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Abstract
We  have  developed  a  method  that  predicts  Protein-Protein  Interactions  (PPIs) 
based on the similarity of the context in which proteins appear in literature. This 
method outperforms previously developed PPI prediction algorithms that rely on 
the conjunction of two protein names in MEDLINE abstracts. We show significant 
increases in coverage (76% versus 32%) and sensitivity (66% versus 41% at  a  
specificity of 95%) for the prediction of PPIs currently archived in 6 PPI databases.  
A retrospective analysis shows that PPIs can efficiently be predicted before they 
enter  PPI  databases  and  before  their  interaction  is  explicitly  described  in  the 
literature.  The  practical  value  of  the  method  for  discovery  of  novel  PPIs  is 
illustrated by the experimental  confirmation of  the  inferred physical  interaction 
between CAPN3 and PARVB, which was based on frequent co-occurrence of both 
proteins with concepts like Z-disc, dysferlin, and alpha-actinin. The relationships 
between  proteins  predicted  by  our  method  are  broader  than  PPIs,  and  include 
proteins in the same complex or pathway. Dependent on the type of relationships 
deemed useful, the precision of our method can be as high as 90%. The full set of 
predicted  interactions  is  available  in  a  downloadable  matrix  and  through  the 
webtool Nermal, which lists the most likely interaction partners for a given protein. 
Our framework can be used for prioritizing potential interaction partners, hitherto 
undiscovered, for follow-up studies and to aid the generation of accurate protein 
interaction maps.

Introduction
Protein-protein  interactions  (PPIs),  which  we  define  as  proteins  that  physically 
interact,  are  crucial  in  most  complex  biological  processes.  Experimental  high-
throughput methods such as yeast two-hybrid screens have been used to make large 
inventories of PPIs and to create protein interaction maps[1-6]. However, it is well 
known that  these methods merely show physical  interaction under experimental 
condition  and  not  necessarily  indicate  a  common  involvement  in  a  biological 
process. Computational methods for the prediction of PPIs could theoretically aid 
the discovery of candidate biological interaction partners. There are many different  
sources  of  information that  can be used in  PPI  prediction[7],  including protein 
structures, phylogenetic distribution, interactions between homologous proteins in 
other organisms, genomic neighborhood, and gene fusions. In this article, we will 
focus on one source of information, which is arguably the most comprehensive, but 
also  the  least  structured:  biomedical  literature  itself.  Until  now  text  mining 
techniques are mainly used to rediscover PPIs explicitly described in literature. 
Often, the now 18 million freely available abstract records of MEDLINE are used 
for this purpose. PPIs extracted this way have been shown to improve the accuracy 
of  predicted  biological  networks[8,  9].  Structured  information  on  explicit  PPIs 
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extracted from MEDLINE  and other sources is freely available in the STRING 
database[10], or can be found by querying the iHOP website[11].

However, text mining can go one step further; by combining known associations, 
previously  unknown PPIs  can  be  inferred.  Because  most  text  mining  research, 
including  this  study,  limits  itself  to  MEDLINE  abstracts,  these  ‘previously 
unknown’ interactions also include interactions that are effectively known, but not 
explicit in MEDLINE as they are only mentioned in a full text article. Swanson[12, 
13] et al. were the first to demonstrate that text mining can lead to the discovery of 
new knowledge (e.g. the treatment of Raynaud’s disease by fish oil). Other studies  
in  the  biomedical  domain  verified  the  importance  of  implicit  information  for 
knowledge  discovery[14-16].  Whereas  Swanson  used  a  word-based  approach, 
linking entities by intermediate words that appeared frequently in the contexts of 
both  entities,  in  our  work  we  use  a  concept-based  approach:  different  terms 
denoting  the  same  concept  (i.e. synonyms)  are  mapped  to  a  single  concept 
identifier,  and  ambiguous  terms,  e.g.,  identical  terms  used  to  indicate  different 
concepts (i.e. homonyms) are resolved by a disambiguation algorithm. Such an 
approach is essential given the wide diversity and many ambiguities in gene and 
protein nomenclature[17, 18]. 
In order to predict PPIs, we summarize the typical context in which each protein 
appears into  concept profiles[15, 16, 19].  We hypothesize that a high similarity 
between the concept profiles of two proteins is indicative for an actual biological  
interaction. For example, if two proteins are consistently mentioned together with a 
particular disease, the probability that these proteins interact is  higher than the a  
priori  probability  of  two  randomly  selected  proteins[20,  21].  This  probability 
should  increase  further  when  they  are  also  frequently  co-mentioned  with  a 
particular pathway, a sub-cellular localization, or other proteins. 
In this article, we first demonstrate the added value of a concept-based approach 
over a traditional term-based approach in detecting explicitly described relations. 
We proceed to show the added value of the concept profile-based approach over 
classical direct relation extraction, including the text-mining techniques used in the 
STRING database. Subsequently, we show the predictive power of our method by 
doing  a  retrospective  study;  we  demonstrate  that  we  can  employ the  literature 
available in 2005 to predict 52% of the PPIs newly described in Swiss-Prot in 2007 
at a specificity level of 95%. We show that in addition, some of the PPIs that we 
predicted  but  are  not  yet  recorded  in  any  database  represent  indirect  protein 
interactions and have biological relevance. Finally, we confirm one of the many 
predicted PPIs in three wet lab experiments, supporting our claim that the concept  
profiling method is capable of previously unknown PPI prediction from current 
literature.  
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These predictions  will  be  useful  for  (i)  the  ranking of  potential  PPIs  for  more 
specific experimental analysis, and (ii) complementing other types of data such as 
co-expression and yeast two-hybrid data when using an integrative systems biology 
approach.

Results
Improved PPI detection using concept profiles
We compared the performance of different PPI prediction approaches in detecting 
known human PPIs in MEDLINE. The online human-curated databases Biogrid, 
DIP, HPRD, MINT, Reactome, and UniProt/Swiss-Prot were used to establish a set 
of  61,807 known human PPIs.  A set  of  probable  Non-Interacting Protein Pairs 
(NIPPs) was generated from all pairs of proteins that do not occur in the above 
databases nor in the IntAct[22] database, which includes, in addition to all PPIs 
recorded  in  UniProt/Swiss-Prot,  many  non-curated  PPIs  from  high-throughput 
experiments. We compare four approaches: 

• Word-based  direct  relation.  This  approach uses  direct  PubMed queries 
(words)  to  detect  if  proteins  co-occur  in  the  same abstract.  This  is  the 
simplest  approach and represents  how biologists  might  use  PubMed to 
search for information.

• Concept-based  direct  relation.  This  approach  uses  concept-recognition 
software  to  find  PPIs,  taking  synonyms  into  account,  and  resolving 
homonyms. Here two concepts (in our case two proteins) are detected if 
they co-occur in the same abstract. 

• STRING[10]. The STRING database contains a text mining score which is 
based on direct co-occurrences in literature. 

• Concept  profile-based  relation.  This  approach  uses  the  similarity  in 
literature  context.  Here  two  proteins  (concepts)  can  also  be  indirectly 
related via the concepts in their profiles. More detail on concept profiles  
and their construction can be found in the Methods section.

The word-based and concept-based direct relation methods could find at least one 
abstract containing both proteins for respectively 33% and 32% of the pairs in the 
PPI set. A text mining score from STRING could be obtained for 30% of the PPIs, 
in line with the co-occurrence based approach used to create STRING. Thus, a  
majority  of  the  known PPIs  cannot  be  found explicitly  in  MEDLINE.  For  the 
concept profile-based approach, we could create concept profiles and calculate a 
similarity score for 76% of the PPI set.
Similar  to STRING, the other three approaches can also be used to calculate a 
continuous score that indicates the strength of the relation between two proteins.  
Figure S1 displays the distribution of the similarity scores of the concept profile-
based method for the PPI and NIPP sets. This figure shows that the scores for the 
PPI set are higher although there is also overlap between the two distributions. The 
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continuous scores can be used to rank protein pairs. After ranking the pairs in the 
PPI and in the NIPP set, we calculated the sensitivity at a specificity of 99% and 
95%, and the Area under the Curve (AuC), which is often used in the evaluation of 
classifiers,  and  expresses  the  area  under  the  Receiver  Operator  Characteristics 
(ROC) curve (see supplement S5). An AuC of 0.5 indicates a random classifier; an 
AuC of 1 indicates a perfect classifier. For this analysis, we limited ourselves to  
those pairs in the PPI and NIPP set for which all methods could make a prediction.  
We analyzed 44,920 pairs in the PPI set, and 58,388,409 pairs in the NIPP set.
The results show that,  using concept profiles, we can detect 43% of the known 
PPIs, with a specificity of 99%, and 66% of all known PPIs with a specificity of  
only 95%. In contrast, the direct relations methods and STRING show much lower 
scores (Table S1).

