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Integrins: Signaling, disease, and therapy
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Abstract
Background: Integrins are a family of transmembrane receptors that mediate cell-cell and cell-matrix adhesion. They are
involved in stable cell adhesion and migration of cells. In addition, integrin-mediated interactions modulate the response to
most, if not all growth factors, cytokines, and other soluble factors.
Purpose: In this review, we briefly explain how integrins can affect the multitude of signal transduction cascades in control
of survival, proliferation, and differentiation. Subsequently, we primarily focus on targeting integrins a5b1 and avb3 in
disease and we discuss how antagonists of these integrins, including disintegrins, RGD peptides, small molecules, and
function blocking antibodies, may be of therapeutical value either alone or, especially in the treatment of cancer, in
combination with existing therapeutical strategies.
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Introduction

Integrins are cell surface receptors that mediate

interactions with the extracellular matrix (ECM) or

with counter-receptors on other cells. They cluster

and recruit a large multi-protein complex to cell-

ECM or cell-cell junctions, which connects them to

the cytoskeleton. In addition, signaling proteins and

their substrates accumulate at these sites, which

regulate the stability of the adhesions and control

cytoskeletal dynamics. Besides their critical role in

stable cell adhesion and cell migration, integrin-

mediated interactions modulate signaling by various

other receptors including receptor tyrosine kinases

(RTK), G-protein-coupled receptors, cytokine re-

ceptors, and others. Consequently, integrins play

important roles in survival, proliferation, and differ-

entiation. They are also implicated in several human

diseases and integrin antagonists have been tested in

preclinical models for various diseases including

inflammation, thrombosis, arthritis, and cancer and

some have even entered clinical trials. For the

treatment of cancer, the expectation is that these

antagonists may increase the efficacy of radio- and

chemotherapy.

Integrins

Integrins are heterodimeric transmembrane receptors

that bind with their globular head domain to

components of the ECM. Some integrins can also

bind counter receptors present on other cells,

bacterial polysaccharides, or viral coat proteins.

Intracellularly, integrins are connected via associated

proteins to the actin cytoskeleton. 18 a and 8 b
subunits are encoded in the human genome from

which 24 different functional integrins are currently

known to be generated (van der Flier & Sonnenberg

2001, Hynes 2002). Ligand binding can be regulated

through integrin clustering and through modulation

of the activity of individual integrins which involves

the propagation of conformational changes from the

cytoplasmic tails across the membrane towards the

ligand-binding region (Liddington & Ginsberg,

2002). Integrins can also activate intracellular signal

transduction cascades, a process referred to as

‘outside-in signaling’. Integrin-mediated cell adhesion

can trigger calcium fluxes, activate tyrosine and

serine/threonine protein kinases and inositol lipid

metabolism, and regulate the activity of the Rho

family of small GTPases (Danen & Yamada 2001).
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Genetic studies in flies, worms, and mice have

established important roles for integrins and

integrin-associated proteins in the development and

maintenance of tissues and in the progression of

diseases (De Arcangelis & Georges-Labouesse 2000,

Bouvard et al. 2001, Bokel & Brown 2002).

Integrin signaling

Integrins generally contain a short cytoplasmic

domain which is devoid of enzymatic activity.

Therefore outside-in signaling by integrins largely

depends on interactions with neighbouring recep-

tors, adaptor and signaling proteins.

Nevertheless integrin signaling is critically impor-

tant for regulation of signal transduction pathways

through distinct mechanisms (Figure 1):

(1) Integrins and growth factor receptors may

activate parallel pathways that synergize at the

level of activation of downstream signaling

proteins. In this way threshold levels in signal-

ing pathways can be lowered considerably

(Chen et al. 1996, Renshaw et al. 1997).

