1, . . . ,m} such that (3.16) or (3.17) has a solution

(u, v) ∈ Z2 with gcd(u, v) = 1, then either k = 0 or k = m, p , q or (k = m − 1, p = q).

Proof. Suppose 0 < k < m. It follows from Lemma 3.2.5 that q divides ±δ82
p−1

2 pvp−1. If

q , p, we obtain that q | v and q | u, which is a contradiction with gcd(u, v) = 1. Thus k = 0

or k = m. If p = q, then from Lemma 3.2.5 and (3.16),(3.17) we get

±δ82
p−1

2 vp−1 + pkĤp(v) + pk(p−1)−1 = ±pm−k−1.

Therefore k = 0 or k = m − 1. �

Now we are in the position to prove Theorem 3.2.1.

Proof of Theorem 3.2.1. By Lemma 3.2.6 we have that k = 0,m − 1 or k = m. If k = 0, then

u + δ4v = ±1 and y = 2v2 ± 2v + 1. If k = m − 1, then p = q. Hence u + δ4v = ±pm−1 which

implies that y ≥ p2(m−1)

2 ≥ p2

2 . From Theorem 3.2.2 we obtain that p ≤ 3089.We recall that

Hp(u, v) is an irreducible polynomial of degree p − 1. Thus we have only finitely many Thue

equations (if p > 3)

Hp(u, v) = ±p.

By a result of Thue [89] we know that for each p there are only finitely many integer solutions,

which proves the statement.

Let k = m.Here we have u+δ4v = ±qm and Hp(±qm−δ4v, v) = ±1. If qm ≤ 501 then there are

only finitely many solutions which are given in Lemma 3.2.1. We have computed an upper

bound for p in Lemma 3.2.2 when qm ≥ 503. This leads to finitely many Thue equations

Hp(u, v) = ±1.

From Thue’s result [89] follows that there are only finitely many integral solutions (u, v) for

any fixed p, which implies the remaining part of the theorem. �

3.2.2 Fixed y

First we consider (3.12) with given y which is not of the form 2v2 ± 2v + 1. Since y = u2 + v2

there are only finitely many possible pairs (u, v) ∈ Z2. Among these pairs we have to select
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those for which u ± v = ±qm0 , for some prime q and for some integer m0. Thus there are

only finitely many pairs (q,m0). The method of [88] makes it possible to compute (at least for

moderate q and m0) all solutions of x2 + q2m0 = 2yp even without knowing y. Let us consider

the concrete example y = 17.

Theorem 3.2.3. The only solution (m, p, q, x) in positive integers m, p, q, x with p and q odd

primes of the equation x2 + q2m = 2 · 17p is (1, 3, 5, 99).

Proof. Note that 17 is not of the form 2v2 ± 2v + 1. From y = u2 + v2 we obtain that q is 3 or

5 and m = 1. This implies that 17 does not divide x.We are left with the equations

x2 + 32 = 2 · 17p,

x2 + 52 = 2 · 17p.

From Lemma 3.2.1 we see that there is no solution with q = 3,m = 1, y = 17 and the only

solution in case of the second equation is (x, y, q,m, p) = (99, 17, 5, 1, 3). �

3.2.3 Fixed q

If m is small, then one can apply the method of [88] to obtain all solutions. Theorem 3.2.2

provides an upper bound for p in case u + δ4v = ±qm. Therefore it is sufficient to resolve the

Thue equations

Hp(u, v) = 1

for primes less than the bound. In practice this is a difficult job but in some special cases

there exist methods which work, see [17], [18], [19], [44]. Lemma 3.2.7 shows that we have

a cyclotomic field in the background just as in [19]. Probably the result of the following

lemma is in the literature, but we have not found a reference. We thank Prof. Stevenhagen

for the short proof.

Lemma 3.2.7. For any positive integer M denote by ζM a primitive Mth root of unity. If α is

a root of Hp(X, 1) for some odd prime p, then Q(ζp + ζ p) ⊂ Q(α) � Q(ζ4p + ζ4p).

Proof. Since tan z = 1
i

exp(iz)−exp(−iz)
exp(iz)+exp(−iz) , we can write α = tan( (4k+3)π

4p ) as

1
i

ζ4k+3
8p − ζ−4k−3

8p

ζ4k+3
8p + ζ−4k−3

8p

= −ζ4
ζ4k+3

4p − 1

ζ4k+3
4p + 1

∈ Q(ζ4p).
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Since it is invariant under complex conjugation, α is an element of Q(ζ4p + ζ4p). We also

know that [Q(ζ4p + ζ4p) : Q] = [Q(α) : Q] = p − 1, thus Q(ζ4p + ζ4p) � Q(α). The claimed

inclusion follows from the fact that ζp + ζ p can be expressed easily in terms of ζ4p + ζ4p. �

It is important to remark that the Thue equations Hp(u, v) = ±1 do not depend on q. Therefore

after resolving them it becomes easier to resolve equation (3.12). By combining the methods

of composite fields [18] and non-fundamental units [44] for Thue equations we may rule out

some cases completely. If the method applies it remains to consider the cases u + δ4v = ±1

and p = q. The problem is that the bound for p is still large, and the computation may

take several months. One possibility to improve the bound is applying the method of [88]

and resolve equation (3.12) for values of qm larger than 501, but this is more and more time

consuming as qm increases. If q is fixed one can follow a strategy to eliminate large primes

p. Here we use the fact that when considering the Thue equation

Hp(qm − δ4v, v) = 1, (3.24)

we are looking for integer solutions (u, v) for which u + δ4v is a power of q. Let w be a

positive integer relatively prime to q, then the set S (q,w) = {qm mod w : m ∈ N} has ordw(q)

elements. Let

L(p, q,w) =
{
s ∈ {0, 1, . . . , ordw(q)} : Hp(qs − δ4v, v) = 1 has a solution modulo w

}
.

