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2
Extending Hommel’s procedure: Efficient

algorithms for closed testing based on
Simes’ test

Abstract
We present an algorithm to calculate adjusted p-values as given by Hommel’s procedure
more efficiently. Furthermore, we explain how one can easily verify whether an inter-
section hypothesis can be rejected by a closed testing procedure in combination with a
Simes’ test, without having to carry out this full procedure. Using this observation, we
subsequently develop an algorithm that, based on this same closed testing procedure, cal-
culates confidence sets for the number of true (or false) hypotheses within any set of
elementary hypotheses.

This chapter has been submitted as: Rosa J. Meijer, Thijmen J.P. Krebs, Aldo Solari and Jelle J. Goeman.
Extending Hommel’s procedure: Efficient algorithms for closed testing based on Simes’ test.
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14 Chapter 2 – Extending Hommel’s procedure

2.1 Introduction
When multiple null-hypotheses are tested, a multiple testing correction is needed in order
to prevent false positive results. For this reason, methods that control the familywise error
rate (FWER) have been developed. The familywise error rate is defined as the probabil-
ity of at least one type I error, where a type I error is the rejection of a null-hypothesis
that was actually true. Controlling the FWER on significance level α thus means that the
probability of having only correct rejections is at least 1− α.

In this paper, we will focus on the multiple testing method of Hommel (1988); a
method that controls the FWER under certain assumptions. Hommel’s method is a short-
cut for the closed testing procedure, as developed by Marcus et al. (1976), in which in
addition to all elementary null-hypotheses each intersection hypothesis is tested with a
Simes’ test, as we will explain in more detail in the next section. Whereas carrying out a
closed testing procedure takes exponential time with respect to the number of elementary
null-hypotheses, say n, the current implementation of Hommel’s procedure will only take
Θ(n2) time. This can still be slow however, when the number of elementary hypotheses
is very large. This can happen in a genomic context for example. One could think of
research in which the aim is to find certain SNPs (Single Nucleotide Polymorphisms) or
genes that are associated with an interesting outcome variable, such as a specific disease.
Often there are many candidate SNPs or genes, which results in many elementary hy-
potheses. To be able to still use Hommel’s procedure in such situations, we developed
an algorithm that carries out Hommel’s procedure in O(n log(n)) time. With this new
procedure, it will be feasible to use Hommel’s multiple testing method even if there are
millions of elementary hypotheses.

Hommel’s method is specifically developed to test the elementary null-hypotheses,
but for genomic data not only the elementary hypotheses are of interest but looking for
an association between the outcome and for example sets of interacting genes can be of
interest as well. These gene sets could be presented as intersection hypotheses, which are
the hypotheses tested in a closed testing procedure. To find out whether a certain inter-
section hypothesis can be rejected within a closed testing procedure will usually take a lot
of time, but in this article we will show that, if the Simes’ test is used throughout the full
closed testing procedure, there is an easy rule that can be used to decide whether a certain
hypothesis can be rejected by the closed testing procedure, without having to carry out
this full procedure.

If the intersection hypothesis can be rejected, or in our example, if the gene set is
shown to be associated with the outcome, the next question could be how many of the
individual genes are at least associated with the outcome. Goeman and Solari (2011)
showed that this question can be answered by using the outcome of a full closed testing
procedure. Using this procedure, we can make confidence sets for the number of true
(or false) hypotheses within every arbitrarily chosen set of elementary null-hypotheses.
Because the full closed testing procedure will again be too time-consuming to carry out
fully, once more we will use the fact that we are using a Simes’ test within this procedure.
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From this it will follow that not all intersection hypotheses have to be tested and we will
show that the confidence statements can be obtained by means of a fast algorithm.

In the remainder of this article we will describe two algorithms: one that can be used
to carry out Hommel’s method efficiently, and one that can be used to derive confidence
statements. In Section 2.2, we will first give a short introduction to Hommel’s method and
the corresponding closed testing procedure. In section 2.3 we will subsequently present a
faster way to carry out Hommel’s procedure. In section 2.4 we will say more about con-
fidence statements and we will describe the algorithm to derive them. In the Application
section, we will further illustrate our algorithms on the basis of some real and simulated
data examples and we will conclude with a short discussion.

2.2 Hommel’s procedure
In this article, we will focus on one of the four most well-known FWER controlling
multiple testing methods, namely the procedure of Hommel (1988). The other three
are the methods of Bonferroni (Bonferroni, 1935) , Holm (Holm, 1979) and Hochberg
(Hochberg, 1988). All these methods start from the n raw (i.e. unadjusted) p-values
p1, . . . , pn corresponding to the n null-hypotheses of interest H1, . . . ,Hn. In the remain-
der of this article, we will for convenience assume that p1 ≤ p2 ≤ . . . ≤ pn, where
potential ties are broken arbritarily. Bonferroni’s and Holm’s method both control the
FWER without making assumptions on the dependence of the raw p-values. Although
this is a strong property of these methods, the methods can be rather conservative for this
same reason. The methods of Hochberg and Hommel on the other hand are only valid un-
der some assumptions on the underlying dependency structure of the p-values, but these
assumptions are usually not considered too restrictive, and the methods are less conserva-
tive compared to Bonferroni’s and Holm’s method. Hochberg’s procedure is faster than
Hommel’s procedure, but is less powerful (Hommel, 1989). We will show however that
Hommel’s procedure can be implemented in such a way that it has the same time com-
plexity as Hochberg’s procedure which will make it the preferred method of the two in
every situation.

