
 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/24881 holds various files of this Leiden University 
dissertation 
 

Author: Mart´ınez, Juli´an Facundo 
Title: Dynamical Gibbs-non-Gibbs transitions and Brownian percolation 
Issue Date: 2014-03-25 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/24881


3 Local mean-field context

This chapter is based on:
R. Fernández, F. den Hollander, and J. Mart́ınez. Variational description of Gibbs-
non-Gibbs dynamical transitions for spin-flip systems with a kac-type interaction. arXiv
preprint:1309.3667, Submitted to Journal of Statistical Physics.

Abstract

We continue our study of Gibbs-non-Gibbs dynamical transitions. In the present chapter
we consider a system of Ising spins on a large discrete torus with a Kac-type interaction
subject to an independent spin-flip dynamics (infinite-temperature Glauber dynamics).
We show that, in accordance with the program outlined in [vEFdHR10], in the thermo-
dynamic limit Gibbs-non-Gibbs dynamical transitions are equivalent to bifurcations in
the set of global minima of the large-deviation rate function for the trajectories of the
empirical density conditional on their endpoint. More precisely, the time-evolved mea-
sure is non-Gibbs if and only if this set is not a singleton for some value of the endpoint.
A partial description of the possible scenarios of bifurcation is given, leading to a char-
acterization of passages from Gibbs to non-Gibbs and vice versa, with sharp transition
times.
Our analysis provides a conceptual step-up from our earlier work on Gibbs-non-Gibbs

dynamical transitions for the Curie-Weiss model, where the mean-field interaction allowed
us to focus on trajectories of the empirical magnetization rather than the empirical
density.
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3 Local mean-field context

3.1 Introduction and main results

3.1.1 Background

Gibbs-non-Gibbs dynamical transitions are a surprising phenomenon. An initial Gibbsian
state (e.g. a collection of interacting Ising spins) is subjected to a stochastic dynamics
(e.g. a Glauber dynamics) at a temperature that is different from that of the initial state.
For many combinations of initial and dynamical temperature, the time-evolved state is
observed to become non-Gibbs after a finite time. Such a state cannot be described
by any absolutely summable Hamiltonian and therefore lacks a well-defined notion of
temperature.
The phenomenon was originally discovered by van Enter, Fernández, den Hollander

and Redig [vEFdHR02] for heating dynamics, in which a low-temperature Ising model is
subjected to a high-temperature Glauber dynamics. The state remains Gibbs for short
times, but becomes non-Gibbs after a finite time. Remarkably, heating in this case does
not lead to a succession of states with increasing temperature, but to states where the
notion of temperature is lost altogether. Moreover, it turned out that there is a difference
depending on whether the initial Ising model has zero or non-zero magnetic field. In
the former case, non-Gibbsianness once lost is never recovered, while in the latter case
Gibbsianness is recovered at a later time.
This initial work triggered a decade of developments. By now, results are available

for a variety of interacting particle systems, both for heating dynamics and for cooling
dynamics, including estimates on transition times and characterizations of the so-called
bad configurations leading to non-Gibbsianness, i.e., the discontinuity points of the con-
ditional probabilities. It has become clear that Gibbs-non-Gibbs transitions are the rule
rather than the exception. For references we refer to the recent overview by van En-
ter [vE12].

3.1.2 Motivation and outline

The ubiquity of the Gibbs-non-Gibbs phenomenon calls for a better understanding of
its causes and consequences. Historically, non-Gibbsianness is proved by looking at the
evolving system at two times, the inital time and the final time, and applying techniques
from equilibrium statistical mechanics. This is an indirect approach that does not illumi-
nate the relation between the Gibbs-non-Gibbs phenomenon and the dynamical effects
responsible for its occurrence. This unsatisfactory situation was addressed in van Enter,
Fernández, den Hollander and Redig [vEFdHR10], where possible dynamical mechanisms
were proposed and a program was put forward to develop a theory of Gibbs-non-Gibbs
transitions on purely dynamical grounds.
In Fernández, den Hollander and Mart́ınez [FdHM13a], building on earlier work by

Külske and Le Ny [KLN07] and Ermolaev and Külske [EK10], we showed that this pro-
gram can be fully carried out for the Curie-Weiss model subject to an infinite-temperature
dynamics. The goal of the present paper is to extend this work away from the mean-
field setting by considering a model with a Kac-type interaction, i.e., Ising spins with
a long-range interaction. Whereas for the Curie-Weiss model the key object was the
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3.1 Introduction and main results

empirical magnetization in the thermodynamic limit, for the Kac model the key object
is the empirical density in the thermodynamic limit, which we refer to as the profile.
Non-Gibbsianness corresponds to a discontinuous dependence of the law of the initial
profile conditional on the final profile. The discontinuity points are called bad profiles
(Definition 3.1.1 below).

Dynamically, such discontinuities are expected to arise whenever there is more than
one trajectory of the profile that is compatible with the bad profile at the end. Indeed,
this expectation is confirmed and exploited in the sequel. The actual conditional trajec-
tories are those minimizing the large-deviation rate function on the space of trajectories
(Propositions 3.1.2–3.1.3 below), in the spirit of what is behind hydrodynamic scaling.
The time-evolved measure is Gibbs whenever there is a single minimizing trajectory for
every final profile, in which case the so-called specification kernel can be computed ex-
plicitly (Theorem 3.1.4 below). In contrast, if there are multiple optimal trajectories,
then the choice of trajectory can be decided by an infinitesimal perturbation of the final
profile, and the time-evolved measure is non-Gibbs (Theorem 3.1.6 below).

The rate function for the Kac model contains an action integral whose Lagrangian
acts on profiles. This setting constitutes a conceptual step-up from what happens for
the Curie-Weiss model, where the Lagrangian acts on magnetizations and is much eas-
ier to analyze. However, for infinite-temperature dynamics the Kac Lagrangian can be
expressed as an integral of the Curie-Weiss Lagrangian with respect to the profile (The-
orem 3.1.5 below). This link allows us to identify the possible scenarios of bifurcation
(Theorem 3.1.7 below).

3.1.3 Hamiltonian

Let T
d := R

d/Zd be the d-dimensional unit torus. For n ∈ N, let T
d
n be the (1/n)-

discretization of Td defined by T
d
n := ∆d

n/n, with ∆d
n := Z

d/nZd the discrete torus of

size n. For n ∈ N, let Ωn := {−1,+1}∆
d
n be the set of Ising-spin configurations on

∆d
n. The energy of the configuration σ := (σ(x))x∈∆d

n
∈ Ωn is given by the Kac-type

Hamiltonian

Hn(σ) := − 1
2nd

∑

x,y∈∆d
n

J
(
x−y
n

)
σ(x)σ(y) −

∑

x∈∆d
n

h( xn )σ(x), σ ∈ Ωn, (3.1)

where J, h ∈ C(Td) are continuous functions on T
d, with J ≥ 0 symmetric and J 6≡ 0.

