
Crosstalk between apoptosis and inflammation in atherosclerosis
Westra, M.M.

Citation
Westra, M. M. (2010, January 26). Crosstalk between apoptosis and inflammation in
atherosclerosis. Retrieved from https://hdl.handle.net/1887/14616
 
Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in
the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/14616
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/14616


�

Introduction

Chapter 1

Introduction

1	 Atherosclerosis	and	cardiovascular	disease	

2	 Pathogenesis	of	atherosclerosis
	 2.1	 Leukocyte	adhesion	and	migration
	 2.2	 Plaque	progression	and	instability

3	 The	role	of	vascular	smooth	muscle	cells	in	atherosclerosis

4	 Inflammation	in	atherosclerosis

5	 Apoptotic	cell	death
	 5.1	 Signal	transduction	pathways	
	 5.2	 Bcl-2	family	of	apoptosis	regulators
	 5.3	 Apoptotic	cell	clearance

6	 Apoptosis	and	phagocytosis	in	the	atherosclerotic	plaque
	 6.1	 Endothelial	cell	apoptosis
	 6.2	 Vascular	smooth	muscle	cell	apoptosis
	 6.3	 Macrophage	apoptosis
	 6.4	 Phagocytosis	of	apoptotic	cells

7	 Thesis	outline



10

Chapter 1

1 Atherosclerosis and cardiovascular disease

Atherosclerosis	can	be	defined	as	a	multifactorial,	progressive	disease	of	medium	
and	 large	sized	arteries	which	sets	off	already	 in	childhood1	and	 is	 characterized	
by	 accumulation	 of	 lipid	 material	 and	 fibrous	 components	 in	 the	 artery	 wall2.	
Atherosclerosis	 is	 the	 pathophysiological	 cause	 of	 the	 majority	 of	 cardiovascular	
disease	 including	myocardial	 infarction,	 angina	pectoris	 and	 stroke.	Most	 clinical	
complications	 are	 caused	 by	 plaque	 disruption	 and	 subsequent	 thrombus	
formation3,4.	Its	onset	and	progression	was	seen	to	associate	with	both	environmental	
risk	factors	like	smoking,	high-fat	diet	and	lack	of	exercise	and	factors	with	a	strong	
genetic	component	like	hypertension,	hyperlipidemia,	diabetes	and	male	gender5-8.	
Therapies	are	mostly	based	on	reducing	these	risk	factors,	such	as	lowering	serum	
lipid	levels	using	statins,	lowering	blood	pressure	and	life	style	changes	or	consist	of	
surgical	 intervention	such	as	bypass	surgery,	percutaneous	transluminal	coronary	
angioplasty	(PTCA)	and	stenting	although	the	effectiveness	of	the	latter	interventions	
is	often	impaired	by	the	recurrent	narrowing	of	the	vessel,	a	process	referred	to	as	
restenosis�.	Despite	the	available	treatments,	atherosclerosis	continues	to	be	one	
of	the	main	causes	of	death	in	the	world.

2 Pathogenesis of atherosclerosis

2.1	 Leukocyte	adhesion	and	migration
In	 the	 normal,	 healthy	 arterial	 wall	 the	 endothelium	 covers	 a	 layer	 of	 smooth	
muscle	 cells	 and	 produces	 various	 factors	 controlling	 vascular	 tone,	 cellular	
adhesion,	 thromboresistance,	 smooth	muscle	 cell	 proliferation,	 inflammation	 of	
the	 vessel	 wall	 and	 vascular	 remodeling10.	 Atherosclerotic	 plaques	 start	 as	 fatty	
streaks	at	 specific	predilection	 sites	within	 the	arterial	 tree,	 such	as	bifurcations	
and	branches1,2.	The	first	step	herein	lies	in	dysfunction	of	the	endothelium	due	to	
increased	turbulence	or	decreased	shear	stress	often	combined	with	aspects	of	the	
above	mentioned	risk	factors1,2.	As	a	result	the	expression	by	endothelial	cells	of	
adhesion	and	inflammatory	molecules,	essential	in	the	recruitment	of	leukocytes,	
is	increased11.	The	initial	tethering	and	rolling	of	circulating	leukocytes	(monocytes	
and	 lymphocytes)	 is	 mediated	 by	 selectins,	 L-selectin	 expressed	 on	 circulating	
leukocytes	and	P-selectin	and	E-selectin	on	the	activated	endothelium,	resulting	in	
further	leukocyte	activation12,13.	Subsequently	firm	adhesion	of	leukocytes	requires	
the	engagement	of	β1	and	β2	integrins,	e.g.	VLA4	and	CD18/CD11,	which	interact	with	
upregulated	intracellular	adhesion	molecule	1	(ICAM-1)	and	vascular	cell	adhesion	
molecule	1	(VCAM-1)	expressed	by	endothelial	cells14,15.	Functional	roles	for	ICAM-1	
and	both	E-selectin	and	P-selectin	in	atherogenesis	have	been	confirmed	by	gene	
deletion	studies	in	mouse	models	for	atherosclerosis,	the	ApoE	and	LDLr	deficient	
mouse16,17.	Transmigration	of	leukocytes	into	the	subendothelial	space	is	the	final	
step	in	plaque	initiation,	a	process	also	known	as	diapedesis.	Various	endothelial	
cell	expressed	molecules	facilitate	transmigration,	such	as	platelet/endothelial-cell	



11

Introduction

Figure	 1.	 Atherosclerotic	 plaque	 initiation.	
Selectins	mediate	the	first	cell-cell	interactions	
enabling	 capture,	 tethering	 and	 rolling	 of	
circulating	 monocytes.	 Once	 captured,	
integrins	(interacting	with	ICAM-1	and	VCAM-
1)	mediate	 the	 firm	 adhesion	 of	monocytes	
to	the	endothelium	after	which	they	migrate	
into	 the	 subendothelial	 space	 along	 a	
chemokine	 gradient.	 Here	 they	 differentiate	
into	macrophage	 under	 the	 influence	 of	M-
CSF	and	increase	the	expression	of	scavenger	
receptors.	Adapted	from	Li	and	Glass175.