(2) Cell-matrix adhesion initiates clustering of

integrins in the plane of the membrane and

reorganization of the actin cytoskeleton, which

further stimulates the organization of integrins

and associated proteins into large multi-protein

platforms like focal adhesions, hemidesmo-

somes or podosomes. In those platforms

integrins may increase signals generated by

growth factor receptors by bringing kinases and

substrates in close proximity (Burridge &

Chrzanowska-Wodnicka 1996, Geiger et al.

2001).

(3) Cell-matrix adhesions act as anchoring sites for

the actin cytoskeleton and as such they allow

the generation of tension and shape changes.

Via cytoskeletal connections with the nucleus

such changes can affect the nuclear shape and

chromatin structure which might explain the

profound effect of integrin-mediated cell adhe-

sion on the expression of genes (Maniotis et al.

1997, Lelievre et al. 1998).

(4) Integrin-mediated adhesion can cluster and

transactivate several RTK including platelet-

derived growth factor receptor (PDGFR),

epidermal growth factor receptor (EGFR),

Ron, Met, and vascular endothelial growth

factor receptor (VEGFR) (Yamada & Even-

Ram 2002) and members of the Src family

kinases (Shattil 2005).

(5) Integrins regulate RTK signaling further up-

stream through their ability to organize the

ECM. Proteoglycans in the ECM can bind and

structurally modify various growth factors and

integrin-mediated cell adhesion then allows

their subsequent presentation to growth factor

receptors (Faham et al. 1998). Through these

mechanisms integrins play an essential role in

regulating signaling pathways in control of

survival, proliferation, and differentiation both

in health and disease.

Survival

Most adherent cell types depend on integrin-

mediated adhesion for survival (Giancotti & Ruoslahti

1999, Cordes 2006, Gilcrease 2007). Loss of adhesion

causes cells to undergo apoptosis, a process referred

to as anoikis (Frisch & Screaton 2001). Likely, anoikis

is important to maintain the integrity of tissues by

preventing cells from growing at inappropriate sites

after losing adhesion from their original surrounding.

Integrin-mediated cell adhesion in 2-dimensional

culture systems stimulates phosphatidylinositol-

3-kinase (PI3K)-mediated protein kinase B (PKB/

AKT) activity and B-cell leukemia-2 (Bcl-2) ex-

pression which mediates survival signals (Giancotti

& Ruoslahti 1999). In absence of serum factors

Figure 1. Cross-talk between growth factor receptors and

integrins. Integrins affect signal transduction pathways through

distinct mechanisms: (1) Together with growth factor receptors,

integrins activate parallel pathways that synergize at the level of

downstream signaling proteins; (2) Integrins initiate clustering of

proteins in cell-matrix adhesions, thereby bringing kinases and

substrates in close proximity; (3) Those cell-matrix adhesions also

anchor the actin cytoskeleton and thereby generate cytoskeletal

tension that affects the nuclear shape and gene expression;

(4) Integrin-mediated adhesion can cluster and transactivate

receptor tyrosine kinases, and (5) integrins organize the extra-

cellular matrix and thereby regulate upstream signaling of

receptors. See text for additional details.
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integrin-mediated adhesion to fibronectin enhances

survival by activating c-Jun N-terminal kinase (JNK)

in a focal adhesion kinase (FAK) dependent manner

(Almeida et al. 2000). Integrin a6b4 ligation also

supports nuclear factor kB (NFkB)-mediated survival

signals in 3-dimensional cultures of mammary epithe-

lial cells (Weaver et al. 2002). On the other hand,

integrins that are not ligand-bound can trigger

apoptosis of fully adherent cells by recruitment and

activation of caspase-8 suggesting that a given integrin

expression profile renders a cell dependent on a

specific ECM environment for its survival (Varner

et al. 1995, Stupack et al. 2001).

Proliferation

The ability to grow in the absence of cell adhesion is

a key property of oncogenically transformed cells. In

normal untransformed cells, integrin-mediated cell

adhesion regulates the G1 phase of the cell cycle

(Assoian & Schwartz 2001). Integrins cooperate with

RTK to stimulate the cyclin E/cyclin dependent

kinase 2 (cdk2) activity that drives S-phase entry.

