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ABSTRACT 
Background
Multiplex Ligation-Dependent Probe Amplification (MLPA) is an application that 
can be used for the detection of multiple chromosomal aberrations in a single 
experiment. In one reaction, up to 50 different genomic sequences can be 
analysed. For a reliable work-flow, tools are needed for administrative support, 
data management, normalisation, visualisation, reporting and interpretation. 

Results
Here, we developed a data management system, MLPAInter for MLPA 
interpretation, that is windows executable and has a stand-alone database for 
monitoring and interpreting the MLPA data stream that is generated from the 
experimental setup to analysis, quality control and visualisation. A statistical 
approach is applied for the normalisation and analysis of large series of MLPA 
traces, making use of multiple control samples and internal controls. 

Conclusions
MLPAinter visualises MLPA data in plots with information about sample replicates, 
normalisation settings, and sample characteristics. This integrated approach 
helps in the automated handling of large series of MLPA data and guarantees 
a quick and streamlined dataflow from the beginning of an experiment to an 
authorised report. 

BACKGROUND
In medical research, knowledge of chromosomal deletions or amplifications is 
of great importance. For example, it can help us better understand the genetic 
causes of certain diseases and as a consequence, improve the treatment 
and prognosis of individual patients. Classic techniques for the detection of 
chromosomal abnormalities include karyotyping, Southern blotting, Fluorescent 
In Situ Hybridisation (FISH), CA-repeat analysis and quantitative micro satellite 
analysis by real-time PCR [1-4]. In recent years, high-throughput methods based 
on BAC arrays, SNP arrays and related techniques have gained prominence [5,6]. 
Although these are excellent tools for whole genome analysis, these techniques 
are laborious, time-consuming, difficult to implement, expensive and generate 
large data sets. The management and interpretation of such voluminous data is 
not a light task. Multiplex Ligation-dependent Probe Amplification (MLPA) [7] has 
been introduced as a relatively cheap and fast method to perform quantitative 
chromosomal analysis of up to about 50 genomic DNA or RNA sequences, which 
is able to distinguish sequences differing in only one nucleotide. This technique fills 
the gap between the methods that investigate a single locus and the techniques 
that interrogate thousands of loci. 
MLPA is a quick and cost effective approach to testing for the presence of gene 
deletions or obtaining tumour profiles on multiple loci in a single tube, which 
can easily be applied in molecular pathology. Furthermore, MLPA only requires 
small amounts of DNA. Moreover, DNA obtained from formalin fixed paraffin 
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embedded material can be used. Currently, MLPA is used for the validation of 
array-based comparative genomic hybridisation (array-CGH) and SNP arrays. 
[7-12]. Other applications for MLPA include methylation status determination, 
copy number analysis in segmentally duplicated regions, expression profiling, 
and transgene genotyping [13]. The principle of MLPA is that for each locus, 
two DNA oligonucleotides (probes) must hybridise to their complementary target 
sequences on the template DNA for ligation to occur. Subsequently a PCR 
reaction is performed on the ligated probes. After PCR, an aliquot of the PCR 
product is combined with an internal size marker and deionised formamide. The 
sample is then injected into a capillary of an automated sequencer, where after 
a 30 minutes run, the data are subsequently collected for further analysis. Since, 
the amount of ligated probes is dependent on the number of specific primer 
binding sites, this method is suitable for the detection of chromosomal deletions 
or amplifications [7]
The analysis, visualisation and data management of hundreds of samples with 
many different probes per reaction can be cumbersome. Like in many modern 
techniques, the results of an MLPA analysis are delivered as lists of values that can 
be easily imported into spreadsheet applications. Large collections of individual 
spreadsheets are not the best way to collect and analyse data, especially in an 
environment where a controlled work flow has to be guaranteed. A database 
system offers advantages such as the tracking of material used in the tests and 
consistency in the handling of test results. Some of the information that needs 
to be managed includes: the origin of normal and test samples, the experimental 
setup, the identity of the probes, and the quality settings. Normalisation has to 
be performed within and between samples and results have to be visualised 
and stored. Sophisticated tools are needed to facilitate the reliable use of MLPA 
[7,9,14-16]. In this paper, we present a statistical technique for the normalisation 
of MLPA data and the software component that we have developed to make 
MLPA a simple, effective, and attractive tool. Here we describe MLPAinter, for 
MLPA interpretation, a system that stores results, instrument settings and sample 
descriptions in a Microsoft Access database. A special front-end, written in the 
Borland Delphi language, allows the user to interrogate the database, normalise 
data and visualise results as heat maps and specialised plots. 

