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Chapter 6

General discussion
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This thesis presents in silico text- and data-mining techniques for the prediction of 
biologically  related  concepts.  The  methods  were  evaluated  on  protein-protein 
interaction data and genes associated with certain diseases. The main part of the 
research  was  the  evaluation  of  the  text-mining  method called  concept  profiles. 
Later  on we  extended concept  profiles  with other  non-textual  information.  The 
many  hurdles  and  findings  are  discussed  below.  We  conclude  with  the  future 
directions where text-mining and data-mining can be improved. 

1. Evaluating set creation
During this research a large part of the effort was needed to collect training and test 
data. 
Collecting good data for the evaluation of a data-mining system is hard. Here we 
describe the problems we encountered. 

1.1 Nature of biological data
The data used in this study has several characteristics that make the application of  
existing data and text-mining methods difficult. The world of biology is far more 
complex than a computer system can model. It is no simple ‘black and white’ or 
the use of TRUE and FALSE labels. 
First,  biological  data  is  sometimes  not  reliable,  and  highly  dependent  on  the 
context it appears in. For instance protein-protein interactions (PPIs) are recorded 
in  protein  databases  and  each  database  has  a  level  of  curation.  Some  protein  
interactions  are  very  well  described  in  databases  like  DIP.  These  PPIs  are 
confirmed with several independent wetlab experiments or have a lot of literature 
evidence. Other protein interactions come from high throughput experiments and 
are  recorded  in  a  database  like  IntAct.  High  throughput  experiments  normally 
contain more false positives. The same holds for instance for the annotation of gene 
functions  in  the  Gene  ontology  (GO).  In  an  old  release  of  the  GO a  gene  is  
assigned a GO term describing a molecular function. In later releases sometimes 
the GO term becomes obsolete because it was wrongly annotated or the GO term is 
merged with another term.
Second, the current knowledge is limited and incomplete. Only a small fraction of 
the total interaction space (e.g. all protein-protein interactions in the human body) 
is described. This results in overestimation of the prediction performance because  
the performance is biased towards well studied proteins, i.e. biased towards only 
this small subset of protein-protein interactions. 
Third, biological data change over time. For instance when two proteins are not 
known to interact, a system would label this protein pair as TRUE NEGATIVE. 
However in a wetlab experiment the two proteins were confirmed to interact. After  
this discovery the protein pair would be labeled as TRUE POSITIVE. 

116



In  an  evaluation  process,  biological  data  should  be  used  keeping  these 
characteristics in mind.  

1.2 Biological nomenclature
The nomenclature of biological names is not standardized. For genes or proteins 
there exist multiple accession numbers (e.g. Uniprot, Entrez Gene, or HUGO Gene 
Nomenclature  Committee),  synonyms,  and  abbreviations  that  all  need  to  be 
mapped to  single  unique  identifiers.  To disambiguate  genes  in  text  is  difficult 
because many genes share the same synonym, resulting in homonym problems. 
For gene-disease relationships it is even harder. Many of the genes are assigned the 
name of the disease they are associated with. These samples cannot be used as a 
test sample. In addition the disease name as it is recorded in databases is hard to 
recognize in text. For instance Alzheimer disease had over 15 variants recorded in  
OMIM (e.g. Alzheimer type 2). In text normally this will be described as that they 
found a new type of Alzheimer disease. Hence not the concept Alzheimer type 2 is  
recognized but the generic concept Alzheimer disease. 
Furthermore,  concepts  are  related to  each other  in  a  hierarchical  ontology.  For 
instance the concept Duchenne muscular dystrophy (DMD) in the ontology is part 
of the concept muscular dystrophies. Once DMD is recognized in text as a concept, 
one could argue if it is informative that in the same text the higher level concept  
muscular dystrophy is recognized.

1.3 Minimum information requirements for text-mining
In chapter  5 we introduced the roll  back analysis.  This  is  a way to simulate a 
prediction over time. We imposed the constraint for gene-disease relationships in 
our test set that the two concepts should not be co-mentioned together before the 
relationship was discovered, to prove that they could have been predicted using the 
implicit  information.  However,  before  that  first  co-occurrence  there  should  be 
enough information available which is sometimes also not the case. In order to 
build  a  concept  profile  for  a  concept  we  maintained  a  threshold  of  at  least  5 
abstracts where that concept is mentioned. 
This limitation resulted in a set of only 18 gene disease pairs described in chapter 4  
where the original list started out with roughly 5,000 gene disease pairs in HPRD. 
The same problem probably occurred in the article by Aerts et al. [1] where they 
obtained a small set of 10 monogenic and 6 polygenic diseases. 

