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3
A region-based multiple testing method
for hypotheses ordered in space or time

Abstract
We present a multiple testing method for hypotheses that are ordered in space or time.
Given such hypotheses, the elementary hypotheses as well as regions of consecutive hy-
potheses are of interest. These region hypotheses not only have intrinsic meaning but
testing them also has the advantage that (potentially small) signals across a region are
combined in one test. Because the expected number and length of potentially interesting
regions are usually not available beforehand, we propose a method that tests all possible
region hypotheses as well as all individual hypotheses in a single multiple testing proce-
dure that controls the familywise error rate. We start at testing the global null-hypothesis
and when this hypothesis can be rejected we continue with further specifying the exact
location/locations of the effect present. The method is implemented in the R package
cherry and is illustrated on a DNA copy number data set.

This chapter has been published as: Rosa J. Meijer, Thijmen J.P. Krebs and Jelle J. Goeman. (2015)
A region-based multiple testing method for hypotheses ordered in space or time. Statistical Applications in
Genetics and Molecular Biology 14 (1), 1–19
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36 Chapter 3 – A region-based multiple testing method

3.1 Introduction
In many biological settings, the data points measured are not only of interest individually,
but also on a region level. Data examples include copy number variation data, methylation
data or SNP (single nucleotide polymorphism) data. For each of these data types, groups
of neighboring data points make up genomic regions that can have high biological rele-
vance such as CpG islands, promotor regions or genes. Considering the data at the region
level is not only useful because these regions can be the fundamental units of interest,
but also because these regions can have an increased signal-to-noise-ratio (Benjamini and
Heller, 2007). Even if individual signals are too weak to be identifiable, neighboring data
points tend to contain similar signals and pooling this information can result in detectable
effects.

Several innovative procedures have been developed to detect (genomic) regions asso-
ciated with a certain outcome variable. These include scanning statistics, bump-hunting
techniques, peak-detection methods and marked point process models (see e.g. Jaffe et al.,
2012; Hatsuda, 2012; Schwartzman et al., 2011). Most of these methods have been devel-
oped however in view of specific applications and for that reason require certain prede-
fined choices with respect to the underlying unknown number of associated regions, the
length of these regions and the exact model relating the covariates to the outcome variable.
Besides, the multiple testing issue raised by the search for specific regions within a space
of numerous candidates is not always clearly addressed. Similar methods that control the
false discovery rate in the context of spatial signals or random fields have also been de-
veloped (Pacifico et al., 2004; Benjamini and Heller, 2007), but here too assumptions on
the number of clusters or restrictions on the form of the test-statistic have to be made.

We developed an alternative method in which all possible regions of all possible
lengths are tested in a single multiple testing procedure. Our approach can be seen to
fall in the broader category of sequentially rejective multiple testing procedures that con-
trol the familywise error rate (FWER). Other methods falling in this category can be found
for example in Bretz et al. (2009); Burman et al. (2009); Meinshausen (2008); Westfall
and Tobias (2007). Our proposed method strongly controls the FWER and aims to find
regions as well as individual data points that are associated with a certain outcome vari-
able, where association is measured by a user-specified hypothesis test. By using global
tests that are powerful in detecting groups of covariates in which many covariates are
weakly associated with the response, such as the tests developed by Goeman et al. (2004)
or Mansmann and Meister (2005), our method will often enable us to find influential re-
gions, even if individual association cannot be shown.

The method searches through the set of all possible regions, which implies that we
do not have to specify the length or number of potentially interesting regions in advance
and which also ensures that the individual data points (i.e. the elementary hypotheses)
can be considered as units of interest themselves. The top-down testing order further-
more allows us to use information from earlier rejections in subsequent steps. Because
a region can only be associated with the outcome if the same holds for one or more of
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its subregions, being able to reject a region null-hypothesis (stating that the region is not
associated with the response) indicates that not all remaining subregion null-hypotheses
can simultaneously be true. Using these logical relations, known as restricted combina-
tions (Shaffer, 1986), improves the power of our multiple testing procedure. From this
perspective, there is even an extra benefit in looking at regions in addition to looking at
individual points, namely the fact that the multiple testing burden can diminish rather than
increase in comparison to FWER controlling methods that only test the elementary hy-
potheses. Although similar behavior is known for the closed testing procedure developed
by Marcus et al. (1976), this procedure cannot be used for situations in which there are
more than approximately 30 elementary hypotheses, because the number of tests needed
is exponential in the number of elementary hypotheses. The number of tests needed for
our method is quadratic in the number of elementary hypotheses, and the time to carry
out the multiple testing procedure will usually be dominated by the time that is required
to perform all individual tests.

Our region method can be used for several data types, in combination with any valid
hypothesis test for the regions and will control the FWER without making additional as-
sumptions on the joint distribution of the test statistics used to calculate the individual
non-multiplicity adjusted p-values. In addition, the final results enable us to derive confi-
dence statements of the form given in Goeman and Solari (2011) on how many individual
data points in a certain region have to be associated with the outcome variable.

In the next section, we will describe our method in detail. The exact algorithms used
will be discussed in section 3.3 and in section 3.4 we will demonstrate our method on
DNA copy number data as well as on simulated data. In the discussion, some possible
extensions will be mentioned. Software is available in the R package cherry.

3.2 Region hypotheses
Suppose we have m ordered hypotheses H1, . . . ,Hm, the so-called elementary hypothe-
ses. Although the exact form of these hypotheses does not have to be specified for our
multiple testing method, we will, for ease of understanding, explain the theory on the
basis of an example in which the elementary hypotheses are of the following form

Hi : βi = 0,

where βi is the regression coefficient connecting covariate xi to an outcome variable y
in some not further specified regression model. Our elementary null-hypotheses thus cor-
respond to statements claiming there is no relation between certain covariates and the
outcome variable.

Because of the ordering, the elementary hypotheses per se are not the only hypotheses
of interest. All hypotheses representing an intersection of consecutive elementary hy-
potheses are worth testing as well. These intersection hypotheses, which we will refer to
as region hypotheses, can be represented by the first and last elementary hypothesis they
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H14

H13 H24

H12 H23 H34

H1 H2 H3 H4

Figure 3.1: The collection of region hypotheses for m = 4 elementary hypotheses.

contain. The region hypothesis ranging from elementary hypotheses Hi to Hj will be
denoted by Hij . The complete set of region hypotheses is given by:

H =

Hij =
⋂

k∈{i,...,j}

Hk, with 1 ≤ i ≤ j ≤ m

 .

