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Kolcsey Ferenc: Himnusz (1823)

Isten, aldd meg a magyart,
JO kedvvel, b6séggel,
Ny(ijts feléje védo kart,
Ha kiizd ellenséggel;

Bal sors akit régen tép,
Hozz réa vig esztendét,
Megb{inhédte mar e nép
A maltat s jovenddt!

Oseinket felhozad
Karpét szent bércére,
Altalad nyert szép hazat
Bendeglznak vére.

S merre zlgnak habjali
Tiszanak, Dunénak,
Arpad hés magzatjai
Felviragozanak.

Ertlink Kunsag mezein

Ert kalaszt lengettél,

Tokaj sz6l6vesszein
Nektart csepegtettél.
Z&szI6nk gyakran plantélad
Vad torok sancéara,

S nydgte Matyéas bls hadat
Bécsnek biiszke vara.

Hajh, de blineink miatt
Gydlt harag kebledben,
S elstjtad villamidat
Dorgd fellegedben,

Most rablé mongol nyilat
Z(gattad felettiink,

Majd toroktdl rabigat
Vallainkra vettlink.

Hanyszor zengett ajkain
Ozman vad népének

Vert hadunk csonthalmain
Gydzedelmi ének!
Hényszor tdmadt tenfiad
Szép hazam, kebledre,

S lettél magzatod miatt
Magzatod hamvvedre!

Bajt az Uldozott s felé

Kard nydl barlangjaban,
Szert nézett, s nem lelé
Honjat a hazaban,

Bércre hag, és volgybe szall,
B0 s kétség mellette,
Veérozon labainal,

S langtenger felette.

Var allott, most k6halom;
Kedv s 6rom ropkedtek,
Halalhorgés, siralom
Zajlik mar helyettek.

S ah, szabadséag nem virdl
A holtnak vérébél,

Kinz6 rabsag kdnnye hull
Arvak hg szemébdl!

Széand meg, isten, a magyart
Kit vészek hanyanak,
Nyajts feléje védé kart
Tengerén kinjanak.

Bal sors akit régen tép,
Hozz ra vig esztendét,
Megb(inhdte mér e nép

A mdltat s jdvenddt!
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Chapter 1

| ntroduction

In the thesis we shall solve Diophantine equations effectively by various methods, more
precisely by Runge’s method, Baker’s method and Chabauty’s method. To put our results
in the proper context we summarize some of the relevant history.

A Diophantine equation is an equation of the form f(xy, X, ..., Xy) = 0, where f is a given
function and the unknowns x1, X, . . ., X, are required to be rational numbers or to be integers.
As a generalisation of the concept one may consider rational or integral solutions over a

number field. In the study of Diophantine equations there are some natural questions:

e Is the equation solvable?

e |s the number of solutions finite or infinite?

e Is it possible to determine all solutions?

Diophantus was a mathematician who lived in Alexandria around 300 A.D. Six Greek books
out of thirteen of Diophantus’ Arithmetica have been known for a long time. The most famous
Latin translation is due to Bachet in 1621. In 1968 an Arabic manuscript was found in Iran,
which is a translation from a Greek text written in Alexandria, but probable it was written
by some of Diophantus’ commentators. In his works he stated mathematical problems and
provided rational solutions. To give an idea of the kind of problems we mention here two of
them. The first problem is (problem 20 of book 4) to find four numbers such that the product
of any two of them increased by 1 is a perfect square. A set with this property is called a

(rational) Diophantine quadruple. The set with this property which Diophantus constructed
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ic(d 33 17 105
is {36> 36> 2> 12)- In fact

1 33 17\
— .41 = (=),
16 16 16
N
16 4 - \8)"
1 105 19)?
— . 241 = =),
16 16 16
33 17 25\2
.24 = (2,
16 4 8
33 105 61\°
=241 = (=),
16 16 16
17 105 43\?
— .1 = (2.
4 16 8

The second problem is problem 17 of book 6 of the Arabic manuscript of Arithmetica which
comes down to find positive rational solutions to y? = x8 + x2 + 1. Diophantus constructed

i —1y_-9
the solution x = 5,y = 3.

Fermat’s Last Theorem concerns the Diophantine equation

X" +y"=2"
Fermat (1601-1665) wrote in the margin of an edition of Diophantus’ book that he had proved
that there do not exist any positive integer solutions with n > 2. His proof was never found
and in all likelyhood he did not have it. Using the method of descent, which was introduced
by him, Fermat showed that the equation x* + y* = z2 has no non-trivial solutions. An
easy consequence is that Fermat’s Last Theorem is true in case of n = 4. By means of the
method of descent Fermat could solve several Diophantine problems. Fermat claimed that
there cannot be four squares in arithmetic progression. If x2,y?, z2, w? are consecutive terms

of an arithmetic progression, then

X2+ 22 = 2%,
y2 +w? =272,

Besides Fermat found the Diophantine quadruple {1, 3, 8, 120} consisting of integers.

Euler (1707-1783) proved Fermat’s Last Theorem in case of n = 3, that is, he showed that the



equation x3+y® = z2 has only trivial solutions. Euler conjectured that for every integer n > 2,
the sum of n — 1 n-th powers of positive integers cannot be an n-th power. This conjecture
is an extension of Fermat’s Last Theorem, but it was disproved by Lander and Parkin [47] in

1966. They gave a counterexample,

275 + 845 + 110° + 133° = 1445,

Elkies [37] in 1988 found the quartic counterexample

2682440* + 15365639 + 18796760* = 20615673,

Furthermore Euler showed that the only consecutive positive integers among squares and

cubes are 8 and 9. That is, he solved the Diophantine equation

xX-y?=2x1, x>0,y>0.

In 1844 Catalan conjectured that the Diophantine equation

Xm_ynzl

admits only the solution x = n = 3,y = m = 2 in positive integers. So Euler had already

solved the special case m = 3,n = 2.

Let

P(X,Y) = a X'yl

-t

I\
<}

n
=0
where & ; € Zand m > 0,n > 0, which is irreducible in Q[X,Y]. Let 2 > 0. Then the
A-leading part of P, P,(X, Y), is the sum of all terms a; jX'Y1 of P for which i+ 4] is maximal.
The leading part of P, denoted by P(X, Y), is the sum of all monomials of P which appear
in any P, as A varies. Then P satisfies Runge’s condition unless there exists a A so that
P = P, is a constant multiple of a power of an irreducible polynomial in Q[X, Y]. One of the
first general results on Diophantine equations is due to Runge [74] who proved the following

theorem in 1887.

Theorem. If P satisfies Runge’s condition, then the Diophantine equation P(x,y) = 0 has

only a finite number of integer solutions.
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We present two examples for which the theorem implies the finiteness of integer solutions.

The first example is given by
P(X,Y)=X2-Y8 Y7 _Y2_3Y 45

where P(X,Y) = X2,X2-Y8, ~Y®accordingas A < 2,1 = 1,1 > 1, thus B(X,Y) = X?-Y8 =
(X = Y#)(X + Y#). The second is

POX,Y) = X(X + 1)(X +2)(X +3) = Y(Y + 1)--- (Y +5),

where we obtain that P(X, Y) = X* - Y&.

Another general result was given by Thue [89] in 1909 who proved that if F(X,Y) is an
irreducible homogeneous polynomial of degree n > 3 with integer coefficients, and m # 0 is
an integer, then the equation

F(x,y)=m inx,yeZ

has only finitely many solutions. Siegel [78] in 1926 proved that the hyperelliptic equation
y?=aox"+ax" 1+ .. +an = f(X)

has only a finite number of integer solutions if f has at least three simple roots. The same
method implies that the equation y™ = apx" + a;x"* + ... + a, with m > 2 has only a finite
number of integer solutions. In 1929 Siegel [79] classified all irreducible algebraic curves
over Q on which there are infinitely many integral points. These curves must be of genus 0
and have at most 2 infinite valuations. These results are ineffective, that is, their proofs do

not provide any algorithm for finding the solutions.

In the 1960°s Baker [6], [9] gave explicit lower bounds for linear forms in logarithms of the

form

n
A:Zbi loga; # 0,

i=1
wherebj e Zfori=1,...,nand as, ..., ay, are algebraic numbers (+ 0, 1), and
logai,...,logan denote fixed determinations of the logarithms. Using his estimates Baker

[7] gave an effective version of Thue’s theorem. In [8], [10] he applied the method to the



class of Diophantine equations

f(x)=yMinx,y € Z, (1.1

where f is an irreducible polynomial of degree n > 3 with integer coefficients and m > 2
is a given integer. If m = 2, then equation (1.1) is called hyperelliptic equation, otherwise
it is called superelliptic equation. Baker’s method has been applied for many other types of
Diophantine equations, see the papers by Bilu [15],[16], the survey by Gy6ry [42] and the
book by Smart [81] and the references given there. In practice Baker’s method provides very
large upper bounds for the unknowns of a given equation. In 1969 Baker and Davenport
[11] proved that the only Diophantine quadruple of the form {1, 3, 8, x} is {1, 3, 8, 120}, the
one due to Fermat. They used Baker’s method and a reduction algorithm based on continued
fractions.

In 1976 Tijdeman [90] proved that Catalan’s equation xP — y9 = 1 has only finitely many
solutions in integers p > 1,q > 1, x > 1,y > 1. He used a refinement of Baker’s estimates
for linear form in logarithms of algebraic numbers.

Schinzel and Tijdeman [76] in 1976 proved that if a polynomial P(X) with rational
coefficients has at least two distinct zeros then the equation P(x) = y™, where x,y € Z with
y # 0, implies that m < c(P) where ¢(P) is a computable constant.

In 1982 Lenstra, Lenstra and Lovész [50] introduced the so-called LLL-basis reduction
algorithm which enables one in many cases to reduce the high bounds found by applying

Baker’s method considerably. See de Weger [93].

In 1983 Faltings [38] proved the following result conjectured by Mordell.

Theorem. Let K be a number field, and let C/K be a curve of genus g > 2. Then C(K) is

finite.

It follows from this theorem that for every integer n > 3 the Fermat equation x" + y" = z" has
only finitely many coprime solutions x, y, z.

In 1993 Wiles claimed to have a proof of a large part of the Taniyama-Shimura conjecture on
the modularity of elliptic curves and thereby of Fermat’s Last Theorem. His proof involved
deep results on elliptic curves and modular forms. Some gap was found in the original proof
but in 1995 Wiles and Taylor managed to nail it down and to complete the proof of Fermat’s

Last Theorem, see [94], [86].



6 Chapter 1. Introduction

In 1997 Darmon and Merel [34] proved following Wiles’ approach that Denes’ conjecture is

true, that is there are no 3-term arithmetic progressions of equal powers greater than two.

A common generalisation of Fermat’s equation and Catalan’s equation is

Ax" + By* =CZ' (1.2)

in integers r,s,t € Nup,X,y,Z € Z and A, B,C € Z given integers with ABC # 0. In 1995

Darmon and Granville [33] proved the following theorem.

Theorem. Let A,B,C € Z,ABC #0andr,s,t e Ny, suchthat1/r+1/s+1/t < 1. Then the

equation (1.2) has only finitely many solutions x,y, z € Z with gcd(x,y,z) = 1.

If r, s, t are positive integers with 1/r + 1/s + 1/t > 1, then there may exist infinitely many

coprime integers X, y, z such that (1.2) holds. The following theorem is due to Beukers [13].

Theorem. Let A,B,C € Z,ABC # 0andr,s,t € Ny, suchthat 1/r + 1/s+ 1/t > 1. Then
the equation (1.2) has either zero or infinitely many solutions x, y, z € Z with gcd(x,y, z) = 1.
Moreover, there exists a finite set of triples X,Y,Z € Q[U, V] with gcd(X,Y,Z) = 1 and
AX" + BYS = CZ! such that for every primitive integral solution (x,y,z) there is a triple

(X,Y,Z) and u,v € Q such that x = X(u,v),y = Y(u,v),z = Z(u, V).

Moreover Beukers [13] in Appendix A gives sets of parametrizations yielding all integer
solutionsincase of A= B =C = 1for{p,q,r} = {2,3,3}and {2, 3, 4}. These parametrizations
were found by Zagier. Explicit parametrizations in case x? + y3 = z° have been given by
Edwards [36]. Incase 1/r+1/s+1/t = 1 we have (r,s,t) = (3,3,3),(4,4,2)or (2,3,6). Inall
three cases one has to study rational points on curves of genus 1. The following conjecture
(also known as the Beal Prize Problem) was made by Tijdeman in a lecture on the Fermat

Day in Utrecht in 1993.

Conjecture. Let x,y,z,r,s,t be positive integers with r,s,t > 2. If X" +yS = 7' then x,y,z

have a factor in common.

This conjecture was motivated by computations by Beukers and Zagier made for the same

occasion. The known positive and primitive solutions to x" +yS =zt with 1/r+1/s+1/t < 1



are as follows:

1"+22=3% (r>6),

2°+77=3%
734132 =2°
27 +17% = 712,

3 +11% = 1222,

177 + 76271° = 210639282,
14143 + 22134592 = 65’,
92623 + 153122832 = 1137,
438 + 962223 = 300429072,

338 + 15490342 = 156132,

They found the five large solutions. Note that always a square is involved.

Catalan’s conjecture was resolved completely in 2002 by Mihdilescu [60]. In his proof he
used results and tools from classical algebraic number theory, theory of cyclotomic fields,
transcendental number theory and a Runge-type Diophantine argument. Thus 8 and 9 are the

only consecutive positive powers indeed.

In the thesis we report on the following research. In Chapter 2 we consider the Runge-type

Diophantine equation

F(x) = G(y). (1.3)

where F,G € Z[X] are monic polynomials of degree n and m respectively, such that F(X) —
G(Y) is irreducible in Q[X, Y] and gcd(n, m) > 1. We present an upper bound for the size of
the integer solutions to equation (1.3) in case gcd(n,m) > 1. We further give an algorithm
to find all integral solutions of equation (1.3). In Section 2.2.2 we make comparisons with
previously published computational solutions of Diophantine equations by Runge’s method.
It turns out that in some cases our algorithm involves considerably fewer calculations. Our

algorithm was implemented in Magma [21]. Some examples are given in Table 1.1.

In Chapter 3 exponential Diophantine equations (1.2) of the form x2 + a? = 2yP are studied.
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Equation # Solutions | CPU time (sec)
=y +y +y?+3y-5 4 0.16
x> =y9+2y® — 5y’ —11y® —yS + 2y* + 7y? -2y -3 1 0.75
X =y +y?* 4 ry+7 1 5.69
X =y Ty —2y*—y+5 0 4.79
x? = y* —99y® — 37y? — 51y + 100 2 1.83
X2 —3x+5=y0 -y +9y® —7y® 1 4y* 3 6 0.72
X3 —5x°+45x — 713 = y¥ - 3y® + 9y" —17y® 1+ 38y° — 1 0.38
199y* — 261y3 + 789y + 234y

XX+ D)X +2)(x+3)=y(y+1)---(y+5) 28 0.23

Table 1.1: Results of a run of the procedure Runge.m on an AMD-Athlon 1 GHz PC.

In Section 1 (it is based on [88]) we provide a method to resolve the equation x* + a =
2y" in integers n > 2,x,y for any fixed a. In particular we compute all solutions of the
equations x? + a® = yP and x? + a? = 2yP for odd a with 3 < a < 501. In Section 2 we
consider the Diophantine equation x? + g?™ = 2yP where m, p, g, X,y are integer unknowns
with m > 0, p and g are odd primes and gcd(x,y) = 1. We prove that there are only finitely
many solutions (m, p, g, x,y) for which y is not of the form 2v? + 2v + 1. We also study
the above equation with fixed y and with fixed g. We completely resolve the equation x? +
g®™ = 2 - 17P. At the end of the section it is proved that if the Diophantine equation x> +
3™ = 2yP with m > 0 and p prime admits a coprime integer solution (x,y), then either
p € {59,83,107,179,227,347,419,443,467,563,587, 659, 683,827,947} or (x,y,m,p) €
{(79,5,1,5), (545,53, 3, 3)}.