adhesion	molecule	1	(PECAM1),	junctional	adhesion	molecule	A	(JAM-A),	endothelial	
cell-selective	 adhesion	 molecule	 (ESAM),	 ICAM2	 and	 CD9918-22.	 In	 addition	 to	
adhesion	molecules	chemokines	are	critically	involved	in	the	adhesion	and	migration	
of	leukocytes23.	Regarding	lesion	initiation	chemokine	receptor	CCR2	and	its	ligand	
monocyte	chemoattractant	protein	1	(MCP1)	are	considered	the	most	important.	
Deletion	of	MCP1	in	LDLr-/-	mice	and	(leukocyte)	CCR2	in	ApoE-/-	or	ApoE3	Leiden	
mice	 all	 resulted	 in	 significantly	 reduced	 atherosclerosis	 development24-26.	 Once	
migrated	 into	 the	 intima,	monocytes	differentiate	 into	macrophages	 in	 response	
to	macrophage-colony	stimulation	factor	(M-CSF)	secreted	by	endothelial	cells	and	
vascular	smooth	muscle	cells	(vSMC)	and	contribute	to	plaque	progression2.	Figure	
1	shows	a	schematic	overview	of	the	processes	described	above.

2.2	 Plaque	progression	and	instability
Fatty	streaks	do	not	cause	clinical	 symptoms	but	may	progress	 to	more	complex	
plaques.	 They	 are	 characterized	 by	 continuous	 influx	 of	 inflammatory	 cells	
(macrophages	 and	 lymphocytes)	 and	 lipids	 into	 the	 vessel	 wall.	 Low-density-
lipoprotein	(LDL)	within	the	intima	can	be	modified	by	oxidation	and	aggregation27-

2�.	 In	 turn,	 these	modified	LDL	particles	and	entrapped	cholesteryl	esters	 can	be	
taken	up	by	macrophages	which	have	increased	expression	of	scavenger	receptors	
due	to	M-CSF	stimulation30.	As	a	result	of	this	progressive	accumulation	of	 lipids,	
macrophages	 will	 convert	 into	 foam	 cells.	 Differentiated	 macrophages	 and	
infiltrated	 T	 lymphocytes	 will	 augment	 the	 inflammatory	 response	 by	 secreting	
growth	factors	and	cytokines31.	Formation	of	a	more	complex	fibroatheromathous	
lesion	involves	the	migration	of	vSMC	from	the	vessel	wall	into	the	intima	and	vSMC	
proliferation	under	the	influence	of	growth	factors	secreted	by	endothelial	cells	and	
macrophages.	VSMC	synthesize	the	bulk	of	the	extracellular	matrix	such	as	collagen,	
elastin	and	proteoglycans	within	 the	plaque	 in	 response	 to	 transforming	 growth	
factor	(TGF)	β	and	platelet	derived	growth	factor	(PDGF).	VSMC	and	extracellular	
matrix	proteins	form	a	fibrous	cap	overlying	the	lipid	core32.	Augmentation	of	the	
inflammatory	response,	vSMC	migration	and	formation	of	a	fibrous	cap	cause	the	
initial	fatty	streak	to	develop	into	an	advanced	atherosclerotic	lesion	narrowing	the	
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Figure	2.Atherosclerotic	plaque	progression	from	
early	 atheroma	 to	 myocardial	 infarction.	 Early	
atheroma	 can	 progress	 into	 a	 stable	 fibrous	
plaque	 characterized	 by	 a	 small	 core	 and	 thick	
fibrous	 cap.	 Alternatively	 a	 vulnerable	 plaque	
develops	with	a	large	core	containing	lipids	and	
cell	 debris,	 a	 high	 inflammatory	 cell	 content	
and	a	 thin	fibrous	cap.	Vulnerable	plaques	may	
rupture	resulting	in	the	formation	of	a	thrombus.	
Ruptured	plaques	can	either	heal	following	vSMC	
migration	and	extracellular	matrix	production	or	
result	 in	 myocardial	 infarction.	 Adapted	 from	
Watkins	and	Farrall176.

vessel	lumen.		
As	 the	 atherosclerotic	 plaque	 progresses	 a	 necrotic	 core	 is	 formed	 consisting	 of	
accumulated	lipids	and	cell	debris	derived	from	apoptotic	or	necrotic	cells.	Whereas	
stable	advanced	lesions	have	a	dense	fibrous	cap	overlying	this	necrotic	core,	the	
potentially	dangerous	plaques,	responsible	for	the	majority	of	clinical	manifestations,	
are	 unstable	 as	 a	 result	 of	 cap	 thinning	 which	 makes	 a	 plaque	 vulnerable	 to	
rupture	 and	 thrombus	 formation33.	 Several	 factors	 contribute	 to	 the	 progressive	
destabilization	and	thrombogenicity	of	atherosclerotic	plaques.	A	large	lipid	core34,	
accumulation	of	inflammatory	cells35,	extracellular	matrix	degradation36,37	and	plaque	
cell	 death38,39	 comprise	 the	most	 important	 contributors.	 In	 addition	 intraplaque	
hemorrhage	has	been	proposed	to	be	a	critical	 factor	 in	plaque	destabilization35.	
Fibrous	cap	thinning	and	plaque	inflammation	in	regard	to	lesion	progression	and	
destabilization	will	be	discussed	in	more	detail	in	the	following	sections.

