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1
Introduction

1.1 Introduction
Modern day technology allows us to collect and store more data than ever before. Al-
though the abundance of data offers great opportunities with respect to formulating and
testing all kinds of hypotheses and with respect to discovering and modeling patterns that
can be used for future prediction, these opportunities do not come without risks. If the
data is explored in a too naive manner, there is a very large probability that, at least part
of, the actual findings will not be reproducible in future research. A risk already pointed
out by Ioannidis (2005) in his famous article entitled “Why most published research find-
ings are false”. The reason for such chance findings mainly lies in the nature of statistics,
which is sometimes referred to as “the science of uncertainty”. For every supposed find-
ing, there is a possibility that this finding only occurred by chance in the sample under
study, while it is not present in the population at large. When the number of hypotheses
or the number of parameters within a model increases, the possibility of actually ending
up in such a situation increases as well.

Profiting from all available data, while preventing chance findings from occurring,
will call for advanced statistical techniques. The development of such techniques will
be the subject of this thesis. We focus both on multiple hypothesis testing and on the
construction of prediction models. Throughout the thesis, emphasis is placed on the de-
velopment of methods that are efficient, both from a power perspective and from the
perspective of computational feasibility.

Although the use of our proposed procedures is not limited to a specific data type, our
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2 Chapter 1 – Introduction

procedures will be demonstrated on high-dimensional biological data and for that reason
this type of data will also serve as an example throughout this introduction. Henceforth,
let us assume that our data consists of p gene expression measurements for n individuals
for which we also have some phenotypic information, such as whether the individual suf-
fers from a certain disease. These gene expression measurements tell us at what rate sev-
eral genes, which are just specific regions in our DNA, are transcribed into RNA copies,
which can subsequently be translated into proteins (or other functional gene products).
Because these proteins can have a major impact on many processes in our body, it seems
reasonable to hypothesize that (some of) the genes can have an effect on our phenotypic
outcome variable.

In the coming sections the principles of hypothesis testing, and in particular multiple
testing procedures, and statistical modeling will be discussed in more detail, motivated
from the data setting described earlier. Additionally, one section will be used to address
a different challenge that arises when the size of the data sets increases: the challenge of
computational feasibility. The last section provides an outline of the thesis as a whole.

1.2 Hypothesis Testing
In hypothesis testing, the aim is to decide whether or not some pre-specified hypothesis,
called the null-hypothesis, can be rejected based on evidence that is present in the data.
Null-hypotheses come in many forms, but in this introduction we will look at a specific
null-hypothesis that will often serve as an example throughout this thesis; the so-called
self-contained null-hypothesis (Goeman and Buehlmann, 2007) as found in gene set test-
ing. This hypothesis states that, given a gene setG, consisting of one or more genes, none
of the genes within G are associated with the outcome variable. If this hypothesis can be
rejected, this thus tells us that there is at least one gene within this group that is in fact
associated with the outcome, where this outcome could for example be disease status.

Deciding which gene set or sets are interesting to test will often be done based on
prior knowledge. Sometimes, the interest will be in discovering single genes that are im-
portant in the development of a specific disease, whereas in other cases the focus will be
on larger gene sets. For many genes it is known that they belong to the same cellular com-
ponent, are involved in the same biological process, or have the same molecular function.
Such information can be looked up in annotation databases, such as the Gene Ontology
database (Ashburner et al., 2000). In this way, biologically interesting gene sets can be
formed. Often more than one gene or more than one gene set will be of interest, which
results in the formulation of several null-hypotheses.

1.2.1 Type of test
In order to decide whether a null-hypothesis can be rejected, a statistical test is needed.
Which test can best be used will usually depend both on the exact form of the null-
hypothesis and on the expected alternative hypothesis. Even though the alternative hy-
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pothesis does not have to be specified explicitly, different tests can have different power
against different alternatives.