The Gibbs measure associated with Hn is

µn(σ) :=
e−βHn(σ)

Zn
, σ ∈ Ωn, (3.2)

with β ∈ [0,∞) the static inverse temperature and Zn the normalizing partition sum.
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3 Local mean-field context

3.1.4 Gibbs versus non-Gibbs

For Λ ⊆ ∆d
n, let π

n
Λ : Ωn → M(Td

n) ⊆ M(Td) be the empirical density of σ inside Λ
defined by

πn
Λ(σ) :=

1

|Λ|

∑

x∈Λ

σ(x)δx/n, (3.3)

where M(Td
n) and M(Td) denote the set of signed measures on T

d
n, respectively, T

d with
total variation norm ≤ 1 endowed with the weak topology, and δu is the point measure
at u ∈ T

d. Note that σ ∈ Ωn determines πn
Λ ∈ M(Td

n) and vice versa.

Abbreviate (3.3) for Λ = ∆d
n by πn and for Λ = ∆d

n\{⌊nu⌋} by πu,n, u ∈ T
d, where

⌊nu⌋ denotes the component-wise lower-integer part of nu. The latter is the empirical
density perforated at ⌊nu⌋. Abbreviate

Mn := πn(Ωn), Mu,n := πu,n(Ωn). (3.4)

Note that Mn ⊆ M(Td
n). Via πn, the Gibbs measure µn on Ωn in (3.2) induces a

probability measure µ̌n on Mn given by

µ̌n = µn ◦ (πn)−1. (3.5)

Using (3.3), we can rewrite (3.1) in the form

Hn(σ) = −ndH(πn(σ)), (3.6)

where in the right-hand side we introduce the notation

H(ν) =
〈

1
2J ∗ ν + h, ν

〉
(3.7)

[f ∗ ν](u) :=

∫

Td

J(u− u′) ν(du′), 〈f, ν〉 :=

∫

Td

f(u) ν(du), f ∈ C(Td), ν ∈ M(Td).

(3.8)

Let λn := 1
nd

∑
x∈Λ δx/n. We have w − limn→∞ λn = λ, where λ is the Lebesgue

measure on T
d and w−lim stands for weak convergence. In what follows we will represent

limit distributions in M(Td) with a Lebesgue density as measures αλ with α ∈ B, where

B is the closed unit ball in L∞(Td). (3.9)

We will refer to α as a profile.

The definition of Gibbs versus non-Gibbs is the following. Given any sequence (ρn)n∈N

with ρn a probability measure on Ωn for every n ∈ N, define the single-spin conditional
probabilities at site ⌊nu⌋ ∈ ∆d

n as

γu,n
(
· | αu

n−1

)
:= ρn

(
σ(⌊nu⌋) = · | πu,n(σ) = αu

n−1

)
, αu

n−1 ∈ Mu,n. (3.10)
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3.1 Introduction and main results

Definition 3.1.1. [Good and bad profiles, Gibbs]
(a) A profile α ∈ B is called good for (ρn)n∈N if there exists a neighborhood Nα of α in
L∞(Td) such that for all α̃ ∈ Nα and u ∈ T

d there exists

γu
(
· | α̃

)
:= lim

n→∞
γu,n( · | αu

n−1) (3.11)

where (αu
n−1)n∈N with αu

n−1 ∈ Mu,n is any sequence so that w − limn→∞ αu
n−1 = α̃λ,

and the limit is independent of the choice of (αu
n−1)n∈N.

(b) A profile α ∈ B is called bad for (ρn)n∈N if it is not good for (ρn)n∈N.
(c) (ρn)n∈N is called Gibbs if it has no bad profiles in B.

Remark:
(1) Definition 3.1.1(a) implies continuity of α 7→ γu( · | α) in the L∞(Td)-norm for all
u ∈ T

d at good profiles. (A proof by contradiction is based on a diagonal argument.)
(2) For (µn)n∈N with µn defined in (3.1–3.2) all profiles α ∈ B are good with

γu(k | α) =
exp[kβ{J ∗ α+ h}(u)]

2 cosh[β{J ∗ α+ h}(u)]
, k ∈ {−1,+1}, α ∈ B, u ∈ T

d. (3.12)

(The factor 1
2 in (3.7) drops out because every spin is counted twice in the Hamiltonian

but once in the convolution.) In particular, (µn)n∈N is Gibbs in the sense of Defini-
tion 3.1.1(c).
(3) Definition 3.1.1 assigns the notion of Gibbs to a sequence of probability measures that
live on different spaces. It is different from the classical notion of Gibbs based on the
Dobrushin-Lanford-Ruelle condition, which is used to define Gibbs measures on infinite
lattices. Nonetheless, the quantity in (3.12) can be viewed as some sort of specification
kernel.
(4) Definition 3.1.1 does not consider sequences (αu

n−1)n∈N whose weak limit is singular
with respect to λ. In Proposition 3.1.2 below we will see that in the thermodynamic
limit we can ignore trajectories that do not lie in the set {αλ : α ∈ B} because they are
too costly.

3.1.5 Stochastic dynamics

For fixed n, we let the spin configuration evolve according to a Glauber dynamics with
generator Ln given by

(Lnf)(σ) :=
∑

x∈∆d
n

cn(x, σ) [f(σ
x)− f(σ)], f : Ωn → R, (3.13)

where the spin-flip rate takes the form

cn(x, σ) :=
exp[−β′

2 {H
n(σx)−Hn(σ)}]

2 cosh[β
′

2 {H
n(σx)−Hn(σ)}]

(3.14)

with σx the configuration obtained from σ by flipping the spin at site x, and β′ ∈ [0,∞)
the dynamical inverse temperature. We write (σs)s≥0 to denote the trajectory of the

57



3 Local mean-field context

spin configuration, which lives on D[0,∞)(Ωn), the space of càdlàg paths on Ωn endowed
with the Skorohod topology.

Abbreviate πn
s := πn(σs), and let π̄n = (πn

s )s≥0 denote the trajectory of the empirical
density under the Glauber dynamics. For a given probability measure ρ̌n0 on Mn we
define

Pn
ρ̌n
0
:= law of (πn

s )s≥0 conditional on πn
0 being drawn according to ρ̌n0 , (3.15)

which lives on D[0,∞)(M
n), the space of càdlàg paths on Mn endowed with the Skorohod

topology.