This set can be visualized as a graph, where the nodes correspond to the different region
hypotheses and the edges define the underlying subset relationships. This is illustrated in
Figure 3.1 for the special case in which we have m = 4 elementary hypotheses. The top
node H14 represents the overall null-hypothesis, stating that none of the four covariates
are related to the outcome, whereas the leaf nodes represent the elementary hypotheses
that single covariates are not related to the outcome variable. The intermediate nodes
relate to statements about regions of covariates. Hypothesis H13 for example assumes no
relation between the first three covariates and the outcome, or mathematically

H13 : β1 = β2 = β3 = 0.

The graph has a simple structure in the sense that every node (except for the leaf
nodes) has two outgoing edges. In this way, every region hypothesis Hij of length k > 1,
where length denotes the number of elementary hypotheses in the intersection or, in our
example, the number of regression coefficients it assumes to be zero, is connected with
the two region hypotheses H(i+1)j and Hi(j−1) of length k− 1 that are contained in Hij ,
its so-called children.

The graph’s design allows for certain logical reasoning. Namely, when some hy-
pothesis is false, we can be sure that at least one of its children must be false as well.
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Assume for example that hypothesis H14 is false. This then means that at least one of
the βi’s with i ∈ {1, 2, 3, 4} is unequal to zero, from which it follows that hypothesis
H13 : β1 = β2 = β3 = 0 and hypothesis H24 : β2 = β3 = β4 = 0 can no longer be si-
multaneously true. This observation leads to the introduction of so-called congruent sets.

We will call a set R ⊆ H congruent if, given the logical relationships, it can be the
complete set of false hypotheses, and incongruent otherwise. In other words, when a re-
jection set R is congruent, all hypotheses that are not yet rejected can simultaneously be
true, without implying the truth of any hypothesis in R. This same definition was used
by Goeman and Finos (2012). In our example, the rejection set R = {H14} is thus an
incongruent set, because the falseness of H14 implies that at least one of the hypotheses
H13 and H24 is false as well. However, the augmented set R = {H14, H13} is not a
congruent set either, because the reasoning that applied to H14 and its children, applies to
H13 and its children as well. Continuing this argumentation, we see that every congruent
rejection set, apart from the empty set R = ∅, will have to contain at least one elemen-
tary hypothesis, which means one leaf node. If we denote the collection of leaf nodes by
L = {H1, . . . ,Hm}, and introduce notation for the graph relationships ancestors an() and
offspring of() in the following way

an(Hij) = {Hlk ∈ H : {l, . . . , k} ⊃ {i, . . . , j}}

and
of(Hij) = {Hlk ∈ H : {l, . . . , k} ⊂ {i, . . . , j}},

we see that every congruent rejection set will be of the following form:

Rcongr = L′ ∪
⋃
H∈L′

an(H) for some L′ ⊆ L.

Every congruent rejection set thus consists of a number of elementary hypotheses and all
their ancestors. Accordingly, R = {H} can be extended to a congruent rejection set by
selecting one or more of its corresponding leaf nodes, given by

LH =
(
{H} ∪ of(H)

)
∩ L

and adding those and all their ancestors to the current set R. The concept of congruent
sets and their just described construction will be used extensively in the derivation of our
multiple testing method.

3.2.1 A FWER controlling multiple testing procedure, based on the
sequential rejection principle

Throughout this article, we will assume that we have raw (i.e. non-multiplicity corrected)
p-values pH for every region hypothesis H . The exact statistical test used to calculate
these raw p-values is not important for our multiple testing method and can, if desired,
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even vary between the hypotheses. Additional assumptions on the correlation structure of
the test statistics or p-values are not required.

Although our multiple testing method can be used with every valid local test, we want
to stress that the added value of a procedure that tests all possible region hypotheses lies
in its combination with a local test that is designed to detect group effects, such as for
example tests by Goeman et al. (2004) or Mansmann and Meister (2005). Those tests will
be able to detect larger regions, even though the significance of the elementary hypothe-
ses within these regions cannot be established. If a consonant local test is used, there
will usually be no gain in testing all regions as compared to only testing the elementary
hypotheses. If a Bonferroni test is used as local test in our proposed procedure for ex-
ample, we can show (as is done in the Appendix) that our procedure reduces to Holm’s
procedure (Holm, 1979), which would in that case be the preferred method because it is
computationally simpler. The intuition behind using a procedure that tests regions should
thus always be that one expects that some effects will only be visible on a region level.

Given the raw p-values, in order to determine which hypotheses can be rejected while
strongly controlling the FWER at some pre-specified α-level, we have to specify carefully
which significance levels αH can be used to test each node H . Instead of immediately
distributing α over all possible region hypotheses, we will proceed iteratively; in every
step we will only test those hypotheses that have all their ancestor nodes rejected.

In general, an iterative multiple testing procedure will start with an empty rejection
setR0 = ∅. In every subsequent step, critical values for all hypotheses will be calculated,
and those hypotheses that have p-values smaller than their assigned α-level, will be added
to the current rejection set. Subsequently, new critical values will be computed, based on
the new rejection set, and this procedure will continue until no further rejections can be
made. Formally,

Ri+1 = Ri ∪ {H ∈ H \ Ri : pH ≤ αH(Ri)}, (3.1)

whereRi is the collection of rejected hypotheses after step i and αH(R) is a critical value
function that, based on a current rejection set R ⊂ H, assigns certain significance levels
αH(R) to not yet rejected hypotheses H ∈ H.

To determine what α-levels can be used to test the hypotheses in subsequent steps, we
base our method on the sequential rejection principle (SRP) as described by Goeman and
Solari (2010). This principle tells us that, in order to strongly control the familywise error
rate at level α, we can use any critical value function αH(R), as long as it satisfies two
conditions. The first condition is the monotonicity condition that tells us that for every
R ⊆ S ⊂ H and for every H ∈ H \ S, we must have

αH(R) ≤ αH(S). (3.2)

This says that critical values are not allowed to decrease when more hypotheses get re-
jected. The second condition, the single-step condition, is met when for all congruent sets
R ⊂ H the following holds: ∑

H∈H\R

αH(R) ≤ α. (3.3)
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In every step, the αH ’s distributed over possibly simultaneously true hypotheses H can
thus never exceed the total α-level. A sequential procedure that satisfies these two con-
ditions will strongly control the familywise error rate, without any further assumption on
the dependence structure of the individual p-values.