Let us first formulate our self-contained null-hypothesis more precisely as:

H0 : βi = 0, for all i ∈ G ⊆ {1, . . . , p} (1.1)

where each βi is a regression coefficient corresponding to gene measurement xi, with
i ∈ G, in a regression model that has y as its outcome variable and all genes within G
as its covariates. When the outcome is disease status, this could for example be a lo-
gistic model, but different models are possible for different outcome variables. When
null-hypotheses of this form are tested, usually the alternative hypothesis is not specified
and it is assumed that the true model is best estimated by the model that maximizes the
corresponding likelihood. The three most well-known tests, which are the Wald test, the
likelihood-ratio test and the score test, are all based on the principle of maximum likeli-
hood estimation. As long as the number of covariates |G|, where |G| denotes the size of
group G, in our model is sufficiently smaller than the number of observations n, all these
tests can be used and will give approximately the same results.

However, as soon as the number of covariates comes close to or even exceeds the
number of observations, maximizing the likelihood is no longer straightforward, because
the resulting regression model will be unstable or cannot be fitted at all. In that case, tests
that are developed for such high-dimensional situations can be used, such as the global
tests developed by Goeman et al. (2004) or Mansmann and Meister (2005). These tests
will have optimal power against the alternative in which many of the genes are (weakly)
associated with the response. When fewer, larger effects are expected, other tests, such
as for example a Simes’ test (Simes, 1986) might be more powerful. Alternatively, one
can decide to test smaller groups of genes or even single genes, because testing large gene
sets might not be advantageous in such situations.

In each statistical test, a test statistic T is defined for which the distribution under
the null-hypothesis can be derived either exactly or approximately. Subsequently it can
be checked whether the value of the test statistic for the observed data, Tobs, is probable
given this null-distribution. This can be done by calculating the corresponding p-value,
which is the probability of observing a result at least as extreme as Tobs, given that the
null-hypothesis is true. The p-value can thus be seen as an informal measure of evidence
against the null-hypothesis; the smaller the p-value, the less likely it is that the null-
hypothesis is true. However, it is important to note that a small p-value can occur simply
by chance even if a true null-hypothesis is tested.

The decision whether or not to reject the null-hypothesis is now made by comparing
the corresponding p-value to a pre-specified significance level α, which is often set to
0.05. If the p-value is smaller than the chosen α-level it is decided that there is enough
evidence to reject the null-hypothesis. Otherwise, the null-hypothesis is accepted. Two
types of errors can be made here, namely a type I and a type II error. A type I error oc-
curs when the null-hypothesis is wrongly rejected. This happens with probability at most
α since the p-values are approximately uniformly distributed under the null-hypothesis.
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A type II error is made when the null-hypothesis is accepted while it should have been
rejected. This can for example happen when the sample size or the magnitude of the true
effect is not large enough or when the test has too little power against the actual alterna-
tive. Although both types of errors should ideally be prevented, type I errors are usually
considered to be the most problematic errors, because a highly significant result appears
definitive and has the effect of stopping further investigation, as was already pointed out
by Bakan (1966). Whereas a type I error will only be made with probability at most α
when one hypothesis is tested on a significance level of α, this changes as soon as more
than one hypothesis is tested.

1.2.2 Multiple Testing
In most situations, researchers are not interested in only testing whether one specific gene
or one specific gene set is related to a given biological phenomenon, but they want to
investigate the influence of many genes and/or gene sets. Suppose that instead of one
null-hypothesis we have a set of m null-hypotheses H1, . . . ,Hm that we would like to
test. Given these m hypotheses, we know that there is an unknown number m0 of true
null-hypotheses among them while the remaining m1 = m−m0 are the hypotheses that
we wish to reject. Suppose that for each hypothesisHi we obtained a p-value pi by apply-
ing an appropriate test. If each of these p-values would be compared to the same α-level
of, say, 0.05, the expected number of type I errors would equal m0×α, which can clearly
become very large when the number of true hypotheses is large as well. To prevent type I
errors, or to at least limit their number, we need some multiple testing procedure.

Most multiple testing procedures can be subdivided into two categories; those pro-
cedures that control the familywise error rate (FWER) and those procedures that control
the false discovery rate (FDR). If the FWER is controlled on level α, this means that the
probability of making any type I error is bounded by α. If the FDR is controlled at level
α, some type I errors will be allowed as long as the expected proportion of type I errors
among all rejections will stay below α. In general, controlling the FDR will result in more
rejections than controlling the FWER. This is especially the case when many hypotheses
are tested and if a substantial part of these hypotheses is false. Although FDR controlling
methods are for this reason rather popular, especially in a genomic context, in this thesis
we will mainly focus on FWER control. Not only because some settings, for example val-
idation experiments, ask for strict control of the number of type I errors, but also because
the property that, with probability at least 1− α, no type I errors have been made, allows
for certain reasoning that does not apply to FDR control.

