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1	 Atherosclerosis and cardiovascular disease

Atherosclerosis can be defined as a multifactorial, progressive disease of medium 
and large sized arteries which sets off already in childhood1 and is characterized 
by accumulation of lipid material and fibrous components in the artery wall2. 
Atherosclerosis is the pathophysiological cause of the majority of cardiovascular 
disease including myocardial infarction, angina pectoris and stroke. Most clinical 
complications are caused by plaque disruption and subsequent thrombus 
formation3,4. Its onset and progression was seen to associate with both environmental 
risk factors like smoking, high-fat diet and lack of exercise and factors with a strong 
genetic component like hypertension, hyperlipidemia, diabetes and male gender5-8. 
Therapies are mostly based on reducing these risk factors, such as lowering serum 
lipid levels using statins, lowering blood pressure and life style changes or consist of 
surgical intervention such as bypass surgery, percutaneous transluminal coronary 
angioplasty (PTCA) and stenting although the effectiveness of the latter interventions 
is often impaired by the recurrent narrowing of the vessel, a process referred to as 
restenosis9. Despite the available treatments, atherosclerosis continues to be one 
of the main causes of death in the world.

2	 Pathogenesis of atherosclerosis

2.1	 Leukocyte adhesion and migration
In the normal, healthy arterial wall the endothelium covers a layer of smooth 
muscle cells and produces various factors controlling vascular tone, cellular 
adhesion, thromboresistance, smooth muscle cell proliferation, inflammation of 
the vessel wall and vascular remodeling10. Atherosclerotic plaques start as fatty 
streaks at specific predilection sites within the arterial tree, such as bifurcations 
and branches1,2. The first step herein lies in dysfunction of the endothelium due to 
increased turbulence or decreased shear stress often combined with aspects of the 
above mentioned risk factors1,2. As a result the expression by endothelial cells of 
adhesion and inflammatory molecules, essential in the recruitment of leukocytes, 
is increased11. The initial tethering and rolling of circulating leukocytes (monocytes 
and lymphocytes) is mediated by selectins, L-selectin expressed on circulating 
leukocytes and P-selectin and E-selectin on the activated endothelium, resulting in 
further leukocyte activation12,13. Subsequently firm adhesion of leukocytes requires 
the engagement of β1 and β2 integrins, e.g. VLA4 and CD18/CD11, which interact with 
upregulated intracellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion 
molecule 1 (VCAM-1) expressed by endothelial cells14,15. Functional roles for ICAM-1 
and both E-selectin and P-selectin in atherogenesis have been confirmed by gene 
deletion studies in mouse models for atherosclerosis, the ApoE and LDLr deficient 
mouse16,17. Transmigration of leukocytes into the subendothelial space is the final 
step in plaque initiation, a process also known as diapedesis. Various endothelial 
cell expressed molecules facilitate transmigration, such as platelet/endothelial-cell 
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Figure 1. Atherosclerotic plaque initiation. 
Selectins mediate the first cell-cell interactions 
enabling capture, tethering and rolling of 
circulating monocytes. Once captured, 
integrins (interacting with ICAM-1 and VCAM-
1) mediate the firm adhesion of monocytes 
to the endothelium after which they migrate 
into the subendothelial space along a 
chemokine gradient. Here they differentiate 
into macrophage under the influence of M-
CSF and increase the expression of scavenger 
receptors. Adapted from Li and Glass175.

adhesion molecule 1 (PECAM1), junctional adhesion molecule A (JAM-A), endothelial 
cell-selective adhesion molecule (ESAM), ICAM2 and CD9918-22. In addition to 
adhesion molecules chemokines are critically involved in the adhesion and migration 
of leukocytes23. Regarding lesion initiation chemokine receptor CCR2 and its ligand 
monocyte chemoattractant protein 1 (MCP1) are considered the most important. 
Deletion of MCP1 in LDLr-/- mice and (leukocyte) CCR2 in ApoE-/- or ApoE3 Leiden 
mice all resulted in significantly reduced atherosclerosis development24-26. Once 
migrated into the intima, monocytes differentiate into macrophages in response 
to macrophage-colony stimulation factor (M-CSF) secreted by endothelial cells and 
vascular smooth muscle cells (vSMC) and contribute to plaque progression2. Figure 
1 shows a schematic overview of the processes described above.

