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Abstract
We introduce a framework for predicting novel protein-protein interactions (PPIs), 
based on Fisher’s method for combining probabilities of predictions that are based 
on different data sources,  such as the biomedical literature,  protein domain and 
mRNA expression information. Our method compares favorably to our previous 
method  based  on  text-mining  alone  and  other  methods  such  as  STRING.  We 
evaluated our algorithms through the prediction of experimentally found protein 
interactions underlying Muscular Dystrophy, Huntington’s Disease, and Polycystic 
Kidney Disease,  which had not  yet  been recorded in protein-protein interaction 
databases. We found a 1.74 fold increase in mean average prediction precision for 
dysferlin and a 3.09 fold for huntingtin when compared to STRING. The top 10 of  
predicted  interaction  partners  of  huntingtin  were  analysed  in  depth.  Five  were 
identified previously, and the other five were new potential interaction partners. 
The full matrix of human protein pairs and their prediction scores is available for 
download. Our framework can be extended to predict other types of relationships 
such as proteins in a complex, pathway or related disease mechanisms.

Introduction
The  biomedical  literature  and  domain-specific  databases  contain  a  wealth  of 
background information,  which should aid biomedical  researchers in the design 
and interpretation of their experiments. Many databases compile information from 
several  resources  for  use  as  reference  and  lookup.  Databases  such  as  KEGG, 
STRING, and IntNetDB are examples that are useful for studying protein-protein 
relations.  These  resources  represent  existing  knowledge  well.  However,  of 
particular interest is the potential to reveal genuinely novel relations by data mining 
algorithms [1]. In previous work we showed the ability to predict protein-protein 
interactions using information contained in literature alone [2]. With the so called 
concept profile technology, we found novel protein interaction pairs that could not 
have  been  found  by  a  simple  MEDLINE  query.  This  was  illustrated  by  the 
prediction of the physical interaction between calpain 3, which causes a form of 
muscular dystrophy, and parvalbumin B, which is found mainly in skeletal muscle. 
However, this method does not exploit the full potential of information available 
for data mining. Combining data sets beyond literature may increase coverage and 
the reliability of our predictions.
Combining  data  from  different  sources  for  extracting  relevant  knowledge  is  a 
general objective in bioinformatics. Here, we distinguish data concatenation and 
evidence score combination.  Data concatenation merely summarizes the results of 
queries  to  a number  of  individual  databases  (e.g. www.genecards.org [3]).  The 
summaries are provided to an investigator for interpretation. When investigating 
PPIs,  a summary may contain information on the presence of certain PPIs in a  
curated PPI database,  Gene Ontology terms that are shared, and co-expression of 
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genes in  certain tissues  or  cellular  compartments.  No additional  algorithms are  
provided to predict and highlight putatively novel relations.
Evidence  score  combination  provides  a  score  to  order  the  information  from  a 
combination of data sets. For each set, the score reflects the contribution of the set  
to the overall result of a query across a number of data sets. The individual scores 
are  combined  using  one  of  several  combination  techniques.  Evidence  score 
combination can be used to predict new relationships between biological concepts, 
including protein-protein interactions (PPIs).
Several  web tools are available that provide some form of data integration and 
evidence score combination for the extraction of PPIs [4-6]. (i) STRING[6], which 
is  maintained by EMBL, contains  functional  associations  for  over  600 species. 
STRING uses information on genomic content, high throughput experiments, co-
expression, and co-mentioning in PubMed abstracts and recorded in public curated 
databases like KEGG or Reactome. STRING uses a combination technique based 
on the product of p-values to provide a confidence score for predicted PPIs. (ii) 
FunCoup[5] provides a predicted protein-protein network for eight eukaryotes. It 
uses  information  on  PPIs,  mRNA  expression,  sub-cellular  co-localization, 
phylogenetic  profiles,  miRNA-mRNA  targets,  transcription  factor  regulation, 
protein  expression,  and  protein  domain  interactions.  The  network  is  optimized 
using a Bayesian approach. (iii) IntNetDB v1.0.[4] is restricted to a few species and 
mainly focuses  on human data.  IntNetDB uses  physical  interactions,  phenotype 
similarity, genetic interactions, shared GO annotation, domain-domain interactions, 
co-expression, and gene context in PubMed articles. IntNetDB uses a Naive Bayes 
classifier as combination technique. As stated previously, these web tools perform 
well  on  reproducing  existing  PPIs.  STRING  for  instance  aggregates  known 
interactions  from several  databases  and predictions  made  by  several  predicting 
methods.  Their  evidence  score  reflects  how  well  supported  an  interaction  or 
association is by these sources. Our aim is to develop a true interaction predictor, 
and a score that reflects the likelihood that the prediction is true. In contrast to 
STRING, our method will predict known as well as unknown interactions that can 
have  equally  high  scores.  The  correspondence  with  known  protein-protein 
interactions validates our approach.
The remainder of this article is structured as follows. We give a brief introduction 
of our framework which is based on Fisher’s method for combining p-values based 
on different data sources. Next our framework was validated by evaluating three 
show cases. The first case is on dysferlin (DYSF encoded protein), its deficiency 
causing progressive Limb Girdle Muscular Dystrophy type 2B.  We aimed for the 
discovery of dysferlin interaction partners by immunoprecipitation experiments and 
show how well we could predict these new interactions. The second case relates to 
the huntingtin protein which is associated with Huntington’s disease. We took PPIs 
from the article by Kaltenbach et. al. [7], which had not been stored (yet) in PPI  
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databases and which had not been described in MEDLINE abstracts. They serve as 
a good test set where we simulate that our framework is able to predict proteins 
from these lists. The last show case is on Polycystic Kidney Disease caused by the 
mutated  PKD1  gene.  This  case  illustrated  how  to  solve  homonym  problems 
encountered  in  text  by  including  additional  expression  data.  We  end  with 
summarizing the results  for  each show case and conclude that  we significantly 
improve the discovery of novel PPIs over previous methods.  