There exist several different FWER controlling methods. As with choosing an ap-
propriate test, choosing an appropriate FWER controlling procedure also depends on the
hypotheses under study. If many non-logically related hypotheses are tested, such as hy-
potheses of the form

H0 : βi = 0 (1.2)
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that state there is no association between one individual gene i and the outcome variable,
standard methods such as the methods of Bonferroni (1935), Holm (1979), Hochberg
(1988) or Hommel (1988) can be used. These methods test all hypotheses simultaneously,
but on smaller individual α-levels than the α on which the FWER should be controlled.
FDR controlling methods that work similarly are the methods of Benjamini and Hochberg
(1995) and Benjamini and Yekutieli (2001).

As soon as logically related hypotheses are tested, other multiple testing procedures
can be more powerful. Logically related hypotheses arise for example when several nested
gene sets are tested. This will often happen because both general biological processes, re-
lating to large gene sets, and specific processes, relating to smaller gene sets or even single
genes, can be of interest. If a single gene is found to be associated with the outcome, the
same must hold for all gene sets of which it is part, and similarly, if a gene set is found to
be associated with the outcome, this has to be because the same must hold for at least one
of the genes within this gene set. This leads to so-called restricted combinations among
the hypotheses, as first discussed by Shaffer (1986), which means that not all combina-
tions of true and false hypotheses can exist, but the falsehood of one hypothesis will often
imply the falsehood of others.

When logical relations exist between the hypotheses, a multiple testing procedure can
take advantage of these by recognizing that not all remaining hypotheses can be simul-
taneously true and adjusting the individual α-levels accordingly, which leads to more
powerful procedures. Besides, the logical relations can be used to structure the testing
problem. If nested gene sets are tested, one can for example use a procedure that starts
by testing the larger sets, and which only continues testing the smaller sets once there is
evidence that these could prove to be significant. This is done in hierarchical testing proce-
dures, such as procedures developed by Goeman and Mansmann (2008) or Meinshausen
(2008). Because in each step of the procedure only a subset of the original hypotheses is
tested, all individual tests can be done on larger α-levels which increases the procedure’s
power.

To be able to use logical relationships that exist between hypotheses or to carry out the
tests in a particular order while still controlling some error criterium, it will usually not
be enough to know that most of the current rejections are true rejections, but one needs
that, with high probability, all current rejections are true rejections, as will be explained
in chapter 5 of this thesis. For that reason, this thesis focuses on FWER controlling mul-
tiple testing procedures instead of on FDR controlling procedures. The focus will be on
developing novel multiple testing methods for several types of hypotheses. The aim is to
make full use of the structure and underlying logical relations between the hypotheses.

1.3 Prediction modeling
In statistical modeling, the aim is to develop a model that describes the relation between
a number of covariates and an outcome variable. Such models can be used to gain in-
sight in the phenomenon under study, but very often they are also used to predict future
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outcomes. Various outcomes can come to mind, such as the underlying diagnosis, the
expected response to treatment or the expected survival time. A model can for example
be developed to see how gene expression levels, measured at time of entry in a study, in-
fluence the survival time for patients that are diagnosed with a certain illness and are kept
under surveillance for a long period of time. For new patients, for whom only the gene
expression levels at baseline are known, this model can now be used to give an estimate
of for instance the 5-years survival probability.

Although the usefulness of prediction models is apparent, developing a valid predic-
tion model can be difficult. Especially when the number of covariates is large, there is
a considerable risk of constructing a model that predicts very well on the current data
set, but that has little or even no predictive power for similar new data sets. This phe-
nomenon is called overfitting. A link can be made here with multiple testing problems,
where we already saw that a naive approach will usually result in many finding that will
not be reproducible in new experiments. To try to prevent overfitting, advanced modeling
techniques can be used, such as we will describe in the next subsection. Furthermore, a
measure of predictive performance should be used to predict how reliable the model will
be for new data sets. To prevent chance findings, it is very important that this measure
indeed measures the expected performance on a new data set and not on the existing data
set.