2.2	 Plaque progression and instability
Fatty streaks do not cause clinical symptoms but may progress to more complex 
plaques. They are characterized by continuous influx of inflammatory cells 
(macrophages and lymphocytes) and lipids into the vessel wall. Low-density-
lipoprotein (LDL) within the intima can be modified by oxidation and aggregation27-

29. In turn, these modified LDL particles and entrapped cholesteryl esters can be 
taken up by macrophages which have increased expression of scavenger receptors 
due to M-CSF stimulation30. As a result of this progressive accumulation of lipids, 
macrophages will convert into foam cells. Differentiated macrophages and 
infiltrated T lymphocytes will augment the inflammatory response by secreting 
growth factors and cytokines31. Formation of a more complex fibroatheromathous 
lesion involves the migration of vSMC from the vessel wall into the intima and vSMC 
proliferation under the influence of growth factors secreted by endothelial cells and 
macrophages. VSMC synthesize the bulk of the extracellular matrix such as collagen, 
elastin and proteoglycans within the plaque in response to transforming growth 
factor (TGF) β and platelet derived growth factor (PDGF). VSMC and extracellular 
matrix proteins form a fibrous cap overlying the lipid core32. Augmentation of the 
inflammatory response, vSMC migration and formation of a fibrous cap cause the 
initial fatty streak to develop into an advanced atherosclerotic lesion narrowing the 
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Figure 2.Atherosclerotic plaque progression from 
early atheroma to myocardial infarction. Early 
atheroma can progress into a stable fibrous 
plaque characterized by a small core and thick 
fibrous cap. Alternatively a vulnerable plaque 
develops with a large core containing lipids and 
cell debris, a high inflammatory cell content 
and a thin fibrous cap. Vulnerable plaques may 
rupture resulting in the formation of a thrombus. 
Ruptured plaques can either heal following vSMC 
migration and extracellular matrix production or 
result in myocardial infarction. Adapted from 
Watkins and Farrall176.

vessel lumen.  
As the atherosclerotic plaque progresses a necrotic core is formed consisting of 
accumulated lipids and cell debris derived from apoptotic or necrotic cells. Whereas 
stable advanced lesions have a dense fibrous cap overlying this necrotic core, the 
potentially dangerous plaques, responsible for the majority of clinical manifestations, 
are unstable as a result of cap thinning which makes a plaque vulnerable to 
rupture and thrombus formation33. Several factors contribute to the progressive 
destabilization and thrombogenicity of atherosclerotic plaques. A large lipid core34, 
accumulation of inflammatory cells35, extracellular matrix degradation36,37 and plaque 
cell death38,39 comprise the most important contributors. In addition intraplaque 
hemorrhage has been proposed to be a critical factor in plaque destabilization35. 
Fibrous cap thinning and plaque inflammation in regard to lesion progression and 
destabilization will be discussed in more detail in the following sections.

