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1. Introduction

! e genome is subject to various assaults by both exogenous environmental factors (e.g. 

ionizing radiation, chemicals and reactive oxygen species) and endogenous cellular events 

(e.g. transposition, meiotic double strand break formation). ! ese assaults cause a wide 

range of genetic damage, such as base lesions, DNA single-strand breaks (SSBs) and DNA 

double-strand breaks (DSBs). Among these DNA lesions, DSBs are particularly detrimental, 

because both strands are damaged and it is, therefore, impossible to reconstitute the missing 

information from a complementary strand. Defects in the repair of DSBs may cause 

chromosomal aberrations and genomic instability, which can promote mutation, accelerate 

aging and induce cell death. Even a single unrepaired DSB may induce cell death (1).

In order to maintain genomic integrity and stability, organisms have evolved multiple 

DNA repair mechanisms. Cellular responses to DNA damage activate cell-cycle checkpoints, 

which can stop the cell cycle and provide time for the cell to repair the damage before 

division (2). Base lesions and SSBs can be detected and removed by nucleotide excision 

repair (NER), mismatch repair or base excision repair (BER) (3). ! e most harmful damage, 

DSBs, can be repaired by two types of pathways: homologous recombination (HR) and 

non-homologous end joining (NHEJ).

HR utilizes sequence homology to align and join the DNA ends of the break. It employs 

a homologous stretch of DNA on a sister chromatid as a template. ! e HR pathway mediates 

an accurate form of repair. On the other hand, NHEJ is a straightforward pathway that can 

rejoin the two ends independently of signi" cant homology. It is an error-prone process 

with insertion or deletion of nucleotides as a result. HR is only operative during the S/G2 

phases of the cell cycle when sister chromatids are present. By contrast NHEJ can function 
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in all phases of the cell cycle, but is mainly used in the G1 phase when HR is suppressed. 

HR and NHEJ operate in both competitive and collaborative manners, depending on the 

repair context and speci! c attributes of the broken DNA. HR is the predominant DSB 

repair mechanism in prokaryotes and lower eukaryotes. NHEJ seems the main DSB repair 

pathway in multicellular eukaryotes (e.g. mammals and plants). Most of the major factors 

involved in NHEJ were initially identi! ed in mammals. Genome sequencing has led to the 

discovery of homologous NHEJ factors in other eukaryotes and prokaryotes. It indicates 

that NHEJ has been conserved during evolution (4).

In this chapter, I shall review ! rst how the cell responds to DNA DSBs and repairs those 

breaks. " en the main regulatory mechanisms that a# ect the choice of DNA repair pathway 

throughout the cell cycle are discussed, and how they a# ect gene targeting is addressed. 

Finally I will give an outline of the thesis.

2. DNA Damage Checkpoints

DNA damage checkpoints are the cellular surveillance systems, which prevent damaged 

DNA from being converted into heritable mutations in order to maintain the genomic 

stability. " e presence of DNA damage leads to the initiation of signal transduction cascades 

(Figure 1), which leads to chromatin remodeling, transcriptional responses, cell cycle arrest, 

DNA repair or in some cases apoptosis (5). Cell cycle arrest is necessary to provide the cell 

with enough time to repair the DNA lesions. Chromatin remodeling and transcriptional 

responses facilitate DNA repair, and increase the resistance to further damage.

" e checkpoints are initiated by the transient recruitment of the MRE11/RAD50/

NBS1 (MRN) complex in mammals and plants (6) or the equivalent MRE11/RAD50/Xrs2 

(MRX) complex in yeast (7;8), to DSB sites, followed by the activation of phosphoinositide-

3-kinase-related kinases (PIKKs). " is group of proteins comprises the ataxia-telangiectasia 

mutated (ATM in mammals and plants; Tel1 in yeast), the ATM and Rad3 related (ATR 

in mammals and plants; Mec1 in yeast) and the catalytic subunit of DNA protein kinase 

(DNA-PKcs, which is lacking in yeast). In general, ATM and DNA-PKcs respond mainly 

to DSBs, whereas ATR is activated by single-stranded DNA (ssDNA) and stalled replication 

forks (9). " ese kinases are activated and recruited to DNA lesions by direct interactions 

with speci! c factors: NBS1/Xrs2 (for ATM/Tel1), ATR-interacting protein (ATRIP)/Ddc2 

in yeast (for ATR/Mec1) and Ku80 (for DNA-PK) (10). " en these checkpoint kinases 

transmit and amplify the checkpoint signal by di# erent phosphorylation events to di# erent 

downstream e# ectors that are essential for the DNA-damage response and DNA repair, 

including phosphorylation of H2AX (γH2AX), mediator of DNA damage checkpoint 1 

(MDC1), tumor protein 53 binding protein 1 (TP53BP1) and breast cancer 1 (BRCA1).

In general, there are two possibilities for the following steps (Figure 1). In the ! rst 

possibility, ATM phosphorylates the histone H2AX (γH2AX) which forms foci covering 

many megabases of chromatin surrounding the DSBs within seconds of DNA damage (11).
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Alternatively, γH2AX associates with the DSB-! anking chromatin regions, serving as 

a docking platform for MDC1, 53BP1, BRCA1, the MRN complex, and indeed ATM 

itself (12). " e increased ATM phosphorylates and activates checkpoint kinase 2 (Chk2), 

or RAD53 in Saccharomyces cerevisiae, which induces the phosphorylation of CDC25A, 

marking it for proteosomal degradation by SCFβTCP ubiquitin ligase. " is blocks the 

activation of the cyclin-dependent kinases (CDKs) and leads to cell cycle arrest. " e G1-S 

cell phase is thus arrested to avoid the replication of damaged DNA. Recent research showed 

that Chk2 also appears to have a conserved function in the control of mitotic progression 

following DNA damage after the G2/M transition (13). CDKs orchestrate control of the 

cell cycle. " e activation of CDKs is also regulated by the mitosis-inhibiting kinase Wee1. 

In the G1 phase, this ATM signaling pathway facilitates NHEJ. In the G2 phase, initial 

Figure 1. Responses to DNA Double Strand Breaks and checkpoint activation.
Ku and MRN complexes bind to DSBs and activate the PIKKs: DNA-PKcs and ATM respectively. 
" e DNA-PK complex promotes NHEJ repair of DSBs which take place throughout the cell 
cycle. " e MRN complex allows the activation of the checkpoint, mediated by ATM. ATM 
phosphorylates H2AX, which serves as a docking platform for MDC1, 53BP1, BRCA1, MRN 
and ATM itself. Active, phosphorylated ATM monomers are increased at the site of damage and 
activate the downstream signaling kinase Chk2. During S and G2 phases, DSBs are resected to 
ssDNA which is coated by RPA. " e RPA coated ssDNA recruits the ATR-ATRIP complex to 
DNA lesions. With the help of Claspin mediator protein, ATR phosphorylates Chk1. Claspin 
maintains stable with the present of Chk1 and can be degradated via SCFβTCP proteosome. Both 
activated Chk2 and Chk1 phosphorylate CDC25, marking it for proteosomal degradation by 
SCFβTCP ubiquitin ligase. " is regulates the activity of CDK, which controls cell cycle arrest and 
facilitates one of the following steps: apoptosis or DNA repair. Chk2 and Chk1 can also facilitate 
other processes such as damage induced transcription and chromatin remodeling. In general, the 
ATM pathway promotes NHEJ repair, while the ATR pathway facilitates HR repair.
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activation of ATM is followed by activation by the ATR signaling pathway and repair by HR 

(14). In this case, the DSB is resected, leading to formation of ssDNA which is coated and 

stabilized by the replication protein A (RPA), and which recruits the ATR-ATRIP complex. 

ATR phosphorylates the Chk1 with the help of the Claspin mediator protein (12). Activated 

Chk1 phosphorylates CDC25A. ! is will cause S and G2 arrest. p53, a key player in DNA-

damage checkpoints is also activated by Chk1 and Chk2.

To sum up, the checkpoint generates a broad spectrum of responses to DNA damage, 

leading to cell cycle arrest and DNA repair in animals. Although checkpoint activation is 

not essential for DSB repair, it modulates how the damage is repaired and whether HR or 

NHEJ is used for repair (15).

In plants, there is no functional CDC25 homolog identi" ed yet. Mitosis-inhibiting 

kinase Wee1 activates DNA damage checkpoints in an ATM/ATR-dependent manner (16). 

Also many other genes, needed for checkpoints in mammals, have not been identi" ed in 

plants yet (such as Chk1, Chk2, PLK, p53, Claspin, 53BP1, ATRIP and MDC1). Two 

kinds of CDKs have been identi" ed in plants: CDKA and CDKB. ! ey can control the cell 

cycle directly. ! ese checkpoint genes are not essential for normal growth in plants, whereas 

they are essential in mammals (17). 

3. Homologous Recombination (HR)

HR is a mechanism which uses DNA homology to direct DNA repair. It occurs in all life 

forms. In eukaryotes, HR is carried out by the Radiation sensitive 52 (Rad52) epistasis 

group of proteins, which were initially identi" ed in Saccharomyces cerevisae from the genetic 

analysis of ionizing radiation (IR) hypersensitive mutants (18). ! e Rad52 epistasis group is 

composed of Rad50, Rad51, Rad52, Rad54, Rad55, Rad57, Rad59 and the MRX complex. 

Most of those proteins are well preserved among eukaryotes. Orthologs have been identi" ed 

in mammals and plants (Table1), except for Rad55/57 and Rad59, which are functionally 

replaced by " ve Rad51 paralogs (19). All HR events are initiated by 5’-3’ resection at the 

DSB end, which is facilitated by the MRX/MRN complex. ! e MRX/MRN complex plays 

a critical role in the early DSB response. It has 3’-5’ exonuclease, single-strand endonuclease, 

and DNA unwinding activities and is involved in the 5’-3’ resection of DSB ends to produce 

3’ single-strand overhangs. Sae2 in S. cerevisiae and CtIP in mammals are involved together 

with the MRX/MRN complex in the processing of DSB ends. Sae2 exhibits endonuclease 

activity on ssDNA and DNA strand transition and cooperates with MRX to cleave DNA 

hairpin structures. After this initial processing of the DSB resection, it is taken over by the 

exonuclease (Exo1) and the Sgs1 helicase (20). ! is may lead to a several-kbp-long region 

of single stranded DNA (ssDNA). Mammals and plants have orthologues of those proteins, 

suggesting a general mechanism for DSB end processing in eukaryotes.

Once 3’-ssDNA overhangs are generated, they are coated by RPA. RPA directly interacts 

with Rad52 in yeast, which recruits Rad51 to load on single-strand DNA by displacing 
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Table 1. HR factors in yeast, mammals and plants.

Saccharomyces
cerevisiae

Homo 
sapiens

Arabidopsis 
thaliana

Locus in 
Arabidopsis 
and ref.

Function

Rad50 Rad50 AtRad50
At2G31970 
(169-171)

DNA binding, DNA-
dependent ATPase, 
complex with Mre11 
and Xrs2/Nbs1, DSB 
ends processing, DNA-
damage checkpoints

Mre11 Mre11 AtMre11
At5G54260 
(169;172;173)

3’-5’ exonuclease, 
complex with Rad50 
and Xrs2/Nbs1, DSB 
end processing, DNA-
damage checkpoints

Xrs2 Nbs1 AtNbs1
At3G02680 
(6)

DNA binding, complex 
with Rad50 and Xrs2/
Nbs1, DSB end 
processing, DNA-
damage checkpoints

Sae2 CtIP
AtCom1/
AtGr1

At3G52115 
(174)

Endonuclease, DNA 
strand transition

Rad51 Rad51 AtRad51
At5G20850 
(175-177)

RecA homologue, strand 
invasion

Dmc1 Dmc1 AtDmc1
At3G22880 
(178;179)

Rad51 homologue

Rad52 Rad52
AtRad52 
(22)

ssDNA binding 
and annealing, 
recombination mediator, 
interacts with Rad51and 
RPA

Rad54 Rad54 AtRad54
At3G19210 
(180)

ATP binding, DNA 
binding, helicase 
activity, recombination 
mediator

Rad55-Rad57 - -
ssDNA binding, 
recombination mediator

Rad59 - - single-strand annealing
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RPA. RAD51 is present in mammals. But RAD52 is not identi! ed in mammals, BRCA2 

ful! lls the role of yeast Rad52 (19;21). Recently the orthologs of Rad52 were also identi! ed 

in plants (22). Several possible homology directed repair subpathways have been postulated 

on the basis of the outcome of the recombination reaction: classical double-strand break 

repair (DSBR), synthesis-dependent strand-annealing (SDSA), single-strand annealing 

(SSA) and break-induced replication (BIR) (Figure 2) (23). DSBR was initially described to 

explain gene conversion and crossover events during meiosis (24). SDSA is based on mitotic 

DSB repair data in model organisms (25) and is thought to be the predominant mechanism 

to repair two-ended DSBs by HR. SSA may be utilized to repair a two-ended DSB, when 

a repeat sequence is present adjacent to the DSB. BIR has been described in yeast and may 

be used for one-ended DSBs to restart collapsed replication forks and elongate uncapped 

telomeres (26). In plants, there is evidence for the existence of SDSA, DSBR and SSA (27). 

After 3’-end resection and Rad51 coating of the ssDNA, the nucleoprotein ! lament 

may invade into a homologous double stranded DNA (dsDNA) sequence and form a 

heteroduplex DNA intermediate which is called D-loop. " is process occurs in the case of 

repair by the SDSA or classical DSBR subpathways (Figure 2). " e “X” shaped structure 

formed at the border between the hetero- and homoduplex of a D-loop is called a Holliday 

Junction (HJ) (28). DNA is synthesized from the 3’ end of the ssDNA beyond the original 

break site by D-loop migration to restore the missing sequence information. In the case of 

SDSA, the newly synthesized end of the invading strand is released by sliding the HJ toward

Saccharomyces
cerevisiae

Homo 
sapiens

Arabidopsis 
thaliana

Locus in 
Arabidopsis 
and ref.

Function

- Rad51B AtRad51B
At2G28560 
(181;182)

ssDNA binding, 
recombination mediator

- Rad51C AtRad51C
At2G45280 
(181;183;184)

- Rad51D AtRad51D
At1G07745 
(181;185)

- Xrcc2 AtXrcc2
At5G64520 
(181)

- Xrcc3 AtXrcc3
At5G57450 
(186)

Brca1 AtBrca1
At4G21070 
(187;188)

checkpoint mediator, 
recombination mediator

- Brca2
AtBrca2-1, 
AtBrca2-2

At4G00020 
(178;179)

recombination mediator

Exo1 Exo1 At1G18090? At1G18090? exonuclease

Sgs1 BLM AtRecQ4A
At1G10930 
(189)

ATP binding, RecQ 
helicases
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the 3’ end. ! e displaced end can then anneal with the second resected DSB end. After 

removing " aps and # lling-in gaps, the remaining nicks are ligated to complete this pathway. 

In the case of classical DSBR, both DNA ends invade a homologous chromosome to copy 

genetic information into the donor chromosome. ! e DNA joint molecule harbors two 

HJs that may be resolved to create a crossover or a non-crossover product. Whereas classical 

DSBR is used in meiosis for recombination between the two homologous chromosomes, 

Figure 2. Models for DSBs repair via HR. 
DSBs can be repaired by several HR pathways, including SDSA, DSBR, SSA and BIR. SDSA, 
DSBR and SSA are supposed to repair two-end DSBs. In those pathways, repair is initiated by 
end resection to provide 3’ssDNA overhangs. In the SDSA and DSBR pathways, the 3’ssDNA 
overhang invades into a strand with a homologous sequence by forming a D-loop, followed by 
DNA synthesis. In the SDSA pathway, the newly synthesized DNA forms a migrating replication 
bubble and is released from the template to anneal to the ssDNA on the other break end. ! e next 
step is gap-# lling DNA synthesis and ligation. ! is will result in gene conversion. In the DSBR 
pathway, the other DSB end is also captured to form a double-HJ intermediate. ! e double-HJ 
structure can be resolved or dissolved in a non-crossover or crossover mode. DSBR can lead to 
gene conservation and crossover events. In the SSA pathway, the complementary DNA repeats 
(black boxes) serve to anneal the DSB ends and the noncomplementary overhangs are removed, 
followed by gap-# lling and ligation. SSA produces a deletion between two sequence repeats. 
BIR is utilised to repair one-end DSBs. ! e single DSB end invades into a homologous strand, 
initiates a unidirectional DNA synthesis and replicates the entire homologous template arm. A 
single HJ is formed and is cleaved to repair the break with a duplication of the chromosome arm 
used as a template. BIR might result in a large-scale loss of heterozygosity, or a high mutation 
rate by template switching.
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SDSA is used in somatic cells to restore DNA damage using the sister chromatid for repair.

In the case of SSA, the resected ends anneal to each other, which is possible when repeats 

are present near the DSB site (Figure 2). ! e protruding single-strand tails are removed by 

nucleases. ! en gaps and nicks are " lled in by DNA synthesis and ligation. SSA leads to 

permanent deletions, so it is error-associated.

For BIR, the DSB end is nucleolytically processed to a single-stranded tail that invades 

a homologous DNA sequence, followed by DNA synthesis to replicate the chromosome 

template (Figure 2). Unlike SDSA, for BIR a homologous sequence in a non-homologous 

chromosome is utilized as a template to initiate repair, and thus BIR can result in a non-

reciprocal translocation.

4. Non-Homologous End Joining (NHEJ)

! e basic NHEJ event is the direct joining of DSB ends, which are juxtaposed through end 

bridging, end-processed and ligated. NHEJ is a potentially less accurate mechanism for 

DSB repair, compared with HR. DNA end bridging occurs via protein-protein interactions 

between DNA end binding proteins, which bind directly to the DNA ends immediately 

after the breaking. 

Most factors involved in the NHEJ pathway were initially identi" ed in mammalian 

systems, such as the Ku heterodimer, DNA-dependent protein kinase catalytic subunit 

(DNA-PKcs), DNA ligase IV (Lig4), XRCC4, XLF/Cernunnos (Table 2). ! e classical 

NHEJ (C-NHEJ) pathway utilizes Ku, DNA-PKcs, Lig4, XRCC4 and XLF/Cernunnos 

as central components; therefore it is also called DNA-PK-dependent NHEJ (D-NHEJ). 

