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Abstract
Despite  large  and  ever-growing  bioinformatic  data  sets,  there  is  often  no 
information  that  explicitly  links  genes  to  a  disease  in  literature.  Bioinformatic 
approaches  have  attempted  to  circumvent  this  problem by searching  for  genes 
similar to those already known to be associated with a disease [1-4]. However, this 
approach is frequently not useful because previous associated genes with a disease 
are not available. Here, we use concept profiles [5, 6], a vector-based description of 
terms, to discover implied relationships between genes and diseases for which no 
explicit link (co-occurrence) has been stated in either text or any other database. In 
a retrospective text mining analysis of scientific literature concept profiles were 
able to prioritize  disease genes on average within the  top 13 out  of  200 genes 
located in a specified linkage interval at least one year before the publication of the 
landmark paper explicitly establishing the gene-disease relationship. Examination 
of the highly-ranked concepts shared between the gene and the disease in concept 
profiles was used by biomedical experts to evaluate the plausibility of the inferred 
relationships and rationalize potential  biological  mechanisms.  By exploiting the 
implicit information in the literature, concept profiles performed two-fold better in 
prioritizing genes of polygenic diseases than the Endeavour gene prioritizer  [2] 
using 26 data-mining resources. These results demonstrate the enormous untapped 
potential of implied information in scientific literature for biomedical discovery, 
and the application of concept profile technology in extracting new knowledge. 
Introduction

Although  linkage  analysis,  association  studies,  and  next  generation  sequencing 
technology have produced voluminous amounts of genetic data that are essential 
for the characterization of disease mechanisms, isolating genes that cause or impact 
the  etiology  of  a  particular  disease  remains  a  time  consuming  and  largely 
serendipitous   task.  Often,  many  interrelated  factors  must  be  considered.  For 
example, individual genes may cause multiple diseases, distinct diseases may be 
caused  by  multiple  genes,  and  different  diseases  will  often  have  phenotypic  
overlap. To cope with these inherent complexities and with the size of large and 
rapidly growing datasets, bioinformatic tools have been developed combining text-
mining  and  data-mining  capabilities  to  automatically  search  for  correlations 
among, and then prioritize, putative gene-disease pairs[7-14].  For example, the 
Endeavour  web  tool  combines  biomedical  ontologies,  text,  and  data  from  26 
distinct sources to prioritize genes for specific diseases [2]. Many of the prioritizers 
that integrate multiple data sources are based on so called ‘seed’ genes, which are 
genes having a known relation to a disease that help to find the next causative gene 
that results in the same phenotype. For instance, a novel gene for breast cancer may 
be found by using information about BRCA1 and BRCA2, genes already known to 

99



cause the disease.  However,  for  the  majority of diseases recorded in  OMIM, a 
causative gene is not yet known. In these cases, prioritizers based on seed genes do 
not work. Furthermore, for all those diseases or syndromes where the first gene has 
yet  to  be discovered,  a  prioritizer  will  be  limited to  text  information only,  yet 
before  a  landmark  paper  is  published  describing  the  disease  causing  gene,  the 
disease and the gene tend to have few or no co-occurrence in the same abstract or  
article. Therefore text-mining systems based on direct co-occurrences will fail to 
predict the majority gene-disease relationships. 

However,  woven  within  the  narrative  of  scientific  literature  there  are  a  vast 
network of  relations  among terms  that  are  to  some degree left  implicit  by the 
authors. Implicit relations may arise as a consequence of new findings or as part of  
the scientific rational, and may or may not be intentional. Implicit information may 
be directly related to the immediate narrative or may have ancillary relations. Here, 
we used a text-mining method based on concept profiles to prioritize candidate 
genes by considering this large amount of implicit associative information in text.  
A concept profile for a given concept contains all other concepts that have a co-
occurrence weighted by the Uncertainty Coefficient [5]. Concept profiles must be  
constructed uniquely for a given ontology and corpus [15, 16], but once they have 
been constructed, the similarity between any two concept profiles can be computed 
by taking the inner product of their corresponding weights,  the so-called match 
score[17]. The statistical significance of the match score between the profiles of 
two  concepts  (i.e.,  gene  and  disease)  can  be  evaluated  by  comparing  the  log 
transform  of  the  match  scores  to  that  of  a  null  distribution  constructed  from 
randomly chosen concept pairs (Fig 1). Hence, it is possible using concept profiles 
to establish a statistically significant association between concepts based on highly 
ranked concepts in their profiles, even when they do not have a co-occurrence ( i.e. 
usually an explicit  stated relationship) in the literature.  Discovery of novel  and 
informative  associations  between  genes  and  diseases  is  thus  not  dependent  on 
linkage analyses or seed genes.
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Figure  1.  Distribution  of  concept  profiles  match  scores  calculated  for 
randomly  chosen  gene-disease  combinations.  The  MEDLINE  abstract  text 
corpus is from 1980 until May 2009.
Results and Discussion