For our region testing procedure, we choose αH(R) as follows:

αH(R) = α× rH(R),

where we call rH(R) the ratio, since it indicates which proportion of the overall α will
be donated to hypothesis H , based on rejection set R. This ratio can only differ from 0
for nodes that are not yet rejected, but have all their ancestor nodes rejected. We will call
these reachable nodes the “candidates”. To determine the exact ratio for those candidates,
we distinguish between congruent and incongruent rejection sets R. If R is congruent,
the ratio equals

rH(R) =
|LH |
|L \ R| , (3.4)

where |S| denotes the cardinality of a set S. So for every candidate H , the ratio equals its
length divided by the number of non-rejected leaf nodes. This results in an α-distribution
that is proportional to the length of the regions.

Whenever R is incongruent, we can benefit from the information provided by the
special structure of the region hypotheses. An incongruent rejection set indicates that,
given that all hypotheses in the current rejection set have been correctly rejected, not all
remaining hypotheses can be simultaneously true. Exactly for that reason, the single-step
condition only prescribes the sum of the αH ’s of all unrejected nodes H to equal α when
R is a congruent set, and gives no strict upper bound for the sum of these αH ’s when R
is an incongruent set. In our method it will for that reason often happen that the sum of
the distributed α-levels exceeds the overall α-level. In a procedure that does not use the
logical relations, in every step of the procedure all distributed α-levels have to add up to
one, which makes such procedures clearly less powerful than our procedure. Using the
logical relations among hypotheses to obtain an increase in power was first proposed by
Shaffer (1986).

Given an incongruent rejection set R, rH(R) will be taken to be the minimal ratio
over all congruent rejection sets S that do not have candidate hypothesis H as an element
and that are an extension of the current set R. If we denote the set of all congruent
rejections sets by Φ, we get:

rH(R) = min
S∈Φ: R⊂S,H 6∈S

|LH |
|L \ S| . (3.5)

The only part in the fraction that changes over the different sets S is the denominator. To
minimize the entire fraction, the denominator has to be maximized, which means that we
have to choose the congruent set S in such a way that the number of unrejected leaf nodes
is as big as possible. This is equivalent to choosing the set S to have as few rejected leaf
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nodes as possible. Determining the ratio for a candidate H when the current rejection
set is incongruent thus comes down to extending this set to a congruent set that includes
as few rejected leaf nodes as possible and that does not include H . In order to extend a
rejection set in this minimal way, we use dynamic programming techniques in which the
emphasis lies on an efficient implementation in terms of computation time and memory
usage. In the next section, the exact dynamic programming algorithm is described in de-
tail.

To illustrate the just described procedure, in Figure 3.2 we use our method on a toy
example in which we want to test 10 region hypotheses. At the first step, our only can-
didate node is node H14, as indicated by the light blue color, and we start with testing
this global null-hypothesis on the full α level. Because we have a congruent rejection set
R = ∅, we can use equation (3.4) to verify this. Let us now assume that the raw p-value
of H14 is smaller than α, so we can reject H14 (indicated by a dark blue color in Figure
3.2). In step 2, we have two candidate nodes: H13 and H24. Because the rejection set
R = {H14} is not a congruent set, we use equation (3.5) to find the α-levels on which
we can test H13 and H24. To find the ratio for H13, we have to extend our rejection set
R = {H14} to a congruent set S, without including H13 because this is the node we want
to test and we thus assume that it can be a true hypothesis. The only possibility to extend
{H14} to a congruent set without including H13, is to choose S = {H14, H24, H34, H4}.
If we now divide the length of H13 by the number of unrejected leaf nodes (|L \ S|), we
see that H13 can be tested on the full α-level and by a similar argument, the same holds
for H24. Here the power improvement that comes from using the logical relationships is
apparent. When the logical relations are not taken into account, the α-levels of H13 and
H24 should add up to α, but since we use the information from the previous rejection, we
can test both hypotheses on level α while still controlling the FWER. In the remainder of
the toy example, the α-levels are calculated in the same way. When we have a congruent
situation, we use equation (3.4), in an incongruent situation equation (3.5) is used.

To give an example on how to extend a current rejection set in a minimal way, i.e.
with as few rejected leaf nodes as possible, let us look at Step 3 in Figure 3.2. To calcu-
late the α-level of nodeH12, we have to extend the current uncongruent rejection setR =
{H14, H13, H24} to a congruent set S for which H12 6∈ S. This can either be the set S =
{H14, H13, H24, H23, H34, H3} or the set S = {H14, H13, H24, H23, H34, H3, H4}. In
the first case, the α-ratio will be given by 2/3 (the length of H12 divided by total number
of unrejected leaf nodes, namely H1, H2 and H4), in the second case the α-ratio will
equal 1, because we have only two unrejected leaf nodes left (H1 and H2). It is immedi-
ately clear that, to minimize the ratio, we have to select as few leaf nodes as possible in
our congruent extension S .

It can be easily verified that our critical value function satisfies both conditions im-
posed by the SRP and thus strongly controls the FWER. If we look at our example, to
verify the single step condition, we have to check whether the α-values add up to the
overall α, in case of a congruent rejection set. In step 1 and 5, we are in a congruent situ-
ation, and we see that the α-levels indeed add up to α. This will hold in general, because
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H14 α

H13 H24

H12 H23 H34

H1 H2 H3 H4

Step 1: The global null-hypothesis is tested on level α.

H14

H13 α H24 α

H12 H23 H34

H1 H2 H3 H4

Step 2: After rejectingH14, we can test the hypotheses
that have all their parents rejected. In this case H13 and
H24.

H14

H13 H24

H12
2α
3 H23 α H34

2α
3

H1 H2 H3 H4

Step 3: The candidate nodes are H12, H23 and H34.
To create a congruent rejection set, without including
H23, H1 as well as H4 have to be included, so we can
still test H23 on level α.

H14

H13 H24

H12 H23 H34
2α
3

H1
α
3 H2

α
2 H3 H4

Step 4: Let us look at the α-level of H2 for example.
To make a congruent set without adding H2, we have
to at least include H1 and H3 (because H12 and H23

were rejected earlier). The α-level becomes α/2.

H14

H13 H24

H12 H23 H34 α

H1 H2 H3 H4

Step 5: A congruent situation. Only H34 is tested on
level α.

H14

H13 H24

H12 H23 H34

H1 H2 H3 α H4 α

Step 6: After rejecting H34, both H3 and H4 can be
tested on level α because at most one of them can still
be true.

Figure 3.2: The region procedure: a toy example.
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in a congruent situation, candidate nodes cannot have leaf nodes in common and for that
reason the sum of the numerators in equation (3.4) can never exceed the denominator.