Hommel’s procedure is a shortcut of the closed testing procedure of Marcus et al.
(1976). In the closed testing procedure, all possible intersection hypothesesHI =

⋂
i∈I Hi,

with I ⊆ {1, . . . , n} nonempty, are tested on level α with a certain α-level test which is
called the local test. In Figure 2.1 the collection of all intersection hypotheses in the
situation in which we have 3 elementary null-hypotheses is displayed. An intersection
hypothesis HI (note that an elementary hypothesis Hi is also an intersection hypothe-
sis) is subsequently rejected if and only if all intersection hypotheses HJ with I ⊆ J
can be rejected by this local test. If we denote the intersection hypothesis of all n0 true
null-hypotheses byHT , where T thus denotes the index set consisting of all indices corre-
sponding to an Hi that is in fact true, we see that the closed testing procedure controls the
FWER if HT is tested with a valid α-level test. Each true (intersection) null-hypothesis
HT ′ can only be rejected if the same holds for HT , since T ′ ⊆ T , and if HT is tested
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H1 ∩H2 ∩H3

H1 ∩H2 H1 ∩H3 H2 ∩H3

H1 H2 H3

Figure 2.1: All intersection hypotheses for a set of 3 elementary hypotheses in the form
of a graph. The nodes represent the hypotheses, the edges denote underlying subset rela-
tionships.

with a valid test, this can only happen with probability at most α.
Hommel’s procedure is based on the closed testing procedure in combination with a

Simes’ test as developed by Simes (1986). This test is based on the following inequality:

P

(⋃
i∈I

{
pi ≤

rkI(i)α
|I|

})
≤ α, (2.1)

where |I| denotes the size of set I and rkI(i) is the rank of p-value pi within the set of p-
values {pi : i ∈ I}, that is, rkI(i) = |{i′ ∈ I : i′ <= i}|. Based on this Simes’ inequality,
an intersection hypothesis HI will be rejected by a Simes’ test if and only if there is at
least one p-value pi with i ∈ I for which pi ≤ rkI(i)α/|I|. To have a valid α-level test
for the intersection hypothesis HT of all true null-hypotheses, inequality (2.1) must hold
for the n0 p-values corresponding to the n0 true null-hypotheses. The assumptions on the
dependence of the n0 p-values needed to make this inequality hold are technical but fairly
general as well (see e.g. Sarkar, 1998; Goeman and Solari, 2014) and the Simes’ test will
for that reason be valid in many situations. For example in the situation where we have p-
values from identically distributed, non-negatively correlated test statistics (Goeman and
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Solari, 2011). Because Hommel’s multiple testing method is based on the Simes’ test, it
will control the FWER given that the assumptions underlying the validity of the Simes’
test are met.

Although Hommel’s method will reject the same elementary hypotheses as the closed
testing procedure in combination with a Simes’ test, the fact that the method is a shortcut
of the closed testing procedure means that not all 2n − 1 intersection hypotheses have to
be tested in order to find out which of the n elementary hypotheses can be rejected. For
n null-hypotheses H1, . . . ,Hn with ordered p-values p1 ≤ . . . ≤ pn, using Hommel’s
method to control the FWER on level α comes down to computing

j(α) = max {s ∈ {1, . . . , n} : pn−s+k > kα/s, for k = 1, . . . , s} , (2.2)

and rejecting all Hi with pi ≤ α/j(α), or all Hi if this maximum does not exist. The
maximum j(α) can be seen as the size of the largest intersection hypothesis HI , with
I ⊆ {1, . . . , n} that cannot be rejected with a Simes’ test on level α. If such an hy-
pothesis does not exist, this means that all intersection hypotheses and for that reason all
elementary hypotheses can be rejected. From the formula it is clear that in order to find
whether there is any intersection hypothesis HI of a certain size |I| = s that cannot be
rejected by a Simes’ test, Hommel only looks at the hypothesis HI that is most difficult
to reject. This will always be the intersection HI =

⋂n
i=n−s+1Hi of the s elementary

hypotheses with the s largest unadjusted p-values (Wright, 1992). If this hypothesis can
be rejected, the same will hold for all intersection hypotheses of the same size.

Using this procedure will give the elementary hypotheses that can be rejected while
controlling the FWER on one specific α-level. To have more information than just the
statement whether to reject a specific hypothesis or not, for each Hi we can calculate
an adjusted p-value instead, which is the smallest overall significance level at which the
corresponding hypothesis would be rejected within the multiple testing setting (see e.g.
Wright, 1992). In case of a closed testing procedure, the adjusted p-value for an intersec-
tion hypothesisHI would thus be the minimum value of α needed to reject all intersection
hypotheses HJ with J ⊇ I .

In Hommel’s procedure, to find adjusted p-values for all elementary hypotheses Hi,
we need to compute the maximum j(α) as given in equation (2.2) not only for one value
of α, but for all values of α ∈ [0, 1]. This will result in a step-function j, where j(α) is
the size of the largest intersection hypothesis that cannot be rejected (with a Simes’ test)
on this α-level. As j is a step function, it suffices to find the values of α on which the
function jumps. We will see that those jump values can be easily determined once we
computed the minimum α-level needed to reject all intersection hypotheses HI of size
s = |I|, which we will denote by αs, for each value s ∈ {1, . . . , n}.