C-NHEJ repairs rapidly a large proportion of DSBs. Recent " ndings show there are also 

one or several distinct alternative pathways, so-called backup NHEJ (B-NHEJ) pathways, 

which repair DSBs more slowly in the absence of the C-NHEJ factors. B-NHEJ pathways 

are Ku-independent, but utilize instead poly(ADP-ribose) polymerase (Parp) and DNA 

ligase III (Lig3) in mammalian cells. ! e most commonly discussed form of B-NHEJ is 

the microhomology-mediated end joining (MMEJ), which is mediated by a stretch of 

microhomologous base pairing of about 5 to 25 base pairs (bps).

! ere are two possibilities for the ligation of the juxtaposed DSB ends in NHEJ (Figure 

3). Firstly, the ends can be ligated precisely. But the majority of DSBs generated by exposure 

to DNA damaging agents does not have ligatable termini and must be processed prior to 

ligation. In most cases, this will eventually produce deletions or insertions at the restored 

break site. Secondly, micro-homologous repeats surrounding the DSB ends may be aligned 

to repair the break by microhomology-mediated end joining (MMEJ). ! e mechanism is 

similar to SSA, but the homologous sequence used for MMEJ is only 5 to 25 bps, which is 

much shorter than the homology required for SSA. MMEJ will delete one of the repeats and 

the sequence between the repeats.
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Table 2. NHEJ factors in yeast, mammals and plants.

Saccharomyces
cerevisiae

Homo 
sapiens

Arabidopsis 
thaliana

Locus in 
Arabidopsis 
and ref.

Function

Ku70 Ku70 AtKu70
At1G16970 
(151;190;191) DSB end binding, 

protection and 
juxtapositionKu80 Ku80 AtKu80

At1G48050 
(153;191)

- DNA-PKcs - protein kinase

Snm1/Pso Artemis AtSnm1?
At3G26680 
(59;192)

DNA end processing, 
5’-3’exonuclease, 
endonuclease

Pol4
Pol  χ 
family

Pol λ
At1G10520 
(60)

DNA end processing, 
! lling in DNA gap

Tpp1? PNK -
DNA end processing, 
3’-DNA phosphatase, 
5’-DNA kinase

Tdp1 Tdp1 At5G15170
At5G15170 
(193)

DNA end processing, 
3’-DNA phosphatase

Dnl4
DNA 
ligase IV 

AtLig4
At5G57160 
(150;152)

ATP-dependent DNA 
ligase

Lif1 XRCC4 AtXRCC4
At3G23100 
(152)

Complex with Lig4, 
DNA binding

Nej1
XLF/
Cernunnos

- Lig4/XRCC4 binding

- Parp1
AtParp1
(ZAP)

At2G31320 
(194-196)

DNA binding, 
NAD+ADP-
ribosyltransferease 
activity

- Parp2
AtParp2
(APP)

At4G02390 
(99;194-196)

DNA binding, 
NAD+ADP-
ribosyltransferease 
activity

-
DNA 
ligase III

-
ATP-dependent DNA 
ligase

XRCC1 AtXRCC1
At1G80420 
(197)

Complex with Lig3

AtLig6
At1G66730 
(101)

ATP-dependent DNA 
ligase
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4.1 Classical Non-Homologous End Joining (C-NHEJ)

4.1.1 Detecting and tethering DSB ends

It is generally assumed that NHEJ is initiated by the binding of a heterodimeric complex 

(Ku) to both DNA ends at the DSB site. ! e Ku heterodimer is composed of a 70kDa 

and 80kDa subunit, termed Ku70 and Ku80 respectively (29). Ku can bind various types 

of DNA ends (hairpins, blunt ends and 5’ or 3’ overhangs) in a sequence independent 

fashion with a high a"  nity in vitro (29;30). It associates with the DSB ends immediately 

after the generation of the break (31). ! e redox conditions can regulate the DNA-Ku 

binding by changing the structure of Ku, but it is still unclear how this happens (32). ! e 

Ku70 and Ku80 heterodimer forms a ring structure that slides over the DSB ends in an 

ATP independent manner (29). Ku stabilizes the DNA ends to facilitate NHEJ repair and 

protects DSB ends from DNA 5’-end resection which is a prerequisite for HR repair (23). 

Ku also recruits other NHEJ factors (such as DNA-PKcs, Lig4/XRCC4/XLF) to DSB ends 

and serves as a sca# old for the assembly of the NHEJ synapse (33).

In mammals, the DNA-Ku complex recruits DNA-PKcs, a ~465kDa member of the 

PIKKs, to form the active DNA-PK holoenzyme. DNA-PKcs is a nuclear protein serine/

threonine kinase. ! e $ exible arm of the Ku80 C-terminal region extends from the DNA-

binding core to recruit and retain DNA-PKcs at DSBs (34). Crystallography studies revealed 

that DNA-PKcs forms a large open-ring cradle to promote the DSB repair (35). Electron 

Figure 3. Ligation models of the juxtaposed DSB ends in NHEJ.
! ere are di# erent ways for DSB ends to join: direct end joining or MMEJ. DSB ends can 
be joined precisely if the two ends are ligatable. But in most cases, the damaged ends are not 
ligatable, and they need end processing before ligation. ! is may induce deletions or insertions. 
For MMEJ, the ends are also processed to ssDNA, followed by strand annealing promoted by 
a short stretch of homologous sequence. Any non-paired $ aps are removed and the ends are 
ligated. ! is will produce deletions.
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microscopy studies suggested that DNA-PKcs functions as a DNA-end bridging factor 

to tether the broken ends for rejoining (36). Two DNA-PKcs molecules interact across 

the DSB with the Ku dimer in a synaptic complex (37). ! is interaction stimulates the 

kinase activity of DNA-PKcs (38). ! e active DNA-PK catalyzes autophosphorylation and 

phosphorylation of other downstream NHEJ proteins. DNA-Pkcs phosphorylation appears 

to be important for DNA repair. Upon autophosphorylation DNA-PKcs is released from 

the DNA ends by changing the conformation (34). ! is conformation change would make 

the DNA ends accessible for the processing enzymes and ligases (39). ! is suggested that 

DNA-PKcs might regulate NHEJ by phosphorylation. 

In yeast and fungi, no homologues of DNA-PKcs have been identi" ed. Biochemical 

evidence shows that the MRX complex takes the role of end bridging in the yeast NHEJ 

instead of DNA-PKcs (40). Rad50 contains a high-a#  nity DNA-binding domain and a split 

ATPase domain. A functional ATPase is formed when two Rad50 proteins associate. Rad50 

may be able to bridge the DNA ends together (41). Mre11 interacts with yKu80 and Xrs2 

interacts with the Lif1 cofactor of the Lig4 ligase (8). It seems that MRX enables formation 

of a stable NHEJ complex (23). MRX is the only protein complex that participates in both 

NHEJ and HR DSB-repair pathways in yeast (23) and thus, might regulate repair pathway 

utilization.

4.1.2 Processing DSB ends 

DSBs may have various ends. In case of incompatible ends, DSB ends processing is 

required to remove non-ligatable end groups and other lesions prior to ligation. Processing 

may consist of resection by nucleases, " lling DNA gaps by polymerases or addition of 5’ 

phosphate groups by polynucleotide kinase (PNK) (39). Several accessory enzymes have 

been implicated in this process, including Artemis, Mre11, DNA polymerase Pol χ family 

members and PNK, as mentioned above.

In mammals, Artemis, a key end-processing enzyme, may be recruited to DSBs by 

interacting with DNA-PKcs (42). ! e activity of Artemis can be regulated via phosphorylation 

by DNA-Pkcs and ATM, suggesting that Artemis may participate in multiple aspects 

of the DNA damage response (14;42). Artemis is a 5’-3’ exonuclease and also possesses 

an endonuclease activity in a DNA-PKcs-dependent manner to remove both 5’ and 3’ 

overhangs for NHEJ repair and cleave the DNA hairpins during V(D)J recombination (38). 

! e nucleolytic processing of DNA ends might create small gaps that must be " lled in by 

DNA polymerase Pol χ prior to DNA joining during NHEJ. ! e mammalian Pol χ family 

includes DNA polymerases β (Pol β), Pol µ, Pol λ and terminal deoxynucleotidyl transferase 

(TdT) (43). TdT is a unique template-independent polymerase, which can add random 

nucleotides during V(D)J recombination. Pol µ is template-dependent, and Pol β and Pol 

λ can synthesize in both template-independent and template-dependent manner (44). If 

DNA ends contain non-ligatable 5’ hydroxyls and 3’ phosphates, the mammalian PNK can 

modify those groups to facilitate the ligation (45). PNK possesses both 3’-DNA phosphatase 
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and 5’-DNA kinase activities and interacts with XRCC4 during NHEJ (23).

In yeast, the MRX complex is suggested to have the same function as the mammalian 

DNA-PKcs/Artemis complex (4). Mre11 is a nuclease and can remove hairpins and 3’-ssDNA 

overhangs at the ss/ds DNA junction. So Mre11 may be involved in end processing in NHEJ 

(7). Pol4 is the only Pol χ polymerase which acts in gap ! lling without strict dependence 

on the template during NHEJ in yeast (46;47). " e yeast homologue of mammalian PNK, 

3’-phosphatase-1 (Tpp1), lacks 5’ kinase activity (48). Recent reports showed that 3’ 

nucleosidase activity of tyrosyl-DNA-phosphodiesterase 1 (Tdp1) regulates the processing 

of DNA ends by generating a 3’ phosphate and restricts the ability of polymerases from 

acting at DNA ends (49). 

4.1.3 Ligating DSB ends 

After the proper processing of DNA ends, NHEJ is completed by the ! nal ligation step. " is 

rejoining step is carried out by the complex of DNA ligase IV (Lig4) and XRCC4. A third 

essential component for the NHEJ ligation step is XRCC4-like factor (XLF, also named 

Cernunnos), which stimulates the activity of Lig4 and is required for NHEJ and V(D)J 

recombination (50;51).

Lig4 contains an ATP utilizing catalytic domain in the N-terminal region and two 

C-terminal BRCT domains. " e two BRCT domains of Lig4 and the linker region between 

them interact with XRCC4 to form a stable complex (39;52). " e BRCT motifs may also be 

involved in the interaction with the Ku complex (53). XRCC4 stabilizes Lig4 and stimulates 

its activity (38). " e globular N-terminal head of XRCC4 interacts with the DNA helix 

(54). Like Ku proteins, XRCC4 acts as a sca# old to recruit other NHEJ factors, including 

the processing enzyme PNK. " e Lig4/XRCC4 complex not only facilitates the ligation step 

but may also stimulate the DNA end processing. Lig4 has a high degree of substrate $ exibility 

in the presence of XRCC4 and XLF. " e complex can ligate both blunt ends and compatible 

overhangs. It can also ligate across gaps and incompatible ends with short overhangs (44). 

XLF has a similar structure as XRCC4, with which it interacts. " e crystal structure of XLF 

reveals that it has an N-terminal globular coiled-coil head and a C-terminal stalk, which is 

suitable for the head-to-head interactions in a 2:2:1 XRCC4:XLF:Lig4 complex (55). XLF 

can enhance Lig4/XRCC4 ligation activity by promoting its re-adenylation, but XLF is 

dispensable for the stability of Lig4/XRCC4 complex suggesting that XLF is not essential for 

all DSB rejoining (56). Both XRCC4 and XLF are phosphorylated by ATM and DNA-PK, 

though phosphorylation seems to be not required for NHEJ (57;58).

Homologs of Lig4/XRCC4 have been identi! ed in mammals, yeast and plants, 

suggesting that the mechanism by which the ligation step occurs is universal in eukaryotes. 

" e counterpart of XLF has also been found in yeast and is named Nej1. But so far no XLF 

homolog has been identi! ed in plants.

In plants, no a%  rmative homologues of DNA-Pkcs have been identi! ed until now. " is 
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suggests that Ku of plants may have more general functions in NHEJ pathway than that 

of mammals, and it could be that Ku or MRN bridge the two DNA ends together. ! e 

processing of DSB ends in NHEJ is largely unknown in plants. Plants contain an Artemis 

homologous protein known as Pso2p/Snm1p. However, due to the low similarity of amino 

acid sequence between Artemis and Pso2p/Snm1p, they may have di" erent functions in 

DNA repair (59). DNA ends may be processed by the MRN complex to make them suitable 

substrates for DNA ligase in plants as that in yeast. ! e only member of the Pol χ family 

identi# ed in plants is DNA Pol λ. It has a close similarity to mammalian Pol β and is 

supposed to function as a DNA repair enzyme in meristematic and meiotic tissues (60). 

4.2 Backup Non-Homologous End Joining (B-NHEJ): Microhomology-Mediated End 

Joining (MMEJ)

Nowadays more and more evidence show that the majority of DSBs can be rejoined with 

slow kinetics in the absence of C-NHEJ core factors, such as DNA-PKcs, Ku70/Ku80 and 

Lig4/XRCC4, suggesting the existence of one or multiple alternative or backup pathways 

of NHEJ (61;62). ! e alternative pathways were well demonstrated in C-NHEJ de# cient 

cells or in wild-type cells after the treatment with inhibitors against C-NHEJ factors (63-

66). Compared to the extremely fast and e$  cient C-NHEJ, the alternative pathways are 

quite slow and error-prone (67). Defects in C-NHEJ are implicated in chromosomal 

translocation and gene instability (68-70). Many studies utilizing in vitro plasmid based end 

joining assays also have provided evidence for the existence of B-NHEJ (62;71;72). End 

joining is observed in the extracts of DNA-Pkcs de# cient cells and in Ku-depleted extracts. 

Anti-Ku antibodies inhibit DNA end joining strongly only in the presence of DNA-PKcs, 

and Ku is also essential for the inhibition of DNA end joining by the DNA-PKcs inhibitor 

wortmannin (62). It suggests that Ku, cooperating with DNA-PKcs, directs joining of 

broken ends to C-NHEJ, at the same time suppressing B-NHEJ. ! e repair events via 

B-NHEJ preferentially use short stretches of homology (5~25bps) (65;73;74), and therefore 

this type of repair has also been called microhomology-mediated end joining (MMEJ). It 

seems that MMEJ is the dominant pathway among the B-NHEJ pathways. MMEJ induces 

small deletions and causes gene instabilities (75). Several proteins have been identi# ed as 

participating in B-NHEJ in mammals: histone H1, poly(ADP-ribose) polymerase-1 (Parp1), 

DNA Ligase III (Lig3) and XRCC1 (76;77).

Histone H1 is a major structural component of chromatin with functions in DNA 

repair. Protein fractionation and in vitro end-joining assays showed that histone H1 enhances 

DNA-end joining strongly by activating Lig3 and Parp1, suggesting it is a putative B-NHEJ 

factor (78). Histone H1 has been shown to inhibit HR (79) and C-NHEJ (80). It binds to 

naked DNA and may juxtapose to form end to end polymers (81), and thus histone H1 may 

be an alignment factor operating in B-NHEJ (78).

Poly(ADP-ribose)polymerases (Parps) catalyze the covalent attachment of poly(ADP-

ribose) units on amino acid residues of itself and other acceptor proteins using NAD+ as 
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a substrate in order to modulate various cellular processes by poly(ADP)ribosylation (82). 

Among the 17 members of the Parp family, Parp1 and its close homologue Parp2 are 

activated in response to DNA damage (83). Parp1 has a high binding a!  nity for DNA SSBs 

and DSBs by its two zinc " nger motifs. Binding to DNA leads to Parp1 automodi" cation 

and subsequent release from DNA to allow the access of other repair proteins (76). # ere 

is plenty of evidence that Parp1 is implicated in SSB repair and base excision repair (BER) 

and thus prevents formation of DSBs during replication (83;84). Parp1 is probably also 

involved in B-NHEJ. # e synapsis activity of Parp1 and the ligation activity of Lig3/

XRCC1 were established via a two-step DNA in vitro pull down assay with nuclear extracts 

and recombinant proteins (85). In absence of DNA-PK or Lig4/XRCC4, DSB end joining 

activity was observed, which was dependent on Parp1 and Lig3/XRCC1. Recent reports 

also show that Parp1 facilitates B-NHEJ using microhomology (86). Parp1 binds to DNA 

ends in direct competition with Ku to regulate the utilization of C-NHEJ and B-NHEJ 

pathways (87). Parp1 is supposed to be a sensor of DNA breaks and may help to form the 

end synapsis. Parp2 may have a similar function as Parp1 (88). Parp2 has a higher a!  nity for 

gaps or $ aps than SSBs, indicating that Parp2 is involved in later steps of the repair process 

(88). Parp1 regulates the activity of Pol β in long patch BER (89) and interacts with Mre11 

for end processing in the restart of replication forks (90), suggesting that Pol β and MRN 

may also function in end processing during B-NHEJ.

Unlike other DNA ligases, Lig3 appears to be unique to vertebrates. Lig3 is recruited 

to SSBs by preferentially interacting with automodi" ed Parp1 (91). # us Lig3 is considered 

to be involved in SSB repair and BER (92;93). Lig3 is also found to play a major role in 

end joining by using extract fractionation of Hela cells (94). DNA end joining activity can 

be reduced by knocking down Lig3 in Lig4-de" cient mouse embryo " broblasts (94). # is 

indicates that Lig3 has a potential role in B-NHEJ pathway. XRCC1 interacts with Lig3 and 

is required to stabilize Lig3 (95). XRCC1 interacts with several other BER and SSB repair 

factors as well, such as Parp1 and Pol β (92), suggesting that XRCC1 may act as a sca% old 

for the protein assembly (96). 

MMEJ has also been found in yeast which is repressed by Ku70 (97), suggesting that 

there may be similar backup NHEJ pathway in yeast. Speci" c B-NHEJ proteins have not 

been identi" ed in yeast as yet. Although Parp activity is absent in yeast, human Parp1 

expression in Saccharomyces cerevisiae leads to the inhibition of growth due to its e% ects on 

ribosome biogenesis (98). Other proteins may replace the function of Parp in yeast. 

Like in mammals, there may be backup pathways of NHEJ in plants. Homologues of 

Parp1 and Parp2 have been identi" ed in plants. One is the classical Zn-" nger-containing 

polymerase (ZAP) and the other is APP/NAP, which is structurally di% erent from the classical 

Parp and is lacking the N-terminal Zn-" nger domain (99). APP/NAP is a DNA-dependent 

poly(ADP-ribose) polymerase and the expression of APP/NAP is induced by de" ciency of 

Lig1 (99). Microarray data also showed that APP/NAP displayed transcriptional induction 

in the presence of bleomycin and in the Atku80 mutant (100). All these observations 
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point to the implication of APP/NAP in DNA repair. ! ough no homologues of Lig3 

has been identi" ed in plants, a novel ATP-dependent DNA ligase, named Lig6, is found 

uniquely in plants. Bonatto et. al. (101) found that Lig6 has a high homology with Lig1 

and is hypothesized to function in BER and B-NHEJ. Recently the work of Waterworth 

et. al. (102) showed that the Atlig6 mutant was hypersensitive to X-ray and delayed in seed 

germination.