To check whether the monotonicity condition holds in our example, we should check
whether the α-level that a certain unrejected node receives can only increase when more
rejections occurs. If we for example look at node H34, we see that its α-level equals 0
in the first two steps, increases to 2α/3 in step 3 and 4 and increases to α in the fifth
step. We see that the α-level of H34 does not decrease and the same holds for all other
nodes in the graph. In general, the ratio of an unrejected node can never decrease when
more rejection have occurred because its length stays the same (which is the numerator in
equation (3.4)) while the number of unrejected leaf nodes can only decrease (which is the
denominator in this same equation). A formal proof is given in the appendix.

3.2.2 Confidence sets for the number of true rejections in regions
chosen post-hoc

When the procedure can make no further rejections, we have found our final rejection
set R. Although both the region hypotheses as well as the elementary hypotheses have
intrinsic meaning, our reasoning will often be in terms of the latter. Some of them may
be an element ofR, but even if an elementary hypothesis is no part of the rejection setR,
but a larger region containing this hypothesis is, we might still be able to make statements
about the number of false elementary hypotheses in this larger region. Actually, from
the set R, we can derive statements regarding the number of false hypotheses in every
arbitrarily chosen set of elementary hypotheses.

The idea to derive statements regarding the number of false (or true) hypotheses in a
certain set of hypotheses, was introduced by Goeman and Solari (2011). They show that
exact simultaneous confidence sets can be constructed for the number of true rejections
incurred when rejecting any specific set of elementary hypotheses, based on the rejection
set obtained from a closed testing procedure. The possibility of deriving confidence sets
simultaneously stems from the fact that they are all derived from a single application of
the closed testing procedure. Since all rejections within the closure are simultaneously
valid with probability 1 − α, the same holds for all confidence sets derived from these
rejections.

Although the original reasoning was based on a closed testing procedure, this same
reasoning applies to our region procedure. Because all rejections within the region graph
are simultaneously valid with probability 1 − α, confidence statements based on these
rejections will again be simultaneously valid in a post hoc setting.

Suppose our final rejection set is given byR and we want to construct a 100(1−α)%
confidence set for the number of false hypotheses (i.e. true findings) for a given set A of
elementary hypotheses. Such a confidence region will have the form {fα(A), . . . , |A|},
where fα(A) is the minimal number of false hypotheses in A that is in accordance with
our rejection setR. This lower bound is given by

min
S⊇R

|A ∩ S| , (3.6)
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where the minimum is taken over all possible congruent sets S that are extensions of R.
Given that the rejection set contains no type 1 errors (which is the case with probability
1 − α ), one of the possible congruent extensions has to represent the true set of false
hypotheses. For that reason the true number of false hypotheses inA can, with probability
1 − α, not be smaller than the minimal number found over all congruent extensions. To
calculate fα(A) we can again use dynamic programming, as will be described in the next
section.

To give an example of the construction of a confidence set, let us look at Figure 3.2
again. Say our final rejection set is the rejection set as given in Step 4. Even though
none of the elementary hypotheses are rejected, we can construct a confidence set for the
number of false hypotheses in the set A = {H1, H2, H3, H4}. To find fα(A), we have
to construct all possible congruent extensions S ⊇ R, count the overlap between S and
A and take the minimum of that. There are many possible congruent extensions of R,
but since H12 and H23 are contained in R, whereas this holds for none of their children,
we will at least have to include one node from {H1, H2} and one from {H2, H3} in S to
make it a congruent extension ofR. Meeting this condition, while minimizing the overlap
between S and A, will come down to choosing S as R ∪ H2. There is no congruent
extension ofR possible that contains fewer leaf nodes and with 100(1− α)% confidence
we thus know that at least one of the four hypotheses in A has to be false, which results
in the confidence set {1, 2, 3, 4}.

Compared to the standard approach of only looking at the static rejection set, this new
view on the outcome gives the researcher freedom to compose his or her own preferred
set of hypotheses, providing information on the risk of following up on this particular set
in for example a validation experiment.

3.2.3 A weighted-version of the region-method
Until now, the α-level of any candidate hypothesis only depended on the length of this
hypothesis and the specific rejection set. However, in some cases we might want to have
more control over the α-levels. For that reason, an extension of the method in which the
user can assign different weights to the elementary hypotheses has also been constructed.
Let w1, . . . , wm be positive weights, indicating the “importance” of every individual hy-
pothesis. Bigger weights can for example reflect a prior belief that a specific covariate is
associated with the response. Similarly, if the elementary hypotheses would themselves
be regions, the weights could reflect the lengths of these regions. We would like the α-
levels of hypotheses to be proportional to their weights.
To accomplish this, we introduce a new ratio for every candidate hypothesis H . Given a
congruent rejection setR, this new ratio equals

rH(R) =

∑
Hi∈LH

wi∑
Hi∈L\R

wi
. (3.7)
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In this calculation, the denominator thus equals the total weight of the leaf nodes that are
not yet rejected, compared to the total number of unrejected leaf nodes in our previous
version. Note that this new ratio is exactly equal to the one given in formula (3.4) when
all weights equal 1.
Whenever the rejection set R is not congruent, we again extend it in a “minimal way” to
a congruent set S. This time, this means that we have to choose our set S in such a way
that the sum of the weights of the incorporated leaf nodes is as small as possible. When
all weights equal one, this again comes down to constructing S with as few rejected leaf
nodes as possible. Our dynamic programming algorithm will minimize the weights and
can for that reason be used in both situations.

3.3 Algorithms
In this section, we will show that all computations to update the current rejection set Ri
to the new set Ri+1 can be done in O(m) time, given that the raw p-values are known.
Because we haveO(m2) nodes in total, we know that the rejection set can only be updated
O(m2) times, which makes the order of the full algorithmO(m3). Calculating allO(m2)
raw p-values will usually require at least the same number of computations, so given that
all p-values have to be calculated, applying the whole multiple testing procedure will
not increase the order of computations. This result is mainly based on characteristics of
the exact algorithm that is used to calculate the ratios for all candidate hypotheses; an
algorithm which we will explain in detail. However, before presenting the details, we will
first introduce a new definition.

Let our current rejection set again be given by the set R. Now we can distinguish
between two important sets of nodes. The first group are the candidates, the nodes that
have all their ancestor nodes rejected, but are not yet rejected themselves. The second
group consists of those nodes that are rejected themselves but have none of their offspring
nodes rejected. We will call those nodes implications. A rejected leaf node is by definition
also an implication. The name “implication” is chosen, because these nodes imply which
congruent sets are an extension of R. By definition, a congruent extension S of R must
contain at least one element from LH for every H ∈ R. This is however equivalent to
the requirement that S contains at least one element from LI for every implication I ∈ R
because everyH ∈ R is by definition an implication or the ancestor of an implication and
if H ∈ an(I), then LI ⊂ LH .