As explained before, the minimum α needed to reject all intersection hypotheses
of size s will equal the minimum α needed to reject the intersection hypothesis HI =⋂n
i=n−s+1Hi which is the intersection of the s elementary hypotheses with the largest

p-values. To find the minimum α needed to reject this hypothesis with a Simes’ test
comes down to finding the smallest value of α for which pn−s+k = kα/s for at least one
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k ∈ {1, . . . , s}. So, for each s ∈ {1, . . . , n}, αs is given by:

αs = min
k∈{1,...,s}

s

k
· pn−s+k = s · min

k∈{1,...,s}

pn−s+k
k

. (2.3)

Computing n of those minima will normally take Θ(n2) time and this is also how Hom-
mel’s procedure is currently implemented in the R-function p.adjust. In the next sec-
tion, we will explain how the complexity can be reduced from Θ(n2) to O(n log(n)) by
using information from the location of previously calculated minima to make computing
new minima easier.

2.3 More efficient implementation of Hommel’s proce-
dure

Calculating all minima given in equation (2.3) is equivalent to finding a minimum in each
column of the following matrix M :

M =



p1

p2
2 p2

p3
3

p3
2 p3

p4
4

p4
3

p4
2 p4

...
...

...
...

. . .
pn
n

pn
n−1

pn
n−2

pn
n−3 . . . pn


.

To see how the the number of steps needed to find a minimum in each column can be re-
duced from Θ(n2) to O(n log(n)), we formulate the following lemma and corresponding
proof.

Lemma 2.3.1. If, for matrix M , a minimum in column c is found on the ith row, a
minimum in column c′ with c′ < c will be found on a row j with j ≤ i and a minimum
in column c′ with c′ > c will be found on a row j with j ≥ i.

Proof. Suppose a minimum in column c is found on row i, which means the minimum is
given by pi

i−c+1 . Being a minimum means that:

∀j 6= i, j ∈ {c, . . . , n} :
pi

i− c+ 1
≤ pj
j − c+ 1

. (2.4)

For a column c′ < c, it now suffices to show that

∀j > i :
pi

i− c′ + 1
≤ pj
j − c′ + 1

,
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which leads to the first statement of lemma 2.3.1.
To show that this holds, we take j > i and start by multiplying both sides of equation
(2.4) by (i− c+ 1)(j − c+ 1) which gives:

pi(j − c+ 1) ≤ pj(i− c+ 1).

Since (c− c′)pi ≤ (c− c′)pj because pi ≤ pj for i < j and c′ < c, adding this inequality
gives:

pi(j − c′ + 1) ≤ pj(i− c′ + 1).

Dividing both sides by (j − c′ + 1)(i− c′ + 1) now gives the desired result:

pi
i− c′ + 1

≤ pj
j − c′ + 1

.

The second statement in lemma 2.3.1 now immediately follows from a proof by contra-
diction. Given that a minimum in column c is found on row i, assume that a minimum
in column c′ with c′ > c is found in row j with c′ ≤ j < i. From the first statement in
lemma 2.3.1 it would now follow that a minimum in column c would lie in a row k with
c ≤ k ≤ j < i which is a contradiction. A minimum in column c′ must thus be found on
a row j with j ≥ i.

By using Lemma 2.3.1, finding the minimum in every column of the previously de-
fined matrix M can be done in O(n log(n)) steps by dividing the matrix in sub matrices
in every step and always computing the minimum in the middle column of a sub matrix.
We start by taking the minimum of the middle column m, which we will assume to be at
row i. This will take O(n) steps. The matrix is now naturally divided in two sub matri-
ces; the matrix consisting of column 1, . . . ,m− 1 and row 1, . . . , i because all minima in
those columns can, by Lemma 2.3.1, only be in these rows, and the matrix consisting of
column m + 1, . . . , n and row i, . . . , n. For both sub matrices we take the minimum of
their middle column. This time, calculating both minima simultaneously will take O(n)
steps. Both matrices are now divided in two new sub matrices, which gives four sub ma-
trices for which we can find the four minima of their middle columns in O(n) time and
so we continue. In each step, twice the number of minima compared to the previous step
are calculated, and finding the minima for all n columns will thus take dlog(n)e steps.
In each step, all minima can be simultaneously calculated in O(n) time which brings the
complexity of the whole procedure to O(n log(n)).

Finding all values of αs as given in equation (2.3) can thus be done in O(n log(n))
time. We can order those n values from αn to α1 and subsequently take a cumulative
maximum to get the minimum α-values on which all intersection hypotheses HI of size
|I| and larger can be rejected. We will denote the sequence of cumulative maxima by
α∗n, α

∗
n−1, . . . , α

∗
1. Whereas, for the Simes critical values, it is easy to show that α∗s = αs

for all s ∈ {1, . . . , n}, we keep the distinction between αs and α∗s for conceptual reasons
and for easier generalizability of the algorithm to other critical values. From the values of
α∗s with s ∈ {1, . . . , n} we can directly calculate the function j. For α < α∗n, j(α) = n
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because the overall intersection hypothesis cannot be rejected on these levels. At α = α∗n,
j jumps to s−1, where s is the smallest value for which α∗s = α∗n. Indeed, all intersection
hypotheses HI for which |I| ≥ s can be rejected on this α-level but there is at least one
intersection hypothesis HI with |I| = s − 1 which cannot be rejected on this level. The
next jump of j will subsequently be at α∗s−1, et cetera. The function j will thus jump on
all distinct values in the sequence α∗n, . . . , α

∗
1 and the size of the jump will depend on the

number of successive equal values in this sequence.
From j we can subsequently calculate adjusted p-values for each elementary hypoth-

esis Hi with corresponding p-value pi by finding the minimum value of α for which
pi ≤ α/j(α). For all n elementary hypotheses this can be done simultaneously in O(n)
time. Given n elementary hypotheses H1, . . . ,Hn with corresponding (sorted) p-values
p1, . . . , pn, we thus showed that finding the adjusted p-values based on Hommel’s mul-
tiple testing procedure can be done in O(n log(n)) time, which is the same order that is
already needed for sorting the p-values, which is a requirement for Hochberg’s and Hom-
mel’s procedure as well. In the Application section, we will provide some data examples
to illustrate the gain in computation time when using this new algorithm compared to the
current implementation as found in the R-function p.adjust.