3.1.6 Large deviation principles

For t ≥ 0, we say that ϕ = (ϕs)s∈[0,t] ∈ C[0,t](B) is absolutely continuous in time when

∃ ϕ̇ = (ϕ̇s)s∈[0,t] ∈ L1
[0,t](T

d) : ϕs(u)− ϕ0(u) =

∫ s

0

ϕ̇r(u) dr ∀ s ∈ [0, t], λ− a.e. u.

(3.16)

Let us recall that a family of probability measures (νn)n∈N on a Polish space X satisfies
a large deviation principle (LDP) with rate n and rate function I when I : X → [0,∞]
has compact level sets, is not identically infinite, and

lim inf
n→∞

1

n
log νn(O) ≥ − inf

x∈O
I(x), O ⊆ X open,

lim sup
n→∞

1

n
log νn(C) ≤ − inf

x∈C
I(x), C ⊆ X closed.

(3.17)

(See Dembo and Zeitouni [DZ98, Section 1.2].) The following LDPs can be found in
Comets [Com87].

Proposition 3.1.2. (i) [LDP for initial Gibbs measure] (µ̌n)n∈N satisfies the LDP
on M(Td) with rate nd and rate function IS − infM(Td) IS given by

IS(ν) :=

{
−β
〈
1
2J ∗ α+ h, αλ

〉
+ 〈Φ ◦ α, λ〉, if ν = αλ with α ∈ B,

∞, otherwise,
(3.18)

where Φ is the relative entropy

Φ(m) := 1+m
2 log(1 +m) + 1−m

2 log(1−m), m ∈ [−1,+1]. (3.19)

(ii) [Dynamical LDP for deterministic initial law] Let t ≥ 0 and α ∈ C(Td), and let
(ϕn

0 )n∈N be any sequence with ϕn
0 ∈ Mn for every n ∈ N such that w− limn→∞ ϕn

0 = αλ.
Then (

Pn
δϕn

0

)

n∈N

restricted to [0, t] (3.20)
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3.1 Introduction and main results

satisfies the LDP on D[0,t](M(Td)) with rate nd and rate function ItD− infD[0,t](M(Td)) I
t
D

given by

ItD(ψ) :=

{∫ t

0 L
(
ϕs, ϕ̇s

)
ds, if ψ = ϕλ, with ϕ satisfying property (3.16) and ϕ0 ≡ α,

∞, otherwise,

(3.21)
where

L(q, p) :=

∫

Td

L[q(u), p(u)] du, q ∈ B, p ∈ L1(Td), (3.22)

with

L[q(u), p(u)] = p(u)
2 log

[ p(u)
2 +

√
1− q(u)2 +

[ p(u)
2

]2

1− q(u)

]
− p(u)

2

[
β′(J ∗ q + h)

]
(u)

+

{
−

√
1− q(u)2 +

[
p(u)
2

]2

+ cosh
[
β′(J ∗ q + h)

]
(u)− q(u) sinh

[
β′(J ∗ q + h)

]
(u)

}
.

(3.23)

Note that (3.23) simplifies considerably when β′ = 0 (independent spin-flip dynamics).

To ease notation, we write IS(α) instead of IS(ν) when ν = αλ with α ∈ B, and
ItD(ϕ) instead of ItD(ψ) when ψ = ϕλ with ϕ ∈ C[0,t](B), i.e., we henceforth suppress the
reference measure λ from the notation.

Let Pn = Pn
µ̌n . Define

Qn
t,α′(·) := Pn

(
(πn

s )s∈[0,t] ∈ · | πn
t = α′

n

)
, t ≥ 0, α′ ∈ B, (3.24)

with α′
n ∈ Mn the element closest to α′ ∈ B in any metric that metrizes the weak

topology. The following LDPs are key to our analysis. In what follows we write f ≡ g
when f(u) = g(u) for all u ∈ T

d.

Proposition 3.1.3. [Dynamical LDP for Gibbs initial law]
(i) For every t ≥ 0, (Pn)n∈N satisfies the LDP on D[0,t](M(Td)) with rate nd and rate
function It − infD[0,T ](M(Td)) I

t given by

It(ϕ) := IS(ϕ0) + ItD(ϕ). (3.25)

(ii) For every t ≥ 0 and α′ ∈ B, (Qn
t,α′)n∈N satisfies the LDP on D[0,t](M(Td)) with rate

nd and rate function It,α
′

− infD
[0,t](M(Td))

It,α
′

given by

It,α
′

(ϕ) :=

{
It(ϕ), if ϕt ≡ α′,
∞, otherwise.

(3.26)
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3 Local mean-field context

The proof of Proposition 3.1.3 is given in Appendix 3.4 and is based on large deviation
techniques coming from hydrodynamic scaling. A somewhat delicate issue is the fact
that we cannot use Proposition 3.1.2(ii) because this has a deterministic initial condition,
while in Proposition 3.1.3(i) the initial condition is random.
Note that, by (3.18), (3.21) and (3.25–3.26),

inf
ϕ∈D[0,t](M(Td))

It,α
′

(ϕ) = inf
α∈B

inf
ϕ∈C[0,t](B) :

ϕ0≡α, ϕt≡α′

It(ϕ) = inf
ϕ∈C[0,t](B) :

ϕt≡α′

It(ϕ). (3.27)

3.1.7 Link to the specification kernel

Henceforth we only consider trajectories ϕ ∈ C[0,t](B) satisfying (3.16), because the rate
functions are infinite otherwise. The following theorem provides the fundamental link
between the specification kernel in (3.11) and the minimizer of (3.27) when it is unique.

Theorem 3.1.4. [Specification kernel in absence of bifurcation] Fix t ≥ 0 and
α′ ∈ B. Suppose that (3.27) has a unique minimizing path ϕ̂t,α′

= (ϕ̂t,α′

s )s∈[0,t]. Then
the specification kernel at time t equals

γut (k
′ | α′) :=

∑
k∈{−1,+1}

exp
[
kβ{J ∗ ϕ̂t,α′

0 + h}(u)
]
pu,t,α

′

t (k, k′)

∑
j,j′∈{−1,+1}

exp
[
jβ{J ∗ ϕ̂t,α′

0 + h}(u)
]
pu,t,α

′

t (j, j′)
, (3.28)

k′ ∈ {−1,+1}, u ∈ T
d, where pu,t,α

′

t (j, j′) is the probability to go from j at time 0 to j′

at time t in the time-inhomogeneous Markov process on {−1,+1} with generator Lu,t,α′

s

at time s ∈ [0, t] given by

(Lu,t,α′

s f)(k) =
exp

[
kβ′{J ∗ ϕ̂t,α′

s + h}(u)
]

2 cosh
[
β′{J ∗ ϕ̂t,α′

s + h}(u)
] [f(−k)− f(k)],

k ∈ {−1,+1}, f : {−1,+1} → R, u ∈ T
d, s ∈ [0, t].