1.3.1 Type of model
Before a model can be properly constructed and tested, one needs to decide what type
of model will be useful. Several factors play a role in this decision. Firstly, the type of
outcome variable is important, since different models are needed for dichotomous, con-
tinuous or for example survival outcomes. Secondly the number of covariates will be of
influence, since models in which the number of covariates exceeds the number of observa-
tions ask for different modeling techniques than lower dimensional models. The expected
effects are also important; will these effects be linear, or is a deviation from linearity ex-
pected which can be modeled for example by splines? An other important question is
whether the objective is to identify the “true underlying model” or whether the model will
mostly be used for prediction purposes, while the exact interpretability is of less impor-
tance. Ideally, the type of model one wants to fit is already decided before exploring the
actual data, to make sure that this decision is made based on reasoning and not based on
accidental findings in the current data set, but this strategy will in practice often be too
inflexible.

When the preferred model has not too many covariates, it is common practice to fit
the model by using maximum likelihood optimization as already discussed in the previous
section. The same approach cannot be taken for models with many covariates however,
which would for example be the case when all measured gene expression levels, which
can easily range in the tens of thousands, are used as covariates. As soon as the number of
covariates p comes close to the number of observations n, the resulting maximum likeli-



1.3 Prediction modeling 7

hood estimates will become very unstable, and as soon as p equals or exceeds n, infinitely
many solutions exist that will result in perfect prediction on the current data set, but it is
clear that such models will have no predictive power at all for future data.

To prevent overfitting, penalization techniques have been developed. When such tech-
niques are used, before maximizing the likelihood a penalty term is added to this likeli-
hood which prevents the regression coefficients from attaining large and unrealistic val-
ues. The penalty term can be chosen in different ways, resulting in regression models with
different behavior. Two well-known penalized regression techniques are lasso regression
(Tibshirani, 1996) and ridge regression (Hoerl and Kennard, 1970). Whereas lasso regres-
sion performs variable selection, which means that only a subset of the original covariates
will be present in the final model, ridge regression leaves all covariates in the model but
all regression coefficients will be very small. Lasso models are often used when one wants
to obtain parsimonious and preferably interpretable prediction rules. Ridge models will
more often be used when prediction is the sole focus of the model.

Once the model is fitted, it should be checked whether it is a useful model, in other
words whether we expect it to be a reproducible model, or whether it only describes the
current data set. For this purpose, measures of predictive performance have been devel-
oped.

1.3.2 Predictive performance
There are various performance measures that can be used to assess the performance of
a statistical prediction model. Some measures directly compare the outcomes predicted
by the model to the actual outcomes. The differences between these values indicate the
goodness-of-fit of the model, where smaller distances between the predicted and actual
outcomes indicate a better model. But other, more indirect measures are possible as well.
In case of binary outcomes, one can for example check for all patient pairs of which one
patient experienced the event (the case) and one did not (the non-case) whether the model
indeed predicted a higher probability of experiencing the event for the case relative to the
non-case. The more correctly predicted pairs, the better the model, which is the reasoning
underlying the often used receiver operating characteristic (ROC) curve. Steyerberg et al.
(2010) provide an overview of different performance measures that are frequently used in
medicine.

When the value of a performance measure is calculated using the same data as the
data used in fitting the model, this value only indicates how well the model predicts for
this particular set, but it cannot be used to assess how well the model will perform on new
data, since a high value could easily be the result of overfitting. To transform it into a
measure of predictive performance, the value should be calculated on data that was not
used in fitting the model. If a similar data set is available, this data can be used to assess
the method’s predictive performance. However, usually such an independent data set will
not be available. Another idea is to split the current data set in a train and a test part. The
model is fitted on the training set and the performance measure is subsequently calculated
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by means of the test set. A systematic way of splitting the data several times into a train
and test set is by using cross-validation. When cross-validation is used, the data is divided
into disjoint subsets of (approximately) the same size. Each time, one of the subsets is
used as test set, while the remaining subsets are used as training set. The model is fitted
on the training set, evaluated on the test set, and this is done repeatedly such that each
subset once serves as test set.