We search for numbers w1, . . . ,wN such that ordw1 (q) = . . . = ordwN (q) =: w, say. Then

m0 mod w ∈ L(p, q,w1) ∩ . . . ∩ L(p, q,wN),

where m0 mod w denotes the smallest non-negative integer congruent to m modulo w.

Hopefully this will lead to some restrictions on m. As we saw before the special case p = q

leads to a Thue equation Hp(u, v) = ±p and the previously mentioned techniques may apply

even for large primes. In case of u + δ4v = ±1 one encounters a family of superelliptic

equations Hp(±1 − δ4v, v) = ±qm. We will see that sometimes it is possible to solve these

equations completely using congruence conditions only.
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From now on we consider (3.12) with q = 3, that is

x2 + 32m = 2yp. (3.25)

The equation x2 + 3 = yn was completely resolved by Cohn [27]. Arif and Muriefah [2]

found all solutions of the equation x2 + 32m+1 = yn. There is one family of solutions, given

by (x, y,m, n) = (10 · 33t, 7 · 32t, 5 + 6t, 3). Luca [55] proved that all solutions of the equation

x2 + 32m = yn are of the form x = 46 · 33t, y = 13 · 32t,m = 4 + 6t, n = 3.

Remark. We note that equation (3.25) with odd powers of 3 is easily solvable. From x2 +

32m+1 = 2yp we get

4 ≡ 2yp (mod 8),

hence p = 1.

Let us first treat the special case p = q = 3. By (3.15) and Lemma 3.2.2 we have

x = F3(u, v) = (u + v)(u2 − 4uv + v2),

3m = G3(u, v) = (u − v)(u2 + 4uv + v2).

Therefore there exists an integer k with 0 ≤ k ≤ m, such that

u − v = ±3k,

u2 + 4uv + v2 = ±3m−k.

Hence we have

6v2 ± 6(3k)v + 32k = ±3m−k.

Both from k = m and from k = 0 it follows easily that k = m = 0. This yields the solutions

(x, y) = (±1, 1). If k = m − 1 > 0, then 3 | 2v2 ± 1. Thus one has to resolve the system of

equations

u − v = −3m−1,

u2 + 4uv + v2 = −3.

As we mentioned, sometimes it is possible to handle the case k = 0 using congruences only.

In case of q = 3 it works.
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Lemma 3.2.8. There is no solution of (3.16) and (3.17) with k = 0.

Proof. We give a proof for (3.16) which also works for (3.17). In case of (3.16) if k = 0, then

u = 1 − δ4v. Observe that by (3.23)

• if v ≡ 0 (mod 3), then Hp(1 − δ4v, v) ≡ 1 (mod 3),

• if v ≡ 1 (mod 3) and p ≡ 1 (mod 4), then Hp(1 − δ4v, v) ≡ 1 (mod 3),

• if v ≡ 1 (mod 3) and p ≡ 3 (mod 4), then Hp(1 − δ4v, v) ≡ ±1 (mod 3),

• if v ≡ 2 (mod 3) and p ≡ 1 (mod 4), then Hp(1 − δ4v, v) ≡ ±1 (mod 3),

• if v ≡ 2 (mod 3) and p ≡ 3 (mod 4), then Hp(1 − δ4v, v) ≡ 1 (mod 3).

Thus Hp(1 − δ4v, v) . 0 (mod 3). Therefore there is no v ∈ Z such that Hp(1 − δ4v, v) = 3m,

as should be the case by (3.16) and (3.17). �

Finally we investigate the remaining case, that is u+ δ4v = qm.We remark that u+ δ4v = −qm

is not possible because from (3.17) and Lemma 3.2.5 we obtain −1 ≡ Hp(−qm − δ4v, v) ≡

qk(p−1) ≡ 1 (mod p).

Lemma 3.2.9. If there is a coprime solution (u, v) ∈ Z2 of (3.16) with k = m, then p ≡ 5 or 11

(mod 24).

Proof. In case of k = m we have, by (3.16) and Lemma 3.2.5,

Hp(3m − δ4v, v) = δ82
p−1

2 pvp−1 + 3m pĤp(v) + 3m(p−1) = 1. (3.26)

Therefore

δ82
p−1

2 p ≡ 1 (mod 3)

and we get that p ≡ 1, 5, 7, 11 (mod 24). Since by Lemma 3.2.1 the only solution of the

equation x2 +32m = 2yp with 1 ≤ m ≤ 5 is given by (x, y,m, p) ∈ {(79, 5, 1, 5), (545, 53, 3, 3)},

we may assume without loss of generality that m ≥ 6. To get rid of the classes 1 and 7 we

work modulo 243. If p = 8t + 1, then from (3.26) we have

24t(8t + 1)v8t ≡ 1 (mod 243).

It follows that 243|t and the first prime of the appropriate form is 3889 which is larger than
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the bound we have for p. If p = 8t + 7, then

−24t+3(8t + 7)v8t+6 ≡ 1 (mod 243).

It follows that t ≡ 60 (mod 243) and it turns out that p = 487 is in this class, so we work

modulo 36 to show that the smallest possible prime is larger than the bound we have for p.