1.4 Curation and confirmation of biological data
One aspect of bioinformatics is that it is important to validate (or verify) every in 
silico prediction  with  a  wet  lab  experiment.  The  results  of  the  experiments 
described in this thesis required interpretation by expert biologists. This introduced 
a dependency on experts, who had to make time in their busy schedules. Luckily, 
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the biologists at our department were very helpful, but still the amount of work that 
could be asked of them was limited. Every bioinformatician would love to have his  
own private biologist.

1.5 Circular reasoning 
Another problem is that  many databases have a certain level  of  redundancy.  In 
machine learning a key step to evaluate a prediction system is to divide the data 
into a training set and a test set. The training data is used to train all the parameters 
that are used in the model of the prediction system. The test data is used to evaluate 
how well the system is able to correctly predict the labels of the test data. Training 
and test data should be independent. That is, no data that is used for training should 
be  used  for  evaluation,  else  this  could  lead  to  an  over  estimation  of  the 
performance. 
However for biological data it is sometimes not possible to divide the data into an 
independent training and test set. For instance when a wet lab experiment is done 
for investigating a PPI, the results will be described in an article and published, and 
the same result  are stored in a database like DIP. To separate the database and 
article  information is  difficult.  Therefore we introduced in chapter 3 and 5 the 
retrospective study (or roll back analysis) and do a prediction simulation over time 
to eliminate the bias. To do this, it is necessary to get access to old releases of  
databases.  Most  databases  do  not  store  previous  releases  for  download.  For  
bioinformatics  purposes  this  would  be  extremely  helpful  to  keep  track  of  old 
releases. 

2. Findings

2.1 Implicit information extraction and content
Chapter  three  and five  showed that  implicit  information  extraction  works.  The 
information, or the indirect links, that connects two concepts can be derived from 
the concept profile overlap. It seems that for PPI prediction the dominating concept 
is normally another protein already associated with one of the two proteins. For 
instance in chapter three CAPN3 was linked with PARVB via the intermediate 
protein  DYSF.  For  gene  disease  relationships  it  is  normally  an  associated 
phenotype, or another gene also known to cause another disease. For instance in 
chapter five RECQ4L was also associated with Rothmund-Thomson syndrome and 
therefore seems to be a good candidate for Baller-Gerald syndrome because these 
two  syndromes  show  clinical  phenotypic  overlap.  These  two  examples  are 
indicative  that  the  implicit  information  is  meaningful  and  well  explains  the 
association between two concepts. We further observe that when an implicit link is  
found between concepts the link is normally one dominating concept. To verify 
this, more samples should to be evaluated. 
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2.2 Added value of other data sources. 
In chapter four we investigated if concept profiles can be improved by adding other 
non-textual data sources. We found that some of the problems encountered with 
text-mining could be solved with the other data sources. We conclude that this may 
work but the performance is dependent on the sample you are looking at. It was  
shown for DYSF that the amount of information in additional databases besides the 
literature  was  poor.  In  the  PKD1  case  study  the  disambiguation  problem  was 
solved by microarray expression data. The nature and the amount of information 
from every source has its pros and cons dependent on the sample. Figure 1 shows 
an example of the AuC output for each database for DMD and HTT to illustrate 
that for each protein another data source is dominating. In many pattern recognition 
approaches it is usual to do feature selection for dimensionality reduction resulting 
in the most informative features. For instance in a microarray experiment the goal  
may be to look for differentially expressed genes. The number of genes checked 
start with 30,000 and after filtering (feature selection) the number of genes will 
vary  from  10  till  100.   However  for  combining  data  sources  the  number  of 
available data sources, suitable for processing, is already limited. Making databases 
inter-operable  is  very  important.  As  stated  earlier  the  data  source  that  is  most 
informative  changes  with  each  sample  (figure  1).  A  generic  feature  selection 
approach therefore seems not appropriate for biological data. A scientist should be 
able  to  select  the  data  source  he  is  interested  in.  Also  on  the  basis  of  known 
knowledge and ROC curve analysis a scientist can get a feeling if the data source is 
informative  for  his  samples  (e.g.  a  protein).  Added  value  of  data  sources  and 
feature selection should be considered for each question separately. 