3	 The role of vascular smooth muscle cells in atherosclerosis

Vascular smooth muscle cells (vSMC) are one of the major cellular constituents of the 
atherosclerotic plaque. Evidence shows that intimal vSMC differ from medial vSMC 
in many aspects. Medial vSMC are predominantly of the contractile phenotype while 
most intimal vSMC have characteristics of the synthetic, migratory phenotype. This 
phenotypic switch can be induced by a variety of atherogenic stimuli like cytokines, 
shear stress, reactive oxygen species (ROS) and lipids. Synthetic vSMC migrate and 
proliferate better than contractile vSMC and synthesize more collagen41. VSMC 
migration can be triggered by various growth factors and chemokines secreted by 
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macrophages and T cells like platelet derived growth factor (PDGF), fibroblast growth 
factor (FGF) and transforming growth factor (TGF) β, monocyte chemoattractant 
protein (MCP) 1 and stromal cell-derived factor (SDF) 1α1,42,43. 
VSMC, like macrophage, are able to ingest lipids and form foam cells. They 
express several receptors involved in (modified) lipoprotein uptake including 
the LDL receptor, CD36, type I and type II scavenger receptors and SR-PSOX44-47. 
Furthermore, adhesion molecules like vascular cell adhesion molecule 1 (VCAM-
1) and intercellular adhesion molecule 1 (ICAM-1) have been demonstrated to be 
expressed by vSMC, these may enable them to increase monocyte adherence and 
infiltration into the atherosclerotic lesion48. The mechanisms and consequences 
of adhesion of leukocytes to vSMC in vivo however are not well characterized. 
Furthermore, intimal vSMC have been reported to produce a wide variety of growth 
factors and cytokines, including PDGF, TGFβ, MIF and MCP-1, contributing to the 
pro-inflammatory environment of the atherosclerotic lesion41.
VSMC play a crucial role in fibrous cap formation and preserving plaque stability. 
Unstable plaques prone to rupture contain a higher macrophage and lipid content 
and a thinned fibrous cap due to loss of vSMC and extracellular matrix. The strength 
of the fibrous cap seems to depend on a balance between collagen synthesis and 
breakdown and on the type of collagen. Expression of genes promoting collagen 
synthesis by vSMC and of matrix metalloproteinases (MMPs), important in the 
breakdown of extracellular matrix, can be influenced by inflammatory cytokines49. 
For instance, TGFβ enhances the ability of vSMC to produce collagen, while TNFα, 
IL1 and IFNγ suppress collagen content either directly or by inducing MMPs50-52. In 
addition MMP expression was shown to be elevated in atherosclerotic plaque in 
comparison to normal vessels, a result of both inflammatory cytokine production and 
oxidative stress33. MMP activity is balanced by tissue inhibitors of metalloproteinases 
(TIMPs), MMP specific inhibitors expressed by vSMC. Expression of TIMPs can be 
either constitutive or upregulated by TGFβ and PDGF53.
Apart from MMPs, cathepsins which are cysteine proteases, can degrade the 
extracellular matrix54. Cathepsins are secreted by macrophages and their expression 
is increased in atherosclerotic lesions compared to healthy arteries55. Comparable 
with MMPs, cathepsin activity can be inhibited by a family of proteins, the cystatins 
of which cystatin C is best described. As opposed to cathepsins, expression of 
cystatin C is decreased in atherosclerotic lesions55,56.
Another role for vSMC may lay in the healing of fibrous cap breaks that remain 
subclinical. Mediators released at sites of thrombosis, for example PDGF and TGFβ 
released by platelets, can stimulate vSMC migration, mitogenesis and production 
of collagen, thus promoting a fibrous lesion morphology49. A thrombus caused by 
plaque rupture that doesn’t occlude the vessel is reorganized and incorporated 
into the plaque. Recurring incidents of plaque rupture and healing can be visible in 
plaques57,58. 
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4	 Inflammation in atherosclerosis

Monocyte infiltration contributes largely to plaque initiation. Stimulation with M-
CSF secreted by endothelial cells and vSMC, causes the infiltrated monocytes to 
differentiate into macrophages and induces expression of scavenger receptors and 
cytokine production59-60. Macrophages are able to take up cell-activating modified 
LDL, mainly oxidized LDL (Ox-LDL) via several scavenger receptors including type 1 
and 2 scavenger receptor A (SRA), CD36, CD86, MARCO (macrophage receptor with a 
collagenous structure), SR-PSOX (scavenger receptor that binds phosphatidylserine 
and oxidized lipoprotein) and lectin-like oxidized low density lipoprotein receptor 1 
(LOX-1)61-65. Uptake of modified lipoproteins by scavenger receptors not only leads to 
the formation of foam cells but also results in macrophage activation. Subsequently, 
activated macrophages produce inflammatory cytokines, growth factors, proteases 
and reactive oxygen species influencing endothelial cell activation, vSMC migration, 
proliferation and collagen production and T cell activation35. Expression of scavenger 
receptors can be influenced by various cytokines present in the plaque including 
TNFα, IFNγ, IL4 and TGFβ66-68. TGFβ was shown to inhibit foam cell formation68.  
Uptake of modified lipoproteins via macrophage scavenger receptors can result in 
MHC restricted antigen presentation to T cells69. T cells are recruited into the lesion 
by mechanisms similar to the recruitment of monocytes. The majority of lesional 
T cells are CD4+ effector cells although CD8+ cells are present as well70. The role of 
lymphocytes in atherosclerosis has been studied using RAG-/- mice lacking T and B 
cells. In ApoE-/- mice lymphocyte deficiency results in the development of smaller 
lesions71,72 while transfer of CD4+ T cells into immunodeficient (scid/scid) ApoE-