Materials and methods

Performance measurement
For  measuring  performance  we  used  receiver  operating  characteristics  (ROC) 
curves and the area under the curve (AuC).  Second, we used the mean average 
precision (MAP). Both are measurements often used in information retrieval. In the 
case studies the test sets used for dysferlin and huntingtin are labeled as positive 
instances. The rest of the proteins in our ontology are labeled as negative instances. 
The AuC values have a range between 0.5 and 1. 0. A value of 0.5 means that the 
systems is no different than a random ordering of the samples,  i.e. the positive 
instances are equally distributed over the ordered list (ordered by match score) of  
all proteins. An AuC of 1 mean the system is a perfect predictor,  i.e. al positive 
instances first rank at the top followed by all negative instances. 
The mean average precision is a measurement more sensitive to samples size of 
both  the  positive  and  negative  set.  The  MAP  is  calculated  by  averaging  all  
precisions  where  each  precision  is  calculated  at  the  occurrence  of  a  positive 
instance in an ordered list (ordered by match score).

Match scores for each individual database.

Concept profiles
To calculate the similarity of the contexts in which proteins appear in literature, we 
summarize  the  context  of  each  protein  in  a  concept  profile.  This  profile  for  a 
protein contains all concepts that are co-mentioned with the protein as found in  
MEDLINE  abstracts.  To  find  concepts  in  text  we  have  used  the  concept-
recognition  software  Peregrine  [8],  which  includes  synonyms  and  spelling 
variations of concepts and uses simple heuristics to resolve homonyms. For this, 
Peregrine uses a protein ontology that was constructed by combining several gene 
and protein databases. Proteins from different species are fused together and we do 
not distinguish between a gene and a protein. 
Each concept in the profile is assigned a weight. The weight reflects the strength of 
the association between the concept and the protein. The concepts that appear in 
both protein profiles are used to calculate a match score. The match score is the  
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inner product calculated over the weights for the shared concepts. For a detailed 
description of concept profiles and weight calculation we refer to [9].

Gene Ontology
Match scores defined for the Gene Ontology were investigated by Mistry  et al. 
[10]. They compared the term overlap with other well known similarity measures 
adapted from the work of Resnik[11], Lin[12], and Jiang[13]. We did a ROC curve 
analyses on all four similarity measures and obtained the highest AuC value for the 
method by Resnik. The score we use is inferred from Resnik. Resnik originally 
defines the score to find the similarity between two GO terms, whereas we want to 
find the similarity between two proteins. First the information content for a GO 
term ti is defined 
IC  ti =−log  p t i 

where  p(ti) is the probability of a gene being annotated to that term.  p(ti) can be 
calculated as follows

In words, the number of genes annotated to GO term  ti divided by all the genes 
under consideration. All the genes are annotated in the root node of the GO graph. 
The information content  of  the root  node therefore is  0  as would be expected. 
Resnik’s  similarity  measure  is  then  calculated  by  taking  the  IC  of  the  lowest 
common ancestor (LCA) shared between two proteins. 
simRe snik  p1 , p2= IC  LCA 

With p1 and p2 the two proteins that form a pair (either random or a PPI). 

Microarray data
Microarray co-expression values are pre-calculated for COXPRESdb [14] and can 
be used directly after download. For Gene Atlas [15] the human GNF1H chip is 
used. First, the log was taken from the MAS5.0 normalized expression values for  
each tissue (78 in total), and probes with the same EntrezGene IDs were averaged. 
Subsequently, a Pearson correlation was calculated for the gene expression values 
for all pairs of genes. 

Tissue specificity
TiGER[16] contains expressed sequence tags that are defined for 30 tissues. For 
TiGER we evaluated a number of vector similarity measures namely, Pearson’s 
correlation coefficient, inner product, cosine, euclidean distance, and the Tanimoto 
coefficient. The latter one showed the best prediction performance. The Tanimoto 
coefficient between two vectors A and B is defined as follows:
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T  A , B=
A⋅B

∥A∥2
∥B∥2

−A⋅B
Tanimoto coefficient values > 0.85 are generally considered similar to each other. 

Domain-domain interactions
We used  InterPro[17]  to  annotate  each  protein  in  our  ontology  with  domains. 
Subsequently we  used DOMINE[18] to determine which domains (one of protein 
A and the other of protein B) interact. The final score is simply the number of 
interacting domains. 

Probable non interacting protein pairs
A null hypothesis was generated by choosing random protein pairs[19]. This null 
hypothesis is used to calculate a single sided p-value for Fisher’s Method. The only 
constraint  that  we  applied  is  that  the  protein  pair  should  not  be  in  a  curated 
database nor in the high-throughput database IntAct [20]. The curated databases 
used are listed in the supplementary files. The complete random protein pair set 
consisted of over 500 millions proteins pairs  (all  possible  combinations of two 
proteins). For computational reasons our analysis was limited to a random subset of 
100,000. 

Combined match score: Fisher's method
Fisher's method combines one sided p-values from different databases into one test  
statistics which follows a χ2 distribution with  2*L degrees of freedom using the 
formula

χ 2=−2∑
i=1

L

log  p i 

When the p-values tend to be small, the test statistic χ2 will be large. The p-values 
are obtained from the random protein pairs distribution described earlier. 
In the first version of Fisher, missing values for this combiner are also completely 
ignored.  This  is  done  by setting the p-value to  1.  The log becomes  0 and the 
missing value does not contribute to the score. The degrees of freedom are fixed 
and are the same for each sample (a protein pair). The second version takes into 
account the degrees of freedom (dof). The dof is only taken for databases that have  
a match score. The last two variations are where the individual database scores are 
weighted. They are weighted with the AuC and MAP values and then the previous 
formula  is  applied.  Fisher’s  method  can  be  sensitive  to  databases  if  p-values 
become 0. Then the combined score is dominated by one database only. This could 
result in false positives. We added a small offset to each p-value of 10 -4 to filter for 
this side effect when p-values are too small (or 0). 
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STRING
We  benchmarked  our  system  against  the  STRING  database.  We  downloaded 
STRING version 8.1 that was last updated on October 18, 2009. A current version 
of  STRING  can  be  found  online:  http://string.embl.de.  The  databases  used  by 
STRING are: 

• Neighborhood in the genome (nscore)
• Gene fusion (fscore)
• Co-occurrence across genomes (homology; pscore and hscore)
• (Co-expression (ascore)
• Experimental/biochemical data (escore), 
• Association in curated databases (dscore)
• Co-mentioned in PubMed abstracts (tscore; text-mining based on direct co-

occurrences) 
String uses a combiner based on the product of probabilities using the following 
formula 

S=1−∏
i

N

1−S i 

With Si the probability score for database i, S the combined score, and N the total 
number of databases to be combined. 