From now on, every rejection set R can thus be extended to a congruent set, by only
looking at the implications. We already used this idea in subsection 3.2.2. To construct
a congruent extension S of R, where R was chosen to be the rejection set in Step 4 of
Figure 3.2, we only had to look at the rejected nodes without rejected children, namely
H12 and H23, which we would now call implications.
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3.3.1 Dynamic programming algorithm to calculate ratios
Given an incongruent rejection set R, calculating the ratio for a given candidate H thus
comes down to choosing an element from LI for every implication I , without choosing
any element of LH (because our candidate must still be a candidate in the extended set S)
and in such a way that the sum of the weights of the chosen leaf nodes is minimal. This
can be done by formulating the problem in a recursive way.

We assume that we have a set of implications I = {I1, . . . , Ik} in which the implica-
tions are sorted on increasing left-boundaries. We will denote the left and right-boundary
of implication j by l(Ij) and r(Ij). We now want to construct a recursive formula “mw”
(abbreviation of minimal weight), for which mw(h) denotes the smallest possible weight
of a subset of the first h elementary hypotheses, containing h itself and at least one leaf
node of all implications Ij with l(Ij) ≤ h. This subset is said to “satisfy” these implica-
tions. The corresponding recursive formula is given by:

mw(h) =

{
wh h ≤ r(I1),
wh + min

l(Iprev)≤h′≤r(Iprev)
mw(h′) otherwise,

where Iprev is the rightmost implication with r(I) < h.
To see why this formula is correct, it suffices to divide the implications with a left-

boundary l(I) ≤ h in two categories; those with r(I) < h and those with r(I) ≥ h.
The implications in the second category are directly satisfied by including h itself in our
subset of elementary hypotheses with corresponding weight wh. The minimal weight
needed to satisfy all implications in the first group is exactly the minimal weight needed
to reject Iprev and all its predecessors, which is given by the minimum of mw(h) over
all leaf nodes of Iprev . If there are no previous implications, adding h to the rejection set
suffices, which explains the first line.

Although we only need to compute m instances of mw(h), a minimum has to be
calculated repeatedly over the different implications. Calculating such a minimum will
normally cost O(m) steps, from which it would follow that we need O(m2) steps to cal-
culate all values of mw(h) for 1 ≤ h ≤ m. However, we can translate the recurrence
relation into an efficient dynamic program that runs in O(m) space and time, by “updat-
ing” the minimum instead of recalculating it in every step.

Each minimum can be calculated in turn from the currently known values mw(h)
(note that the first r(I1) values of mw(h) can be calculated directly), and from the new
minimum, new values of mw(h) can be calculated. Calculating all minima can be viewed
as a problem in which the minimum over a sliding window has to be calculated. At each
iteration, the window ranges from l(Ii) to r(Ii) for a certain implication Ii and both its
left and right-bound will increase at the next iteration, because the implications are sorted
and can by definition not be nested. Our aim is to construct a sequence Q that only has
potential minima as its values and from which actual minima can be easily retrieved. In
the first iteration, all instances of mw(h) where h ranges from l(I1) to r(I1) are possible
nominees for inclusion in Q. They are appended one by one, but before we add a value,



48 Chapter 3 – A region-based multiple testing method

we check whether there are previous values that are larger (or equal) and we remove those
because they can never be a minimum for any later implication. The sequence we get is
thus strictly ascending. After the first iteration, the minimum of I1 is the first value of Q.
To update Q, we remove all values that have an index smaller than l(I2) and we add all
values from mw(h) within max(r(I1) + 1, l(I2)) and r(I2) in the previously described
way, which ensures that Q remains ascending. Continuing in this way ensures us that the
desired minimum will always be at the front of the sequence at the end of each iteration,
and the whole procedure can be carried out in O(m) time.

Given a candidate Hij , finding the value of the denominator in equation (3.7) now
comes down to using our recursive formula twice. First in the way just described and then
in its reverse direction, starting at hypothesis Hm instead of H1, calculating the minimal
weight needed to satisfy all implications with a right-boundary that is larger than a certain
k, given that k itself will be in the rejection set. Adding mw(i− 1) from the original and
mw(j + 1) from the reversed version will give the desired value. Note that hypotheses
i − 1 and j + 1 always have to be included in the extended rejection set S, because the
parents of Hij are implications which can only be satisfied by taking these hypotheses,
given that no elements from LHij can be included in S.

By calculating both the forward and backward recurrence once for every hypothesis,
we can furthermore calculate the minimal weight needed for the ratio of every candidate
by just summing up two numbers. All ratios corresponding to rejection set R can thus
simultaneously be calculated in linear time. Note that the same algorithm can be used
when R is already congruent. All implications will then be leaf nodes and the extended
set S will exactly equalR.

3.3.2 Complexity
After having developed an algorithm that efficiently calculates ratios, we can implement
the full iterative procedure, as given in formula (3.1). Starting from an empty rejection
set R0, in each step we can identify which nodes are implications and which nodes are
candidates, calculate the ratios and from that the significance levels for each candidate,
and decide, based on the p-values, which candidate nodes can be rejected. These nodes
are added to the current rejection set Ri, to obtain Ri+1, and we continue like this until
no further rejections can be made. It might seem like we need to keep track of the full
rejection setRi in every step to be able to discover the new implication and candidate set,
but we will show that the new set of implications and candidates, Ii+1 and Ci+1, can be
calculated from the previous sets Ii and Ci and the set of newly rejected nodesRi+1 \Ri.
By keeping I and C sorted throughout the algorithm, the implementation can be done
in O(m) time. In terms of memory usage, also only O(m) space is needed. The basic
structure of the corresponding algorithm is given in Algorithm 1. In this algorithm we use
the in section 3.2 introduced notation of(H) and an(H) to indicate the set of offspring
and ancestor nodes of H and we introduce the notation pa(H) and ch(H) to indicate the
parents and children of node H .
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Algorithm 1 : The algorithm corresponding to the region procedure

Requires: αmax and a test to compute p-values

candidates := {H1m}
implications := ∅
α := 0

while candidates 6= ∅
for each c in candidates

compute ratio rc
compute pvalue pc if not done before

/∗ find smallest α that rejects a candidate ∗/
α = max(α,minc∈candidates(pc/rc))
if α > αmax

break

rejected := {c ∈ candidates | pc ≤ rcα}

for each c in rejected
adj_pvaluesc := α

candidates := candidates \ rejected
candidates := candidates ∪ (ch(rejected) \ of(candidates))
implications := rejected ∪ (implications \ pa(rejected))

return adj_pvalues

The most important part of the algorithm is the way in which the implication and
candidate sets are updated. To update the implications, it is enough to note that every
newly rejected node can never have rejected children and is thus a new implication by
definition, whereas every old implication will stay one as long as none of its children got
rejected.