We evaluated the effectiveness of concept profiles using 18 previously described 
gene-disease  relationships  taken  from the  Human  Reference  Protein  Data  base 
(HRPD)[18]  (Table  1).  Concept  profiles  for  the  genes  and  the  diseases  were 
constructed from all MEDLINE abstracts up to one year before the landmark paper 
explicitly describing the link between the gene and disease was published. This 
roll-back analysis used two time-delimited corpora: From 1980 to February 2005 
(for  landmark  publications  dating  from February  2006 to December  2006)  and 
from 1980 to August 2006 (landmark publications appearing after august 2007). 
For each of these gene-disease pairs, no co-occurrence was found between the gene 
and the disease before the landmark paper was published, both the gene and the 
disease  appear  in  a  minimum  of  five  abstracts  and  the  disease  is  currently 
considered to be monogenic. For each test gene an artificial linkage interval was 
arbitrarily set containing 200 genes (100 genes upstream and downstream of the 
test gene) following the approach by Aerts et. al. [7]. 
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Table 1. Gene-disease pairs using concept profiles.

Gene Disease
Landmark 
Publication
Date

PMID Rank p-value

MFN2
Hereditary motor and 
sensory neuropathy VI

February 2006 16437557 2 0.0018

RECQL4 Baller-Gerold syndrome February 2006 15964893 1 0.0046

KRT85
Ectodermal dysplasia, pure 
hair-nail type

March 2006 16525032 13 0.0093

ACVR1
Fibrodysplasia ossificans 
progressiva

May 2006 16642017 2 0.0052

TGFBI
Corneal dystrophy, epithelial 
basement membrane

June 2006 16652336 1 0.00045

IL10RB
Hepatitis B virus, 
susceptibility to

June 2006 16757563 16 0.062

IFN-AR2
Hepatitis B virus, 
susceptibility to

June 2006 16757563 3 0.0065

PLA2G6
Infantile neuroaxonal 
dystrophy 1

July 2006 16783378 11 0.043

TREX1
Aicardi-Goutieres syndrome 
1

August 2006 16845398 105 0.93

CHRNG Escobar syndrome August 2007 16826520 66 0.77

DOK7
Myasthenia, limb-girdle, 
familial

16917026 NaN NaN

SCN9A
Paroxysmal extreme pain 
disorder

September 
2006

17145499 15 0.084

MYH11 FAA4 March 2006 16444274 4 0.013

TFAP2A
branchio-oculo-facial 
syndrome

May 2008 18423521 4 0.068

PIK3CA Seborrheic keratosis August 2007 17673550 9 0.076
VLDLR Dysequilibrium syndrome February 2008 18043714 27 0.18
BUB1B PCS February 2006 16411201 12 0.29
TRPV4 Brachyolmia August 2008 18587396 44 0.76