When cross-validation is used, the resulting value for the performance measure will no
longer be too optimistic, and it can be seen as a true measure of predictive performance.
It is thus an important tool in the prevention of chance findings. One disadvantage of
cross-validation is however that, instead of fitting one model, many models have to be
fitted, which can be very time-consuming.

1.4 Computational feasibility
When the number of hypotheses and the complexity of regression models increases, pre-
venting the occurrence of chance findings becomes not only more challenging from a
methodological point of view, but also from a computational point of view. This compu-
tational challenge is not limited to the prevention of chance findings but is encountered
more generally since statistical methods are expected to be applicable in situations with
ever increasing amounts of data. This expectation will not always be reasonable however.

Once a situation arises in which problems regarding computation time are present or
are to be expected, the first step is to gain insight in the magnitude of the problem. It might
be that the current method will have to be updated or maybe even has to be replaced com-
pletely, but this will only become clear after careful examination of the problem at hand.
An important first question is how fast the computation time will increase when the size
of the input increases. When the computation time will increase linearly with the size of
the input, which would mean for example that if twice as many hypotheses are tested, the
process take twice as long, there is much less to worry about than when the computation
time increases cubically or even at a non-polynomial rate. In computer science, the re-
sponse to changes in input size is often denoted by using big O notation. If an algorithm
is of quadratic order for example, which is denoted by O(n2), this means that the growth
rate of the computation time with respect to the input size n will be bounded by a second
order polynomial.

If the order of the problem is not too large, say, smaller than quadratic, there are often
possibilities to keep the computation time within reasonable bounds. Firstly, most pro-
grams can be written more efficiently, for example by avoiding unnecessary copying of
data or by applying vectorization if possible. There is also the possibility to write (part
of) the code in a lower level programming language, which will usually result in a faster
program. Furthermore, a lot of free and commercial software is available that is highly
optimized in terms of computational performance. Checking whether an efficient solu-
tion for the problem at hand has already been found can save a lot of time. If these small
changes are not yet sufficient, there might be the possibility of using parallelization tech-
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niques. If the problem can be split up into smaller, independent, subproblems, this will
often be an option.

Although the possibilities just described can have a substantial impact on the com-
putation time, it will usually not be enough when the algorithm has a large growth rate.
If the order of the desired method is large, one can first look whether this order can be
brought down by using a different calculation technique. A different mathematical ap-
proach can sometimes lead to the desired result. In other situations, asking advice from
experts, such as computer scientists, can be beneficial. Often such a reduction will not
be possible however, or the new order will still be too large. In that case, one can still
consider whether the results can be approximated rather than exactly calculated, which
can often save a lot of time. When this is not possible or not desirable, there is always the
option to decide that the original plan is impossible. This can either result in the decision
to accept that one has stumbled upon an unsolvable task, or the decision to take a totally
different approach. Or one can decide to look for middle ground by solving the problem in
the way that was anticipated, while additionally requesting restrictions on the input size.
Even though the requirement for restrictions on the input size might sound unsatisfactory,
this can sometimes even lead to better stated problems, if it results in considering only
those hypotheses or only those variables that are truly of interest.

Each computational problem thus asks for its own solution. Throughout this thesis
many computational challenges will be encountered, each of which will be overcome by
using one or more of the techniques mentioned above.

1.5 Outline of the thesis
This thesis is a collection of five articles and one book chapter. In principle, all coming
chapters can be read in any preferred order, since all documents are meant to be self-
contained. However, we feel that the current ordering does most justice to the strong
connections that exist between all chapters. Chapter 2 until 5 will solely focus on multi-
ple testing methods. Chapter 6, which is the original book chapter, is a chapter in which
no new methodology is introduced, but which brings together the fields of multiple testing
and statistical modeling. In chapter 7, the focus is solely on model building and model
evaluation.