In addition to rejecting elementary hypotheses, we also want to look at intersection
hypotheses HI and formulate confidence statements for the number of elementary hy-
potheses Hi with i ∈ I that have to be false with probability 1−α for a given α. For this
purpose, we will again use the function j as we will explain in the next section.

2.4 Confidence Sets
Given the n elementary hypotheses H1, . . . ,Hn, we know there is a subset of the ac-
tual true hypotheses. Let T ⊆ {1, . . . , n} denote the unknown index set corresponding
to these true hypotheses. In this section, we will discuss how confidence sets can be
constructed for the number of true hypotheses τ(S) = |T ∩ S| within an arbitrary set
{Hi : i ∈ S} of elementary hypotheses with S ⊆ {1, . . . , n}.

If Hommel’s procedure is used on the elementary hypotheses, there will usually be
some hypotheses that cannot be rejected on a certain α-level. This does not imply however
that these hypotheses are true hypotheses. Carrying out the full closed testing procedure in
which all possible intersection hypothesesHI =

⋂
i∈I Hi with I ⊆ {1, . . . , n} nonempty

are tested with a Simes’ test on this same α-level can result in the rejection of intersection
hypothesesHI for which none of the corresponding elementary hypothesesHi with i ∈ I
can be rejected. Because an intersection hypothesis HI is true if and only if all Hi with
i ∈ I are true, rejecting HI within the closed testing procedure means that with probabil-
ity at least 1− α one or more of the corresponding elementary hypotheses Hi were false,
even though the exact hypotheses cannot be identified by the closed testing procedure, or
equivalently by Hommel’s procedure. Using the full closed testing procedure instead of
Hommel’s procedure can thus result in more information about the number of true (and
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H1 ∩H2 ∩H3H1 ∩H2 ∩H3

H1 ∩H2H1 ∩H2 H1 ∩H3 H2 ∩H3

H1 H2 H3

Figure 2.2: All intersection hypotheses for a set of 3 elementary hypotheses. When p1 =
p2 = 2

3α and p3 > α, using the closed testing procedure in combination with a Simes’ test
results in two rejections (indicated by the crosses) but none of the elementary hypotheses
are rejected. Hommel’s method will for that reason result in no rejections, while the
results of the closed testing procedure show that at least one of the first two elementary
hypotheses has to be false with probability at least 1− α.

false) elementary hypotheses.
An example of such a situation is given in Figure 2.2. In this example, the intersec-

tion hypothesis H1 ∩ H2 was rejected by the closed testing procedure in combination
with a Simes’ test, but neither H1 nor H2 could be rejected by the same procedure. Still,
we know that at least one of these two hypotheses has to be false with probability at
least 1 − α, because if H1 ∩ H2 is justly rejected this can only be because at least one
of its components is a non-true hypothesis. This statement can be seen as a confidence
statement about the number of false null-hypotheses within the set {H1, H2}. Similar
statements, all based on the results of the full closed testing procedure, could be made for
any arbitrary set of elementary hypotheses, as proposed by Goeman and Solari (2011).

Goeman and Solari (2011) showed that, given the results of one closed testing proce-
dure, for each arbitrary set of elementary hypotheses a confidence set can be constructed
for the number of true hypotheses within this set. All confidence sets are simultaneously
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valid, because they all follow from the same closed testing procedure of which the results
are valid with probability at least 1 − α. If we denote the set of all possible intersection
hypotheses, also called the closure, by C and if we denote the set of all hypotheses that
are rejected by the closed testing procedure on level α by R ⊆ C, Goeman and Solari
(2011) showed that each 100(1 − α)% confidence set for the number of true hypotheses
τ(S) within a set {Hi : i ∈ S} can be given by

{0, . . . , tα(S)}, (2.5)

with
tα(S) = max{|I| : I ⊆ S,HI 6∈ R}, (2.6)

where tα(S) = 0 if such an HI does not exist. The quantity tα(S) is the size of the
largest subset of S for which the corresponding intersection hypothesis is not rejected by
the closed testing procedure.

Often, not the number of true hypotheses within a given set, but the number of false
hypotheses within this set will be of interest because false hypotheses usually correspond
with actual findings. The 100(1−α)% confidence set for the number of false hypotheses
φ(S) = |S| − τ(S) follows immediately from (2.5):

{fα(S), . . . , |S|}, (2.7)

where fα(S) = |S| − tα(S).
To construct both confidence sets, as given in (2.5) and (2.7), all that is needed is thus

the quantity tα(S) which is the largest subset of S for which the corresponding inter-
section hypotheses cannot be rejected by the closed testing procedure. In the remainder
of this section we will discuss a procedure to compute tα(S) in an efficient way. For
this, we first need a method that allows us to easily verify whether an hypothesis HI can
be rejected by the closed testing procedure. Based on this method, we can subsequently
develop an algorithm that calculates tα(S) and fα(S).