/- mice aggravated atherosclerosis73. Several antigens have been associated with 
atherosclerosis. An important group of antigens consists of altered self molecules. 
T cells within the atherosclerotic lesions have been shown to respond to Chlamydia 
pneumoniae related antigens and stress-induced heat shock protein (HSP) 6070. 
Apart from Ox-LDL which is recognized by T cells present in human plaques74 
peptides derived from modified LDL components, for example apolipoprotein B 
and phospholipids can serve as antigens in atherosclerotic plaques70. CD4+ T cells 
can be subdivided in several T helper (Th) cell subsets based on their cytokine 
secretion profile, e.g. Th1 cells (which produce IFNγ and TNFα), Th2 cells (producing 
IL4, IL5 and IL13) and regulatory T cells (IL-10 and TGFbeta)70. Mouse and human 
studies have demonstrated a predominant pro-inflammatory Th1 cytokine pattern 
in atherosclerotic plaques75,76. IL2 and IFNγ were shown to be abundantly present 
whereas only small amounts of Th2 cytokines IL4 and IL5 have been found in 
plaques. Mouse studies have demonstrated that IL12 and IL18, both Th1 inducing 
cytokines, have pro-atherogenic properties77-81 as do Th1 cytokines IFNγ82,83 and 
TNFα 84,85, while the role of Th2 cytokines is less clear. IL4 was demonstrated to be 
atheroprotective78,86 but deficiency of IL5 increased atherosclerosis87.
Production of cytokines by macrophages and lymphocytes in the plaques does 
not only influence inflammatory processes but also modulates smooth muscle 
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cell activity. IFNγ inhibits smooth muscle cell proliferation88 and the production 
of collagen, whereas TGFβ stimulates collagen production89. In addition TGFβ 
downregulates the expression of MMPs, collagen degrading proteins90, while 
macrophages are stimulated to produce MMPs by TNFα and IL191. Finally TNFα 
and IFNγ can promote the uptake of modified lipoproteins by smooth muscle cells 
leading to smooth muscle cell derived foam cells92.
In addition to macrophages and T cells other inflammatory cell types have been 
demonstrated to be involved in atherosclerosis, including B cells, dendritic cells, 
mast cells and neutrophils. Although few B cells are present in the plaque the 
majority is located in the adventitia70. B cell associated immunity was shown to 
be protective in atherosclerosis as splenectomy increased plaque development 
in ApoE-/- mice while transfer of spleen derived B cells counteracted this effect93. 
Dendritic cells are the most potent antigen presenting cells. They are present in 
healthy vessels but accumulate during atherogenesis, being mainly localized in the 
rupture prone shoulder areas94. Skin dendritic cells have been shown to be activated 
by dislipidaemia with surprising inhibition of migration into lymph nodes suggesting 
that they contribute to local inflammation95. However a recent study by Packard et 
al.96 found opposing results. Here, dendritic cells were demonstrated to maintain 
their antigen presenting function and ability to prime CD4+ T cells in vitro under 
hypercholesterolemic conditions96. Mast cells are present in the atherosclerotic 
plaque and were shown to accumulate in the shoulder region97. Activated mast cells 
secrete cytokines and proteases and mast cell derived TNFα and IL6 were shown 
to promote atherosclerosis98. In addition mast cells have been demonstrated to be 
involved in intraplaque hemorrhage, macrophage apoptosis and vascular leakage, 
promoting plaque instability99. Neutrophils are thought to be pro-atherogenic as 
well. They are mainly present in the adventitia and the luminal area of mouse 
plaques100 and in ruptured human coronary artery plaques101. Depletion of circulating 
neutrophils resulted in reduced plaque formation in ApoE-/- mice100. 