Multiple different pathways have been described to

connect integrins to cell cycle progression. Regula-

tion of cyclin D1 expression, both at the level of gene

transcription and protein accumulation, is a key

element of the control of cell cycle progression by

RTK and integrins. Control of extracellular signal-

regulated kinase (ERK) activation can largely explain

the transcriptional regulation of cyclin D1 by

integrin-mediated adhesion.

Mitogen-stimulationofRTKand integrin-mediated

adhesion can each independently stimulate ERK

activation. However, only when adherent cells are

stimulated with mitogens ERK activity is strong and

sustained due to convergence of RTK and integrin

signaling at the level of Raf or MAP/ERK kinase

(MEK) (Chen et al. 1996, Renshaw et al. 1997).

There are several ways through which integrins

can regulate ERK activity (Howe et al. 2002):

(1) Binding of integrins to the ECM stimulates the

formation of an active FAK/Src signaling com-

plex at sites of adhesion. Autophosphorylation

of FAK at Tyr397 following integrin-mediated

adhesion creates a binding site for the Src

homology 2 (SH2) domain of Src (Schlaepfer

& Hunter 1998). Subsequently, Src can phos-

phorylate other Tyr residues of FAK thereby

creating binding sites for downstream effectors.

Direct binding of growth factor receptor binding

protein-2 (Grb2) to the active FAK/Src complex

or indirect binding through Shc stimulates the

Grb2-Sos-Ras-Raf-MEK-ERK pathway. Alter-

natively, Src can phosphorylate the scaffolding

protein p130Cas (Crk associated substrate) that

is also associated with FAK via its SH3 domain,

thereby creating a binding site for the adaptor

protein Crk. Either through association with

son of sevenless (Sos) or through association

with C3G (a guanine-nucleotide exchange

factor for the small GTPase Rap-1), the inter-

action with Crk can result in ERK activation.

Integrin-mediated adhesion also stimulates the

association of the adaptor protein Nck with

p130Cas, creating yet another potential link

from p130Cas to ERK activation. Finally,

PI(3)K can associate with phosphorylated

Tyr397 in FAK and it may become activated

upon integrin-mediated cell adhesion. PI(3)K

may activate ERK through its role as a protein

kinase or through modulation of Sos activity via

its production of phosphatidylinositol-3,4,5-tri-

sphosphate (PtdInsP3).

(2) Secondly, certain integrin a-subunits are

coupled to the Src family kinase Fyn through

association with the oligomeric transmembrane

protein Caveolin-1 (Guo & Giancotti 2004).

Upon integrin ligand binding, Fyn is activated

and it subsequently recruits and phosphorylates

Shc, creating a link to the Grb2-Sos-Ras-Raf-

MEK-ERK pathway.

(3) Finally, integrin-mediated adhesion activates

protein kinase C (PKC) and several PKC

isoforms can directly activate Raf. Enhanced

levels of phospholipids probably can explain the

activation of PKC upon integrin-mediated

adhesion. Also integrin-mediated adhesion

leads to the activation of the p21-activated

protein kinases (PAK) through several mechan-

isms, and PAK can activate both Raf and MEK.

Besides controlling ERK activity, suppression or

relocalization of the cyclin dependent kinase in-

hibitors p21 and p27 by integrin-mediated adhesion

also contributes to G1 cell cycle progression.

Additionally, integrin-mediated adhesion increases

expression of c-Myc through activation of c-Src

(Benaud & Dickson 2001). The organization of the

actin cytoskeleton by integrins is essential for

adhesion-regulated proliferation and integrin-

mediated control of the activity of Rho GTPases

(enzymes critically involved in actin cytoskeletal

organization) is an important aspect of adhesion-

mediated regulation of the levels of cyclin D1 and

cdk-inhibitors.