2.4.1 Determining whether an hypothesis can be rejected by the closed
testing procedure in an efficient way

To find the size of the largest intersection hypothesis HI , I ⊆ S that cannot be rejected
by the closed testing procedure, we could proceed as before, and check for each s from
|S| to 1 whether the intersection hypothesis HI , I ⊆ S and |I| = s, that is most difficult
to reject, i.e. the intersection of s elementary hypotheses Hi, i ∈ S corresponding to the
largest possible p-values pi, can be rejected within the full closed testing procedure. The
difficult part here is that we have to decide whether HI can be rejected within the closed
testing procedure, meaning that we need to know whether all hypotheses HJ with J ⊃ I
can be rejected with a Simes’ test on a certain α-level.

Verifying naively whether all hypothesesHJ with J ⊃ I can be rejected with a Simes’
test will generally not be feasible. Motivated by the flow chart (Fig. 3) of Hommel (1986),
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we propose a simple procedure, as given in Procedure 2.4.1, that can be used to directly
determine whether an hypothesis HI can be rejected within the closed testing procedure.
This procedure is preceded by Theorem 2.4.1. Throughout, we will assume that j(α)
exists, since otherwise all elementary hypotheses and thereby all intersection hypotheses
can be rejected.

Theorem 2.4.1. The closed testing procedure in combination with a Simes’ test rejects
an intersection hypothesis HI on level α if and only if there exists some i ∈ I such that

pi ≤
rkI(i)α
j(α)

.

Proof. Suppose there exists some i ∈ I with pi ≤ rkI(i)α
j(α) . Given that |I| > j(α), from

the definition of j(α) it follows that this hypothesis is also rejected in the closed testing
procedure on level α. Given that |I| ≤ j(α), let us consider all intersection hypotheses
HJ with J ⊇ I . If all these intersection hypotheses can be rejected by a Simes’ test
on level α, we know that the closed testing procedure will reject HI . Note that, for all
intersection hypotheses HJ with |J | > j(α) we already know that they will be rejected
by the closed testing procedure, so we can only look at hypotheses HJ with |J | ≤ j(α).
Given such an HJ , we know that pi ≤ rkJ (i)α

j(α) , since rkI(i) ≤ rkJ(i). To reject HJ with

a Simes’ test on level α there must be a pi′ ≤ rkJ (i′)α
|J| . We have:

pi ≤
rkJ(i)α

j(α)
≤ rkJ(i)α

|J | ,

because |J | ≤ j(α), from which it follows that all hypotheses HJ with J ⊇ I (thus
including HI ) can be rejected by the closed testing procedure.
Now suppose there is no i ∈ I with pi ≤ rkI(i)α

j(α) . Note that this can only happen if
|I| ≤ j(α), otherwise HI is rejected by the Simes’ test on level α by definition of j(α)
and therefore for some i ∈ I we have that

pi ≤
rkI(i)α
|I| <

rkI(i)α
j(α)

.

Given that |I| ≤ j(α), we will show that there is an intersection hypothesis HJ with
J ⊇ I such that HJ cannot be rejected by a Simes’ test, which implies that HI cannot be
rejected by the closed testing procedure. Consider the intersection hypothesis HJ , with
J ⊇ I and |J | = j(α), that is most difficult to reject. This hypothesis will contain, for
some l, the l largest p-values pn−l+1, . . . , pn and the remaining j(α)− l p-values will all
belong to I . The l largest p-values will not be smaller than their corresponding critical
values since the hypothesis of size j(α), containing all j(α) largest p-values could not
be rejected. HJ can thus only be rejected if one of the first j(α) − l p-values will be
smaller than its corresponding critical value, but these are all p-values from I , for which
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we already know that there is no i ∈ I with pi ≤ rkI(i)α
j(α) . Since rkI(i) = rkJ(i) for these

first j(α) − l p-values we thus have that there is no pi ≤ rkJ (i)α
j(α) , which are exactly the

critical values for an hypothesis of size j(α). HJ can thus not be rejected by a Simes’ test
on level α and because J ⊇ I , HI cannot be rejected by the closed testing procedure.

From Theorem 2.4.1 it follows that, after having calculated j(α) for the desired value
of α, deciding whether HI can be rejected by the closed testing procedure can be done
by only looking at the p-values pi, i ∈ I . The exact values of these p-values are not
even important, only whether these values are smaller than their respective boundary val-
ues α/j(α), 2α/j(α), etcetera. This observation motivates the following definition: the
category of a p-value pi is the smallest integer ri such that pi ≤ riα/j(α). Given this
definition, Theorem 2.4.1 can be rephrased in terms of these categories which leads to the
following procedure:

Procedure 2.4.1. The closed testing procedure in combination with a Simes’ test will
reject an intersection hypothesisHI on level α if and only if the hypothesis will be rejected
by the following procedure:

• Calculate the size j(α) of the largest intersection hypothesis that cannot be rejected
on this α-level by means of the algorithm discussed in the previous section.

• For each pi with i ∈ I , determine the corresponding category value ri, i.e. the
smallest integer ri such that pi ≤ riα/j(α).

• Reject HI if there is a positive integer r for which
∑
i∈I 1{ri ≤ r} ≥ r.

From this Procedure it follows that a p-value pi with corresponding category ri = 1
is in itself enough to result in the rejection of any hypothesis HI , with i ∈ I . To see
whether an elementary hypothesis Hi can be rejected within the closed testing procedure
thus comes down to checking whether the corresponding pi falls in the first category, i.e.
whether pi ≤ α/j(α), which is exactly the same as Hommel’s method for the elementary
hypotheses. If there are no p-values within HI that fall in the first category, the question
becomes whether there are minimally two p-values in the first two categories, or three in
the first three, etcetera, as summarized by the statement that HI can be rejected if and
only if there is an r ≥ 1 for which

∑
i∈I 1{ri ≤ r} ≥ r.