(3.29)

Remark: Note that for β′ = 0 (independent spin-flip dynamics) the right-hand side of
(3.29) simplifies to 1

2 [f(−k)− f(k)] and that, consequently, the right-hand side of (3.28)

depends on the optimal trajectory ϕ̂t,α′

only via its initial value ϕ̂t,α′

0 , and takes the form

γut (k
′ | α′) = Γt

(
k′, β{J ∗ ϕ̂t,α′

0 + h}(u)
)

(3.30)

for some Γt : {−1,+1}×R→ [0, 1], with the property that m 7→ Γt(k
′,m) is continuous,

strictly increasing for k′ = +1 and strictly decreasing for k′ = −1.

3.1.8 Reduction: critical trajectories

In what follows we restrict ourselves to the case of infinite-temperature dynamics, i.e.,
β′ = 0. Let

ϕ̂α;t,α′

:= argminϕ∈C[0,t](B) :

ϕ0≡α, ϕt≡α′

It(ϕ),

Ct,α′(α) := It(ϕ̂α;t,α′

).

(3.31)
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3.1 Introduction and main results

Remark: Note that
inf
α∈B

Ct,α′(α) = inf
ϕ∈C[0,t](B) :

ϕt≡α′

It(ϕ). (3.32)

The following theorem says that ϕ̂α;t,α′

is unique for every t ≥ 0 and α, α′ ∈ B, and
can be computed because the Kac model can be linked to the Curie-Weiss model treated
in Fernández, den Hollander and Mart́ınez [FdHM13a]. (In the notation of that paper β
is absorbed into J, h.)

Theorem 3.1.5. [Critical trajectories] Let β′ = 0. For every t ≥ 0 and α, α′ ∈ B,

ϕ̂α;t,α′

s (u) = ϕ̂
CW;α(u)
t,α′(u) (s), u ∈ T

d, s ∈ [0, t], (3.33)

where ϕ̂CW;m
t,m′ (s), s ∈ [0, t], is the unique trajectory in [−1,+1] between magnetization m

at time 0 and magnetization m′ at time t for the Curie-Weiss model. Accordingly (see
(3.21–3.23) and 3.25–3.26)),

Ct,α′(α) = IS(α) +

∫

Td

du

∫ t

0

ds LCW
[
ϕ̂
CW;α(u)
t,α′(u) (s), ˙̂ϕ

CW;α(u)
t,α′(u) (s)

]
, (3.34)

where LCW is the Lagrangian of the Curie-Weiss model. The critical points of (3.34)
(i.e., the local minima and the local maxima) satisfy the functional equation

sinh[2β(J ∗α+ h)](u)−α(u) cosh[2β(J ∗α+ h)](u) =
α(u)

tanh(2t)
−

α′(u)

sinh(2t)
a.e. u ∈ T

d.

(3.35)

In Theorem 3.1.5, the Lagrangian of the Curie-Weiss model is given by

LCW(m, ṁ) := − 1
2

√
4 (1−m2) + ṁ2 + 1

2ṁ log

(√
4 (1−m2) + ṁ2 + ṁ

2(1−m)

)
+ 1, (3.36)

which is the same as (3.23) with β′ = 0, p(·) = m and q(·) = ṁ, and the unique trajectory
is given by

ϕ̂CW;m
t,m′ (s) :=

1

sinh(2t)

{
m sinh(2(t− s)) +m′ sinh(2s)

}
, 0 ≤ s ≤ t. (3.37)

(See [FdHM13a, Eqs. (1.16) and (1.28)].) The intuition behind Theorem 3.1.5 is that
the dynamics has no spatial interaction. Consequently, we may think of α(u) and α′(u)
as the local initial and final magnetization near u, and thereby reduce the minimization
problem in (3.26) to that of the Curie-Weiss model.
With the help of Theorem 3.1.5 we are able to prove the equivalence of non-Gibbs and

bifurcation, the latter meaning that (3.27) has more than one global minimizer. This is
in accordance with the program outlined in van Enter, Fernández, den Hollander and
Redig [vEFdHR10].
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3 Local mean-field context

Theorem 3.1.6. [Equivalence of non-Gibbsianness and bifurcation] Let β′ = 0.
For every t ≥ 0, α̃′ 7→ γut ( · | α̃′) is continuous at α′ ∈ B for all u ∈ T

d if and only if
infϕ∈C[0,t](B) : ϕt≡α′ It(ϕ) has a unique minimizing path.

Thus, non-Gibbsianness is equivalent to the occurrence of more than one possible history
for the same α′.
We expect Theorem 3.1.6 to hold for β′ > 0 as well, but the present paper deals with

β′ = 0 only.

3.1.9 Bifurcation analysis

In this section we study for which choice of J, h, β and t, α′ the variational formula in the
right-hand side of (3.27) has a unique global minimizer or has multiple global minimizers.
According to Definition 3.1.1 and Theorem 3.1.6, this distinction classifies Gibbsianness
versus non-Gibbsianness.

Theorem 3.1.7. Let β′ = 0 and 〈J〉 :=
∫
Td J(u)du.

(i) [Short-time Gibbsianness] There exists a t0 = t0(J, h) ∈ (0,∞) such that (3.27)
has a unique global minimizer ϕ̂t,α′

for all 0 ≤ t ≤ t0 and all α′ ∈ B.
(ii) [Mean-field behaviour] If h ≡ c ∈ [0,∞) and α′ ≡ c′ ∈ [−1,+1], then the bifurca-
tion behaviour is the same as for the Curie-Weiss model with parameters (JCW, hCW) =
(β〈J〉, βc) and final magnetization c′:

JCW hCW = 0 hCW > 0
(0, 1] No bad c′ for all t ≥ 0

(1, 32 ]

b

∅
b

{0}

0 Ψc

b

0

∅
b

ΨU

{c′}

[−1, UB ]
b

Ψ∗

∅

(32 ,∞)

b

0

∅
b

ΨU

{±c′}

[−UB , UB ]
b

Ψc

{0}
b

h < h∗

0

∅
b

ΨU

{c′}

[MB , UB)
b

ΨL

{c′1, c
′
2}

(LB ,MB)
b

ΨT

{c′}

[−1,MT ]
b

Ψ∗

∅

h ≥ h∗

b

0

∅
b

ΨU

{c′}

[−1, UB ]
b

Ψ∗

∅

The above table summarizes the results for the Curie-Weiss model studied in [FdHM13a].
The center line represents the time axis. In each figure, the symbols on top indicate the
set of bad magnetizations (which for the Kac-model correspond to bad constant profiles),
the intervals below indicate in which range the bad magnetizations occur. For further
details, in particular, a definition of the times ΨU ,Ψ∗,Ψc,ΨL,ΨT and the magnetizations
UB,MB, LB,MT , see [FdHM13a, Section 1.5.5].
Remarks:
(1) The existence of a solution of (3.27) is guaranteed by the lower semi-continuity of α 7→
Ct,α′(α), which follows from the lower semi-continuity of ϕ0 7→ IS(ϕ0) and ϕ 7→ ItD(ϕ),

together with the fact that w− limn→∞ αn = α implies w− limn→∞ ϕ̂αn;t,α
′

= ϕ̂α;t,α′

in
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3.2 Proof of Theorems 3.1.4–3.1.6

the Skorohod topology by (3.37).
(2) The claims in Theorem 3.1.7(ii) only concern the case where α′ is constant. The
problem of deciding whether or not there exist multiple global minimizers of (3.27) when
α′ is not constant presents major difficulties. Similar but easier equations have been
studied extensively in Comets, Eisele and Schatzman [CES86], De Masi, Orlandi, Presutti
and Triolo [DMOPT94] and Bates, Chen and Chmaj [BCC05], with partial success. An
additional complication in our case is that non-constant α′ brings a non-homogeneous
parameter into the problem, which makes the analysis even harder. A full analysis of the
global minimizers of (3.27) as a function of J and h therefore remains a challenge.

3.2 Proof of Theorems 3.1.4–3.1.6

3.2.1 Proof of Theorem 3.1.4

Proof. Recall that πu,n
t = πu,n(σt) defined below (3.3) does not depend on σt(⌊nu⌋).

Let P
n denote the law of (σs)s≥0 with σ0 distributed according to µn, and abbreviate

πu,n
<t := (πu,n

s )s∈[0,t) and ξ
n−1
<t := (ξn−1

s )s∈[0,t). Write (recall (3.10))

γu,nt

(
k′ | α′u

n−1

)
:= P

n
(
σt(⌊nu⌋) = k′

∣∣∣ πu,n
t = α′u

n−1

)

=

∫

D[0,t)(Mu,n)

P
n
(
dξn−1

<t

∣∣∣ πu,n
t = α′u

n−1

)
P
n
(
σt(⌊nu⌋) = k′

∣∣∣ πu,n
<t = ξn−1

<t

)

=

∫

D[0,t)(Mu,n)

P
n
(
dξn−1

<t

∣∣∣ πu,n
t = α′u

n−1

)

×

{
∑

k=±1

P
n
(
σt(⌊nu⌋) = k′

∣∣∣ σ0(⌊nu⌋) = k, πu,n
<t = ξn−1

<t

)

P
n
(
σ0(⌊nu⌋) = k

∣∣∣ πu,n
<t = ξn−1

<t

)}
.

(3.38)

We proceed by analyzing the three terms under the integral.

(1) The LDP for (Qn
t,α′)n∈N in Proposition 3.1.3(ii), together with the assumption that

(3.27) has a unique minimizing path, implies

w − lim
n→∞

P
n
(

·
∣∣∣ πu,n

t = α′u
n−1

)
= δ

ϕ̂t,α′

<t

(·) on D[0,t)(M(Td)). (3.39)

(2) Because (σs(⌊nu⌋), πu,n
s )s≥0 is Markov, we have

P
n
(
σt(⌊nu⌋) = k′

∣∣∣ σ0(⌊nu⌋) = k, πu,n
<t = ξn−1

<t

)
= p

ξn−1
<t

t (k, k′), (3.40)

where p
ξn−1
<t

t (k, k′) is the probability to go from k at time 0 to k′ at time t in the time-
inhomogeneous Markov process on {−1,+1} with generator at time s ∈ [0, t) given by
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3 Local mean-field context

(3.29) with ϕ̂t,α′

s replaced by ξn−1
s . Note that ξn−1

<t 7→ p
ξn−1
<t

t (k, k′) is continuous on

D[0,t)(M
u,n) for fixed k, k′, t and u, n (recall (3.4)), and that limn→∞ p

ξn−1
<t

t (k, k′) =

p
ϕ̂t,α′

<t

t (k, k′) for fixed k, k′, t, α′ when limn→∞ ξn−1
<t = ϕ̂t,α′

<t on D[0,t)(M(Td)) (recall
(3.29)).

(3) Write

P
n
(
σ0(⌊nu⌋) = k

∣∣∣ πu,n
<t = ξn−1

<t

)

=
[
1 + cu,n(ξn−1

<t , k) exp
(
−2βk{ 1

2J ∗ ξn−1
0 + h}

(⌊nu⌋
n

))]−1 (3.41)

with

cu,n(ξn−1
<t , k) :=

dPu,n

ξn−1
0 ,−k

dPu,n

ξn−1
0 ,k

(ξn−1
<t ), (3.42)

where

P
u,n

ξn−1
0 ,k

(·) = P
u,n
(
πu,n
<t ∈ · | πu,n

0 = ξn−1
0 , σ0(⌊nu⌋) = k

)
(3.43)

and we use (3.1–3.2) to write

P
n(πu,n

0 = ξn−1
0 , σ0(⌊nu⌋) = −k)

Pn(πu,n
0 = ξn−1

0 , σ0(⌊nu⌋) = k)
= exp

(
−2βk{ 1

2J ∗ ξn−1
0 + h}

(⌊nu⌋
n

))
. (3.44)

Finally, note that limn→∞ cu,n(ξn−1
<t , k) = 1 for fixed k, t and u when limn→∞ ξn−1

<t =

ϕ̂t,α′

<t on D[0,t)(M(Td)). Indeed, (3.13–3.14) show that in the thermodynamic limit a
single spin has no effect on the dynamics of the empirical density (Feller property).
Combine this observation with (3.39–3.41) to get the identity in (3.28) (see Yang [Yan11]).