Dataset
The raw scores  for  each database,  and the combined Fisher  Method score,  are 
merged together in a tab delimited text file which can be downloaded from our 
website http://www.biosemantics.org/ppi-prediction

Results and Discussion

Our previous approach used only text-mining for the prediction of PPIs [2]. We 
postulated  that  a  combination  of  information  indicative  of  protein-protein 
associations,  such  as  co-expression  and  functional  and  structural  similarities, 
increases  the  overall  probability  of  a  genuine  PPI.  Therefore,  we  included 
information from these five additional databases:

• Gene Ontology: manual functional annotation 
• COXPRESdb[14]: mRNA co-expression over a wide range of conditions
• Gene Atlas[15]: mRNA co-expression in 78 tissues
• Tiger[16]: expressed sequence tags (EST) counts in 30 tissues
• InterPro/DOMINE[17,  18]:  domain  annotation  and  domain-domain 

interactions
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Our  hypothesis  was  that  these  data  sources  are  valuable  for  the  prediction  or 
protein interactions since two interacting proteins should be expressed in the same 
tissue and cell, are likely to be co-regulated at the transcriptional level, and interact 
via  a  specific  combination  of  protein  domains.  The  selected  databases  are 
publically  available  and  have  suitable  data  formats  for  processing  (xml,  tab 
delimited files, Entrez Gene or Uniprot accession numbers, etc). For each database 
a score was defined that  reflects a degree of association between two proteins.  
Individual scores were then combined to obtain a final score for a protein pair. 
For combining the score we used a method developed by Fisher (see Materials and 
Method  for  detailed  explanation  of  this  method).  This  method  is  based  on 
combining p-values taken from different predictions. Briefly, the match score for 
every database is converted into a single sided p-value. Then, the p-values are log 
transformed and summed resulting in a Fisher score with 2*N degrees of freedom 
(N the number of p-values to be summated). We made two variations of this Fisher 
method. In the first one, the degrees of freedom are fixed (missing values taken 
into account).  In  the  second one,  each p-value is  weighted with AuC or  MAP 
values,  giving more weight  to  the  data sources  that  are most  important  for  the 
prediction. The AuC stands for Area under the ROC curve and MAP for Mean 
Average  Precision.  Both  measures  are  well  known in  the  field  of  information 
retrieval  and  data-mining.  An  AuC  of  0.5  reflects  a  prediction  with  random 
behavior (like flipping a coin).  An AuC of 1 correlates to a perfect  prediction. 
MAP values  range from 0 to  1 (perfect  prediction).  All  performance measures 
(AuC and MAP values) are given in the supplementary files. 
We choose Fisher’s method after evaluating three other methods for combining 
databases  (see  supplementary  files  for  the  other  methods  and  the  evaluation). 
Fisher’s method showed the best overall results both in AuC and MAP. 
In the analysis we will benchmark our system against STRING. STRING is a web 
tool  that  has  been  intensively  optimized  and  updated  since  2000.  It  enables 
downloading of previous releases. STRING has the same approach for predicting 
PPIs, e.g. it defines evidence scores for several databases and combines them into a  
single score.

Example  1:  Predicting  proteins  interacting  with  Dysferlin  (DYSF,  MIM: 
603009)
Dysferlin is a 230 kDa C2-domain containing transmembrane protein. Dysferlin is 
highly  expressed  in  skeletal  muscle,  but  is  also  found in other  tissues  such as 
kidney, heart and monocytes. Mutations in dysferlin cause progressive muscular 
dystrophies  like  Limb  Girdle  Muscular  Dystrophy  type  2B  (MIM:  253601), 
Miyoshi Myopathy (MIM: 254130) and Distal Anterior Compartment Myopathy 
(MIM: 606768 ), collectively referred to as dysferlinopathies [21]. From cellular 
studies  it  is  known  that  dysferlin  participates  in  membrane  repair.  Cultured 
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myotubes  show  a  calcium-dependent  accumulation  of  dysferlin  at  sites  of 
membrane damage upon laser-inflicated membrane wounding [22]. In absence of 
calcium or dysferlin  the  muscle  fiber cannot  repair  the  damage,  and undergoes 
necrosis [22]. 
We performed a high-throughput screen for proteins interacting with dysferlin and 
evaluated  whether  our  PPI  prediction  algorithm  could  predict  dysferlin’s 
experimentally  identified interaction partners.  To date,  nine physical  interaction 
partners were described in literature,  and all  are believed to aid dysferlin in its  
membrane repair function. However, it is not completely understood how dysferlin 
functions, and possibly it does more than membrane repair alone. 
We have developed a specific, robust and reproducible immunoprecipitation (IP) 
method to isolate dysferlin protein complexes from biological sources ( [23], de 
Morrée  et  al  in  preparation).  We  in  vitro differentiated  mouse  myoblasts  to 
spontaneously  contracting  myotubes,  and  immunoprecipitated  dysferlin  protein 
complexes. Mass spectrometry analysis yielded a list of 352 putative interaction 
partners (manuscript in preparation), including the previously described  ANXA2,  
AHNAK,  CAPN3,  TRIM72 encoded  proteins,  underlining  the  validity  of  the 
method.  The  proteins  already  known  to  interact  with  dysferlin  (recorded  in  a 
database) were omitted from this IP list.  We created a prioritized list of 25,036 
proteins with our Fisher combiner, by matching dysferlin against all other proteins 
known in our ontology, and compared the IP dataset with this list. Figure 1a shows 
that  text-mining yields a high AuC of 0.78, indicating that implicit  information 
contained  in  the  literature  is  able  to  correctly  predict  interaction  partners  for  
dysferlin. As shown in figure 1a the other nine databases yield AuC’s between 0.6 
and 0.7, and as a result the Fisher combiner AuC does not differ much from text-
mining alone. Thus, most predictive value is contained in text and to a lesser extent 
in gene expression and Gene Ontology. STRING gives an AuC of 0.63, close to 
random behavior, confirming that our system performs better than STRING. The 
MAP reflects how many IP partners are present in lists of predicted proteins, a  
useful measure for those interested in validation of candidates. In figure 1b the 
MAP are plotted for the IP partners.  The MAP achieved by the AuC weighted 
Fisher combiner was 1.74 fold better  than STRING’s.  Again,  literature had the 
highest predictive value, and the addition of other databases to the prediction led to 
only small improvement in precision. Finally, we evaluated how many dysferlin 
interaction  partners  from  the  IP  list  were  found  in  the  top  50  of  predicted 
interaction  partners.  As  shown  in  table  4,  the  Fisher  combiner  yields  9  hits,  
whereas  STRING finds  only  6.  The  top  50  of  predicted  proteins  are  given  in 
Supplementary table 6.
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Concept profiles