Average rank 20 Average p

The concept profile for each gene in the linkage area was matched with the disease 
profile  resulting  in  a  ranked list  of  the  test  gene  among the  200 genes  in  the 
artificial linkage interval (Table 1). On average the test genes ranked within the top 
20, and in two cases (epithelial basement membrane corneal dystrophy (EBMD)) 
and Baller-Gerold syndrome),  the test  genes ranked number  one.  However,  the 
TGFBI  gene  is  often  co-mentioned  with  generic  disease  types,  like  hereditary 
corneal dystrophy and corneal dystrophy (column 3 in Table 2) suggesting that its 
high rank is not necessarily an indicator of a specific relation to EBMD. For the 
‘Myasthenia, limb-girdle, familial’ there was not enough information for the test 
gene to build a concept profile. When prioritizing gene-disease pairs in practice, it 
is essential that the significance of the putative gene-disease relation be subject to 
evaluation.  Hence  one-sided  p-values  were  calculated  from the  concept  profile 
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match  scores,  using  the  null  distribution  (Fig  1  &  Table  1).  This  p-value  is 
indicative of the quality of the prediction, and therefore of the reliability of the  
ranking of the list: the cases with very high ranks could have been predicted based 
on the low p-value of the gene (Fig 2). If we had used a cut-off p-value of 0.02 to 
reject  the  prioritizer  output  the  results  for  Aicardi-Goutieres  syndrome  1, 
Brachyolmia  and  Myasthenia,  limb-girdle,  familial  would  have  been  rejected. 
Escobar syndrome (test  gene ranks 66) with a p-value of 0.017 for the highest 
ranked gene would have remained as a reliable output. With three outliers rejected 
the average rank of the remaining 15 samples would becomes 12.5. Clearly concept 
profiles  are  highly effective in  identifying gene-disease pairs  deliberately using 
only the implicit information in MEDLINE prior to the landmark paper. 
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Figure 2. p-value of the highest rank gene versus the rank of the test gene.
In  addition  to  prioritizing  genes,  concept  profiles  provide  important  biological 
insight revealing how the gene might be associated with a disease. However, by 
inspecting the highly ranked concepts in the two concept profiles that linking the 
gene and disease a  biomedical  expert  would  likely (example  of  gene  PIK3CA 
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Table 1) choose for instance gene with rank nine over of the first eight for further 
investigation.  To  explore  the  utility  of  the  information  in  concept  profiles  in 
rationalizing predicted gene-disease pairs we chose the three gene-disease pairs 
having the highest ranking: Hereditary motor and sensory neuropathy VI (HMSN 
VI), Baller-Gerold syndrome (B-G syndrome), and EBMD. Biomedical researchers 
with expertise in these genes and diseases evaluated the shared concepts in concept 
profiles for their biological significance. Table 2 shows the top five of overlapping 
concepts between the gene and disease concept profiles.  For B-G syndrome the 
dominating concept is Rothmund-Thomson (R-T) syndrome (contributes more than 
95% to the overall score). Two documents were found that support the association 
between B-G syndrome and R-T syndrome, PMID: 11045594 and 9934984. The 
first  one gives information for the clinical  phenotypic overlap between the two 
syndromes. The gene RECQL4 has been co-mentioned before with R-T syndrome 
as a gene that when mutated causes this syndrome (PMID: 12379465, 12601557, 
12673665, 12734318, 12838562, 12915449, 12952869, 15221963, 15317757, and 
15558713).  Because  of  the  phenotypic  overlap  between  the  two  syndromes, 
RECQL4  would  be  the  most  likely  candidate  to  investigate  first.  Indeed,  the 
landmark  paper  (PMID:  15964893)  reports  precisely  this  reasoning:  “Clinical 
overlap between BGS, Rothmund-Thomson syndrome (RTS), and RAPADILINO 
syndrome  is  noticeable.  Because  patients  with  RAPADILINO syndrome and  a 
subset  of  patients  with  RTS  have  RECQL4  mutations,  we  reassessed  two 
previously reported BGS families and found causal mutations in RECQL4 in both.”

Table 2. Indirect concepts linking the gene with the disease.
Baller-Gerold syndrome Hereditary motor and sensory 