Here we have to resolve the case m = 6 using the method from [88]. This value of m is

not too large so the method worked. We did not get any new solution. Thus p ≡ 5 or 11

(mod 24). �

Theorem 3.2.4. There exists no coprime integer solution (x, y) of x2 + 32m = 2yp with m > 0

and p < 1000, p ≡ 5 (mod 24) or p ∈ {131, 251, 491, 971} prime.

Proof. To prove the theorem we resolve the Thue equations

Hp(u, v) = 1

for the given primes. In each case there is a small subfield, hence we can apply the method of

[18]. We wrote a PARI [69] script to handle the computation. To get c1 one has to compute

min
k

∣∣∣∣∣∣∣∣∣∣

p−1∏

l=0
l,k,k0

(
tan

(4k + 3)π
4p

) − tan
(4l + 3)π

4p

)
∣∣∣∣∣∣∣∣∣∣
,

k0 =
[

p
4

]
(p mod 4). Using the mean-value theorem one can easily prove that

∣∣∣∣∣tan
(4k1 + 3)π

4p
− tan

(4k2 + 3)π
4p

∣∣∣∣∣ ≥ |k1 − k2|
π

p
.

Hence c2 ≥ |k1 − k2| πp , and it is easy to see that the minimum is | tan π
4p + tan 3π

4p |. Using

Gaussian periods one can compute a defining equation of the subfield, see [18, Lemma 7.1.1].

In Table 3.1 we indicate defining equations for primes p < 1000, p ≡ 5 (mod 24) or p ∈

{131, 251, 491, 971}. The PARI [69] procedure bnfinit produces, in particular, a full system

of independent units of the small subfield. One has to use the procedure bnfcertify to ensure

that that the system of units is fundamental. We note that if p = 659 or p = 827, then there is

a degree 7 subfield, but the regulator is too large to get unconditional result, the same holds

for p = 419, 683, 947, in these cases there is a degree 11 subfield. In the computation we

followed the paper [18], but at the end we skipped the enumeration step. Instead we used the
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Table 3.1: Defining equations

p polynomial
29 x4 − 29x2 + 29
53 x4 − 53x2 + 53

101 x4 − 101x2 + 2525
131 x5 + x4 − 52x3 − 89x2 + 109x + 193
149 x4 − 149x2 + 3725
173 x4 − 173x2 + 173
197 x4 − 197x2 + 9653
251 x5 + x4 − 100x3 − 20x2 + 1504x + 1024
269 x4 − 269x2 + 6725
293 x4 − 293x2 + 293
317 x4 − 317x2 + 15533
389 x4 − 389x2 + 9725
461 x4 − 461x2 + 11525
491 x5 + x4 − 196x3 + 59x2 + 2019x + 1377
509 x4 − 509x2 + 61589
557 x4 − 557x2 + 27293
653 x4 − 653x2 + 79013
677 x4 − 677x2 + 114413
701 x4 − 701x2 + 118469
773 x4 − 773x2 + 93533
797 x4 − 797x2 + 134693
821 x4 − 821x2 + 40229
941 x4 − 941x2 + 23525
971 x5 + x4 − 388x3 + 1476x2 + 8304x + 7168

bound for |x| given by the formula (34) at page 318. We collect the value of some constants in

Table 3.2, the time is in seconds. We obtained small bounds for |u| in each case. It remains to

find the integer solutions of the polynomial equations Hp(u0, v) = 1 for the given primes with

|u0| ≤ X3. There is no solution for which u + δv = 3m,m > 0, and the statement follows. �

We recall that Cohn [29] showed that the only positive integer solution of x2 + 1 = 2yp is

given by x = y = 1.

Theorem 3.2.5. If the Diophantine equation x2 + 3m = 2yp with m > 0 and p prime admits

a coprime integer solution (x, y), then either

p ∈ {3, 59, 83, 107, 179, 227, 347, 419, 443, 467, 563, 587, 659, 683, 827, 947}

or (x, y,m, p) = (79, 5, 2, 5).

Proof. We will provide lower bounds for m which contradict the bound for p provided

by Theorem 3.2.2. By Theorem 3.2.2 we have p ≤ 3803 and by Lemma 3.2.9 we have
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Table 3.2: Summary of the computation