Differentiation

Integrin-mediated cell adhesion also regulates

the expression of genes related to differentiation.

Adhesion to basement membrane components sti-

mulates the synthesis of milk proteins by increasing

Targeting integrins 745
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phosphorylation of the prolactin receptor in cultured

mammary epithelial cells (Li et al. 1987, Edwards

et al. 1998). Integrin-mediated adhesion also primes

monocytes for inflammatory responses (Haskill et al.

1988, Shi & Simon 2006). Another example of

regulation of differentiation by integrins is the

inhibition by integrin-blocking antibodies of the

formation of contracting myotubes and expression

of meromyosin by embryonic myoblasts (Menko &

Boettiger 1987). Deletion of b1 integrins in embryo-

nic stem (ES) cells showed that b1 is important for

normal in vitro cardiac and myogenic differentiation,

whereas neuronal differentiation is accelerated in b1-
deficient ES cells (Fassler et al. 1996, Rohwedel

et al. 1998). Finally, terminal differentiation of

cultured keratinocytes under semi-solid conditions

is inhibited by the integrin-ligand fibronectin or by

adhesion-blocking antibodies to b1 integrins (Watt

2002). Moreover, a tumor-associated mutation in b1
was recently found that increases ligand binding and

prevents terminal differentiation of keratinocytes

which might contribute to the formation of epider-

mal neoplasia (Evans et al. 2003).

Integrins in disease

Aberrant cell adhesion and migration have been

implicated in several diseases, including a number of

inflammatory disorders such as rheumatoid arthritis,

inflammatory bowel disease and asthma, as well as

cardiovascular diseases, thrombosis, and cancer.

This often correlates with alterations in the expres-

sion or functionality of integrins. For instance,

deletion of the a6b4 integrin leads to a skin blistering

disease termed Epidermolysis bullosa (Borradori &

Sonnenberg 1999), deletion of a7b1 causes con-

genital muscular dystrophy (Vachon et al. 1997), and

in patients with Glanzmann’s Thrombasthenia plate-

lets fail to aggregate, due to quantitative or qualita-

tive defects of aIIbb3 (Hodivala-Dilke et al. 1999).

On the other hand, in osteoporosis up-regulation of

integrin avb3 causes enhanced bone resorption by

osteoclasts (Lakkakorpi et al. 1993) and high

expression levels of various types of integrins have

been correlated with tumor progression in a numbers

of cancers (Mizejewski 1999).

The use of integrin antagonists

Integrin-blocking strategies have been developed to

treat a large number of diseases (Table I). Integrin

antagonists comprise small molecule compounds,

peptidomimetics, and monoclonal antibodies

(mAb). We will discuss use and action of several

drugs with focus on cancer and antagonists of the

integrins a5b1 and avb3, being the most extensively

studied targets in this disease.

Anti-angiogenesis is an emerging approach for

cancer treatment. Angiogenesis, which is the forma-

tion of new blood vessels, is a vital process for

tumor progression (Folkman 1971). Inhibition of

new blood vessel formation has been shown to

block the growth and spread of solid tumors in

various animal models. There is substantial evi-

dence that several integrins, including avb3, avb5,
and a5b1 have an important role in tumor

angiogenesis (Brooks et al. 1994a, Friedlander

et al. 1995, Kim et al. 2000). The regulation of

cell migration and survival of endothelial cells

during angiogenesis and metastasis via these integ-

rins makes them suitable targets for anti-angiogenic

therapy.

Disintegrins and RGD peptides

The RGD sequence is an important cell attachment

recognition site for integrins in many ECM compo-

nents (Pierschbacher & Ruoslahti 1984, Gardner &

Hynes 1985, Plow et al. 1985) and has been used as a

pharmaceutical application to treat aberrant cell

adhesion related-diseases. Disintegrins are RGD-

containing cysteine-rich peptides discovered in snake

venoms (Gould et al. 1990). Some disintegrins

specifically bind to integrin avb3 and are applied as

therapeutic agents for angiogenesis-dependent

tumor growth and metastasis (Huang 1998). Others,

such as Contortrostatin, which is a disulfide-linked

homodimer of 13.5 kDa containing two RGD sites

isolated from the venom of Agkistrodon contortrix, can

bind avb3, avb5, as well as a5b1 and have been

shown to inhibit tumor growth and angiogenesis in

an orthotopic xenograft model for breast cancer

(Swenson et al. 2005).