IMPLEMENTATION
MLPA probe kits are obtained from MRC-Holland (Amsterdam, The Netherlands). 
All assays are performed according to the manufacturers’ protocols on an ABI 
DNA sequencer (Applied Bio Systems, Foster City, CA, USA). MLPAinter was 
constructed using Delphi 2009 (Embarcadero, San Francisco, CA, USA) for the 
GUI, and Microsoft Office Access 2003 (Microsoft, Seattle, WA, USA) for the 
standalone database. The runtime requirements for the application are Windows 
XP or newer. Statistics used in MLPAinter as described below, were validated in 
a series of oligodendroglial tumours as previously described [9]. The source code 
and a step by step protocol to use MLPAinter together with showcase sample files 
and analysis tables can be obtained from http://code.google.com/p/mlpainter/ 
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RESULTS
Data pre-processing
MLPAinter can not handle the raw electrophoresis signal and therefore requires 
that the MLPA amplification product peaks have already been linked to the 
corresponding MLPA probes of the used MLPA kit. After electrophoresis, all 
MLPA sample trace files should be pre-processed in standard software for basic 
analysis of MLPA traces. Subsequently, the report files can be imported. Here we 
used GeneMapper (Applied Bio Systems, Foster City, CA, USA) for MLPAinter, 
but the system can also import data from the combination Genescan Analysis and 
Genotyper software (Applied Bio Systems, Foster City, CA, USA). Adaptations to 
other software programs like Genemarker (Softgenetics, State College, PA, USA) 
should be straightforward. A step-by-step vignette for Genemapper settings can 
be found at http://code.google.com/p/mlpainter/. Briefly, the product lengths of 
the ligated probes are defined with an internal size standard. The peak height 
and area are calculated for every peak present in the trace. Any undefined peaks 
are discarded from further analysis. Data tables are then automatically generated 
with length, height and area of all recognised peaks. These tables are exported 
from the Genemapper software package and imported into MLPAinter for specific 
analysis of the raw data. Protocols for linking output files from other software 
packages are planned for future versions. 

Data management
Here, we developed a relational database using Microsoft Access to manage all 
pertinent information for MLPA experiments and created a front end with Borland 
Delphi to guide laboratory workflow and data analysis. Characteristics such as 
the sample number and status, e.g., tumour or normal, DNA concentration and, if 
available, tumour percentages that are relevant for the performance of the MLPA 
should be stored in a database. Annotation information like the chromosomal 
position and gene names of the different probes in a kit should be available for 
the interpretation of the results in output tables, heat maps, and plots. To assist 
the laboratory work-flow, electronic and paper sample sheets can be prepared for 
the automated sequencer. The raw data of the sequencing reports are imported 
into the database for subsequent quality control steps and analysis. 
The relational database contains three hierarchies which are interconnected. 
The hierarchies are MLPA kits and probes, electrophoresis results, and analyses. 
In the database tables, next to the specific Kit information, you can find gene 
and probe names, as well as the physical and cytogenetic location of the 
probes. All probes in a particular kit are numbered from 1, for the probe with the 
smallest product size to n, for the probe with the largest product size. Every kit 
contains a number of probes that can be used for a quality check of the trace. 
The corresponding products are named based on their size in base pairs. The 
different kits as defined by MRC-Holland, can be imported from www.mlpa.com.
Both the MLPA run and analysis hierarchy use the samples table. This table 
contains clinical information like the origin of the used DNA, e.g., if the DNA is 
isolated from whole blood, fresh frozen tissue or formalin fixed paraffin embedded 
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tissue. Every sample is labelled with an N for Normal, T for Test or the Tumour 
origin of the tissue. Normal samples are treated differently from test samples in 
the normalisation and analysis steps as described in the normalisation section. 
An electrophoresis run typically consists of a sample plate to be processed by 
the sequencer. The sample, the kit, and a unique name for the plate are recorded 
for each position on the sample plate. Different types of kits can be used within 
one run. From this information a sample sheet or configuration file is created 
for the sequencer. The resulting peak heights and peak areas of an MLPA run 
are imported for all of the probes in a kit and the analysis settings can be set to 
analyse peak heights or peak areas. 
During analysis, specific MLPA runs can be combined from one or more 
electrophoresis runs. A group of reference probes can be copied from 
another analysis with the same kit, and can be adapted to suit the needs of 
the specific analysis. However, to avoid inter experimental differences, values 
from experiments performed at a different time should not be used. Probes can 
also be excluded from the analysis. Successful analysis can be finalised by 
authorising the results. After authorising the analysis, all options are fixed except 
for visualisation and sorting options. 