5. Regulation of DSB repair pathways

As discussed above, eukaryotes have two primary pathways to repair DSBs: HR and NHEJ. 

Both of them play an important role in maintaining genome stability and preventing the 

consequent disorders, such as the loss of genetic information, chromosomal translocations, 

cell death and diseases like cancer. How do cells modulate the respective usage of those 

pathways? Since di# erent pathways generate distinct products, it is an important and 

compelling question. Also when the control mechanisms are well studied, ways to regulate 

them may be found, and used for instance to increase the usage of HR, which will facilitate 

gene targeting. ! ese control factors may also become helpful as biomarkers for cancer 

detection and as targets for cancer therapy.

Di# erent organisms prefer di# erent pathways to repair DSB. Yeast tends to use HR, 

whereas higher eukaryotes like plants and mammals mainly use NHEJ in somatic cells. 

! is is based on the observation that NHEJ-de" cient yeast is not sensitive to IR unless HR 

is also de" cient. In contrast, NHEJ-de" cient mammals and plants are hypersensitive to IR 

whether HR is operative or not (23;103). Higher eukaryotes have larger and more complex 

genomes and enormous amounts of repetitive DNA, which may be the reason that NHEJ 

is preferred in order to prevent mistakes leading to translocation. ! e choice between the 

di# erent forms of DSB repair also depends on the cell type, phase of the cell cycle and 

developmental stages of the organism. HR is more e$  cient in diploid than in haploid yeast 

due to template availability and the absense of Nej1, which is involved in NHEJ (104). 

! ough most higher eukaryotes predominately utilize NHEJ in somatic cells, Chicken B 

cells (DT-40) possess a highly e$  cient HR machinery (105). Mouse embryonic stem (ES) 

cells are more prone to HR, than primary cells (106). HR is the predominant mode of 

DSB repair during early neural development, and NHEJ takes over the function at the later 

stage (107). DSB repair mechanisms are developmentally regulated in plants. Rad51 activity 

drops and Ku70 activity increases after germination, therefore, the rate of HR decreases with 

plant age in Arabidopsis (108).

It is well documented that NHEJ is active in all phases of the cell cycle, whereas HR 

is mainly restricted to the S and G2 phases of the cell cycle and directed to the utilization 

of the new sister chromatid as a template (104). ! is means that the cell cycle stage could 

be a decisive factor for the selection of the DSB repair pathway when a DSB is generated. 

Cell cycle progression is primarily controlled by cyclin-dependent kinases (CDKs) (109). 
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In yeast, Cdc28/Clb (Cdk1/cyclin B) is activated in the S/G2 phases and is suppressed in 

G1 phase. In the S/G2 phases, active CDK facilitates the DNA resection of DNA ends, 

which is the initiation step of HR. DSB ends are resected in 5’-3’- direction to generate 

ssDNA, which can anneal with a homologous sequence to e! ect HR, or if homology is 

not available, MMEJ. It was shown that CDKs phosphorylate Sae2 (budding yeast)/Ctp1 

(" ssion yeast) and the mammalian orhologue CtIP to promote DSB resection and HR 

cooperatively with MRX/MRN in the S/G2 phases (110-112). # e endonuclease activity 

of Sae2 for DSB resection is also regulated by the Cdc28/Cdk1-mediated phosphorylation 

in a cell-cycle dependent manner (112). Yun et al. (111) reported that CtIP is required for 

both HR in the S/G2 phases and MMEJ in G1 in the DT40 cell line. In mammals, CtIP 

is also found to regulate DSB resection by interaction with MRN and BRCA1 in the S/G2 

phases (113). Phosphorylated CtIP recruits BRCA1 to DNA damage sites and increases the 

level of ssDNA (111). In the late M/G1 phases, CDK phosphorylates BRCA2, resulting in 

disassociation of the Rad51-BRCA2 complex, and in blocking HR (114).

During the cell cycle, the components of di! erent DSB repair pathways seem to 

compete for the selection of DSB repair pathway. Ku is always the " rst factor recruited to 

DNA ends due to its high a$  nity for DNA ends. Ku protects the ends from resection and 

interferes with HR during the whole cell cycle. HR factors may also interact with the Ku-

bound ends. Indirect evidence showed that in the S/G2 phase, HR factors, such as CtIP1 

and BRCA1, are highly activated by phosphorylation, which facilitates HR over NHEJ. In 

the G1 phase, the Ku complex recruits the Lig4 complex to stabilize Ku and ligate the DNA 

ends via NHEJ. Biochemical evidence has shown that Parp physically interacts with Ku and 

decreases the a$  nity of Ku to DSBs so as to favor HR (106;115). Studies with DT40 cells 

implicate that Parp1 and the post-replicative repair protein Rad18 independently promote 

HR and suppress NHEJ (116;117). Parp1 also competes for DNA ends with Ku to enhance 

B-NHEJ in G2 (87;118). Recent results from studies with human somatic cells indicate that 

Ku suppresses other DSB repair pathways (HR and B-NHEJ), suggesting that Ku could be 

a critical regulator of DSB repair choice (74).

In summary, there is a crosstalk between all the DSB repair pathways. # e cell cycle 

progression could be the key regulator for the switch between NHEJ and HR. # e regulation 

involves among others the availability of repair templates, the activity of CDKs, DNA end 

resection and protein competition. HR and NHEJ work in a competitive and cooperative 

manner to maintain the genome stability.

6. Gene Targeting (GT)

Gene targeting (GT) is a technique by which endogenous genes in the genome are modi" ed 

using HR with a transgene. It has broad applications. It is a powerful tool for studying gene 

function by the inactivation or modi" cation of speci" c genes, and it is also a potential means 

for gene therapy and biotechnological improvement of crop plants. # e implementation 
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of HR-based GT relies not only on the design of the sequence homology between the 

exogenous transforming DNA molecule (the donor) and the chromosomal DNA (the 

target), but also on the DNA-repair system used by the target cell. E!  cient GT has been 

achieved in yeast, fungi and some cell lines, such as mouse embryonic stem cells, chicken 

DT40 cells, and human Nalm-6 pre-B cells (119;120). However, GT is ine!  cient in plants, 

and most other animal and human cell lines. How to improve the frequency of GT events 

in these organisms is a big issue and challenge.

" ere are several strategies to select and detect gene targeting events, one of which, 

the positive/negative selection (P/NS) scheme, proved to be very successful. In the P/NS 

strategy, the targeting construct contains a positive selectable marker placed in between 

homologous regions and a negative selectable marker gene placed outside the homology 

(121). It enriches for gene targeting events by selection for the positive selection marker and 

against the negative selection marker, thus reducing transformants in which the transgene 

had integrated by non-homologous recombination. " e Herpes simplex virus thymidine 

kinase gene (HSV-TK) and the diphtheria toxin A-chain gene (DT-A) have been commonly 

used as negative selection markers in mammals (121;122). Also in plants several negative 

selection marker genes have been tested (123-125) and the results depended on the species 

and the developmental stage.

Based on the mechanism of GT, there are two general ways to increase the frequency 

of GT events. " e # rst one is to genetically modify the organisms in order to facilitate the 

HR pathway by either increasing the HR components or reversely by blocking the NHEJ 

pathway. " e second is to introduce speci# c DNA breaks in the target sequence so as to 

increase the chance of recombination at the target locus.Su!  cient homology between the 

targeting vector and the target locus obviously is also important. In murine embryonic cells, 

a dramatic increase in the targeting frequency can be observed by an increase of homology in 

a range between 2 and 10kb (126). If the area of homologous DNA is reduced to below 1kb 

in length, gene targeting is strongly diminished (127). " e need for homology is saturated 

by ~14kb (126).

6.1 Facillitating the HR pathway

Several reports showed that elevation of the expression of exogenous HR components, such 

as Rad51, Rad52 and Rad54, can enhance gene targeting frequencies (128-131). Previous 

reports also showed that HR could be enhanced by expression of bacterial RecA provided 

with a nuclear localization signal in mammals and plants (132;133). Enhanced gene targeting 

was also observed by overexpression of Rad51 in murine embryonic stem cells (128). In the 

yeast Saccharomyces cerevisiae, yRad52 and yRad51 are required for the targeted integration 

of Agrobacterium T-DNA via HR (134). Di Primio et al. (129) expressed the yRad52 in 

human cells and this increased the frequency of gene targeting by 37 fold. " ey proposed 

that yRad52 has a greater a!  nity for ssDNA to promote strand exchange than hsRad52, 

suggesting that the yeast protein could be used as a tool to enhance gene targeting. Recently 
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Kalvala et al. (130) followed up on this ! nding by delivering yRad52 directly into the 

human cells by the fusion of yRad52 to the arginine-rich domain of the HIV TAT protein 

(tat11), which is known to permeate cell membranes. " e recombinant yRAD52tat11 still 

maintained the ability to bind ssDNA and promote intrachromosonal recombination after 

entering the nuclei of the cells. By using this approach, a 50-fold increase of gene targeting 

was observed. " is approach of expression of yeast HR proteins to improve gene targeting 

was also utilized in plants. Shaked et al. (131) expressed the yRad54 in Arabidopsis plants 

and gene targeting was analyzed using a high-throughput assay based on visual screening of 

GFP in seeds. An increased frequency of gene targeting by 27 fold on average was found. 

yRad54, a member of the Swi2/Snf2 family of ATP-dependent chromatin remodeling 

factors, promotes strand invasion in HR. Disruption of the Rad54 gene reduced gene 

targeting and increased radiation sensitivity in various species (135;136). " us Rad54-like 

activity may be a limiting factor in gene targeting. All of these observations indicated that 

elevated expression of the factors involved in HR could be potentially useful to increase gene 

targeting. Whether it can be utilized in other organisms like livestock or crop plants, is still 

unknown.

Since random DNA integration in yeast can be suppressed by a de! ciency in NHEJ 

(137), the number of gene targeting events may be increased after disruption of NHEJ. 

So far, this has been well manifested in lower eukaryotes, such as yeast and several species 

of ! lamentous fungi (134;137-145). Unlike the yeast Saccharomyces cerevisiae, other yeasts 

and fungi preferably use NHEJ over HR for DNA integration, leading to a low e#  ciency 

of gene targeting. " is can be dramatically improved to 80%~90% after the abolishment of 

the NHEJ system, compared to less than 10% in the wild-type background (137;138;140-

142;145). Like in fungi, NHEJ is also the predominant DNA repair pathway in plants 

and animals. A similar approach was used to improve gene targeting in plants and animals. 

Since the NHEJ components have important functions in early mammalian development, 

viable NHEJ mutants are hard to obtain and most research has therefore been done only 

with cell lines. In human somatic HCT116 cells with the Ku70+/- genotype, the frequency 

of gene targeting was increased by 5-10 fold compared to that in wild-type cells, and the 

result was a#  rmed by using RNA interference (RNAi) or short-hairpinned RNA (shRNA) 

strategies to deplete Ku70 in the cells of wild-type background (146). " e GT frequency 

was further increased by 30 fold in the Ku70+/- cells of combined with the RNAi of Ku70. 

Recently, a 33-fold increase in gene targeting was also observed using the RNAi treatment 

of Ku70 and XRCC4 in human somatic HCT116 cells (147). " e targeted integration 

was enhanced by Lig4 knock-out in chicken DT40 cells, but not in human Nalm-6 cell 

lines indicating that the impact of NHEJ factors on gene targeting varies between cell types 

(148). In murine embryonic stem cells, the gene targeting frequencies were increased by 3 

fold in parp1 knockout cells, but not in ku80 or DNA-PKcs knockout cells, suggesting that 

Ku80 and DNA-PKcs would also be involved in HR or that a B-NHEJ is activated (149). 

Few reports described similar experiments in plants until now. Unlike mammals, most of 
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the NHEJ mutants in plants have no obvious phenotype under normal growth conditions 

(150-154), which gives us more chances to study the e! ects of these NHEJ factors on gene 

targeting. Tanaka et al. (155) claimed highly e"  cient gene targeting in an Arabidopsis Atlig4 

mutant by introducing double strand DNA fragments to plant cells with a particle gun. 

However, this result is probably the result of PCR artefacts.

6.2 Introducing DSBs in the target

Targeted recombination will be enhanced by the introduction of genomic DSBs at the 

target site. # is has been demonstrated in a wide range of animal and plant species (156). 

Meganucleases, which can generate DSBs at a speci$ c large recognition site in the genome, 

are preferably used for this purpose. Meganucleases are sequence speci$ c endonucleases with 

long recognition sequences (12-45 bp), including not only the natural homing nucleases, 

such as HO and I-SceI, but also the arti$ cial endonucleases such as Zinc Finger Nucleases 

(ZFNs).

HO of budding yeast can induce HR by creating a DSB at the MAT locus to switch the 

mating type (157). I-SceI, encoded by a mitochondrial intron of Saccharomyces cerevisiae, can 

help to convert intronless alleles into alleles with an intron (158). # ough gene targeting can 

be increased considerably by the use of the natural homing endonucleases (156;159;160), its 

application is so far limited to arti$ cial target homing endonucleases recognition sites that 

are present in the target sites. Recently, however, a combinatorial approach was reported to 

redesign homing endonucleases to match with target sites that are naturally present in the 

genome (161).

Arti$ cial ZFNs do not need the pre-insertion of recognizing sites into the target 

genome, making them useful as a novel genomic tool. ZFNs consist of the nonspeci$ c 

DNA cleavage domain of the FokI enzyme and a speci$ c DNA binding domain composed 

of several engineered Cys
2
-His

2
 zinc $ ngers. # e cleavage activity of the FokI domain 

requires dimerization. # e DSB can be generated in a spacer sequence (5~7bp) between the 

two ZFN monomers binding sites when they bind together in a tail to tail con$ guration. 

Since one single ZF recognizes 3 bases of DNA sequence, a heterodimer of two ZFN, each 

containing 3 to 6 ZFs, could recognize 18bp to 36bp target site, which is enough to de$ ne 

a unique sequence in most organisms statistically. ZFNs have been successfully used for 

GT experiments in a lot of organisms, such as Drosophila, Xenopus, Caenorhabditis elegans, 

zebra$ sh, human cell lines, Arabidopsis, tobacco and maize. # e increase of GT frequencies 

vary from 10 to 10000 among di! erent organisms and cell types (162-165). # e activity and 

the expression level of ZFNs in the target cells also in% uence the GT e"  ciency. # ere are still 

some problems that need to be solved with this strategy. One issue is about the speci$ city 

and the toxicity of the ZFN (166-168). If ZFNs are not extremely speci$ c and can cut the 

genome at o! -target sites, they will cause instability of the genome and be toxic. # e safety 

of ZFNs needs to be improved by optimizing the design of the ZFNs’ structure or regulating 

the expression level and duration of the presence of ZFNs in the target cells.



28

1
7. Outline of the thesis

Non-homologous end joining (NHEJ) is the predominant pathway for the repair of DNA 

double strand breaks in higher eukaryotes, such as plants and mammals. ! is pathway has 

been well characterized in yeast and mammals, but in plants no detailed analysis has been 

described. In mammals, it includes the classical NHEJ (C-NHEJ), which is dependent on 

Ku proteins, and the backup NHEJ (B-NHEJ), which is dependent on the Ku proteins and 

is much less characterized (61-63;94). In plants, the major components of the C-NHEJ have 

been identi" ed (19). ! e NHEJ pathway is used for random integration of T-DNA in yeast. 

Inactivation of NHEJ in yeast and fungi prevented integration by non-homologous end 

joining (134;145). As a consequence, T-DNA integration could only occur by homologous 

recombination (HR; gene targeting). ! e " rst objective of this project was to investigate 

the NHEJ pathway in plants and to " nd out whether the B-NHEJ pathway exists in plants 

using Arabidopsis thaliana as a model. ! e second objective was to analyze whether gene 

targeting frequencies increased in the absence of NHEJ as had been found in yeast and fungi 

(134;137;145). 

Several NHEJ single mutants were ordered from the Salk collection for our research, such 

as Atku70, Atku80, Atlig4, Atmre11, Atparp1, Atparp2 and Atlig6. ! ey were functionally 

characterized in this thesis. Some double and triple mutants were also obtained by crossing 

the single mutants. In chapter 2, the T-DNA insertion single mutants (Atku70, Atku80, 

Atlig4), which are de" cient in the main components of C-NHEJ, are described. Together 

with Atku70 (Ws) and Atmre11 (Ws), which had been characterized by our lab previously, 

they were all tested for the frequency of T-DNA integration and gene targeting.

As it was reported that Parp1 and Parp2 not only are involved in SSB DNA repair, but also 

in the B-NHEJ pathway in mammals (83;85;87), the orthologs of Parp proteins have been 

identi" ed in plants as well (99), DNA repair in Atparp1 and Atparp2 mutants was studied 

in chapter 3 and chapter 4. Chapter 3 describes the characterization of the Atparp1 and 

Atparp2 mutants. ! e results show that also in plants the AtParp proteins play an important 

role in SSB repair and that they are also involved in B-NHEJ using areas of micro-homology. 

Chapter 4 focuses on how exactly the DNA ends join in the NHEJ mutants, which were 

de" cient in C-NHEJ, B-NHEJ or both. To this end, the Atp1p2 double mutant and the 

Atp1p2k80 triple mutant were obtained by crossing. ! e results are in accord with chapter 

3 showing that AtParp proteins facilitate MMEJ, and also suggest that AtKu plays a role 

in DNA end protection and thus prevents MMEJ and HR. Unexpectedly, the Atp1p2k80 

triple mutant still has the ability of end joining indicating that there must exist even a third 

pathway for end joining besides C-NHEJ and B-NHEJ. 

DNA ligase 3 (Lig 3) has been reported to ligate the DNA ends for DNA repair in the 

B-NHEJ pathway in mammals (94). Since no ortholog of Lig3 was found in plants, a plant 

speci" c DNA ligase 6 (Lig6) was postulated to function in B-NHEJ. Chapter 5 presents the 
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study on the two Atlig6 mutants showing that Atlig4lig6 double mutants still ligate DNA 

ends and integrate T-DNA. ! e in silico analysis of DNA ligases in plants revealed another 

possible candidate, which is possibly involved in B-NHEJ.
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Abstract

Eukaryotic organisms use two distinct pathways to repair DNA double-strand breaks (DSBs), 

namely non-homologous end joining (NHEJ) and homologous recombination (HR). NHEJ 

rather than HR is the major pathway for DSB repair in somatic cells of higher eukaryotes, 

and it may also be the major route whereby T-DNA integrates into the genome during 

Agrobacterium-mediated transformation. ! e NHEJ pathway has been well characterized in 

yeast and mammals. In order to study NHEJ in Arabidopsis thaliana, three plants lines with 

a T-DNA insertion in  AtKu80, AtKu70 or AtLig4 genes were functionally characterized. 