Table  1.  Performance  of  different  PPI  prediction approaches  on detecting 
known PPIs in MEDLINE.  CDR stands for Concept-based Direct  Relation 
method.

Word-
based CDR Concept profiles

STRING

Sensitivity at spec = 99% 28% 37% 43% 39%
Sensitivity at spec = 95% 33% 41% 66% 41%
Area under Curve 0.62 0.69 0.90 0.69
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Figure  1.  Histogram of the distributions of similarity scores of the concept 
profile-based  method  for  the  PPI  and  NIPP  sets.  A  log  transformation  is 
applied to the similarity scores for better visualization.

Proteins connected via one intermediate protein
The results reported in the previous section indicate that not all proteins with high 
similarity  scores  are  known  to  interact  according  to  the  combined  protein 
databases.  One  possible  explanation  for  this  is  that  the  proteins  are  related  in 
another way,  e.g. they could be involved in the same pathway or be part of the 
same protein complex, but do not physically interact. To determine whether this 
occurs, we also tested both concept-based approaches on the detection of known 
connections via one intermediate protein. For instance, if the protein pairs A-B and 
B-C are recorded as PPIs in databases, we form the additional protein pair A-C.  In 
total we were able to create 1,028,265 of such pairs to serve as an independent test 
set.  When the  pairs  are  filtered  on  coverage  by  all  methods  the  remaining  set 
contains 790,245 pairs. At a specificity level of 99% and 95% the sensitivity level  
of the different methods was determined for those pairs. The results are given in 
Table S2 and indicate that the concept profile-based approach is indeed superior in 
predicting relationships between proteins potentially present in the same complex 
or pathway.

37



Table  2.  Performance  on  predicting  proteins  that  are  connected  via  an 
intermediate protein.

Concept-
based CDR

STRING

Sensitivity at spec = 99% 8% 9% 8%
Sensitivity at spec = 95% 13% 29% 12%
Area under Curve 0.54 0.78 0.53

Average prediction performance per protein
Most researchers will not be interested in all PPIs, but only in those interactions 
involving a (set of) protein(s) of interest. Therefore, for each protein we created a 
top 10, top 100, and top 1,000 best matching proteins according to the concept-
based direct relation, the concept profile method, and STRING. In these lists, we 
calculated the number of PPIs that are either (i) part of the PPI set, or (ii) described 
in the IntAct  database,  or  else (iii)  part  of  the pairs that  are connected through 
intermediate proteins as described in the previous section. We limited our analyses 
to  the  10,812  proteins  that  were  detected  in  at  least  five  MEDLINE abstracts 
(covered  by  the  concept  profiles  method).  The  averages  of  these  performance 
measures in terms of precision and recall are shown in Table S3. For comparison,  
the average total number of pairs per protein in each set is provided in the third 
column.  For  instance,  on  average  each  protein  is  involved in  8.73  interactions 
according to the PPI set, of which on average 6.34 are found in the top 1,000 of the 
concept profile method (precision and recall of 0.006 and 0.73 respectively) , and 
only 3.93 and 3.83 in the top 1,000 of the concept-based direct relation method and 
STRING respectively. The latter two methods show a slightly better performance 
for the  top 10.  Thus,  it  appears that  co-occurrence-based methods can detect  a 
smaller number of PPIs with a somewhat higher accuracy, but the concept profile  
method,  by including indirect  evidence,  can predict  more PPIs and is  therefore 
likely to be more valuable for actual knowledge discovery.

Table 3. Analysis of the top 10, 100, and 1,000 returned by the Concept Profile 
(CP)  method,  the  Concept-based  Direct  Relation  (CDR)  method,  and  by 
STRING. The analysis shows the precision and recall of protein pairs that are 
in the PPI set, of additional pairs

Top 10 Top 100 Top 1,000
Method Total Precision Recall Precision Recall Precision Recall

PPI
CP 8.73 0.096 0.110 0.033 0.37 0.006 0.73
CDR 8.73 0.108 0.124 0.026 0.30 0.004 0.45
STRING 8.73 0.112 0.128 0.026 0.30 0.004 0.44

IntAct
CP 1.61 0.009 0.056 0.002 0.12 0.000 0.29
CDR 1.61 0.009 0.056 0.002 0.11 0.000 0.24
STRING 1.61 0.008 0.050 0.002 0.11 0.000 0.24

Indirectly 
connected

CP 190.21 0.105 0.006 0.080 0.042 0.048 0.25
CDR 190.21 0.137 0.007 0.068 0.036 0.027 0.14
STRING 190.21 0.100 0.005 0.062 0.033 0.026 0.14
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Retrospective prediction of currently known PPIs
Protein annotation databases are struggling to stay up-to-date with the literature, 
and there is often a substantial time lag between the first publication of a finding, 
and the time the PPI is entered in a database. It could therefore be postulated that  
many of the unknown PPIs predicted today are in fact correct,  but  may not  be 
entered in a database for several years. We have performed a retrospective study to  
answer the question: how many of the PPIs that would have been predicted by the 
different methods in 2005 were confirmed in 2007? 
Both direct relation and concept profile method-based PPI prediction scores were  
created using a MEDLINE corpus with publication dates up to February 2005. We 
ranked the PPIs according to the scores, and set a cut-off value at the 95% and 99% 
specificity  levels  based  on  PPIs  present  in  Swiss-Prot  2005  (this  is  the  only 
database for which historic versions are available). We subsequently evaluated how 
many of the 3,295 PPIs that were added to Swiss-Prot between 2005 and  2007 
were above these cut-off values in 2005. These are the sensitivity values reported 
in Table S4. We also calculated the AuC based on Swiss-Prot 2007 alone. 
The prediction performance is much better for concept profiles (52% versus 38% 
for a specificity level of 95%). This indicates that the majority of currently known 
PPIs were not yet explicitly described in MEDLINE at our testing point, but would 
have been predicted at a specificity rate of 95%. We postulate that this finding is  
indicative for the assumption that based on the full current literature a meaningful 
percentage of the ‘unknowns’ that pass the prediction threshold will be actual pairs 
worth studying in more detail.  

Table  4. Results of the retrospective prediction of PPIs added to Swiss-Prot 
between 2005 and 2007. PPIs are ranked based on MEDLINE up to 2005, and 
specificity levels are based on Swiss-Prot 2005.The sensitivity is determined on 
Swiss-Prot 2007

Concept-
based

Concept 
profiles

Sensitivity at spec = 99% 27% 33%
Sensitivity at spec = 95% 38% 52%
Area under Curve 0.70 0.84

Case Studies
The next logical step was therefore to investigate whether this method can only 
predict  PPIs  that  are  ‘known’ but  not  explicit  in  the  literature  corpus  used,  or 
whether it would also be able to effectively predict unknown, but real PPIs.  We 
investigated  this  in  two  case  studies.  We  generated  predicted  interactions  for 
proteins  with  two  proteins  that  are  intensively  investigated  in  our  group:  (i) 
Dystrophin  (DMD),  a  structural  protein  causing  Duchenne  muscular  dystrophy 
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when defective,  and (ii)  Calpain 3 (CAPN3),  a protease when mutated causing 
Limb-girdle muscular dystrophy (LGMD). 

DMD
We  presented  the  list  of  predicted  interacting  proteins  with  DMD  ordered  by 
descending association scores, to two experts for evaluation. At a specificity of 
99%, there are 196 proteins predicted to interact with DMD. This list was too long 
to manually evaluate and we therefore restricted the human curation analysis to the 
99.8% specificity level (top 42 proteins, Table S5). The full list  is presented as  
Table 7 in the supplementary file. The 42 proteins include 7 of the 19 dystrophin-
interacting proteins that are known from curated databases (sensitivity of 37% at 
this  very high specificity level).  The remaining established  interaction partners 
generally rank high in the list of literature-predicted targets (13/19 in the top 196, 
p-value from Kolmogorov-Smirnov test for comparison with overall ranking: 3.4 . 