3 The role of vascular smooth muscle cells in atherosclerosis

Vascular	smooth	muscle	cells	(vSMC)	are	one	of	the	major	cellular	constituents	of	the	
atherosclerotic	plaque.	Evidence	shows	that	intimal	vSMC	differ	from	medial	vSMC	
in	many	aspects.	Medial	vSMC	are	predominantly	of	the	contractile	phenotype	while	
most	intimal	vSMC	have	characteristics	of	the	synthetic,	migratory	phenotype.	This	
phenotypic	switch	can	be	induced	by	a	variety	of	atherogenic	stimuli	like	cytokines,	
shear	stress,	reactive	oxygen	species	(ROS)	and	lipids.	Synthetic	vSMC	migrate	and	
proliferate	 better	 than	 contractile	 vSMC	 and	 synthesize	 more	 collagen41.	 VSMC	
migration	can	be	triggered	by	various	growth	factors	and	chemokines	secreted	by	
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macrophages	and	T	cells	like	platelet	derived	growth	factor	(PDGF),	fibroblast	growth	
factor	 (FGF)	 and	 transforming	 growth	 factor	 (TGF)	β,	monocyte	 chemoattractant	
protein	(MCP)	1	and	stromal	cell-derived	factor	(SDF)	1α1,42,43.	
VSMC,	 like	 macrophage,	 are	 able	 to	 ingest	 lipids	 and	 form	 foam	 cells.	 They	
express	 several	 receptors	 involved	 in	 (modified)	 lipoprotein	 uptake	 including	
the	 LDL	 receptor,	 CD36,	 type	 I	 and	 type	 II	 scavenger	 receptors	 and	 SR-PSOX44-47.	
Furthermore,	adhesion	molecules	 like	 vascular	 cell	 adhesion	molecule	1	 (VCAM-
1)	and	intercellular	adhesion	molecule	1	(ICAM-1)	have	been	demonstrated	to	be	
expressed	by	vSMC,	these	may	enable	them	to	increase	monocyte	adherence	and	
infiltration	 into	 the	 atherosclerotic	 lesion48.	 The	 mechanisms	 and	 consequences	
of	 adhesion	 of	 leukocytes	 to	 vSMC	 in vivo	 however	 are	 not	 well	 characterized.	
Furthermore,	intimal	vSMC	have	been	reported	to	produce	a	wide	variety	of	growth	
factors	and	cytokines,	 including	PDGF,	TGFβ,	MIF	and	MCP-1,	contributing	to	the	
pro-inflammatory	environment	of	the	atherosclerotic	lesion41.
VSMC	play	a	crucial	role	 in	fibrous	cap	formation	and	preserving	plaque	stability.	
Unstable	plaques	prone	to	rupture	contain	a	higher	macrophage	and	lipid	content	
and	a	thinned	fibrous	cap	due	to	loss	of	vSMC	and	extracellular	matrix.	The	strength	
of	the	fibrous	cap	seems	to	depend	on	a	balance	between	collagen	synthesis	and	
breakdown	and	on	the	type	of	collagen.	Expression	of	genes	promoting	collagen	
synthesis	 by	 vSMC	 and	 of	 matrix	 metalloproteinases	 (MMPs),	 important	 in	 the	
breakdown	of	extracellular	matrix,	can	be	influenced	by	inflammatory	cytokines4�.	
For	instance,	TGFβ	enhances	the	ability	of	vSMC	to	produce	collagen,	while	TNFα,	
IL1	and	IFNγ	suppress	collagen	content	either	directly	or	by	inducing	MMPs50-52.	In	
addition	MMP	expression	was	shown	to	be	elevated	 in	atherosclerotic	plaque	 in	
comparison	to	normal	vessels,	a	result	of	both	inflammatory	cytokine	production	and	
oxidative	stress33.	MMP	activity	is	balanced	by	tissue	inhibitors	of	metalloproteinases	
(TIMPs),	MMP	specific	inhibitors	expressed	by	vSMC.	Expression	of	TIMPs	can	be	
either	constitutive	or	upregulated	by	TGFβ	and	PDGF53.
Apart	 from	 MMPs,	 cathepsins	 which	 are	 cysteine	 proteases,	 can	 degrade	 the	
extracellular	matrix54.	Cathepsins	are	secreted	by	macrophages	and	their	expression	
is	increased	in	atherosclerotic	lesions	compared	to	healthy	arteries55.	Comparable	
with	MMPs,	cathepsin	activity	can	be	inhibited	by	a	family	of	proteins,	the	cystatins	
of	 which	 cystatin	 C	 is	 best	 described.	 As	 opposed	 to	 cathepsins,	 expression	 of	
cystatin	C	is	decreased	in	atherosclerotic	lesions55,56.
Another	 role	 for	 vSMC	may	 lay	 in	 the	healing	of	 fibrous	 cap	breaks	 that	 remain	
subclinical.	Mediators	released	at	sites	of	thrombosis,	for	example	PDGF	and	TGFβ	
released	by	platelets,	can	stimulate	vSMC	migration,	mitogenesis	and	production	
of	collagen,	thus	promoting	a	fibrous	lesion	morphology4�.	A	thrombus	caused	by	
plaque	 rupture	 that	 doesn’t	 occlude	 the	 vessel	 is	 reorganized	 and	 incorporated	
into	the	plaque.	Recurring	incidents	of	plaque	rupture	and	healing	can	be	visible	in	
plaques57,58.	
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4	 Inflammation	in	atherosclerosis

Monocyte	infiltration	contributes	largely	to	plaque	initiation.	Stimulation	with	M-
CSF	 secreted	by	endothelial	 cells	 and	vSMC,	 causes	 the	 infiltrated	monocytes	 to	
differentiate	into	macrophages	and	induces	expression	of	scavenger	receptors	and	
cytokine	production5�-60.	Macrophages	are	able	to	take	up	cell-activating	modified	
LDL,	mainly	oxidized	LDL	(Ox-LDL)	via	several	scavenger	receptors	including	type	1	
and	2	scavenger	receptor	A	(SRA),	CD36,	CD86,	MARCO	(macrophage	receptor	with	a	
collagenous	structure),	SR-PSOX	(scavenger	receptor	that	binds	phosphatidylserine	
and	oxidized	lipoprotein)	and	lectin-like	oxidized	low	density	lipoprotein	receptor	1	
(LOX-1)61-65.	Uptake	of	modified	lipoproteins	by	scavenger	receptors	not	only	leads	to	
the	formation	of	foam	cells	but	also	results	in	macrophage	activation.	Subsequently,	
activated	macrophages	produce	inflammatory	cytokines,	growth	factors,	proteases	
and	reactive	oxygen	species	influencing	endothelial	cell	activation,	vSMC	migration,	
proliferation	and	collagen	production	and	T	cell	activation35.	Expression	of	scavenger	
receptors	can	be	 influenced	by	various	cytokines	present	 in	the	plaque	 including	
TNFα,	IFNγ,	IL4	and	TGFβ66-68.	TGFβ	was	shown	to	inhibit	foam	cell	formation68.		
Uptake	of	modified	lipoproteins	via	macrophage	scavenger	receptors	can	result	in	
MHC	restricted	antigen	presentation	to	T	cells6�.	T	cells	are	recruited	into	the	lesion	
by	mechanisms	similar	to	the	recruitment	of	monocytes.	The	majority	of	lesional	
T	cells	are	CD4+	effector	cells	although	CD8+	cells	are	present	as	well70.	The	role	of	
lymphocytes	in	atherosclerosis	has	been	studied	using	RAG-/-	mice	lacking	T	and	B	
cells.	In	ApoE-/-	mice	lymphocyte	deficiency	results	in	the	development	of	smaller	
lesions71,72	 while	 transfer	 of	 CD4+	 T	 cells	 into	 immunodeficient	 (scid/scid)	 ApoE-