To update the candidates, we should first note that every candidate that was not re-
jected will be a candidate in the next iteration. Furthermore, because of the new rejections,
new nodes might have all their parents rejected. All children of newly rejected nodes are
potential new candidates. To verify whether such a potential candidate indeed has only
rejected parents, it suffices to check whether one of the previously unrejected candidates
is an ancestor of this node. If this is the case, the node must have an unrejected parent,
but otherwise, we can be sure that all its ancestors are rejected and the node should be
included in Ci+1.

From Algorithm 1 it is also clear how adjusted p-values are calculated. At the be-
ginning, some αmax ≤ 1 is specified, which is the level on which the FWER will be
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controlled. Subsequently, in every iteration the minimal overall α-level needed to reject
at least one candidate is determined, and the maximum over this and the previous level
is taken to ensure that the α-level can only increase. This gives us the minimal α-value
needed to reject this candidate (or candidates) and all its ancestors, i.e. its adjusted p-
value. As long as this α-level stays below αmax, rejections will be made. If the level
exceeds αmax, the procedure ends and all remaining adjusted p-values are set to 1.

Because all computations needed to update the current rejection setRi to the new set
Ri+1 can be done in O(m) time and there are O(m2) nodes in total, we know that the
full procedure will have complexity O(m3). A number of factors are still of influence on
the actual performance however. First of all, the complexity O(m3) is only guaranteed if
the raw p-values are already calculated. When, instead of the p-values itself, a test func-
tion is provided, the algorithm will calculate a p-value for every new candidate. If the
test function is fast, this will generally not have too much effect on the performance, and
it can even be seen as an advantage to provide the test function instead of the p-values,
because in this way only the necessary tests have to be performed. In some situations it
can however be advisable to calculate all p-values in advance, because the time needed
to perform all individual tests can become a large factor in the overall computation time.
When the complexity of the test function itself exceeds O(m), the full procedure will no
longer run in O(m3). It will generally be possible to shorten the calculation time needed
to obtain the p-values by using parallel computing. This will be the preferred approach
when the chosen test function is time consuming.

A second factor that influences the performance of our multiple testing procedure is
whether adjusted p-values are calculated. If adjusted p-values are calculated, this will
often result in a multiple testing procedure in which only one or a few hypotheses are
simultaneously rejected in every iteration. To speed up the procedure, one can choose to
not calculate the adjusted p-values and to directly start the procedure at an α-level equal to
αmax. In this way it will often happen that multiple nodes are rejected in every iteration,
which will lower the overall number of iterations. Although the time complexity of this
second method is, in the worst case, equal to the former procedure’s complexity, the time
gain will usually be considerable in practice.

In terms of memory usage, there is also an advantage in using a procedure that does
not calculate adjusted p-values. If the adjusted p-values are not calculated, the output
of our algorithm could be the final rejection set. However, because this rejection set is
completely determined by its implications (R = I ∪ an(I)), it is enough to return the
final set of implications, which is more efficient in terms of memory. If adjusted p-values
are calculated, it is also an option to only get the implications and their corresponding
adjusted p-values returned, instead of the complete rejection set with associated adjusted
p-values.

A last factor that influences the actual performance of our algorithm is the amount of
signal that is present in the data. If there are only few nodes that can be rejected on a
chosen α-level, the procedure will terminate shortly. However, the amount of signal in
the data will usually not be known beforehand.
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Even after precalculating the raw p-values, it is evident that our multiple testing pro-
cedure cannot be used for too large problems given the (worst-case) O(m3) complexity
of the procedure. It will be difficult to specify the order of magnitude of the number of
elementary hypotheses m for which the procedure will still be feasible, since this will de-
pend on the factors already mentioned (whether adjusted p-values are needed, the amount
of signal in the data) and on the exact specifications of the computer used. To give some
indication, we would advise to only calculate adjusted p-values when the number of indi-
vidual hypotheses is smaller than approximately 1000. If m greatly exceeds 10000, our
region method will often be no longer feasible.

3.3.3 Confidence statements
In subsection 3.2.2, we discussed the construction of a confidence set for the number of
false hypotheses in some chosen set A, given a rejection set R. Calculating the lower
bound of this confidence set came down to calculating the minimum as given in equation
(3.6).

As mentioned before, to extend R to a congruent set S, we only have to satisfy all
implications from the set I = {I1, . . . , Ik}. To find the minimal number of false hy-
potheses in A we only have to consider those implications Ij that are fully contained in
A (i.e. LIj ⊆ A), because all other implications can be satisfied without choosing any
hypothesis from A.

We will denote the set of implications that are fully contained in our setA by I ′. Cal-
culating the quantity given in (3.6) now comes down to calculating the minimal number of
hypotheses that are needed to satisfy all implications from I ′. This can be done efficiently
by using the previously described algorithm that calculates the minimal weight needed to
satisfy a given implication set. When we impose equal weights, this algorithm exactly
calculates the minimal number of hypotheses needed to satisfy all these implications, or
in other words, the minimal number of false hypotheses that have to lie in our set A.

3.4 Applications
To illustrate our method, we apply it to both real and simulated data. The real data set
we use comes from Carvalho et al. (2009) and consists of DNA copy number data (ar-
ray CGH) of 68 colon tumors. These tumors have been classified as either "Adenoma"
(33 tumors) or "Carcinoma" (35 tumors). For each chromosome we would like to know
whether there are certain locations in which the DNA copy number differs between the
adenoma and carcinoma tumors. To be able to test for differences we specify multiple lo-
gistic models per chromosome, in which tumor type is the dependent variable and regions
of log2-based intensity ratios are used as predictors. In total we have copy number data
for 4071 positions on the DNA, which results in logistic models that maximally contain a
few hundred covariates each.
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id left-bound right-bound adj. p-value
1. 2 17 0.0445
2. 8 18 0.0450
3. 16 19 0.0436
...

...
...

...
77. 264 276 0.0455
78. 265 277 0.0463
79. 278 278 0.0318

Table 3.1: Summary of rejected regions on chromosome 13.

We use the global test (Goeman et al., 2004) to test all hypotheses of the form

Hij : βi = . . . = βj = 0,

in which βi corresponds to the regression coefficient of the log2-based intensity ratio at
the ith position. With this data type, groups of covariates clearly correspond to physically
meaningful entities. Because the covariates are measurements on specific locations on a
chromosome, a group of neighboring covariates corresponds to a longer stretch of DNA.
Both the exact locations in which the amount of DNA of the two tumor types differ as
well as longer DNA stretches in which this occurs are of interest.