10-10). There are three proteins in the predicted set with at least indirect evidence in 
the literature for a physical interaction with DMD (CAV3, SPTB, ACTN2). One 
protein (SLMAP) may well interact given its distribution and localization but this 
needs experimental testing.  Ten proteins in the list are found in the same protein 
complex as DMD but do not interact directly as far as known. Four proteins in the  
list were found wrongly associated with DMD due to homonym problems during 
literature indexing. 
The remaining 17 proteins in the list are associated with DMD for other reasons  
(e.g. also involved in muscular dystrophy, or structural or functional homology) 
but are not likely to physically interact. If we only allow direct physical interaction 
pairs as true positives (11 proteins) the estimated precision is 26%. If predictions of 
protein pairs in a complex also are counted as true positives (21 proteins in total),  
the estimated precision would be 50%. Since also conceptually-related proteins that  
do not physically interact may be of interest to the biologist, the overall precision 
of our prediction method may be as high as 90%. 
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Table  5.  Top 42 ranked proteins  with DMD. In total  10,812 proteins were 
matched against DMD. 7 proteins as known to interact with DMD. Only 4 
proteins  are  real  false  positives  due  to  homonyms  problem  resulting  in  a 
precision over 0.9.

Rank Protein 
symbol

Swiss-Prot 
id

Log 
similarity
 score

Direct 
relations

In PPI set False positives 
(homonym)

1 UTRN P46939 -5.14 214 x

2 SGCA Q16586 -6.13 119

3 DAG1 Q14118 -6.22 139 x

4 SGCB Q16585 -6.60 54

5 SGCD Q53XA5 -6.95 46

6 FCMD O75072 -7.05 29

7 DYSF O75923 -7.19 43

8 DTNA Q9BS59 -7.31 17 x

9 DRP2 Q13474 -7.34 9

10 SSPN Q0JV68 -7.45 17

11 LAMA2 P24043 -7.46 25

12 GK1 P32189 -7.56 33 x

13 CAPN3 P20807 -7.93 28

14 CAV3 P56539 -7.95 24

15 SNTA1 Q13424 -7.97 8 x

16 EIF3S12 Q9UBQ5 -8.05 91 x

17 BEST1 O76090 -8.13 26 x

18 SPTB P11277 -8.15 15

19 FKRP Q9H9S5 -8.16 4

20 MEB 6988 -8.17 7

21 SLMAP Q14BN4 -8.20 4

22 SNTB1 Q13884 -8.20 6 x

23 NEB P20929 -8.33 16

24 SGCE O43556 -8.35 10

25 SGCG Q13326 -8.46 305

26 ACTN2 P35609 -8.49 11

27 POMT1 Q5JT03 -8.50 3

28 LOC130074 Q6NZ40 -8.50 16 x

29 CMD1K 14541 -8.50 27

30 FER1L3 Q9NZM1 -8.51 3

31 NOS1 P29475 -8.53 42

32 IKBKAP O95163 -8.63 10

33 MACF1 Q5T3B3 -8.66 9

34 AQP4 P55087 -8.67 13

35 CKM P06732 -8.70 11

36 FSHMD1A 3966 -8.74 8

37 TCAP O15273 -8.75 7
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38 DTNB O60941 -8.76 9 x

39 LOC619409 619409 -8.82 5

40 VCL P18206 -8.87 36

41 LGMD1A 6574 -8.88 3

42 SNTG1 Q9NSN8 -8.90 5 x

CAPN3
For  CAPN3,  an  evaluation  of  the  precision  is  more  difficult  since  there  is, 
compared to an intensively studied protein such as  DMD, not enough established 
knowledge about its regulatory partners and substrates. Table S6 summarizes the 
currently  known  interaction  partners  for  CAPN3:  13  interactions  have  been 
described in the literature (not necessarily in the abstracts that were used for our 
predictions, see column ‘direct relation’) and of those, six interactions have been 
entered in PPI databases. These known interaction partners generally rank high in 
the  list  of  literature-predicted  targets  (Table  S6,  p-value  from  Kolmogorov-
Smirnov  test:  5.7  . 10-5).  Interestingly,  the  concept  profiling  method  correctly 
predicted the interaction between myosin light chain 1 (MYL1) and CAPN3 on the 
basis of conceptual overlap in MEDLINE abstracts (specificity > 99%), although 
this  interaction  was  only  described  in  a  full  text  paper[23]  and  not  in  any 
MEDLINE abstract used to generate the concept profiles. 
Apart from literature based rediscovery of known interactions, we also set out to 
actually  find  new  interaction  partners  for  CAPN3.  We  selected  predicted 
interaction partners that have not been entered in PPI databases so far and that do  
not have a direct co-occurrence in MEDLINE. The top ranked conceptual match is 
with  Sarcoglycan-epsilon  (SGCE),  which  is  the  smooth  muscle  counterpart  of 
SGCA. Like for CAPN3,  mutations in SGCA  cause LGMD, but as far as we 
know, the protein is not expressed in skeletal muscle. 
The second highest ranking protein was deemed to be an interesting candidate by 
the experts: Parvalbumin B (PARVB). The concept profiling method yielded a high 
association score because both proteins are described to have a physical interaction 
with dysferlin (DYSF)[24, 25], and with α-actinin (ACTN2)[26, 27], and they are 
both  located  at  the  Z-disc[28,  29].  For  this  predicted  protein  pair,  we 
experimentally demonstrated a physical interaction, using three different set-ups. 
First,  it  was  shown  that  immobilized  GST-fused  PARVB  could  pull  down 
recombinant  T7-CAPN3  from  bacterial  lysates.  Second,  immobilized  GST-
PARVB could pull  down endogenous CAPN3 from IM2 mouse myoblasts,  and 
vice versa (Figure S2). 
CAPN3 is hypothesized to act as a cytoskeleton remodeler and has been shown to 
interact with other focal adhesion proteins like Talin and Vinexin[30] (see Table 
S6). Ectopic CAPN3 over-expression results in cell rounding and cleavage and loss 
of co-expressed Talin and Vinexin[30]. This suggests that CAPN3 is a modulator 
of focal adhesions. Like CAPN3, PARVB is predominantly expressed in skeletal 
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muscle, where it plays a role in cell spreading and localizes to focal adhesions[26] 
(for a review, see [31]). The predicted  interaction is coherent with this hypothesis,  
and substantiates the evidence for a role for CAPN3 outside the sarcomere. 
This showcase is  just  one example of  a correct  and meaningful  PPI  prediction 
using concept profiles. This exemplary case study can not be seen proof that many 
of the other high ranking predictions will  also be true physical and biologically 
relevant interactions. However none of the other consulted applications (STRING, 
iHOP) predicted this pair of interacting proteins. As the predictions using concept 
profiling are based on conceptual relatedness rather than an explicit co-occurrence 
in MEDLINE, this case study is  indicative of the power of concept profiles to 
discover  new,  implicitly  related  pairs  of  interacting  proteins.  The  statistics 
presented  in  this  paper  support  the  conclusion  that  predicted  PPIs  using  our 
method, especially the subset that remains after expert analysis of the top ranking 
list  are likely to be very significantly enriched for proteins that  are worthwhile  
studying in wet lab experiments.

Table  6.  List  of  proteins known to interact with Calpain-3.  In total  10,812 
proteins known to have a concept profile are matched against Calpain-3.
Name Symbol In PPI set In literature

(full text)
Direct 
relation
(abstract)

Rank  in 
literature-
based 
prediction

Significant 
at 
specificity 
of 95 %

Dysferlin DYSF x x x 2 x
Titin TTN x x x 4 x
Filamin C FLNC x x x 27 x
Alpha-actinin ACTN2 x x 43 x
Calpastatin CAST x x 55 x
IkappaBalpha NFKBIA x x x 126 x
Myosin  light 
chain 1

MYL1 x 398 x

Alpha-spectrin SPTAN1 x x 426 x
Filamin A FLNA x 853
Ezrin VIL2 x 2739
Vinexin SORBS3 x 3301
Talin TLN1 x 4725
AHNAK AHNAK x No (*) 7371
YWHAQ YWHAQ x 7617