In Chapter 4 some generalisations of Fermat’s problem on arithmetic progressions of length
4 consisting of squares are discussed. All arithmetic progressions are described which satisfy

one of the following conditions

four consecutive terms are of the form x3, x3, X3, x3,
four consecutive terms are of the form x3, X2, X3, X3, (1.4)

four consecutive terms are of the form x3, X3, x3, x3.

In the first two cases we show that it is sufficient to find all rational points on certain
hyperelliptic curves of genus 2 to obtain all progressions with gcd(Xo, X1, X2, X3) = 1. These

hyperelliptic curves are given by

Y2 = X5+ 18X°% + 75X% + 120X° + 120X? + 72X + 28,

Y2 = X8 - 6X° + 15X* + 40X°3 — 24X + 12.



In both cases the rank of the Jacobian is 1, therefore Chabauty’s method can be applied. In
the third case one can obtain a genus 2 curve without using any parametrisation, which enable

us to get rid of the condition gcd(xo, X1, X2, X3) = 1. The curve is given by
C:Y2=-X5+2X3+3.

We prove that C(Q) = {(-1,0), (1, £2)}. These rational points gives rise to two families of

; 3 w2 3 2 i
progressions of the form xg, X7, X3, X5 given by

Xo = —2t%, X1 = 0, Xp = 2t%, x3 = +4t° for some t € Z,

Xo = t2, X1 = +t3, Xo = 12, X3 = +t° for some t € Z.

It follows there are no increasing arithmetic progression of integers of the types (1.4).






Chapter 2
Runge-type Diophantine

Equations

2.1 Introduction

Consider a polynomial

P(X,Y) =

ai,inYj,

m
=0

n
j=0

where @;j € Z and m > 0,n > 0, which is irreducible in Q[X, Y]. We recall Runge’s result
[74] on Diophantine equations:

if there are infinitely many (x,y) € Z? such that P(x,y) = 0 then the following properties
hold:

® 8, = am; = 0forall non-zeroi and j,

for every term a; ;X'Y/ of P one has ni + mj < mn,

the sum of all monomials a; ;XY of P for which ni+mj = mn is up to a constant factor

a power of an irreducible polynomial in Z[X, Y],

there is only one system of conjugate Puiseux expansions at x = oo for the algebraic

function y = y(x) defined by P(x,y) = 0.

The latter two properties have been sharpened by Schinzel [75] and by Ayad [5]. The
fourth property implies the three others. If the fourth statement does not hold, we say
that P satisfies Runge’s condition. Runge’s method of proof is effective, that is, it yields

computable upper bounds for the sizes of the integer solutions to these equations provided

11
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Runge’s condition is satisfied. Using this method upper bounds were obtained by Hilliker
and Straus [45] and by Walsh [92]. Grytczuk and Schinzel [41] applied a method of
Skolem [80] based on elimination theory to obtain upper bounds for the solutions. Laurent
and Poulakis [48] obtained an effective version of Runge’s theorem over number fields by
interpolation determinants. Their result extends Walsh’s result which holds for the field of

rational numbers.

If P(X,Y) = Y™ — R(X) is irreducible in Q[X, Y], R is monic and gcd(n, degR) > 1, then P
satisfies Runge’s Condition. Masser [58] considered equation y" = R(X) in the special case
n = 2,degR = 4, and Walsh [92] gave a bound for the general case. In [73] Poulakis described
an elementary method for computing the solutions of the equation y?> = R(x), where R is a
monic quartic polynomial which is not a perfect square. Szalay [84] generalized the result
of Poulakis by giving an algorithm for solving the equation y?> = R(x) where R is a monic
polynomial of even degree. Recently, Szalay [85] established a generalization to equations

yP = R(X), where R is a monic polynomial and p| degR.

Several authors (for references see e.g.[14],[20],[35]) have studied the question if the equation
F(x) = G(y) has finitely or infinitely many solutions in x,y € Z, where F, G are polynomials
with rational coefficients. Bilu and Tichy [20] completely classified those polynomials F,G €
Q[X] for which the equation F(x) = G(y) has infinitely many integer solutions. The methods

used in [14],[20],[35] are ineffective so they do not lead to algorithms to find all the solutions.

In this chapter we will prove the following theorem.

Theorem. Let F,G € Z[X] be monic polynomials with degF = n < degG = m, such that
F(X) — G(Y) is irreducible in Q[X, Y] and gcd(n,m) > 1. Let d > 1 be a divisor of gcd(n, m).

If (x,y) € Z? is a solution of the Diophantine equation F(x) = G(y), then

max(x| ) < % (m + DECE + )T (h+ TF

where h = max{H(F),H(G)} and H(-) denotes the classical height, that is the maximal

absolute value of the coefficients.

We provide an algorithm to determine all the solutions, and show by examples how it works

and compare the results with others on the same equations in the literature.
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2.2 Thecase F(x) = G(y) with gcd(deg G, degF) > 1

We deal with the Diophantine equation
F(X) = G(y), (2.1)

where F, G € Z[X] are monic polynomials with deg F = n,deg G = m, such that F(X) — G(Y)
is irreducible in Q[X, Y] and gcd(n, m) > 1. Then Runge’s condition is satisfied. Letd > 1 be
a divisor of gcd(n, m). Without loss of generality we can assume m > n. By H(:) we denote
the classical height, that is the maximal absolute value of the coefficients.

In the following theorem we extend a result of Walsh [92] concerning superelliptic equations

for which Runge’s condition is satisfied.

Theorem 2.2.1. If (x,y) € Z?is asolution of (2.1) where F and G satisfy the above mentioned

conditions then

max([x| ) < dF (m + DF (S + DF(n+ =

where h = max{H(F), H(G)}.

In the special case that G(Y) = Y™ Walsh [92, Theorem 3] obtained a far better result for the

d

In the Corollary of Theorem 1 [92] Walsh has shown that if P(X,Y) satisfies Runge’s
condition, then all integer solutions of the Diophantine equation P(X,Y) = 0 satisfy
max{[x, lyl} < (2m)*&™ h*2"",

where m = degy P, and h = H(P). Grytczuk and Schinzel [41] have stated in their Corollary

that if P(X, Y) satisfies Runge’s condition, then

(45h)20 ifm=2,

maxd.Il) < e

((4m®)Bmh ifm> 2.

Here we cited corollaries from [41] and from [92] because it is easier to compare these results
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with the Theorem. We note that in the special case (2.1) our theorem gives a far better upper
bound.

We will need the concept of resultant. The resultant of two polynomials f,g € C[X,Y] of
degreesr, tin Y, respectively, say f(X,Y) = ao(X)Y" +a1(X)Y 1 +...+a,(X) withag(X) £ 0
and g(X,Y) = bo(X)Y' + by (X)Y"L + ...+ by(X) with bo(X) # 0 is defined by

aX) ... ... aXx

apX) ... ... aX)
Resy(f(X,Y),a(X.Y)) =] bo(X) ... by(X)

bo(X) ... bi(X)
We use the following result in the proof of the Theorem.

Lemma 2.2.1. There exist Puiseux expansions (in this case even Laurent expansions)

of the algebraic functions U, V defined by U9 = F(X), V¢ = G(X), such that

d2Ve-1f € 7 for all i > -1, similarly d2™+)-1g; € Z for all i > -2, and fo=gmn=1
Furthermore |fi| < (H(F) + 1)3** for i > ~2 and |gi| < (H(G) + 1)3*** for i > - 1.
Proof. See [92] pp. 169-170. O

Proof of the Theorem. Let (2.1) admit a solution (x,y) € Z2. Applying the lemma we write

d d
fixi] : G(Y):[Z giYi] ,

F(X) =[

where |fi| and |g;| are bounded by expressions given in the lemma. It follows from the lemma

dF-1f,

| < 5t for|t] > 4dT-Y(H(F) + 1)§+*2 =: xo. Thus we have | Y%, d - 1fit™| < 1.

ok+1

that ’

Similarly if [t| > 4d¥-1(H(G) + 1)3+2 =: yo then | =, d ¥ ~1git™/| < 1. Since F(x) = G(y),
i=1 2
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we have u(x)? — v(y)? = 0, that is

(u(x) - v(y)) (u(x)d‘l +u)A(y) + ... + v(y)d-l) =0, ifdisodd,

(U2 = vy)?) (U™ 2 + Uy + ... +v(y)*2) = 0, ifd is even.
First assume that d is odd and
u() %+ u)42v(y) + ... + v(y)t = 0. (2.2)
Suppose v(y) # 0. In this case we can divide (2.2) by v(y)®%, and we get
1 e

v(y)
It suffices to observe that t 1 has no real root if k is odd. Thus v(y) = 0 and u(x) =

Now assume that d is even. Note that
)42 +u) Y)Y + ...+ v(y)? =0
can only happen if u(x) = v(y) = 0. By the above considerations we have

u(x) = v(y) if d is odd, and

u(x) = xv(y) if d is even.

Let |X| > Xo, || > Yo. Then we obtain from

=) V)l = [ fix = ) gy
that
Z dd1fx T + Z 47 1gyy
i=—% i=—10
Since dT-1f; e Z fori = -L,...,0and dF-1g e Z fori = -2,...,0we have

Q(x.Y) :=id%"‘ Z d¥1g iy =
i=0 i=0

Hence x satisfies Resy(F(X) — G(Y), Q(X, Y)) = 0 and y satisfies
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Resy (F(X) — G(Y), Q(X,Y)) = 0. We note that these resultants are non-zero polynomials
since F(X) — G(Y) is irreducible over Q[X, Y] of degree n in X and of degree m in Y, whereas
degy Q(X,Y) = §, and degy Q(X,Y) = . By applying Lemma 1 of Grytczuk and Schinzel

m
1),

' 23)
e

By combining the bounds Xo, Yo and (2.3) obtained for |x|, |y| we get the bound given in the

[41] we obtain the following bounds for |x| and |y| :

IXI < (h(n + 1) Vm )% (d a7 3h + 1)w+2( +1)

o_|: o_|3

iyl < (h(m + 1) Vn + 1)° (d 7 1(h + 1)%”2( +1)

theorem. |

2.2.1 Description of the algorithm

In this section we give an algorithm to find all integral solutions of concrete Diophantine
equations of the form (2.1) by adapting the proof of the theorem. Let p be the smallest prime
divisor of gcd(m, n). Let u(X) = Z?}% fiX~ and v(X) = Zio}r_g giX~" be the polynomial
part of the Puiseux expansions at co of u(X)? = F(X),v(X)P = G(X), respectively, with
f,g =g-n = 1. Denote by D the least common multiple of both the non-zero denominators
of fi fori e {—'ﬂ), ...,—1}andof g; fori e {—ﬂp‘, ...,—1}and of fo — go. Let t be a positive real
number. The leading coefficients of F(X) — (u(X) — t)P and F(X) — (u(X) + t)P have opposite
signs, similarly in the case of the polynomials G(X) — (v(X) — t)P and G(X) — (v(X) + t)P.

Hence we have that either
U =P < F(X) < (u(x) + )P or (u(x) + )° < F(x) < (u(x) - 1)°,
if || is large enough. Similarly we have that either
(V) =P <G(X) < (v(¥) + ) or (V(x) + )° < G(x) < (V(x) — 1)°,

if x| is large enough. We note that if p # 2, then the degree of the polynomials F(X) — (u(X) —

)P and F(X) — (u(X) + t)P is even, so only the case (u(x) — t)P < F(x) < (u(x) + t)° occurs.
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The same holds for G(X) — (v(X) — t)P and G(X) — (v(X) + t)P. Let

xg =min{{0} U {x e R : F(x) — (u(x) - t)? = 0 or F(x) — (u(x) + t)P = 0}
X = max{{0} U{x e R : F(x) — (u(x) — t)? = 0 or F(x) — (u(x) + t)? = 0}}
yr = min{{0} U {x € R : G(x) — (v(x) — t)P = 0 or G(x) — (v(x) + )P = O}}

yi = max{{0} U {x e R : G(xX) — (V(x) — t)? = 0 or G(x) — (v(x) + t)P = O}

Suppose that p is odd. Then we have

(u(x) = )P < F(x) < (u(x) + t)P for x ¢ [x¢, x{1,

(v(y) - 9P < G(y) < (v(y) + ) fory ¢ [y;, y{ 1.

If (x,y) is a solution (2.1) such that x ¢ [x;, xi] and y ¢ [y;,y;], then

() =P = (v(y) + )° < F(x) = G(y) < (u(x) + ) = (v(y) - )°.

Thus
p-1
(u(x) = v(y) - ZI){ (u(x) = P (v(y) + t)"] <0, (2.4)
-
(u(x) = v(y) + 2t)[ (U(x) + )P (y) - t)") > 0. (2.9)
k=0

Either u(x)—t # 0 or v(y)+t # 0 since otherwise u(x)—v(y)—2t = 0, a contradiction. Similarly,
either u(x) +t # 0 or v(y) —t # 0 since otherwise u(x) —v(y) + 2t = 0, a contradiction. Without
loss of generality we may assume that v(x) —t # 0 and v(x) +t # 0. We rewrite (2.4) and (2.5)

as follows

(U0 -t
(u(x) = v(y) — 2t (v(y)+t)P‘1[k: (V(y)+t)]

1 & (u(x) +t
(u(x) = v(y) + 2t) (v(y) — t)P-1 {kO (V(y) - t) ] 70

= O

Since p - Lis evenand 37~ s* >  for s € R we obtain that

=2t < u(x) — v(y) < 2t.
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There are only finitely many rational humbers with bounded denominator between —2t and
2t. It follows from Lemma 2.2.1 that the denominator of u(x) — v(y) divides pz_r;"’l, so D |
pz_pm‘l. Hence x is a solution of Resy(F(X) — G(Y), u(X) —v(Y) — T) for some rational number
-2t < T < 2t with denominator dividing D. To resolve a concrete equation of the form (2.1)

it is sufficient to find all integral solutions of the following equations

F(x) = G(k) for some k € [y;,y{1,
G(y) = F(k) for some k € [x, X1,
(2.6)

Resy(F(X) = G(Y),u(X) —=v(Y)-T)=0forsome T € Q,|T| < 2t

with denominator dividing D.
The number of equations to be solved depends on t, a good choice can reduce the time of the
computation.
In the special case p = 2if n—n/d and m —m/d are even, then the previous argument works.

Otherwise four cases can occur.

UE) - )% < F(x) < () +1)?,

(v(y) - 9% < G(y) < (v(y) + D2

In this case it follows that —2t < u(x) — v(y) < 2t.

UE) - )% < F(x) < () +1)?,

(V) +* < G(y) < (v(y) - D2

We obtain that —2t < u(x) + v(y) < 2t.

UE) + 1% < F(x) < () - 1)?,

(V) - 9% < G(y) < (v(y) + D2

In this case we have that —2t < u(x) + v(y) < 2t.
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UE) + 17 < F(x) < () - 1)?,

(Vi) + 9% < G(y) < (v(y) - H*

In this case it follows that —2t < u(x) — v(y) < 2t.

If p = 2 then we can apply the above arguments to conclude that each solution (x, y) € Z? of

(2.1) satisfies at least one of the following equations:

F(x) = G(k) for some k € [y;,y{1.
G(y) = F(k) for some k € [x, x{1,
Resy(F(X) - G(1), u(X) ~v(¥) = T) = Ofor some T € @, [T| < 2t

2.7
with denominator dividing D,

Resy(F(X) = G(Y),u(X) +v(Y)-T)=0forsome T € Q,|T| < 2t

with denominator dividing D.

In the algorithm we need to compute the approximate values of the smallest real roots and the
largest real roots of certain polynomials. One can apply for example the method of Collins
and Akritas [32], based on Descartes’ rule of signs, or Schénhage’s algorithm [77], which is
implemented in Magma [21]. Denote by NumofEq(t) the number of equations corresponding
with t. Itis x{ —x¢ +yf —y; +4Dt+ Lif pisodd and x{ — x; +y{ —y; +8Dtif p =2. The
remaining question is how we should fix the parameter t such that the number of equations to
be solved becomes as small as possible. We perform a reduction algorithm as follows. We let
t= %. In this way if x ¢ [X7, X1,y ¢ [yr, Y71, we have that —1 < D(u(x) + v(y)) < 1. Since
D(u(x) = v(y)) is an integer the only possibility is u(x) + v(y) = 0. In this case there is only one
resultant equation to be solved if p is odd and two if p = 2. Then we compute NumofEq(2t),
if it is smaller than NumofEq(t), then we replace t by 2t and proceed, otherwise the procedure
returns the actual values of x{, x;, y;, yr, t. Finally we compute the integer solutions of the

polynomial equations (2.6) if p is odd, and (2.7) if p = 2.