/-	 mice	 aggravated	 atherosclerosis73.	 Several	 antigens	 have	 been	 associated	with	
atherosclerosis.	An	important	group	of	antigens	consists	of	altered	self	molecules.	
T	cells	within	the	atherosclerotic	lesions	have	been	shown	to	respond	to	Chlamydia 
pneumoniae	 related	 antigens	 and	 stress-induced	 heat	 shock	 protein	 (HSP)	 6070.	
Apart	 from	 Ox-LDL	 which	 is	 recognized	 by	 T	 cells	 present	 in	 human	 plaques74	
peptides	 derived	 from	modified	 LDL	 components,	 for	 example	 apolipoprotein	 B	
and	phospholipids	can	serve	as	antigens	in	atherosclerotic	plaques70.	CD4+	T	cells	
can	 be	 subdivided	 in	 several	 T	 helper	 (Th)	 cell	 subsets	 based	 on	 their	 cytokine	
secretion	profile,	e.g.	Th1	cells	(which	produce	IFNγ	and	TNFα),	Th2	cells	(producing	
IL4,	IL5	and	IL13)	and	regulatory	T	cells	(IL-10	and	TGFbeta)70.	Mouse	and	human	
studies	have	demonstrated	a	predominant	pro-inflammatory	Th1	cytokine	pattern	
in	atherosclerotic	plaques75,76.	IL2	and	IFNγ	were	shown	to	be	abundantly	present	
whereas	 only	 small	 amounts	 of	 Th2	 cytokines	 IL4	 and	 IL5	 have	 been	 found	 in	
plaques.	Mouse	studies	have	demonstrated	that	IL12	and	IL18,	both	Th1	inducing	
cytokines,	 have	 pro-atherogenic	 properties77-81	 as	 do	 Th1	 cytokines	 IFNγ82,83	 and	
TNFα	84,85,	while	the	role	of	Th2	cytokines	is	less	clear.	IL4	was	demonstrated	to	be	
atheroprotective78,86	but	deficiency	of	IL5	increased	atherosclerosis87.
Production	 of	 cytokines	 by	 macrophages	 and	 lymphocytes	 in	 the	 plaques	 does	
not	 only	 influence	 inflammatory	 processes	 but	 also	 modulates	 smooth	 muscle	
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cell	 activity.	 IFNγ	 inhibits	 smooth	muscle	 cell	 proliferation88	 and	 the	 production	
of	 collagen,	 whereas	 TGFβ	 stimulates	 collagen	 production8�.	 In	 addition	 TGFβ	
downregulates	 the	 expression	 of	 MMPs,	 collagen	 degrading	 proteins�0,	 while	
macrophages	 are	 stimulated	 to	 produce	MMPs	 by	 TNFα	 and	 IL1�1.	 Finally	 TNFα	
and	IFNγ	can	promote	the	uptake	of	modified	lipoproteins	by	smooth	muscle	cells	
leading	to	smooth	muscle	cell	derived	foam	cells�2.
In	addition	 to	macrophages	and	T	cells	other	 inflammatory	cell	 types	have	been	
demonstrated	 to	be	 involved	 in	 atherosclerosis,	 including	B	 cells,	 dendritic	 cells,	
mast	 cells	 and	 neutrophils.	 Although	 few	 B	 cells	 are	 present	 in	 the	 plaque	 the	
majority	 is	 located	 in	 the	 adventitia70.	 B	 cell	 associated	 immunity	was	 shown	 to	
be	 protective	 in	 atherosclerosis	 as	 splenectomy	 increased	 plaque	 development	
in	ApoE-/-	mice	while	transfer	of	spleen	derived	B	cells	counteracted	this	effect�3.	
Dendritic	 cells	are	 the	most	potent	antigen	presenting	cells.	 They	are	present	 in	
healthy	vessels	but	accumulate	during	atherogenesis,	being	mainly	localized	in	the	
rupture	prone	shoulder	areas�4.	Skin	dendritic	cells	have	been	shown	to	be	activated	
by	dislipidaemia	with	surprising	inhibition	of	migration	into	lymph	nodes	suggesting	
that	they	contribute	to	local	inflammation�5.	However	a	recent	study	by	Packard	et 
al.�6	found	opposing	results.	Here,	dendritic	cells	were	demonstrated	to	maintain	
their	antigen	presenting	 function	and	ability	 to	prime	CD4+	T	cells	 in	vitro	under	
hypercholesterolemic	 conditions�6.	 Mast	 cells	 are	 present	 in	 the	 atherosclerotic	
plaque	and	were	shown	to	accumulate	in	the	shoulder	region�7.	Activated	mast	cells	
secrete	cytokines	and	proteases	and	mast	cell	derived	TNFα	and	IL6	were	shown	
to	promote	atherosclerosis�8.	In	addition	mast	cells	have	been	demonstrated	to	be	
involved	in	intraplaque	hemorrhage,	macrophage	apoptosis	and	vascular	leakage,	
promoting	plaque	 instability��.	Neutrophils	 are	 thought	 to	be	pro-atherogenic	 as	
well.	 They	 are	mainly	 present	 in	 the	 adventitia	 and	 the	 luminal	 area	 of	mouse	
plaques100	and	in	ruptured	human	coronary	artery	plaques101.	Depletion	of	circulating	
neutrophils	resulted	in	reduced	plaque	formation	in	ApoE-/-	mice100.	