(*) paper describing this interaction in the abstract appeared in June 2008 and was  
not in the literature corpus used for the prediction
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Figure  2. CAPN3 and PARVB can directly interact. A: Immobilized GST-fused PARVB can 
pull down recombinant CAPN3 from a bacterial T7-tagged CAPN3 lysate (Lane 2 vs 1), where 
unfused GST cannot (Lane 4 vs  3).  As CAPN3 is  an unstable  protein that  outside skeletal 
muscle rapidly autolyses we used the active site mutant C129S48. All fractions were resolved on 
SDS-PAGE gel and analyzed by immunoblotting with anti-CAPN3. The lanes represent: GST-
PARVB non-bound fraction (1), GST-PARVB bound fraction (2), GST non-bound fraction (3), 
GST bound fraction (4). B: Equal loading was confirmed with anti-GST (Lane 1 GST-PARVB, 
Lane 2 GST). C: GST-fused PARVB can pull down endogenous full-length CAPN3 from an 
IM2 lysate (Lane 1 vs 2), contrary to unfused GST (Lane 3 vs 4). Lane 1 GST-PARVB bound 
fraction, Lane 2 non-bound fraction, Lane 3 GST bound fraction, Lane 4 non bound fraction.  
D: Likewise, GST-CAPN3 can pull down endogenous PARVB (Lane 1), contrary to GST (Lane 
2). Both PARVB translation products bind. Here we used the Δ6 variant of Capn3 that does not  
autolyse yet retains function30, 49, and is expressed in the proliferating IM2 myoblasts. The 
arrows indicate the detected proteins and in all panels a molecular marker is depicted on the 
left.
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Discussion
Scientists in general and scientific annotators in particular derive their knowledge 
on  PPIs  not  directly  discovered  by  their  own  experiments  from  the  literature. 
However, as we show here, only 32% of the known PPIs covered by curated PPI 
databases can be found in MEDLINE abstracts (Table S1), the resource that is most 
commonly used for concept searches in the biomedical domain. This is despite the 
use of a sophisticated synonym expansion and homonym disambiguation systems . 
It is likely that many of these interactions are only mentioned in the full text of 
articles, or that the interactions have never been explicitly described in literature  
but were directly submitted to a database. In either case, the applicability of the  
most commonly used approach for PPI detection - the direct relation method in 
publicly available literature - appears to be severely limited. 

The  specificity  and sensitivity  levels  achieved by  our  novel  prediction  method 
appear to be very promising. However, when we predict interaction partners for a 
specific  protein,  the  estimated precision levels  (i.e.  how many of  the  predicted 
proteins are true interaction partners) are still seemingly quite moderate.  A first 
consideration is that we are intrinsically unable to determine an accurate ‘true false 
positive rate’ for the predicted PPIs, due to the fact that many PPIs have simply not 
been discovered and described yet.  This unavoidable complication most certainly 
will lead to an underestimation of precision levels. The case study of CAPN3 and 
PARVB signifies this point; initially this pair would have been classified as a ‘false 
positive’. 
For a realistic estimation of the precision of our prediction method, effectively each 
predicted protein pair should be validated in a wet lab experiment, which is out of  
the  realistic  scope  of  this  study.  For  this  reason  we  developed  Nermal. 
(http://biosemantics.org/nermal).  In  Nermal,  researchers  can  enter  the  UniProt 
identifier of a protein of interest, and the tool will return a ranked list of proteins  
that  are  most  likely  to  interact  with  the  query  protein,  in  combination  with 
information on whether the PPI has already been described explicitly in MEDLINE 
and/or in one of the protein databases.
A  second  complicating  factor  is  the  size  of  the  ‘negative’  set  (>50  million) 
compared to the ‘positive’ set (44,920) . This aspect is illustrated by the average 
prediction performance for each protein in Table S3 and by the case study with 
DMD in Table S5, where the top 42 proteins yielded a precision of only 26%, 
whilst  the  specificity  was  99.8%.  We  are  currently  working  on  a  further 
improvement of the precision by including data sources other than the literature in 
the  PPI  prediction algorithms.  A final  consideration is  that  our  predictions  are 
yielding more  conceptual  connections  than  physically  interacting  proteins  only. 
Conceptual  overlap obviously can indicate  a variety of  other  types  of  relations 
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between  proteins.  For  instance,  we  demonstrate  that  many  proteins  with  high 
concept  profile  similarity  do  not  interact  directly,  but  are  connected  through 
intermediary proteins and are potentially part of the same complex or pathway.  
Therefore,  the  precision is  to  a  certain extent  dependent  on the definition of  a 
useful  prediction.  When other  relationships than direct  physical  interactions are 
also deemed of interest, the precision of our method can become as high as 90%. 
The practical use of concept profiles will be in knowledge discovery in general, 
which  is  much  broader  than  discovery  of  PPIs  alone.  In  fact  the  hypothetical 
connection between any given pair of concepts can be calculated using our method.

To  allow  researchers  to  incorporate  conceptual  overlap  data  into  their  own 
analyses, we have made the concept profile similarity scores publicly available in 
two forms; first, a table containing similarity scores between all human proteins 
can be downloaded from our website; second, the previous mentioned web tool 
dubbed Nermal.

We conclude that concept profile similarity is a significantly better literature based 
predictor of PPIs than co-occurrence based methods. These improved predictions 
can be used to increase the biological interpretation and accuracy of interaction 
maps  generated  by  high-throughput  experiments,  or  can  be  used  to  prioritize 
proteins for further testing. In further studies, we will evaluate whether the use of 
concept profiles can also be applied in the prediction of other types of relations, for 
instance between drugs and diseases, and between genes and diseases.

Methods
Direct relation detection
Direct relations are typically extracted from literature based on co-occurrence[32];  
if two proteins are mentioned in the same sentence or document more often than 
can  be  expected  by  chance,  they  are  presumably  related.  We  evaluated  two 
alternatives for the detection of protein occurrences: a word-based approach and a 
concept-based  approach.  The  word-based  approach  consists  of  combining  the 
names of two proteins in an ‘AND’ query in the PubMed search engine. For the 
concept-based  approach  we  have  used  the  concept-recognition  software 
Peregrine[33,  34],  which  includes  synonyms  and  spelling  variations[35]  of 
concepts and uses simple heuristics to resolve homonyms. For this, Peregrine uses 
a protein ontology that was constructed by combining several  gene and protein 
databases[36]. Even though a previous study has shown that Peregrine achieves 
state-of-the-art performance (75% precision and 76% recall on the BioCreactive II 
gene normalization testset[33, 34]), the concept recognition process is still error 
prone.
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We used the likelihood ratio[19] to indicate the strength of the relation between 
two proteins. This ratio increases with the likelihood of there being a dependency 
between  the  occurrence  of  two  proteins.  Two  hypotheses  are  used:  (i)  the 
occurrence of one protein is statistically dependent on the occurrence of the other 
protein; (ii)  the occurrences are statistically independent.  For each hypothesis a  
likelihood is calculated based on the observed data using the binomial distribution. 
The ratio of these likelihoods tells us how much more likely one hypothesis is over 
the other,  or,  in other words,  how sure we are that there is  a dependency. The  
following equations give the likelihood ratio λ of concepts i and j.

λ i , j =
L nij , n i , p j L n j−nij , N−ni , p j 

Lnij , ni , p1 L n j−nij , N−ni , p2 

where  N is the total number of documents in the corpus,  ni  ,  nj,  and  nij are the 

number of documents containing  i, j, and both  i and  j, respectively. p=
n j

N
, the 

probability  j occurs  in  an  abstract  irrespective  of  i, p1=
nij

n i
,  the  probability  j 

occurs  in  an abstract  containing  i,  p2=
n j−n ij

N−ni
,  the  probability  j occurs  in  a 

document  not  containing  i,  and  L k , l , x = xk
1−x l−k ,  the  likelihood 

function according to the binomial distribution.

Concept profile-based relation detection
To calculate the similarity of the contexts in which proteins appear in literature, we 
summarize the context of each protein in a concept profile. This profile contains all  
concepts that have a direct relation with a protein as found using the direct relation 
method described above. We evaluated two possible ways of applying this method: 
(i) using co-occurrences within a sentence, and (ii) using co-occurrences within an 
abstract.   As shown in supplement S6, co-occurrence within an abstract yields a 
slightly  higher  AuC  on  predicting  PPIs.  We  therefore  used  the  abstract-based 
method in our study. The concepts in a profile include, in addition to proteins, all 
other concepts described in the Unified Medical Language System (UMLS) [37],  
such as diseases, symptoms, tissues, biological processes and many other types of 
concepts. We used the uncertainty coefficient[19] to calculate the weights of the 
concepts in the profiles. The uncertainty coefficient for the stochastic variables X 
and Y is given by

U X ∣Y =
H X −H  X ∣Y 

H  X 

47



with H(X) is the entropy for X and H(X|Y) is the entropy for X given Y. X and Y 
can be any concept known in the ontology, e.g. drugs, proteins, diseases, disorders, 
chemicals, etc.  The uncertainty coefficient is an information-theoretical measure 
that takes the a priori probability of direct relations into account. It  gives extra  
weight to those concepts that are very specific for the set of documents belonging 
to  the  protein  for  which  the  concept  profile  is  constructed.  For  a  detailed 
description of concept profiles we refer to Jelier et al.[19].
The similarity score between two concept profiles A and B is  taken as the inner  
product of the concept profile vectors, following Jelier et al.[38].

 ip=∑
k=1

N

Auc  k  Buc  k 

with  uc(k) the kth uncertainty coefficient in the profile and N the total number of 
concepts  the  two  profiles  have  in  common.  The  inner  product  increases  with 
increasing overlap in concept profiles. If two proteins co-occur, the inner product 
of their concept profiles is in general high. This is shown in supplement S4. 