Western blot analysis demonstrated that knockout of either AtKu80 or AtKu70 resulted in 

loss of the other protein, showing that heterodimer formation is needed for stability of the 

proteins. Plants homozygous for the T-DNA insertion were phenotypically indistinguishable 

from wild-type plants and were fertile. However, these mutants were hypersensitive to the 

genotoxic agent bleomycin, resulting in more DSBs as quanti" ed in comet assays. ! ey 

had lower end joining e#  ciency, suggesting that NHEJ is a critical pathway for DSB repair 

in plants. Both Atku mutants and a previously isolated Atmre11 mutant were impaired in 

Agrobacterium T-DNA integration via $ oral dip transformation, whereas the Atlig4 mutant 

was hardly a% ected, indicating that AtKu80, AtKu70 and AtMre11 play an important role 

in T-DNA integration in Arabidopsis, but that another ligase may substitute for AtLig4. ! e 

frequency of gene targeting was not increased in the Atku80, Atku70 and Atlig4 mutants, 

but it was increased at least 10 fold in the Atmre11 mutant compared with the wild-type.

Introduction

! e genomic integrity of organisms is threatened by exogenous genotoxic agents, such as 

reactive oxygen species, ionizing radiation and chemicals, as well as by endogenous cellular 

processes, such as transcription and replication (1-3). ! e most threatening damage is the 

occurrence of a double-strand break (DSB) in the chromosomal DNA. To maintain genetic 

stability, organisms have developed two main independent pathways for DNA repair. 

One is the homologous recombination (HR) pathway involving extensive DNA sequence 

homology between the interacting molecules, and the other is the non-homologous end 

joining (NHEJ) pathway acting independently of signi" cant homology. HR occurs during 

the late S to G2 phases of the cell cycle when the sister chromatid is in close proximity as 

repair template. On the other hand, NHEJ does not require a homologous chromosome 

and can function throughout the cell cycle (4). Generally, HR is mainly used in bacteria and 

lower eukaryotes, whereas NHEJ is used predominantly in higher eukaryotes (5;6). NHEJ is 

more error-prone than HR and often produces short deletions and insertions, whereas HR 

may lead to large-scale genetic rearrangements with repetitive sequence elements in large 

genomes. Emerging evidence suggests that the relative balance of the two pathways is tuned 
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to minimize the mutagenesis as a consequence of repair (7). 

In response to DNA damage, the Mre11-Rad50-Xrs2 (MRX) complex in yeast and 

its counterpart in mammals, called Mre11-Rad50-Nbs1 (MRN), function early as a key 

player in the DNA damage sensing, signaling and repair mechanism of both HR and NHEJ 

pathways (8;9). ! e pathway of NHEJ in S. cerevisiae and mammals has been extensively 

characterized. In mammals, conserved proteins that are involved in NHEJ include the 

following: DNA-dependent protein kinase (DNA-PK), Ku70, Ku80, DNA ligase IV (Lig4), 

Xrcc4 and Cernunnos/XLF (10;11). Orthologs of these proteins have been identi" ed also 

in yeast, fungi and plants with the exception of DNA-PKcs, which does not seem to play a 

role in NHEJ in these organisms. Ku is an abundant non-histone nuclear protein in human 

cells. However Ku is also found in the membrane and cytoplasm (12;13). Ku can shuttle 

from the cytoplasm to the nucleus dependent on the cell cycle status and external stimuli, 

like irradiation, alkylating agents and hormones such as somatostatin (14;15). Ku has an 

extremely high a#  nity to DNA ends, and thus rapidly binds to DSBs in living cells (4). DSB 

repair is initiated by the recognition and binding of the Ku heterodimer consisting of Ku70 

and Ku80 to the exposed DNA ends. In mammals the Ku heterodimer recruits DNA-PKcs 

and activates its kinase activity (16-18). Once Ku is bound to the DNA ends, it can improve 

the binding equilibrium of the nuclease (Artemis·DNA-PKcs), the polymerases (µ and λ) 

and the ligase complex (XLF·XRCC4·Lig4) (19;20). In this way, Ku serves as a sca% old of 

the subsequent protein assembly and stabilizes their enzymatic activities at a DNA end (11). 

! e following step is that the Lig4/XRCC4/XLF complex catalyzes the ligation and seals 

the joint (21), thereby restoring the genomic integrity. Lig4 has an exclusive function in 

NHEJ by forming a complex with XRCC4 through the BRCT domain in the C-terminus of 

Lig4 (22). ! is complex associates with Pol χ family polymerases, Pol µ, Pol λ and terminal 

transferase, which " ll in the short gaps generated during DNA end alignment and processing 

(23;24). ! e Lig4/XRCC4 complex also has an impact on the association of Cernunnos/

XLF which promotes the ligation of mismatched and noncohesive DNA ends (21;25). ! e 

NHEJ pathway is Ku-dependent and is also called classical NHEJ (C-NHEJ). Another 

NHEJ pathway has been identi" ed in C-NHEJ de" cient cells, which is Ku-independent, 

called back-up NHEJ (B-NHEJ) (26). 

Integration of transgenes in lower eukaryotes depends on NHEJ and HR DNA repair 

pathways (27;28). Mutations in the NHEJ pathway favour the HR pathway and thereby 

increase the frequency of gene targeting, which is a useful technique using HR to change 

an endogenous gene (27-31). Gene targeting is very rare in higher eukaryotes, like animals 

and plants. Estimates of GT frequencies in several di% erent plant species vary from 10-4 

to 10-6 (32-40). ! erefore, it would be an advantage if also in plants higher gene targeting 

frequencies could be achieved via inactivation of NHEJ. 

Previous studies have reported on the identi" cation of Arabidopsis NHEJ mutants 

(9;41-46). Most of these mutants were in the ecotype Wassilewskija (Ws). ! ose mutants 

display hypersensitivity to agents that induce DSBs, indicating the requirement of those 
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genes under genotoxic stress. Here we characterized three Columbia-0 (Col-0) Arabidopsis 

lines containing a T-DNA insertion in the AtKu70, AtKu80 and AtLig4 genes. ! e genome 

of the Col-0 ecotype has been sequenced completely and T-DNA insertion lines are available 

in most genes, including those involved in DNA repair, so that in the future we can analyze 

other DNA repair mutants including combinations of DNA repair pathways. Plants 

homozygous for the T-DNA insertions were analyzed for sensitivity to DNA damaging 

agents and it was shown directly that these proteins function in end joining in plants. 

Agrobacterium-mediated transformation and the frequency of gene targeting was analyzed 

in these NHEJ mutants and the Atku70 and Atmre11 mutants (ecotype Ws) previously 

described (9;41).

Material and methods

Characterization of the Arabidopsis  T-DNA insertion mutants 

 Atku80, Atku70  and Atlig4 T-DNA insertion lines were obtained from the SALK T-DNA 

collection (SALK_016627, SALK_123114, SALK_044027, respectively). Information 

about them is available at http://signal.salk.edu/cgi-bin/tdnaexpress (47). ! e T-DNA 

insertion site was mapped with a T-DNA Left Border (LB) speci" c primer LBa1 and a 

gene-speci" c primer. Pairs of gene-speci" c primers around the insertion site were used to 

determine whether the plants were homozygous or heterozygous for the T-DNA insertion, 

and the PCR products were sequenced. T-DNA right border (RB) speci" c primers (Sp205, 

Sp206) were used to detect the T-DNA Right Border/ vector junction. ! e sequences of 

all the primers are listed in Table 1. For Southern blot analysis, DNA was extracted from 

individual plants using the CTAB DNA isolation protocol (48) and digested with HindIII 

(Atku70 and Atlig4) or PstI (Atku80). DNA (5µg) was ran on a 0.7% agarose gel and 

transferred onto positively charged Hybond-N membrane (Amersham Biosciences). ! e 

hybridization and detection procedures were done according to the DIG protocol from 

Roche Applied Sciences. ! e DIG probe was produced using the PCR DIG Labeling Mix 

(Roche) with speci" c primers SP271 and SP272 that ampli" ed an 850-bp fragment from 

the T-DNA of pROK2. Characterization of the Atku70 and Atmre11 mutants (ecotype Ws) 

was described previously (9;41).

Quantitative reverse-transcription PCR (Q-RT-PCR)

Leaves of 2-week-old wild-type (ecotype Col-0), Atku80, Atku70 and Atlig4 plants were 

ground under liquid N
2
 in a Tissue-Lyser (Retch). Total RNA was extracted from the leaf 

powder using the RNeasy kit (Qiagen) according to the supplied protocol. Residual DNA was 

removed from the RNA samples with DNaseI (Ambion) in the presence of RNase inhibitor 

(Promega). RNA was quanti" ed and 1 µg of RNA was used to make cDNA templates 

using iScript cDNA synthesis kit according to the manufacturer’s instructions (Bio-Rad). 

Quantitative real-time PCR (Q-PCR) analyses were done using the iQ™ SYBR® Green  
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Supermix (Bio-Rad). Speci! c fragments (about 200 bp) were ampli! ed by pairs of primers 

around the T-DNA insertion sites using a DNA Engine " ermal Cycler (MJ Research) 

equipped with a Chromo4 real-time PCR detection system (Bio-Rad). " e sequences of the 

primers are listed in Table 1. " e cycling parameters were 95°C for 3min, 40 cycles of (95°C 

for 1 min, 60°C for 40s), 72°C for 10 min. All sample values were normalized to the values 

of the house keeping gene Roc1 (Primers Roc5.2, Roc3.3) and were presented as relative 

expression ratios. " e value of the wild-type was set on 1.

Table 1. Sequences of primers used for characterization of T-DNA insertion lines and 

Q-PCR.

Name Locus Sequence

LBa1 T-DNA LB 5'-TGGTTCACGTAGTGGGCCATCG-3'

Sp111 AtKu80 5'-GAATTCCCCATGGAACAACAACAAGCAGTAGCAG-3'

Sp112 AtKu80 5'- CTCGACTTAGCTCTCGAGCATTGAC-3'

Sp119 AtKu70 5'-TGGGTTGCACAAGCACTACTGC-3'

Sp120 AtKu70 5'-GAATAGCCGGACGGAGTAAAGC-3'

Sp268 AtLig4 5'-ATGCTGAGGACTTGTTTAATG-3'

Sp269 AtLig4 5'-ACCAACATTTCACCATCAAGG-3'

Sp205 T-DNA RB 5'-ATCAAGCGTATGCAGCCGCC-3'

Sp206 T-DNA RB 5'-TTTGGAACTGACAGAACCGC-3'

Sp207 AtKu80 5'-GCGTCTTGGAGCAGGTCTCTTC-3'

Sp208 AtKu80 5'-GATGAAATCCCCAGCGTTCTCG-3'

q1 AtKu70 5'-TCTACCACTCAGTCAACCTG-3'

q2 AtKu70 5'-CAATAGACAAGCCATCACAG-3'

q6 AtLig4 5'-GACACCAACGGCACAAG-3'

q7 AtLig4 5'-AAGTTCAATGTATGTCAGTCCC-3'

Roc5.2 Roc1 5'-GAACGGAACAGGCGGTGAGTC-3'

Roc3.3 Roc1 5'-CCACAGGCTTCGTCGGCTTTC-3'

Sp271 T-DNA 5'-CCCGTGTTCTCTCCAAATG-3'

Sp272 T-DNA 5'-CAGGTCCCCAGATTAGCC-3'

q8 BamHI 5'-GTGACATCTCCACTGACGTAAG-3'

q9 BamHI 5'-GATGAACTTCAGGGTCAGCTTG-3'

q10 GFP 5'-CAAGCTGACCCTGAAGTTCATC-3'

q11 GFP 5'-GTTGTGGCGGATCTTGAAG-3'

Sp154 5’ PPO 5'-GGTGGTACTTTTAAGGCAATTCAG-3'

Sp155 5’ PPO 5'-GACAGAATTCCGGTGTTTGTAGAC-3'

Sp156 3’ PPO 5'-GGTGAGTTAGTGGAAGCAGTTGAC-3'

Sp157 3’ PPO 5'-GTCCCATTCAACTATCTTGGTAAG-3'

Bar1 Bar 5'-AACCCACGTCATGCCAGTTCC-3'

Bar2 Bar 5'-CGGCGGTCTGCACCATCGTC-3'
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Western blotting

Leaves from plants grown in soil for 3 weeks were ground under liquid N
2
 in a Tissue-

Lyser (Retch). One hundred µl protein extraction bu" er (50 mM Tris-HCl pH 7.5; 2 mM 

EDTA; 0.2 mM PMSF; 1 mM DTT; 1×Protease inhibitor cocktail Complete®, EDTA free) 

was added to 50 mg of tissue powder. Soluble protein was isolated by centrifugation at 

4°C. & e protein concentration was determined using the BIO-RAD protein assay reagent. 

Approximately 10 µg soluble proteins were electrophoresed on 10% SDS/PAGE (49). & e 

fractioned products were semi-dry blotted onto BA85 nitrocellulose membrane (Whatman). 

Equal loading of the gels and quality of protein preparations were checked by staining extra 

sets of gels with Coomassie Brilliant Blue R250 (not shown). Blots were blocked for 3 hr in 

5% nonfat dry milk in PBST (10 mM NaPO4, pH 7.4; 120 mM NaCl; 2.7 mM KCl; 0.05% 

v/v Tween 20) and incubated overnight at 4oC with peptide antibodies (1:1000) in the same 

bu" er. Rabbit anti-Ku80 and anti-Ku70 polyclonal antibodies were raised against synthetic 

peptides corresponding to small domains of the proteins that exhibit sequence diversity 

and were a*  nity chromatography puri+ ed (Eurogentec). & e sequences of the synthetic 

peptides for AtKu80 and AtKu70 were NH2-LLRDKPSGSDDEDN-+C-CONH2 and 

NH2-ELDPDDVFRDEDEDP-+C-CONH2, respectively, with a C-terminal coupling on 

the added cystein. & e blots were washed 4 times with PBST and incubated for 3 h with 

anti-rabbit HRP antibodies (1:7500) (Promega). & e blots were washed 4 times with PBST 

and detection was performed using LumiGLO™ chemoluminescence detection kit (Cell 

Signalling). 

Assays for sensitivity to bleomycin and methyl methane sulfonate (MMS)

Seeds from Col-0 wild-type and the Atku80, Atku70 and Atlig4 mutants were surface-

sterilized as described (50) and were germinated on solidi+ ed ½ MS medium (invented 

by Murashige and Skoog, containing MS salts with macro- and micronutrients, vitamins, 

FeNaEDTA, myo-inostol, MES, sucrose, Daishin Agar) (51). For bleomycin and MMS 

sensitivity, 4-day-old seedlings were transferred to liquid ½ MS medium or liquid ½ MS 

medium containing 0.2 µg/ml and 0.4 µg/ml BleocinTM antibiotic (Calbiochem), or 0.007% 

and 0.01% (v/v) MMS (Sigma). & e seedlings were scored after 2 weeks of growth at 21 °C 

in a growth chamber (16 h light/8 h dark, 2500 lux at 70% humidity). After this period, 

fresh weight (compared with controls) was determined by weighing the seedlings in batches 

of 20 in triplicate.

Comet assay

DSBs were detected by a neutral comet assay as described previously (52) with minor 

modi+ cations. Plant nuclei were embedded in 1% low melting point UltrapureTM 

agarose-1000 (Invitrogen) to make a mini gel on microscopic slides according to the 

protocol. Nuclei were subjected to lysis in high salt (2.5 M NaCl, 10 mM Tris-HCl, pH7.5, 

100 mM EDTA) for 20 min at room temperature (N/N protocol). Equilibration for 3×5 
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min in 1×TBE bu" er (90 mM Tris-borate, 2 mM EDTA, pH8.4) on ice was followed by 

electrophoresis at 4 °C in TBE bu" er for 15min at 30V (1V/cm), 15-17mA. Dry agarose 

gels were stained with 15 ul ethidium bromide (5ug/ml) and immediately evaluated with 

a Zeiss Axioplan 2 imaging $ uorescence microscope (Zeiss, Germany) using the DsRed 

channel (excitation at 510nm, emission at 595nm). Images of comets were captured at a 

40-fold magni% cation by an AxioCam MRc5 digital camera (Zeiss, Germany). & e comet 

analysis was carried out by comet scoring software CometScoreTM (Tritek Corporation). & e 

percentage of tail DNA (%tail-DNA) was used as a measure of DNA damage. & e %tail-

DNA was measured at 3 time points: 0 h, 2 h, 24 h for 1µg/ml bleomycin treatment and 

in the seedlings which had 24h recovery in ½ MS after 24h treatment. Measurements were 

performed for 4 independent gel replicas and approximately 100 comets analyzed for each 

treatment.

Isolation of Arabidopsis mesophyll protoplasts

Arabidopsis Col-0 was either grown in a greenhouse at 21°C (16 h photoperiod) or in a 

culture chamber (21°C, 50% relative humidity, 16 h photoperiod). Rosette leaves (~1 g) 

from plants that were 3 to 5 weeks old were collected, rinsed with deionized water and 

brie$ y dried. & e leaves were cut into 0.5 to 1 mm strips with a razor blade, placed into a 

sterile Petri dish containing 15 ml of % lter-sterilized enzyme solution [1.5% (w/v) cellulose 

R10, 0.4% (w/v) macerozyme R10, 0.4 M mannitol, 20 mM KCl, 20 mM MES pH5.7, 10 

mM CaCl
2
, 0.1% (w/v) BSA] and incubated 2-3 h in the dark at 28°C. & en the protoplasts 

were % ltered through a 50 µm mesh to remove the undigested material and transferred 

to a round-bottom Falcon tube. & e solution was centrifuged for 5 min at 600 rpm to 

pellet the protoplasts. & e supernatant which contained broken cells was discarded. & e 

protoplasts were gently washed twice by 15 ml cold W5 solution (154 mM NaCl, 125 mM 

CaCl
2
, 5 mM KCl, 2 mM MES pH5.7), and resuspended in cold W5 solution to a % nal 

concentration of 2×105 cells/ml and kept on ice for 30 min. Just before starting transfection, 

protoplasts were collected from the W5 solution by centrifugation and were resuspended to 

a density of 2×105 cells/ml in MMg solution (0.4 M mannitol, 15 mM MgCl
2
, 4mM MES 

pH5.7) at room temperature.