The subsequent question is how we can benefit from Procedure 2.4.1 when we want
to construct confidence intervals for the number of true or false hypotheses within a set
{Hi : i ∈ S}. To construct these intervals, the quantity tα(S) as given in (2.6) has to
be computed, which is the size |I| of the largest hypothesis HI , I ⊆ S, that cannot
be rejected by the closed testing procedure. Given Procedure 2.4.1, this is equivalent
to finding the size of the largest index set I ⊆ R for which there is no r ≥ 1 with∑
i∈I 1{ri ≤ r} ≥ r. Based on that observation, we will show that

tα(S) = |S| − d(S), (2.8)
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with

d(S) = max
r≥1

{
1 +

∑
i∈S

1{ri ≤ r} − r
}
. (2.9)

Given the new procedure, HS can be rejected if and only if d(S) ≥ 1. In addition, we
know that if the smallest d(S)− 1 elements are removed from S, for the remaining set S′

we have
∑
i∈S′ 1{ri ≤ r} = r for the same r for which d(S) was found, so HS′ can still

be rejected. If subsequently the smallest element i ∈ S′ would be removed from S′, the
hypothesis HS′′ corresponding to the new set S′′ can no longer be rejected. The size of
the largest set that cannot be rejected, i.e. tα(S), is thus |S| − d(S). Note that, since we
also have that

tα(S) = |S| − fα(S),

where fα(S) is the lowerbound for the 100(1 − α)% confidence interval for the number
of false hypotheses within the set S, we have an immediate formula for this lowerbound,
namely

fα(S) = d(S).

Another remark is that, although we took a maximum over all positive integers r in equa-
tion (2.9), we already know that this maximum can never be attained for an r > |S|, since
for such an r we have that∑

i∈S
1{ri ≤ r} − r ≤ −1 ≤

∑
i∈S

1{ri ≤ 1} − 1.

Similarly, the maximum will never be attained for an r > maxi∈S ri or for an r > j(α)
because from the definition of j(α) we know that at most j(α) elements will fall in a
category r > j(α), which means that for every r > j(α) we will always have∑

i∈S
1{ri ≤ r} − r ≤ −1.

Therefore, instead of taking a maximum over r ≥ 1 in equation (2.9) we can take this
maximum over r ∈ {1, . . . , k} with

k = min

{
|S|, j(α),max

i∈S
ri

}
. (2.10)

In the next subsection, we will describe an algorithm that, given a sequence of cate-
gories (ri)i∈S , finds the corresponding value of d(S) = fα(S) from which the confidence
set for the number of true or false hypotheses within the set {Hi : i ∈ S} can be com-
puted. In addition to finding the confidence interval for the complete set {Hi : i ∈ S},
the algorithm will also provide the |S| − 1 confidence sets for all subsets {Hi : i ∈ Sl}
where Sl ⊂ S is the subset that contains the smallest l elements of S. In this way, many
related confidence sets are computed. These confidence sets can be very valuable in the
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situation in which the ordering of the hypotheses within S is not randomly chosen, but
is chosen based on the relative importance of these hypotheses. If the ordering is for ex-
ample based on increasing p-values, this approach answers the question how many false
hypotheses, i.e. true findings, there are among the l hypotheses with the smallest p-values
for all values of l ≤ |S|. It also answers the question what the minimum size of a set
of hypotheses should be if one wants to make sure that this set contains at least m false
hypotheses. These are important questions if a validation experiment is planned and the
number of hypotheses to follow up on is still undecided.

Because there are certainly orderings imaginable in which the importance of hypothe-
ses does not directly correspond with the size of the corresponding p-values, for example
if hypotheses are ordered on corresponding effect size or biological importance, we are
interested in an algorithm that can find such confidence sets, even if the sequence (ri)i∈S
is not increasing in the values of the ri’s.

2.4.2 Algorithm
Given a (not necessarily increasing) sequence r = (r1, r2, . . . , rm) of categories, we wish
to find an algorithm that calculates

fl = max
r∈{1,...,k}

gl(r), (2.11)

with k as in (2.10) and with

gl(r) = 1 +
∑
ri∈rl

1{ri ≤ r} − r

for all prefixes rl = (r1, r2, . . . , rl) of length l of r in an efficient way. Of course, we
can safely ignore any category bigger than k here, so we will assume categories are at
most k. Calculating (2.11) naively involves determining gl(r) for all l ∈ {1, . . . ,m} and
r ∈ {1, . . . , k}, which takes Θ(km) time by reusing earlier results via

gl(r) = gl−1(r) + 1{rl ≤ r}. (2.12)

In order to achieve an algorithm that runs in O(m) time, we need an additional obser-
vation with respect to (2.11). Suppose that fl−1 = gl−1(r) for some maximal r. From
(2.12) we can also see that if rl ≤ r, then fl = gl(r) as well. If on the other hand rl > r,
then we may or may not get that fl = gl(r

′) for some maximal r′ > r, depending on the
subsequent maximum of

(
gl(r + 1), . . . , gl(k)

)
. Let us therefore consider the maxima

over each tail of
(
gl(1), . . . , gl(k)

)
, and denote these by

hl(s) = max
r∈{s,...,k}

gl(r)

for s ∈ {1, . . . , k}. In the spirit of (2.12), we will see how to derive hl from hl−1.
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Clearly, we have that hl−1 is decreasing and piecewise constant, so the level sets of
hl−1, i.e. the parts on which hl−1 is constant, form consecutive nonempty subintervals
of {1, . . . , k}. In particular, on each subinterval gl−1 takes its maximum at the rightmost
endpoint, and the maxima of consecutive intervals decrease by at least 1. Now suppose
that rl is contained in such an interval {a, . . . , b}. We then conclude from (2.12) that

hl(s) = hl−1(s) + 1{a ≤ s}. (2.13)

Therefore, the level sets of hl are the same as those of hl−1, except with {a, . . . , b} and
its possible predecessor merged when the maxima of both intervals differ by 1.