MEDLINE corpus 
We extracted the title and abstract of subsections of MEDLINE. The corpus used in 
our main study has a time span from 1980 up to July 2007 and contains 12,098,042 
citations. The corpus used for the retrospective study has a time span from 1980 up 
to February 2005 and contains 10,363,027 citations. This is an increase in time of 
9.8% whereas the increase in published articles over the last two years is 17%.

Generation of the PPI and NIPP sets
There are many protein databases that describe PPIs. Not all of these use protein 
identifiers that could be linked to our protein ontology and the databases also show 
a  high  degree  of  overlap  (see  supplement  S2).  In  our  analysis  we   use 
BioGRID[39],  DIP[40],  HPRD[41],  IntAct[42],  MINT[43],  Reactome[44],  and 
Swiss-Prot[45]  and  only  consider  human  proteins.  Except  for  IntAct,  all  these 
databases are curated, meaning that they only contain PPIs that were judged to be 
correct  according  to  strict  criteria.  IntAct,  on  the  other  hand,  also  contains 
unchecked results from high-throughput experiments which could contain many 
false positives. For a comparison of the prediction performance of our method on 
the individual databases we refer to supplement S3. The release dates and dates of 
download can be found in supplement S1.
For  the  construction  of  our  set  of  known  PPIs,  we  only  rely  on  the  curated 
databases; if a PPI was mentioned in one of these databases, we assumed it to be a 
true PPI. The resulting positive set contains 61,807 PPIs. After removing pairs that 
are not covered by all four prediction methods, 44,920 PPIs remain. Unfortunately, 
there is no database of proteins that are known not to interact. We can therefore  
only create a set of proteins which are less likely to interact.  For our NIPP set we  
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took all pairs of human proteins that are not in the PPI set, and are not in the high-
throughput part of the IntAct database. For computational reasons the calculation 
of the specificity and AuC was done on a random sample of 44,920 pairs of this  
set, setting both the positive and negative set size equal. Two randomly selected 
proteins form a pair and are checked if (i) they are not in the positive PPI set, (ii) 
not the same protein, e.g. proteins that interact with themselves are not taken into 
account, (iii) the protein pair is not already in the NIPP set, e.g. protein pairs can 
only occur once in a set. The random sample is actually quite small compared to 
the total NIPP set, however the ROC curve analysis is set size independent if the 
sample size is sufficiently large. 
One last remark is that the positive set is incomplete. Therefore the creation of the 
NIPP set will introduce false negatives (PPIs that should have been in the positive 
set  and  recorded in  a  curated  database).  However  the  bias  introduced by false 
negatives is negligible since the ratio of expected PPIs in human compared to the 
total set of formable protein pairs (~60 million) is very small[22]. 

STRING database
A copy of the STRING database, version 7.1, was downloaded from the STRING 
website. STRING is a pre-calculated database in PostgreSQL format. Only the text 
mining score table was used in our analysis. 

Sensitivity, Specificity, Precision 
In  information  retrieval  terms  like  the  sensitivity,  specificity  and  precision  are 
frequently used. The definitions are:

sensitivity=
TP

TPFN

specificity=
TN

TNFP

precision=
TP

TPFP
where  TP are  the  number  of  true positives,  FN number  of  false  negatives,  FP 
number of false positives, and TN number of true negatives. A perfect predictor 
has a specificity and sensitivity of 1. 
When both set sizes are equal (#NIPP=#PPI) the precision equals the sensitivity. 
The specificity is sometimes confused with the precision. The distinction is critical 
when the classes are different sizes. A test with very high specificity can have a  
very low precision if there are far more true negatives than true positives, and vice 
versa. 

Online web tool Nermal
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Nermal is a web tool that prioritizes proteins that are most likely to be related with 
the protein you study. Given a query protein, the similarity scores are calculated 
between this protein and all other proteins in the ontology. The proteins are ranked 
on the similarity scores and presented in a table. Each row shows the similarity 
score between the two proteins, the databases in which the protein pair is known, 
and the sensitivity  and (1-specificity)  for  that  similarity  score.  These two rates 
should be interpreted as follows: given a similarity score between two proteins, (1-
specificity)  is  the  probability  that  a  protein  pair  passing  that  score  is  a  false 
positive. The sensitivity is the probability that you will miss a true PPI at that same 
score. Nermal can be found on http://biosemantics.org/nermal/. The full set of all 
protein pair match scores for human proteins can be downloaded at this link as well 
as the PPI and NIPP set used in the study. 

DNA cloning

PARVB was amplified from proliferating IM2 myoblast cDNA with the following 
UTR  primers:  fw  cgcactcgcttatgtcctc,  rv  ctccacatccttgtacttggtg.  The  ORF  was 
amplified  with  a  nested  PCR  introducing  restriction  sites  for  cloning  into 
pET28aGST (modified pET28a vector with GST tag instead of T7 [46]). Primers 
were:  fw  aatatggatcctcctccgcgccaccacggt,  rv  atattctcgagctccacatccttgtacttgg. 
CAPN3  was  similarly  amplified  with  primers  fw  atgccaactgttattagtc,  and  rv 
ctaggcatacatggtaagc,  and  cloned  into  pET28aGST  using  fw 
tattacggatccatgccaactgttattagtc, and rv gtaatactcgagctaggcatacatggtaagc. The exon 
6 deletion that does not autolyse was used for this experiment. 
CAPN3c129s in pET28c was described previously[47]. All DNA constructs were 
verified by direct sequencing (LGTC, Leiden, The Netherlands), and subsequently 
transformed into BL21 (DE3)-RIL E. coli cells (Stratagene) for protein production.

Protein production and preparation of lysates

BL21  cells  transformed  with  pET28aGST,  pET28aGST-PARVB,  pET28aGST-
CAPN3 or  pET28cCAPN3c129s  were grown to  log  phase  and stimulated with 
1mM IPTG (Fermentas), and left to grow for 3 h at 37 °C. Next cells were spun 
down at 3,000 g and 4°C for 15 min. Pellets were dissolved in lysis buffer A (50 
mM Tris-HCl pH 7.4, 1mM EDTA, 1.5 mg/ml lysozyme, 0.15 M NaCl, 1% Triton, 
Benozonase, 2x protease inhibitor cocktail tablet (Roche Molecular Biochemicals, 
Basel, Switzerland)), and sonicated on ice. Lysate was cleared by centrifugation at 
13,000 g, and 4 °C for 30 min. 
IM2 cells  were grown at 33°C and 10% CO2 in DMEM 60196 (GIBCO-BRL, 
Grand-Island,  NY)  supplemented  with  20%  FCS,  INFγ,  glucose,  pen/strep, 
glutamine and chick embryo extract. 15 cm plates (2x) were grown 75% confluent, 
washed 1x with PBS (37  °C) and lysed on ice with 1 ml lysis buffer B (50 mM 
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Tris-HCl pH 7.5, 150 mM NaCl, 0.2% Triton X-100, 2x protease inhibitor cocktail 
tablet). Lysate was spun down at 13,000 g and 4 °C for 30 min.

Pull-down

GST sepharose beads (4B, Amersham, Uppsala, Sweden) were washed with PBS 
(2x)  and pre-equilibrated with lysis  buffer  (2x),  and added to the  cleared GST 
fusion lysates.  Lysates  were incubated at  4  °C and tumbling for  2 h.  Next  the 
lysates were spun down at 500 g, 4 °C for 5 min, and washed 3x with lysis buffer 
A.  Separately,  IM2 lysates  were treated with washed and pre-equilibrated GST 
sepharose beads (buffer B). An aliquot of the GST fusion proteins was loaded on 
SDS-PAGE gel and Coomassie stained to confirm equal loading. 
IM2 lysate, or T7-CAPN3c129s lysate, was added to the bait, and incubated O/N at 
4 °C and tumbling. GST sepharose beads were spun down and the sup was stored 
as non-bound fraction. The beads were washed 5x with ice cold lysisbuffer (A or  
B, 3x short, 2x five minutes tumbling). All remaining sup was removed with an 
insulin syringe and proteins were eluted with 2x Laemmli sample buffer and boiled 
5 min. An aliquot of the non-bound fraction was similarly prepared.