2.3 Types of relationships
We did the collection of data for the relationship types ‘protein interacts with other 
protein’  and  ‘a  gene  when  mutated  causes  a  certain  disease’.  As  discussed 
preciously  the  prediction  performance  is  dependent  on  each  sample.  The  same 
holds  for  types  of  relationships.  This  can  be  very  well  explained.  For  protein 
interactions 70% of the known PPIs recorded in databases cannot be traced back in 
PubMed abstracts because normally the interactions are stored in a table in full  
text.  When a  gene  is  found for  a  disease,  the  landmark  paper  will  always co-
mentioned the gene and the disease in the abstract, if not even in the title. After the 
landmark  paper  multiple  occurrences  happen  in  articles  published  after  the 
landmark paper. We did an evaluation of the gene disease relationships in OMIM 
and  found  that  ~83%  of  the  known  pairs  have  a  co-occurrence  in  MedLine 
abstracts. The distribution is given in figure 3. We checked another relationship 
type,  that  of  ‘gene  has  function  X’  taken  from  the  Gene  Ontology.  For  this 
relationship type the distributions are given in figure 2. These figures clearly show 
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that  the known relationships are very different.  Since gene/disease relationships 
almost always occur in PubMed abstracts, the association score is in general high. 
The  null  distributions  (or  random  distribution)  tend  to  look  the  same.  For 
knowledge  discovery  scientists  are  interested  in  new  concept  pairs  (e.g.  PPI, 
gene/disease) previously not recorded in any database but found by our text-mining 
system.  Those  are  all  the  pairs  from the  null  distribution.  In  chapter  three  we 
generated a null distribution of random protein pairs. In figure 2 and 3 the null  
distributions  for  gene/disease  and  protein/function  are  given  respectively.  The 
distributions look alike. To investigate if null distributions from different semantic 
types  (e.g.  protein  pairs  or  gene-disease  pair)  as  the  same  and  can  be  treated 
universal  we  calculated  match  scores  for  100,000  random  protein  pairs  and 
100,000 random gene-disease pairs. The results are plotted in figure 4. This plot 
clearly shows that the gene-disease pairs (blue) are different from the protein pairs 
(red) even though the two distributions both have a Gaussian characteristic.  An 
explanation of this difference could lie in the fact that proteins or genes in general  
are more intensively described that diseases (all diseases besides OMIM are taken 
into  account).  Therefore  concept  profiles  for  protein/genes  are  more  enriched 
which results in on average higher match scores. This result means that any pairs of 
two semantic types cannot be treated universally. For instance, when the match 
score  for  a  protein  pair  is  significant  (e.g.  p<0.01)  calculated  under  the  null 
hypothesis that any concept pair (regardless the semantic type) is not related, this  
same protein pair could not be significant (or at least is different) under the null 
hypothesis that protein pairs are not related. 

3 Limitations of text-mining
Concept  profiles  show a  better  performance  in  predicting  associations  between 
concepts than the direct relationship approach (described in chapter two and three).  
However  there  are  still  limitations  in  prediction  performance  even for  concept 
profiles. First, finding a new relationship between two concepts goes as far as there 
is  information.  This  means  that  there  must  be  sufficient  information  for  both 
concepts. For concept profiles we formulated this that there should be at least 5 
articles available for both concepts. Many diseases or proteins are rare that they 
have  not  been  published  about.  In  this  case  text-mining  fails  not  because  of  
technical shortcomings but just due to the lack of information. 
Second, the lack of information can also be within the implicit information. If two 
concepts are related to each other is does not mean that they will always be linked 
with each other via intermediate concepts. If they do not, this is also not due to 
text-mining shortcomings but that there is no implicit links available.  
Third, the biggest limitation is the accuracy of the disambiguation process. This is 
dependent on the style of writing of the author, i.e. which nomenclature he uses for 
words and if words are abbreviated. The problem of disambiguation lies in that 
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humans are more adapted to give names to entities that are easy to recognize and 
easy to remember on how they are named. Normally this is done using an acronym. 
In  addition  biologists  do  not  make  a  standard  convention  about  the  word 
nomenclature for proteins. As Michael Ashburner [2] once said ‘Biologists would 
rather share their toothbrush than share a gene name’. 
It  is  shown  in  competitive  conferences  [3]  where  state  of  the  art  text-mining 
systems compete with each other that there is a maximum performance reachable 
(e.g. 0.88 and 0.50 recall and precision respectively). No computer system is ever  
able to retrieve a 100% score. 

4 Future directions
We believe that text-mining and in particular concept profiles are indispensable in 
biological research. We foresee that text-mining will become a core technology in 
the so called semantic web. The semantic web is a name giving for a trend going 
on the Internet.  The first trend in Internet development was called web 1.0. It was 
the collection of all static HTML pages with only plain text. The second generation 
is called web 2.0 where the web became interactive. Think of user input like credits 
cards, online bookstores or Wikipedia. The third generation is called web 3.0 or the 
semantic web. Here the plain text on web pages, blogs and published literature will 
be linked with each other in a web of concepts, where the links between concepts 
can be facts generated by information extraction (IE) or can be hypothesis being a  
novel relationship using text-mining techniques. 
There is  still  a  lot  to gain in research and the development of text-mining and 
remarkable some of them are not computer oriented. 