In fact, the last condition is rather redundant as the maxima of consecutive intervals
always differ by 1. Namely, initially this invariant holds as we have h0(s) = g0(s) = 1−s
for all s ∈ {1, . . . , k}, and (2.13) preserves it.

It is now straightforward to translate the above observation into a simple algorithm to
calculate fl for each l ∈ {1, . . . ,m}, by keeping track of the level sets of hl. For l = 0
we start with the initial partition

π0 =
(
{1}, {2}, . . . , {k}

)
.

When l >= 1, we update our partition πl−1 to πl by picking the interval from πl−1 that
contains rl, and merging it with its predecessor (if any). Furthermore, we keep track of fl
as follows. Since fl = hl(1), we just start with f0 = 0 and increment fl by 1 when rl is
contained in the first interval of the partition πl−1, that is,

fl = fl−1 + 1{πl−1 = πl}.
See table 2.1 for an illustration of the algorithm on a small example.

l rl Partition πl fl gl(1) gl(2) gl(3) gl(4) gl(5)
0 - {1}, {2}, {3}, {4}, {5} 0 0 -1 -2 -3 -4
1 4 {1}, {2}, {3, 4}, {5} 0 0 -1 -2 -2 -3
2 2 {1, 2}, {3, 4}, {5} 0 0 0 -1 -1 -2
3 3 {1, 2, 3, 4}, {5} 0 0 0 0 0 -1
4 2 {1, 2, 3, 4}, {5} 1 0 1 1 1 0
5 5 {1, 2, 3, 4, 5} 1 0 1 1 1 1
6 3 {1, 2, 3, 4, 5} 2 0 1 2 2 2

Table 2.1: A sample run of the algorithm to calculate fl from (2.11) on a sequence of
categories r = (4, 2, 3, 2, 5, 3) with k = 5, along with the values of gl for comparison.
In each step, either the partition is updated by merging the interval that contains rl with
its predecessor, or fl−1 is incremented by 1 if no such predecessor exists. Changes with
respect to the previous step are marked in blue.

The algorithm we just described lends itself naturally for implementation with a disjoint-
set data structure. Such a data structure allows for efficient queries to which set an ele-
ment belongs to as well as for taking efficient set unions. Generally, the performance
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of a disjoint-set data structure for a linear number of operations is not linear (Fredman
and Saks, 1989) but nearly linear in time (Tarjan, 1975). In our specific case it is in fact
possible to achieve linear time since we only need to merge adjacent intervals instead of
arbitrary sets (Gabow and Tarjan, 1985). However, in practice the gain of the specific
linear variant over the general nearly linear disjoint-set data structure is not noticeable so
we opted for the latter, simpler implementation.

2.5 Application
In this section, we will use the previously described algorithms for analyzing a gene
expression data set from the breast cancer study published by Schmidt et al. (2008).
This data is freely available in the R-package breastCancerMAINZ (Schroeder et al.,
2011). The data set contains gene expression data on 22283 features for 200 samples,
where the gene expressions are measured by Affymetrix hgu133a technology. In our anal-
ysis, for each of the 22283 gene expression variables, we want to test the null-hypothesis
that there is no association between this variable and the measured survival time, as given
by

H0 : βi = 0

where βi is the regression coefficient in a univariate Cox proportional hazards model for
gene i, with i ∈ {1, . . . , 22283}. To find p-values for these 22283 hypotheses, we used
the likelihood ratio test from the survival package. Given that we have a matrix X of
size 200×22283 containing normalized gene expression data and two vectors called time
and event of size 200 containing respectively the survival times and the event indicators,
we used the following R-code to calculate the p-values and the corresponding regression
parameters:

> n <- ncol(X)
> pvalues <- rep(0,n)
> betas <- rep(0,n)
> for(i in 1:n)
+ {
+ fit <- coxph(Surv(time,event) ~ X[,i])
+ pvalues[i] <- summary(fit)$logtest[3]
+ betas[i] <- abs(summary(fit)$coef[1])
+ }

To find adjusted p-values, we can use the hommelFast function from the cherry
package, that will return an object that, among others, contains the original p-values and
the adjusted p-values corresponding to Hommel’s procedure.

> hom <- hommelFast(pvalues)
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Given this object, we can calculate the number of null-hypotheses that could be re-
jected on α = 0.05 by directly looking at the adjusted p-values. We could also estimate
the lower bound of the 95% confidence set of the number of false null-hypotheses, or in
other words true findings, by using the pickSimes function from the cherry package.

> sum(pvalue(hom)<=0.05)

[1] 10

> pickSimes(hom,alpha=0.05)

22283 hypotheses selected. At confidence level 0.95:
False null-hypotheses >= 114; True null-hypotheses <= 22169.

We see that, while only 10 null-hypotheses could be rejected based on their adjusted
p-values, the total number of false null-hypotheses will, with probability at least 1−α, be
at least 114 . An interesting question could be how many false null-hypotheses there will
be among the null-hypotheses with the smallest m p-values. We will answer this question
for m = 114 and m = 25. Our software can either give a lower bound for the number
of false hypotheses within a set, where the specific order of hypotheses within this set
does not matter, as provided by the function pickSimes or it can use the exact order
of the hypotheses within this set, and give lower bounds for each subset containing the
first l elements, as discussed in the previous section. The function that does this is called
curveSimes.