5	 Apoptotic	cell	death

5.1	 Signal	transduction	pathways
Removal	of	defective,	damaged	or	dangerous	cells	is	critical	for	normal	development	
and	tissue	homeostasis	of	all	organisms102.	Death	of	 these	cells	 takes	place	via	a	
process	called	apoptosis	or	programmed	cell	death103.	Apoptosis	 is	 characterized	
by	morphological	changes	like	cell	shrinkage,	DNA	fragmentation,	condensation	of	
chromatin	and	membrane	blebbing.	In	contrast,	features	of	passive,	traumatic	cell	
death	or	necrosis	are	cell	swelling	and	loss	of	membrane	integrity104.	
The	 executers	 of	 apoptotic	 cell	 death	 are	 a	 family	 of	 cysteine	 proteases	 known	
as	 caspases.	 Caspases	 proteolytically	 cleave	 proteins	 necessary	 for	 maintaining	
cellular	structure	like	lamins105	and	focal	adhesions	kinase	(FAK)106	but	also	proteins	
that	protect	from	cell	death	such	as	DFF45	(a	nuclease	inhibitor)107	and	Bcl-2	family	
members108.	A	cascade	of	caspases	in	which	a	pro-apoptotic	signal	activates	initiator	
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caspases	 (e.g.	 caspases	 1,	 8,	 9	 and	 10)	which	 in	 turn	 activate	 effector	 caspases	
(caspases	 3,	 6	 and	 7)	 results	 in	 cellular	 breakdown10�.	 There	 are	 two	 signaling	
pathways	regulating	apoptosis	that	share	the	same	effector	caspases.	The	extrinsic	
or	death	receptor	mediated	pathway	is	activated	in	response	to	ligation	of	death	
receptors	(fig.	3).	Binding	of	specific	ligands	to	the	cognate	death	receptor	causes	
formation	of	a	death-inducing	signaling	complex	 (DISC)	 in	which	various	adaptor	
proteins	like	FADD	and	TRADD	interact	with	death	domains	(DD)	of	the	receptors110.	
Initiator	 caspase	 8	 is	 essential	 for	 death	 receptor	 induced	 apoptosis111.	 Death	
receptors	belong	 to	 the	 tumor	necrosis	 factor	 (TNF)	 receptor	 family	 and	 include	
TNF	receptor	1	(TNFR1),	FAS,	death	receptor	(DR)	3,	DR4	and	DR5.	Their	ligands	are	
TNF	family	members,	including	Fas	ligand,	TNFα,	TWEAK	(TNF-like	weak	inducer	of	
apoptosis)	and	TRAIL	(TNF	related	apoptosis	inducing	ligand)110.	
The	 intrinsic	 apoptosis	 signaling	 pathway	 requires	 the	 involvement	 of	members	
of	the	Bcl-2	(B	cell	lymphoma	2)	family	of	apoptosis	regulators	and	mitochondria.	
Apoptotic	stimuli	activating	this	pathway	include	DNA	damage,	UV	radiation,	hypoxia	
and	 growth	 factor	 withdrawal112.	 Apoptosis	 signaling	 via	 the	 intrinsic	 pathway	
depends	on	the	release	of	cytochrome	c	and	other	apoptosis	regulating	proteins	
like	 Smac/Diablo	and	apoptosis	 inducing	 factor	 (AIF)	 from	 the	mitochondria	 (fig.	
3).	Once	 in	the	cytosol	cytochrome	c	associates	with	an	adaptor	molecule	called	
apoptotic	protease-activating	factor-1	(APAF-1)	and	pro-caspase	9	forming	the	so-
called	apoptosome.	The	subsequently	activated	caspase	9	is	then	able	to	activate	
effector	caspases113.	

5.2	 Bcl-2	family	of	apoptosis	regulators
The	intrinsic	apoptosis	pathway	is	mainly	regulated	by	proteins	of	the	Bcl-2	family.	
This	family	consists	of	both	pro-	and	anti-apoptotic	proteins	sharing	one	or	more	
Bcl-2	homology	(BH)	domains114.	Anti-apoptotic	proteins	contain	three	or	four	BH	
domains	and	include	Bcl-2,	Bcl-w,	Bcl-xL,	Bfl-1	and	Mcl-1.	There	are	two	classes	of	pro-
apoptotic	Bcl-2	family	proteins:	proteins	of	the	multidomain	group	comprising	Bax,	
Bak	and	Bok	which	contain	BH	domains	1-3	and	Bcl-2	proteins	which	carry	only	the	
BH-3	domain.	The	latter	BH-3	only	proteins	include	Bid,	Bad,	Bik,	Bim,	Noxa,	Puma,	
Bmf,	Blk	and	Hrk114.	BH-3	only	proteins	 initiate	the	apoptotic	cascade115,	whereas	
Bax	and	Bak	function	downstream	of	BH-3	only	proteins116.	Bcl-2	family	proteins	Bak	
and	Bax	are	thought	to	form	pores	in	the	outer	mitochondrial	membrane	or	change	
pore	size	thereby	affecting	of	the	mitochondrial	permeability	for	cytochrome	c113.	
Cytochrome	c	release	from	mitochondria	takes	place	through	these	pores.	Under	
non-apoptotic	circumstances	activity	of	BH3-only	proteins	is	inhibited	by	Bcl-2	and	
other	anti-apoptotic	Bcl-2	proteins112.	Following	an	apoptotic	stimulus,	BH-3	only	
proteins	can	either	directly	activate	multidomain	pro-apoptotic	proteins	(Bid	and	
Bim)	 or	 interact	 with	 anti-apoptotic	 Bcl-2	 proteins	 and	 prevent	 their	 binding	 to	
other	pro-apoptotic	proteins	(Bim).	Activity	of	BH3-only	proteins	can	be	regulated	
by	phosphorylation	(for	example	Bad	and	Bim117,118),	transcriptional	control	(Puma	
and	Noxa	which	are	p53	targets119,120)	or	cleavage	(Bid121).	The	pro-apoptotic	protein	
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Figure	 3.	 Apoptosis	 pathways.	 The	
death	 receptor	 (extrinsic)	 pathway	 is	
activated	by	ligation	of	death	receptors.	
Subsequently	 initiator	 caspases	
activate	effector	 caspases	 resulting	 in	
cell	death.	BH3-only	proteins	(e.g.	Bim)	
initiate	 the	mitochondrial	 or	 intrinsic	
pathway	 after	 apoptotic	 stimuli	 like	
DNA	 damage	 and	 oxidative	 stress,	
followed	by	activation	of	multidomain	
pro-apoptotic	 proteins	 (Bak	 and	 Bax)	
which	form	pores	in	the	mitochondrial	
membrane.	 Apoptotic	 signaling	 is	
regulated	 by	 anti-apoptotic	 bcl-2	
proteins	 (Bcl-2,	Bcl-xL,	Mcl-1	etc).	Cell	
death	 results	 from	 effector	 caspase	
activation	 and	 subsequent	 release	 of	
cytochrome	 c	 and	 other	 regulatory	
proteins	 from	 the	 mitochondria.	
Adapted	from	Kutuk	and	Basaga112.