neuropathy VI
Corneal dystrophy, epithelial 
basement membrane

Top Overlapping 
concepts

Contributi
on to 
score

Overlapping 
concepts

Contribution to 
score

Overlapping 
concepts

Contribution 
to score

1 rothmund-
thomson 
syndrome

95.79 opa1 40.37 hereditary 
corneal 
dystrophy

42.28

2 Poikiloderma 2.47 optic atrophy, 
autosomal 
dominant 

35.32 Corneal 
dystrophy

41.43

3 online 
mendelian 
inheritance in 
man

0.45 OPA1 23.17 lattice corneal 
dystrophy

12.08

4 Growth 
deficiency

0.32 Axonal 
neuropathy 

0.61 Dystrophy 2.73

5 Clinical 
variability

0.24 recessive 
inheritance 

0.3 Corneal erosion 0.58

104



In the case of HMSN VI, this disease is caused by mutations in the MFN2 gene.  
The overlapping concepts in the top three are all a form of optic atrophy 1. The 
first concept opa1 is the gene in zebrafish, the second concept is a disease and the 
third concept  the  human gene.  Together  they contribute  more than 98% to the 
overall  score.  The  landmark  paper  (PMID:  16437557)  clearly  shows  that  this 
concept  is  a  strong  indirect  link,  stating:  “It  is  intriguing  that  MFN2  shows 
functional overlap with optic atrophy 1 (OPA1), the protein underlying the most 
common form of autosomal dominant optic atrophy, and mitochondrial encoded 
oxidative phosphorylation components as seen in Leber's hereditary optic atrophy.” 
The MFN2 gene ranked second place (Table 1).  This means one false positive 
before the test gene is found. The gene that ranks first place is KIF1B where the 
top five concepts  between it  and  the disease are  hereditary motor  and sensory 
neuropathies (65.61%), HMSN II (15.76%), hereditary liability to pressure palsies

 (7.8%), Axonal neuropathy (4.61%), and HMSN I (2.96%). In consulting 
the supporting documents for KIF1B it was found that mutations Charcot-Marie-
tooth disease type 2A1 (CMT 2A1 or HMSN2A1). Intriguingly, HMSN VI is also 
known as Charcot-Marie-tooth disease type 6 (CMT6). Thus, it appears that KIF1B 
is not a false positive but a gene that causes a related disease. 

Detailed expert analyses of the concept profiles in linking genes to Seckel  
syndrome are provided in the Supplementary Information. 

Table 3. Endeavor Gene Prioritizer predictions for monogenic and polygeneic 
diseases. Averages are only calculated over the ranks that are both covered by 
Endeavour and concept profiles. 
Disease (monogenic) Endeavour Concept profiles
arrthythmia 4 20
congenital heart disease (3) NaN
cardiomyopathy 1 2 2
parkinsons disease (50) NaN
charcot-marie-tooth disease 14 1
amyotrophic lateral sclerosis 27 16
klippel-trenaunay disease (3) NaN
cardiomyopathy 2 1 10
distal  hereditary  motor 
neuropathy 15 51
Cornelia de Lange syndrome (9) NaN
average ranking 11 17

Disease (polygenic) Endeavour Concept profiles

105



Rheumatoid_arthritis 11 24
Parkinson_disease 23 30
Atherosclerosis1 54 5
Atherosclerosis2 29 21
Crohn disease 71 11
Alzheimer disease 54 3
Average ranking 40 16