Figure 1. Schematic diagram of pART7-HA-GFP. 
& e primers for Q-PCR are shown by arrows.
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End joining assay

Plasmid pART7-HA-GFP(S65T) was linearized by cleavage with BamHI (Figure 1). Fresh 

protoplasts prepared from leaves were transformed with either linear or circular plasmid 

DNA by the polyethylene glycol (PEG) transformation protocol (53). In each experiment, 

2×104 protoplasts were transformed with 2 µg of plasmid. Recircularization of the linear 

plasmid in protoplasts by the NHEJ pathway was analyzed. DNA was extracted from 

protoplasts (at 0 h and 20 h) and was used to quantify rejoining by Q-PCR. # e DNA 

extraction protocol and the cycling parameters of Q-PCR were the same as mentioned 

above. Two pairs of primers were used: one pair (q8+q9) was $ anking the enzyme digestion 

site (BamHI); the other pair (q10+q11) was localized in GFP (Figure 1). When the plasmid 

is circular, both of them give products. When the plasmid is cleaved by BamHI, the % rst pair 

of primers will not give a product, whereas the second will still give products. # e e&  ciency 

of end joining is presented by the ratio of PCR products using q8+q9 primers and q10+11 

primers in comparison with the controls. # e value of the wild-type was set on 1. Q-PCR 

was performed as three replicates and the assays were performed in triplicate.

Root transformation

Root transformation was performed as described by Nam et al. (54). Sterile roots of 

3-week-old wild-type and mutants grown in agar were cut into segments and inoculated 

with Agrobacterium strain AT∆virD2 with wild-type VirD2 on a plasmid harboring a 

β-glucuronidase (GUS)-expressing binary vector (55). After 2 days co-cultivation, an excess 

of Agrobacterium cells was washed away. Some of the root segments were stained with 

5-bromo-4-chloro-3-indolyl β-D-glucuronide (X-Gluc) to measure the transient expression. 

GUS activity was determined as the number of blue spots per seedling. # e residual root 

segments were plated on callus-induction medium containing kanamycin for 3-4 weeks to 

test callus formation as measure for T-DNA integration (45). Stable transformation was 

scored as infected root segments that produced any form of callus.

Floral dip transformation

Floral dip transformation was performed according to the procedure described by Clough 

and Bent (56). # e Agrobacterium strain AGL1 (pSDM3834) (34) was used for infection. 

Plasmid pSDM3834 is a pCambia 1200 derivative (hpt selection marker). Seeds were 

harvested from the dry plants after maturation and plated on solid MA medium (57) without 

sucrose containing 15 µg/ml hygromycin, 100 µg/ml timentin (to kill Agrobacterium cells) 

and 100 mg/ml nystatin (to prevent growth of fungi). Hygromycin-resistant seedlings were 

scored 2 weeks after germination and transformation frequency was determined (50 seeds 

weigh approximately 1mg) (43).

Gene targeting

In order to test the frequency of gene targeting in the Atku70 mutant (ecotype Ws) (41) and 
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the Atmre11 mutant (ecotype Ws) (9) which were previously characterized by our lab, ! oral 

dip transformation was performed with Agrobacterium strain AGL1(pSDM1502) (original 

name of the plasmid is pSDM) for gene targeting using the protoporphyrinogen oxidase 

(PPO) system (32). For the three NHEJ mutants (ecotype Col-0), ! oral dip transformation 

was performed with Agrobacterium strain AGL1 (pSDM3900). Plasmid pSDM3900 is a 

pCambia 3200 derivative (phosphinothricin (ppt) selection marker). " e PPO sequences 

used for gene targeting were cloned from the Col-0 ecotype and mutations were introduced 

to obtain resistance to the herbicide butafenacil. About 1 gram seeds were plated on solid 

MA medium without sucrose containing 15 µg/ml ppt, 100 µg/ml timentin and 100 µg/ml 

nystatin to determine the transformation frequency. " e rest of the seeds were all sowed on 

solid MA medium without sucrose containing 50 µM butafenacil, 100 µg/ml timentin and 

100 µg/ml nystatin to identify gene targeting events. " e butafenacil-resistant plants were 

analyzed with Southern blot analysis to determine if they represented true gene targeting 

(TGT) events or contained extra T-DNA integration (Figure 2). 

Results

Isolation and characterization of the Atku80 Atku70 and Atlig4 mutants

In order to study the role of AtKu80, AtKu70 and AtLig4 in Agrobacterium transformation 

and gene targeting, Arabidopsis thaliana (ecotype Col-0) homozygous T-DNA insertion 

Figure2. " e design for the targeted modi$ cation of the Arabidopsis PPO locus.
" e white box marked PPO represents the PPO coding region, and the thick black lines represent 
! anking plant genomic DNA. " e thin lines indicate the T-DNA sequences. " e two mutations 
conferring Butafenacil resistance are indicated as stars. " e BAR resistance gene is linked to the 
truncated 5’∆PPO of the T-DNA (LB for left border and RB for right border). " e probes and 
the restriction enzyme digestion sites used for Southern blot analysis are also shown.



51

2

mutants were obtained from the Salk collection and characterized (Figure 3). When two 

gene-speci! c primers " anking the insertion site were used, PCR products were ampli! ed for 

the wild-type and heterozygotes. No PCR products were obtained for homozygous mutants 

by using two gene-speci! c primers, because the PCR products in the mutant would be >10 

kb in size and would not be detectable. When T-DNA-speci! c primer LBa1 was used in 

combination with one gene-speci! c primer, PCR products for the T-DNA-insertion mutants 

were ampli! ed, whereas no PCR products were obtained for the wild-type. We identi! ed 

Figure 3. Molecular analysis of the NHEJ T-DNA insertion lines. 
Genomic organization of the AtKu80 (A), AtKu70 (B) and AtLig4 (C) locus. Inserted T-DNAs 
are indicated. Exons are shown as black boxes. 3’ and 5’ UTRs are shown as gray boxes. Introns 
are shown as lines. # e primers used for genotyping and Q-RT-PCR analysis are indicated. 
# e probe (▬) and the restriction enzyme digestion sites (P for PstI, H for HindIII) used for 
Southern blot analysis are also indicated. Genomic DNA sequences (gDNA) " anking the T-DNA 
insertion are shown in italic. pROK2 denotes the vector part of this binary vector.
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homozygous mutants harboring a T-DNA insertion for each of the three genes (data not 

shown) in the next generation. ! e insertion point of the T-DNA left border (LB) was 

mapped by sequencing of the PCR products generated by LBa1 in combination with one of 

the gene-speci" c primers. For Atlig4, PCR products were produced by LBa1 combined with 

both gene-speci" c primers (Sp268, Sp269), indicating the insertion of a T-DNA inverted 

repeat with the LB at both ends. For Atku80 and Atku70, no PCR products were obtained 

using LBa1 or the RB primer in combination with the other gene-speci" c primer, but PCR 

products (600bp) were ampli" ed by using primers spanning the RB/vector junction (Sp205 

and Sp206). ! at indicated that the RB was integrated with extra vector pBin-ROK DNA. 

! erefore, the RB integration site could not be mapped in the Atku80 and Atku70 mutants.

! e genomic DNA was digested by the PstI (Atku80) or HindIII (Atku70 and Atlig4) 

for Southern blotting (Figure 4). If there is one T-DNA inserted in the correct locus, bands 

with the following sizes will be detected on the blot: Atku80: 32 kb; Atku70: 3.2 kb; Atlig4: 

2.1 kb and 3.8 kb. If T-DNAs are also present in other loci, additional bands probably with 

di# erent sizes will be detected. If there are 2 or more T-DNAs inserted in one locus as direct 

repeat, an additional band of 4317 bp, representing a complete T-DNA, will be detected. 

If there are 2 or more T-DNAs inserted in one locus as indirect repeat, an additional band 

of 3634 bp will be detected. Sequencing results and Southern blot analysis using a pROK2 

probe indicated that the T-DNAs were all inserted at the position as reported by the Salk 

database. A detailed characterization of the T-DNA insertions is shown in Figure 3. ! e 

Atku80 line contained 1 T-DNA insertion. ! e LB end of the T-DNA in Atku80 was 

integrated into intron 10, had lost 7 base pairs (bps) and had incorporated 43 bps " ller 

DNA during integration. ! e Atku70 line contained more than 2 T-DNA copies. ! e LB 

end of the T-DNA in Atku70 was integrated into exon 8 and had 28 bps " ller DNA. ! e 

Figure 4. Southern blot analysis of T-DNA insertion mutants. 
! e genomic DNA was digested by PstI (Atku80) or HindIII (Atku70 and Atlig4). An 850-bp 
ampli" ed region of the T-DNA of pROK2, was used as probe. M: λHindIII Marker. 1, 2, 3 and 
4 indicate individual progeny plants of Atku70 and Atlig4.
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Atlig4 line contained 2 T-DNA copies inserted as an inverted repeat. ! e two LB ends of the 

T-DNAs in Atlig4 were integrated into exon 6, one missing 18 bps and the other missing 11 

bps. ! e Atlig4 gene itself had lost 25 bps. ! ere were extra T-DNAs present in other loci in 

plants 2 and 3 of the Atlig4 line, but these were absent in plants 1 and 4, which were used 

for further analysis (Figure 4).

We did not observe any dwarf or sterile phenotype in these Arabidopsis mutant lines. 

Also no obvious di" erences in growth, # owering or senescence were observed between 

mutants and wild-type plants. A somewhat delayed germination was the only phenotypic 

change exhibited by the Atku80 mutant. ! is is in accordance with former reports about the 

phenotype of mutants with T-DNA insertions in these genes in the ecotype Wassilewskija 

(Ws) (41;43;46).

Expression analysis

In order to check expression of the mutated genes, Q-RT-PCR analysis was performed 

for each T-DNA insertion line using primers # anking the insertion site. ! is resulted in 

a product for each gene in the wild-type, but not in the corresponding T-DNA insertion 

mutant (Figure 5). ! is indicated that in the insertion mutants no stable mRNA is produced 

from the mutated gene and con$ rms that the plants are indeed homozygous mutants. 

Compared with the wild-type, each mutant had a higher expression of the two other intact 

NHEJ genes. ! us, there could be some form of feedback regulation for the expression of 

these three genes.

Western blot analysis was performed on extracts from wild-type, Atku80, Atku70 and 

Atlig4 plants using polyclonal peptide antibodies raised against AtKu80 or AtKu70. An 80-

kD band, the predicted size of the AtKu80, was present in  the wild-type and Atlig4 plants, 

but not detectable in the Atku80 mutant with anti-Ku80 antibodies. A very weak signal was 

found in the Atku70 mutant. A 70-kD band, the predicted size of the AtKu70 protein, was 

present in the wild-type and Atlig4 plants, but not detectable in the Atku70 mutant with 

Figure 5. RNA expression of the NHEJ genes AtKu80, AtKu70 and AtLig4, determined by 
Q-RT-PCR, in wild-type and mutant plants. All the sample values were normalized to Roc 
values and the ratios were obtained in triplicate. ! e values of the wild-type were set on 1. 
(     wild-type;     Atku80;     Atku70;     Atlig4)
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anti-Ku70 antibodies and the signal was very weak in the Atku80 mutant (Figure 6). Loss 

of one of the Ku subunits thus resulted in a signi! cant decrease in the amounts of the other 

subunit according to the western blot data. " is indicated that heterodimerization of the Ku 

proteins is required for Ku protein stabilization in plants, as was shown before in mammals 

(14;58).

Sensitivity to genotoxic agents

Mammalian cell lines, yeast strains and Arabidopsis mutants lacking Ku80, Ku70 or Lig4 

have defects in DSB repair and are sensitive to DNA-damaging agents (10;41;43;59). We 

tested whether disruption of these genes in the Col-0 background also a# ects sensitivity of 

the plants to DNA-damaging agents by comparing growth of the wild-type and these NHEJ 

mutants during exposure to bleomycin or MMS. Bleomycin is a radiomimetic chemical that 

induces DNA double strand breaks (DSBs) (60). MMS is a monofunctional alkylating agent 

that induces N-alkyl lesions and DNA single strand breaks (SSBs) that can be converted 

into DSBs during replication (61). As expected, the Atku80,  Atku70 and Atlig4 mutants 

turned out to be hypersensitive to bleomycin and the Atku70 and Atlig4 mutants seemed 

also somewhat more sensitive to MMS. To quantify this, the fresh weight of seedlings was 

determined after 2 weeks of continuous treatment. Compared with wild-type seedlings, 

NHEJ mutated seedlings showed growth retardation in the presence of these two genotoxic 

agents (Figure 7). In the presence of bleomycin, the fresh weight of Atku80 was 2-fold less 

than that of the wild-type and the fresh weight of Atku70 and Atlig4 was about 4-fold less 

than that of the wild-type. " e fresh weight of all seedlings was lower after growth in the 

presence of MMS compared to bleomycin. According to the student’s T-test, the Atku70 and 

Atlig4 mutants had a signi! cantly lower weight than the wild-type grown in the presence 

of MMS, but there was no signi! cant di# erence between the wild-type and the Atku80 

mutant. " ese data corroborated that AtKu80, AtKu70 and AtLig4 are main components 

Figure 6. Western blot analysis of leaf protein samples from the Atku80, Atku70, Atlig4 mutants 
and wild-type (Col-0) plants using anti-AtKu70 antibody (A) and anti-AtKu80 antibody (B). 
Detected Ku70 and Ku80 proteins are indicated with arrows. Around 10 µg of soluble leaf 
protein was loaded for each plant line. 
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of the DSB repair machinery and that the Atku70 and Atlig4 mutants are more sensitive to 

genotoxic agents than the Atku80 mutant. 

 

In order to quantify the DNA damage in these mutants, comet assays were performed. For 

each treatment, around 100 randomly chosen nuclei were analyzed by using CometScoreTm. 

Figure 7. Hypersensitivity of Atku80 Atku70 and Atlig4 plants to DNA-damaging treatments. 
(A) Phenotypes of wild-type (Col-0) plants and Atku80, Atku70 and Atlig4 mutants to bleomycin 
or MMS treatment. Four-day-old seedlings were transferred to liquid ½ MS medium (control) 
or ½ MS medium containing di! erent concentrations of bleomycin (Bleo) or MMS and were 
scored 2 weeks after germination.
(B) Fresh weight of 2-week-old wild-type plants and Atku80, Atku70 and Atlig4 mutants treated 
with 0.2 µg/ml bleomycin or 0.007% MMS. For each treatment 20 seedlings were weighed in 
triplicate. Fresh weight of the plants grown for 2 weeks without bleomycin or MMS was set 
at 1. Student’s test: * P<0.05, ** P<0.001 (comparing mutants with the wild type of the same 
treatment).

    (     wild-type;     Atku80;     Atku70;     Atlig4)
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  e percentage DNA in the tail is related to the amount of DNA damage. Scoring was 

done by dividing the nuclei into three groups according to percentage DNA in the tail 

(<5, 5~10, >10).   ereafter, for each treatment the proportion of the nuclei in each group 

was determined.   e results showed that the genomic DNA of the Atku80, Atku70 and 

Atlig4 mutants was more damaged than that of the wild-type, especially after treatment 

with bleomycin for 24h (Figure 8). Already, after 2h treatment, more DNA damage was 

found in the nuclei of the Atku80 and Atku70 mutants, indicating that the genome of t he 

Atku80 and Atku70 mutant was damaged quicker and thus that repair was slower than in the 

Atlig4 mutant and the wild-type (Figure 8). Interestingly, the NHEJ mutants had less DNA 

damage after 24h recovery compared to the situation before recovery, though they still had 

more DNA damage than the wild-type, especially the Atku70 and Atku80 mutants (Figure 

8).   is showed that a slow back-up DNA repair pathway must exist for repair of DNA 

damage in the NHEJ mutant plants.

Figure 8. Comet assay. 
(A)   e fraction of DNA in comet tails (%tail-DNA) was used as a measure of DNA damage 
in wild-type (Col-0), Atku80, Atku70 and Atlig4 plants. For each treatment, around 100 nuclei 
were analyzed.   e means of %tail-DNA after bleomycin treatment are shown.
(      t=0;      t=2h;      t=24h;      24h recovery) 
(B) According to the value of %tail-DNA, nuclei were divided into three groups (     <5;     5~10; 
     >10).   e proportions of these groups are shown for wild type (Col-0), Atku80, Atku70 and 
Atlig4 plants after: no treatment; b2h: 2h bleomycin treatment; b24h: 24h bleomycin treatment; 
br: 24h bleomycin treatment followed by 24h recovery.
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End joining activity

To directly test the function of AtKu80, AtKu70 and AtLig4 in end joining, we used an in 

vivo plasmid rejoining assay to quantify the capacity of the protoplasts to repair restriction 

enzyme generated DSBs. To this end, we transformed protoplasts from leaves with circular 

(control) or BamHI linearised plasmid DNA. BamHI digests the plasmid DNA in the 

N-terminal part of the GFP coding sequence. Rejoining of linear plasmid in vivo will result 

in GFP expression. GFP ! uorescence was indeed detected in the wild-type protoplasts which 

were transformed with linearized plasmid. But it was di"  cult to quantify the di# erence of 

GFP expression between the wild-type and the mutants under the ! uorescence microscope. 

$ erefore, we analyzed the rejoining e"  ciency by Q-PCR, using primers around the BamHI 

site compared to primers in the GFP coding region. $ e results showed that the rejoining 

e"  ciencies were reduced by half in the Atku80, Atku70 and Atlig4 mutants compared with 

the wild-type (Figure 9). It proved directly that AtKu80, AtKu70 and AtLig4 are involved 

in NHEJ.

T-DNA integration

Double strand break repair forms an important mechanism for the integration of 

Agrobacterium T-DNA in the genome. In yeast non-homologous T-DNA is integrated by 

NHEJ (27), but the results obtained in plants so far are variable (43;45;59;62). To test 

whether the AtKu70, AtKu80 and AtLig4 genes are required for T-DNA integration, we 

compared T-DNA integration in those mutants and in wild-type plants using two di# erent 

Agrobacterium transformation assays.