Bid,	which	 functions	 in	 the	 intrinsic	pathway,	 can	also	be	activated	by	caspase-8	
after	 stimulation	 of	 the	 extrinsic	 apoptosis	 pathway,	 thereby	 connecting	 both	
pathways112.	

5.3	 Apoptotic	cell	clearance
Apoptosis	 is	 followed	by	uptake	of	cellular	remnants	by	professional	phagocytes,	
macrophages,	dendritic	cells	and	granulocytes122.	A	wide	range	of	receptors,	ligands	
and	adaptor	molecules	on	both	apoptotic	cells	and	phagocytes	are	involved	in	the	
removal	of	apoptotic	cells.	One	of	the	best	described	molecules	in	the	recognition	
of	apoptotic	cells	is	phosphatidylserine	(PS),	which	is	translocated	from	the	inner	
to	the	outer	leaflet	of	the	cell	membrane	early	in	the	apoptotic	process123.	Other	
molecules	implicated	in	the	recognition	and	engulfment	of	apoptotic	cells	include	
scavenger	receptors	CD36,	CD68	and	SRA,	Mer	kinase,	CD14	and	integrins	on	the	
phagocyte	membrane	and	bridging	molecules	such	as	milk	 fat	globule	epidermal	
growth	factor	8	(Mfge8)	and	complement	component	C1q122,124-127.	When	removal	
of	 apoptotic	 cells	 is	 insufficient	 apoptotic	 cells	may	 undergo	 secondary	 necrosis	
with	 leakage	of	 cellular	 content.	 This	may	have	pathological	 consequences	 since	
secondary	necrotic	cells	and	their	debris	can	be	taken	up	by	antigen	presenting	cells	
and	result	in	inflammation	and	autoimmunity128.	
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6	 Apoptosis	and	phagocytosis	in	the	atherosclerotic	plaque

Apoptosis	occurs	in	atherosclerotic	lesions	affecting	all	major	cell	types,	endothelial	
cells,	macrophages,	T	cells	and	vSMC12�.	However,	apoptosis	increases	with	plaque	
progression,	 being	 virtually	 absent	 in	 initial	 lesions	 and	 increasingly	 present	 in	
advanced	 lesions130.	 Inducers	 of	 apoptotic	 cell	 death	 are	 abundant	 and	 include	
modified	LDL,	reactive	oxygen	species,	cytokines	with	pro-apoptotic	activity,	hypoxia	
and	death	receptor	ligation	(Fas,	TNFR1	and	2,	DR4	and	DR5)131-137.

6.1 Endothelial cell apoptosis
Endothelial	 injury	and	apoptosis	are	 late	events	 in	atherosclerosis138.	 Endothelial	
cells	 in	 lesion-prone	 regions	 in	 the	 vasculature	 have	 increased	 turnover	 due	 to	
increased	apoptosis13�.	In	endothelial	cells	in	regions	predisposed	to	atherosclerotic	
lesion	development	NF-κB	signal	 transduction	pathway	was	shown	to	be	primed	
for	activation140	and	NF-κB	activation	by	various	stimuli	like	hypoxia,	IL18	and	TNFα	
has	been	demonstrated	to	trigger	apoptosis	in	endothelial	cells141-143.	Apoptosis	is	
stimulated	by	exposure	to	oxidized	LDL	and	oxidative	stress	among	other	factors.	
Nitric	 oxide	 (NO)	may	play	 a	 role	 in	 endothelial	 cell	 apoptosis	 in	 atherosclerosis	
as	 well.	 In	 healthy	 arteries	 NO	 derived	 from	 endothelial	 NO	 synthase	 (eNOS)	
acts	protective	against	apoptosis144.	 In	atherosclerotic	 lesion	prone	regions	eNOS	
expression	 is	 decreased145.	 In	 addition,	 atherosclerotic	 plaque	 macrophages	
produce	high	amounts	of	 inducible	NOS	(iNOS)	which	can	generate	peroxynitrite	
contributing	 to	 oxidative	 stress146	 which	 in	 turn	 can	 induce	 DNA	 damage	 and	
subsequent	 apoptosis	 in	 endothelial	 cells138.	 EC	 injury	 and	 apoptosis	 can	 have	
various	consequences.	Induction	of	EC	apoptosis	may	promote	thrombus	formation	
followed	by	plaque	erosion	and	leukocyte	infiltration147,148.