2.2.2 Examples

I implemented the algorithm in the computer algebra program package Magma [21]. The

program was run on an AMD-K7 550 MHz PC with 128 MB memory.
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t #equations R R AR A
1/256 1278 [ -350, 353, -253, 318 ]
1/128 628 [-174,177,-98,171]
1/64 311 [-86, 89, -24,96]
1/32 195 [-42, 45, -20,56]
1/16 158 [-20, 23, -16,35]

Table 2.1: Information on the reduction.

Example 1. Consider the Diophantine equation
X2 —3x+5=y8 -y +9y0 — 7y 1+ 4y* — 3.

We have

3
X)=X-2
U =X - 3.
1 35

v(Y)=Y4—§Y3+ y2_ 2L, 108

8 16 128"
In Table 2.1 we collect information on the reduction.

It remains to solve the following equations:

Resy(F(X) — G(Y),u(X) —v(Y) —k) =0, fork € {-15,...,15},
Resy(F(X) = G(Y),u(X) + v(Y) —=k) =0, fork € {-15,...,15},
G(y) = F(x), for x € {-20,...,23},

F(x) = G(y), fory € {-16,...,35}.

The complete list of the integral solutions of these equations turns out to be:
{(-657,5), (-3,-1),(0,1), (3, 1), (6,-1), (660, 5)}.

Computation time in seconds: 0.72.

Example 2. We apply the method to the Diophantine equation

X3 — 5x% + 45x — 713 = y° — 3y® + 9y” — 17y® + 38y° — 199y* — 261y° + 789y + 234y.
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t | #equations X7, XF5 Ve, Vil
1/6 177 [-86, 45, -32,11]

13 95 [-48,15,-18,9]
2/3 67 [-27,13,-10, 8]
4/3 52 [-16,11,-2,6]

Table 2.2: Information on the reduction.

We obtain that

u(X):X—§,

3
v(Y)=Y3—Y2+2Y—%.

In Table 2.2 we collect information on the reduction.

In this case we solve the following equations:

Resy(F(X) — G(Y),u(X) —=v(Y) —-k) =0, fork e {-7,...,7},
G(y) = F(x), forx e {-16,...,11},

F(x) = G(y), fory e {-2,...,6},

The only integral solution of these equations is (x,y) = (=11, -2).

Computation time in seconds: 0.38.

Example 3. ([43] Theorem 1. a) Consider the Diophantine equation
X(X+1)(X+2)(x+3)=y(y+1)---(y+5).

There are many results in the literature concerning similar equations (cf. [14], [57]). We

compute that

u(xX) = X% +3X + 1,

1 11 7
;Y2+ Wy, b

Y)=Y3 )
v(Y) =Y7+ AT

In Table 2.3 we collect information on the reduction.
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t #equations | [x{, X{, Yo, Yr]
1/32 108 [-6,3,-50,45]
1/16 62 [-5,2,-26,21]
1/8 46 [-4,1,-15,10]

Table 2.3: Information on the reduction.

It remains to solve the following equations:

Resy(F(X) = G(Y),u(X) —=v(Y) —=k) =0, fork e {-3,...,3},
Resy(F(X) = G(Y),u(X) +v(Y) - k) =0, fork e {-3,...,3},
G(y) = F(x), forx e {-4,...,1},

F(x) = G(y), fory € {-15,...,10}.

The complete list of non-trivial integral solutions of these equations turns out to be:

{(-10,-7),(-10,2),(7,-7), (7, 2)}. Computation time in seconds: 0.23.

The following examples are from [85]. The method described in that paper is similar to ours
in the sense that one has to find all the integral solutions of polynomial equations P(x) = 0,
where P € Z[X]. We compare both methods by comparing the number of equations which
have to be solved. We remark that our algorithm works for equations F(x) = G(y), where
F,G € Z[X] are monic polynomials with degF = n,degG = m, such that F(X) — G(Y) is
irreducible in Q[X, Y] and gcd(n,m) > 1, while Szalay’s algorithm can be applied only for
the special case G(y) = y™.

Equation 1. x? = y* — 99y® — 37y? — 51y + 100,
Equation 2. x> = y® - 7y" = 2y* —y + 5,
Equation 3. x> = y® +y” +y? + 3y — 5,

Equation 4. x3 = y® + 2y8 — 5y — 11y® —y® 4+ 2y* + 7y? — 2y - 3.

Equation 1 | 985360 | 5930

Equation2 | 118546 | 1951

Equation 3 16 22

Equation 4 420 85

In the third column the numbers of equations to be solved by applying our method are stated,
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and in the second column the numbers of equations to be solved by applying the method
described in [85]. In all but the third case one has to solve fewer equations by using our

algorithm.

Acknowledgement. | thank Robert Tijdeman and Jan-Hendrik Evertse for their valuable
remarks and suggestions and Frits Beukers for his comments on the algorithm which led to a

significant improvement.






Chapter 3
Exponential Diophantine

Equations

3.1 On theDiophantine equation x*> + a> = 2yP

A common generalisation of Fermat’s equation and Catalan’s equation is
AxP + By =CZ7

inintegersr,s,t € Ny, X,y,z € Zand A, B,C € Z given integers with ABC # 0. Darmon and
Granville [33] wrote down a parametrization for each case when 1/p + 1/q + 1/r > 1 and
A = B = C = 1. Beukers [13] showed that for any nonzero integers A, B, C, p, g, r for which
1/p+1/q+ 1/r > 1all solutions of AxP + ByY = Cz" can be obtained from a finite number
of parametrized solutions. The theory of binary quadratic forms (see e.g. [61], Chapter 14)
applies to the case {p,q,r} = {2,2,k} and a set of parametrizations can be found easily. We
will make use of the fact, that in case of the title equation the parametrization is reducible.

It follows from Schinzel and Tijdeman [76] that for given non-zero integers A, B,C the
equation Ax?> + B = Cy" has only a finite number of integer solutions x,y,n > 2, which
can be effectively determined. For special values of A, B and C this equation was investigated
by several authors see e.g. [12], [28], [31], [46], [51], [53], [54].[67], [83] and the references
given there.

There are many results concerning the more general Diophantine equation

Zs _

AX® + pit-- - p& =Cy",

25
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where p; is prime for all i and z; is an unknown non-negative integer, see e.g. [1], [64], [2],
[65], [66], [4]. [3], [22], [26], [30], [55], [56], [59], [63], [62], [70]. Here the elegant result
of Bilu, Hanrot and Voutier [19] on the existence of primitive divisors of Lucas and Lehmer
numbers has turned out to be a very powerful tool. In [70] Pink considered the equation
X2 + (pi1 ---p%)? = 2y", and gave an explicit upper bound for n depending only on max p;
and s.

In [52] Ljunggren proved that if p is a given prime such that p? — 1 is exactly divisible by an
odd power of 2, then the equation x? + p? = y" has only a finite number of solutions in x,y
and n with n > 1. He provided a method to find all the solutions in this case.

The equation x? + 1 = 2y" was solved by Cohn [29]. Pink and Tengely [71] considered the
title equation and they gave an upper bound for the exponent n depending only on a, and they
completely resolved the equation with 1 < a < 1000 and 3 < n < 80. The theorems in the
present section provide a method to resolve the equation x? + a® = 2y" in integers n > 2, X,y

for any fixed a. In particular we compute all solutions for odd a with 3 < a < 501.

3.1.1 Equations of the form x2 + a2 = 2yP

Consider the Diophantine equation
X2 +a? = 2yP, (3.1)

where a is a given positive integer and X,y € N such that gcd(x,y) = 1 and p > 3 a prime.

Put

lifp=1 (mod 4),
0= (3.2)
-1lifp=3 (mod 4).

After having read the paper [71], Bugeaud suggested to use linear forms in only two
logarithms in order to improve the bound for the exponent. Following this approach we

get a far better bound than Pink and Tengely did in [71], that is, than p < 2915%7a°,

Theorem 3.1.1. If (x,y, p) is a solution of x* + a® = 2yP with y > 50000 then

p < max{1.85loga, 4651} .

Since Z[i] is a unique factorization domain, (3.1) implies the existence of integers u, v with



3.1. On the Diophantine equation x? + a2 = 2yP 27

y = u? + v such that

x
I

R(A+i)(u+iv)P) =1 Fp(u,v),

jab]
Il

I +i)(u+iv)P) =: Gp(u, V).

Here F and G, are homogeneous polynomials in Z[X, Y].
In the proof we will use the following result of Mignotte [19, Theorem A.1.3]. Let a be
an algebraic number, whose minimal polynomial over Z is A n?zl(x — o). The absolute

logarithmic height of « is defined by

d
h(a) = % logIAl + 3 togmax(.a®) .
i=1

Lemma3.1.1. Let @ be a complex algebraic number with |a| = 1, but not a root of unity, and

log « the principal value of the logarithm. Put D = [Q(«) : Q]/2. Consider the linear form
A = bqir — bz loga,
where by, by are positive integers. Let A be a real number satisfying 1.8 < 1 < 4, and put

p=¢e', K=05pr+Dh(a), B=max(13,by,by),

! 1 o (L3+ VIOF 2Ry’
"~ 6rp  487p(1+ 27p/34)° B A ’

H= max{3/l,D log B + log L + R log VT +0.886 +
o 2K

3/l+1 1 1
2 T

o + R) + 0.023}.

Then
log|A] > —(87TpA™tH? + 0.23)K — 2H — 2logH + 0.51 + 2log A — (D + 2) log 2.

We shall use the following statement in the proof of Theorem 3.1.1. The result can be found

as Corollary 3.12 at p. 41 of [68].

Lemma 3.1.2. If ® = 2xr for some rational number r, then the only rational values of the

tangent and the cotangent functions at ® can be 0, +1.

Proof of Theorem 3.1.1. Without loss of generality we assume that p > 2000, y > 50000, We
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compute an upper bound for |§%‘; -1:

(3.3)

'x+ai 1’ V2a

- — 1 < .
x—ai yp/2

We have
x+ai  (L+i)u+iv)P  (u+iv)P
x—ai (1-Du-iv)P (u-iv)P’
If |Eﬂf:gz - 1’ > 1 then p < ,o‘;'é’gozo < 2000, a contradiction. Thus
(u+iv)P - 1
(u-iv)pr -3
Since|logz| < 2z-1|for|z-1| < % we obtain
i(u+iv)p B ’> 1' (u+ iv)p'
(u—iv)P -2 (u-iv)r|’

Consider the corresponding linear form in two logarithms (zi = log(-1))

A = 2kori — plog (6(_uv—+|:/u) )

where logarithms have their principal values, |2k| < p and o = sign(k). We apply Lemma

3.1.1 with @ = §(&1%)7 by = 2koand b, = p.

—Vv+iu

Suppose « is a root of unity. Then

( u-—iv )‘f 20 o(-U? +V?), 27i ]
- = i =exp|l—],
-V +iu u2 +v2 u2 + v2 n

for some integers j,n with 0 < j < n— 1. Therefore

H 2 2
tan(%) = M € Q

-2uv

(%)
2uv

Hence, by Lemma 3.1.2, € {0,1,-1}. This implies that uv = 0 or |u| = |v|, but this
is excluded by the requirement that the solutions x,y of (3.1) are relatively prime and that

y > 50000. Therefore « is not a root of unity.

Note that « is irrational, || = 1, and it is root of the polynomial (u2+v?)X2+45uvX + (U2 +v2).
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Therefore h(a) = % logy. Set A =1.8.We have D = 1and B = p and

14.91265 < K < 9.5028 + % logy,

0.008633 < t < 0.008634,
0.155768 < T < 0.155769, (3.4)
H < log p + 2.285949,

logy > 10.819778,
By applying (3.3)-(3.4) and Lemma 3.1.1 we obtain
log2 V2a — g logy > log|A| > —(13.16H? + 0.23)K — 2H — 2log H — 0.004. (3.5)

This yields by (3.4) an upper bound C(a, y) for p depending only ona andy. If yP < a?, then

p < % loga < 1.85log a, otherwise we obtain that
0.9p < 36.32log(p)? + 166.39 log(p) + 0.37 log(log(p) + 2.29) + 190.96.

Hence we conclude that p < 4651. Thus we obtain the bound p < max{1.85loga, 4651}. O

Theorem 3.1.2 gives us a tool to resolve Diophantine equations of type (3.1) for given a
completely. We make use of the fact that the parametrization is reducible and one of the
factors is linear. This linear factor, u + dv, is a divisor ag of a. If u + v # a, then we have
p | a — ag, which provides a bound for p. This case is covered by the set S ;. In the remaining
cases we deal with u + év = a. The set S contains solutions of G(u,v) = a for which p is
small. We need to consider these cases separately because the later arguments do not work
for p = 3,5, 7. To have a better bound for p we consider the equation x2 + a? = 2y® for each
y < 50000 separately. In all cases we obtain a bound for p and we test if 2yP — a2 is a square
or not for all primes p up to this bound. The set S 3 covers this case. It remains to deal with
the “large” solutions, where y = u? + v2 > 50000. If there is such a large solution (u, v) with
Iv| > 1 of Gp(u, V) = a, then & is a convergent of 5 +6, where 3 is a root of G 5(X, 1). Therefore

we compute the convergents and check whether the numerator is a.
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Theorem 3.1.2. Let
4k
AC) = U{tanﬂ :0<k< p—l},
p<C 4p

lecm(ordy(v), ordy(u)) if min{lul, |v|} > 2,

max{|ul, |v]} otherwise,

and 6 is defined by (3.2). If (x,, p) is a solution of x? + a® = 2yP such that gcd(x, y) = 1, then

there exist integers u, v satisfying (u,v, p) € S1US,US3 US4 U S5 where

S1 = {(u,v, P) 1 U+ 6V = ap, ap # a,aola, pla—ag, Gp(—6v + ag, V) = a},

S = {(uv.p):ru+év=ape(357}.Gy(-ov+av)=al,

Ss = {(Uv.p):u+ov=au’+v?<50000,11 < p < Ca,u? +\?),
pzilmodT},

S4 = {(uv.p):u+oév=a,lu>223|v =111 < p < C(a,50000),
pzilmodT},

Ss = {(u,v,p):u+6v=a,u®+v?>50000,|>2 11 < p < C(a, 50000),

% is a convergent of 8 + § for some 8 € A(C(a, 50000))}.

To prove Theorem 3.1.2 we need the following lemmas.

Lemma 3.1.3. If | is an odd positive integer, then

(u=-¢6v) | Fiu,v),

uU+ov) | Gi(u,v).
Proof. If =1 (mod 4) then
Fi(u,u) = ”5'((1 +)*r+@a-*hH=o,

and also

Gi(u,-u) = ;—Ii((l i)t -@+ih=o0.

The proof of the other case is similar. O
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Lemma 3.1.4. We have

65001 :ﬁ( (4k+3)7r)

k=0

Proof. By definition Gp(X, 1) = 3((1 + i)(X + i)P). We have

1) =
=P+ i)(—l)k(exp(%iﬂ) - iexp(?’jl—ﬂ)) =0.

0for0 <k < p—1.Since Gy(X, 1) has degree p and G, is monic,

i (Cos 4k + 3)7r)" G (tan (4k + 3)1

4p 4p

Hence G(tan 8522, 1) =

the lemma foIIows. O

Proof of Theorem 3.1.2. We have seen thata = J((1 +i)(u +iv)P) =: Gp(u, v). Hence Lemma
3.1.3 implies that u + év|a, that is, there exists an integer ag such that agla and u + év = ag.

Define a function s : N — {+1} as follows:

1ifk=0,1 (mod 4),
s(k) =

-1ifk=2,3 (mod 4).

It follows that
p
a=Gp(-6V +ao,V =Zs(k)( )( —6V + ag)PRVK,

k=0
hence

a=(-6v+ag)’+o6vP=a9 (mod p).