Quality control
MLPAinter presents three data quality indicators, Q1, Q2 and Q3, (Figure 1A) to 
assist with the decision of whether to include a trace in the analysis. 
The first indicator (Q1) is the ratio between the ligation dependent peak at 94 base 
pairs and the median of the DNA dependent 64, 70, 76 and 82 peaks (Figure 2). 
Van Dijk et al. [10] state that this ratio should be greater than 5 to obtain good and 
reproducible results. Nonetheless, we have observed that in some cases, lower 
ratios can also give reliable peak patterns (Figure 2).
The second quality indicator (Q2) is the median peak height of the probe signals 
present in the kit. If the median of the first 20 ligated probe peak heights is below 
450 relative fluorescent units (RFU), the trace quality is considered low. Moreover, 
because of the limits in the detection optics of the instrument, a median peak 
height over 4000 RFU is indicative that the trace quality is low (Figure 2) [14].
For the last indicator (Q3) all analysis peaks are split in 2 parts based on sequence 
length. The value is computed as the median signal of the longest probes divided 
by the median signal of the shortest probes. Often the longest probes show lower 
signals, however in high quality traces this indicator is usually over 0.5. 
Other factors that are important for the assessment of quality, which can 
optionally be stored into the database, are the DNA concentration of the sample, 
the tumour percentage of the tumour specimens and the intrinsic DNA quality 
of the sample. The combination of these quality parameters allows the user to 
decide on inclusion or exclusion of a trace from the analysis. 

Normalisation
Raw MLPA results are not calibrated. Peak areas or heights are dependent on 
sample quality, hybridisation parameters and instrument settings. To analyse the 
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Figure 1. MLPAinter for MLPA interpretation. Panel A: Heat map of an authorised series of 
samples after normalisation. The probes are sorted by the name of the gene. The gain and 
loss columns show the total number of probes with gain or loss. Q1-3 show the different 
quality scores calculated from the DNA dependent probes (marked 101-104) and the 
ligation dependent probe (105) and as explained in the text. Dark grey cells: calibration 
probes, the id has a suffix ’c’. Light grey cells: reference probes, the id has a suffix ’r’. 
Yellow cells: probes with loss of one allele (< 0.8). Blue cells: probes with gain of one allele 
(>1.25). Panel B: Sample plot of an individual sample after normalisation. The quality 
indices for each replicate are shown. Replicates are visualised in different colours. Probes 
are sorted by the gene name combined with the chromosomal position. The standard 
scale can be adjusted in case of samples with amplified probes (see panel C).



MLPAinter for MLPA Interpretation

83 

MLPA traces, internal and external control loci are used for the normalisation of 
the data. External controls, e.g., normal tissue in tumour analysis, have to be 
present in every experiment for the pattern comparison. Internal controls for the 
calibration of the samples are present in every kit and are supposed to be non-
altered or reference probes in a tumour sample. These reference probes are 
compared to the probes where DNA changes are expected. 
The top trace in Figure 2 shows a normal sample. It is evident that peak heights 
or areas differ between probes; and these differences have to be corrected. Also 
the average peak areas or heights may differ from sample to sample. Therefore, 
sample calibration and probe calibration have to be performed. Consider the data 
as a matrix Y, with columns for the probes and rows for the sample. Then, we need 
to apply normalisation to both rows and columns. Normalisation is implemented 
as division by row parameters ri,i = 1 . . .m and column parameters cj, j = 1 . . . 
n, such that a matrix X = [xij ] results, with xij = y ij /( ri cj). We prefer to work on 
the original scale instead of with logarithms because loss and gain correspond to 
integer ratios (including zero) on the original scale. 
A simple approach would be to take row and column medians for r and c, 
respectively. This could work well if the number of deletions or amplifications is 
relatively small. However, for samples with a large number of deletions (more 
than 50%), the corresponding row median might become a number near zero and 
normalisation by dividing with this small number would give a completely wrong 
result. 