First, in vitro root transformation was performed as described by Nam et al (54), using 

a binary vector with both a GUS gene and the nptII gene (for Kanamycin resistance). $ e 

transient GUS activity was determined as the number of blue spots per root segment. T-DNA 

integration was scored as the percentage of infected root segments that produced any form 

of callus on selective callus-inducing medium. In principle, for each plant line, the transient 

GUS activity, which re! ects expression of non-integrated T-DNA, should be at the same 

Figure 9. Plasmid end-joining assay. 
Rejoined plasmid DNA with respect to total plasmid DNA in the wild-type Col-0 was set on 1. 
Values of end joining in the mutants are given relative to that of the wild-type.
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level, whereas callus formation will be reduced in mutants a! ected in T-DNA integration. 

Our results showed no signi" cant di! erence, neither in transient GUS expression nor in 

callus formation between the NHEJ mutants and the wild-type (data not shown). 

Secondly, we transformed germline cells using the # oral dip method as described by 

Clough and Bent (56). $ e transformation frequency here was determined as the number 

of hygromycin resistant seedlings per total number of plated seeds. In this assay, the 

transformation frequency of Atku80 and Atku70 plants turned out to be reduced signi" cantly 

to 20 percent of the wild-type transformation frequency, whereas the transformation 

frequency of Atlig4 plants was not signi" cantly reduced (Figure 10). It indicated that AtKu80 

and AtKu70, but not AtLig4, are required for e%  cient Agrobacterium T-DNA integration in 

plant germline cells.

Gene targeting

T-DNA can not only be integrated by non-homologous recombination, but also at low 

frequency by homologous recombination (gene targeting). $ e number of gene targeting 

(GT) events was shown to be increased after disruption of NHEJ in lower eukaryotes, such 

as yeast and fungi (28;29;63;64). In order to test whether disruption of NHEJ also increased 

gene targeting frequency in plants NHEJ mutants were used in Agrobacterium # oral dip 

transformation using a T-DNA with an incomplete mutated PPO gene with homology 

to the plant genome (Figure 2). If the targeted endogenous PPO gene is replaced by the 

mutated PPO of the T-DNA, the plants become resistant to butafenacil. If there are extra 

T-DNAs randomly inserted in other loci of the genome, the plants will also become resistant 

to phosphinotricin (ppt). Besides the Col-0 mutants characterized here, previously described 

Figure 10. Transformation frequencies using the # oral dip assay. 
One gram of seeds from the wild-type (Col-0) and the NHEJ mutants obtained after # oral 
dip transformations were selected on hygromycin (for pSDM3834) or ppt (for pSDM3900). 
$ e number of selection-marker-resistant seedlings was scored 2 weeks after germination. $ e 
transformation frequency is presented as the ratio of the percentage of selection-marker-resistant 
seedlings in the mutants and the wild-type.  (      pSDM3834,     pSDM3900)
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Atku70 and Atmre11 mutants were used of the ecotype Ws (9;41), because no Atmre11 

mutants could be obtained for the Col-0 ecotype.

Firstly, 1 g of seeds was used to determine the transformation frequency by plating on 

ppt media (Table 2). In all 5 mutants the frequency was lower compared to the wild-type as 

already described above for the three Col-0 mutants (Figure 10). ! e remaining of the seeds 

was plated with selection for butafenacil resistance. ! e theoretical number of transformants 

in these seed batches was calculated from the transformation frequency. 

! ere were 2 butafenacil-resistant plants found in 2600 transformants of the wild-type 

of ecotype Col-0. PCR analysis showed that both plants represent true gene targeting (TGT) 

events (data not shown). One of these plants is also ppt resistant, indicating the presence 

of extra T-DNA copies. ! ere were no GT events found in around 1000 transformants of 

the Atku70, Atku80 and Atlig4 Col-0 mutants (Table 2), indicating that the gene targeting 

frequency was not signi" cantly increased in those mutants compared with the wild-type.

Subsequently, the Ws wild-type and mutants were used for a GT experiment. In about 

104 wild-type transformants no GT event was observed. Since the transformation frequency 

of Atku70 (ecotype Ws) was rather low only about 1000 transformants were obtained and 

no GT events were observed. However, there were 3 butafenacil-resistant plants found in 

3625 transformants of the Atmre11 mutant (ecotype Ws). ! erefore, the frequency of gene 

targeting was increased at least 10 fold in the Atmre11 mutant compared with that in the 

Ws wild-type. Initial PCR analysis showed that GT had occurred in these plants (results not 

shown). ! ese plants were further analyzed by Southern blotting.

! e genomic DNA of pools of progeny plants of the 3 plant lines was digested by KpnI 

and NcoI for Southern blotting (Figure 11). With the 5’ PPO probe and the 3’ PPO probe, 

a band of 11.6 kb was detected for the wild-type allele in all lanes. In most progeny plants of 

all three lines a band of 2 kb representing the gene targeting allele was detected with the 5’ 

Table 2. Transformation and gene targeting frequencies.

Plant lines
Transformants 

tested
Butafenacil 

resistant
ppt resistant

Transformation 
frequency

WT (Col-0) 2600 2 1 1

Atku80 (Col-0) 1143 0 - 0.23

Atku70 (Col-0) 1086 0 - 0.24

Atlig4 (Col-0) 1537 0 - 0.66

WT (Ws) 10927 0 - 1

Atku70 (Ws) 980 0 - 0.23

Atmre11 (Ws) 3625 3 3 0.21

! e numbers of di# erent events found in gene targeting experiments. ! e transformation 
frequency was shown as the ratios compared with the wild-type and the value of the wild-type 
was set on 1.
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PPO probe. With the 3’ PPO probe, a band of 9.6 kb representing the gene targeting allele 

was only detected in line IV. ! e results showed that the plant lines III and V of Atmre11 

represented ectopic gene targeting (EGT) events, whereas plant IV represented a true gene 

targeting (TGT) event. All of the three plant lines had extra bands with the 3’, the 5’ and the 

BAR probe, and moreover, they were ppt-resistant, suggesting that they all contained extra 

T-DNA insertions. In principle, individual homozygous plants for the modi" ed copy of the 

PPO locus would be segregated from the progenies in case of TGT. But it was strange that 

only the bands for T-DNA and 5’ PPO segregated, and the bands for the wild-type PPO did 

not segregate.

Discussion

Here, we isolated and characterized three Arabidopsis thaliana NHEJ mutants in which 

AtKu80, AtKu70 and AtLig4 were inactivated through a T-DNA insertion. ! e mouse is the 

only other multicellular organism in which the e# ects of inactivation of the Ku80, Ku70 and 

Lig4 genes have been studied in detail. Mice lacking Ku80 or Ku70 are fertile, but they show 

growth retardation and have immuno-de" ciencies due to defects in V(D)J recombination. 

Figure11. Gene targeting analysis of butafenacil resistant Atmre11 lines.
Southern blot analysis was preformed for progeny of the three individual plant lines (III, IV and 
V) of the Atmre11 mutant. P is for positive control (PPO resistant plant) and W is for the wild-
type. ! e probe used for the top panel is probe 5’ PPO, the probe for the middle panel is probe 3’ 
PPO and probe for the bottom panel is probe Bar. ! e sizes for the bands of the marker from the 
top to the bottom are as follows: 23130 kb, 9416 kb, 6557 kb, 4361 kb, 2322 kb, and 2027 kb.
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Mice lacking Lig4 show late embryonic lethality associated with extensive apoptosis in the 

embryonic central nervous system (65-68). Yeasts and ! lamentous fungi with mutations 

in the NHEJ genes have no obvious growth phenotype (28;30;31;64;69). " e Arabidopsis 

thaliana mutants homozygous for those mutations, which we obtained, showed no obvious 

growth phenotypes or sterility. Only the AtKu80 mutant showed a phenotype in which it 

di# ered from the wild-type, i.e. delayed germination. However, the NHEJ mutants all did 

show a clear hypersensitivity to the DNA damaging agent bleomycin. " us, as in yeast and 

mammalian cells, AtKu80, AtKu70 and AtLig4 play a role in the repair of DNA damage, 

especially in DSBs repair. In mice, the Ku80, Ku70 and Lig4 genes are likewise involved 

in DNA damage repair; but here they may have additional functions that are necessary for 

normal development and may be involved in cell growth, DNA replication, G1-S transition 

and Bax mediated apoptosis (70-73). Lig4 was also found to play a role in apoptosis in 

mammalian cells (74). In plants and lower eukaryotes, Ku80, Ku70 and Lig4 genes may 

lack these additional functions and therefore show no phenotype under standard growth 

conditions. " ree Atmre11 mutants (ecotype Col-0) were also ordered by us from the Salk 

T-DNA collection (Atmre11c-1: SALK_028450, Atmre11c-2: SALK_0554418, Atmre11c-3: 

SALK_067823). No homozygous mutant was obtained for the Atmre11c-2 mutant. " e 

homozygous Atmre11c-1 and Atmre11c-3 mutants were obtained. " ey were dwarf and 

sterile (data not shown), similar to the phenotype of the Atmre11-1 mutant (ecotype Ws) 

described by Bundock et al. (9). Since no seeds were obtained from these Atmre11 mutants 

(ecotype Col-0), no further analysis was done with these mutants. " erefore the Atmre11 

(ecotype Ws) mutant that was previously isolated was used for gene targeting experiments.

We have tested the role of AtKu80, AtKu70 and AtLig4 genes in DNA repair in Arabidopsis 

thaliana (ecotype Col-0) by comparing the response of the T-DNA insertion mutants and the 

wild-type to treatment with the DNA-damaging agents, bleomycin and MMS. " e NHEJ 

mutants turned out to be hypersensitive to bleomycin. " e Atku70 and Atlig4 mutants are 

also sensitive to MMS. Similar phenotypes have been observed for Arabidopsis (ecotype 

Ws) de! cient in AtKu80 (46), AtKu70 (41) and AtLig4 (43). Atku80, Atku70 and Atlig4 

seedlings seem to be more sensitive to bleomycin than to MMS compared to wild-type 

plants. Bleomycin is a radiomimetic drug that will induce predominantly DSBs, whereas 

MMS is a methylating agent that will cause abasic sites and SSBs, that may be converted 

to DSBs during DNA replication in S phase (75). " is indicated that AtKu80, AtKu70 and 

AtLig4 genes may play a more important role in DSBs repair than SSBs repair in plants. 

Previously, it was found that a Atlig4 mutant is less sensitive to MMS than to X-rays, which 

also induces mainly DSBs (43). " ese results con! rmed that Ku80, Ku70 and Lig4 all play 

a role in the repair of DSBs by NHEJ in plants, as they do in yeast and mammalian cells.

It has been reported that Ku80 and Ku70 need to be heterodimerized as a ring to bind 

DNA ends and repair DNA damage (11;76). We showed that dimerization is necessary for 

stabilization of the heterodimer. " erefore, the Atku80 and Atku70 mutants are expected to 

have similar phenotypes. However, Atku70 plants seem to be more sensitive to bleomycin 
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than Atku80 plants (Figure 6). It was also reported that there are some di! erences in the 

phenotype of Ku70- and Ku80-knockout mice (77). One recent report showed that deleting 

Ku70 had milder e! ects than deleting Ku80 in p53-mutant mice. " e authors suggested that 

Ku80 may function outside the Ku heterodimer to suppress cancer caused by translocation 

in mice (78). In plants, Ku70 and Ku80 may also have additional functions besides their 

role as Ku heterodimer in NHEJ. Since the T-DNA is inserted in the very end of the 

AtKu80 gene in the Atku80 mutant, it is possible that a small amount of truncated Ku80 

remaining in the Atku80 mutant heterodimerized with Ku70 to promote DNA end joining. 

We investigated the RNA expression of AtKu80 in the Atku80 mutant by RT-PCR using 

primers located in the N-terminal part of the coding region before the T-DNA insertion site. 

" e results showed that there are products detectable (data not shown). Possibly a truncated 

protein, which still may retain partial function, is produced at low level causing the Atku80 

mutant to stand stress better than the Atku70 mutant. Western blot was performed using the 

antibody that in principle could detect a C-terminal truncated Ku80 protein. But no Ku80-

related bands with a smaller MW were detectable on the western blot, indicating that no 

truncated protein was produced or that the amount was too low for detection. Alternatively, 

the presence of the complete or partial mRNAs may have a regulatory role in the plant cell.

Double strand break repair mechanisms are hypothesized to control the integration of 

Agrobacterium T-DNA in plants. In yeast non-homologous T-DNA is integrated by NHEJ 

(27), but the results obtained in plants so far are variable (43;45;59;62). In order to test 

whether AtKu80, AtKu70 and AtLig4 are involved in T-DNA integration, we performed 

root transformation assays and # oral dip transformation and calculated the transformation 

frequency. " e results of # oral dip transformation showed that the transformation 

frequency is highly reduced in the Atku70 and Atku80 mutants. However, the results of 

root transformation showed that the NHEJ mutants have similar transformation frequency 

compared to the wild-type. " us T-DNA integration occurs equally well in root cells of the 

wild-type and the NHEJ mutants. Li et al. (2005) also performed root transformation assays 

and they found that Ku80-de$ cient mutants have fewer tumors than wild-type plants (45). 

It could be that calli induced on the wound site of roots are derived from multiple cells and 

that high transformation frequencies mask di! erences between wild-type plants and mutants 

in our experiments. Previously, our group has shown the essential role of NHEJ proteins 

including the Ku70/Ku80 complex and Lig4 in T-DNA integration in the yeast S.cerevisiae 

(27;28). " e AtLig4 gene was not required for e%  cient integration of Agrobacterium T-DNA 

(ecotype Ws) (43). Recently ,Windhofer et al. (2007) showed that low levels of DNA Ligase 

III and IV are su%  cient for e! ective NHEJ in mammal cells (79). Plants may have similar 

mechanisms. When AtLig4 is de$ cient, another DNA ligase of plants (such as DNA ligase 

I or VI) may take over the function of AtLig4 in T-DNA integration. 

Although the e%  ciencies of T-DNA integration in the Atku70 and Atku80 mutants are 

highly reduced, random T-DNA integration still occurs in these mutants. In addition, the 

frequency of gene targeting was not increased in these NHEJ mutants. In yeast and fungi, 
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the frequency of gene targeting was increased dramatically in absence of NHEJ components, 

such as Ku70/Ku80, Lig4, Mre11, Rad50, Xrs2 (28;29;31;63;64). It could be that C-NHEJ 

is the only NHEJ pathway in lower eukaryotes, whereas there must be one or several back-

up NHEJ (B-NHEJ) pathways in plants. When C-NHEJ is blocked, the back-up pathways 

are still robust to take the function of DNA repair. De! ciency of AtMre11 resulted in an 

increase in gene targeting, suggesting the MRN complex could function at the initial step 

of end joining and be involved not only in C-NHEJ, but also in other pathways. We will 

explore B-NHEJ further in the future. 
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Abstract

Poly(ADP-ribose) polymerase 1 (Parp1) and Parp2 are ADP-ribose transferases, which 

are involved in single strand break repair (SSBR), base excision repair (BER) and back-up 

NHEJ (B-NHEJ) in animals. In order to investigate if Parp has similar functions in plants, 

two Arabidopsis lines with a T-DNA insertion in AtParp1 and AtParp2 were functionally 

characterized. ! e homozygous mutants of Atparp1, Atparp2 and Atparp1parp2 (Atp1p2) 

were phenotypically indistinguishable from the wild-type under normal growth conditions. 

However, the Atparp1 and Atp1p2 mutants were hypersensitive to the genotoxic agent 

MMS, but not to bleomycin, suggesting that AtParp1 has an important role in SSB DNA 

repair. AtParp2 was up-regulated in NHEJ mutants, suggesting that AtParp2 may also be 

involved in double strand break (DSB) repair. Indeed the capacity of DNA end joining was 

slightly reduced in Atparp mutants. In the Atp1p2 double mutant a clear shift in end-joining 

was seen, utilizing signi" cantly less micro-homology mediated end joining (MMEJ) than 

the wild-type. ! is indicates that AtParp1 and AtParp2 are functionally redundant and 

may cooperate in MMEJ. Agrobacterium mediated T-DNA transformation via # oral dip was 

hardly a$ ected in the Atparp mutants, indicating that the classical NHEJ (C-NHEJ) and/or 

other components play the major role in that process. 

Introduction

Poly(ADP-ribose) polymerases (Parps) are ADP-ribose transferases that transfer ADP-ribose 

(PAR) from NAD+ to target proteins (1;2). ! ere are eighteen known members identi" ed 

in the superfamily by in silico homology searching in animals (3). ! ey share a conserved 

catalytic domain and an active site formed by a highly conserved sequence. Parp proteins 

have a major impact on various cellular processes, such as cell death, transcription, cell 

division, DNA repair and telomere integrity, via  poly(ADP-ribosyl)ation (4). Only two of 

them are activated in response to DNA damage: Parp1 (113 kDa) and Parp2 (62 kDa) (5). 

Parp1 is involved in DNA single strand break repair (SSBR) and base excision repair (BER), 

preventing the formation of DNA double strand breaks (DSBs) (6-8). Parp can also attract 

Mre11 to sites of DNA damage to repair (9;10). Some reports also suggested that when the 

DNA-PK dependent classical non-homologous end joining (C-NHEJ) pathway is de" cient, 

Parp together with Lig3 plays a role in DSB repair via back-up non-homologous end joining 

(B-NHEJ) (11-14). ! is alternative NHEJ pathway preferentially utilizes micro-homology 

for repair, and therefore has been called micro-homology mediated end joining (MMEJ).

Homologues of Parp1 and Parp2 have been identi" ed in plants (15). One is the classical 

zinc " nger containing polymerase (ZAP), which was " rst puri" ed from maize seedlings and 

has a molecular mass of 113 kDa (16). It was also identi" ed in Arabidopsis. ZAP has high 

similarity in the sequence and domain organization to Parp1 in animals (15). ! e other one 
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is a structurally non-classical Parp protein, called APP in Arabidopsis and NAP in Zea mays 

(17). It is a short version of Parp with the molecular mass of 72 kDa. ! e counterpart of 

it in animals has also been identi" ed and was termed Parp2 (18). Since APP was identi" ed 

earlier than ZAP in Arabidopsis, some people termed APP as Parp1 and ZAP as Parp2. 

Considering the similarity to the corresponding homologues in animals and avoiding 

confusion, in this chapter ZAP was termed as Parp1 and APP as Parp2. Many former reports 

on Parp1 and Parp2 in plants provide evidence for the function of Parp in  stress tolerance 

and in the control  of programmed cell death (19-21). As mentioned above, Parp1 and 

Parp2 take an important role in DNA repair in animals (4;5), whereas in plants this is still 

largely unknown. Parp1 and Parp2 are localized in the nucleus and are activated by DNA 

damage, hinting that they could also be involved in DNA repair in plants (15;22;23). In 

order to investigate the function of Parp proteins in DNA repair, two Col-0 Arabidopsis 

lines containing a T-DNA insertion in AtParp1 or AtParp2 genes were characterized here. 