If ag # a then it remains to solve the polynomial equations
Gp(—o6v+ap,v) =a, foragla,ap # aand pla— ap. (3.6)

That is the first instance mentioned in Theorem 3.1.2.

From now on we assume that ag = a = u + év. We claim p = +1 mod T. We note that

Gp(U»V) = up_]_
u+ov

_ GpUY) _ o
Tou+6v

+(p - 6)uP~2v mod v2,

+ (p — 6)vP~2u mod u?.
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Suppose that |u| = 1. Then either v = 0 or (p — §)v = 0 mod v2, that is p = 6 mod v and the
claim is proved. The case |v| = 1 is similar. Now assume that min{|ul, [v|} > 2. In this case we

obtain that

uPt=1modyv,

vPl=1modu,
and therefore ord,(u)|p — 1 and ord,(v)|p — 1. Hence

T = Iem(ordy(v), ordy(u))|p — 1.

If y < 50000 then we have |u| < 224, |v| < 224, therefore a belongs to the finite set {u + 6v :
lul < 224, |v| < 224, u? + v? < 50000}. For all possible pairs (u, v) we have p < C(a, u? + v?)

and p=+1modT. Thus (u,v, p) € Ss.

Consider the case y > 50000. Let 8j,i = 1,..., p be the roots of the polynomial G,(X, 1),
such that 81 < B2 < ... < Bp. Lety; = u—Biv, and i, = min; |y;|. From Lemma 3.1.3 it

follows that there is an index i such that |8;,| = 1. From Gp(u, v) = a we obtain

p
[Ju-sv=1 3.7)
i=1

i#g

Using the mean-value theorem one can easily prove that

'tan (4ky + 3)1 —tan (4ks + )
4 4p

s
> |k — ko —.
1 zp

Hence, by Lemma 3.1.4

Ivl.

.
i = yil = B~ B = | p"”

If yi, and .« have the same sign then we obtain that

K|
[Vip 4kl = T|V|,

otherwise
2k - 1)7r|v

2p :

[Vip4xl =
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Hence, from (3.7) we get

1= l_llu Bivl = l_[|7||>(p 2)'|7|1 (ﬂl;;l)

Iilo Iilo

If Iy, < ﬁ then |2 — (B, + )| < 5. hence 2 is a convergent of Bi, + 6. If ly;,| > 5=, then

= 2V
V] V2r (7(p - 2)M\"?
‘2|v|( B )'( ) >W( 2ep ) ’ (38)

where we used the inequality (p — 2)! > V2x(2-2)P-2. From (3.8) it follows that

e e

it is easy to see that the right-hand side is a strictly decreasing function of p and that |v| < 2

for p > 19. We get the same conclusion for p € {11, 13, 17} from (3.8). Now, if p € {3,5, 7},
then it remains to solve Gp(—dv + a,v) = a. If |v| < 2, then we have to check only the cases
v = +1, because in case of v = 0 we do not obtain any relatively prime solution. Hence
(u,v, p) € Sa. If|v] > 2, then |y;,| < ﬁ that is 2 is a convergent of 3, + 6. We conclude that

(u,Vv, p) € S5, and the theorem is proved. O

The Diophantine equation x? + a° = yP

We recall that Ljunggren proved that if a is a given prime such that a® — 1 is exactly divisible
by an odd power of 2, then the equation x? + a® = y" has only a finite number of solutions in
X,y and n with n > 1. He provided a method to find all the solutions in this case. We shall

only require that a # 0. In this case we get the following parametrization

x
I

R((u+iv)P) = fp(u,v),

I((u+iv)P) =: gp(u,v).

Q
Il

Here fy and gp, are homogeneous polynomials in Z[X, Y].

Theorem 3.1.3. If (x,y, p) is a solution of x? + a2 = yP with y > 50000 then

p < max{1.85loga, 4651}.

Proof. The proof goes in the same way as that of Theorem 3.1.1, so we indicate a few steps
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only. Without loss of generality we assume that p > 2000,y > 50000. We have

'x+ai 1'< 2a (3.9)

x—ai | yp2

Consider the corresponding linear form in two logarithms

A = 2keri - plog ((3 - :z)g)

the where logarithms have their principal values, |2k| < p and o = sign(k). We apply Lemma
3.1l1lwithe = 6(% 7,b1 = 2koand by = p. As in the proof of Theorem 3.1.1 we find that
« is not a root of unity. It is a root of the polynomial (u? + v?)X? — 2(u? — v?)X + (U? + v?).
Therefore h(a) = § logy. Set 1 = 1.8.We have D = 1and B = pand K < 9.503+  logy. By

applying Lemma 3.1.1 we obtain

logda - g logy > log|A| > —(13.16H2 + 0.23)K — 2H — 2log H — 0.004. (3.10)
We have the bound (3.4) for H, this yields an upper bound C1(a, y) for p depending only on
a and y which is decreasing with respect to y. If yP < a?, then p < % loga < 1.85loga,
otherwise we obtain that

0.9p < 36.32 log(p)? + 166.39 log(p) + 0.37 log(log(p) + 2.29) + 191.02.

From the above inequality we conclude that p < 4651. Thus we obtain the bound p <

max {1.85loga, 4651}. m]

Theorem 3.1.4. If (x,y, p) is a solution of x? + a® = yP such that gcd(x,y) = 1,a # 0, then

there exist integers u, v satisfying (u,v, p) € S1 U S, U S3 where

S1 = {(u.v.p):v=ap a0+ da agla, pla— dao, gp(u, o) = a.
Sz = {(uv.p):v=0au’+a’<50000,3< p<C(au’+a’),a"" =1 mod u?},
S3 = {(u,v, p):Vv=4da,ul < cot(%)a+land3§ psCl(a,SOOOO)}.

We have similar lemmas as we applied to prove Theorem 3.1.2.
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Lemma 3.1.5. If | is an odd positive integer, then

u | fi(uv),

v | giu,v).

Proof. By definition g(u,v) = J((u+iv)") = W therefore g;(u, 0) = 0. Similarly for

fp. O

Lemma3.1.6. We have
p-1 kr
gp(X,1)=p (X - cot—).
k=1 P

Proof. We have
. kr\P km . .
2i|sin o gp(cot X 1) = exp (ikzr) — exp (—ikr) = 0.

Hence gp(cot ¥, 1) =0for1 <k < p-1. O

In the proof of Theorem 3.1.1 it is clear from (3.7) that there exists an index j such that

lu—gBjvl < 1. Since u + ¢v = a it follows that

a+1

v < .
|8j + ol

The denominator can be quite small, therefore we do not get a useful bound for |v|. In the

present case we are lucky, since we can use the equation

p-1

p

(u — dacot M) =1 (3.11)
k p

1

to get a bound for |u] and resolve x? + a® = yP completely.
Proof of Theorem 3.1.4. From Lemma 3.1.5 we obtain that v | a, therefore there exists an

integer ag such that ag | a and ag = v. Thus

gp(u, ag) = &,

which implies that p | a—dao. If ag # da then we get (u, v, p) € S 1. Consider the case ag = da.
If y < 50000 then we have u? + a®> < 50000 and (3.10) provides a bound C1(a, u? + a2) for

p. Now we prove the congruence condition on p using the equation gp(u, 6a) = a. Hence, by
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62

Il
P

Bl
2

_ a1 _ B p p-2k+1 ¢ 2k-2
1=a""gp(u,da)= kE:l s(2k l)(2k ~ 1)u oa~ e,
This implies that

s(p)saP* = 1 mod u?.

Thus (u,v, p) € S». If y > 50000 then from (3.10) we obtain that p < C;(a, 50000). By (3.11)

there is an integer 1 < j < p — 1 such that |u — sa cot %’| < 1. Hence
lul < acot% +1,

so (u,v, p) € Ss. m|

Remark. We note that the method that we apply in this paper works for some equations of
the type

X2 +a?=cyP

with a # 0, ¢ # 1,2 an even integer, as well.

3.1.2 Resolution of x? + a2 = byP
Applying Theorem 3.1.2 we obtain the following result.

Corollary. Let a be an odd integer with 3 < a < 501. If (x,y) € N2 is a positive solution of

x? + a2 = 2yP such that x > a2, gcd(x,y) = 1 then

(a, %y, p) € {(3,79,5,5), (5,99,17, 3), (19, 5291, 241, 3), (71, 275561, 3361, 3)

(99, 27607, 725, 3), (265, 14325849, 46817, 3), (369, 1432283, 10085, 3)}.

Proof. Finding the elements of the five sets in Theorem 3.1.2 provides the solutions of (3.1).
We describe successively how to find the elements of these sets.

I. For a given a one has to resolve (3.6), that means several polynomial equations. One can
perform this job either by factoring the polynomial or by testing the divisors of the constant
term of the polynomial. Nowadays the computer algebra programs contain procedures to
find all integral solutions of polynomial equations. We used Magma [21] to do so. The
total CPU time for step | was about 44 minutes. For example when a = 249 then ag €

{—249,-83,-3,-1,1, 3,83}, therefore p € {3,5,7,31,41,83}. There is only one solution:
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(x,y, p) = (307,5,7). It took 0.4 sec to solve this case completely. In the list only the last

solution is derived from this part.

Il. The cases p=3,p =5and p = 7. If p = 3 then we have only to solve quadratic equations
of the form

6v? +6av+a®—1=0.

We obtained the following solutions indicated in the list
(5,99,17,3), (19,5291, 241, 3), (71, 275561, 3361, 3), (265, 14325849, 46817, 3).

If p = 5 then we get the Thue equation

Gs(X,Y)

= X+ 4X3Y — 14X2Y2 +4XY3 + Y4 =1
X+Y

which has only the solutions (1, +2), (2, £1), (1, 0), (0, +1). Therefore the solutions of
(3.1))withp=5andu+v =aare given by (a,x,y) € {(1,1,1),(3,79,5)}. If p = 7 then the
corresponding Thue equation has only trivial solutions, hence the only solution of (3.1) with

p=7,u-v=ais(aXxYy)=(1,1,1). The total CPU time for step Il was about 1.8 seconds.

I If (u,v, p) belongs to Ss, then |ul < 224 and |v| < 224. Since we are interested only
in relatively prime solutions of (3.1), we have to check only those pairs (u,Vv) for which
u+6v = a,ged(u,v) = 1,2  u—vand u?+v2 < 50000. For such a pair (u, v) one can compute
T easily, and from (3.5) one gets C(a, u + v2). So we obtain the set Ss. It remains to check
which triples yield a solution of (3.1). To do so we compute y = u? + v2 and we examine
whether 2yP — a2 is a square. This last step can be done efficiently, see [25], pp. 39-41. We
used the appropriate procedure of Magma [21]. We did not obtain any solution in this case

with p > 11. The total CPU time for step 111 was about 24.4 hours.

IV. In case of S4 and S5 we have a common bound for p which can be obtained from (3.5).
It turns out that this bound is 4079. Since v = +1 we have y = a? + 2a + 2. We check whether
2(a® + 2a + 2)P —a? is a square for all primes p < 4079, p = +1 mod T. There is no solution.

The total CPU time was about 3.6 minutes.

V. To get S5 we have to compute approximate values of some real numbers of the form

tan M
4p

We note that we do not need very high precision, since the numerators of the convergents are

bounded by a, in our case at most 501. We computed all convergents of the real numbers
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contained in A(C(a, 50000)) with numerator at most 501. From the triples (u, v, p) of S5 we
got the solutions of (3.1) as in the previous cases. For example, for a = 501 we obtained

several convergents, one of them being

501
45848

=~ 0.010927412319,

which is a convergent of

(4993 + 3)r

72003~ 0.010927412156.

tan
We did not get any solution of (3.1) from this part. The total CPU time for step IV was about
4.5 days. |
Applying Theorem 3.1.4 we obtain the following result in case yP has coefficient 1.
Corollary. Let a be an odd integer with 3 < a < 501. If (x,y) € N2 is a positive solution of

x? + a2 = yP such that x > a2, gcd(x, y) = 1 then

(a,x,y, p) € {(7,524, 65, 3), (97, 1405096, 12545, 3), (135, 140374, 2701, 3)}.

3.1.3 Remark on the case of fixed p

Let I(N) denote the set of odd integers less than or equal to N. To resolve (3.1) completely
for a fixed prime p and a € I(N) an obvious method is to find all integral solution of the

polynomial equations

Gp(—ov+ap,v) =a, foraplaandag=amod p.

We will refer to this method as method I. Method Il will mean that we solve the polynomial

equations (3.6) and determine all integral solutions of the Thue equation

Gp(X.Y)
X+6Y

Solving Thue equations of high degree is a difficult task, but in certain cases it is possible (see
[17],[18],[19].[44]). In the following table in the first row we indicate the run times needed
to resolve (3.1) for p = 5,7 and 11, and for odd integers a € {1,...,5001} using method I.

The second row contains the run times in case of method Il. We note that in case of p = 3
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SXY) s 2.

method I1 does not apply, since the degree of the polynomial <=7

l<a<5001| p=5 | p=7 |p=11

method I. 7.26sec | 52sec | 310sec

method I1. 3.34sec | 8.34sec | 100 sec

The complete lists of solutions in these cases are given by:

L] p:5

@axy) € {(3,79,5),(79,3,5),(475,719,13), (475, 11767,37), (717, 1525, 17),

(2807, 5757, 29), (2879, 3353, 25), (3353, 2879, 25)},

(a, x,y) € {(249,307,5), (307, 249, 5), (2105, 11003, 13)},

e p=11:
(a, x,y) € {(3827,9111, 5)}.

3.2 On the Diophantine equation x? + o™ = 2yP

There are many results in the literature concerning the Diophantine equation
AX® + pit - pg = BY",

where A, B are given non-zero integers, ps, ..., Ps are given primes and n, x,y, 2y, ..., Zs are
integer unknowns with n > 2, x and y coprime and non-negative, and z1, . . ., Zs non-negative,
see e.g. [1], [64], [2], [65], [66], [4], [3], [22], [26], [30], [55], [56], [59], [63], [62], [70].
Here the elegant result of Bilu, Hanrot and Voutier [19] on the existence of primitive divisors
of Lucas and Lehmer numbers has turned out to be a very powerful tool. Using this result
Luca [56] solved completely the Diophantine equation x? + 223" = y". Le [49] obtained
necessary conditions for the solutions of the equation x? + p? = y" in positive integers x,y, n
with gcd(x,y) = 1and n > 2. He also determined all solutions of this equation for p < 100. In
[70] Pink considered the equation x? + (pg--- p=)? = 2y", and gave an explicit upper bound
for n depending only on max p; and s. The equation x? + 1 = 2y" was solved by Cohn [29].

Pink and Tengely [71] considered the equation x? + a® = 2y". They gave an upper bound for
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the exponent n depending only on a, and completely resolved the equation with 1 < a < 1000
and 3 < n < 80. In the present section we study the equation x2+q?™ = 2yP where m, p,q, X,y
are integer unknowns with m > 0, p and q odd primes and x and y coprime. In Theorem 3.2.1
we show that all but finitely many solutions are of a special type. Theorem 3.2.2 provides
bounds for p. Theorem 3.2.3 deals with the case of fixed y, Theorem 3.2.5 with the case of

fixed q.

3.2.1 A finiteness result

Consider the Diophantine equation

X2 + 2™ = 2yP, (3.12)

where x,y € N with gcd(x,y) = 1,m € N and p, g are odd primes and N denotes the set of
positive integers. Since the case m = 0 was solved by Cohn [29] (he proved that the equation
has only the solution x = y = 1 in positive integers) we may assume without loss of generality
thatm > 0. If g = 2, then it follows from m > 0 that gcd(x, y) > 1, therefore we may further

assume that g is odd.

Theorem 3.2.1. There are only finitely many solutions (x,y, m, g, p) of (3.12) with gcd(x, y) =

1,x,y € N, such that y is not of the form 2v? + 2v+ 1,m € N and p > 3, q odd primes.