5	 Apoptotic cell death

5.1	 Signal transduction pathways
Removal of defective, damaged or dangerous cells is critical for normal development 
and tissue homeostasis of all organisms102. Death of these cells takes place via a 
process called apoptosis or programmed cell death103. Apoptosis is characterized 
by morphological changes like cell shrinkage, DNA fragmentation, condensation of 
chromatin and membrane blebbing. In contrast, features of passive, traumatic cell 
death or necrosis are cell swelling and loss of membrane integrity104. 
The executers of apoptotic cell death are a family of cysteine proteases known 
as caspases. Caspases proteolytically cleave proteins necessary for maintaining 
cellular structure like lamins105 and focal adhesions kinase (FAK)106 but also proteins 
that protect from cell death such as DFF45 (a nuclease inhibitor)107 and Bcl-2 family 
members108. A cascade of caspases in which a pro-apoptotic signal activates initiator 
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caspases (e.g. caspases 1, 8, 9 and 10) which in turn activate effector caspases 
(caspases 3, 6 and 7) results in cellular breakdown109. There are two signaling 
pathways regulating apoptosis that share the same effector caspases. The extrinsic 
or death receptor mediated pathway is activated in response to ligation of death 
receptors (fig. 3). Binding of specific ligands to the cognate death receptor causes 
formation of a death-inducing signaling complex (DISC) in which various adaptor 
proteins like FADD and TRADD interact with death domains (DD) of the receptors110. 
Initiator caspase 8 is essential for death receptor induced apoptosis111. Death 
receptors belong to the tumor necrosis factor (TNF) receptor family and include 
TNF receptor 1 (TNFR1), FAS, death receptor (DR) 3, DR4 and DR5. Their ligands are 
TNF family members, including Fas ligand, TNFα, TWEAK (TNF-like weak inducer of 
apoptosis) and TRAIL (TNF related apoptosis inducing ligand)110. 
The intrinsic apoptosis signaling pathway requires the involvement of members 
of the Bcl-2 (B cell lymphoma 2) family of apoptosis regulators and mitochondria. 
Apoptotic stimuli activating this pathway include DNA damage, UV radiation, hypoxia 
and growth factor withdrawal112. Apoptosis signaling via the intrinsic pathway 
depends on the release of cytochrome c and other apoptosis regulating proteins 
like Smac/Diablo and apoptosis inducing factor (AIF) from the mitochondria (fig. 
3). Once in the cytosol cytochrome c associates with an adaptor molecule called 
apoptotic protease-activating factor-1 (APAF-1) and pro-caspase 9 forming the so-
called apoptosome. The subsequently activated caspase 9 is then able to activate 
effector caspases113. 

5.2	 Bcl-2 family of apoptosis regulators
The intrinsic apoptosis pathway is mainly regulated by proteins of the Bcl-2 family. 
This family consists of both pro- and anti-apoptotic proteins sharing one or more 
Bcl-2 homology (BH) domains114. Anti-apoptotic proteins contain three or four BH 
domains and include Bcl-2, Bcl-w, Bcl-xL, Bfl-1 and Mcl-1. There are two classes of pro-
apoptotic Bcl-2 family proteins: proteins of the multidomain group comprising Bax, 
Bak and Bok which contain BH domains 1-3 and Bcl-2 proteins which carry only the 
BH-3 domain. The latter BH-3 only proteins include Bid, Bad, Bik, Bim, Noxa, Puma, 
Bmf, Blk and Hrk114. BH-3 only proteins initiate the apoptotic cascade115, whereas 
Bax and Bak function downstream of BH-3 only proteins116. Bcl-2 family proteins Bak 
and Bax are thought to form pores in the outer mitochondrial membrane or change 
pore size thereby affecting of the mitochondrial permeability for cytochrome c113. 
Cytochrome c release from mitochondria takes place through these pores. Under 
non-apoptotic circumstances activity of BH3-only proteins is inhibited by Bcl-2 and 
other anti-apoptotic Bcl-2 proteins112. Following an apoptotic stimulus, BH-3 only 
proteins can either directly activate multidomain pro-apoptotic proteins (Bid and 
Bim) or interact with anti-apoptotic Bcl-2 proteins and prevent their binding to 
other pro-apoptotic proteins (Bim). Activity of BH3-only proteins can be regulated 
by phosphorylation (for example Bad and Bim117,118), transcriptional control (Puma 
and Noxa which are p53 targets119,120) or cleavage (Bid121). The pro-apoptotic protein 
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Figure 3. Apoptosis pathways. The 
death receptor (extrinsic) pathway is 
activated by ligation of death receptors. 
Subsequently initiator caspases 
activate effector caspases resulting in 
cell death. BH3-only proteins (e.g. Bim) 
initiate the mitochondrial or intrinsic 
pathway after apoptotic stimuli like 
DNA damage and oxidative stress, 
followed by activation of multidomain 
pro-apoptotic proteins (Bak and Bax) 
which form pores in the mitochondrial 
membrane. Apoptotic signaling is 
regulated by anti-apoptotic bcl-2 
proteins (Bcl-2, Bcl-xL, Mcl-1 etc). Cell 
death results from effector caspase 
activation and subsequent release of 
cytochrome c and other regulatory 
proteins from the mitochondria. 
Adapted from Kutuk and Basaga112.