! e homozygous mutants of Atparp1 and Atparp2 were isolated and crossed with each other 

to obtain the homozygous double mutant of Atparp1parp2 (Atp1p2). ! e single and double 

mutants were analyzed for the sensitivity to DNA damaging agents and the capacity for 

DNA end joining. How absence of the AtParp proteins a# ected Agrobacterium-mediated 

T-DNA integration via $ oral dip was also tested. 

Material and methods

Plant material

Atparp1 and Atparp2 T-DNA insertion lines were obtained from the GABI-Kat T-DNA 

collection (GABI-Kat Line 692A05) or the SALK T-DNA collection (SALK_640400), 

respectively. Information about them is available at http://signal.salk.edu/cgi-bin/

tdnaexpress (24). ! e homozygotes of the Atparp1 and Atparp2 mutants were isolated. ! ey 

were crossed to get the Atparp1parp2 (Atp1p2) double mutant.

Characterization of the  Atparp1 and Atparp2 mutants 

DNA was extracted from individual plants using the CTAB DNA isolation protocol (25). 

! e T-DNA insertion sites of the mutants were mapped with a gene-speci" c primer (Sp167 

or Sp168 for Atparp1, Sp219 or Sp222 for Atparp2) and a T-DNA speci" c primer (LBb1 or 

Sp173 for Left Border (LB), Sp200 for Right Border (RB)). PCR products were sequenced. 

Pairs of gene-speci" c primers around the insertion site were used to determine whether 

the plants were homozygous or heterozygous for the T-DNA insertion. ! e sequences of 

all the primers are listed in Table 1. For Southern blot analysis, DNA from the Atparp1 

mutant was digested with EcoRV or BglII, and DNA from the Atparp2 mutant was digested 

with HindIII. DNA (5 µg) was ran on a 0.7% agarose gel and transferred onto positively 

charged Hybond-N membrane (Amersham Biosciences). ! e hybridization and detection 

procedures were done according to the DIG protocol from Roche Applied Sciences. ! e 
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DIG probe was produced using the PCR DIG Labeling Mix (Roche) with speci! c primers 

for each T-DNA (Atparp1 (pGABI): Sp225 and Sp226; Atparp2 (pROK2): pROK2 and 

Sp250).

Table 1. Sequences of primers used for characterization of T-DNA insertion lines and 

Q-PCR.

Name Locus Sequence

LBb1 T-DNA LB 5'-GCGTGGACCGCTTGCTGCAACT-3'

Sp173 T-DNA LB 5’-CCCATTTGGACGTGAATGTAGACAC-3’

Sp200 T-DNA RB 5’-GCTTGGCTGCAGGTCGAC-3’

Sp167 AtParp1 5'-CATTGACGGAGATACAGAGG-3'

Sp168 AtParp1 5'-GGTGCAATTCTCAGTCCTTG-3'

Sp219 AtParp2 5'-GATGGGGAAGAGTTGGTGTG-3'

Sp222 AtParp2 5'-GAGTGTCTATAACAAACTGGC-3'

pROK2 pROK2 probe 5'-GCGGACGTTTTTAATGTACTGGGG-3'

Sp250 pROK2 probe 5'-GGGAATGCAGTCACCTCTAT-3'

Sp225 pGABI1 probe 5'-AAATGTAGATGTCCGCAGCG-3'

Sp226 pGABI1 probe 5'-AGACGTGACGTAAGTATCCG-3'

Sp207 AtKu80 5'-GCGTCTTGGAGCAGGTCTCTTC-3'

Sp208 AtKu80 5'-GATGAAATCCCCAGCGTTCTCG-3'

q1 AtKu70 5'-TCTACCACTCAGTCAACCTG-3'

q2 AtKu70 5'-CAATAGACAAGCCATCACAG-3'

q6 AtLig4 5'-GACACCAACGGCACAAG-3'

q7 AtLig4 5'-AAGTTCAATGTATGTCAGTCCC-3'

Sp211 AtParp1 5'-CTCCACTCTGTATGCGTTGGG-3'

Sp212 AtParp1 5'-CCCTTCTATTCATCCTCATATTATCCG-3'

Sp243 AtParp2 5'-CTCGGCAAGATAAGCAAGTCC-3'

Sp213 AtXRCC1 5'-CTTCACTACACGAGGGACAAAGC-3'

Sp214 AtXRCC1 5'-CAGAAACAAGGGGAACACCATCTACC-3'

Roc5.2 Roc1 5'-GAACGGAACAGGCGGTGAGTC-3'

Roc3.3 Roc1 5'-CCACAGGCTTCGTCGGCTTTC-3'

q8 BamHI 5'-GTGACATCTCCACTGACGTAAG-3'

q9 BamHI 5'-GATGAACTTCAGGGTCAGCTTG-3'

q10 GFP 5'-CAAGCTGACCCTGAAGTTCATC-3'

q11 GFP 5'-GTTGTGGCGGATCTTGAAG-3'

q30 pUC18P1/4 5'-GTTTCGGTGATGACGGTG-3'

q31 pUC18P1/4 5'-TGGCACGACAGGTTTCC-3'

q40 pUC18P1/4 5'-GCTGTAGGATGGTAGCTTGGCAC-3'

q41 pUC18P1/4 5'-ATCCTACAGCTGGAATTCGTAATC-3'
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Quantitative reverse-transcription PCR (Q-RT-PCR)

Leaves of 2-week-old wild-type (ecotype Columbia-0), Atparp1, Atparp2, Atku80, Atku70 

and Atlig4 plants (chapter 2) were ground under liquid N
2
 in a Tissue-Lyser (Retch). Total 

RNA was extracted from the leaf powder using the RNeasy kit (Qiagen) according to 

the supplied protocol. Residual DNA was removed from the RNA samples with DNaseI 

(Ambion) in the presence of RNase inhibitor (Promega). RNA was quanti! ed and 1 µg of 

RNA was used to make cDNA templates using the iScript cDNA synthesis kit according to 

the manufacturer’s instructions (Bio-Rad). Quantitative real-time PCR (Q-PCR) analyses 

were done using the iQ™ SYBR® Green Supermix (Bio-Rad). Speci! c fragments (about 200 

bp) were ampli! ed with pairs of primers around the T-DNA insertion sites using a DNA 

Engine % ermal Cycler (MJ Research) equipped with a Chromo4 real-time PCR detection 

system (Bio-Rad). % e sequences of the primers are listed in Table 1. % e cycling parameters 

were 95°C for 3 min, 40 cycles of (95°C for 1 min, 60°C for 40 s), 72°C for 10 min. 

All sample values were normalized to the values of the house keeping gene Roc1 (primers 

Roc5.2, Roc3.3) and were presented as relative expression ratios. % e value of the Col-0 

wild-type was set on 1.

Assays for sensitivity to bleomycin and methyl methane sulfonate (MMS)

Seeds of wild-type, Atparp1, Atparp2, and Atp1p2 plants were surface-sterilized as described 

(26) and germinated on solid ½ MS medium. Four days after germination, the seedlings 

were transferred to liquid ½ MS medium without additions or ½ MS medium containing 

0.2 µg/ml and 0.4 µg/ml BleocinTM (Calbiochem), 0.007% and 0.01% (v/v) MMS (Sigma) 

and scored after 2 weeks. Fresh weight (compared with controls) was determined by weighing 

the seedlings in batches of 20 in triplicate, which were treated in 0%, 0.006%, 0.008% and 

0.01% (v/v) MMS for 2 weeks.

Comet assay 

1-week-old seedlings were treated in liquid ½ MS containing 0.01% MMS for 0 h, 2 h 

and 24 h. Some seedlings with 24 h treatment were recovered in liquid ½ MS for another 

24 h. DNA damage was detected by comet assays as described previously (27) with minor 

modi! cations. Since MMS mostly causes SSBs, DNA was exposed to high alkali prior to 

electrophoresis under neutral conditions (A/N protocol) to detect DNA SSBs preferentially. 

Plant nuclei were embedded in 1% low melting point UltrapureTM agarose-1000 (Invitrogen) 

to make a mini gel on microscopic slides according to the protocol. Nuclei were subjected to 

lysis in high alkali (0.3 M NaOH, 5 mM EDTA pH13.5) for 20 min at room temperature 

(A/N protocol). Equilibration for 3 times 5 min in TBE bu: er (90 mM Tris-borate, 2 

mM EDTA, pH8.4) on ice was followed by electrophoresis at 4°C (cold room) in TBE 

bu: er for 15 min at 30 V (1 V/cm), 15-17 mA. Dry agarose gels were stained with 15 µl 

ethidium bromide (5 µg/ml) and immediately evaluated with a Zeiss Axioplan 2 imaging 

; uorescence microscope (Zeiss, Germany) using the DsRed channel (excitation at 510 
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nm, emission at 595 nm). Images of comets were captured at a 40-fold magni! cation by 

an AxioCam MRc5 digital camera (Zeiss, Germany). " e comet analysis was carried out 

by comet scoring software CometScoreTM (Tritek Corporation). " e fraction of DNA in 

comet tails ( %tail-DNA) was used as a measure of DNA damage. Measures included 4 

independent gel replicas totaling about 100 comets analyzed per experimental point. " e 

results were presented by the mean value ( ±standard deviation = S.D.) from four gels, based 

on the median values of %tail-DNA of 25 individual comets per gel. " e student’s t-test was 

used to test for signi! cant di$ erence compared to the wild-type with the same treatment.

Histochemical GUS analysis 

" e NHEJ mutants previously described (chapter 2) (Atku80, Atku70 and Atlig4) were 

crossed with AtParp2:GUS reporter plants (15;28), which were kindly provided by De 

Veylder (Gent, Belgium). Ten-day-old seedlings were treated with 0 or 0.01% MMS for 2 

h, followed by GUS staining as described previously (29). " e GUS staining was examined 

under a Leica MZ12 microscope (Leica microsystems). Plants were photographed with a 

Leica DC 500 digital camera (Leica microsystems).

Isolation of Arabidopsis mesophyll protoplasts 

Arabidopsis was either grown in a greenhouse at 21°C (16 h photoperiod) or in a culture 

chamber (21°C, 50% relative humidity, 16 h photoperiod). Rosette leaves (~1 g) from plants 

that were 3 to 5 weeks old were collected, rinsed with deionized water and brie* y dried. " e 

leaves were cut into 0.5 to 1 mm strips with a razor blade, placed into a Petri dish containing 

15 ml of ! lter-sterilized enzyme solution [1.5%(w/v) cellulose R10, 0.4%(w/v) macerozyme 

R10, 0.4 M mannitol, 20 mM KCl, 20 mM MES pH5.7, 10 mM CaCl
2
, 0.1%(w/v) BSA] 

and 2 to 3 h incubated in the dark at 28°C. " en the protoplasts were ! ltered with a 50 µm 

mesh to remove the undigested material and transferred to a round bottom Falcon tube. " e 

solution was centrifuged for 5 min at 600 rpm to pellet the protoplasts. " e supernatant 

which contained broken cells was discarded. " e protoplasts were gently washed twice with 

15 ml cold W5 solution (154 mM NaCl, 125 mM CaCl
2
, 5 mM KCl, 2 mM MES pH5.7) 

and resuspended in cold W5 solution to a ! nal concentration of 2×105 cells/ml and kept 

on ice for 30 min. Just before starting transfection, protoplasts were collected from the W5 

solution by centrifugation and were resuspended to a density of 2×105 cells/ml in MMg 

solution (0.4 M mannitol, 15 mM MgCl
2
, 4 mM MES pH5.7) at room-temperature.

End joining assay 

Plasmid pART7-HA-GFP (S65T) was linearized by cleavage with BamHI (Figure1). Fresh 

protoplasts prepared from leaves were transformed with either linear or circular plasmid DNA 

by the polyethylene glycol (PEG) transformation protocol (30). In each experiment, 2×104 

protoplasts were transformed with 2 µg of plasmid. Recircularization of the linear plasmid in 
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protoplasts by the NHEJ pathway was analyzed. DNA was extracted from protoplasts (at 0 h 

and 20 h) and was used to quantify rejoining by Q-PCR. ! e DNA extraction protocol and 

the cycling parameters of Q-PCR were the same as mentioned above. Two pairs of primers 

were used: one pair (q8+q9) was " anking both sites of the enzyme digestion site (BamHI); 

the other pair (q10+q11) was localized in GFP (Figure1). When the plasmid is circular, both 

pairs will give products. When the plasmid is cleaved by BamHI, the # rst pair of primers will 

not give a product, whereas the second will still give products. ! e e$  ciency of end joining 

is presented by the ratio of PCR products using q8+q9 primers and q10+q11 primers in 

comparison with the controls. ! e value of Col-0 wild-type was set on 1. Q-PCR was 

performed as three replicates and the assays were performed in triplicate. ! e PCR products 

with the primers of q8 and q9 were puri# ed with QIAquick gel extraction kit (Qiagen), 

followed by cloning into pJET1.2/blunt Cloning Vector (CloneJETtm PCR Cloning Kit, 

Fermentas). Individual clones were # rst digested by BamHI. ! e clones resistant to the 

digestion of BamHI were sequenced by ServiceXS.

MMEJ assay with active protein extract from leaves

Ten-day-old seedlings were ground under liquid N
2
 in a Tissue-Lyser (Retch). One ml 

protein extraction bu% er (50 mM Tris-HCl pH 7.5; 2 mM EDTA; 0.2 mM PMSF; 1 mM 

DTT; 1×Protease inhibitor cocktail Complete®, EDTA free) was added to 1 g of tissue 

powder. Soluble protein was isolated by centrifugation at 4°C. ! e protein concentration 

was determined using Bio-Rad protein assay reagent. 

! e DNA substrate (pUC18P1/4) for MMEJ was described and obtained from Liang 

et al (31;32). ! e construct can be cleaved with the restriction enzymes Eco47III and 

EcoRV to a 2.7 kb linear form with a 10 bp direct repeat (ATCCTACAGC) at both blunt 

ends (Figure2). Since it was hard to digest completely, the long linear DNA fragment was 

ampli# ed by PCR with q40 and q41 primers. 

According to the results from Liang et al. (31;32), high DNA/protein ratio was used 

for the high e$  ciency of end joining. ! e linear DNA substrates (300 ng) were incubated 

with 1 µg protein extract from leaves in 50 mM Tris-HCl (pH 7.6), 10mM MgCl
2
, 1mM 

dithiothreitol, 1 mM ATP and 25% (w/v) polyethylene glycol 2000 at 14 °C for 2 hour in a 

Figure 1. Schematic diagram of pART7-HA-GFP. 
! e primers for Q-PCR are shown by arrows.
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volume of 20 µl. DNA products were deproteinized and puri" ed by electrophoresis through 

0.6% agarose gels. A 600-bp fragment containing the end-joined junction was ampli" ed 

by PCR with q30 and q31 primers # anking the junction. When end-joining had occurred 

via MMEJ using the 10 bp microhomology, an XcmI site (CCAN9TGG) was generated. 

PCR products were digested by XcmI, followed by electrophoresis on a 1.5% agarose gel. 

$ e presence of an XcmI site will result in a 400 bp and a 200 bp fragment. $ e intensity 

of DNA bands was quanti" ed by using ImageJ software. $ e relative contribution of end-

joining via the 10 bp repeat was calculated as the percentage of the XcmI-digested fragments 

of total PCR products (sum of the XcmI- digested and undigested fragments).

Floral dip transformation 

Floral dip transformation was performed according to the procedure described by Clough 

and Bent (33). $ e Agrobacterium strain AGL1 (pSDM3834) (34) was used for infection. 

Figure2. DNA substrates for MMEJ.
$ e plasmid PUC18PD1/4 has two 10 bp repeats around the digestion sites of Eco47III and 
EcoRV. $ e 2.7kb linear fragment was PCR ampli" ed with the primers (q40+q41). An XcmI 
restriction site will be generated after end joining via MMEJ. $ e primers are indicated by arrows.
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Plasmid pSDM3834 is a pCambia 1200 derivative (hpt selection marker). Seeds were 

harvested from the dry plants after maturation, surface-sterilized and plated on solid MA 

without sucrose containing 15 µg/ml hygromycin, 100 µg/ml timentin (to kill Agrobacterium 

cells) and 100 µg/ml nystatin (to prevent growth of fungi). Hygromycin-resistant seedlings 

were scored 2 weeks after germination and transformation frequency was determined (50 

seeds is 1mg) (35).

Results

Isolation and characterization of the Atparp1 and Atparp2 mutants

Arabidopsis mutants with mutations in Atparp1 and Atparp2 were obtained from the GABI-

Kat or Salk collection, respectively. We identi" ed homozygous mutants by PCR harboring 

a T-DNA insertion for each gene in the next generation. When two gene-speci" c primers 

# anking the insertion site were used, PCR products were ampli" ed for wild-type and 

heterozygotes. No PCR products were obtained for homozygous mutants by using these 

two gene-speci" c primers, because the PCR products in the mutant would be >10 kb in size 

and would be not detectable. When a T-DNA-speci" c primer from LB or RB was used in 

combination with one gene-speci" c primer, PCR products for the T-DNA insertion mutants 

were ampli" ed, whereas no PCR products were obtained for the wild-type. $ e insertion 

point was mapped by sequencing of the PCR products generated using one of T-DNA 

speci" c primers in combination with one of the gene-speci" c primers. $ e combination of 

the primers for each gene is shown in the Figure 3. $ ere were PCR products of LB and RB 

fragments for the Atparp1 mutant and PCR products of two LB fragments for the Atparp2 

mutant, indicating that one T-DNA was inserted in the AtParp1 locus and at least 2 T-DNA 

copies were inserted as an inverted repeat in the AtParp2 locus. Sequencing results indicated 

that the T-DNAs were all inserted at the position as described in the internet database. A 

detailed characterization of the T-DNA insertions is shown in Figure 3. $ e T-DNA of 

Atparp1 was integrated in exon 14 and had 240 base pairs (bps) " ller DNA. $ e Atparp2 line 

contained at least 2 T-DNA copies inserted as an inverted repeat. $ e T-DNA of Atparp2 

was integrated into intron 6, having 5 bps " ller DNA.