Remark. The question of finiteness in case of y = 2v2 + 2v + 1 is interesting. The following

examples show that very large solutions can exist.

y p q

5 5 79

5 7 307

5] 13 42641

51 29 1811852719

5| 97 2299357537036323025594528471766399
3| 7 11003

13 | 13 13394159

13 | 101 | 224803637342655330236336909331037067112119583602184017999
25| 11 69049993

25| 47 378293055860522027254001604922967
41 | 31 4010333845016060415260441
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In these examples m = 1.
All solutions of (3.12) with small g™ have been determined in [88].

Lemma3.2.1. Let qbe an odd prime and m € N U {0} such that 3 < g™ < 501. If there exist
(x,y) € N2 with gcd(x,y) = 1 and an odd prime p such that (3.12) holds, then

(x,y,q,m, p) € {(3,5,79,1,5),(9,5,13, 1, 3), (55, 13,37, 1,3), (79,5,3, 1,5),
(99,17,5,1,3), (161, 25,73, 1, 3), (249, 5, 307, 1, 7), (351, 41, 11, 2, 3),
(545,53, 3, 3, 3), (649, 61, 181, 1, 3), (1665, 113, 337, 1, 3), (2431, 145, 433, 1, 3),

(5291, 241,19, 1, 3), (275561, 3361, 71, 1, 3) .

Proof. This result follows from Corollary 1 in [88]. ]

For g™ > 501 we shall derive a good bound for p by Baker’s method.

We introduce some notation. Put

lifp=1 (mod 4),
04 = (3.13)

-1lifp=3 (mod 4).

and

lifp=1lor3 (mod 8),
0g = (3.14)
-lifp=5o0r7 (mod 8).

Since Z[i] is a unique factorization domain, (3.12) implies the existence of integers u, v with

y = u? + v such that

x = R((L+i)(u+iv)P) =1 Fp(u,v),
(3.15)
g™ = J((1 +i)(u+iv)P) =: Gp(u, V).

Here Fj, and G, are homogeneous polynomials in Z[X, Y].

Lemma3.2.2. Let F, G, be the polynomials defined by (3.15). We have

(U-06av) | Fp(u,v),

(U+dav) | Gplu,v).

Proof. This is Lemma 3 in [88]. O
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Lemma 3.2.2 and (3.15) imply that there exists a k € {0, 1, ..., m} such that either

U+64v =0,
(3.16)
Hp(U,V) = qm_k»
or
U+ 6av = —q~,
(3.17)
Hp(U’V) = _qmik7
where Hp(u, V) = (fﬂ(;‘;‘\?.

For all solutions with large g™ we derive an upper bound for p in case of k = m in (3.16) or

(3.17) and in case of g = p.

Theorem 3.2.2. If (3.12) admits a relatively prime solution (x, y) € N2 then we have

p <3803 ifu+d4v==xq",q" > 503,
p <3089ifp=aq,

p <1309 if u+ 64v = g™, m > 40,

p < 1093 if u + 64v = g™, m > 100,

p < 1009 if u + §4v = +g™, m > 250.

We shall use the following lemmas in the proof of Theorem 3.2.2. The first result is due to
Mignotte [19, Theorem A.1.3]. Let o be an algebraic number, whose minimal polynomial

over Z is ATT%, (X — a®). The absolute logarithmic height of « is defined by
1 d .
h(e) = g log |A| + Z log max(1, |V |.
=

Lemma 3.2.3. Let a be a complex algebraic number with |a| = 1, but not a root of unity, and

log « the principal value of the logarithm. Put D = [Q(«) : Q]/2. Consider the linear form

A= bliﬂ - bz |Og a,
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where b4, b, are positive integers. Let A be a real number satisfying 1.8 < 1 < 4, and put

p==e', K=05or+Dh(e), B=max(13,by,by),

1 1 T (L3+ VIO + 2R 2
" 6mp  487p(1+ 27p/31)° - Pl

k]

H = max({34, D(Iog B+ Iog(— + %) log VT + 0.886) +

31 1(1 1

= iom 3K)+0023}

2 T
Then

log|A] > —(87TpA tH? + 0.23)K — 2H — 2log H + 0.51 + 2log A — (D + 2) log 2.

The next result can be found as Corollary 3.12 at p. 41 of [68].

Lemma 3.2.4. If ® € 27Q, then the only rational values of the tangent and the cotangent

functions at ® can be 0, +1.

Proof of Theorem 3.2.2. Without loss of generality we assume that p > 1000 and g™ > 503.
We give the proof of Theorem 3.2.2 in the case u + §4v = =q™, q™ > 503, the proofs of the

remaining four cases being analogous. From u + 64v = =q™ we get

2 2
S_Sq_s|u|+|v|S [u2 + v _ X,
2 2 2 2 2

which yields that y > izm > 126504. Hence

m; .qm 2
‘X+q!—1'= 24" _2W_ 2 (3.18)
—qmi N e
We have
x+qM  (L+iu+iv)P .(u+iV)p
X—gqmi  (@A-Du-iv)p  \u-iv/ "’ (3.19)
If i | l‘j*:x ' > 1 then 6 > yp?l, which yields a contradiction with p > 1000 and y >

126504. Thus |i ‘ (“*"’ - l| < 1 Since[logz| < 2|z — 1| for |z — 1] < %, we obtain

UIV —3’

e e o2
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Suppose first that a := 64( u-iv )(r is a root of unity for some o € {1, 1}. Then

—V+iu

( u-—iv )" —2uv N o(-u? + v2)i o= ex 27
- = = +4q = N
-V +iu u2 +v2 u2 +v2 P

for some integers j,n with 0 < j < n— 1. Therefore

tan(z%i) _ouP+v) Qor (u,v) = (0,0).

—2uv

The latter case is excluded. Hence, by Lemma 3.2.4, £=£ ¢ {0,1, —1}. This implies that

2uv

[u] = |v|, but this is excluded by the requirement that the solutions x, y of (3.12) are relatively

prime, buty > 126504. Therefore « is not a root of unity.

Note that « is irrational, [a| = 1, and it is a root of the polynomial (u? + v2)X2 + 46,uvX +

(u? + v2). Therefore h(a) = 3 logy.

Choose | € Z such that |p Iog(i‘”ﬂf—:‘\j) + 2lzi| is minimal, where logarithms have their principal

values. Then |2I| < p. Consider the linear form in two logarithms (zi = log(-1))

A =2|ljxi — ploge. (3.21)

If | = 0 then by Liouville’s inequality and Lemma 1 of [91],
IA| > |plogal > |loga| > 272 exp(-2h(a)) > exp(—8(log 6)3n(a)). (3.22)
From (3.18) and (3.22) we obtain
p—

log4 - Tl logy > log|A| > —4(log6)3logy.

Hence p < 47. Thus we may assume without loss of generality that | # 0.

We apply Lemma 3.2.3 with o= = sign(l), @ = 64(22¥)7, b, = 2|lland b, = p. Set 1 = 1.8.

—Vv+iu

We have D = 1 and B = p. By applying (3.18)-(3.21) and Lemma 3.2.3 we obtain

logd — p%l logy > log|A| > —(13.16H2 + 0.23)K — 2H — 2log H — 0.004.
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We have

15.37677 < K < 9.5028 + % logy,
0.008633 < t < 0.008634,
0.155768 < T < 0.155769,

H < logp + 2.270616,

logy > 11.74803,

From the above inequalities we conclude that p < 3803. m]
The following lemma gives a more precise description of the polynomial H.

Lemma 3.2.5. The polynomial Hp(+gX — 64v, v) has degree p — 1 and
Hp(£0% — 64V, V) = 6527 pvP~L + qfpHp(v) + <P,
where ﬁp € Z[X] has degree < p — 1. The polynomial Hp(X, 1) € Z[X] is irreducible and

p-1
(4k+3)7r)
HoX, 1) = [ [[X = tan 2227
§061) ]k_([( :
k#ko

where kg = [Zp] (p mod 4).
Proof. By definition we have

Gp(UV) (L +i)(u+iv)P — (1 —i)(u—iv)P

Hp(u,v) = = -
p(U:V) U+ 64V 2i(U + 64v)

(3.23)

Hence

(L +0)(xgX + (i = S2)V)P — (L = i)(20* + (=i — G4)V)P

k —

Therefore the coefficient of vP is (1 + i)(=64 + )P + (L — i)(64 + )P. If 64 = 1, then it

equals —2(=1 + i)PL + 2(1 + i)P = —2(-4)F + 2(-4)"F = 0, since p = 1 (mod 4). If

p+l

6a = —1, then it equals (1 + i)PL — (=1 + )P*L = (=4)F — (=4)% = 0. Similarly the

(L+1)(Sa=1)P—(1-1)(6a+1)P

o p= 1682'%1 p. It is easy to see that the constant

coefficient of vP1 is +

is gP-D. The coefficient of vt fort = 1,...,p—21is i(f)(qk)P“‘lct, where ¢ is a power of

2. The irreducibility of H,(X, 1) follows from the fact that H,(X — d4, 1) satisfies Eisenstein’s
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irreducibility criterion. The last statement of the lemma is a direct consequence of Lemma 4

from [88]. |

Lemma 3.2.6. If there exists a k € {0,1,...,m} such that (3.16) or (3.17) has a solution

(u,v) € Z? with gcd(u,v) = 1, theneitherk =0ork =m,p#qor (k=m -1, p = q).

Proof. Suppose 0 < k < m. It follows from Lemma 3.2.5 that g divides 1682'%1 pvP-L, If
g # p, we obtain that q | vand g | u, which is a contradiction with gcd(u,v) = 1. Thusk =0

ork =m. If p = g, then from Lemma 3.2.5 and (3.16),(3.17) we get
i&gz%vpfl + pkﬁp(V) + pk(Pfl)*l — _pr‘rkk—l‘

Thereforek =0ork=m - 1. O
Now we are in the position to prove Theorem 3.2.1.

Proof of Theorem 3.2.1. By Lemma 3.2.6 we have thatk = 0,m — 1 ork = m. If k = 0, then
U+dgv=x+landy =2v2+2v+ 1. Ifk =m—1,then p = q. Hence u + 64v = +p™?* which
implies that y > @ > %2 From Theorem 3.2.2 we obtain that p < 3089. We recall that
Hp(u,v) is an irreducible polynomial of degree p — 1. Thus we have only finitely many Thue
equations (if p > 3)

Hp(u,v) = £p.

By a result of Thue [89] we know that for each p there are only finitely many integer solutions,
which proves the statement.

Letk = m. Here we have u+64v = +q™ and Hp(+q™ -84V, v) = 1. If g™ < 501 then there are
only finitely many solutions which are given in Lemma 3.2.1. We have computed an upper

bound for p in Lemma 3.2.2 when g™ > 503. This leads to finitely many Thue equations
Hp(u,v) = £1.

From Thue’s result [89] follows that there are only finitely many integral solutions (u, v) for

any fixed p, which implies the remaining part of the theorem. ]

3.2.2 Fixedy

First we consider (3.12) with given y which is not of the form 2v2 + 2v + 1. Since y = u? + v?

there are only finitely many possible pairs (u,v) € Z?. Among these pairs we have to select
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those for which u + v = +q™, for some prime g and for some integer mg. Thus there are
only finitely many pairs (g, mp). The method of [88] makes it possible to compute (at least for
moderate g and mg) all solutions of x? + g™ = 2yP even without knowing y. Let us consider

the concrete example y = 17.

Theorem 3.2.3. The only solution (m, p, g, X) in positive integers m, p, g, x with p and g odd
primes of the equation x2 + gq®™ = 2 - 17Pis (1, 3,5, 99).

Proof. Note that 17 is not of the form 2v? + 2v + 1. From y = u? + v2 we obtain that q is 3 or

5and m = 1. This implies that 17 does not divide x. We are left with the equations

X2 +3%2=2.17",

X2 +52=2-17P

From Lemma 3.2.1 we see that there is no solution with g = 3,m = 1,y = 17 and the only

solution in case of the second equation is (x,y,q, m, p) = (99, 17,5, 1, 3). O

3.2.3 Fixedq

If m is small, then one can apply the method of [88] to obtain all solutions. Theorem 3.2.2
provides an upper bound for p in case u + 6,v = £q™. Therefore it is sufficient to resolve the

Thue equations

Hp(u,v) =1

for primes less than the bound. In practice this is a difficult job but in some special cases
there exist methods which work, see [17], [18], [19], [44]. Lemma 3.2.7 shows that we have
a cyclotomic field in the background just as in [19]. Probably the result of the following
lemma is in the literature, but we have not found a reference. We thank Prof. Stevenhagen

for the short proof.

Lemma 3.2.7. For any positive integer M denote by ¢y a primitive Mth root of unity. If « is

a root of Hp(X, 1) for some odd prime p, then Q(¢p + £;,) € Q(@) = Q(Lap + Lap)-

1 exp(iz)—exp(-iz)

Proof. Since tanz = § 2o —r—=5

we can write o = tan(“52") as

(4k+3 (8 4k-3 4k+3 l

k3 —{a §4k+3 Q({4p)

4k+3
i ’:sp+ + (8
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Since it is invariant under complex conjugation, « is an element of Q({sp + Z4p). We also

know that [Q(Zap + Z4p) 1 Q] = [Qe) : Q] = p -1, thus Q(Lap + Z4p) = Q(a). The claimed

inclusion follows from the fact that £ + Zp can be expressed easily in terms of {4 + Z4p. m]

Itis important to remark that the Thue equations Hy(u, v) = +1 do not depend on g. Therefore
after resolving them it becomes easier to resolve equation (3.12). By combining the methods
of composite fields [18] and non-fundamental units [44] for Thue equations we may rule out
some cases completely. If the method applies it remains to consider the cases u + §4v = +1
and p = g. The problem is that the bound for p is still large, and the computation may
take several months. One possibility to improve the bound is applying the method of [88]
and resolve equation (3.12) for values of g™ larger than 501, but this is more and more time
consuming as g™ increases. If g is fixed one can follow a strategy to eliminate large primes

p. Here we use the fact that when considering the Thue equation
Hp(q™ - 64v,v) = 1, (3.24)

we are looking for integer solutions (u,v) for which u + d4v is a power of g. Let w be a
positive integer relatively prime to g, then the set S (g, w) = {q™ mod w : m € N} has ord(q)

elements. Let

L(p,q,w) =

{s €{0,1,...,o0rdw(q)} : Hp(q® — 64V, v) = 1 has a solution modulo w} .
We search for numbers wy, ..., wy such that ordy, (Q) = ... = ordw,(q) =: w, say. Then
mo mod w e L(p,q,w1)N...NnL(p,q, wn),

where mp mod w denotes the smallest non-negative integer congruent to m modulo w.
Hopefully this will lead to some restrictions on m. As we saw before the special case p = q
leads to a Thue equation Hp(u, v) = +p and the previously mentioned techniques may apply
even for large primes. In case of u + §4v = +1 one encounters a family of superelliptic
equations Hp(+1 — 64v,Vv) = +q™ We will see that sometimes it is possible to solve these

equations completely using congruence conditions only.
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From now on we consider (3.12) with g = 3, that is

X2 +32M = 2yP. (3.25)

The equation x? + 3 = y" was completely resolved by Cohn [27]. Arif and Muriefah [2]
found all solutions of the equation x? + 32™1 = y". There is one family of solutions, given
by (x,y,m,n) = (10 - 3%, 7 - 3% 5 + 6t, 3). Luca [55] proved that all solutions of the equation

X2 +3°M = y"are of the form x = 46 - 3%,y =13-3% m =4+ 6t,n = 3.
Remark. We note that equation (3.25) with odd powers of 3 is easily solvable. From x? +
32m1 = 2yP we get
4=2y? (mod 8),
hence p = 1.

Let us first treat the special case p = g = 3. By (3.15) and Lemma 3.2.2 we have

X Fa(u,v) = (U + Vv)(u? — 4uv + v?),

3m

Ga(u,v) = (U —V)(U? + 4uv + V2).

Therefore there exists an integer k with 0 < k < m, such that

u-v = =3

W +4duv+v2 = +3MK
Hence we have
6v2 + 6(34)v + 3% = +3MK,

Both from k = m and from k = 0 it follows easily that k = m = 0. This yields the solutions
(x,y) = (+1,1). Ifk = m -1 > 0, then 3 | 2v? + 1. Thus one has to resolve the system of

equations

u-v = -3

u+4uv+v? = -3

As we mentioned, sometimes it is possible to handle the case k = 0 using congruences only.