p c6 B0 Bred
0 X3 time

29 7.36 · 108 1.33 · 1031 21 4 1.2
53 2.04 · 1016 8.31 · 1032 40 3 1.9

101 4.94 · 1030 4.75 · 1035 38 2 3.4
149 1.5 · 1045 7.35 · 1036 44 2 7.3
131 2.25 · 1040 2.15 · 1042 115 2 5.9
173 7.37 · 1052 2.18 · 1036 134 2 5.7
197 6.91 · 1059 5.87 · 1037 76 2 6.5
251 1.03 · 1076 1.19 · 1046 34 2 13.6
269 2.92 · 1081 6.91 · 1038 72 2 14.3
293 1.54 · 1089 6.88 · 1037 230 2 10.3
317 1.1 · 1096 7.19 · 1038 99 2 12.9
389 3.65 · 10117 1.02 · 1040 72 2 25.2
461 2.72 · 10139 1.67 · 1040 117 2 22.2
491 5.97 · 10148 8.5 · 1047 214 2 24.9
509 8.17 · 10153 2.28 · 1040 127 2 23.4
557 2.81 · 10168 7.87 · 1040 157 2 26.5
653 2.02 · 10197 1.35 · 1041 146 2 32.6
677 6.29 · 10204 4.14 · 1041 272 2 27.8
701 6.52 · 10211 2.76 · 1041 169 2 37.1
773 4.55 · 10233 1.08 · 1042 254 2 44.2
797 6.58 · 10240 6.67 · 1041 220 2 45.4
821 6.93 · 10247 1.19 · 1042 138 2 55.5
941 1.45 · 10284 4.22 · 1042 224 2 62.4
971 1.26 · 10293 2.53 · 1051 93 2 75.1
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p mod p mod p mod p mod p mod
1013 16,27 1571 5,22 1973 16,22 2357 16,22 3011 5,22
1109 16,22 1613 16,22 1979 16,22 2459 16,22 3203 16,22
1181 16,22 1619 16,22 2003 16,22 2477 16,22 3221 16,22
1187 16,22 1667 16,22 2027 16,22 2531 5,22 3323 16,22
1229 16,22 1709 16,22 2069 16,22 2579 16,22 3347 16,22
1259 16,22 1733 16,22 2099 16,22 2693 16,22 3371 5,22
1277 16,22 1787 16,22 2141 16,22 2741 16,27 3413 16,22
1283 16,22 1811 5,22 2237 16,22 2861 16,22 3533 16,22
1307 16,22 1877 16,27 2243 16,22 2909 16,22 3677 16,22
1493 16,22 1931 5,22 2309 16,27 2957 16,22 3701 16,22
1523 16,22 1949 16,22 2333 16,22 2963 16,22

Table 3.3: Excluding some primes using congruences.

p ≡ 5 or 11 (mod 24). We compute the following sets for each prime p with 1000 ≤ p ≤

3803, p ≡ 5 or 11 (mod 24) :

A5 = L(p, 3, 242),

A16 = L(p, 3, 136)∩ L(p, 3, 193)∩ L(p, 3, 320)∩ L(p, 3, 697),

A22 = L(p, 3, 92)∩ L(p, 3, 134)∩ L(p, 3, 661),

A27 = L(p, 3, 866)∩ L(p, 3, 1417),

A34 = L(p, 3, 103)∩ L(p, 3, 307)∩ L(p, 3, 1021),

A39 = L(p, 3, 169)∩ L(p, 3, 313),

A69 = L(p, 3, 554)∩ L(p, 3, 611).

In case of A5 we have ord2423 = 5, hence this set contains those congruence classes modulo

5 for which (3.25) is solvable, similarly in case of the other sets. How can we use this

information? Suppose it turns out that for a prime A5 = {0} and A16 = {0}. Then we know

that m ≡ 0 (mod 5 · 16) and Theorem 3.2.2 implies p ≤ 1309. If the prime is larger than this

bound, then we have a contradiction. In Table 3.3 we included those primes for which we

obtained a contradiction in this way. In the columns mod the numbers n are stated for which

sets An were used for the given prime. It turned out that only 4 sets were needed. In case of

5, 22 we have m ≥ 110, p ≤ 1093, in case of 16, 22 we have m ≥ 176, p ≤ 1093 and in the

case 16, 27 we have m ≥ 432, p ≤ 1009.We could not exclude all primes using the previous

argument, but there is an other way to use the computed sets. We can combine the available

information by means of the Chinese remainder theorem. Let CRT ([a5, a16, a39], [5, 16, 39])



3.2. On the Diophantine equation x2 + q2m = 2yp 55

p rm CRT p rm CRT p rm CRT
1019 384 5,16,27 2267 448 5,16,69 3389 170 5,27,34
1061 176 5,16,39 2339 208 5,16,39 3461 116 5,16,39
1091 580 5,16,27 2381 44 5,27,34 3467 336 5,16,27
1163 586 5,27,34 2411 180 5,16,27 3491 850 5,27,34
1301 416 5,16,39 2549 320 5,16,27 3539 112 5,16,39
1427 270 5,27,34 2699 640 5,16,69 3557 176 5,16,39
1451 340 5,16,27 2789 204 5,27,34 3581 150 5,27,34
1499 112 5,16,39 2819 352 5,16,27 3659 112 5,16,39
1637 121 5,27,34 2837 131 5,27,34 3779 72 5,27,34
1901 304 5,16,39 2843 136 5,27,34 3797 416 5,16,39
1907 102 5,27,34 3083 340 5,27,34 3803 136 5,27,34
1997 170 5,27,34 3251 580 5,16,27
2213 170 5,27,34 3299 64 5,16,39

Table 3.4: Excluding some primes using CRT.

be the smallest non-negative solution of the system of congruences

m ≡ a5 (mod 5)

m ≡ a16 (mod 16)

m ≡ a39 (mod 39),

where a5 ∈ A5, a16 ∈ A16 and a39 ∈ A39. Let rm be the smallest non-zero element of

the set {CRT ([a5, a16, a39], [5, 16, 39]) : a5 ∈ A5, a16 ∈ A16, a39 ∈ A39}, In Table 3.4

we included the values of rm and the numbers related to the sets A5 − A69. We see that

m ≥ rm in all cases. For example, if p = 1019 then m ≥ 384, and Theorem 3.2.2 implies

p ≤ 1009, which is a contradiction. For p = 2381 we used A5, A27 and A34, given by

A5 = {0, 1, 4}, A27 = {0, 14, 15, 17}, A34 = {0, 10}. Hence

{CRT ([a5, a27, a34], [5, 27, 34]) : a5 ∈ A5, a16 ∈ A16, a39 ∈ A39} =

= {0, 44, 204, 476, 486, 554, 690, 986, 1394, 1404, 1836, 1880, 1904,

2040, 2390, 2526, 2754, 3230, 3240, 3444, 3716, 3740, 3876, 4226}.