Gene Ontology bp

Gene Ontology mf

Gene Ontology cc

Gene Ontology relationship

COXPRESdb

Gene Atlas

TiGER

InterPro

Fisher's method

Fisher's method with dof

Weighted Fisher (AuC)

Weighted Fisher (MAP)

STRING

0.50 0.55 0.60 0.65 0.70 0.75 0.80

Figure 1a. AuC values (ranging from 0.5 till 1) for the individual databases,  
the Fisher methods, and STRING, for the dysferlin case study.

Concept profiles

Gene Ontology bp

Gene Ontology mf

Gene Ontology cc

Gene Ontology relationship

COXPRESdb

Gene Atlas

TiGER

InterPro

Fisher's method

Fisher's method with dof

Weighted Fisher (AuC)

Weighted Fisher (MAP)

STRING

0.00 0.01 0.02 0.03 0.04 0.05 0.06

Figure 1b. MAP values for the individual date sources, the Fisher methods, 
and STRING, for the dysferlin case study.

Example  2:  Predicting  proteins  interacting  with  Huntingtin  (HTT,  MIM: 
613004)
Huntington’s disease (HD, MIM: 143100)  is  a progressive autosomal  dominant 
neurodegenerative disorder that is caused by a CAG repeat expansion in the HTT 
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gene, which results in an expansion of polyglutamines at the N-terminal end of the 
huntingtin protein, and the accumulation of cytoplasmic and nuclear aggregates in 
neurons. The polyglutamine expansion in the protein plays a central role in the 
disease and the size of this expansion has a direct link to the aggregation-proneness 
as well as the severity of pathology and clinical features [24]. When the mutation 
for HD was found, huntingtin was a protein of unknown function but extensive 
research over the past decade has revealed numerous functions for huntingtin and 
many cellular processes are affected in HD, such as transcriptional de-regulation, 
mitochondrial  dysfunction,  and vesicle transport  dysfunction [25].  Although the 
precise underlying disease mechanism of HD is still unknown there is evidence to 
support a role for aberrant protein-protein interactions in HD pathogenesis [26]. 
A  recent  study  by  Kaltenbach  et  al.  [7]  identified  a  comprehensive  set  of 
huntingtin-interacting proteins.  (1)  With yeast  two-hybrid screening (Y2H)  104 
interacting proteins were identified and (2) affinity pull down followed by mass 
spectrometry identified 130 proteins. Subsequently, Kaltenbach et al. tested if the 
interacting proteins they had identified could influence mutant huntingtin toxicity. 
(3) An arbitrary sample of 60, out of the 234, proteins were tested in either over-
expressing or partial loss of function  Drosophila strains expressing the first 336 
amino acids of the huntingtin protein containing an expanded 128 glutamines. 
For the current study, the already known interacting proteins were omitted from 
these three datasets to serve as a test panel to examine if our framework can predict 
proteins from these lists, leaving 92 proteins from the Y2H experiment, 120 from 
the  pull  down  experiments,  and  42  from  the  Drosophila  huntingtin-induced 
neurodegeneration. With our Fisher method (figure 2b), we obtained a MAP of 
0.025 for the Drosophila interaction partners. This is a 3.09 fold increase compared 
to STRING. The Y2H, and IP experiments showed a 1.48, and 2.56 fold increase 
over the STRING method respectively.  The top 50 of predicted proteins out of 
25,036 proteins, are shown in table 3.
From the top 50 proteins identified by our system, 3 proteins namely syntaxin 1A 
(STX1A encoded protein), catenin beta 1 (CTNNB1 encoded protein) and adaptor-
related protein complex 2 (AP2A1 encoded protein) were in the group of 60 that 
we-re tested in the Drosophila model (compared to 0 by STRING, table 1), and all 
three  were  confirmed  to  modify  phenotype,  validating  that  these  PPIs  are 
functional. 
The interaction between huntingtin and syntaxin 1A has been proposed previously 
(PMID: 16162412 ) but the direct interaction between catenin beta 1 and huntingtin 
was a novel prediction in the Kaltenbach paper that was also high in our list (rank  
16)  of  potential  interacting  proteins.  This  protein  shows  no  co-occurrences  in 
MEDLINE abstracts with the huntingtin protein (also not in STRING), but it has 
been reported in some papers that beta catenin overexpression protects cells from 
poly(Q) toxicity (PMID: 12097329). AP2A1 is part of the adaptor protein 2 (AP-2) 
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complex  found  in  clathrin  coated  vesicles  .  Although  AP2A1  has  never  been 
associated  with  HD  previously,  the  AP-2  complex  is  involved  in  the  clathrin 
mediated endocytosis of GABA(A) receptors (PMID: 17690529) and GABA(A) 
receptors are present on the class of striatal GABAergic neurons that are affected in 
Huntington’s disease[27].
There are 5 proteins out of the top 10 predicted interacting partners for huntingtin 
that are new potential huntingtin-interacting proteins:

(1) Platelet-activating  factor  acetylhydrolase  1b,  regulatory  subunit  1 
(PAFAH1B1 encoded protein) inactivates Platelet-Activating Factor (PAF) 
by  removing  the  acetyl  group  at  the  sn-2  position.  It  is  required  for 
induction  of  nuclear  movement  and  control  of  microtubule 
organization[28].  PAFAH1B1 is also known as  LIS1 [29]and deletions in 
LIS1 cause Lissencephaly, a disorder of neuronal migration[30]. A possible 
link  to  HD  might  lie  in  the  fact  that  PAF induces  Clathrin-Mediated 
Endocytosis [31], which is a common pathway used by G protein-linked 
receptors  to  transduce  extracellular  signals.  Both  huntingtin  interacting 
protein  1  (HIP1 encoded  protein)  and  huntingtin  interacting  protein  1 
related (HIP1R encoded protein) have been implicated in this process (see 
below).

