

Genetic and molecular markers of proteinuria and glomerulosclerosis

IJpelaar, D.H.T.

Citation

IJpelaar, D. H. T. (2009, September 16). *Genetic and molecular markers of proteinuria and glomerulosclerosis*. Retrieved from https://hdl.handle.net/1887/13997

Version:	Corrected Publisher's Version
License:	<u>Licence agreement concerning inclusion of doctoral</u> <u>thesis in the Institutional Repository of the University</u> <u>of Leiden</u>
Downloaded from:	https://hdl.handle.net/1887/13997

Note: To cite this publication please use the final published version (if applicable).

Colour figures

tip FSGS

collapsing FSGS

cellular FSGS

perihilar FSGS

FSGS NOS

Chapter 1, figure 4. Typical glomerular morphology of the five FSGS variants according to the "Columbia" classification. Published with permission from Stokes *et al.*¹⁵³

Chapter 3, figure 3. Histological images representing the range of glomerular damage at *day 21* in backcross rats. Periodic acid-Schiff staining. a) normal glomerulus; b) segmental sclerosis with adhesion of the tuft to Bowman's capsule (arrow).

Chapter 4, figure 4. Examples of glomeruli with microaneurysms in Lew/Maa bone marrow chimeras. Fewer microaneurysms were found in the kidneys of Lew/Maa rats with bone marrow from Lew/Moll (B) compared to the kidneys of Lew/Maa rats with bone marrow from Lew/Maa (A).

Chapter 5, figure 3. Expression of desmin and podoplanin proteins in male MWF and male SHR. Representative photographs are of desmin staining in SHR (a-c) and MWF rats (d-f) at 4 weeks (a and d), 6 weeks (b and e), and 8 weeks (c and f) of age. At 6 and 8 weeks of age, MWF rats exhibited focal and segmental expression of desmin protein in podocytes. Protein expression in SHR did not change. Representative photographs of podoplanin staining in SHR (g-i) and MWF rats (j-l) at 4 weeks (g and j), 6 weeks (h and k), and 8 weeks (i and l) of age. At 6 and 8 weeks of age, MWF rats exhibited focal and segmental loss of podoplanin protein expression in podocytes. Protein expression in SHR did not change.

Chapter 5, figure 4. Sequential kidney sections from an 8-week-old male MWF rat showing staining for periodic acid-Schiff (a), podoplanin (b), desmin (c), and albumin (d).

Chapter 5, figure 5. Expression of albumin protein in male and female MWF rats and male SHR. a-f: Representative photographs of albumin expression in MWF (a-c) and SHR (d-f) at 4 weeks (a and d), at 6 weeks (b and e), and 8 weeks (c and f) of age. Albumin droplets were present in podocytes of 6- and 8-week-old male and female MWF rats. g: higher magnification of a glomerulus of a male MWF rat showing albumin droplets in podocytes.

Chapter 6, figure 1. Representative histologic pictures of renal biopsies of patient 11. Both in native and transplant kidney, minimal change-like lesions are present in the first biopsy, followed by development of collapsing FSGS at a later time point. (A) Minimal change-like lesion in native kidney. (B) Collapsing FSGS in nephrectomy of native kidney. (C) Minimal change-like lesion a few days after renal transplantation. (D) Collapsing FSGS in renal allograft nephrectomy.

N: FSGS Not otherwise specified; Co: Collapsing FSGS; Ce: Cellular FSGS; T: Tip lesion FSGS; M: Minimal change disease-like lesion

Chapter 6, figure 2. FSGS variants in patients' native and transplant kidneys. For each patient, the FSGS variant and time to biopsy after transplantation are shown.