The smallest non-zero element is 44 (which comes from [a5, a27, a34] = [4, 17, 10]),

therefore m ≥ 44 and p ≤ 1309, a contradiction. In this way all remaining primes

> 1000 can be handled. We are left with the primes p < 1000, p ≡ 5 (mod 24) and with

p ∈ {131, 251, 491, 971} prime. They are mentioned in Theorem 3.2.4. �
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Chapter 4

Mixed powers in arithmetic

progressions

In this chapter some extensions of Fermat’s problem on arithmetic progressions of squares

are discussed. All arithmetic progressions are described which satisfy one of the following

conditions

four consecutive terms are of the form x2
0, x

2
1, x

2
2, x

3
3 or x3

0, x
2
1, x

2
2, x

2
3,

four consecutive terms are of the form x2
0, x

2
1, x

3
2, x

2
3 or x2

0, x
3
1, x

2
2, x

2
3,

four consecutive terms are of the form x3
0, x

2
1, x

3
2, x

2
3 or x2

0, x
3
1, x

2
2, x

3
3.

We shall prove that in the first two cases the only coprime solutions are the trivial ones and

in the third instance the complete solution is given by

(x0, x1, x2, x3) ∈ {(−2t2, 0, 2t2,±4t3), (t2,±t3, t2,±t3)}

for some t ∈ Z or

(x0, x1, x2, x3) ∈ {(±4t3, 2t2, 0,−2t2), (±t3, t2,±t3, t2)}

for some t ∈ Z, respectively.

57
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4.1 Parametrization

The next lemma provides a parametrization of the solutions of certain ternary Diophantine

equations. The lemma and the proof are due to Lajos Hajdu.

Lemma 4.1.1. All solutions of the equations

i) 2b2 − a2 = c3, ii) a2 + 2b2 = 3c3,

in integers a, b and c with gcd(a, b, c) = 1 are given by the following parametrizations:

i) a = ±(x3 + 6xy2), b = ±(3x2y + 2y3),

or a = ±(x3 + 6x2y + 6xy2 + 4y3), b = ±(x3 + 3x2y + 6xy2 + 2y3),

ii) a = ±(x3 − 6x2y − 6xy2 + 4y3), b = ±(x3 + 3x2y − 6xy2 − 2y3).

Here x and y are coprime integers and the ± signs can be chosen independently.

Proof. The statement can be proved by factorizing the appropriate expressions in the

appropriate number fields. We handle each case separately.

i) We note that the ring of integers of Q(
√

2) is Z[
√

2] and this is a principal ideal domain. In

Q(
√

2) we have

(a +
√

2b)(a −
√

2b) = (−c)3.

Using gcd(a, b) = 1, a simple calculation gives that

gcd(a +
√

2b, a −
√

2b) | 2
√

2

in Q(
√

2). Hence, as 1 +
√

2 is a fundamental unit of Q(
√

2), we have

a +
√

2b = (1 +
√

2)
α
(
√

2)
β
(x +

√
2y)

3
, (4.1)

where α ∈ {−1, 0, 1}, β ∈ {0, 1, 2} and x, y are some integers. By taking norms, we

immediately obtain that β = 0. If α = 0, then expanding the right hand side of (4.1) we

get

a = x3 + 6xy2, b = 3x2y + 2y3.
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Otherwise, when α = ±1 then (4.1) yields

a = x3 ± 6x2y + 6xy2 ± 4y3, b = ±x3 + 3x2y ± 6xy2 + 2y3.

Substituting −x and −y in place of x and y, respectively, we obtain the parametrizations given

in the statement. Observe that the coprimality of a and b implies gcd(x, y) = 1.

ii) We note that the ring of integers ofQ(
√
−2) is Z[

√
−2] and this is a principal ideal domain.

In Q(
√
−2) we obtain

(a +
√
−2b)(a −

√
−2b) = 3c3.

Observe that gcd(a, b) = 1. Indeed, as gcd(a, b, c) = 1, the only possible proper common

divisor of a and b could be 3. However, 3 | a and 3 | b implies 3 | c, a contradiction. Hence

gcd(a +
√
−2b, a −

√
−2b) | 2

√
−2

in Q(
√
−2). As Q(

√
−2) has no other units than ±1, using 3 = (1 +

√
−2)(1 −

√
−2), we can

write

a +
√
−2b = (1 +

√
−2)

α
(1 −

√
−2)

β
(
√
−2)

γ
(x +

√
−2y)

3
, (4.2)

where α, β, γ ∈ {0, 1, 2} and x, y are some integers. By taking norms, we immediately obtain

that γ = 0 and α + β ≡ 1 (mod 3). If α = β = 2, then writing out (4.2) we get that 3 | a, 3 | b,

a contradiction. In case of α = 0, β = 1 or α = 1, β = 0 by expanding the right hand side of

(4.2) we obtain

a = x3 ± 6x2y − 6xy2 ± 4y3, b = ±x3 + 3x2y ∓ 6xy2 − 2y3.

Substituting −x and −y in place of x and y, respectively, we get the parametrizations indicated

in the statement. As a consequence of gcd(a, b) = 1, we deduce gcd(x, y) = 1 once again.