(2) Adenomatous polyposis coli protein (Protein APC or FPC, ranks position 
7 in table 3) is a tumor suppressor protein that acts as an antagonist of the  
Wnt signaling pathway and has a role in regulating microtubules and actin 
in  polarized  epithelia  [32].  The  APC gene  is  highly  expressed  in  the 
embryonic and postnatal developing brain. In addition, APC is present in 
astrocytes, although its role in astrocytes is, as yet, unknown [33].

(3) Metabotropic  glutamate  receptor  3 (GRM3 encoded  protein)  is  an 
interesting protein because it has been implicated in Huntington’s Disease 
(contributes 22.21% to the concept profile score, PMID: 9600992) while 
there was no evidence found in STRING (http://string.embl.de/). There is 
convincing evidence showing that glutamate-mediated excitotoxicity plays 
a role in HD pathology [34,  35] but  there have been no reports to our 
knowledge directly implicating mGluR3 in HD.

(4) Vesicle-associated  membrane  protein-associated  protein  B (VAPB 
encoded protein) is a protein that plays an important role in protein folding 
[36]. To function efficiently, the endoplasmic reticulum relies on a system 
that  detects  a  buildup  of  unfolded  or  misfolded  proteins.  The  cell's 
response to prevent or correct this buildup is called the unfolded protein 
response. VAPB is implicated in the autosomal dominant adult-onset form 
of Amyotrophic  Lateral  Sclerosis 8  (ALS8 encoded protein)  and in this 
disease  cytosolic  aggregates  were  present  in  all  cell  types  examined, 
including mouse and human nonneuronal cells[37]. Protein aggregates can 
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impair the ability of cells to function normally and huntingtin aggregates 
are a hallmark of HD[38].

(5) The GABA(A) receptor-associated protein (GABARAP encoded protein) 
protein clusters neurotransmitter  receptors by mediating interaction with 
the  cytoskeleton[39].  Although  there  were  no  co-occurrences  for 
GABARAP  and  STRING  did  not  find  any  functional  links  between 
GABARAP and huntingtin, it is highly likely that this protein is involved 
in  HD,  since  GABA(A)  receptors  are  present  on  the  class  of  striatal 
GABAergic neurons that are affected in Huntington’s disease[27]. 

Of the top 10 predicted interacting partners for huntingtin, there are 5 proteins that 
have been identified previously:

(1) Syntaxin1A (STX1A encoded protein) was identified by Kaltenbach et al. 
and when tested in an HD fruitfly model, STX1A influenced the phenotype 
[7]. Previous studies have shown that huntingtin enhances calcium influx 
by blocking STX1A inhibition of N-type calcium channels[40, 41]. 

(2) Solute carrier family 1 (glial high affinity glutamate transporter) member 
2  (SLC1A2 encoded  protein)  was  also  identified  by  Kaltenbach  et  al. 
SLC1A2 is also called glutamate transporter 1 (GLT1). It is a membrane-
bound  protein  that  is  the  principal  transporter  clearing  the  excitatory 
neurotransmitter glutamate from the extracellular space at synapses in the 
central nervous system and was found to be increased in HD[42, 43]. 

(3) Microtubule-associated protein tau (MAPT encoded protein) promotes 
microtubule assembly and stability, might be involved in the establishment 
and  maintenance  of  neuronal  polarity.  Tau  is  involved  in  several 
neurodegenerative  disorders  such  as  Alzheimer's  disease  (AD)  and 
although AD and HD are both protein aggregation disorders, Tau has never 
been  documented  to  interact  with  mutant  huntingtin.  However,  it  was 
recently suggested that  the  level  of  tau phosphorylation could limit  the 
severity and/or progression of HD[44]. The tau protein in most cases could 
not be detected by our text-mining algorithm or by STRING resulting in no 
co-occurring  hits  with  huntingtin.  However  this  problem  is  solved  by 
intermediate concepts that  relate huntingtin with tau (Neurodegenerative 
Disorders, and Nerve Degeneration). 

(4) Dopamine receptor D2 (DRD2 encoded protein) is a G-protein-coupled 
receptor that inhibits adenylyl cyclase activity. In HD there is a major loss 
of  DRD2 binding  in  the  caudate  nucleus,  putamen and globus pallidus 
externus[45]. 

(5) Huntingtin interacting protein 1 related (HIP1R encoded protein) has a 
role  in  clathrin-mediated endocytosis  (CME)[46].  It  binds to  huntingtin 
interacting protein 1 (HIP1 encoded protein) and links actin to clathrin[47]. 
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Figure 2a. AuC results for the huntingtin case study.
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Figure 2b. MAP results for the huntingtin case study.