To  gauge  the  performance  of  concept  profiles  against  methods  based  on  co-
occurrence, we replicated a recent study [2] using the gene prioritizer Endeavour 
where gene-disease predictions were made for ten monogenic and six polygenic 
diseases (Table 3). We generated concept profiles for the diseases in these test sets 
and for the test genes in their corresponding linkage interval. We used the same roll 
back  analyses  as  Endeavour,  taking  only  literature  information  up  to  one  year 
before the landmark paper was published. For the monogenic diseases there were 
three genes where there was not enough information to calculate a match score 
using  concept  profiles.  Of  the  7  remaining  gene-disease  pairs  for  monogenic 
conditions,  the  average  performance  of  the  two  methods  was  comparable. 
However,  in  the  case  of  polygenic  diseases  having  inherently  complex 
interrelations  among  numerous  genes  and  other  concepts,  concept  profiles 
outperformed Endeavour’s  ranking on average by two-fold.  By drawing on the 
deep network of conceptual relations that inform the study of polygenic diseases 
but usually remain un-stated in the literature, concept profiles are uniquely suited 
for knowledge discovery in complex multifactorial systems. 
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Figure  3.  Estimation  of  implicit  and  explicit  information.  Co-occurrence 
methods can prioritize only 287 of the possible 40 million gene-disease pairs, 
while concept profiles can prioritize 5% at p= 0.05. Note the vast majority of 
textual information is implicit.
These results indicate the importance of implicit information in discovering new 
knowledge. Concept profiles can be used to estimate the relative proportions of 
implicit  and explicit  information.  For  example,  given the number  of genes and 
diseases  meeting  our  minimal  information  criteria  used  herein,  there  are 
40,404,412  possible  gene-disease  combinations.  The  match  score  and 
corresponding p-value for each these gene-disease pair can be calculated. For each 
p-value, the cumulative number of implicit  and explicit  gene-disease pairs (and 
then normalized to a percentage) can be computed (Supp Info Table 4). Thus, for 
each p-value, we know the fraction of the predicted pairs that are due to implicit 
information (Fig 3).  For p=0.0 only gene-disease pairs with minimally one co-
occurrence are found. But even for extremely significant p-values (p=0.00002) we 
already find some gene-disease pairs for which their  association is  only due to  
implicit information (i.e.,  no co-occurrences found in MEDLINE). For p=0.003, 
still a highly significant gene-disease p value, the amount of implicit information is 
already 47%. For commonly accepted p-values around p=0.05, 88% of the gene-
disease pairs are  due to implicit  information.  Conclusion:  The vast  majority of 
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useful  information  in  text  is  implicit,  and  this  information  is  accessible  with 
concept profiles. 

There  are  5330  gene-disease  predictions  that  are  better  than  p  =  0.0002.  To 
facilitate the expert  evaluation of these predicted gene-disease pairs,  the shared 
concepts from the concept profiles have been posted online along with the related 
PubMed IDs. Experts can search this data on gene or disease or any other related 
concept, and can provide their estimation of the quality of the prediction and leave 
commentary regarding possible biological mechanisms.  
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Supplementary information
Seckel syndrome is known as a rare autosomal recessive disorder characterized by 
growth  retardation,  microcephaly  with  mental  retardation,  and  a  characteristic 
'bird-headed'  facial  appearance.  Presently,  only  one  gene  in  OMIM,  ataxia-
telangiectasia, is related to Seckel Syndrome via its mutated from RAD3-related 
protein (ATR)[1]. Recently a second gene that encodes for Centromere protein J  
(CENPJ) has been identified by Al-Dosari et. al.[2], but this gene had yet to be 
entered in OMIM at the time this analysis was completed. Of the top 20 proteins 
(out  of  the  12,391  proteins  that  had  sufficient  information  to  build  a  concept 
profile) having the highest match score to Seckel Syndrome, CENPJ ranks number 
14,  although  CENPJ  has  no  co-occurrences  with  Seckel  syndrome  in  PubMed 
abstracts (Table 1). The concept microcephaly contributes the most to the match 
score and is the strongest implicit (or indirect) link between Seckel syndrome and 
CENPJ. Other candidate genes appear in this list that have been co-mentioned with 
Seckel syndrome before. For instance the protein pericentrin (PCNT, ranks 2) has 
three articles. The article with PMID: 18157127 describes that PCNT is another 
gene that causes Seckel syndrome. The article with PMID:19546241 gives a nice 
overview  of  related  diseases  with  similar  phenotype  such  as  ‘Primary 
microcephaly’  and  ‘microcephalic  osteodysplastic  primordial  dwarfism type  II’ 
(MOPD II).  This  article  also  lists  microcephalin (MCPH1,  ranks  5)  as  another 
disease-causing candidate. The last article (PMID: 16278902) also mentions the 
concept  MOPD  II.  These  results  prompted  us  to  further  investigated  whether 
CENPJ might be associated with PCNT and ATR. We generated a prioritized list 
for ATR and PCNT and checked the rank of CENPJ.  Surprisingly CENPJ also 
showed no co-occurrences with ATR and it ranked 706. However, CENPJ is co-
mentioned once with PCNT (PMID: 18174396). In this article PCNT is given as 
the cause for primordial dwarfism, and other candidate genes for Seckel syndrome 
are postulated (CDK5RAP2 ranks 32 not in table 1,  and ASPM ranks 15).  We 
performed a new search where related concepts for Seckel syndrome were used as 
PubMed input query and the results aggregated into a single rank using (Table 2). 
In  this  case,  CENPJ  ranks  4th and  although ATR is  a  known gene  for  Seckel 
syndrome (recorded in OMIM), its information content is poor compared to the 
other related Seckel syndrome concepts. 