Bid, which functions in the intrinsic pathway, can also be activated by caspase-8 
after stimulation of the extrinsic apoptosis pathway, thereby connecting both 
pathways112. 

5.3	 Apoptotic cell clearance
Apoptosis is followed by uptake of cellular remnants by professional phagocytes, 
macrophages, dendritic cells and granulocytes122. A wide range of receptors, ligands 
and adaptor molecules on both apoptotic cells and phagocytes are involved in the 
removal of apoptotic cells. One of the best described molecules in the recognition 
of apoptotic cells is phosphatidylserine (PS), which is translocated from the inner 
to the outer leaflet of the cell membrane early in the apoptotic process123. Other 
molecules implicated in the recognition and engulfment of apoptotic cells include 
scavenger receptors CD36, CD68 and SRA, Mer kinase, CD14 and integrins on the 
phagocyte membrane and bridging molecules such as milk fat globule epidermal 
growth factor 8 (Mfge8) and complement component C1q122,124-127. When removal 
of apoptotic cells is insufficient apoptotic cells may undergo secondary necrosis 
with leakage of cellular content. This may have pathological consequences since 
secondary necrotic cells and their debris can be taken up by antigen presenting cells 
and result in inflammation and autoimmunity128. 
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6	 Apoptosis and phagocytosis in the atherosclerotic plaque

Apoptosis occurs in atherosclerotic lesions affecting all major cell types, endothelial 
cells, macrophages, T cells and vSMC129. However, apoptosis increases with plaque 
progression, being virtually absent in initial lesions and increasingly present in 
advanced lesions130. Inducers of apoptotic cell death are abundant and include 
modified LDL, reactive oxygen species, cytokines with pro-apoptotic activity, hypoxia 
and death receptor ligation (Fas, TNFR1 and 2, DR4 and DR5)131-137.

6.1	 Endothelial cell apoptosis
Endothelial injury and apoptosis are late events in atherosclerosis138. Endothelial 
cells in lesion-prone regions in the vasculature have increased turnover due to 
increased apoptosis139. In endothelial cells in regions predisposed to atherosclerotic 
lesion development NF-κB signal transduction pathway was shown to be primed 
for activation140 and NF-κB activation by various stimuli like hypoxia, IL18 and TNFα 
has been demonstrated to trigger apoptosis in endothelial cells141-143. Apoptosis is 
stimulated by exposure to oxidized LDL and oxidative stress among other factors. 
Nitric oxide (NO) may play a role in endothelial cell apoptosis in atherosclerosis 
as well. In healthy arteries NO derived from endothelial NO synthase (eNOS) 
acts protective against apoptosis144. In atherosclerotic lesion prone regions eNOS 
expression is decreased145. In addition, atherosclerotic plaque macrophages 
produce high amounts of inducible NOS (iNOS) which can generate peroxynitrite 
contributing to oxidative stress146 which in turn can induce DNA damage and 
subsequent apoptosis in endothelial cells138. EC injury and apoptosis can have 
various consequences. Induction of EC apoptosis may promote thrombus formation 
followed by plaque erosion and leukocyte infiltration147,148.