Western blot

Samples  were  loaded  onto  SDS-PAGE  gels,  separated  and  blotted  to  PVDF 
membrane. Blots were blocked in 4% skimmed milk PBS (Marvel) and incubated 
with primary antibody O/N at 4°C. Next morning blots were washed with 0.05% 
Tween in PBS, and incubated with secondary antibody for 1 h. Blots were washed 
again and scanned with an Odyssey scanner (Licor) or incubated with ECL plus 
(Amersham) and exposed to a Kodak XAR film. The following antibodies were 
used  for  Western  detection:  GaGST  (1;10,000  Stratagene)  MaCAPN3  (1;100, 
12A2  Novocasta,  Newcastle,  UK),  GaPARVB  (1;200  Santa  Cruz), 
GaMouseIRDye680  (1;5,000  Westburg,  Leusden,  NL),  DaGIRDye800  (1;5,000 
Westburg),  RaMouseHRP  (1;2,000  Dako  Cytomation,  Glostrup,  Denmark), 
DaGoatHRP (1;10,000 Promega). 
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Supplementary information belonging to  the  article  “Novel  protein-protein 
interactions inferred from literature context”

S1 Downloaded protein database and release dates
In  total  seven  protein  databases  are  used  in  the  study.  The  UniProt  database 
consists of Swiss-Prot and TrEMBL. 
Protein database Date of download
Biogrid September 28, 2007
DIP September 20, 2007
HPRD August 22, 2007*
IntAct January 26, 2008
MINT September 24, 2007*
Reactome September 20, 2007
UniProt February 14, 2008*
* For these databases it is possible to retrieve the original release dates. HPRD was 
released at January 9, 2007, MINT at June 28, 2007. Swiss-Prot and TrEMBL are 
combined in  the  database UniProt  and  have different  release  versions.  UniProt 
release 12.0 contains Swiss-Prot release 54.0 and TrEMBL release 37.0. Both are 
dated from July 24, 2007.

S2 PPI overlap between the seven databases 
Many of  the  PPIs  appear  in  several  databases.  The  following  table  shows  the 
distribution and overlap over the seven protein databases.  

Biogrid DIP HPRD IntAct MINT Reactome Swiss-Prot
Biogrid 16240 205 15476 3006 2637 909 827
DIP 365 278 84 118 66 53
HPRD 34957 8031 7046 1401 1839
IntAct 17456 5754 595 3839
MINT 10772 375 650
Reacto
me

29672 290

Swiss-
Prot

3841

S3 Performance on individual databases
The positive set is a combination of six protein databases. The databases vary in 
size and also the level of curation of each PPI.  The following table gives the Area 
under the ROC (AuC) curve for each database individually. The last row is the 
AuC for the complete positive set.
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Database Concept profiles Log likelihood String
Biogrid 0.95 0.82 0.82
Dip 0.99 0.96 0.94
Hprd 0.93 0.79 0.78
Intact 0.71 0.57 0.56
Mint 0.87 0.72 0.70
Reactome 0.90 0.60 0.60
Swiss-Prot 0.84 0.71 0.71
Positive set 0.90 0.69 0.69

S4 Relationship between direct relation detection and concept profiles 
The coverage in S3 shows that some PPIs have both overlap in concept profiles and 
a direct relation,  while others have only concept profile overlap. The similarity 
score for proteins that share a direct relation is generally high. This is illustrated in 
figure 1.
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Figure 1. Histogram of the distribution of the similarity scores of: (blue) PPIs 
with concept profile overlap and no direct relation, and (green) PPIs with both 
a concept profile overlap and a direct relation. 

S5 ROC curve analysis
The next  figure  shows the ROC curves  for  the concept  profile  similarity score  
(green), and the likelihood ratio of the direct relation method (red). For the direct 
relation method we discern two special cases: (i) each protein individual occurs in 
Medline but they are never mentioned together, and (ii) one of the proteins does 
not occur in MedLine at all. In the first case the likelihood score is –infinity, in the 
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second case the likelihood score is 0. These cases are quite frequent resulting in 
many duplicate values, and no natural ordering of the PPIs. We assume a perfect 
random ordering, resulting in the straight line at the end of the ROC curve in the 
figure (red for concept based method and black for the String database).

S6 Relation detection at the abstract and sentence level
For the construction of concept profiles, we investigated two options: assume two 
concepts are related when they co-occur (i) in the same sentence, and (ii) in the 
same abstract. For each option we evaluated the performance on the prediction of 
PPIs.

Abstract level Sentence level
AuC* 0.93 0.91

The  difference  in  results  are  neglectable.  There  is  a  very  small  decrease  in 
performance using sentence based detection of relations.
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* this analysis was done using a MedLine corpus up to April 2007 and using an  
older ontology. 

S7 Ranked list of proteins predicted to interact with dystrophin (DMD)
The following table shows the proteins which similarity score with DMD have a 
specificity higher than 99%.
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Rank Protein symbol Log similarity score Direct relations FP rate TP rate Dip Intact Mint
1 UTRN P46939 -5.14 214 0.003 0.856 0 0 1 0 0 0 0
2 SGCA Q16586 -6.13 119 0.013 4.047 0 0 0 0 0 0 0
3 DAG1 Q14118 -6.22 139 0.013 4.047 0 0 1 0 0 0 0
4 SGCB Q16585 -6.6 54 0.022 5.853 0 0 0 0 0 0 0
5 SGCD Q53XA5 -6.95 46 0.032 8.168 0 0 0 0 0 0 0
6 FCMD O75072 -7.05 29 0.034 8.62 0 0 0 0 0 0 0
7 DYSF O75923 -7.19 43 0.039 9.65 0 0 0 0 0 0 0
8 DTNA Q9BS59 -7.31 17 0.048 10.576 0 0 1 0 1 0 0
9 DRP2 Q13474 -7.34 9 0.049 10.625 0 0 0 0 0 0 0
10 SSPN Q0JV68 -7.45 17 0.055 11.543 0 0 0 0 0 0 0
11 LAMA2 P24043 -7.46 25 0.055 11.543 0 0 0 0 0 0 0
12 GK1 P32189 -7.56 33 0.059 12.306 0 0 0 0 0 0 0
13 CAPN3 P20807 -7.93 28 0.08 15.06 0 0 0 0 0 0 0
14 CAV3 P56539 -7.95 24 0.08 15.06 0 0 0 0 0 0 0
15 SNTA1 Q13424 -7.97 8 0.081 15.274 0 0 1 0 0 0 0
16 EIF3S12 Q9UBQ5 -8.05 91 0.091 16.02 0 0 0 0 0 0 0
17 BEST1 O76090 -8.13 26 0.096 16.703 0 0 0 0 0 0 0
18 SPTB P11277 -8.15 15 0.097 16.896 0 0 0 0 0 0 0
19 FKRP Q9H9S5 -8.16 4 0.098 17.046 0 0 0 0 0 0 0
20 MEB 6988 -8.17 7 0.099 17.106 0 0 0 0 0 0 0
21 SLMAP Q14BN4 -8.2 4 0.102 17.288 0 0 0 0 0 0 0
22 SNTB1 Q13884 -8.2 6 0.102 17.288 0 0 1 1 0 0 1
23 NEB P20929 -8.33 16 0.117 18.497 0 0 0 0 0 0 0
24 SGCE O43556 -8.35 10 0.117 18.497 0 0 0 0 0 0 0
25 SGCG Q13326 -8.46 305 0.132 19.584 0 0 0 0 0 0 0
26 ACTN2 P35609 -8.49 11 0.137 19.754 0 0 0 0 0 0 0
27 POMT1 Q5JT03 -8.5 3 0.137 19.754 0 0 0 0 0 0 0
28 LOC130074 Q6NZ40 -8.5 16 0.138 19.925 0 0 0 0 0 0 0
29 CMD1K 14541 -8.5 27 0.138 19.925 0 0 0 0 0 0 0
30 FER1L3 Q9NZM1 -8.51 3 0.138 19.925 0 0 0 0 0 0 0
31 NOS1 P29475 -8.53 42 0.139 20.11 0 0 0 0 0 0 0
32 IKBKAP O95163 -8.63 10 0.152 21.011 0 0 0 0 0 0 0
33 MACF1 Q5T3B3 -8.66 9 0.162 21.337 0 0 0 0 0 0 0
34 AQP4 P55087 -8.67 13 0.162 21.337 0 0 0 0 0 0 0
35 CKM P06732 -8.7 11 0.167 21.668 0 0 0 0 0 0 0
36 FSHMD1A 3966 -8.74 8 0.172 21.859 0 0 0 0 0 0 0
37 TCAP O15273 -8.75 7 0.173 22.153 0 0 0 0 0 0 0
38 DTNB O60941 -8.76 9 0.173 22.153 0 0 1 0 1 0 0