Because this application is mostly intended to illustrate how our method can be used,
we will focus on chromosomes that are known to be associated with colorectal adenoma
to carcinoma progression. Among others, this holds for chromosome 13 (Carvalho et al.,
2009). On this chromosome, copy number ratios are available at 280 positions. After
rejecting the global null-hypothesis H0 : β1 = . . . = β280 = 0, our method tries to
narrow down the exact locations on chromosome 13 in which copy number differences
between the two tumor types occur. Controlling the FWER on α = 0.05 results in many
rejections which can be summarized in 79 implications (i.e. rejected regions that have
no rejected child nodes). In Table 3.1, six of these implications are given together with
their adjusted p-values. On the first row we see that the region ranging from covariate 2
to 17 was rejected, which means that the DNA copy number varies between the adenoma
and carcinoma tumors on at least one but possibly on more of these 16 positions on the
chromosome. Similar statements can be made on basis of the other rows.

Of all 79 implications, three correspond to elementary hypotheses, which means that
our method could only locate three exact locations on the chromosome in which DNA
copy number differs between the two tumor groups. These locations are location 152,
157 and 278. By comparison, if we would have used Holm’s procedure on the elementary
hypotheses only, we would have found 7 exact locations; the aforementioned as well as
location 19, 44, 53 and 170. Even though Holm’s method finds more exact positions that
are associated with the outcome variable, this does not mean that the results obtained with
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our region procedure are less informative. First of all, although our method did not find
location 19, 44, 53 and 170 exactly, it did find small significant regions containing these
locations. The smallest identified regions containing these four locations were respec-
tively region [16, 19], region [44, 50], region [48, 55] and region [169, 170]. Furthermore,
it did find other significant regions (small as well as larger ones) that Holm’s procedure
could not find. These regions give information on possible important DNA stretches that
can explain tumor type differences as well.

In Figure 3.3 the findings of both the region procedure as well as Holm’s procedure
are visualized in two graphs that are similar to the one shown in Figure 3.1, but plotted in
less detail because of their size. All possible regions, ranging from length 1 to length 280,
are plotted, and are depicted in color when they could be rejected at an overall α level of
0.05 and are left blank otherwise. From the third graph, that summarizes the results of
the two methods in one plot, we see that our region method does approximately locate the
same regions as Holm’s procedure (although not always as specifically) and finds in ad-
dition other regions of potential importance. The total number of region hypotheses that
Holm’s procedure rejected equals 28113, whereas our method could reject 32793 region
hypotheses. Since all region hypotheses are hypotheses of interest, the total number of
rejections made is a relevant performance measure, and from this measure we can con-
clude that our region procedure has an advantage over Holm’s method on this data set.
Furthermore, even though we can only locate three influential covariates exactly, follow-
ing the reasoning of subsection 3.2.2, we can calculate the minimal number of influential
covariates that have to be present in the full set of 280. We find that we must have at
least 19 of these influential covariates, which is more than the 7 locations found by using
Holm’s procedure.

On chromosome 13, there seem to be multiple interesting stretches of DNA that can-
not always be narrowed down to one exact location. This is a situation in which our
method can be very valuable, because it does not only look for exact locations and can
benefit from small neighboring effects that can be detected together. However, when
the elementary hypotheses itself are very significant, Holm’s method will often detect as
much as our method. This happens in chromosome 20 for example. On this chromosome
we have 228 locations on which the DNA copy number variation is measured and Holm’s
method is able to find 190 of these to be significantly associated with the outcome. The
results of our method are very comparable (at least 188 influential covariates, of which
187 are exactly located), but there’s no advantage in using it. A note we can make here
is that the test we use might also not be the best choice for this situation because it is
especially designed for detecting small non-sparse effects. As already described in sec-
tion 3.2, our method equals Holm when all intersection hypotheses are tested with simple
Bonferroni combinations, and the fact that Holm outperforms our method in this specific
situation thus also points out that our choice for the global test is a suboptimal one in this
situation.

To get a better idea of the performance of our method compared to Holm’s procedure,
we also performed a simulation study. In our simulations, we use n-dimensional outcome
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vectors y that depend on a pre-specified number l of “latent” variables zi and a random
term u in the following way:

y =

l∑
i=1

βzi + u,

where β is a scalar and each latent vector zi as well as the error term u are n-dimensional
standard-normal vectors. The actual data matrix X of dimension n times p is then de-
signed to contain both influential and noise components. Each latent variable zi, with
1 ≤ i ≤ l is used to create k influential covariates xij , with 1 ≤ j ≤ k, where the i
indicates the corresponding latent variable:

xij = zi + εij ,

where εij is again standard normally distributed. This results in l groups of k correlated
covariates. Subsequently, these groups are approximately equidistantly distributed over
the p columns of the design matrix X . The remaining columns are filled by randomly
generated variables vi with vi ∼ N (0, 1). The matrix X thus contains l × k influential
and p− l × k uninfluential columns.

Two important factors that can be varied are the number of variables k per group and
the effect size (as given by β). With 10 underlying variables zi, multiple group sizes k
and multiple values for β, we performed 1000 simulations per setting. The number of
overall covariates p and the number of subjects n were both set to 100. The test we used
was again the global test and the FWER was controlled on α = 0.05.

In every setting we kept track of five outcome measures, namely the total number
of region hypotheses that could be rejected by our procedure and by Holm’s method as
well as the total number of elementary hypotheses that could be rejected by those two
procedures. In addition, we calculated the lower bound of the 95% confidence set for the
number of influential covariates by using the final rejection set of our region procedure.

In Table 3.2 the outcomes of these experiments are given. Every number is the mean
over 1000 simulations. The number in between brackets is the corresponding standard
error. We see the numbers go up when the groups get larger (which of course means
that there is also more to find) and when β increases. If we compare column 5 and 7,
we see that our procedure is always able to reject more region hypotheses. However,
our method is worse in specifying exactly which variables are influential. In every sit-
uation, Holm’s method outperforms our method in this respect, although the differences
are small. Still, our method is able to make confidence statements about the expected
number of influential variables, which indicate that there are at least twice as many in-
fluential variables than detected by Holm’s method in every situation. It will depend on
the situation whether statements about the true number of underlying influential variables
in a certain region will be preferred over a smaller but more informative number of truly
detected influential variables. We repeated the procedure with 5 instead of 10 latent vari-
ables and could conclude the same.