�

4.2 The cases (2, 2, 2, 3) and (3, 2, 2, 2)

Let x2
0, x

2
1, x

2
2, x

3
3 be consecutive terms of an arithmetic progression with gcd(x0, x1, x2, x3) =

1. Applying part i) of Lemma 4.1.1 to the last three terms of the progression, we get that
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either

x1 = ±(x3 + 6xy2), x2 = ±(3x2y + 2y3)

or

x1 = ±(x3 + 6x2y + 6xy2 + 4y3), x2 = ±(x3 + 3x2y + 6xy2 + 2y3)

where x, y are some coprime integers in both cases.

In the first case from x2
0 = 2x2

1 − x2
2 we get

x2
0 = 2x6 + 15x4y2 + 60x2y4 − 4y6.

If x = 0 then gcd(x, y) = 1 gives that y = ±1, which is a contradiction. Otherwise, by putting

Y = x0/x3 and X = y2/x2 we obtain the elliptic equation

Y2 = −4X3 + 60X2 + 15X + 2.

One can check with MAGMA [21] or another suitable program that this elliptic curve has no

affine rational points.

In the second case by the same assertion we obtain

x2
0 = x6 + 18x5y + 75x4y2 + 120x3y3 + 120x2y4 + 72xy5 + 28y6.

If y = 0, then the coprimality of x and y yields x = ±1, and we get the trivial progression

1, 1, 1, 1. So assume that y , 0 and let Y = x0/y3, X = x/y. By these substitutions we are led

to the hyperelliptic equation

Y2 = X6 + 18X5 + 75X4 + 120X3 + 120X2 + 72X + 28.

Theorem 4.2.1. Let C be the curve given by

Y2 = X6 + 18X5 + 75X4 + 120X3 + 120X2 + 72X + 28.

Then C(Q) consists only of the points∞+ and∞−.

Proof. One can get an upper bound for the rank of the Jacobian using M. Stoll’s [82]

algorithm implemented in MAGMA [21]. In the present case it turns out to be 1. The order

of Jtors(Q) is a divisor of gcd(#J(F5), #J(F7)) = gcd(21, 52) = 1. Therefore the torsion
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subgroup is trivial. The divisor D = [∞+ −∞−] has infinite order, so the rank equals 1. Since

the rank is less than the genus, we can apply Chabauty’s method [24] to obtain a bound for

the number of rational points on C. Other examples are worked out in [23],[39],[40],[72].

The rank of the Jacobian is 1, hence J(Q) = 〈D0〉 for some D0 ∈ J(Q) of infinite order.

A finite computation (mod 13) shows that D < 5J(Q), a similar computation (mod 139)

yields that D < 29J(Q). Hence D = kD0 with 5 - k, 29 - k. The reduction of C over Fp is a

curve of genus 2 for any prime p , 2, 3.We will use p = 29.We used Chabauty’s method as

implemented in MAGMA [21] by Stoll to bound the number of rational solutions.

> Qx〈x〉 := PolynomialRing(Rationals());

> f := x6 + 18 ∗ x5 + 75 ∗ x4 + 120 ∗ x3 + 120 ∗ x2 + 72 ∗ x + 28;

> C := HyperellipticCurve( f );

> pts := Points(C : Bound := 100);

> J := Jacobian(C);

> D := J![pts[1], pts[2]];

> TwoS elmerGroupData(J);

> Chabauty(D, 29);

We found that there are at most 2 rational points on C. Therefore we conclude that C(Q) =

{∞+,∞−}. �

Corollary. There is no increasing arithmetic progression of integers of the type x2
0, x

2
1, x

2
2, x

3
3.

Proof. From the previous theorem and from the preceding discussion we obtained that the

only progression is the trivial 1,1,1,1. �

Corollary. There is no increasing arithmetic progression of integers of the type x3
0, x

2
1, x

2
2, x

2
3.

Proof. In this case we apply part i) of Lemma 4.1.1 to the first three terms of the progression.

Then we use the equation x2
3 = 2x2

2 − x2
1. From this point on the reasoning is similar to the

previous case. It turns out that only the trivial arithmetic progression can occur. �

4.3 The cases (2, 2, 3, 2) and (2, 3, 2, 2)

Let x2
0, x

2
1, x

3
2, x

2
3 be consecutive terms of an arithmetic progression with

gcd(x0, x1, x2, x3) = 1.Now from part ii) of Lemma 4.1.1, applied to terms with indices 0, 2, 3
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of the progression, we get

x0 = ±(x3 − 6x2y − 6xy2 + 4y3), x3 = ±(x3 + 3x2y − 6xy2 − 2y3)

where x, y are some coprime integers. Using x2
1 = (2x2

0 + x2
3)/3 we obtain

x2
1 = x6 − 6x5y + 15x4y2 + 40x3y3 − 24xy5 + 12y6.

If y = 0, then in the same way as before we deduce that the only possibility is given by the

progression 1, 1, 1, 1. Otherwise, if y , 0 set Y = x1/y3, X = x/y to get the hyperelliptic

equation

Y2 = X6 − 6X5 + 15X4 + 40X3 − 24X + 12.

Theorem 4.3.1. Let C be the curve given by

Y2 = X6 − 6X5 + 15X4 + 40X3 − 24X + 12.

Then C(Q) consists only of the points∞+ and∞−.

Proof. One can get an upper bound for the rank of the Jacobian using M. Stoll’s [82]

algorithm implemented in MAGMA [21]. In this case it is 1. The torsion subgroup is trivial.