The disadvantage of natural occurring peptides

such as disintegrins is their relatively large size and

low metabolic stability, which limits their usefulness

for clinical application (McLane et al. 2004, Cai &

Chen 2006). RGD peptides have been further

optimized by incorporation of D-amino acids and

use of cyclic structures. Cyclic RGD-containing

pentapeptides are the most commonly used RGD-

based avb3 antagonists (Ruoslahti 1996). Cyclo

(RGDfV) is a highly effective avb3 antagonist with

anti-tumor and anti-angiogenic effects (Brooks et al.

1994b, Friedlander et al. 1995). In a xenograft

model for melanoma cyclo (RGDfV)-treatment

hindered tumor growth and histological analysis

indicated that the effect results from angiogenesis

inhibition rather than inhibition of tumor cell avb3
(Dechantsreiter et al. 1999). Systematic modification

of this peptide resulted in a more active and selective

compound named c(RGDf(NMe)V) also known as

Cilengitide (EMD 121974) (Goodman et al. 2002).

Cilengitide induces apoptosis in Glioblastoma and

746 S. Huveneers et al.
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medullablastoma cells (Taga et al. 2002). It is

applied in phase I and II to treat non-small lung

cancer, prostate cancer, glioblastoma, pancreatic

cancer, melanoma, and lymphoma (www.cancer.

gov/clinicaltrials).

Small molecule integrin antagonists

There is evidence that small molecule antagonists

could be used to treat human diseases, which depend

on angiogenesis, including rheumatoid arthritis,

osteoporosis, and cancer (Hartman & Duggan

2000, Kerr et al. 2000, Giavazzi & Nicoletti 2002,

Shimaoka & Springer 2003). For this purpose, new

classes of small molecule avb3 antagonists have been

developed, including isoxazolines (Pitts et al. 2000),

disubstituted indazoles (Batt et al. 2000), and non-

peptide chemical RGD peptidomimetics. An exam-

ple of this latter class of antagonists, S247, which

blocks avb3/avb5, was shown to decrease tumor

growth and angiogenesis of colon cancer liver

metastases leading to prolonged survival in an

orthotopic murine model (Reinmuth et al. 2003).

Another non-peptide chemical RGD mimetic that

targets avb3, SC56631 inhibits bone resorption

in vitro and suppresses osteoporosis in oestrogen-

deprived animals (Engleman et al. 1997). The

naturally occurring polyphenol, Stilbene Resveratrol

also binds to integrin avb3 at or near the RGD-

binding site and induces apoptosis in cancer cells

through activation of ERK with consequent phos-

phorylation of p53 (Lin et al. 2006). Compared to

avb3, few small molecule antagonists are known to

inhibit a5b1. Nevertheless, treatment with ATN-

161, a non-RGD peptide specific for a5b1 that is

derived from the synergy site in fibronectin that is

part of the a5b1-binding motif but not of that of

avb3, enhanced the efficacy of chemotherapy in a

mouse model for colon cancer metastasis (Stoeltzing

et al. 2003).

Table I. Integrin antagonists and its targeted diseases.