Swiss-Prot id Biogrid Hprd Reactome Swiss-Prot
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39 LOC619409 619409 -8.82 5 0.181 22.675 0 0 0 0 0 0 0
40 VCL P18206 -8.87 36 0.189 23.173 0 0 0 0 0 0 0
41 LGMD1A 6574 -8.88 3 0.192 23.273 0 0 0 0 0 0 0
42 SNTG1 Q9NSN8 -8.9 5 0.194 23.459 0 0 1 0 1 0 0
43 EMD P50402 -8.94 12 0.201 23.864 0 0 0 0 0 0 0
44 GNE Q6QNY6 -9 7 0.205 24.407 0 0 0 0 0 0 0
45 MYOZ2 Q9NPC6 -9.03 7 0.209 24.632 0 0 0 0 0 0 0
46 PGM5 Q15124 -9.04 3 0.212 24.733 0 0 1 0 0 0 0
47 CASQ1 P31415 -9.05 5 0.213 24.892 0 0 0 0 0 0 0
48 NR0B1 P51843 -9.06 18 0.218 25.047 0 0 0 0 0 0 0
49 SYNC1 Q9H7C4 -9.08 4 0.219 25.066 0 0 0 0 0 0 0
50 TTN Q8WZ42 -9.08 7 0.22 25.157 0 0 0 0 0 0 0
51 DENR O43583 -9.12 3 0.228 25.497 0 0 0 0 0 0 0
52 POMGNT1 Q8WZA1 -9.15 7 0.233 25.802 0 0 0 0 0 0 0
53 RAPSN Q13702 -9.19 8 0.239 26.192 0 0 0 0 0 0 0
54 MYOT Q9UBF9 -9.27 5 0.253 27.025 0 0 0 0 0 0 0
55 GDF8 O14793 -9.28 5 0.254 27.08 0 0 0 0 0 0 0
56 AIED 351 -9.3 2 0.256 27.193 0 0 0 0 0 0 0
57 TRIM32 Q13049 -9.31 3 0.256 27.193 0 0 0 0 0 0 0
58 MYH7 P13533 -9.36 18 0.265 27.894 0 0 0 0 0 0 0
59 LAMB1 P07942 -9.36 6 0.266 27.898 0 0 0 0 0 0 0
60 RP23 10277 -9.41 6 0.274 28.242 0 0 0 0 0 0 0
61 SNTG2 Q05AH5 -9.42 2 0.275 28.462 0 0 1 0 0 0 0
62 ACTN3 Q08043 -9.46 5 0.284 28.783 0 0 0 0 0 0 0
63 LMNA P02545 -9.46 17 0.285 28.814 0 0 0 0 0 0 0
64 SPTBN4 Q9H254 -9.51 1 0.289 29.342 0 0 0 0 0 0 0
65 OTC P00480 -9.55 8 0.298 29.59 0 0 0 0 0 0 0
66 DTNBP1 Q96EV8 -9.56 5 0.299 29.616 0 0 0 0 0 0 0
67 SNTB2 Q13425 -9.56 2 0.302 29.732 0 0 1 1 0 0 1
68 LGMD1B 6575 -9.57 0 0.304 29.838 0 0 0 0 0 0 0
69 SYNPO2 Q9UMS6 -9.57 3 0.307 29.862 0 0 0 0 0 0 0
70 RPGR Q4VX65 -9.59 5 0.314 29.997 0 0 0 0 0 0 0
71 SPTBN1 Q01082 -9.59 7 0.314 29.997 0 0 0 0 0 0 0
72 GYPC P04921 -9.6 3 0.318 30.105 0 0 0 0 0 0 0
73 TAZ Q16635 -9.63 8 0.329 30.387 0 0 0 0 0 0 0
74 SNORD95 32757 -9.63 3 0.329 30.387 0 0 0 0 0 0 0
75 DMN O15061 -9.64 3 0.33 30.483 0 0 0 0 0 0 0
76 SEPN1 Q9NZV5 -9.74 2 0.364 31.413 0 0 0 0 0 0 0
77 GATM P50440 -9.76 2 0.37 31.678 0 0 0 0 0 0 0
78 MTM1 Q13496 -9.78 5 0.372 31.823 0 0 0 0 0 0 0
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79 PLEC1 Q15149 -9.82 1 0.384 32.306 0 0 0 0 0 0 0
80 NRG4 Q0P6N4 -9.82 1 0.387 32.363 0 0 0 0 0 0 0
81 AAVS1 22 -9.83 4 0.389 32.414 0 0 0 0 0 0 0
82 MYOD1 O75321 -9.84 9 0.389 32.414 0 0 0 0 0 0 0
83 FLNC Q14315 -9.87 3 0.398 32.802 0 0 0 0 0 0 0
84 VAULTRC3 12656 -9.88 1 0.4 32.846 0 0 0 0 0 0 0
85 CFC1 Q9GZR3 -9.89 16 0.401 32.965 0 0 0 0 0 0 0
86 IL1RAPL1 Q7Z2K4 -9.9 4 0.403 33.116 0 0 0 0 0 0 0
87 DYNLT3 P51808 -9.91 3 0.406 33.239 0 0 0 0 0 0 0
88 DTL Q9NZJ0 -9.93 2 0.411 33.417 0 0 0 0 0 0 0
89 DMPK Q09013 -9.93 5 0.411 33.417 0 0 0 0 0 0 0
90 MYOG P15173 -9.94 8 0.414 33.444 0 0 0 0 0 0 0
91 DGKZ Q13574 -9.95 2 0.417 33.614 0 0 1 0 0 0 0
92 SRRM2 O60382 -9.96 2 0.418 33.686 0 0 0 0 0 0 0
93 SMN1 Q16637 -10.04 3 0.441 34.576 0 0 0 0 0 0 0
94 MYL2 P10916 -10.05 2 0.445 34.75 0 0 0 0 0 0 0
95 MYLPF Q6IB41 -10.09 2 0.457 35.062 0 0 0 0 0 0 0
96 PVALB P02144 -10.1 22 0.464 35.21 0 0 0 0 0 0 0
97 COL6A1 P12109 -10.14 2 0.473 35.566 0 0 0 0 0 0 0
98 MYH7 P12883 -10.14 2 0.474 35.583 0 0 0 0 0 0 0
99 CAPN8 1485 -10.14 1 0.476 35.607 0 0 0 0 0 0 0
100 MEAX 6987 -10.15 2 0.477 35.638 0 0 0 0 0 0 0
101 POMT2 Q59GJ5 -10.15 0 0.479 35.702 0 0 0 0 0 0 0
102 AGRN O00468 -10.18 3 0.483 35.963 0 0 0 0 0 0 0
103 DNPEP Q9HAC6 -10.18 2 0.484 35.967 0 0 0 0 0 0 0
104 XIC 12809 -10.19 0 0.491 36.045 0 0 0 0 0 0 0
105 PDLIM3 Q53GG5 -10.2 2 0.499 36.198 0 0 0 0 0 0 0
106 COL6A2 P12110 -10.21 1 0.5 36.268 0 0 0 0 0 0 0
107 GAA P10253 -10.21 7 0.501 36.3 0 0 0 0 0 0 0
108 LAMA1 P25391 -10.26 0 0.52 36.811 0 0 0 0 0 0 0
109 MYF6 P23409 -10.27 2 0.524 36.845 0 0 0 0 0 0 0
110 CHRNG P07510 -10.29 1 0.531 37.012 0 0 0 0 0 0 0
111 SPTA1 O60686 -10.3 2 0.535 37.144 0 0 0 0 0 0 0
112 CSRP3 P50461 -10.3 3 0.542 37.216 0 0 0 0 0 0 0
113 EPB41 P11171 -10.31 4 0.548 37.322 0 0 0 0 0 0 0
114 PBDX P55808 -10.32 1 0.548 37.322 0 0 0 0 0 0 0
115 LAMB2 P55268 -10.32 1 0.549 37.398 0 0 0 0 0 0 0
116 WDM 50988 -10.34 1 0.561 37.627 0 0 0 0 0 0 0
117 HHG 4902 -10.35 1 0.563 37.68 0 0 0 0 0 0 0
118 RPS4Y1 P22090 -10.35 2 0.563 37.68 0 0 0 0 0 0 0