From  the  PubMed  abstracts  we  selected  candidate  genes  that  have  been  co-
mentioned with Seckel syndrome related concepts and used them as a search query 
in the STRING database of known and predicted protein-protein interactions to see 
if there are any relations between these candidate genes (Fig 1). Again, ATM has 
many links with ATR, while all other links are mainly in the network of PCNT. 
CENPJ has a known physical interaction with PCNT. From a biological view, it 
would be highly interesting to identify the missing link between the ATR and the 
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PCNT  pathway.  In  seeking  potential  relations  between  Seckel  syndrome  and 
CENPJ, it is clearly much easier to inspecting the concept profile overlap between 
(Table 3) than performing multiple PubMed search queries manually reading up to 
17 articles. Lastly, this case demonstrates that using conventional co-occurrence 
approaches to predicting gene-disease relations could have negative performance 
results. Here, ATR, although the first choice to use as seed gene when looking for  
additional  genes  related  to  Seckel  syndrome,  would  lead  to  false  negative 
conclusions.

Figure 1. Candidate genes for Seckel syndrome in a network graph generated 
by STRING. 

Supp Info Table 1. Prioritized list of proteins match with the profile of Seckel 
Syndrome.  The  column  ‘main  concept’  gives  information  which  concept 
contributes the most to the score and is the strongest implicit (or indirect) link 
between Seckel syndrome and CENPJ. NUP85 is a homonym for PCNT and 
retrieves the same articles for PCNT.

ran
k

Co-
occurrence
s

genenam
e

Main 
concept

Contributio
n (%)

OMIM 
gene PMIDs

1 7 ATR ATR 74.43 x

[12640452, 
14571270, 
15309689, 
15496423, 
15616588, 
16015581, 
19504344]

2 3 PCNT
Seckel 
syndrome 54.38 x

[16278902, 
18157127, 
19546241]

3 2 NUP85
Seckel 
syndrome 74.54

[18157127, 
19546241]

4 2 ANTXR1 ANTXR1 66.28
[12640452, 
19504344]

5 3 MCPH1 MCPH1 61.84 x [16217032, 
17102619, 
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19546241]

6 2 NBN NBN 64.58 x
[15616588, 
18664457]

7 0 MCPH2
Primary 
microcephaly 32.01

8 2 FANCD2 FANCD2 47.9 x
[15314022, 
15616588]

9 0 ATRIP ATR 92.91
10 1 DNMT1 DNMT1 98.49 [17015478]
11 1 MDC1 MDC1 19.13 [18664457]

12 1 FANCC
Fanconi's 
Anemia 31.02 x [10232749]

13 6 PALB2
Fanconi's 
Anemia 36.35

[3115102,  6465473, 
7686032, 10232749, 
15314022, 
17224058]

14 0 CENPJ Microcephaly 17.77 x
15 0 ASPM Microcephaly 48.12 x

16 5 CHEK1 CHEK1 28.75

[15616588, 
16217032, 
17015478, 
18077418, 
19504344]

17 0 PROP1 dwarfism 98.96 x

18 2 MMAB MMAB 60.9 x
[15314022, 
19504344]

19 0 TOPBP1 ATR 64.53
20 1 FOXL2 FOXL2 59.56 x [16015581]

Table 2. Rank of proteins in prioritized lists for different concepts that are 
associated with Seckel syndrome, including Seckel syndrome itself