3.2.2 Proof of Theorem 3.1.5

Proof. For β′ = 0 (infinite-temperature dynamics), (3.23) reduces to∫
Td duL

CW[q(u), p(u)] with LCW the Curie-Weiss Lagrangian in (3.36). Hence, recalling
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3.2 Proof of Theorems 3.1.4–3.1.6

(3.26), we have

Ct,α′(α) = inf
ϕ∈C[0,t](B) :

ϕ0≡α, ϕt≡α′

It(ϕ)

= IS(α) + inf
ϕ∈C[0,t](B) :

ϕ0≡α, ϕt≡α′

ItD(ϕ)

≥ IS(α) +

∫

Td

du inf
ϕ∈C[0,t](B) :

ϕ0≡α, ϕt≡α′

∫ t

0

ds LCW
[
ϕs(u), ϕ̇s(u)]

≥ IS(α) +

∫

Td

du inf
ρ∈C[0,t]([−1,+1]) :

ρ0=α(u), ρt=α′(u)

∫ t

0

ds LCW
[
ρs, ρ̇s]

= IS(α) +

∫

Td

du

∫ t

0

ds LCW
[
ϕ̂
CW;α(u)
t,α′(u) (s), ˙̂ϕ

CW;α(u)
t,α′(u) (s)

]
,

(3.45)

which settles half of (3.34). To get equality we pick, as in (3.33),

ϕ̂α;t,α′

s (u) := ϕ̂
CW;α(u)
t,α′(u) (s), s ∈ [0, t], , u ∈ T

d. (3.46)

Since (ϕ̂α;t,α′

s )s∈[0,t] ∈ C[0,t](B) verifies the restrictions ϕ0 ≡ α, ϕt ≡ α′, it is a minimizer
of the variational problem in the left-hand side of (3.45).
The derivation of (3.35) follows in the same way as for the Curie-Weiss model in

[FdHM13a, Section 2.1], with the Fréchet derivative replacing the standard derivative.
Note that α 7→ Ct,α′(α) is Fréchet differentiable on int(B), while the argument in El-
lis [EE83, Section V, Theorem 5.1] shows that all its critical points lie in int(B).

The following way of rewriting Ct,α′ will be useful later on. Adding and subtracting
1
4β
∫
Td du

∫
Td dv J(u− v)[α(u) − α(v)]2, we may rewrite (3.18) as

IS(α) =
1
4β

∫

Td

du

∫

Td

dv J(u− v)[α(u) − α(v)]2 +

∫

Td

du ICW
S (α(u)), (3.47)

where ICW
S is the rate function for the magnetization in the Curie-Weiss model. With

this formula, (3.34) reduces to

Ct,α′(α) = 1
4β

∫

Td

du

∫

Td

dv J(u − v)[α(u)− α(v)]2 +

∫

Td

duCCW
t,α′ (α(u)). (3.48)

This form clarifies the interplay between the non-local interaction and the independent
spin-flip dynamics.

3.2.3 Proof of Theorem 3.1.6

As emphasized in (3.30), γut (k
′ | α′) depends on α′ only through ϕ̂t,α′

0 , the starting
value of the global minimizer of Ct,α′ . The following lemma is the basis for the proof of
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3 Local mean-field context

Theorem 3.1.6. It describes the behavior of ϕ̂t,α′

0 when the constraint α′ ∈ B at time t
is varied. Loosely speaking, it says that global minimizers are isolated, are continuous
under variations of α′, and can be selected by variation of α′.
Below we fix t and suppress it from the notation. In what follows we write α̂(α′) to

denote a global minimum of Ct,α′ .

Lemma 3.2.1. For every t ≥ 0 and α′
0 ∈ B there exists an open neighborhood Nα′

0
of

α′
0 such that for all α′ ∈ Nα′

0
\ {α′

0} the following hold:
(a) [Isolation of global minimizers] α 7→ Ct,α′ has a unique global minimum at, say,
α̂(α′).
(b) [Continuity of global minimizers] α′′ 7→ α̂(α′′) is continuous at α′′ = α′. If
α′′ 7→ Ct,α′

0
(α′′) has a unique global minimum, then it is continuous at α′′ = α′

0.
(c) [Selection of global minimizers] If Ct,α′

0
has multiple global minima, then there

are two of them, say α̂k(α
′
0) and α̂l(α

′
0), and a γ′ ∈ B such that

lim
ε↓0

α̂(α′
0 + εγ′) ≡ α̂k(α

′
0), lim

ε↑0
α̂(α′

0 + εγ′) ≡ α̂l(α
′
0). (3.49)

Proof. The following 3 steps describe the behavior of the minimizers under small pertur-
bations of α′ are around α′

0.

(a) Under the assumption that supα∈B |Ct,α′ −Ct,α′
0
| → 0 as ‖α′ −α′

0‖∞ → 0, whenever
a local minimum is emerging as α′ is varied this local minimum cannot be a global
minimum. Indeed, we have that

|Ct,α′(α)−Ct,α′
0
(α)| ≤

∫

Td

du |CCW
t,α′(u)(α(u))−C

CW
t,α′

0(u)
(α(u))| ≤

∫

Td

du ‖CCW
t,α′(u)−C

CW
t,α′

0(u)
‖∞.

On the other hand, we know from [FdHM13a] that ‖CCW
t,m′−CCW

t,m′
0
‖∞ → 0 whenm′ → m′

0.

Hence the claim follows by dominated convergence.

(b) Let α̂i(α
′
0), i ∈ I, denote the global minima of Ct,α′

0
. Each of these verifies (3.35),

which may be written in the form F (α, α′) ≡ 0 for some functional F . From the implicit
function theorem (see e.g. Drábek and Milota [DM13, Theorem 4.2.1]) it follows that

there exist a neighborhood Ñα′
0
of α′

0 and smooth functions α′ 7→ αi(α
′), i ∈ I, on this

neighborhood such that αi(α
′), i ∈ I, are minima of Ct,α′ , and limα′→α′

0
αi(α

′) ≡ α̂i(α
′
0).

(c) Let
Bi(α

′) := Ct,α′(αi(α
′)). (3.50)

The minimal cost is
Ct,α′(α̂(α′)) = min

i∈I
Bi(α

′). (3.51)

Because of the assumed multiplicity of minima at α′
0, we have

Bi(α
′
0) = Bj(α

′
0), i, j ∈ I. (3.52)

Expand each Bi up to first order order,

Bi(α
′
0 + εγ′) = B(α′

0) + ε
〈
[DBi](α

′
0), γ

′
〉
+O

(
ε‖γ′‖∞

)
, ε > 0, (3.53)
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where [DBi](α
′
0) is the Fréchet derivative. Put G(α, α

′) := Ct,α′(α). Then the chain rule
implies that

[DBi](α
′
0) ≡ [DαG]

(
α̂i(α

′
0), α

′
0

)
◦ [Dα′αi](α

′
0) + [Dα′G]

(
α̂i(α

′
0), α

′
0

)
, (3.54)

where ◦ denotes composition and the lower indices α, α′ on the letter D refer to the
variable with respect to which the derivative is taken. The first term in (3.54) vanishes
due to the criticality of α̂i(α

′
0). Standard calculations with Fréchet derivatives show that

[Dα′G]
(
α̂i(α

′
0), α

′
0

)
(u) = HCW

(
α̂i(α

′
0)(u), α

′
0(u)

)
, u ∈ T

d, (3.55)

with HCW(m,m′) := ( ∂
∂m′C

CW
t,m′)(m). The identity in (3.55) helps us to select differ-

ent global minimizers by small variations of α′. Indeed, for i 6= j we have ‖α̂i(α
′
0) −

α̂j(α
′
0)‖∞ > 0, and hence there exists a δ > 0 such that λ({α̂i(α

′
0) − α̂j(α

′
0) > δ}) > 0.