6.2 Vascular smooth muscle cell apoptosis
Apoptosis	of	vSMC	has	been	shown	to	occur	after	injury	in	a	rabbit	balloon	angioplasty	
model14�,	in	human	abdominal	aortic	aneurisms150	and	in	atherosclerotic	lesions21.	
Surprisingly	apoptosis	of	vSMC	in	atherosclerotic	plaques	can	induce	inflammation	
as	shown	in vivo	in	rat	carotid	arteries151	where	it	triggered	IL8	and	MCP-1	expression	
together	with	massive	macrophage	infiltration	after	vSMC	death.	In	ApoE-/-	mice	in	
which	apoptosis	was	specifically	induced	in	vSMC	by	diphtheria	toxin	(SM22α-hDTR	
/	ApoE-/-	mice)	increased	inflammation	was	observed	after	vSMC	apoptosis	as	well152.	
Furthermore,	vSMC	apoptosis	has	been	shown	to	 lead	to	thrombin	generation153	
and	calcification154	in vitro.	In	human	atherosclerotic	lesions	apoptosis	of	both	vSMC	
and	macrophages	was	demonstrated	to	be	elevated	only	in	advanced	lesions	while	
in	early	 lesions	apoptosis	was	minimal130.	 In	addition,	human	vSMC	derived	from	
coronary	atherosclerotic	plaques	were	shown	to	be	more	susceptible	to	cell	death	
than	vSMC	from	healthy	coronary	arteries	in vitro155	and	vSMC	may	exhibit	increased	
oxidative	 stress	 induced	 senescence156.	VSMC	senescence	 following	ROS	 induced	
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DNA	 damage	was	 shown	 to	 be	mediated	 by	 p53	 activation156.	 Abovementioned	
studies	seem	to	support	the	general	concept	that	apoptosis	of	vSMC	promotes	plaque	
vulnerability	by	thinning	of	the	fibrous	cap	and	also	various	studies	in	mice	are	in	
agreement	with	this	concept.	Induction	of	apoptosis	by	targeted	overexpression	of	
p53	into	cap	smooth	muscle	cells	in	advanced	collar	induced	carotid	artery	plaques	
in	ApoE-/-	mice	resulted	in	increased	apoptosis	of	cap	cells,	reduced	cap	thickness,	
and	in	general	a	vulnerable	plaque	phenotype	which	was	prone	to	phenylephrine	
induced	 rupture157.	A	comparable,	vulnerable	plaque	phenotype	was	 found	after	
adenovirus	 mediated	 overexpression	 of	 the	 pro-apoptotic	 TNF	 family	 member	
Fas	 ligand	 in	 cap	 cells	of	ApoE	deficient	mice158.	 Plaques	 contained	hemorrhage,	
buried	caps	and	iron	deposits,	also	indicating	increased	vulnerability.	Recently,	the	
above	mentioned	SM22α-hDTR	 /	ApoE-/-	mice	were	used	 to	examine	 the	 impact	
of	vSMC	apoptosis	on	plaque	phenotype	and	disease	progression152,159.	 Induction	
of	apoptosis	in	established	atherosclerotic	plaques	resulted	in	plaque	vulnerability	
as	 indicated	by	fibrous	cap	thinning,	 loss	of	collagen,	accumulation	of	cell	debris	
and	increased	inflammation152.	In	addition,	persistent	vSMC	apoptosis	throughout	
plaque	development	was	seen	to	accelerate	atherogenesis15�.	

6.3 Macrophage apoptosis
Macrophage	 apoptosis	 occurs	 in	 both	 early	 and	 late	 stages	 of	 atherosclerosis	
and	can	be	induced	by	a	variety	of	stimuli	including	oxidized	LDL,	oxysterols,	free	
cholesterol	 and	 hypoxia	 but	 also	 TNFα160.	 Apoptosis	 of	 macrophages	 has	 been	
demonstrated	to	be	beneficial	 in	early	atherogenesis	 in	several	 in vivo	 studies161-

164.	 Inhibition	 of	macrophage	 apoptosis	 due	 to	 leukocyte	 p53	 deletion	 in	 ApoE3	
Leiden	 transgenic	 mice161	 or	 LDLr-/-	 mice162	 and	 leukocyte	 Bax	 deletion	 in	 LDLr-/-	
mice163,	both	pro-apoptotic	factors,	resulted	in	increased	atherosclerotic	lesion	size.	
In	 addition	deletion	of	 pro-survival	 factor	AIM	 (apoptosis	 inhibitor	 expressed	by	
macrophages)	in	LDLr-/-	mice	led	to	increased	macrophage	apoptosis	and	decreased	
lesion	 area164.	 The	 consequences	 of	 macrophage	 apoptosis	 in	 advanced	 lesions	
are	less	clear.	In	advanced	human	lesions	clearance	of	apoptotic	cells	was	shown	
to	 be	 defective165,	 suggesting	 that	macrophage	 apoptosis	will	 lead	 to	 secondary	
necrosis	 and	 accumulation	of	 cell	 and	 lipid	 debris.	 This	will	 translate	 in	 necrotic	
core	 expansion	 and	 elicit	 a	 pro-inflammatory	 response	 which	 could	 result	 in	
promotion	of	plaque	instability160.	However,	others	did	not	find	such	pronounced	
effects	of	macrophage	apoptosis	in	advanced	atherosclerotic	plaques.	For	instance,	
Stoneman	et al.166	developed	a	model	in	which	in	ApoE-/-	mice	apoptosis	could	be	
induced	 specifically	 in	macrophages	with	diphtheria	 toxin	 (DT),	 the	CD11b-hDTR	
/	ApoE-/-	 mouse166.	 Induction	of	 apoptosis	 during	 early	 atherogenesis	 resulted	 in	
decreased	 plaque	 development	 together	 with	 reduced	 collagen	 content	 and	
necrotic	 core	 formation,	 confirming	 the	 atheroprotective	 effects	 of	macrophage	
apoptosis	 in	 aforementioned	 studies	 regarding	 early	 atherogenesis.	 However	 in	
established	plaques	DT	treatment	induced	macrophage	apoptosis	but	this	did	not	
result	 in	 alterations	 in	plaque	 size,	 cell	 composition	or	 inflammation.	 In	 another	
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study	macrophage	apoptosis	was	achieved	by	LysM	cre	induced	deletion	of	Bcl-2	
in	ApoE-/-	mice167.	 Increased	macrophage	apoptosis	was	observed	after	10	weeks	
of	western	type	diet	feeding	but	this	resulted	in	a	slight	increase	of	25%	in	necrotic	
core	size	only	in	female	mice.	No	other	characteristics	of	enhanced	plaque	instability	
were	observed.