Integrin target Drug Company Disease Reference

b2 Efalizumab (RabTIVA1) Genetech Psoriasis (Lebwohl et al. 2003)

a4 Natalizumab (Tysabri1) Biogen Idec & Elan MS, Crohn’s disease (Miller et al. 2003,

Ghosh et al. 2003)

a4b1/a4b7 TR14035 N/A Asthma (Cortijo et al. 2006,

Sircar et al. 2002)

a4b7 MLN02 Millennium

pharmaceuticals

Ulcerative colitis (Feagan et al. 2005)

a5b1 Volociximab

(M200/Gemzar1)

PDL Biopharma Inc Renal cell carcinoma,

metastastic melanoma,

pancreatic cancer

www.clinicaltrials.gov

EndostatinTM EntreMed Inc.

Angiogenesis, cancer

(O’Reilly et al. 1997)

ATN-161 N/A (Stoeltzing et al. 2003,

Livant et al. 2000)

avb3 Chimeric 7E3 Fab

(Abciximab/ReoPro1)

Centocor (Trikha et al. 2002)

Contortrostatin N/A (Clark et al. 1994,

Trikha et al. 1994)

C(RGDf(NMe)V)

(Cilengitide, EMD 121974)

Merck KGaA www.cancer.gov/clinicaltrials

(Albert et al. 2006,

Taga et al. 2002)

C (RGDfV) cyclo

(Arg-Gly-Asp-D-Phe-Val)

N/A (Allman et al. 2000,

Friedlander et al. 1995,

Brooks et al. 1994b,

Dechantsreiter et al. 1999)

S247 Pharmacia Corp (Reinmuth et al. 2003,

Abdollahi et al. 2005)

Resveratrol N/A (Aggarwal et al. 2004)

Vitaxin MedImmune Inc.

Rheumatoid arthritis

(Mikecz 2000)

SB273005 SmithKline Beecham

Pharmaceuticals

(Badger et al. 2001)

SC55631 N/A Osteoporosis (Engleman et al. 1997)

aIIbb3 Chimeric 7E3 Fab

(Abciximab/ReoPro1)

Centocor Unstable angina,

restenosis, stroke,

acute coronary artery

disease

(Bennett 2001)

Lotrafiban SmithKline Beecham

Pharmaceuticals

(Liu et al. 2000)

Targeting integrins 747
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Monoclonal antibodies

LM609 is an anti-human integrin avb3 mAb that

blocks cell adhesion to RGD-containing ligands

(Cheresh 1987). It prevents bFGF (basic fibroblast

growth factor)- and TNFa (tumor necrosis factor-a)-
dependent angiogenesis but has no effect on pre-

existing vessels (Brooks et al. 1994a). LM609 was

effective in preclinical models for glioblastoma,

melanoma, breast, and prostate cancer. Intravenous

administration of LM609 inhibited outgrowth of

avb3-negative human breast cancer cells in a

combined (SCID) mouse/human chimeric model

(Brooks et al. 1995). Fewer human blood vessels and

less invasive tumors were observed in these LM609-

treated animals with no apparent effect on normal

human tissue, indicating that LM609 acts as an anti-

angiogenic compound. Similar effects have been

obtained with antibodies directed against a5b1 (Kim

et al. 2000).

The serum half-life and integrin-binding affinity

of LM609 have been improved by generating a

humanized version, Vitaxin (Carter 2001, Wu &

Senter 2005). Optimization of the complementarity-

determining regions further improved Vitaxin’s

integrin binding affinity allowing it to inhibit tumor

growth in Kaposi’s sarcoma and partially inhibit the

binding of the human immunodeficiency virus-1

(HIV-1) Tat protein to avb3 (Rader et al. 2002).

Vitaxin II, although binding avb3 with even higher

affinity, showed no positive response in cancer

treatment but may be effective as adjuvant in

combination with chemo- or radiation therapy

(Posey et al. 2001). In 2003, MedImmune licensed

Vitaxin II (MEDI-522) for clinical development in

phase II trials in prostate cancer, melanoma,

psoriasis, and rheumatoid arthritis. However in

2004, the clinical trial of Vitaxin in the treatment

of rheumatoid arthritis and psoriasis was ended

because preliminary results failed to demonstrate

clinical benefits. Nevertheless, the trials for mela-

noma and prostate cancer are still in progress

(MedImmune ends some Vitaxin testing, advanced

tests for arthritis treatment halted; cancer research

continues. Article by Michael S. Rosenwald,

Washington Post staff writer; August 31, 2004;

Page E05).