In case of g = 3 it works.
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Lemma 3.2.8. There is no solution of (3.16) and (3.17) with k = 0.

Proof. We give a proof for (3.16) which also works for (3.17). In case of (3.16) if k = 0, then
u = 1 — d4v. Observe that by (3.23)

e ifv=0 (mod 3), then Hy(1 - d4v,v) =1 (mod 3),

ifv=1 (mod 3)and p =1 (mod 4), then Hp(1 - 64v,v) =1 (mod 3),

ifv=1 (mod 3)and p =3 (mod 4), then Hp(1 — 64v,v) = +1 (mod 3),

ifv=2 (mod 3)and p =1 (mod 4), then Hp(1 — 64v,v) = +1 (mod 3),

ifv=2 (mod 3)and p =3 (mod 4), then Hp(1 — 64v,v) =1 (mod 3).

Thus Hp(1 — 64v,v) 2 0 (mod 3). Therefore there is no v € Z such that Hp(1 — 64v,v) = 3™,
as should be the case by (3.16) and (3.17). m|

Finally we investigate the remaining case, that is u + §,v = g™ We remark that u + 6,v = —q™
is not possible because from (3.17) and Lemma 3.2.5 we obtain —1 = Hp(—q™ — 64v,V) =

gP-D =1 (mod p).

Lemma3.2.9. Ifthere is a coprime solution (u, v) € Z? of (3.16) withk = m,thenp = 5 or 11

(mod 24).

Proof. In case of k = m we have, by (3.16) and Lemma 3.2.5,
Hp(3™ = 64V, V) = 652°7 pvP~2 + 3MpH,(v) + 3™PD = 1, (3.26)

Therefore

627 p=1 (mod 3)

and we get that p = 1,5,7,11 (mod 24). Since by Lemma 3.2.1 the only solution of the
equation x2 +32M = 2yP with 1 < m < 5is given by (x,y, m, p) € {(79,5, 1,5), (545, 53, 3, 3)},
we may assume without loss of generality that m > 6. To get rid of the classes 1 and 7 we

work modulo 243. If p = 8t + 1, then from (3.26) we have
2@t + 1)v® =1 (mod 243).

It follows that 243|t and the first prime of the appropriate form is 3889 which is larger than
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the bound we have for p. If p = 8t + 7, then
—24+38t + TWe® =1 (mod 243).

It follows that t = 60 (mod 243) and it turns out that p = 487 is in this class, so we work
modulo 38 to show that the smallest possible prime is larger than the bound we have for p.
Here we have to resolve the case m = 6 using the method from [88]. This value of m is
not too large so the method worked. We did not get any new solution. Thus p = 5or 11

(mod 24). |

Theorem 3.2.4. There exists no coprime integer solution (x, y) of x2 + 32™ = 2yP with m > 0

and p <1000, p =5 (mod 24) or p € {131, 251,491, 971} prime.

Proof. To prove the theorem we resolve the Thue equations

Hp(u,v) =1

for the given primes. In each case there is a small subfield, hence we can apply the method of

[18]. We wrote a PARI [69] script to handle the computation. To get ¢, one has to compute

p-1
(4k + 3)n (@l +3)1
m n U ( n74p ) s
#k,ko

ko = [’74)] (p mod 4). Using the mean-value theorem one can easily prove that

'tan M —tan M > |kl _ kzlz
4p 4p p
Hence ¢, > |k — ko|Z, and it is easy to see that the minimum is |tan +tan 32 | Using

Gaussian periods one can compute a defining equation of the subfield, see [18, Lemma7.1.1].
In Table 3.1 we indicate defining equations for primes p < 1000,p = 5 (mod 24) or p €
{131, 251,491, 971}. The PARI [69] procedure bnfinit produces, in particular, a full system
of independent units of the small subfield. One has to use the procedure bnfcertify to ensure
that that the system of units is fundamental. We note that if p = 659 or p = 827, then there is
a degree 7 subfield, but the regulator is too large to get unconditional result, the same holds
for p = 419,683,947, in these cases there is a degree 11 subfield. In the computation we

followed the paper [18], but at the end we skipped the enumeration step. Instead we used the
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Table 3.1: Defining equations

p | polynomial
29 | x*-29x2+29
53 | x*-53x%2+53
101 | x* - 101x? + 2525
131 | x® + x* = 52x° — 89x% + 109x + 193
149 | x* - 149x? + 3725
173 | x* = 173x% + 173
197 | x*—197x? + 9653
251 | x® + x* — 100x° — 20x? + 1504x + 1024
269 | x* —269x° + 6725
293 | x* —293xZ + 293
317 | x* —317x% + 15533
389 | x* —389x% + 9725
461 | x* — 461x? + 11525
491 | x® + x* — 196x° + 59x2 + 2019x + 1377
509 | x* — 509x% + 61589
557 | x* —557x% + 27293
653 | x* — 653x% + 79013
677 | xX* —677x% + 114413
701 | x* —701x2 + 118469
773 | x* —773x% + 93533
797 | x* —797x% + 134693
821 | x* —821x% + 40229
941 | x* — 941x% + 23525
971 | x® + x* — 388x° + 1476x% + 8304x + 7168

bound for |x| given by the formula (34) at page 318. We collect the value of some constants in
Table 3.2, the time is in seconds. We obtained small bounds for |u| in each case. It remains to
find the integer solutions of the polynomial equations Hp(up, v) = 1 for the given primes with

|ugl £ X3. There is no solution for which u + §v = 3™ m > 0, and the statement follows. 0O

We recall that Cohn [29] showed that the only positive integer solution of x? + 1 = 2yP is

givenby x =y =1.

Theorem 3.2.5. If the Diophantine equation x? + 3™ = 2yP with m > 0 and p prime admits

a coprime integer solution (x, y), then either

p €{3,59,83,107,179,227,347,419, 443, 467,563, 587, 659, 683, 827, 947}

or (x,y,m, p) = (79,5,2,5).

Proof. We will provide lower bounds for m which contradict the bound for p provided

by Theorem 3.2.2. By Theorem 3.2.2 we have p < 3803 and by Lemma 3.2.9 we have
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Table 3.2: Summary of the computation

p Ce Bo BBed X3 | time
29 | 736-10% [ 133-103 | 21 | 4 | 12
53 | 2.04-10 [ 831-10%2 | 40 | 3 | 1.9
101 | 494-10% [ 475-10% | 38 | 2 | 3.4
149 | 15-10% [735-10% | 44 | 2 | 73
131 | 2.25-10™ [ 215-10% [ 115 | 2 | 5.9
173 | 7.37-10% [ 2.18-10% | 134 | 2 | 5.7
197 | 6.91-10%° | 587-10% | 76 | 2 | 65
251 | 1.03-10 [ 1.19-10% | 34 | 2 | 136
269 | 2.92-10% [ 691-10%® | 72 | 2 | 143
203 | 1.54-10% | 6.88-10% | 230 | 2 | 10.3
317 | 1.1-10% [719-10%® | 99 | 2 | 129
389 [ 3.65-1077 [ 1.02-10® | 72 | 2 | 25.2
461 | 272-10™ [ 167-100 [ 117 | 2 | 222
491 | 5.97-10 | 85.10% | 214 | 2 | 249
509 | 8.17-107% [ 22810 | 127 | 2 | 234
557 | 2.81-10%8 | 7.87-10% | 157 | 2 | 265
653 | 2.02-107 [ 1.35-10" | 146 | 2 | 326
677 | 6.29-10% | 4.14-10" | 272 | 2 | 27.8
701 | 652-102T | 2.76-107 | 169 | 2 | 371
773 | 455-10%3 | 1.08-10%2 | 254 | 2 | 44.2
797 | 6.58-10%% | 6.67-10% | 220 | 2 | 45.4
821 | 6.93-10%" | 1.19-10%2 | 138 | 2 | 555
941 | 1.45-10%* | 422-10% [ 224 | 2 | 624
971 | 1.26-10®3 | 253-10°1 | 93 | 2 | 75.1
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p mod p mod p mod p mod p mod
1013 | 16,27 | 1571 | 522 | 1973 | 16,22 | 2357 | 16,22 | 3011 | 522
1109 | 16,22 | 1613 | 16,22 | 1979 | 16,22 | 2459 | 16,22 | 3203 | 16,22
1181 | 16,22 | 1619 | 16,22 | 2003 | 16,22 | 2477 | 16,22 | 3221 | 16,22
1187 | 16,22 | 1667 | 16,22 | 2027 | 16,22 | 2531 | 522 | 3323 | 16,22
1229 | 16,22 | 1709 | 16,22 | 2069 | 16,22 | 2579 | 16,22 | 3347 | 16,22
1259 | 16,22 | 1733 | 16,22 | 2099 | 16,22 | 2693 | 16,22 | 3371 | 522
1277 | 16,22 | 1787 | 16,22 | 2141 | 16,22 | 2741 | 16,27 | 3413 | 16,22
1283 | 16,22 | 1811 | 522 | 2237 | 16,22 | 2861 | 16,22 | 3533 | 16,22
1307 | 16,22 | 1877 | 16,27 | 2243 | 16,22 | 2909 | 16,22 | 3677 | 16,22
1493 | 16,22 | 1931 | 522 | 2309 | 16,27 | 2957 | 16,22 | 3701 | 16,22
1523 | 16,22 | 1949 | 16,22 | 2333 | 16,22 | 2963 | 16,22

Table 3.3: Excluding some primes using congruences.

p = 5o0r11 (mod 24). We compute the following sets for each prime p with 1000 < p <
3803,p=50r11 (mod 24):

A5 = L(p, 3, 242),

A16 = L(p,3,136) n L(p, 3,193) N L(p, 3,320) N L(p, 3, 697),
A22 = L(p,3,92) N L(p, 3,134) N L(p, 3, 661),

A27 = L(p, 3,866) N L(p, 3, 1417),

A34 = L(p,3,103) n L(p, 3,307) N L(p, 3, 1021),

A39 = L(p,3,169) N L(p, 3,313),

AB9 = L(p,3,554) N L(p, 3,611).

In case of A5 we have ord,423 = 5, hence this set contains those congruence classes modulo
5 for which (3.25) is solvable, similarly in case of the other sets. How can we use this
information? Suppose it turns out that for a prime A5 = {0} and A16 = {0}. Then we know
thatm =0 (mod 5 - 16) and Theorem 3.2.2 implies p < 1309. If the prime is larger than this
bound, then we have a contradiction. In Table 3.3 we included those primes for which we
obtained a contradiction in this way. Inthe columns mod the numbers n are stated for which
sets An were used for the given prime. It turned out that only 4 sets were needed. In case of
5,22 we have m > 110, p < 1093, in case of 16,22 we have m > 176, p < 1093 and in the
case 16, 27 we have m > 432, p < 1009. We could not exclude all primes using the previous
argument, but there is an other way to use the computed sets. We can combine the available

information by means of the Chinese remainder theorem. Let CRT ([a5, a16, a39], [5, 16, 39])
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p 'm CRT p m CRT p Im CRT
1019 | 384 | 5,16,27 | 2267 | 448 | 5,16,69 | 3389 | 170 | 5,27,34
1061 | 176 | 5,16,39 | 2339 | 208 | 5,16,39 | 3461 | 116 | 5,16,39
1091 | 580 | 5,16,27 | 2381 | 44 | 527,34 | 3467 | 336 | 5,16,27
1163 | 586 | 527,34 | 2411 | 180 | 5,16,27 | 3491 | 850 | 5,27,34
1301 | 416 | 5,16,39 | 2549 | 320 | 5,16,27 | 3539 | 112 | 5,16,39
1427 | 270 | 5,27,34 | 2699 | 640 | 516,69 | 3557 | 176 | 5,16,39
1451 | 340 | 5,16,27 | 2789 | 204 | 5,27,34 | 3581 | 150 | 5,27,34
1499 | 112 | 5,16,39 | 2819 | 352 | 5,16,27 | 3659 | 112 | 5,16,39
1637 | 121 | 527,34 | 2837 | 131 | 527,34 | 3779 | 72 | 5,27,34
1901 | 304 | 516,39 | 2843 | 136 | 5,27,34 | 3797 | 416 | 5,16,39
1907 | 102 | 5,27,34 | 3083 | 340 | 5,27,34 | 3803 | 136 | 5,27,34
1997 | 170 | 5,27,34 | 3251 | 580 | 5,16,27
2213 | 170 | 527,34 | 3299 | 64 | 5,16,39

Table 3.4: Excluding some primes using CRT.

be the smallest non-negative solution of the system of congruences

m=a5 (mod 5)
m=alé (mod 16)

m=a39 (mod 39),

where a5 € Ab5,al6 € A16 and a39 € A39. Let ry, be the smallest non-zero element of
the set {CRT ([a5,al6,a39],[5,16,39]) : a5 € A5,al6 € Al6,a39 € A39}, In Table 3.4
we included the values of r, and the numbers related to the sets A5 — A69. We see that

m

\%

rm in all cases. For example, if p = 1019 then m > 384, and Theorem 3.2.2 implies

IA

p < 1009, which is a contradiction. For p = 2381 we used A5, A27 and A34, given by

A5 ={0,1,4},A27 = {0, 14,15,17}, A34 = {0, 10}. Hence

{CRT ([a5, a27,a34], [5, 27, 34]) : a5 € A5, al6 € A16,a39 € A39} =
= {0, 44,204, 476, 486, 554, 690, 986, 1394, 1404, 1836, 1880, 1904,

2040, 2390, 2526, 2754, 3230, 3240, 3444, 3716, 3740, 3876, 4226}.

The smallest non-zero element is 44 (which comes from [ab,a27,a34] = [4,17,10]),
therefore m > 44 and p < 1309, a contradiction. In this way all remaining primes
> 1000 can be handled. We are left with the primes p < 1000,p = 5 (mod 24) and with
p € {131, 251,491,971} prime. They are mentioned in Theorem 3.2.4. |

Acknowledgement. | would like to thank Robert Tijdeman for his valuable remarks and

suggestions, Peter Stevenhagen for the useful discussions on algebraic number theory, and
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for the proof of Lemma 3.2.7. Furthermore, Guillaume Hanrot provided the Pari code which

was used in [19] and gave some hints how to modify it.



Chapter 4
Mixed powersin arithmetic

progressions

In this chapter some extensions of Fermat’s problem on arithmetic progressions of squares
are discussed. All arithmetic progressions are described which satisfy one of the following

conditions

four consecutive terms are of the form x3, X2, X3, X3 or X3, X3, X3, X3,
four consecutive terms are of the form x3, x3, X3, X3 or X3, X3, X3, X3,

i 3 2 3 (2 2 3 2 3
four consecutive terms are of the form xg, X7, X3, X3 O Xg, X7, X5, X3.

We shall prove that in the first two cases the only coprime solutions are the trivial ones and

in the third instance the complete solution is given by

(X0, X1, X2, X3) € {(=2t2, 0, 2t%, +4t3), (%, £t3, %, +t3)}
forsomete Zor

(X0, X1, X2, X3) € {(£4t3, 22,0, —2t2), (xt3, 12, 13, 2)}

for some t € Z, respectively.

57
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4.1 Parametrization

The next lemma provides a parametrization of the solutions of certain ternary Diophantine

equations. The lemma and the proof are due to Lajos Hajdu.

Lemma4.1.1. All solutions of the equations
i) 2b% —a? =3, ii)a®+2b% = 3c?,

in integers a, b and c with gcd(a, b, ¢) = 1 are given by the following parametrizations:

i)a = +(x3+6xy?), b = £(3x%y + 2y,

ora = +(x> + 6x%y + 6xy? + 4y*), b = £(x3 + 3x%y + 6xy? + 2y°),
i) a = +(x3 - 6x% — 6xy? + 4y%), b = £(x3 + 3x%y — 6xy? — 2y°).

Here x and y are coprime integers and the + signs can be chosen independently.

Proof. The statement can be proved by factorizing the appropriate expressions in the

appropriate number fields. We handle each case separately.

i) We note that the ring of integers of Q( V2) is Z[ V2] and this is a principal ideal domain. In
Q(V2) we have
(a+ V2b)(a— V2b) = (-c)°.