The divisor D = [∞+ −∞−] has infinite order, hence the rank is 1. We can apply Chabauty’s

method [24] to obtain a bound for the number of rational points on C.

Since the rank of the Jacobian is 1, we have J(Q) = 〈D0〉, for some D0 ∈ J(Q) of infinite

order. A finite computation (mod 13) shows that D < 5J(Q), a similar computation

(mod 131) yields that D < 11J(Q). Hence D = kD0 with 5 - k, 11 - k. The reduction of

C over Fp is a curve of genus 2 for any prime p , 2, 3.We will use p = 11.

> Qx〈x〉 := PolynomialRing(Rationals());

> f := x6 − 6 ∗ x5 + 15 ∗ x4 + 40 ∗ x3 − 24 ∗ x + 12;

> C := HyperellipticCurve( f );

> pts := Points(C : Bound := 100);

> J := Jacobian(C);

> D := J![pts[1], pts[2]];

> TwoS elmerGroupData(J);

> Chabauty(D, 11);
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We obtained that there are at most 2 rational points on C. Therefore we conclude that

C(Q) = {∞+,∞−}. �

Corollary. There exists no increasing arithmetic progression of integers of the type x2
0, x

2
1, x

3
2, x

2
3.

Corollary. There exists no increasing arithmetic progression of integers of the type x2
0, x

3
1, x

2
2, x

2
3.

Proof. From part ii) of Lemma 4.1.1, applied to terms with indices 0, 1, 3 of the progression,

we get the parametrizations. Then we use the equation x2
2 = (x2

0 + 2x2
3)/3. It turns out that

only the trivial arithmetic progression can occur. �

4.4 The cases (3, 2, 3, 2) and (2, 3, 2, 3)

Let x3
0, x

2
1, x

3
2, x

2
3 be consecutive terms of an arithmetic progression with gcd(x0, x1, x2, x3) =

1.We have

x2
1 =

x3
0 + x3

2

2
,

x2
3 =
−x3

0 + 3x3
2

2
.

(4.3)

We note that x2 = 0 implies x0 = x1 = x2 = x3 = 0. Assume x2 , 0. Then we obtain from

(4.3) that 
2x1x3

x3
2


2

= −
(

x0

x2

)6

+ 2

(
x0

x2

)3

+ 3.

Thus it is sufficient to find all rational points on the curve Y2 = −X6 + 2X3 + 3.

Theorem 4.4.1. Let C be the curve given by

Y2 = −X6 + 2X3 + 3.

Then C(Q) = {(−1, 0), (1,±2)}.

Proof. Using MAGMA [21] we obtain an upper bound 1 for the rank of the Jacobian, and the

torsion subgroupT consisting of two elements O and {( 1−
√

3i
2 , 0), ( 1+

√
3i

2 , 0)}. The divisor D =

[(−1, 0)+ (1,−2)−∞+−∞−] has infinite order. So the rank is exactly 1. The only Weierstrass

point on C is (−1, 0), so it remains to prove that (1,±2) are the only non-Weierstrass points.

We haveJ(Q) = 〈D0〉, for some D0 ∈ J(Q) of infinite order. A finite computation (mod 13)

shows that D < 7J(Q), a similar computation (mod 23) yields that D < 11J(Q). Hence

D = kD0 with 7 - k, 11 - k. The reduction of C over Fp is a curve of genus 2 for any prime
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p , 2, 3.We will use p = 11. > Qx〈x〉 := PolynomialRing(Rationals());

> f := −x6 + 2 ∗ x3 + 3;

> C := HyperellipticCurve( f );

> pts := Points(C : Bound := 100);

> J := Jacobian(C);

> D := J![pts[1], pts[2]];

> TwoS elmerGroupData(J);

> Chabauty(D, 11);

We found that there are at most 2 rational points on C. Therefore we conclude that (1,−2)

and (1, 2) are the only two non-Weierstrass points on C. �

Corollary. If x3
0, x

2
1, x

3
2, x

2
3 are consecutive terms of an arithmetic progression, then (x0, x1, x2, x3) ∈

{(−2t2, 0, 2t2,±4t3), (t2,±t3, t2,±t3)} for some t ∈ Z.

Proof. The point (−1, 0) is on the curve Y2 = −X6 + 2X3 + 3, hence x0
x2
= −1 and 2x1x3 = 0.

It easily follows that x0 = −2t2, x1 = 0, x2 = 2t2, x3 = ±4t3 is the only possible solution

of the problem. In case of the other two points (1,±2) we have x0 = x2, which implies

x3
0 = x2

1 = x3
2 = x2

3. Thus x0 = x2 = t2 and x1 = x3 = ±t3 for some t ∈ Z. �

Corollary. If x2
0, x

3
1, x

2
2, x

3
3 are consecutive terms of an arithmetic progression, then (x0, x1, x2, x3) ∈

{(±4t3, 2t2, 0,−2t2), (±t3, t2,±t3, t2)} for some t ∈ Z.

Proof. In this case we get the equation


2x0x2

x3
1


2

= −
(

x3

x1

)6

+ 2

(
x3

x1

)3

+ 3.