Strongly improved versions of antibodies against

a5b1 have also been generated. For instance,Volo-

ciximab, a chimeric humanized mAb, is a high

affinity function inhibitor of the a5b1 integrin,

which, like avb3 has been found to be upregulated

in activated endothelial cells. It has been applied in

clinical phase II trials for solid tumors in renal cell

carcinoma, metastatic melanoma and pancreatic

cancer. These are ongoing studies with no data

reported yet (www.clinicaltrials.gov).

Potential of integrin antagonists to improve

efficacy of existing anticancer therapy

Similar to other anti-angiogenic agents, integrin

antagonists can be applied in combination with

cytotoxic anticancer therapy, such as chemo- or

radiotherapy. Such combinational approaches can

maximize efficacy in cancer by destroying cancer

cells as well as endothelial cells, the latter depriving

the tumor of nutrients and oxygen (Teicher 1996).

On the other hand, the anti-angiogenic agent may

also ‘normalize’ the abnormal structure and function

of tumor vessels, thereby improving drug (but also

oxygen) delivery (Jain 2005). Examples of such

combination therapies are discussed in the following

(Figure 2).

The ATN-161 a5b1 antagonist enhanced the

efficacy of chemotherapy in a mouse model for

colon cancer metastasis (Stoeltzing et al. 2003). Co-

application with Cilengitide increased the anti-tumor

effectiveness of a tumor-specific antibody against

interleukin 2 (IL-2) fusion proteins in a murine

tumor model (melanoma, colon carcinoma, and

neuroblastoma) (Lode et al. 1999). In pancreatic

cancer, Cilengitide combined with gemcitabine

(a radiation-sensitizing agent and a wide spectrum

anti-cancer drug) inhibited highly vascularized

tumor growth (Colomer 2004, Raguse et al. 2004).

In ongoing trials for breast cancer, colon cancer,

prostate cancer, melanoma, lung cancer, glioblasto-

ma, and ovarian cancer, Vitaxin II is applied in

combination with chemo-, hormonal-, biological-,

immuno-, or radiotherapy. Patients with Stage IV

Figure 2. Integrins as targets in anti-cancer therapy. Open arrows

indicate processes that are blocked by integrin antagonists. These

include survival and proliferation of tumor cells as well as survival,

proliferation, and/or migration of endothelial cells. The latter may

be of particular importance during radiotherapy where increased

expression of avb3 on endothelial cells can mediate therapy escape

through enhanced angiogenesis.
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melanoma have 9.4-month median survival when

treated with Vitaxin II combined with dacarbazine

(DTIC) whereas patients treated with DTIC alone,

have a median survival of 7.9 months (Cai & Chen

2006). It has been reported that radiotherapy in fact

promotes integrin-mediated survival signaling

through PKB/Akt by upregulating avb3 expression

on endothelial cells. This escape mechanism can be

circumvented by administering angiogenesis inhibi-

tors, such as the small molecule avb3 integrin

antagonist S247, which prevents radiation-induced

PKB/Akt phosphorylation leading to enhanced anti-

angiogenic and anti-tumor effects (Abdollahi et al.

2005).

Most integrin antagonists interfere with binding of

natural ECM components to their receptors and

thereby prevent integrin signaling to survival and

proliferation. As such, integrin antagonists may

effectively suppress tumorigenesis by targeting these

signaling pathways in both tumor and endothelial

cells. Ultimately, a trimodal strategy in which radio-,

chemo-, and anti-angiogenic therapies are combined

may be highly effective in the treatment of cancer.

The use of integrin antagonists as anti-angiogenic

agents that may also target tumor cells, may fit well

in such strategies.
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