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119 ITGA7 Q13683 -10.35 1 0.563 37.68 0 0 0 0 0 0 0
120 TNNT2 P45379 -10.37 4 0.574 37.877 0 0 0 0 0 0 0
121 CMD1B 2102 -10.37 2 0.574 37.877 0 0 0 0 0 0 0
122 FOSL2 P15408 -10.38 1 0.578 38.028 0 0 0 0 0 0 0
123 SFRS2 Q01130 -10.39 3 0.582 38.131 0 0 0 0 0 0 0
124 MIB2 Q0JSM5 -10.4 1 0.59 38.257 0 0 0 0 0 0 0
125 MSRB2 Q9Y3D2 -10.4 1 0.59 38.257 0 0 0 0 0 0 0
126 DNM1L O00429 -10.4 1 0.59 38.257 0 0 0 0 0 0 0
127 XKR1 P51811 -10.41 2 0.593 38.307 0 0 0 0 0 0 0
128 XIST 12810 -10.42 0 0.605 38.416 0 0 0 0 0 0 0
129 TPM1 O15513 -10.42 5 0.606 38.439 0 0 0 0 0 0 0
130 COL6A3 P12111 -10.42 1 0.61 38.522 0 0 0 0 0 0 0
131 SUCLG1 P53597 -10.42 1 0.613 38.547 0 0 0 0 0 0 0
132 NRG3 P56975 -10.43 1 0.614 38.587 0 0 0 0 0 0 0
133 PPP1R10 Q96QC0 -10.43 1 0.614 38.587 0 0 0 0 0 0 0
134 RNPS1 Q15287 -10.44 2 0.623 38.738 0 0 0 0 0 0 0
135 MYEF2 Q9P2K5 -10.46 2 0.632 38.88 0 0 0 0 0 0 0
136 GAMT Q14353 -10.48 1 0.646 39.13 0 0 0 0 0 0 0
137 TNNC1 P63316 -10.49 3 0.65 39.232 0 0 0 0 0 0 0
138 RP2 O75695 -10.51 3 0.661 39.446 0 0 0 0 0 0 0
139 MYL6 P60660 -10.51 1 0.663 39.469 0 0 0 0 0 0 0
140 CTSH P09668 -10.51 2 0.664 39.48 0 0 0 0 0 0 0
141 CXADR P78310 -10.53 4 0.681 39.609 0 0 0 0 0 0 0
142 ELOVL4 Q9GZR5 -10.53 1 0.682 39.635 0 0 0 0 0 0 0
143 MYF5 P13349 -10.57 3 0.703 40.025 0 0 0 0 0 0 0
144 FBXO32 Q969P5 -10.59 1 0.716 40.275 0 0 0 0 0 0 0
145 PRX Q9BXM0 -10.6 2 0.716 40.275 0 0 0 0 0 0 0
146 BLOC1S1 P78537 -10.6 1 0.718 40.311 0 0 0 0 0 0 0
147 MUSK O15146 -10.6 1 0.718 40.311 0 0 0 0 0 0 0
148 SMN2 Q16637 -10.62 1 0.731 40.491 0 0 0 0 0 0 0
149 IS2 282552 -10.62 0 0.734 40.516 0 0 0 0 0 0 0
150 DM1 2923 -10.62 2 0.735 40.521 0 0 0 0 0 0 0
151 DYNLL1 P63167 -10.63 1 0.737 40.567 0 0 0 0 0 0 0
152 PDAP1 Q13442 -10.63 1 0.737 40.567 0 0 0 0 0 0 0
153 INVS Q5JS85 -10.65 3 0.748 40.76 0 0 0 0 0 0 0
154 PABPN1 Q86U42 -10.66 1 0.76 40.877 0 0 0 0 0 0 0
155 NOS1AP O75052 -10.67 1 0.762 40.915 0 0 0 0 0 0 0
156 KCNJ10 P78508 -10.67 3 0.765 40.985 0 0 0 0 0 0 0
157 TCTA P57738 -10.68 0 0.767 41.034 0 0 0 0 0 0 0
158 ACTA1 P68133 -10.68 2 0.769 41.074 0 0 1 0 0 0 0
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159 CACNA1I Q9P0X4 -10.68 1 0.776 41.155 0 0 0 0 0 0 0
160 MST4 Q8NC04 -10.71 1 0.786 41.424 0 0 0 0 0 0 0
161 KFSD 6313 -10.72 2 0.786 41.424 0 0 0 0 0 0 0
162 IGFBP5 P24593 -10.72 1 0.789 41.494 0 0 0 0 0 0 0
163 DST O94833 -10.75 7 0.812 41.721 0 0 0 0 0 0 0
164 FRG1 Q14331 -10.76 0 0.82 41.913 0 0 0 0 0 0 0
165 CD5L O43866 -10.77 0 0.823 41.983 0 0 0 0 0 0 0
166 ITPR1 Q14643 -10.79 1 0.83 42.123 0 0 0 0 0 0 0
167 PARVB Q9HBI1 -10.8 0 0.838 42.202 0 0 0 0 0 0 0
168 RIMS1 Q5SZK2 -10.8 1 0.838 42.202 0 0 0 0 0 0 0
169 GAS2 O43903 -10.8 3 0.845 42.293 0 0 0 0 0 0 0
170 WAS P42768 -10.8 238 0.846 42.308 0 0 0 0 0 0 0
171 CDH15 P55291 -10.81 2 0.849 42.363 0 0 0 0 0 0 0
172 ACTC1 P68032 -10.82 1 0.85 42.429 0 0 1 0 0 0 0
173 MLS 7145 -10.82 1 0.85 42.429 0 0 0 0 0 0 0
174 CACNA1S Q13698 -10.82 3 0.851 42.507 0 0 0 0 0 0 0
175 ERF P50548 -10.83 1 0.856 42.558 0 0 0 0 0 0 0
176 SFRS1 Q07955 -10.84 1 0.865 42.672 0 0 0 0 0 0 0
177 DCTN3 O75935 -10.87 1 0.894 42.976 0 0 0 0 0 0 0
178 DDX3Y O15523 -10.87 1 0.894 42.976 0 0 0 0 0 0 0
179 SFRS5 Q13243 -10.87 1 0.896 43.018 0 0 0 0 0 0 0
180 ALG3 Q92685 -10.87 109 0.896 43.018 0 0 0 0 0 0 0
181 RYR1 O75591 -10.88 1 0.908 43.141 0 0 0 0 0 0 0
182 GAS2L1 Q99501 -10.9 1 0.919 43.308 0 0 0 0 0 0 0
183 COL4A5 P29400 -10.9 0 0.919 43.308 0 0 0 0 0 0 0
184 PTBP2 O95652 -10.91 0 0.926 43.393 0 0 0 0 0 0 0
185 MYH6 P13533 -10.91 4 0.928 43.444 0 0 0 0 0 0 0
186 IGFBP4 P22692 -10.92 3 0.933 43.582 0 0 0 0 0 0 0
187 SYNE1 Q5JV23 -10.93 1 0.934 43.62 0 0 0 0 0 0 0
188 ZNF91 Q05481 -10.93 1 0.939 43.637 0 0 0 0 0 0 0
189 SP1 P08047 -10.93 7 0.94 43.669 0 0 0 0 0 0 0
190 PTPN22 Q5TBC0 -10.93 1 0.941 43.671 0 0 0 0 0 0 0
191 LOC619511 619511 -10.94 1 0.943 43.701 0 0 0 0 0 0 0
192 EIF4EBP1 Q13541 -10.95 3 0.953 43.838 0 0 0 0 0 0 0
193 MYOZ1 Q9NP98 -10.97 0 0.977 44.029 0 0 0 0 0 0 0
194 BSN Q2NLD3 -10.98 0 0.988 44.167 0 0 0 0 0 0 0
195 FBXO11 Q86XK2 -10.99 1 0.999 44.248 0 0 0 0 0 0 0
196 ZBTB20 Q9HC78 -10.99 1 0.999 44.248 0 0 0 0 0 0 0