Using gcd(a, b) = 1, a simple calculation gives that
ged(a+ V2b,a— V2b) [ 2V2
in Q(V2). Hence, as 1 + V2 is a fundamental unit of Q( V2), we have
a+ V2b = (L+ V2 (V2 (x + V2y)", 4.1)

where @ € {-1,0,1}, B € {0,1,2} and x,y are some integers. By taking norms, we
immediately obtain that 8 = 0. If @ = 0, then expanding the right hand side of (4.1) we
get

a=x>+6xy?, b=3x%+2y°
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Otherwise, when a = +1 then (4.1) yields
a=x3+6x% +6xy° +4y%, b= xx3+3x% = 6xy? + 2y°.

Substituting —x and —y in place of x and y, respectively, we obtain the parametrizations given

in the statement. Observe that the coprimality of a and b implies gcd(x,y) = 1.

ii) We note that the ring of integers of Q( V-2) is Z[ V-2] and this is a principal ideal domain.
In Q( V-2) we obtain
(a+ V-2b)(a— V-2b) = 3c°.

Observe that gcd(a,b) = 1. Indeed, as gcd(a, b,c) = 1, the only possible proper common

divisor of a and b could be 3. However, 3 | a and 3 | b implies 3 | c, a contradiction. Hence
ged(a+ V-2b,a— V-2b) | 2V-2

in Q(V-2). As Q(V-2) has no other units than +1, using 3 = (1 + V=2)(1 — V-2), we can
write

a+ V=2b=(1+ V=2 (1- V22 (V=2) (x+ V=2y) , 4.2)

where a, 8,y € {0, 1,2} and x, y are some integers. By taking norms, we immediately obtain
thaty =0and @ +B8 =1 (mod 3). If @ = B = 2, then writing out (4.2) we getthat 3 | a, 3 | b,
a contradiction. In case of « = 0, 8 = 1 or @ = 1, B = 0 by expanding the right hand side of
(4.2) we obtain

a=x>+6x%y —6xy?+4y>, b==xx3+3x% F 6xy% - 2y°.

Substituting —x and —y in place of x and y, respectively, we get the parametrizations indicated

in the statement. As a consequence of gcd(a, b) = 1, we deduce gcd(x,y) = 1 once again.

4.2 Thecases(2,2,2,3)and (3,2,2,2)

Let x3, x2, X3, X3 be consecutive terms of an arithmetic progression with gcd(Xo, X1, X2, X3) =

1. Applying part i) of Lemma 4.1.1 to the last three terms of the progression, we get that
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either

X1 = i(x3 + 6xy2), Xo = J_r(3X2y + 2y3)

or

x1 = £ + 6x%y + 6xy? + 4y%), Xz = £(x3 + 3x%y + 6xy? + 2y°)

where X,y are some coprime integers in both cases.

In the first case from x3 = 2x7 — x3 we get
x& = 2x° + 15x%y? + 60x%y* — 4y°.

If x = 0 then ged(x,y) = 1 gives thaty = +1, which is a contradiction. Otherwise, by putting

Y = xo/x3 and X = y?/x? we obtain the elliptic equation
Y2 = —4X3 + 60X? + 15X + 2.

One can check with MAGMA [21] or another suitable program that this elliptic curve has no
affine rational points.

In the second case by the same assertion we obtain

x5 = X% + 18x%y + 75x%? + 120x%° + 120x%y* + 72xy° + 28y°.

If y = 0, then the coprimality of x and y yields x = +1, and we get the trivial progression
1,1,1,1. So assume thaty # 0 and let Y = xo/y3, X = x/y. By these substitutions we are led

to the hyperelliptic equation

Y2 = X5 + 18X° + 75X* + 120X3 + 120X2 + 72X + 28.
Theorem 4.2.1. Let C be the curve given by

Y2 = X5 + 18X° + 75X* + 120X3 + 120X? + 72X + 28.

Then C(Q) consists only of the points co™ and oo™

Proof. One can get an upper bound for the rank of the Jacobian using M. Stoll’s [82]
algorithm implemented in MAGMA [21]. In the present case it turns out to be 1. The order
of Jtors(Q) is a divisor of gcd(#7 (Fs), #9 (F7)) = gcd(21,52) = 1. Therefore the torsion
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subgroup is trivial. The divisor D = [co™ — 007] has infinite order, so the rank equals 1. Since
the rank is less than the genus, we can apply Chabauty’s method [24] to obtain a bound for
the number of rational points on C. Other examples are worked out in [23],[39],[40],[72].
The rank of the Jacobian is 1, hence J(Q) = (Dg) for some Dy € J(Q) of infinite order.
A finite computation (mod 13) shows that D ¢ 57(Q), a similar computation (mod 139)
yields that D ¢ 29.7(Q). Hence D = kDo with 5 1 k, 29 ¢t k. The reduction of C over F, is a
curve of genus 2 for any prime p # 2, 3. We will use p = 29. We used Chabauty’s method as
implemented in MAGMA [21] by Stoll to bound the number of rational solutions.

> Qx(x) := PolynomialRing(Rationals());

>fi=x04+ 18 x>+ 75+ x* + 120 % x3 + 120 % X% + 72 % X + 28;

> C := HyperellipticCurve(f);

> pts := Points(C : Bound := 100);

> J := Jacobian(C);

> D := J![pts[1], pts[2]];

> TwoS elmerGroupData(J);

> Chabauty(D, 29);

We found that there are at most 2 rational points on C. Therefore we conclude that C(Q) =

{oo™, 007} o

Corollary. There is no increasing arithmetic progression of integers of the type x3, X2, x3, X3.

Proof. From the previous theorem and from the preceding discussion we obtained that the

only progression is the trivial 1,1,1,1. O

Corollary. There is no increasing arithmetic progression of integers of the type x3, X2, x3, x2.

Proof. In this case we apply part i) of Lemma 4.1.1 to the first three terms of the progression.
Then we use the equation X3 = 2x5 — x2. From this point on the reasoning is similar to the

previous case. It turns out that only the trivial arithmetic progression can occur. O

4.3 Thecases(2,2,3,2)and (2,3,2,2)

Let x3, 2, x3, X3 be consecutive terms of an arithmetic progression with

gcd(xo, X1, X2, X3) = 1. Now from part ii) of Lemma 4.1.1, applied to terms with indices 0, 2, 3
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of the progression, we get

Xo = +(x3 — 6x%y — 6xy? + 4y°), x3 = +(x3 + 3x%y — 6xy? — 2y°)

where x, y are some coprime integers. Using x5 = (2x3 + x3)/3 we obtain

x2 = x5 — 6x°y + 15x%y? + 40x%y> — 24xy° + 12y°.

If y = 0, then in the same way as before we deduce that the only possibility is given by the
progression 1,1,1,1. Otherwise, ify # 0set Y = x;/y3, X = x/y to get the hyperelliptic
equation

Y2 = X8 — 6X5 + 15X* + 40X°3 — 24X + 12.

Theorem 4.3.1. Let C be the curve given by

Y2 = X8 - 6X5 + 15X* + 40X°3 — 24X + 12.

Then C(Q) consists only of the points co™ and oo™

Proof. One can get an upper bound for the rank of the Jacobian using M. Stoll’s [82]
algorithm implemented in MAGMA [21]. In this case it is 1. The torsion subgroup is trivial.
The divisor D = [co™ — 007] has infinite order, hence the rank is 1. We can apply Chabauty’s

method [24] to obtain a bound for the number of rational points on C.

Since the rank of the Jacobian is 1, we have J(Q) = (Dg), for some Dy € J(Q) of infinite
order. A finite computation (mod 13) shows that D ¢ 59(Q), a similar computation
(mod 131) yields that D ¢ 119(Q). Hence D = kDg with 5 { k, 11 4 k. The reduction of
C over Fy is a curve of genus 2 for any prime p # 2, 3. We will use p = 11.

> Qx{x) := PolynomialRing(Rationals());
>fi=x0—6+x0+15%x* +40 % x3 - 24 % x + 12;

> C := HyperellipticCurve(f);

> pts := Points(C : Bound := 100);

> J := Jacobian(C);

> D := J![pts[1], pts[2]];

> TwoS elmerGroupData(J);

> Chabauty(D, 11);
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We obtained that there are at most 2 rational points on C. Therefore we conclude that

C(Q) = {oo™, 007} o
i i i i i i i 2 42 43 42
Coroallary. There exists no increasing arithmetic progression of integers of the type xg, X{, X3, X5.
i i i i i i i 2 43 2 y2
Coroallary. There exists no increasing arithmetic progression of integers of the type xg, X7, X5, X5.

Proof. From part ii) of Lemma 4.1.1, applied to terms with indices 0, 1, 3 of the progression,
we get the parametrizations. Then we use the equation x§ = (xé + 2x§)/3. It turns out that

only the trivial arithmetic progression can occur. O

4.4 Thecases(3,2,3,2) and (2,3,2,3)

Let x3, X2, x3, X3 be consecutive terms of an arithmetic progression with gcd(Xo, X1, X2, X3) =

1. We have
2 _ X3+ %5
X1 = 5
4.3)
- X3+ 3x3
w=Ty

We note that xo = 0 implies Xg = X1 = X2 = X3 = 0. Assume X, # 0. Then we obtain from

2x1x3 ’ =— (&)6 +2 (&)3 +3
X3 X2 X2 ’

Thus it is sufficient to find all rational points on the curve Y2 = —X® + 2X3 + 3.

(4.3) that

Theorem 4.4.1. Let C be the curve given by
Y2 =-X®+2X3+3.

Then C(Q) = {(-1,0), (1, £2)}.

Proof. Using MAGMA [21] we obtain an upper bound 1 for the rank of the Jacobian, and the
torsion subgroup 7~ consisting of two elements O and { 1‘7*/3' 0), (“T‘@, 0)}. The divisor D =
[(-1,0)+ (1, —2) — co* — 0~ ] has infinite order. So the rank is exactly 1. The only Weierstrass
pointon C is (-1, 0), so it remains to prove that (1, +2) are the only non-Weierstrass points.

We have J(Q) = (Dg), for some Dy € J(Q) of infinite order. A finite computation (mod 13)
shows that D ¢ 7.9(Q), a similar computation (mod 23) yields that D ¢ 11.9(Q). Hence

D = kDg with 7 ¢ k, 11 4 k. The reduction of C over Fj, is a curve of genus 2 for any prime
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p # 2,3. We will use p = 11. > Qx(x) := PolynomialRing(Rationals());
>fi=-x0+2xx3+3;

> C := HyperellipticCurve(f);

> pts := Points(C : Bound := 100);

> J := Jacobian(C);

> D := J![pts[1], pts[2]];

> TwoS elmerGroupData(J);

> Chabauty(D, 11);

We found that there are at most 2 rational points on C. Therefore we conclude that (1, -2)

and (1, 2) are the only two non-Weierstrass points on C. m|

Corollary. If x3, x3, x3, x5 are consecutive terms of an arithmetic progression, then (xo, X1, X2, X3) €

{(=2t2,0, 2t2, +4t3), (12, +t3, 12, +t3)} for some t € Z.

Proof. The point (-1, 0) is on the curve Y2 = —X% + 2X3 + 3, hence 2 =—land 2x1x3 = 0.
It easily follows that xg = —2t%,x; = 0,x» = 2t2, x3 = +4t3 is the only possible solution
of the problem. In case of the other two points (1, +2) we have X = X2, which implies

X3 =x2 = x3 = x5. Thus Xo = X2 = t?and x; = x3 = +t3 for some t € Z. o

Corollary. If x3, x3, x3, X3 are consecutive terms of an arithmetic progression, then (Xo, X1, X2, X3) €

(413, 22,0, —2t?), (+t3, 12, +t3,t%)} for some t € Z.

Proof. In this case we get the equation

2 6 3
2XoX X X
X3 X1 X1

By Theorem 4.4.1 the only rational points on the curve Y2 = —X® + 2X3 + 3 are (-1, 0) and

(1, £2). In a similar way as in the proof of the previous corollary we obtain the solutions. o

Acknowledgement. I’'m grateful to Lajos Hajdu for introducing me to the problem and for
the proof of Lemma 4.1.1. | wish to thank Nils Bruin for the useful comments on Chabauty’s

method.



Bibliography

[1] S. A. Arifand F. S. A. Muriefah. On the Diophantine equation x? + 2k = y". Internat.
J. Math. Math. Sci., 20(2):299-304, 1997.

[2] S. A. Arif and F. S. A. Muriefah. The Diophantine equation x2 + 3™ = y". Internat. J.
Math. Math. Sci., 21(3):619-620, 1998.

[3] S. A. Arif and F S. A. Muriefah. On the Diophantine equation x? + 2X = y". II. Arab J.
Math. Sci., 7(2):67-71, 2001.

[4] S. A. Arif and F. S. A. Muriefah. On the Diophantine equation x? + g2+! = y". J.
Number Theory, 95(1):95-100, 2002.

[5] M. Ayad. Sur le théoréme de Runge. Acta Arith., 58(2):203-209, 1991.

[6] A. Baker. Linear forms in the logarithms of algebraic numbers. I, 11, I1l. Mathematika

13 (1966), 204-216; ibid. 14 (1967), 102-107; ibid., 14:220-228, 1967.

[7] A.Baker. Contributions to the theory of Diophantine equations. I. On the representation
of integers by binary forms. Philos. Trans. Roy. Soc. London Ser. A, 263:173-191,
1967/1968.

[8] A. Baker. The Diophantine equation y> = ax3 + bx? + cx + d. J. London Math. Soc.,

43:1-9, 1968.

[9] A. Baker. Linear forms in the logarithms of algebraic numbers. IV. Mathematika,

15:204-216, 1968.

[10] A. Baker. Bounds for the solutions of the hyperelliptic equation. Proc. Cambridge
Philos. Soc., 65:439-444, 1969.

65



66 BIBLIOGRAPHY

[11] A. Baker and H. Davenport. The equations 3x? — 2 = y? and 8x* — 7 = z2. Quart. J.
Math. Oxford Ser. (2), 20:129-137, 1969.

[12] M. Bauer and M. A. Bennett. Applications of the hypergeometric method to the
generalized Ramanujan-Nagell equation. Ramanujan J., 6(2):209-270, 2002.

[13] F. Beukers. The Diophantine equation AxP + By% = Cz". Duke Math. J., 91(1):61-88,
1998.

[14] F. Beukers, T. N. Shorey, and R. Tijdeman. Irreducibility of polynomials and arithmetic
progressions with equal products of terms. In Number theory in progress, Vol. 1

(Zakopane-Koscielisko, 1997), pages 11-26. de Gruyter, Berlin, 1999.

[15] Yu. Bilu. Effective analysis of integral points on algebraic curves. Israel J. Math.,

90(1-3):235-252, 1995.

[16] Yu. Bilu. Quantitative Siegel’s theorem for Galois coverings. Compositio Math.,

106(2):125-158, 1997.

[17] Yu. Bilu and G. Hanrot. Solving Thue equations of high degree. J. Number Theory,
60(2):373-392, 1996.

[18] Yu. Bilu and G. Hanrot. Thue equations with composite fields. Acta Arith., 88(4):311-
326, 1999.

[19] Yu. Bilu, G. Hanrot, and P. M. Voutier. Existence of primitive divisors of Lucas and
Lehmer numbers. J. Reine Angew. Math., 539:75-122, 2001. With an appendix by M.

Mignotte.

[20] Yu. F. Bilu and R. F. Tichy. The Diophantine equation f(x) = g(y). Acta Arith.,
95(3):261-288, 2000.

[21] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user
language. J. Symbolic Comput., 24(3-4):235-265, 1997. Computational algebra and
number theory (London, 1993).

[22] Y. Bugeaud. On the Diophantine equation x> — p™ = +y". Acta Arith., 80(3):213-223,
1997.



BIBLIOGRAPHY 67

[23] J. W. S. Cassels and E. V. Flynn. Prolegomena to a middlebrow arithmetic of curves of
genus 2, volume 230 of London Mathematical Society Lecture Note Series. Cambridge

University Press, Cambridge, 1996.