6.2	 Vascular smooth muscle cell apoptosis
Apoptosis of vSMC has been shown to occur after injury in a rabbit balloon angioplasty 
model149, in human abdominal aortic aneurisms150 and in atherosclerotic lesions21. 
Surprisingly apoptosis of vSMC in atherosclerotic plaques can induce inflammation 
as shown in vivo in rat carotid arteries151 where it triggered IL8 and MCP-1 expression 
together with massive macrophage infiltration after vSMC death. In ApoE-/- mice in 
which apoptosis was specifically induced in vSMC by diphtheria toxin (SM22α-hDTR 
/ ApoE-/- mice) increased inflammation was observed after vSMC apoptosis as well152. 
Furthermore, vSMC apoptosis has been shown to lead to thrombin generation153 
and calcification154 in vitro. In human atherosclerotic lesions apoptosis of both vSMC 
and macrophages was demonstrated to be elevated only in advanced lesions while 
in early lesions apoptosis was minimal130. In addition, human vSMC derived from 
coronary atherosclerotic plaques were shown to be more susceptible to cell death 
than vSMC from healthy coronary arteries in vitro155 and vSMC may exhibit increased 
oxidative stress induced senescence156. VSMC senescence following ROS induced 
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DNA damage was shown to be mediated by p53 activation156. Abovementioned 
studies seem to support the general concept that apoptosis of vSMC promotes plaque 
vulnerability by thinning of the fibrous cap and also various studies in mice are in 
agreement with this concept. Induction of apoptosis by targeted overexpression of 
p53 into cap smooth muscle cells in advanced collar induced carotid artery plaques 
in ApoE-/- mice resulted in increased apoptosis of cap cells, reduced cap thickness, 
and in general a vulnerable plaque phenotype which was prone to phenylephrine 
induced rupture157. A comparable, vulnerable plaque phenotype was found after 
adenovirus mediated overexpression of the pro-apoptotic TNF family member 
Fas ligand in cap cells of ApoE deficient mice158. Plaques contained hemorrhage, 
buried caps and iron deposits, also indicating increased vulnerability. Recently, the 
above mentioned SM22α-hDTR / ApoE-/- mice were used to examine the impact 
of vSMC apoptosis on plaque phenotype and disease progression152,159. Induction 
of apoptosis in established atherosclerotic plaques resulted in plaque vulnerability 
as indicated by fibrous cap thinning, loss of collagen, accumulation of cell debris 
and increased inflammation152. In addition, persistent vSMC apoptosis throughout 
plaque development was seen to accelerate atherogenesis159. 

6.3	 Macrophage apoptosis
Macrophage apoptosis occurs in both early and late stages of atherosclerosis 
and can be induced by a variety of stimuli including oxidized LDL, oxysterols, free 
cholesterol and hypoxia but also TNFα160. Apoptosis of macrophages has been 
demonstrated to be beneficial in early atherogenesis in several in vivo studies161-

164. Inhibition of macrophage apoptosis due to leukocyte p53 deletion in ApoE3 
Leiden transgenic mice161 or LDLr-/- mice162 and leukocyte Bax deletion in LDLr-/- 
mice163, both pro-apoptotic factors, resulted in increased atherosclerotic lesion size. 
In addition deletion of pro-survival factor AIM (apoptosis inhibitor expressed by 
macrophages) in LDLr-/- mice led to increased macrophage apoptosis and decreased 
lesion area164. The consequences of macrophage apoptosis in advanced lesions 
are less clear. In advanced human lesions clearance of apoptotic cells was shown 
to be defective165, suggesting that macrophage apoptosis will lead to secondary 
necrosis and accumulation of cell and lipid debris. This will translate in necrotic 
core expansion and elicit a pro-inflammatory response which could result in 
promotion of plaque instability160. However, others did not find such pronounced 
effects of macrophage apoptosis in advanced atherosclerotic plaques. For instance, 
Stoneman et al.166 developed a model in which in ApoE-/- mice apoptosis could be 
induced specifically in macrophages with diphtheria toxin (DT), the CD11b-hDTR 
/ ApoE-/- mouse166. Induction of apoptosis during early atherogenesis resulted in 
decreased plaque development together with reduced collagen content and 
necrotic core formation, confirming the atheroprotective effects of macrophage 
apoptosis in aforementioned studies regarding early atherogenesis. However in 
established plaques DT treatment induced macrophage apoptosis but this did not 
result in alterations in plaque size, cell composition or inflammation. In another 
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study macrophage apoptosis was achieved by LysM cre induced deletion of Bcl-2 
in ApoE-/- mice167. Increased macrophage apoptosis was observed after 10 weeks 
of western type diet feeding but this resulted in a slight increase of 25% in necrotic 
core size only in female mice. No other characteristics of enhanced plaque instability 
were observed.