In chapter 2, we describe an algorithm to make Hommel’s FWER controlling proce-
dure more efficient. By using this algorithm, finding adjusted p-values for n elementary
hypotheses, which can be hypotheses of the form given in equation (1.2), can be done in
O(n log(n)) steps instead of the Θ(n2) steps that are needed in Hommel’s original proce-
dure. This makes the procedure feasible for a very large number of hypotheses. Whereas
Hommel’s procedure focuses solely on the elementary hypotheses, we also show how
one can determine whether an intersection hypothesis, which can be of the from given in
equation (1.1), can be rejected by the closed testing procedure (Marcus et al., 1976) in
combination with a Simes’ test and we develop an algorithm to calculate confidence sets
for the number of true or false hypotheses within any arbitrarily chosen set of elementary
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hypotheses, following the example of Goeman and Solari (2011).
In chapter 3, a novel multiple testing procedure is introduced for the situation in which

the elementary hypotheses are ordered in either space or time. Given such an ordering,
specific intersection hypotheses become hypotheses of interest, namely those intersec-
tions that consist of consecutive elementary hypotheses. We call these hypotheses the
region hypotheses. Because all regions, of different lengths and in different positions,
are potentially interesting, we propose a method that tests all possible region hypothe-
ses (including all elementary hypotheses) while controlling the FWER. The procedure is
a step-down procedure, meaning that the hypothesis corresponding to the largest possi-
ble region, i.e. the intersection hypothesis of all elementary hypotheses, is tested first
and if this hypothesis can be rejected, we continue with further specifying the exact lo-
cation/locations of the effect present. The procedure uses the logical relations that exist
between the different region hypotheses to gain power and is based on the sequential
rejection principle of Goeman and Solari (2010). As in the previous chapter, again an al-
gorithm is provided to calculate confidence sets for the number of true or false hypotheses
within every arbitrarily chosen set of elementary hypotheses.

The multiple testing procedure that is proposed in chapter 4 can be seen as a more
general variant of the region procedure. This new procedure can be used for testing hy-
potheses that are structured in a directed acyclic graph (DAG). The set of region hypothe-
ses could be an example of such a graph structure, but because all DAG structures are
possible, the DAG method is much more flexible than the region method. An interesting
example of a graph structure that can be tested with this new method is the Gene Ontology
graph. As before, a top-down approach is used and confidence sets for the number of true
or false hypotheses within any set of elementary hypotheses can be constructed.

Whereas the region and the DAG method are top-down procedures, the multiple
testing method that is introduced in chapter 5 is a simultaneous (i.e. non-hierarchical)
method, which means that no particular testing order is used but all hypotheses can be
tested simultaneously in every step. This method can again be used on any DAG structure
and can be seen as a modified version of the well-known method by Holm (Holm, 1979)
in which the logical relations between the hypotheses are used to gain power. Apart from
introducing a new FWER controlling procedure, chapter 5 also discusses the differences
between FWER and FDR controlling procedures in the context of gene set testing and
suggests a specific way to interpret and summarize results from gene set testing proce-
dures.

Chapter 6 revolves around the research question “How to select important covari-
ates from a large set of candidates?” and through this question, the connection between
multiple testing and model building is addressed. We give an overview of well-known
multiple testing and variable selection procedures and discuss why variables selected for
a (multivariate) prediction model and variables selected by a (univariate) multiple testing
procedure can be quite different. Furthermore, we discuss what it means in practice if a
variable selection procedure has the “oracle property”, i.e. the property that it will only
select those variables that are present in the underlying true model.
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In the final chapter, we describe an approximation method for cross-validation, which
is a resampling method that is frequently used in both model building and in evaluating
the predictive performance of the final model. Whereas true cross-validation requires
fitting a prediction model multiple times, each time on a slightly different data set, our
approximation model uses a Taylor expansion around the estimate of the full model in
order to approximate the cross-validated estimates. In this way, these estimates can be
obtained without refitting the model, which makes this method much more efficient than
actual cross-validation. The method can be used for generalized linear models and Cox’
proportional hazards model with a ridge penalty term.

Throughout the thesis, high emphasis is put on the computational efficiency of our
methods. To facilitate the actual use of all procedures, accompanying software for all
described procedures can be found in either the R-package cherry or the R-package
penalized which can be freely downloaded from the CRAN repository.
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