By Theorem 4.4.1 the only rational points on the curve Y2 = −X6 + 2X3 + 3 are (−1, 0) and

(1,±2). In a similar way as in the proof of the previous corollary we obtain the solutions. �
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Samenvatting

In dit proefschrift lossen we Diophantische vergelijkingen op met verschillende methoden,
namelijk de methoden van Runge, van Baker en van Chabauty.
In Hoofdstuk 2 bekijken we de Runge Diophantische vergelijking

F(x) = G(y) (*)

met F,G ∈ Z[X] monische veeltermen van respectievelijk graad n en m zodanig dat
F(X)−G(Y) irreducibel is in Q[X, Y] en ggd(n,m) > 1. In het hoofdstuk (dat is gebaseerd op
[87]), geven we een bovengrens voor de grootte van de oplossingen in gehele getallen voor
vergelijking (*) in het geval dat ggd(n,m) > 1. Verder geven we een algoritme om alle gehele
oplossingen te vinden. Het algoritme is geı̈mplementeerd in Magma. In de onderstaande
tabel staan enkele voorbeelden van vergelijkingen, het aantal oplossingen en de benodigde
rekentijd op een AMD-Athlon 1 GHz PC.

Vergelijking # Oplossingen CPU tijd (sec)
x2 = y8 + y7 + y2 + 3y − 5 4 0.16
x3 = y9 + 2y8 − 5y7 − 11y6 − y5 + 2y4 + 7y2 − 2y − 3 1 0.75
x5 = y25 + y24 + . . . + y + 7 1 5.69
x2 = y8 − 7y7 − 2y4 − y + 5 0 4.79
x2 = y4 − 99y3 − 37y2 − 51y + 100 2 1.83
x2 − 3x + 5 = y8 − y7 + 9y6 − 7y5 + 4y4 − y3 6 0.72
x3−5x2+45x−713 = y9−3y8+9y7−17y6+38y5−199y4−
261y3 + 789y2 + 234y

1 0.38

x(x + 1)(x + 2)(x + 3) = y(y + 1) · · · (y + 5) 28 0.23

In Hoofdstuk 3 bestuderen we exponentiële Diophantische vergelijkingen van de vorm x2 +

a2 = 2yp met x, y geheel en p > 2 priemgetal. In Sectie 3.1 (gebaseerd op [88]) geven we een
methode om de vergelijking x2 + a2 = 2yn met n, x en y geheel en n > 2 op te lossen voor
vaste a. In het bijzonder berekenen we alle oplossingen van de vergelijkingen x2 + a2 = yp en
x2 + a2 = 2yp voor oneven a met 3 ≤ a ≤ 501. In Sectie 3.2 bekijken we de Diophantische
vergelijking x2 + q2m = 2yp in onbekende getallen m, p, q, x, y waarbij m > 0, p, q oneven
priem en ggd(x, y) = 1. We bewijzen dat er slechts eindig veel oplossingen (m, p, q, x, y)
bestaan wanneer y niet van de vorm 2v2 ± 2v + 1 is. Ook bekijken we deze vergelijking voor
vaste y en voor vaste q. Verder lossen we de vergelijking x2 + q2m = 2 · 17p helemaal op. Aan
het eind van het hoofdstuk wordt bewezen dat indien de Diophantische vergelijking x2+32m =

2yp met m > 0 en p priem een oplossing in gehele getallen (x, y) heeft met x en y onderling
priem, dat dan is p ∈ {59, 83, 107, 179, 227, 347, 419, 443, 467, 563, 587, 659, 683, 827, 947}
of (x, y,m, p) ∈ {(79, 5, 1, 5), (545, 53, 3, 3)}.

In Hoofdstuk 4 bespreken we enkele generalisaties van Fermat’s resultaat. Fermat bewees
dat er geen stijgende rekenkundige rij van lengte 4 is die uit kwadraten van gehele
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getallen bestaat. Alle rekenkundige rijen worden beschreven die aan een van de volgende
voorwaarden voldoen:

vier opeenvolgende termen hebben de vorm x2
0, x

2
1, x

2
2, x

3
3,

vier opeenvolgende termen hebben de vorm x2
0, x

2
1, x

3
2, x

2
3,

vier opeenvolgende termen hebben de vorm x3
0, x

2
1, x

3
2, x

2
3.

(**)

In de eerste twee gevallen laten we zien dat om alle rijen met gcd(x0, x1, x2, x3) = 1 te
verkrijgen het voldoende is om alle rationale punten op bepaalde hyperelliptische krommen
van geslacht 2 te vinden. Deze hyperelliptische krommen worden gegeven door

Y2 = X6 + 18X5 + 75X4 + 120X3 + 120X2 + 72X + 28,

Y2 = X6 − 6X5 + 15X4 + 40X3 − 24X + 12.

In beide gevallen is de rang van de Jacobiaan 1, waardoor een methode van Chabauty kan
worden toegepast. In het derde geval kan men een kromme van geslacht 2 verkrijgen zonder
enige vorm van parametrisatie te gebruiken, waardoor we de voorwaarde gcd(x0, x1, x2, x3) =
1 kunnen weglaten. Deze kromme is gegeven door

C : Y2 = −X6 + 2X3 + 3.

We bewijzen dat C(Q) = {(−1, 0), (1,±2)}.Deze rationale punten leiden tot twee families van
rijen van de vorm x3

0, x
2
1, x

3
2, x

2
3 gegeven door

x0 = −2t2, x1 = 0, x2 = 2t2, x3 = ±4t3 voor t ∈ Z,
x0 = t2, x1 = ±t3, x2 = t2, x3 = ±t3 voor t ∈ Z.

Er volgt dat er geen stijgende rekenkundige rij van gehele getallen van de vorm (**) bestaat.
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