Showcase 3: polycystic kidney disease 1 (PKD1, MIM: 601313). Filtering by 
feature selection and solving homonyms 
In specific cases, certain databases may add noise instead of valuable information.  
We evaluated a ranked list for the PKD1 gene that causes polycystic kidney disease 
1.  The  extracellular  part  of  PKD1 encoded  protein  contains  many  domains 
important  for  physical  interactions  with  other  proteins.  The  protein  domain 
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information  therefore  dominated  the  prediction  of  PKD’s  interactions  partners. 
This effect was undesired and therefore the InterPro/DOMINE score was left out.
The prediction of interaction partners for PKD1 by literature analysis alone was 
also not ideal. Although the literature remains the biggest information source, it is 
also the information source which requires the most preprocessing. Text-mining on 
its  own  is  a  challenging  field  of  research  with  involves  many  steps  such  as 
extracting  public  articles,  defining  an  ontology  containing  concepts  and  their 
synonyms, and disambiguating words in text using concept recognition software. 
Disambiguation is the process of mapping a word in text to a unique concept and 
labels it with a unique identifier. A term is considered to be ambiguous if it has  
multiple meanings. We investigated this homonym problem for PKD1. The first  
homonym problem is that the name ‘polycystic kidney disease 1’ itself can refer to 
the gene or the disease. When only concept profiles were used the top of most 
associated  proteins  with  PKD1  showed  six  proteins  that  ranked  high  due  to 
homonyms.  Two  proteins,  protein  kinase  D1  (PRKD1 encoded  protein)  and 
ectonucleotide pyrophosphatase/  phosphodiesterase  1 (ENPP1 encoded protein), 
were caused by direct homonym problems. In literature, PRKD1 is also referred to 
as PKD1. ENPP1 has a synonym PC1 that is also used as a synonym for PKD1. 
The other four proteins had synonym problems in the overlapping concepts of their 
concept profiles. These can be seen as indirect homonym problems. In literature 
protein kinase  D2(PRKD2 encoded protein)  is  referred  to  as  polycystic  kidney 
disease  2  (PKD2 encoded protein)  which  has  a  close  relationship  with  PKD1. 
Protein kinase D3 (PRKD3 encoded protein) is referred to as protein kinase C and 
has  many  relationships  with  PRKD1  in  literature.  The  same  holds  for  protein 
kinase  C  substrate  80K-H (PRKCSH encoded  protein)  which  is  referred  to  as 
protein kinase C substrate. Phosphoglycolate phosphatase (PGP encoded protein) 
is  referred to as PRKD1 which on itself  causes homonym problems.  When the 
concept profiles are used in combination with expression data these homonyms can 
be suppressed. 
For  PKD1  we  generated  a  ranked  list  while  omitting  the  InterPro  domain 
information from the prediction. We calculated the match score based on Fisher’s  
method and checked if mentioned homonyms were suppressed since these proteins 
are not likely to be co-expressed with PKD1. The last column in table 2 shows that 
mentioned proteins with homonym problems indeed had much lower rankings than 
in the prediction based on literature only. Further manual curation by an expert 
showed  that  Fisher’s  method  gives  better  associations  with  PKD1  in  the  top 
predictions  when  concept  profiles  are  used  in  combination  with  microarray 
expression data and eliminating the InterPro domain information. In practice an 
expert should be able to choose which databases are being combined for the best 
prediction. 
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Table  1.  Ranks of  the homonyms associated with PKD1.  The  first  rank is 
based on concept profiles,  showing that  the homonyms rank high.  Fisher's 
methods suppressed these homonyms and the rank becomes lower
Gene 
symbol

Gene name Rank Concept 
profiles

Rank Fisher’s 
method

PRKD1 Serine/threonine-protein kinase D1 2 46

PRKD2 Serine/threonine-protein kinase D2 4 164

PRKD3 Serine/threonine-protein kinase D3 7 328

ENPP1 Ectonucleotide 
pyrophosphatase/phosphodiesterase 
family member 1

15 258

PRKCSH Glucosidase 2 subunit beta 30 283

PGP Phosphoglycolate phosphatase 36 1983

Concluding remarks
In this  study  we have  shown that  combining  information  from the  biomedical 
literature  and  from  different  databases  using  Fisher’s  method  significantly 
improves  the  prediction  of  novel  protein  interactions  compared  to  previously 
applied  methods.  We evaluated  three case  studies  on  dysferlin,  huntingtin,  and 
polycystin-1  and  predicted  proteins  previously  not  recorded  in  any  protein 
interaction  database.  For  huntingtin,  besides  the  literature,  other  databases  like 
Gene Atlas and The Gene Ontology contributed to the matchscore. An evaluation 
of the top 10 predicted huntingtin interacting proteins showed 5 proteins known to 
be associated with huntingtin. The other 5 were novel ones that have been curated 
and are potential interaction partners with huntingtin. From these top 10 proteins 5 
could not be detected with a MEDLINE query, indicating that implicit knowledge 
extraction is possible. 
For dysferlin we showed that the literature remains the biggest information source 
and  that  the  other  databases  to  a  lesser  extent  contribute  to  the  match  score. 
Although for dysferlin the contribution of other databases to the literature alone 
seems low,  the  aid of  other  databases  has  been shown to be useful  in  solving 
homonym problems. This was shown in the PKD1 study. PKD1 showed 6 proteins 
that  were  caused  by  homonyms  and  these  were  suppressed  when  the  concept 
profiles were combined with other databases. Thus the combination of literature 
and non-textual information makes our algorithm more robust. 
Fisher’s Method is a simple and robust method to combine several databases. In 
addition its interpretation is very intuitive. For every database you first define a p-
value for a sample that needs to be evaluated. Fisher’s methods then tells if the 
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combination of individual p-values (taken from different databases) for that sample 
is significant. 
We made a list available of Fisher match scores between every two proteins in our 
ontology. The list can be downloaded from www.biosemantics.org/ppi-prediction. 
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Table 2. Prediction in the top 50
Hungtintin Fisher 

fixed dof
Fisher 
variable dof

Weighted 
Fisher AuC

Weighted 
Fisher MAP

STRING

Y2H 2 3 2 0 0
IP 3 3 3 1 0
Drosophila 3 3 3 2 0
Dysferlin
IP 9 9 9 6 6
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Table 3. Top 50 for huntingtin predicted interacting partners
rank name Y2H MS Drosophila PPI cooccurrences
1 HTT x x 1131
2 STX1A x 2
3 SLC1A2 x 2
4 PAFAH1B1 0
5 GABARAP 0
6 MAPT 0
7 FPC 0
8 DRD2 9
9 GRM3 0
10 VAPB 0
11 HIP1R x 4
12 HIP1 x x 23
13 KIF5B 0
14 MAPRE1 0
15 GSK3B 2
16 CTNNB1 x x 0
17 ATN1 19
18 STX6 0
19 CLASP1 x 0
20 BID 0
21 TMED10 0
22 KIF1B 0
23 CDK5 5
24 NTRK2 0
25 HIPK2 0
26 MAP1S 0
27 AP2A1 x 0
28 CLASP2 0
29 RAE1 0
30 BBS4 0
31 GIPC1 0
32 PACSIN1 x x x 3
33 AKT1 x 2
34 KLC1 0
35 SYT1 x 0
36 NRCAM 0
37 ATXN1 4
38 BCL2L11 2
39 RAB3A 1
40 CDK5R1 1
41 ULK1 0
42 HIF1A 0
43 DIAPH1 0
44 SNCA 18
45 SOD1 5
46 YKT6 0
47 BDNF 38
48 AP2A2 x x x 4
49 TPPP 0
50 DYNC1I1 0
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Supplementary information

S1 Databases for information extraction
Table 1 shows the databases that are used in our analysis and the date of download. 