[24] C. Chabauty. Sur les points rationnels des courbes algébriques de genre supérieur a

I’unité. C. R. Acad. Sci. Paris, 212:882-885, 1941.

[25] H.Cohen. A course in computational algebraic number theory, volume 138 of Graduate

Texts in Mathematics. Springer-Verlag, Berlin, 1993.

[26] J. H. E. Cohn. The Diophantine equation x? + 2K = y". Arch. Math. (Basel), 59(4):341-
344, 1992.

[27] J. H. E. Cohn. The Diophantine equation x*+3 = y". Glasgow Math. J., 35(2):203-206,
1993.

[28] J. H. E. Cohn. The Diophantine equation x> + C = y". Acta Arith., 65(4):367-381,
1993.

[29] J. H. E. Cohn. Perfect Pell powers. Glasgow Math. J., 38(1):19-20, 1996.

[30] J. H. E. Cohn. The Diophantine equation x2 + 2K = y". II. Int. J. Math. Math. Sci.,
22(3):459-462, 1999.

[31] J. H. E. Cohn. The Diophantine equation x? + C = y". Il. Acta Arith., 109(2):205-206,
2003.

[32] G. Collins and A. Akritas. Polynomial real root isolation using Descartes’ rule of
signs. In In Proceedings of the third ACM symposium on Symbolic and Algebraic

Computation, pages 272-275, 1976.

[33] H. Darmon and A. Granville. On the equations z™ = F(x, y) and AxP + By® = CZ'. Bull.
London Math. Soc., 27(6):513-543, 1995.

[34] H.Darmon and L. Merel. Winding quotients and some variants of Fermat’s last theorem.

J. Reine Angew. Math., 490:81-100, 1997.

[35] H. Davenport, D. J. Lewis, and A. Schinzel. Equations of the form f(x) = g(y). Quart.
J. Math. Oxford Ser. (2), 12:304-312, 1961.

[36] J. Edwards. A complete solution to X2 + Y3+ Z5 = 0. J. Reine Angew. Math., 571:213-
236, 2004.



68 BIBLIOGRAPHY

[37] N. D. Elkies. On A+ B4+ C* = D*. Math. Comp., 51(184):825-835, 1988.

[38] G. Faltings. Endlichkeitssétze fiir abelsche Varietaten iber Zahlkorpern. Invent. Math.,
73(3):349-366, 1983.

[39] E. V. Flynn. A flexible method for applying Chabauty’s theorem. Compositio Math.,
105(1):79-94, 1997.

[40] E. V. Flynn, B. Poonen, and E. F. Schaefer. Cycles of quadratic polynomials and rational
points on a genus-2 curve. Duke Math. J., 90(3):435-463, 1997.

[41] A. Grytczuk and A. Schinzel. On Runge’s theorem about Diophantine equations. In
Sets, graphs and numbers (Budapest, 1991), volume 60 of Collog. Math. Soc. Janos
Bolyai, pages 329-356. North-Holland, Amsterdam, 1992.

[42] K. Gy®ry. Solving Diophantine equations by Baker’s theory. In A panorama of number
theory or the view from Baker’s garden (Zirich, 1999), pages 38—72. Cambridge Univ.
Press, Cambridge, 2002.

[43] L. Hajdu and A. Pintér. Combinatorial Diophantine equations. Publ. Math. Debrecen,
56(3-4):391-403, 2000.

[44] G. Hanrot. Solving Thue equations without the full unit group. Math. Comp.,
69(229):395-405, 2000.

[45] D. L. Hilliker and E. G. Straus. Determination of bounds for the solutions to those
binary Diophantine equations that satisfy the hypotheses of Runge’s theorem. Trans.

Amer. Math. Soc., 280(2):637-657, 1983.

[46] Chao Ko. On the Diophantine equation x> = y" + 1, xy # 0. Sci. Sinica, 14:457-460,
1965.

[47] L. J. Lander and T. R. Parkin. A counterexample to Euler’s sum of powers conjecture.

Math. Comp., 21:101-103, 1967.

[48] M. Laurent and D. Poulakis. On the global distance between two algebraic points on a

curve. J. Number Theory, 104(2):210-254, 2004.

[49] Maohua Le. On the Diophantine equation x2 + p? = y". Publ. Math. Debrecen, 63(1-
2):67-78, 2003.



BIBLIOGRAPHY 69

[50] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovasz. Factoring polynomials with rational

coefficients. Math. Ann., 261(4):515-534, 1982.

[51] W. Ljunggren. Uber die Gleichungen 1 + Dx? = 2y" und 1 + Dx? = 4y". Norske Vid.
Selsk. Forh., Trondhjem, 15(30):115-118, 1942.

[52] W. Ljunggren. On the Diophantine equation x? + p?> = y". Norske Vid. Selsk. Forh.,
Trondhjem, 16(8):27-30, 1943.

[53] W. Ljunggren. On the Diophantine equation Cx?+D = y". Pacific J. Math., 14:585-596,
1964.

[54] W. Ljunggren. On the diophantine equation Cx? + D = 2y". Math. Scand., 18:69-86,
1966.

[55] F. Luca. On a Diophantine equation. Bull. Austral. Math. Soc., 61(2):241-246, 2000.

[56] F. Luca. On the equation x? + 22 - 3% = y". Int. J. Math. Math. Sci., 29(4):239-244,
2002.

[57] R. A. MacLeod and I. Barrodale. On equal products of consecutive integers. Canad.

Math. Bull., 13:255-259, 1970.

[58] D. W. Masser. Polynomial bounds for Diophantine equations. Amer. Math. Monthly,
93:486-488, 1980.

[59] M. Mignotte. On the Diophantine equation D1x?> + DJ' = 4y". Portugal. Math.,
54(4):457-460, 1997.

[60] P. Mihailescu. Primary cyclotomic units and a proof of Catalan’s conjecture. J. Reine

Angew. Math., 572:167-195, 2004.

[61] L. J. Mordell. Diophantine equations. Pure and Applied Mathematics, Vol. 30.

Academic Press, London, 1969.

[62] F. S. A. Muriefah. On the Diophantine equation px? + 3" = yP. Tamkang J. Math.,
31(1):79-84, 2000.

[63] F. S. A. Muriefah. On the Diophantine equation Ax? + 22™ = y". Int. J. Math. Math.
Sci., 25(6):373-381, 2001.



70 BIBLIOGRAPHY

[64] F. S. A. Muriefah and S. A. Arif. On a Diophantine equation. Bull. Austral. Math. Soc.,
57(2):189-198, 1998.

65] F. S. A. Muriefah and S. A. Arif. The Diophantine equation x? + 5%*1 = y". Indian J.
Pure Appl. Math., 30(3):229—231, 1999.

[66] F. S. A. Muriefah and S. A. Arif. The Diophantine equation x? + g? = y". Arab. J. Sci.
Eng. Sect. A Sci., 26(1):53-62, 2001.

[67] T. Nagell. Verallgemeinerung eines Fermatschen Satzes. Arch. Math., 5:153-159, 1954,

[68] I. Niven. Irrational numbers. The Carus Mathematical Monographs, No. 11. The
Mathematical Association of America. Distributed by John Wiley and Sons, Inc., New

York, N.Y., 1956.

[69] The PARI Group, Bordeaux. PARI/GP, version 2.2.8, 2004. available from http:

//pari.math.u-bordeaux. fr/.

[70] I. Pink. On the Diophantine equation x2 + (p3:... p$)? = 2y". Publ. Math. Debrecen,
65(1-2):205-213, 2004.

[71] 1. Pink and Sz. Tengely. Full powers in arithmetic progressions. Publ. Math. Debrecen,
57(3-4):535-545, 2000.

[72] B. Poonen. The classification of rational preperiodic points of quadratic polynomials

over Q: a refined conjecture. Math. Z., 228(1):11-29, 1998.

[73] D. Poulakis. A simple method for solving the Diophantine equation Y? = X% + aX3 +
bX? + ¢X + d. Elem. Math., 54(1):32-36, 1999.

[74] C. Runge. Uber ganzzahlige Losungen von Gleichungen zwischen zwei

Verénderlichen. J. Reine Angew. Math., 100:425-435, 1887.

[75] A. Schinzel. An improvement of Runge’s theorem on Diophantine equations. Comment.

Pontificia Acad. Sci., 2(20):1-9, 1969.

[76] A. Schinzel and R. Tijdeman. On the equation y™ = P(x). Acta Arith., 31(2):199-204,
1976.

[77] A. Schonhage. The fundamental theorem of algebra in terms of computational

complexity. Technical report, Univ. Tuibingen, 1982.



BIBLIOGRAPHY 71

[78] C. L. Siegel. The integer solutions of the equation y? = ax" + bx™* + ... + k. J. Lond.

Math. Soc., 1:66-68, 1926.

[79] C. L. Siegel. Uber einige Anwendungen diophantischer Approximationen. Abh. Pr.
Akad. Wiss., 1:41-69, 1929.

[80] T. Skolem. Uber ganzzahlige Lésungen einer Klasse unbestimmten Gleichungen. In

Norsk. Mat. Forenings Skrifter, number 10 in I. 1922.

[81] N.P.Smart. The algorithmic resolution of Diophantine equations, volume 41 of London

Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1998.

[82] M. Stoll. Implementing 2-descent for Jacobians of hyperelliptic curves. Acta Arith.,
98(3):245-277,2001.

[83] B. Sury. On the Diophantine equation x? + 2 = y". Arch. Math. (Basel), 74(5):350-355,
2000.

[84] L. Szalay. Fast algorithm for solving superelliptic equations of certain types. Acta Acad.

Paedagog. Agriensis Sect. Mat. (N.S.), 27:19-24 (2001), 2000.

85] L. Szalay. Superelliptic equations of the form yP = xXP + a,, 1x¥P1 + ... + a;5. Bull.
y. p p q y p

Greek Math. Soc., 46:23-33, 2002.

[86] R. Taylor and A. Wiles. Ring-theoretic properties of certain Hecke algebras. Ann. of
Math. (2), 141(3):553-572,1995.

[87] Sz. Tengely. On the Diophantine equation F(x) = G(y). Acta Arith., 110(2):185-200,
2003.

[88] Sz. Tengely. On the Diophantine equation x?>+a? = 2yP. Indag. Math. (N.S.), 15(2):291—
304, 2004.

[89] A. Thue. Uber Annaherungswerte algebraischer Zahlen. J. Reine Angew Math.,
135:284-305, 1909.

[90] R. Tijdeman. On the equation of Catalan. Acta Arith., 29(2):197-209, 1976.

[91] P. M. Voutier. Primitive divisors of Lucas and Lehmer sequences. I1. J. Theor. Nombres

Bordeaux, 8(2):251-274, 1996.



72 BIBLIOGRAPHY

[92] P. G. Walsh. A quantitative version of Runge’s theorem on Diophantine equations. Acta

Arith., 62(2):157-172,1992.

[93] B. M. M. de Weger. Algorithms for Diophantine equations, volume 65 of CWI Tract.
Stichting Mathematisch Centrum Centrum voor Wiskunde en Informatica, Amsterdam,

1989.

[94] A. Wiles. Modular elliptic curves and Fermat’s last theorem. Ann. of Math. (2),
141(3):443-551, 1995.



Samenvatting

In dit proefschrift lossen we Diophantische vergelijkingen op met verschillende methoden,
namelijk de methoden van Runge, van Baker en van Chabauty.
In Hoofdstuk 2 bekijken we de Runge Diophantische vergelijking

F(x) = G(y) ™)

met F,G € Z[X] monische veeltermen van respectievelijk graad n en m zodanig dat
F(X) — G(Y) irreducibel is in Q[X, Y] en ggd(n, m) > 1. In het hoofdstuk (dat is gebaseerd op
[87]), geven we een bovengrens voor de grootte van de oplossingen in gehele getallen voor
vergelijking (*) in het geval dat ggd(n, m) > 1. Verder geven we een algoritme om alle gehele
oplossingen te vinden. Het algoritme is geimplementeerd in Magma. In de onderstaande
tabel staan enkele voorbeelden van vergelijkingen, het aantal oplossingen en de benodigde
rekentijd op een AMD-Athlon 1 GHz PC.

Vergelijking # Oplossingen | CPU tijd (sec)
=y +y +y?+3y-5 4 0.16
=y +2f -5y 1y -y + 2 + Ty -2y -3 1 0.75
X=yPry?* 4 ry+7 1 5.69
=y -7y -2y -y+5 0 4.79
X2 = y* — 99y% — 37y% — 51y + 100 2 183
X —-3X+5=y -y + 9 — 7\ + 4y —® 6 0.72
X —5x2 1 45x— 713 = P — 3y% + Oy — 17yP + 38y° — 190y — 1 0.38
261y° + 789y? + 234y

XX+ D)X+ 2)(x+3) =y(y+1)---(y+5) 28 0.23

In Hoofdstuk 3 bestuderen we exponentiéle Diophantische vergelijkingen van de vorm x? +
a2 = 2yP met x,y geheel en p > 2 priemgetal. In Sectie 3.1 (gebaseerd op [88]) geven we een
methode om de vergelijking x> + a%> = 2y" met n, x en y geheel en n > 2 op te lossen voor
vaste a. In het bijzonder berekenen we alle oplossingen van de vergelijkingen x2 + a? = yP en
x? + a? = 2yP voor oneven a met 3 < a < 501. In Sectie 3.2 bekijken we de Diophantische
vergelijking x2 + g®™ = 2yP in onbekende getallen m, p, g, X, y waarbij m > 0, p,q oneven
priem en ggd(x,y) = 1. We bewijzen dat er slechts eindig veel oplossingen (m, p, g, X,Y)
bestaan wanneer y niet van de vorm 2v2 + 2v + 1 is. Ook bekijken we deze vergelijking voor
vaste y en voor vaste q. Verder lossen we de vergelijking x2 + g™ = 2- 17P helemaal op. Aan
het eind van het hoofdstuk wordt bewezen dat indien de Diophantische vergelijking x2+32™ =
2yP met m > 0 en p priem een oplossing in gehele getallen (x, y) heeft met x en y onderling
priem, dat dan is p € {59, 83,107,179, 227,347,419, 443, 467,563, 587, 659, 683, 827, 947}
of (x,y,m, p) € {(79,5, 1,5), (545, 53, 3, 3)}.

In Hoofdstuk 4 bespreken we enkele generalisaties van Fermat’s resultaat. Fermat bewees
dat er geen stijgende rekenkundige rij van lengte 4 is die uit kwadraten van gehele
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getallen bestaat. Alle rekenkundige rijen worden beschreven die aan een van de volgende
voorwaarden voldoen:

vier opeenvolgende termen hebben de vorm x2, X2, x3, x3,

vier opeenvolgende termen hebben de vorm x2, X2, x3, X3, (**)

vier opeenvolgende termen hebben de vorm x3, X2, x3, x3.

In de eerste twee gevallen laten we zien dat om alle rijen met gcd(Xo, X1, X2, X3) = 1 te
verkrijgen het voldoende is om alle rationale punten op bepaalde hyperelliptische krommen
van geslacht 2 te vinden. Deze hyperelliptische krommen worden gegeven door

Y2 = X8 + 18X5 + 75X + 120X3 + 120X2 + 72X + 28,
Y2 = X8 - 6X° + 15X* + 40X3 — 24X + 12.

In beide gevallen is de rang van de Jacobiaan 1, waardoor een methode van Chabauty kan
worden toegepast. In het derde geval kan men een kromme van geslacht 2 verkrijgen zonder
enige vorm van parametrisatie te gebruiken, waardoor we de voorwaarde gcd(Xo, X1, X2, X3) =
1 kunnen weglaten. Deze kromme is gegeven door

C:Y?=-X84+2%x%+3.

We bewijzen dat C(Q) = {(-1, 0), (1, +2)}. Deze rationale punten leiden tot twee families van
rijen van de vorm x3, X2, x3, X3 gegeven door

Xo = —2t%, X1 = 0, Xp = 2t%, x3 = +4t° voor t € Z,
Xo = t2, X1 = +t3, %, = t2, X3 = +t3 voor t € Z.

Er volgt dat er geen stijgende rekenkundige rij van gehele getallen van de vorm (**) bestaat.
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