Take I = {u ∈ T
d : α̂i(α

′
0)(u)− α̂j(α

′
0)(u) > δ}. Then

α̂j(α
′
0)(u) + δ < α̂i(α

′
0)(u) ∀ u ∈ I. (3.56)

Combining (3.54–3.56) and using the strict monotonicity of m 7→ HCW(m,m′), we get

[DBj ](α
′
0)(u) < [DBi](α

′
0)(u) ∀ u ∈ I. (3.57)

The claim follows by picking γ′ ≡ 1I and expressions (3.53), (3.55).

We are now ready to prove Theorem 3.1.6. We continue to use the same notation as
in Lemma 3.2.1.

Proof. Suppose that Ct,α′
0
has a unique global minimizer, say α̂(α′

0), and let Nα′
0
be the

neighborhood in Lemma 3.2.1. Then (3.30) holds for every α′ ∈ Nα′
0
, and the continuity

of m 7→ Γt(k
′,m) for all t, k′ gives the desired continuity of α′ 7→ γut (· | α

′) at α′ ≡ α′
0

for all u ∈ T
d. Hence α′

0 is a good profile.
Conversely, suppose that Ct,α′

0
has multiple global minimizers. Consider the pair

α̂k(α
′
0) and α̂l(α

′
0) and the box I in the proof of Lemma 3.2.1, and put α′k

ǫ := α′
0 + ǫγ′

for ǫ > 0 and α′l
ǫ := α′

0 + ǫγ′ for ǫ < 0. Then γut (· | α
′i
ǫ ) = Γt(·, β{J ∗ α̂(α′i

ǫ ) + h}(u)),
i ∈ {k, l}, and

lim
ǫ↓0

α̂(α′k
ǫ )(u) = α̂k(α

′
0)(u) 6= α̂l(α

′
0)(u) = lim

ǫ↑0
α̂(α′l

ǫ )(u) ∀ u ∈ I. (3.58)

On the other hand, α̂k(α
′
0) and α̂l(α

′
0) are critical points, they satisfy (3.35) with α′ ≡ α′

0,
and so

α̂k(u) 6= α̂l(u) =⇒ (J ∗ α̂k)(u) 6= (J ∗ α̂l)(u). (3.59)

This, together with the continuity and the monotonicity of m 7→ Γt(k
′,m) for all t and

k′, forces the discontinuity

lim
ǫ↓0

γut (k
′ | α′k

ǫ ) = Γt

(
k′, β{J ∗ α̂k(α

′
0) + h}(u)

)

6= Γt

(
k′, β{J ∗ α̂l(α

′
0) + h}(u)

)
= lim

ǫ↑0
γut (k

′ | α′l
ǫ ) ∀u ∈ I.

(3.60)

Hence α′
0 is a bad profile.
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3.3 Proof of Theorem 3.1.7

Proof. Without loss of generality we may assume that 〈J〉 = 1. For simplicity, we consider
only α′ ∈ C(Td). In that case, due to the regularization property of the convolution
operator, the solutions of (3.35) may be taken to be continuous, and (3.35) must be
fulfilled for all u ∈ T

d. The extension to α′ /∈ C(Td) is straightforward.

(i) Let α1, α2 ∈ B be two different solutions of (3.27). After some algebra with trigono-
metrical identities, we get from (3.27) that the following equation must be fulfilled:

2 sinh

(

Au−Bu

2

)

au−bu

{
cosh

(
Au+Bu

2

)
−au sinh

(
Au+Bu

2

)}
− cosh (Bu) = coth(2t) ∀ u ∈ T

d,

(3.61)
where Au = (βJ ∗ α1)(u) + βh(u) and au = α1(u) (and similarly for Bu, bu, α2). Note
that the left-hand side depends only on u and the right-hand side only on t, and that
limt↓0 coth(2t) = ∞. Since |Au|, |Bu| ≤ β(1+ ‖h‖∞) and |au|, |bu| ≤ 1, the left-hand side
of (3.61) is bounded from above by

2 sinh

(

Au−Bu

2

)

au−bu
C1 + C2 (3.62)

for some constants C1, C2. By taking t > 0 small enough, we force au−bu to be small for
all u ∈ T

d (equivalently, ‖α1−α2‖∞ < δ). By choosing v0 such that |α1(v0)−α2(v0)| = V0
with V0 = maxu∈Td |α1(u) − α2(u)|, we get |Av0 − Bv0 | ≤ βV0 which, together with the
series expansion of sinh, leads to a contradiction.

(ii) From (3.48), whenever α′ ≡ c′ we have that

inf
α∈B

Ct,c′(α) ≥ inf
α∈B

1
4β

∫

Td

du

∫

Td

dv J(u− v)[α(u) − α(v)]2 + inf
α∈B

∫

Td

duCCW
t,c′ (α(u)).

(3.63)
Because J ≥ 0, the minimizers of the first term are the constant profiles. If we take
the constant of the profile equal to a minimizer of CCW

t,c′ , then the second term is also
minimal.

Appendix

3.4 Proof of Proposition 3.1.3

3.4.1 Outline

In Sections 3.4.2–3.4.4 we sketch the proof of the LDP in Proposition 3.1.3(i) for deter-
ministic initial conditions (as in Proposition 3.1.2(ii)), and explain why it remains true for
random initial conditions. We follow the line of argument in Benois, Mourragui, Orlandi,
Saada and Triolo [BMO+12] rather than Comets [Com87], and use various results from
Kipnis and Landim [KL99]. The strategy of the proof consists in first proving the claim
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for random initial conditions drawn according to ϑnκ = ⊗x∈Td
n
ϑκ with ϑκ = BER(κ),

κ ∈ [0, 1] (i.e., ϑκ(+1) = κ and ϑκ(−1) = 1 − κ), and afterwards replacing ϑnκ by µn

in (3.2) with the help of Varadhan’s Lemma and Bryc’s Lemma. In Section 3.4.5 we
indicate how Proposition 3.1.3(ii) follows.

Below we will make frequent reference to formulas in [BMO+12] and [KL99], so our
arguments are not self-contained. We begin with the following observation.