Table 1. Databases that are combined and their date of download.
Database Date of download
Concept profiles May 2009
Gene ontology July 23, 2009
Gene Atlas April, 2004
Coxpresdb April 17, 2008
TiGER February 19, 2009
InterPro July 22, 2009
DOMINE April 16, 2007
STRING version 8.1 October 18, 2009

S2 Curated Protein-Protein interaction databases

For training,  testing and optimizing our  system we constructed a set  of  known 
human protein-protein interactions (PPIs) taken from public, curated databases. We 
called this set of known PPIs the positive set. The databases used were Biogrid[1], 
DIP[2],  HPRD[3],  Mint[4],  Reactome[5],  and  Uniprot/Swiss-Prot[6].  Table  2 
shows the date of download for these databases. If a PPI was mentioned in one of 
these databases, we assumed it to be a true PPI. There is a level of redundancy 
between these databases meaning that some protein-protein interaction pairs occur 
in multiple databases, which is a good indication that it is a true PPI. These protein 
pairs  count  only once.  We restricted our  analysis  to  human proteins  only.  The 
resulting positive set contains 83,930 PPIs. 
A negative set was constructed as described in the materials and method section of 
the paper. The negative set is the same as the null distribution used for the Fisher 
Method and has a size of 100.000 samples.   

Table  2.  Protein  databases  used  for  the  positive  set  and  their  date  of 
download.
Protein database Data of download
BioGrid July 1, 2009
DIP October 15, 2008
HPRD July 6, 2009
IntAct July 11, 2009
MINT July 23, 2009
Reactome June 11, 2009
UniProt June 17, 2009
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S3 Cross validation
All  performance  measures  (AuC and  MAP)  were  calculated  in  a  5-fold  cross 
validation loop. First  the data consisting of positive and negative instances (e.g 
PPIs and random protein pairs) were splitted in five equally sized parts. Then at 
each  iteration  four  parts  were  used  for  straining  classifiers  and  combination 
methods and the remaining fifth part was used for testing. This was repeated until 
each part was used once for testing. 

S4: Coverage and prediction accuracy of individual databases
In the analyses that follow we first defined a positive set that consists of protein-
protein interactions recorded in six curated databases (see supplement S2), and a 
negative set of probable non-interacting random protein pairs. We evaluated how 
well  each database covers  samples from the positive  and negative set.  Table  3 
shows the coverage for each individual database, the combination of databases and 
STRING. A protein pair is covered if at least one on the individual databases has a  
match  score  for  that  protein  pair.  Our  combined  databases  cover  almost  the 
complete positive set. The coverage is similar to STRING.
To evaluate prediction performance for PPIs, we used the AuC and MAP criteria. 
A third measure is used to reflect the predictions made in the top of a ranked list. It  
counts the number of predicted true positives when the number of predicted false 
positives is fixed to 50. We refer to this measure as ROC50.
For each database the AuC and MAP were calculated and the results are given in 
table 4. The AuC and MAP were calculated in a 5-fold cross validation loop (see 
S3). Figure 1 shows the ROC50. Here it is shown that the concept profiles (cp) has 
the highest number of true positives (over 6,000). The STRING curated database 
score (dscore) also gives a performance of over 6,000 predicted true positives. This 
result is expected since this score is based on curated protein databases, some of  
which were also used to create our evaluation set. The Gene Ontology gives an 
overall best performance with a high AuC and high coverage. 
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Table  3.  Coverage  for  each  database  and  the  databases  combined.   As  a 
benchmark the coverage of STRING is given.
Database Positive set (%) Negative set (%)
Concept profiles 84 24
Gene Ontology biological process 94 34
Gene Ontology molecular function 95 39
Gene Ontology cellular component 95 43
Gene Ontology relationships 99 52
COXPRESdb 95 51
Gene Atlas 69 12
TiGER 72 25
InterPro/DOMINE 95 49
Combined system 99.97 67
All STRING databases 99.13 62

Table  4.  AuC  and  MAP  for  the  individual  databases  for  a  5-fold  cross 
validation. The standard errors are not shown because they were negligible 
small. The Gene Ontology is separated into the three main categories and the 
relationships. 
Database AuC MAP
Concept profiles 0.88 0.90
Gene Ontology biological process 0.91 0.90
Gene Ontology molecular function 0.88 0.85
Gene Ontology cellular component 0.89 0.88
Gene Ontology relationships 0.91 0.88
COXPRESdb 0.82 0.79
Gene atlas 0.80 0.81
TiGER 0.78 0.75
InterPro/DOMINE 0.80 0.77
STRING DATABASES
Neighborhood in the genome 0.69 0.59
Gene fusion 0.69 0.58
Cooccurrences across genomes 0.69 0.59
Coexpression 0.69 0.59
Experimental/biochemical data 0.81 0.82
Association in curated databases 0.82 0.82
Co-mentioned in PubMed abstracts 0.83 0.84
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Figure 1. Number of true positives that are retrieved at 50 false positives for 
each  individual  database.  The  concept  profiles  (cp)  retrieves  the  highest 
amount  of  true  positives,  reflecting  that  the  literature  is  still  the  most 
important  source of  information.  The assocation in curated database score 
(dscore) for STRING shows the best result as expected. The errorbars are the 
standard deviation around the mean calculated over 5-fold cross validation.

S5 Different combining techniques

Before we came to our final approach based on Fisher’s Method we evaluated four 
other combining methods described below. 