6.4	 Phagocytosis of apoptotic cells
Phagocytosis of apoptotic cells in the atherosclerotic plaque limits plaque 
progression, inflammation and plaque instability as has been demonstrated by 
several gene deletion studies. Deficiency of leukocyte transglutaminase 2 (TG2) in 
LDLr-/- mice was seen to increase aortic valve lesion size and intimal macrophage 
infiltration168. LDLr-/- mice deficient in milk fat globule-EGF factor 8 (Mfge8) show 
accelerated atherosclerosis with increased necrotic core size and an elevated 
inflammatory status169. Finally, deletion of leukocyte Mer kinase in LDLr-/- mice 
led to increased accumulation of apoptotic cells, increased macrophage area and 
lymphocyte infiltration resulting in accelerated lesion development170. 
As mentioned in the previous section, phagocytic clearance of apoptotic cells is 
impaired at later stages of plaque progression165. Several mechanisms for defective 
phagocytosis have been proposed. First, Ox-LDL shares molecules involved in 
recognition by macrophages with apoptotic cells and as a result may compete with 
apoptotic cells for ingestion171,172. In addition auto-antibodies directed against Ox-LDL 
have been demonstrated to bind to apoptotic cells and inhibit their phagocytosis by 
macrophages173. Finally oxidative stress may inhibit the phagocytosis of apoptotic 
cells by macrophages as has been demonstrated in vitro for the oxidative stress 
mediators hydrogen peroxide (H2O2)174 and peroxynitrite165. 

7	 Thesis outline

In this thesis the role of several apoptosis regulating proteins in the development of 
atherosclerosis and atherosclerotic plaque stability is investigated. As many of these 
proteins also display immune-modulating features, we have particularly investigated 
effects of modulation of apoptosis regulating proteins on plaque and systemic 
inflammation. In chapter 2 current knowledge on pro- or anti-apoptotic proteins 
and their effects on inflammation in both murine and human atherosclerosis as well 
as the influence of pro- or anti-inflammatory mediators on apoptotic processes are 
reviewed. 
Chapter 3 describes a study in which gene expression profiles of thin cap 
fibroatheroma are compared to those of thick cap fibroatheroma by micro-array 
technology in order to identify genes or pathways that are associated with plaque 
vulnerability. Two different mouse models for thin cap fibroatheroma are used to 
increase the significance of the findings.
In chapter 4 the relevance of Bim (Bcl-2 interacting mediator of cell death), a pro-
apoptotic member of the Bcl-2 family identified as upregulated in both models in 
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the previous chapter, for atherosclerosis is investigated in LDLr-/- mice. Bim has been 
previously demonstrated to be an important regulator of B and T cell homeostasis. 
Therefore, apart from apoptotic processes relevant for atherosclerosis, we also 
assessed the role in disease associated innate and adaptive immunity. The pro-
apoptotic activity of Bim is partly regulated by Mcl-1 (myeloid cell leukemia 1), 
an anti-apoptotic member of the Bcl-2 family. Mcl-1 is amongst others involved 
in proliferation and differentiation of monocytes and neutrophils and has been 
implicated in lipid accumulation by macrophages. In chapter 5 we therefore studied 
the impact of Mcl-1 deletion on cell death, lipid accumulation and inflammatory 
status of LDLr-/- mice.
Chapter 6 describes a study addressing the role of focal adhesion kinase (FAK), a 
kinase not only involved in cell death and proliferation, but particularly important 
in cell adhesion and migration, in atherosclerosis development and progression in 
ApoE-/- mice. Recently, FAK was shown to be involved in oxidized LDL mediated CD36 
signaling. Thus,   in chapter 6 the role of FAK in plaque apoptosis, inflammatory 
status and lipid metabolism in Western type diet fed ApoE-/- mice was investigated.
To conclude, in chapter 7 the main findings of the studies described in this thesis are 
summarized and discussed in relation to possible therapeutic approaches.
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