> perm <- order(pvalues)
> pickSimes(hom,select = perm[1:114], alpha=0.05)

114 hypotheses selected. At confidence level 0.95:
False null-hypotheses >= 77; True null-hypotheses <= 37.

> curveSimes(hom, order = perm[1:25], alpha=0.05, plot=T)
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We see that among the 114 null-hypotheses with the smallest p-values, 77 will be false
null-hypotheses. From the plot, we see that the first 10 null-hypotheses are, with 95%
confidence, false null-hypotheses, whereas for the remaining 15, 12 of them will be false.

We could repeat the same steps for null-hypotheses that are not ordered based on p-
value, but on effect size, which can be measured as the absolute values of the regression
coefficients.

> perm2 <- order(betas,decreasing=T)
> pickSimes(hom,select = perm2[1:114], alpha=0.05)

114 hypotheses selected. At confidence level 0.95:
False null-hypotheses >= 40; True null-hypotheses <= 74.

> curveSimes(hom, order = perm2[1:25], alpha=0.05, plot=T)
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We see that among the first 114 hypotheses, ordered on decreasing absolute value of the
regression coefficient in the Cox model, at least 40 are false null-hypotheses. Among the
first 25, this lower bound on the number of false hypotheses equals 12.

Instead of constructing sets of hypotheses based on own criteria, we could also look at
sets of hypotheses that correspond to known gene sets, obtained from the Gene Ontology
(GO) (Ashburner et al., 2000). As an example we will look at the set of genes that are
known for their involvement in apoptosis which is the process of programmed cell death.
From the 22283 variables in our data set, 2588 are associated with apoptosis. If we look
at the set of corresponding hypotheses, we see that at least 2 hypotheses are false, which
means that at least 2 genes within this set will be associated with the survival time.

> xx <- as.list(hgu133aGO2ALLPROBES)
> apoptosis <- xx["GO:0006915"]
> pickSimes(hom,select=colnames(X) %in% unlist(apoptosis),
+ alpha=0.05)

2588 hypotheses selected. At confidence level 0.95:
False null-hypotheses >= 2; True null-hypotheses <= 2586.
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Although we used our own algorithm to calculate the adjusted p-values of Hommel’s
procedure, as given by the hommelFast function, we could also have used the im-
plementation that is available in the p.adjust function. To give an idea of the time
differences between the two procedures, we simulated 10000 as well as 100000 p-values
and used both functions to calculate the corresponding adjusted p-values:

> set.seed(1)
> n=10000
> pvalues <- c(runif(0.25*n,0,0.001), runif(0.75*n,0,1))
> system.time(a <- hommelFast(pvalues))

user system elapsed
0.22 0.00 0.22

> system.time(b <- p.adjust(pvalues,method="hommel"))

user system elapsed
6.18 0.00 6.18

> all.equal(pvalue(a),b)

[1] TRUE

> set.seed(1)
> n=100000
> pvalues <- c(runif(0.25*n,0,0.001), runif(0.75*n,0,1))
> system.time(a <- hommelFast(pvalues))

user system elapsed
1.92 0.00 1.91

> system.time(b <- p.adjust(pvalues,method="hommel"))

user system elapsed
588.75 2.24 591.23

> all.equal(pvalue(a),b)

[1] TRUE

From this small simulation experiment, it is clear that our new algorithm is the preferred
one when the number of null-hypotheses is very large.
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2.6 Discussion
In this article, we have shown that Hommel’s FWER controlling multiple testing proce-
dure for n elementary hypotheses H1, . . . ,Hn can be carried out in O(n log(n)) time,
which is much faster than the currently available implementation that runs in Θ(n2) time.
We have also shown that there is an easy procedure to determine whether an arbitrarily
chosen intersection hypothesis HI =

⋂
i∈I Hi can be rejected within the closed testing

procedure with a Simes’ test as local test. Based on this procedure we developed an algo-
rithm that calculates confidence sets for the number of false (or true) hypotheses within
an arbitrarily chosen set S = {Hi : i ∈ S}.

Throughout the article, we only considered the Simes’ test as local test in the closed
testing procedure. After applying some minor modifications, our algorithms to find ad-
justed p-values and confidence sets will however work in a more general setting. An
example of such a situation is the situation in which the test proposed by Hommel (1983)
is used as a local test in the closed testing procedure. In this test, the critical value for a
p-value pi with rank rkI(i) within an intersection hypothesis HI of size |I| = s is given
by

rkI(i)α
Cs · s

, (2.14)

where Cs =
∑s
v=1 v

−1, as opposed to the critical value rkI(i)α/s of the Simes’ test. The
resulting test is more conservative than the Simes’ test, but is valid under any form of de-
pendence of the p-values. Our software, as available in the CRAN package cherry, can
be used both with a Simes’ test as local test and with the just described test of Hommel.

In general, our algorithm to calculate the function j, i.e. the function that gives the
size of the largest intersection hypothesis that cannot be rejected on a given α-level within
the closed testing procedure, can be used for every local test that has critical values of the
form given in (2.14) as long as Cs only depends on the size s of the corresponding in-
tersection hypothesis. The procedure to quickly determine whether HI can be rejected
within the closed testing procedure, as given in Theorem 2.4.1 and the subsequent al-
gorithm to create confidence sets can be used as long as Cs only depends on s and is
(weakly) increasing in s.
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