Figure 2. MLPA sample trace files. Overview of 5 different sample traces obtained with 
MLPA kit P105 (Oligodendroglioma-2) showing the necessity of data normalisation. 
Differences in and between samples are hard to distinguish. Quality aspects of every 
trace are visible. Probe lengths in base pairs are shown on the x-axis. Box 1: four no 
template control peaks of 64, 70, 76 and 82 bases, respectively. Box 2: a 94 base pair 
ligation control peak. Box 3 and 4: larger peaks in the first half than in the second half of 
the sample trace. Box 5: peak heights are noted on the y-axis
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To improve normalisation and obtain calibration factors, we use only a subset of 
the samples and probes. Specifically, we use normal samples, and only a subset 
of the probes, where copy number changes are unlikely, even in tumour samples. 
We use the following algorithm: 

1. To correct for the sample-to-sample variation, divide the peak heights or areas 
of all the probes in each sample by their median. This gives provisional row 
parameters, ř for the normal samples, and provisional normalisation of the 
normal samples.

2. To correct for systematic differences between probes, divide the peak heights 
or areas of all the probes within a MLPA run by their median. This results in 
the normalised peak areas or heights, and represents the column parameters 
c for all probes. The average of all probes is now close to 1.

3. Select the probes that have a small probability of change in copy number. 
Call these the reference probes. The remaining probes are called the focus 
probes, since we look for changes in these. The description file for commercial 
kits includes this information, and the program uses these probes by default.

4. Select the part of the data that represents the normal control or non-tumour 
samples and the reference probes.

5. Redo steps 1 and 2 for the subsets of reference samples and reference 
probes.

6. Determine which probes are most stable. Subtract 1 from each normalised 
peak height or area and take the absolute value. Compute for integrated MLPA 
analysis the median of these numbers for each probe. This is the median of 
the absolute deviations: MAD.

7. The reference probes with the lowest MAD are most stable. Select the five 
probes closest to zero. These are the probes that we call the calibration 
probes.

8. Compute the median peak height or area of the 5 calibration probes for each 
sample (normal and test samples or tumours and non-tumours). Divide all 
peak heights or areas as computed in step 2 in each sample by this value. This 
gives the final row parameters r for all samples, and their final normalisation. 

Reference probe selection
As in quantitative RT-PCR, the selection of reference probes is a critical element 
of the analysis [17]. MLPA kits contain about 10 reference probes that are included 
for normalisation purposes because they are not involved in the experimental 
hypothesis/diagnostic question. Alternatively, one can usually find a subset of 
probes in existing kits that are known not to be involved in the hypothesis. The 
procedure selects the most stable probes from the reference probes to calibrate 
the data. The number of calibration probes used (five, in this instance) did not 
significantly influence the results (data not shown). However, the number is 
configurable in the program. If probes show high variability between replicates or 
between normal samples, they should be excluded from the analysis.
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Visualisation
We have designed a number of visualisations to interpret the results after 
the normalisation and quality control of the data set. The first visualisation is 
a heat map that shows all of the data in an experiment. Deletions and gains 
are colour-coded with configurable thresholds. Probes can be sorted by locus 
names or chromosomal position. The reference and calibration probes are 
clearly differentiated by a grey-shade (Figure 1). Another visualisation shows the 
normalised values of all replicates of one sample in a plot (Figure 1). Technical 
replicates are shown in different colours. On the x-axis, the different probes are 
shown in the selected probe order. The y-axis is on a scale from 0 to 2.5, where 
0 stands for absent probes. Ideally probes at genomic loci with loss of a single 
allele show values around 0.5. Unaltered probes are visualised around 1.0. 
Probes with DNA gains have values around 1.5 or above. In tumour samples 
contaminated with normal DNA these values are usually not that outspoken. The 
researcher should keep this in mind during the interpretation. Information about 
sample characteristics and probes used are also shown in the plots.