6.4	 Phagocytosis	of	apoptotic	cells
Phagocytosis	 of	 apoptotic	 cells	 in	 the	 atherosclerotic	 plaque	 limits	 plaque	
progression,	 inflammation	 and	 plaque	 instability	 as	 has	 been	 demonstrated	 by	
several	gene	deletion	studies.	Deficiency	of	leukocyte	transglutaminase	2	(TG2)	in	
LDLr-/-	mice	was	seen	to	 increase	aortic	valve	 lesion	size	and	 intimal	macrophage	
infiltration168.	LDLr-/-	mice	deficient	 in	milk	 fat	globule-EGF	factor	8	 (Mfge8)	show	
accelerated	 atherosclerosis	 with	 increased	 necrotic	 core	 size	 and	 an	 elevated	
inflammatory	 status16�.	 Finally,	 deletion	 of	 leukocyte	 Mer	 kinase	 in	 LDLr-/-	 mice	
led	to	increased	accumulation	of	apoptotic	cells,	 increased	macrophage	area	and	
lymphocyte	infiltration	resulting	in	accelerated	lesion	development170.	
As	mentioned	 in	 the	 previous	 section,	 phagocytic	 clearance	 of	 apoptotic	 cells	 is	
impaired	at	later	stages	of	plaque	progression165.	Several	mechanisms	for	defective	
phagocytosis	 have	 been	 proposed.	 First,	 Ox-LDL	 shares	 molecules	 involved	 in	
recognition	by	macrophages	with	apoptotic	cells	and	as	a	result	may	compete	with	
apoptotic	cells	for	ingestion171,172.	In	addition	auto-antibodies	directed	against	Ox-LDL	
have	been	demonstrated	to	bind	to	apoptotic	cells	and	inhibit	their	phagocytosis	by	
macrophages173.	Finally	oxidative	stress	may	inhibit	the	phagocytosis	of	apoptotic	
cells	by	macrophages	as	has	been	demonstrated	 in	 vitro	 for	 the	oxidative	 stress	
mediators	hydrogen	peroxide	(H2O2)174	and	peroxynitrite165.	

7 Thesis outline

In	this	thesis	the	role	of	several	apoptosis	regulating	proteins	in	the	development	of	
atherosclerosis	and	atherosclerotic	plaque	stability	is	investigated.	As	many	of	these	
proteins	also	display	immune-modulating	features,	we	have	particularly	investigated	
effects	 of	 modulation	 of	 apoptosis	 regulating	 proteins	 on	 plaque	 and	 systemic	
inflammation.	 In	chapter	2	current	knowledge	on	pro-	or	anti-apoptotic	proteins	
and	their	effects	on	inflammation	in	both	murine	and	human	atherosclerosis	as	well	
as	the	influence	of	pro-	or	anti-inflammatory	mediators	on	apoptotic	processes	are	
reviewed.	
Chapter	 3	 describes	 a	 study	 in	 which	 gene	 expression	 profiles	 of	 thin	 cap	
fibroatheroma	are	compared	 to	 those	of	 thick	cap	fibroatheroma	by	micro-array	
technology	in	order	to	identify	genes	or	pathways	that	are	associated	with	plaque	
vulnerability.	Two	different	mouse	models	for	thin	cap	fibroatheroma	are	used	to	
increase	the	significance	of	the	findings.
In	chapter	4	the	relevance	of	Bim	(Bcl-2	interacting	mediator	of	cell	death),	a	pro-
apoptotic	member	of	the	Bcl-2	family	identified	as	upregulated	in	both	models	in	
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the	previous	chapter,	for	atherosclerosis	is	investigated	in	LDLr-/-	mice.	Bim	has	been	
previously	demonstrated	to	be	an	important	regulator	of	B	and	T	cell	homeostasis.	
Therefore,	 apart	 from	 apoptotic	 processes	 relevant	 for	 atherosclerosis,	 we	 also	
assessed	 the	 role	 in	 disease	 associated	 innate	 and	 adaptive	 immunity.	 The	 pro-
apoptotic	 activity	 of	 Bim	 is	 partly	 regulated	 by	Mcl-1	 (myeloid	 cell	 leukemia	 1),	
an	 anti-apoptotic	member	 of	 the	 Bcl-2	 family.	Mcl-1	 is	 amongst	 others	 involved	
in	 proliferation	 and	 differentiation	 of	 monocytes	 and	 neutrophils	 and	 has	 been	
implicated	in	lipid	accumulation	by	macrophages.	In	chapter	5	we	therefore	studied	
the	 impact	of	Mcl-1	deletion	on	cell	death,	 lipid	accumulation	and	 inflammatory	
status	of	LDLr-/-	mice.
Chapter	6	describes	a	study	addressing	the	role	of	focal	adhesion	kinase	(FAK),	a	
kinase	not	only	involved	in	cell	death	and	proliferation,	but	particularly	important	
in	cell	adhesion	and	migration,	in	atherosclerosis	development	and	progression	in	
ApoE-/-	mice.	Recently,	FAK	was	shown	to	be	involved	in	oxidized	LDL	mediated	CD36	
signaling.	 Thus,	 	 in	 chapter	 6	 the	 role	 of	 FAK	 in	 plaque	 apoptosis,	 inflammatory	
status	and	lipid	metabolism	in	Western	type	diet	fed	ApoE-/-	mice	was	investigated.
To	conclude,	in	chapter	7	the	main	findings	of	the	studies	described	in	this	thesis	are	
summarized	and	discussed	in	relation	to	possible	therapeutic	approaches.
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