(1) Combining rules by Kuncheva
The first  combiner  is  the  one defined by Kuncheva [7].  In  total  there  are  five 
combining rules namely the product, sum, maximum, minimum, and majority vote. 
The combiners defined by Kuncheva are applied to the output of each classifier  
trained on a single database; hence this step requires training data. In our case we 
used a simple logistic regression classifier [8]. Each raw match score defined for a 
database is converted to a probability value between 0 and 1. The concept profiles 
score was first log transformed to produce more normal distributed classes. Since 
we evaluate a two class problem (the class of protein-protein interactions (PPI) and 
the class of non interacting protein pairs (NIPP)) the probability of the second class 
can  be  calculated  once  the  probability  of  the  first  one  is  known.  If  p1 is  the 
probability  for  a  sample  in  class  one  then  p2=1-p1 is  the  probability  for  that 
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sample  in  class  two.  On  the  output  of  each  classifier  the  combining  rule  was 
applied. The product rule for a sample x is defined as follows 

μ j=∏
i=1

L

p i , j  x 

With  µj the  combined  probability  for  class  j and  pi,j(x) the  probability  of  x 
belonging to class j according to database i, and L the total number of databases to 
combine (our case L=6). After the rule is applied, the combined probabilities can 
be normalized to add up to 1. In the same way the sum, maximum and minimum 
rule can be defined. Missing values are completely ignored. If one database has a 
missing  value  the  rule  is  applied  to  the  remaining  databases.  If  a  sample  has 
missing values for all the databases the probabilities are set to 0 and 1 for class one  
(PPIs) and two respectively. 
The  advantage  is  that  these  combiners  do  not  require  training  data.  The 
disadvantage is that the classifiers trained on each database in the first step make 
assumptions  about  your  data,  for  instance  that  the  classes  follow  a  normal 
distribution. This could result in false predictions if the assumptions are not true.

(2) Rank combiners
Calculating a rank combiner is similar to the Kuncheva combiners. The same rules 
such as, product and sum, can be applied to ranks. For instance the rank product is 
a non-parametric statistic that is often used for gene expression profiling [9]. Here 
the formula for the rank product is given. 

RP  x =∏
i=1

L

r x , i
1

L

With rx,i the rank obtained for database i for a sample x. In the same way the other 
combiners based on ranks can be derived.  L are the number of databases with no 
missing value for that sample. The rank for samples where all values are missing is 
set  to positive infinite. The advantage of this  combiner  is  that  it  also does  not 
require any training data. Furthermore, it does not put any constraints on the data. 
The disadvantage is that it is highly sensitive to the presence of poorly performing 
databases.

(3) Maximum AuC linear classifier (MALC)
Marrocco et. al. [10] describes a method where a linear classifier is trained such 
that the resulting trained classifier maximizes the AuC.  Mainstream classifiers are 
designed  to  minimize  the  classification  error,  e.g. taken  into  account  the  false 
negatives,  whereas  the  MALC is  designed to  minimize the false  positives,  e.g. 
maximizing the AuC. We implemented a different version of their algorithm which 
is  both  fast  and  robust.  The  features  (match  scores  defined  for  databases)  are 
combined  in  an  iterative  manner  and  at  each  iteration  step  two  features  are 
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combined and result in a new feature. Step one is to normalize the date between 0 
and 1. The inner product score between concept profiles were first log transformed 
before normalization. Step two is to calculate a Pearson correlation matrix (all pair  
wise  correlations  between any two features).  The  two features  with  the  lowest  
correlation are combined first.  Step three is to apply the linear classifier to the 
features h and k which is given as
x lc=αxh1−α x k

where xlc is the weighted sum of the two features, and alpha the weight parameter 
that needs to be optimized. Step four is to vary the alpha level between 0 and 1 in 
steps of 0.01 (or any other step size) and calculate the AuC for each alpha. Then  
choose the alpha level that corresponds with the highest AuC value. Step five is to 
replace the two features with xlc features and repeat steps two till  five until  all 
features are combined to a single feature.

4) Fisher’s method
The Fisher method was described in the article. The advantage of this method is 
that it is robust, simple, and no information is needed on the positive set (PPIs) 
since it  only uses the null  distribution (negative set of probable non interacting 
protein pairs).

S6 Choosing the best combining method
The four different combining methods (and each with a number of variations) are 
compared which each other using the AuC and MAP as performance criteria in a 5-
fold  cross  validation  loop.  The  results  for  all  combiners  are  given  in  table  3. 
Fisher’s method and the MALC show the best results in both MAP and AuC. To 
further evaluate the accuracy of these combiners we looked at the ROC50 results. 
That is the number of true positives predicted when the number of false positives 
was fixed to 50. The results are given in figure 2. Here the Fisher method shows 
slightly better result than the MALC. Figure 3 shows the ROC curve for the Fisher 
method with fixed degrees of freedom. The histogram for the positive and negative 
set is given in figure 4. 
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Table 5. AuC and MAP for the different combining techniques. The standard 
errors are not shown. 
Kuncheva combining rule AuC MAP
Product 0.94 0.92
Sum 0.91 0.86
Maximum 0.84 0.73
Minimum 0.90 0.86
Majority vote 0.90 0.83
Rank combiners
Mean 0.94 0.83
Max 0.83 0.46
Min 0.93 0.93
Product 0.95 0.90
Fisher’s method
Fixed number of dof (=9) 0.97 0.97
Fisher with variable dof 0.97 0.96
Weighted Fisher with AuC 0.97 0.97
Weighted Fisher with MAP 0.97 0.97
Fisher +4 features from String 0.97 0.97
Maximize AuC
MALC 0.97 0.96
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Figure  2.  Number  of  true  positives  at  50  false  positives  for  the  different 
combination techniques
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Figure 3. ROC plot of the Fisher method combiner.
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Figure 4. Histogram plot of the positive PPI set and the negative random set 
for the Fisher combiner.

Table 6. Top 50 of most associated proteins with Dysferlin. 
rank name Co-occurrences PPI
1 DYSF 246
2 MYOF 13
3 TGFB1 0
4 RYR2 0
5 TTN 2
6 MYH7 1
7 KCNQ1 0
8 MYL3 0
9 TNNC2 0
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10 SNTA1 2
11 TCAP 13
12 ADRBK1 0
13 SGCA 18
14 TPM1 0
15 TNNC1 0
16 MYH4 0
17 IL1B 0
18 MYOT 10
19 C5AR1 0
20 OTOF 6
21 SSPN 1
22 FKBP1B 0
23 MYH2 0
24 Cf5 0
25 ACTN2 1
26 UTRN 3
27 TNNT1 0
28 TNNT3 0
29 CSF3R 0
30 CACNA1H 0
31 HMOX1 0
32 MYBPC3 0
33 DES 0
34 GAA 0
35 TPP1 0
36 SNTB1 0
37 KCNE1 0
38 ACTA1 0
39 HCK 0
40 CAV3 35 X
41 CAPN3 44 X
42 FPR1 0
43 RYR1 1
44 KCNMA1 0
45 MYLK2 0
46 MYH6 0
47 TNNI3 0
48 NCF2 0
49 NOS3 0
50 CAV1 0
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