Gene 
name Rank

Seckel 
syndrom
e

PCN
T MOPD II

Primary 
microcepha
ly

Microcepha
ly ATR

PCNT 1 2 1 1 11 70 845
MCPH2 2 7 53 5 1 4 540
ASPM 3 15 38 6 2 2 622
CENPJ 4 14 18 4 3 5 706
ATR 5 1 385 53 29 49 1
MCPH1 6 5 64 7 4 12 271
NUP85 7 3 9 2 15 84 831
NBN 8 6 660 125 24 1 10
MDC1 9 11 233 15 6 63 15
TOPBP1 10 19 257 17 10 237 5
CDK5RAP
2 11 32 36 10 5 14 1233
CHEK1 12 16 254 36 20 223 3
TP53BP1 13 27 500 26 13 170 16
RHO 14 41 373 21 8 261 28
CHEK2 15 26 428 87 36 177 4
ERCC2 16 23 1054 48 42 174 9
MRE11A 17 22 1118 584 63 9 11
GCP3 18 39 4 3 31 1077 7133
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RAD50 19 25 881 478 67 10 17
SEH1L 20 104 54 12 89 67 753

Table 3. Overlapping concepts between Seckel syndrome and CENPJ
Top Overlapping concept Contribution (%)
1 Microcephaly 17.77
2 Primary microcephaly 17.31
3 MCPH1 11.86
4 Mcph1 11.44
5 MCPH1 11.44
6 MCPH1 11.41
7 MCPH1 7.54
8 PCNT 4.38
9 osteodysplastic primordial dwarfism 1.94
10 NUP85 1.11
11 MOPD II 0.93
12 pericentrin 0.77
13 dwarfism 0.72
14 Centrosome 0.55
15 Genes, Recessive 0.32
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Table 4. Estimation of Implicit and Explicit Information
1. O'Driscoll, M., Ruiz-Perez, V.L., Woods, C.G., Jeggo, P.A., and Goodship, 

J.A., A splicing mutation affecting expression of ataxia-telangiectasia and  
Rad3-related protein (ATR) results in Seckel syndrome. Nat Genet, 2003. 
33(4): p. 497-501.

2. Al-Dosari,  M.S.,  Shaheen,  R.,  Colak,  D.,  and  Alkuraya,  F.S.,  Novel  
CENPJ mutation causes Seckel syndrome. J Med Genet. 47(6): p. 411-4.

pvalue matchscore implicit explicit cum imp cum exp % imp % exp

0 -4 0 29 0 29 0.00 1.00

0 -5 0 287 0 316 0.00 1.00

0.00002 -6 5 1139 5 1455 0.00 1.00

9.01E-05 -7 173 2341 178 3796 0.04 0.96

0.00023 -8 997 4333 1175 8129 0.13 0.87

0.00056 -9 3994 8561 5169 16690 0.24 0.76

0.00127 -10 12863 16612 18032 33302 0.35 0.65

0.00308 -11 38259 30653 56291 63955 0.47 0.53

0.00724 -12 109383 55429 165674 119384 0.58 0.42

0.01756 -13 327773 113012 493447 232396 0.68 0.32

0.04645 -14 1027450 142817 1520897 375213 0.80 0.20

0.11323 -15 2610325 78691 4131222 453904 0.90 0.10

0.23868 -16 5050536 26734 9181758 480638 0.95 0.05

0.41924 -17 7252607 6287 16434365 486925 0.97 0.03

0.60682 -18 7619189 906 24053554 487831 0.98 0.02

0.75026 -19 5790456 40 29844010 487871 0.98 0.02

0.84564 -20 3816141 0 33660151 487871 0.99 0.01

0.90624 -21 2460978 0 36121129 487871 0.99 0.01

0.94567 -22 1586840 0 37707969 487871 0.99 0.01

0.97008 -23 995043 0 38703012 487871 0.99 0.01

0.98434 -24 577399 0 39280411 487871 0.99 0.01

0.99236 -25 322237 0 39602648 487871 0.99 0.01

0.99673 -26 169158 0 39771806 487871 0.99 0.01

0.99855 -27 83531 0 39855337 487871 0.99 0.01

0.99948 -28 36376 0 39891713 487871 0.99 0.01

0.99972 -29 15168 0 39906881 487871 0.99 0.01

0.99982 -30 6123 0 39913004 487871 0.99 0.01

0.99989 -31 2528 0 39915532 487871 0.99 0.01

0.99993 -32 971 0 39916503 487871 0.99 0.01

0.99993 -33 38 0 39916541 487871 0.99 0.01
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