4.1 Community annotation
The  first  development  is  that  of  community  annotation  [4].  With  the  common 
technology the way that computers can read text have their limitations in terms of  
accuracy.  Disambiguation  remains  a  key  aspect  and  hard  to  solve  for  many 
concepts. However with the future version of the semantic web and the millions of 
people on the internet every day this can be solved. A person on the web, a so  
called community annotator, can screen an article of interest that has been tagged 
by a text-mining system and correct the words that have been misclassified. With  
misclassification  we  mean  that  a  word  was  too  ambiguous  to  resolve  or  not 
recognized because the word does not appear as a concept in the ontology. For a 
human reader the disambiguation can be done manually even so the ontology can 
be updated with new concepts or synonyms for existing concepts. Or in the case of  
the Alzheimer example, a new type can be corrected for in an article years after  
publication.  Since the internet contains millions of users every day, this annotation 
process increases the accuracy of tagged text over time.
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4.2 Making standard nomenclature
The second improvement is for standardizing databases, identifiers and names for  
concepts.  In  the  past  many  attempts  have  been  made  to  come  to  a  common 
ontology that is accepted world wide by all biology scientists. However thus far 
these attempts have failed for many reasons, some of which are unexplainable. An 
example is that in the past years companies developed their own databases for data-
mining  purposes.  Once  they  published  about  their  database  (in  online  website 
form) it was used frequently over the coming month. After a period of time the 
database became old and not  maintained.  In the end the database ‘dies’  and is 
buried on the ‘database graveyard’. For world wide co-operation we suggest that 
biologists get inspired by ICT companies and organizations like IEEE for whom 
standardizing is a well known principle (http://standards.ieee.org/). For instance, 
with the digital revolution many electronic devices came available for home users 
that need to be universal. A compact disk that can be played with any CD player  
that is bought in Germany or Japan. Or a personal computer where a soundcard 
works and fits in any motherboard. The universal exchangeability works in this 
field, hence, it may work in other fields like biology. 

4.3 Publish everything in blogs
A last improvement would be in the publication of negative results. In data-mining 
systems there  is  often  the need  to  compare groups  of  data.  For  instance for  a 
microarray this could be a treatment group of affected patients and the control  
group (reference group) of healthy people. In chapter one we compared the group 
of PPIs with the group of random protein pairs. There is no database available that 
explicitly  describes  that  some  proteins  do  not  interact.  Publication  of  any 
experiment ever done would be valuable for a computer scientist  (and even for  
biologists so they do not reinvent the wheel). The publication can now be done via 
online blogs, which are generally publicly accessible. 

4.4 Multidisciplinary environment
A complete non technical aspect of improvement is the communication between 
different disciplines. The background of today’s bioinformatician in most cases is  
computer science with very little background in biology. In the same way today’s  
biologist lacks the knowledge in the use of computers. The gap in communication 
between the computer scientist and biologists hampers the further development in 
bioinformatics  research.  For  instance,  biologist  and  most  other  disciplines,  not 
engineering  related,  are  sometimes  not  aware  of  what  is  already possible  with 
today’s  technology.   This results  in reinventing the wheel  or  working with old 
school technology (e.g. massive storage in excel sheets that better could be stored 
in professional database systems like Oracle and MySQL). Engineers and computer 
scientists on the other hand have no idea that people are in need of their computer  
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and engineering skills. When the two worlds never meet they cannot benefit from 
each others knowledge. We would like to encourage organizations to strive to let 
biologists  meet  with  bioinformaticians  in  order  to  learn  from  each  other.  For 
instance now there are conferences dedicated to bioinformatics research and mostly 
visited  by  bioinformaticians.  Same  holds  for  conferences  mostly  oriented  for 
biology. It would be great if a conference was dedicated to present bioinformatics  
tools  and  ideas  purely  to  biologists,  and  that  biologists  present  their  ongoing 
project to bioinformaticians and want feedback or a bioinformatic solution. Such a 
conference  stimulates  the  increase  of  collaborations  between  biologist  and 
bioinformatician.  
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Figure  1.  AuC  result  for  DMD  and  HTT  for  different  databases.  The 
performance  is  dependent  on the  protein  of  interest.  Tiger shows opposite 
behavior then InterPro. 
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Figure 4. Density plot of random protein pairs (red) and random gene-disease 
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