In conclusion, our method is good at discovering whether a data set contains influen-
tial variables and at finding the areas where these variables will approximately be located.
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Nevertheless, when the exact locations of the influential covariates are of main interest,
Holm might perform just as well (and faster). However, there are situations possible in
which only groups of covariates can be detected. If we would have a regression setting
in which p exceeds n and our hypotheses would state that a certain covariate or group of
covariates is not associated with the response given the remaining covariates, a single co-
variate will never get detected. Groups of covariates on the other hand can be identifiable.
In such a situation, our method would work, but Holm’s method could only be used after
specifying all possible interesting sets in advance. Without a clear idea of the exact signal
in the data, this could lead to many groups and a severe multiple testing correction. Our
method does not need a pre-specification of the interesting sets and uses the structure of
the data to find them itself.

3.5 Discussion
We have presented a multiple testing method that tests all possible region hypotheses,
corresponding to a set of ordered elementary hypotheses, in a hierarchical way. Because
of the method’s top-down approach the multiple testing burden is reduced and smaller
regions are only tested when association with the outcome variable is expected based on
significance of larger regions they are contained in. Given that failing to reject a cer-
tain region means that all the regions it embeds can never be tested, the choice to make
the α-distribution proportional to the region lengths is intuitive. In addition, the specific
structure in the hypotheses enables us to reduce the multiple testing burden further by
using information on restricted combinations, i.e. by constructing congruent sets before
distributing the α. Our method strongly controls the FWER, independently of the under-
lying correlation structure in the hypotheses and can be used with every valid hypothesis
test. It is even possible to use different hypothesis tests for different regions. If one would
suspect that a certain test statistic is most powerful on higher levels, whereas another is
more powerful for the smaller regions, both tests could be used in different places. Fur-
thermore, even if the final rejection set does not include (many) elementary hypotheses,
our method enables us to derive statements on the minimal number of elementary hy-
potheses in arbitrary regions or other sets that have to be false.

In this article, we looked at a specific α-rule, which only attributes parts of the overall
α to nodes that have all their parent nodes rejected. It would be interesting to also look at
rules in which nodes can already be considered for testing if only one of their parents is
rejected. Such rules will probably have different behavior than the one we chose, but will
unfortunately be more difficult to formally state and program.

Apart from extending the current region framework, it could also be very useful to
try to apply this methodology to problems in which the local hypotheses do not neces-
sarily have to be regions, but can be more arbitrary sets of elementary hypotheses. This
would lead us into the direction of directed acyclic graphs, a family of graphs of which the
region-graph is a special case. The sequential rejection principle can in principle be used
to construct multiple testing procedures and their corresponding α-rules for every set of
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hypotheses that gives rise to certain logical relationships. However, different algorithms
will be required for each set of hypotheses in order to be able to efficiently calculate the
α-values on which these hypotheses can be tested. In this article we described an efficient
algorithm to calculate the α-levels for region hypotheses, but this algorithm is specifically
designed for the logical structure as imposed by the region hypotheses, and different tech-
niques will be needed in order to find efficient algorithms for multiple testing problems
with a different structure.

3.6 Appendix
Theorem 3.6.1. The region procedure strongly controls the FWER.

Proof. Recall that the significance levels allocated to each hypothesis H in the region
procedure are specified in the following way:

αH(R) = α× rH(R),

where the ratio rH(R) is given by

rH(R) =

 min
S∈Φ: R⊆S,H 6∈S

∑
Hi∈LH

wi∑
Hi∈L\S

wi
if pa(H) ⊆ R and H 6∈ R

0 otherwise,
(3.8)

where Φ denotes the set of all congruent rejections sets.

In order to show that this procedure strongly controls the FWER, it suffices to show
that the two conditions, as imposed by the SRP, hold. First, we will check the monotonic-
ity condition:
LetR be a rejection set,R′ ⊇ R an arbitrary extension and H 6∈ R′ an hypothesis.
If rH(R) = 0, then clearly rH(R) ≤ rH(R′). Otherwise, we know that pa(H) ⊆ R ⊆
R′. Hence

rH(R) = min
S∈Φ: R⊆S,H 6∈S

∑
Hi∈LH

wi∑
Hi∈L\S

wi

≤ min
S∈Φ: R′⊆S,H 6∈S

∑
Hi∈LH

wi∑
Hi∈L\S

wi
= rH(R′),

from which it follows that (3.2) holds.
To show that the single step condition holds, first note that the first case in equation

(3.8) reduces to equation (3.7) in case of a congruent rejection set R. Given that the
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rejection setR is congruent, the following holds:

∑
H∈H\R

rH(R) =
∑

H∈H\R : pa(H)⊆R

∑
Hi∈LH

wi∑
Hi∈L\R

wi

=

∑
Hi∈LH : H∈H\R,pa(H)⊆R

wi∑
Hi∈L\R

wi
= 1

from which it follows that (3.3) holds.
In the last step, we used that whenever the rejection set R is congruent, candidates

cannot have leaf nodes in common. Indeed, if this could happen, we would have distinct
candidates Hij and Hkl with i ≤ k ≤ j ≤ l, from which it follows that Hil is also a
region hypothesis. Because Hij and Hkl are candidates, we know that all their ancestor
nodes have to be rejected, including this hypothesis Hil. Because Hil is rejected and R
is congruent, we have to have one of the hypotheses of LHil

inR, but we know that none
of the hypotheses from LHij

and LHkl
can be in R, since Hij and Hkl are candidates,

which leads to a contradiction.

Theorem 3.6.2. Region procedure with Bonferroni local test is equivalent to Holm’s pro-
cedure.

Proof. Say we have m elementary hypotheses H1, . . . ,Hm with corresponding raw p-
values p1, . . . , pm, and suppose we are using our region procedure in a situation where
the rejection setR is congruent and contains r elementary hypotheses. In such a situation,
each candidate HI gets an α-level αI of |I|

m−rα. To be able to reject any HI with a
Bonferroni test on this level, we need the following:

∃i ∈ I : pi ≤
α

m− r . (3.9)

As soon as we have such a pi and corresponding Hi, we cannot only reject the candidate
HI with i ∈ I , but also all smaller region hypotheses HJ with i ∈ J , because these get
α-levels αJ ≥ |J|

m−rα and can for that reason again be rejected because of containing
Hi. This means that Hi itself can be rejected as well, and that our rejection set R is
again congruent. Given r already rejected elementary hypotheses, the region procedure
in combination with a Bonferroni test can thus reject an elementary hypothesis if and only
if we meet condition (3.9). The exact same criterion holds for Holm’s procedure which
shows their equivalence.
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