Lemma 3.4.1. Suppose that µ and ν are equivalent probability measures. If Pµ and Qν

are the laws of equivalent Markov processes with starting measures µ and ν, then

dPµ

dQν
(η̄) =

dµ

dν
(η0)

dPµ

dQµ
(η̄) =

dµ

dν
(η0)

dPν

dQν
(η̄). (3.64)

The general technique to prove an LDP relies on finding a family of mean-one posi-
tive martingales that can be written as functions of the empirical density. For Markov
processes this is achieved by considering the Radon-Nikodym derivative of the original
dynamics w.r.t. a small perturbation of this dynamics. It is here that Lemma 3.64 comes
into play: it factorizes the Radon-Nikodym derivative into a static part and a dynamic
part, as in (3.25).

3.4.2 Upper bound

For initial condition γ ∈ C(Td; [−1,+1]) and potential V ∈ C1,0([0, t] × T
d), we denote

by Pn,V
ϑn
γ

the law of the (γ, V )-perturbed inhomogeneous Markov process starting at

ϑnγ = ⊗x∈Td
n
ϑχ−1(γ(xn )), (3.65)

where χ : [0, 1] → [−1,+1] is the linear map that transforms a profile taking values in
[−1,+1] into a profile taking values in [0, 1]. Details about such a perturbation and its
Radon-Nikodym derivative can be found in [BMO+12, Eq. (5.8)].

1. Large deviation upper bound for compact sets. Fix κ ∈ [0, 1]. Let K ∈ D[0,t](M(Td))
be compact. By Lemma 3.4.1, we have (recall the notation introduced in Section 3.1.5)

1
nd logPn

ϑn
κ
[π̄n ∈ K] = 1

nd logEn,V
ϑn
γ




 dPn

ϑn
κ

dPn,V
ϑn
γ

IK


 (π̄n)




= 1
nd logEn,V

ϑn
γ

[(
dϑnκ
dϑnγ

dPn
ϑn
κ

dPn,V
ϑn
κ

IK

)
(π̄n)

]

= 1
nd logEn,V

ϑn
γ

[
e−ndhγ(π

n
0 )+Oγ(n

−1) e−nd{ĴV (π̄n∗lε,n)+r(V,ε,n)}
IK(π̄
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]
,

(3.66)
where hγ is the analogue of [KL99, Eq. (1.1), Chapter 10], ĴV is defined in [BMO+12,
Eq. (6.8)], ε > 0 is small, lε,n is an approximation of the identity for ε ↓ 0, and r(V, ε, n)
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3 Local mean-field context

is an error term that vanishes as n → ∞ for fixed V, ε. By letting n → ∞, optimizing
over γ, V, ε and using the mini-max lemma, we get

lim sup
n→∞

1
nd logPn

ϑn
κ
[π̄n ∈ K] ≤ inf

γ,V,ε
sup
π̄∈K

{−hγ(π0)− ĴV (π̄ ∗ lε)}

≤ sup
π̄∈K

inf
γ,V,ε

{−hγ(π0)− ĴV (π̄ ∗ lε)}

≤ − inf
π̄∈K

{IS(π0) + ItD(π̄)}.

(3.67)

The last inequality uses that supγ hγ(π0) = IS(π0), supV ĴV (π̃) = ItD(π̃), and supε I
t
D(π̄∗

lε) ≥ ItD(π̄) by lower semi-continuity of ItD.

2. Exponential tightness. While in [KL99, Section 4] the initial condition is drawn from
equilibrium, this is immaterial. Indeed, the proof of [BMO+12, Proposition 6.1] uses
the same ideas as in [KL99, Section 4] even though the initial condition is deterministic.
Hence the same computations apply to our case.

3.4.3 Lower bound

1. Large deviation lower bound for open sets. Fix κ ∈ [0, 1]. Let O ∈ D[0,t](M(Td)) be
open. By Lemma 3.4.1, we have

1
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+ 1
nd logPn,V

ϑn
γ

(O),

(3.68)

where we use Jensen’s inequality. By the law of large numbers for Pn,V
ϑn
γ

, we have

w − lim
n→∞

Pn,V
ϑn
γ

= δπ̄γ,V , (3.69)

where π̄γ,V is the solution of [BMO+12, Eq. (5.5)] with initial condition γ and potential
V . (The proof of (3.69) follows in the same fashion as in [BMO+12]: all that is needed is
that the laws of the random initial conditions converge to a law associated with continuous
profile.) Hence, if π̄γ,V ∈ O, then limn→∞ Pn,V

ϑn
γ

(O) = 1. After some calculations with

the Radon-Nikodym derivative, we get

lim inf
n→∞

1
nd logPn

ϑn
κ
[π̄n ∈ O] ≥ −It(π̄γ,V ) (3.70)

with It = IS + ItD.

2. Density arguments. It remains to show that

inf
γ,V

π̄γ,V ∈O

It(π̄γ,V ) = inf
π̄∈O

It(π̄). (3.71)
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3.4 Proof of Proposition 3.1.3

In other words, (π̄γ,V )γ,V is dense with respect to (̺wt , I), i.e.,

∀ π̄ ∈ D[0,t](M(Td)) : I(π̄) <∞,

∃ (π̄γn,Vn)n∈N : lim
n→∞

̺wt (π̄
γn,Vn , π̄) = 0, lim

n→∞
I(π̄γn,Vn) = I(π̄),

(3.72)

where ̺wt is the supremum distance in [0, t] when the marginal distance is ̺w (any metric
that metrizes the weak topology). A density argument of this type typically exploits
the fact that I is lower semi-continuous and convex, but in our case I = It, which is
not convex. However, in [BMO+12] density arguments are given without convexity. In
order to extend these to our setting of random initial conditions, minor modifications
are needed in [BMO+12, Lemma 7.5]. In particular, the space regularization of the
trajectory must be done for all s ∈ [0, t], and hence [BMO+12, Lemma 7.6] together with
the arguments in [KL99, p. 279] prove our assertion.

3.4.4 Replace ϑn
κ by µn

The observations made in Sections 3.4.2–3.4.3 prove the LDP in Proposition 3.1.3(i), but
for starting measures ϑnκ given by (3.65). Note that

dµn

dϑnκ
= en

dβH(πn) (3.73)

with πn 7→ H(πn) in (3.6) continuous. Hence, by Lemma (3.4.1), Varadhan’s Lemma
and Bryc’s Lemma, the LDP in Proposition 3.1.3(i) for starting measures µn follows.

3.4.5 Contraction principle

Proposition 3.1.3(ii) follows from Proposition 3.1.3(i) via the approximate contraction
principle based on exponential approximation estimates. See Dembo and Zeitouni [DZ98,
Section 4.2].
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