Future developments
Currently the system is suited for the analysis, visualisation and data management 
of MLPA. However, all of the information generated during an experiment is still 
not fully integrated in the data analysis. For instance, tumour percentages can be 
stored in the database and will be displayed, but it is up to the user to incorporate 
this information into the interpretation. We plan to include the tumour percentage 
and probably the DNA index for automated identification of the allelic state of the 
chromosomal aberrations in the analysed sample ([18]). 
Another worthwhile improvement would be to remove the dependency on an 
external program to do the peak detection. 

DISCUSSION
MLPA has a variety of applications for the detection of changes in dosage at 
a single locus, e.g., a subtelomeric locus, to those with multiple changes. Up 
to 50 different probes (genomic sequences) can be interrogated in one single 
reaction. Advantages are that only small amounts of DNA are needed and that 
DNA isolated from formalin fixed paraffin embedded material can be used. As 
it stands, currently available software tools for MLPA analysis do not integrate 
data management, normalisation and visualisation, and do not always perform 
adequate data normalisation between and within traces. In these packages, the 
quality aspects of the analysis are not always taken into consideration. Therefore, 
we have developed a method for MLPA data interpreting, MLPAinter, in which 
sample information can be stored, and where the laboratory and analysis 
workflow is assisted. Experiments are prepared by selecting samples and MLPA 
kits. Then sample sheets for automated sequencers are generated, which can 
easily be imported in the sequencer, avoiding manual input and typing errors. 
Analysis tables can then be imported from standard DNA analysis programs. 
Given the sensitivity and reproducibility of this methodology, the requirements 
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for proper internal controls for normalisation have to be stringent [17]. For that 
reason, in each kit, the manufacturer has provided sets of reference probes for 
sample data. However, for the analysis of unpredictable (tumour) samples, these 
provided reference probes may be inadequate. Thus, we created an algorithm 
that will select the 5 most stable reference probes and suggest that these probes 
be used for the normalisation of the traces. The user has full control over the 
settings of the analysis, and changes like including or excluding samples or 
designating probes as reference probes result in immediate recalculations. All 
calculations can be visualised in plots. By authorising the results, the analysis 
settings are definitively linked to the analysis and can no longer be changed. 
MLPA results are, in general, very reproducible. Still, we perform all tests at 
least in duplicate, especially in a diagnostic setting. MLPAinter supports the 
handling of replicates in the analysis. We previously validated the statistics used 
for MLPAinter on a series of DNAs that were obtained from formalin fixed and 
paraffin embedded oligodendroglial tumours by correlating the results with those 
obtained by fluorescent in situ hybridisation (FISH). The MLPA results were 
reproducible in all samples in which repeated experiments were performed. [9]

CONCLUSIONS
We have combined the analysis, visualisation and data management for MLPA 
in a tool, MLPAinter for MLPA interpretation, which makes use of a relational 
database with a Delphi front end. This integrated approach helps in the 
automated handling of large series of MLPA data and helps to guarantee a quick 
and streamlined dataflow from the initiation of an experiment to the generation 
of authorised report. MLPAinter has been successfully used in our lab for over 
two years to manage over 3000 samples. Moreover, different MLPA kits have 
been successfully used for this type of analysis, e.g., Kit P088 and P105 for the 
analysis of Oligodendrogliomas, P024 for CDKN2A/B and P036 for subtelomeric 
regions. 

AVAILIABILITY AND REQUIREMENTS
Project name: MLPAinter
Project home page: http://code.google.com/p/mlpainter/ 
Operating system(s): Windows XP or higher
Programming language: Delphi
Other requirements: no
Licence: GNU GPL 3.0
Any restrictions to use by non-academics: no

ABBREVIATIONS
MLPA: Multiplex Legation-Dependent Probe Amplification, RFU: relative 
fluorescent units, RT-PCR: Real Time-PCR, MAD: median of the absolute 
deviations.
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