$ e genomic DNA was digested by restriction enzymes (EcoRV or BglII for Atparp1, 

HindIII for Atparp2) for Southern blotting (Figure 3). If there is one T-DNA inserted in the 

correct locus, it can be expected that bands with the following sizes will be detected on the 

blot: Atparp1: 1350bp (EcoRV), 2716bp (BglII); Atparp2: 3600bp and 5476bp (HindIII). 

If T-DNAs are inserted in other loci, additional bands probably with di% erent sizes will be 

detected. $ e results showed that the Atparp1 line contained one T-DNA insertion. $ e 

expected 3600bp band for the Atparp2 line was clearly visible, but the expected band of 

5476bp for the Atparp2 mutant was very faint, suggesting that this T-DNA was probably 

not intact or the digestion site of HindIII was mutated and could not be cleaved. $ ere were 

four additional bands for the Atparp2 line, indicating that this line had multiple T-DNA 
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copies in AtParp2 and/or extra copies located somewhere else in the genome. One band 

probably represents the band derived from the T-DNA copy in Atparp2 for which no band 

of correct size was detected.

Figure 3.  Molecular analysis of the T-DNA insertion in the AtParp1 and AtParp2 loci.
Genomic organization of the AtParp1 (A) and AtParp2 (B) locus are indicated with the positions 
of the inserted T-DNAs. Exons are shown as black boxes. 3’ and 5’ UTRs are shown as gray 
boxes. Introns are shown as lines. ! e primers used for genotyping and Q-RT-PCR analysis, 
the probes (▬) and the restriction enzyme digestion sites used for Southern blot analysis are 
indicated. Genomic DNA sequences (g-DNA) " anking the T-DNA insertion are shown in italic. 
(C) Southern blot analysis of the T-DNA insertion. ! e genomic DNA of the Atparp1 mutant 
was digested by EcoRV (E) or BglII (B) and the DNA of the Atparp2 mutant by HindIII (H). 
M: λHindIII Marker. (D) RNA expression of the AtKu80, AtParp1 and AtParp2 genes were 
determined by Q-RT-PCR in wild-type, Atparp1 and Atparp2 plants. All the sample values were 
normalized to Roc values. ! e values of the wild-type were set on 1.
(      wild-type (WT);       Atparp1;      Atparp2)
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In order to ! nd out whether the mutated loci still produce mRNA, Q-RT-PCR analysis 

was performed for the Atparp1 and Atparp2 T-DNA insertion lines using primers " anking 

the insertion site. # is resulted in a product for each gene in the wild-type, but not in the 

corresponding T-DNA insertion mutant (Figure 3). # e mRNA expression of ku80 was also 

checked here as a reference. # is indicated that neither of the two T-DNA insertion mutants 

produces a stable mRNA of the mutated gene and that the plants are homozygous mutants 

indeed. # e Atparp1 mutant was crossed with the Atparp2 mutant in order to obtain double 

mutants. In the second generation of this cross indeed, homozygous Atp1p2 double mutants 

were obtained. No obvious di$ erences in growth were observed between the Atparp single or 

double mutants and the wild-type.

Sensitivity to bleomycin and MMS

Since more and more biochemical evidence in mammals showed that Parp1 and Parp2 are 

involved in DNA repair processes, we investigated whether the two Parp proteins also have 

a similar function in plants. To this end, the Atparp mutants were tested for the sensitivity 

to two genotoxic agents (bleomycin and MMS). # e radiomimetic chemical bleomycin 

induces mainly DNA double strand breaks (DSBs) (36). # e monofunctional alkylating 

agent MMS induces mainly base methylation and as a consequence DNA single strand 

breaks (SSBs) that can be converted into DSBs during replication (37). As shown in Figure 

4, the Atparp1 and Atp1p2 mutants tolerated the damage induced by bleomycin equally well 

as the wild-type, but turned out to be hypersensitive to MMS. # e Atparp2 mutant seemed 

to tolerate the damage induced by both MMS and bleomycin equally well as the wild-type. 

# is indicated that AtParp1 had an important role in SSBs repair. To quantify the e$ ect of 

MMS treatment on growth, the fresh weight of seedlings was determined after 2 weeks of 

continuous MMS treatment. After growth on the highest concentration of MMS (0.01%) 

all the plant lines had become very sick and stopped growing. Lower concentrations (0.006% 

and 0.008%) of MMS led to growth retardation of the Atparp1 and Atp1p2 mutants. After 

growth in the presence of 0.008% MMS, the fresh weight of the Atparp1 mutant was 

reduced to 2/3 of the weight of the wild-type and the fresh weight of the Atp1p2 mutant 

was about 1/2 of that of the wild-type. # e Atparp2 mutant had more or less the same 

weight as the wild-type in all the MMS treatments. It seems that the role of AtParp2 only 

becomes apparent in the absence of AtParp1. When AtParp1 is mutated as well, the e$ ect of 

a mutation in AtParp2 can be observed, since the fresh weight of the Atp1p2 double mutant 

was less than that of the Atparp1 single mutant after MMS treatment. # is is in accordance 

with previous reports about the collaboration of Parp1 and Parp2 in e&  cient base excision 

DNA repair in mammals (38). 

In order to quantify the DNA damage in these mutants after MMS treatment, comet 

assays (A/N protocol) were performed, measuring SSBs and DSBs. For each treatment, 

around 100 nuclei from 4 independent mini gel replicas were analyzed at random by using 

CometScoreTm. Without any treatment, the Atparp1 and Atp1p2 mutants had already more 
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DNA damage than the wild-type, demonstrating that AtParp1 is involved in DNA repair 

(Figure 5). After 2h MMS treatment, all the mutants have more DNA damage compared 

to the wild-type, indicating that AtParp1 and AtParp2 are both involved in DNA repair. 

But the Atparp1 and Atp1p2 mutants had a higher level of nuclear DNA damage than the 

Atparp2 mutant, suggesting that AtParp1 may have a more crucial function in SSBs repair. 

In both the wild-type and the mutants, the level of DNA damage after 24h MMS treatment 

plus 24h recovery was reduced indicative of DNA repair. Recovery was slower in the mutants 

than in the wild-type, and the p1p2 mutant had slower recovery than the single Atparp1 and 

Figure 4. Response of Atparp mutants to DNA-damaging treatments.
(A) Phenotypes of wild-type (Col-0) plants and Atparp1, Atparp2 and Atp1p2 mutants to 
bleomycin or MMS treatment. Four-day-old seedlings were transferred to liquid ½ MS medium 
(control) or ½ MS medium containing di" erent concentrations of bleomycin (Bleo) or MMS 
and were scored 2 weeks after germination.
(B) Fresh weight of 2-week-old wild-type plants and Atparp1, Atparp2 and Atp1p2 mutants 
treated with 0, 0.006%, 0.008% or 0.010% MMS. For each treatment 20 seedlings were weighed 
in triplicate. Fresh weight of the wild-type and the mutants grown for 2 weeks without MMS was 
set at 1.   (      WT;      Atparp1;      Atparp2;      Atp1p2)
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Atparp2 mutants. It seems that AtParp1 and AtParp2 have redundant functions, and that in 

the Atp1p2 double mutant this function is abolished.

� e expression of AtParp2

Microarray analysis showed that the transcript level of AtParp2 is induced in Atku80 

mutants and the bleomycin treated wild-type plants (23). ! is suggests that AtParp2 may 

be involved in a DNA DSB repair pathway, possibly the B-NHEJ pathway. To con" rm this 

hypothesis, RNA expression levels of AtParp2 and some other genes involved in DSB repair 

was analyzed using Q-RT-PCR in the C-NHEJ mutants (Atku70, Atku80 and Atlig4). ! e 

results showed that the mRNA expression levels of DNA repair genes are increased in NHEJ 

mutants. AtParp2 expression is increased in all mutants, and especially in the Atlig4 mutant 

(Figure 6). ! is demonstrated that AtParp2 could be an indicator for DNA damage.

We also analyzed the expression in a AtParp2:GUS reporter line, which carried as transgene 

the AtParp2 gene promoter fused to GUS (15;28). We crossed the Atlig4 mutant with the 

AtParp2:GUS reporter line. ! e homozygous Atlig4 mutant containing the AtParp2:GUS 

construct was obtained. MMS could induce the expression of AtParp2 throughout the plant, 

Figure 5. Comet assay.
! e fraction of DNA in comet tails (%tail-DNA) was used as a measure of DNA damage in wild-
type, Atparp1, Atparp2 and Atp1p2 plants. Around 100 nuclei for each treatment were analyzed 
at random. ! e means of %tail-DNA after MMS treatment are shown.  
(     t=0;     t=2h;     t=24h;     24h recovery) 
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especially in the root tip (Figure 6). ! e GUS staining was not signi" cantly higher in the 

Atlig4 mutant than in the wild-type (Figure 6). It may be that the AtParp2 coding region 

or the sequences not present in the AtParp2:GUS construct are important for increased 

expression levels in the C-NHEJ mutants.

End joining activity

To directly test the function of AtParp1 and AtParp2 in NHEJ, an in vivo plasmid rejoining 

assay was utilized to quantify the capacity of the Atparp1 and Atparp2 mutants to repair 

DSBs generated by restriction enzymes. To this end, we transformed protoplasts from leaves 

with circular (control) or BamHI linearized plasmid DNA. BamHI digests the plasmid 

DNA in the N-terminal part of the GFP coding sequence. Rejoining of linear plasmid by the 

NHEJ pathway in vivo will result in GFP expression. GFP # uorescence was indeed detected 

in the wild-type protoplasts which were transformed with the linearized plasmid. But it 

was di$  cult to quantify the di% erence in GFP expression between the wild-type and the 

mutants under the # uorescence microscope. ! erefore, we analyzed the rejoining e$  ciency 

by Q-PCR, using primers around the BamHI site and compared with primers in the GFP 

coding region. ! e results showed that the rejoining e$  ciencies were reduced mildly in the 

Atparp single and double mutants (Figure 7). To check if di% erent repair pathways are used 

Figure 6. Parp2 expression in NHEJ mutants.
(A) RNA expression of the NHEJ genes (AtKu70, AtKu80, AtParp1, AtParp2, AtLig4 and 
AtXRCC1) determined by Q-RT-PCR in wild-type and NHEJ mutant plants. All the values were 
normalized to Roc values and the ratios were obtained in triplicate. ! e values of the wild-type 
were set on 1. (     WT;     Atku80;      Atku70;     Atlig4)
 (B) Histochemical staining for GUS activity in lig4 and wild-type seedlings harboring the 
AtParp2 promoter fused to the GUS gene (AtParp2:GUS). Ten-day-old seedlings were stained for 
GUS expression without treatment (panel 1-3: Atlig4AtParp2:GUS, panel 5-7: AtParp2:GUS) 
or treated with 0.01% MMS for 2h prior to staining (panel 4: Atlig4AtParp2:GUS, panel 8,9: 
AtParp2:GUS). ! e arrows indicated the GUS expression. Bars are 3 mm.
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in the di! erent plant lines, the rejoining region was sequenced. Most of the ends had been 

joined precisely, but in some 1-3 bp had been deleted. No di! erences were observed between 

the Atparp mutants and the wild-type (data not shown). AtParp proteins have been shown to 

be involved in B-NHEJ in mammalian cells (11;14). When the C-NHEJ is functional, the 

de" ciency in AtParp genes only has a minor in# uence on the end joining capacity of the cell.

MMEJ assay

Since recent reports showed that Parp proteins are involved in B-NHEJ in mammalian cells 

(4;11;39;40) and that B-NHEJ is prone to utilize microhomology (41-43), we hypothesized 

that Parp proteins may be involved in MMEJ in plants as well. To test whether Parp 

proteins contribute to MMEJ, a MMEJ assay was performed. We expected to " nd less 

MMEJ products when Parp proteins are absent. $ ree hundred µg linear DNA substrates 

containing 10 bp repeats at the ends (Figure 2) were incubated without or with 1 µg protein 

extract from leaves of the Atparp1, Atparp2, Atp1p2 mutants or the wild-type. $ e joined 

region was ampli" ed by PCR with the primers # anking the junction (q30+q31), and with 

all extracts PCR products were obtained. No products were obtained in the absence of 

protein extract (data not shown). When end-joining occurs via MMEJ using the 10 bp 

microhomology, an XcmI site (CCAN9TGG) will be generated (Figure 2). To determine 

the fraction of the products joined via MMEJ using the 10 bp microhomology, the PCR 

products were digested with XcmI (Figure 8). We repeatedly saw a signi" cant reduction 

in the amount of MMEJ products in the Atp1p2 double mutant, corroborating with the 

requirement of AtParp proteins for MMEJ.

T-DNA integration 

Double strand break repair mechanisms are hypothesized to control the integration of 

Agrobacterium T-DNA in plants. $ ough there is evidence to the contrary (35;44), some 

reports points to a role of C-NHEJ components in T-DNA integration in plants like this 

is the case in yeast (45;46). Our own previous data showed that in the Atku80 and Atku70 

mutants the # oral dip transformation frequency is signi" cantly reduced compared with that 

Figure 7. Plasmid end-joining assay. 
Rejoined plasmid DNA with respect to total plasmid DNA in wild-type protoplasts was set on 1. 
Values of end joining in protoplasts from the mutants are given relative to that of the wild-type.
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in the wild-type (chapter 2), but root transformation of the Atku80, Atku70 and Atlig4 

mutants was as e!  cient as that of the wild-type (chapter2). To determine whether components 

which are involved in B-NHEJ, like AtParp1 and AtParp2, would also in" uence T-DNA 

Figure 8. MMEJ catalyzed by protein extracts from leaves.
(A) A 600-bp fragment was PCR-ampli# ed on the end-joined products and subsequently 
digested with XcmI. Only the products via MMEJ can be digested with XcmI resulting in two 
fragments of 400bp and 200bp.
(B) Quanti# cation of MMEJ activity from (A). $ e relative contribution of MMEJ was calculated 
as the percentage of the XcmI-digested fragments of total PCR products (sum of the XcmI- 
digested and undigested fragments).

Figure 9. Transformation frequencies using the " oral dip assay. 
One gram of seeds from the wild-type and the NHEJ mutants obtained after " oral dip 
transformations were selected on hygromycin. $ e number of hygromycin resistant seedlings 
was scored 2 weeks after germination. $ e transformation frequency is presented as the ratio of 
the percentage of hygromycin resistant seedlings in the mutants and the wild-type.
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integration in plants, wild-type and Atparp mutants were transformed by Agrobacterium 

using the ! oral dip method. " e transformation frequency was determined as the number 

of Hpt-resistant seedlings per total number of plated seeds. " e transformation frequencies 

of the Atparp mutants were not signi# cantly reduced compared with the wild-type (Figure 

9), indicating that AtParp1 and AtParp2 are not essential for e$  cient T-DNA integration in 

germline cells. Since C-NHEJ is the major pathway of DSBs repair and consequently may 

have a major role in T-DNA integration as well, the in! uence of B-NHEJ is neglectable 

when C-NHEJ is functional.

Discussion

Here two T-DNA insertion mutants of AtParp1 and AtParp2 were isolated and characterized. 

" ere was no phenotypical di% erence under normal growth conditions between the Atparp 

mutants and the wild-type plants. Some former researchers showed that AtParp proteins 

were involved in programmed cell death (PCD) process and play a role in the stress tolerance 

(19-21). Our Atparp mutants were tested by drought, salt and cold stress, but no obvious 

di% erences were observed (data not shown) in contrast to the Atparp-de# cient plants used 

by de Block et al. (19). " ese latter were however made by overexpression of dsRNA-Atparp 

constructs and this may have caused their di% erent behavior. 

Like their counterparts in animals, AtParp proteins were found to be involved in the 

process of DNA repair in Arabidopsis. " e Atparp1 mutant was hypersensitive to MMS, 

which mainly causes SSB, but was tolerant to bleomycin, which mainly causes DSB, 

indicating that AtParp1 plays an important role in SSB repair. Since all the components of 

C-NHEJ were present in the Atparp mutants, DSBs can be e$  ciently repaired via C-NHEJ 

and consequently the Atparp mutants could stand the stress from bleomycin. " e Atparp2 

mutant could tolerate the genotoxic stress equally well as the wild-type, but the Atp1p2 

double mutant was more sensitive than the Atparp1 mutant. It means that AtParp2 probably 

plays a minor role in DNA repair and its function only becomes apparent in the absence of 

AtParp1. In mice, single mutants of Parp1 or Parp2 can survive, but the double mutant is 

embryo lethal, suggesting that Parp1 and Parp2 are functionally redundant (47). Microarray 

data show that the expression level of AtParp2 is increased in the Atku80 mutant and in the 

wild-type after the treatment of bleomycin (23). " e expression of AtParp2 is thus possibly 

induced when there is DNA damage due to the absence of C-NHEJ. " is was con# rmed 

by the Q-RT-PCR results for RNA expression of AtParp2 in NHEJ mutants. We also found 

similar enhanced expression of AtParp1 and AtXrcc1 in these NHEJ mutants. " is would be 

in line with a response to the presence of DSBs and a role of AtParp and the sca% old protein 

AtXrcc1 in a backup pathway of DNA end joining.

Since C-NHEJ is still functional in the Atparp mutants, the end joining capacity was 

not signi# cantly diminished in these mutants. Still the way the ends are joined is di% erent 

from the wild-type. In the wild-type, two DNA ends containing micro-homology can be 
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joined using MMEJ. In the Atp1p2 mutant, the products of MMEJ were obtained much less 

frequently than in the wild-type. In the Atparp1 and Atparp2 single mutants, more products 

of MMEJ were obtained than in the Atp1p2 mutant. ! is indicated that the two AtParp 

proteins together play an important role in MMEJ and function redundantly. Recently 

Mansour et al. (14) reported that in mammals back-up NHEJ required Parp1, but was 

independent on microhomologies. Further work is needed to " nd out whether this is the 

case in plants as well. An analysis of the e# ect of the Atparp mutants in the background of 

C-NHEJ mutants may generate such insight. Blocking both the C-NHEJ and B-NHEJ 

pathways may also open possibilities to increase the e$  ciency of homologous recombination 

and thus of gene-targeting. 
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Abstract

Besides the Ku-dependent classical non-homologous end joining (C-NHEJ) pathway, 

an alternative NHEJ pathway has been identi! ed in mammalian systems, which is often 

called the back-up NHEJ (B-NHEJ) pathway. " e single-strand break repair factor poly 

(ADP-ribose) polymerase (Parp) was found to be involved in B-NHEJ in mammalian cells. 

In B-NHEJ, micro-homology is often used for repair. In order to investigate alternative 

pathways for NHEJ in Arabidopsis, the Atparp1parp2ku80 (Atp1p2k80) mutant was 

obtained and functionally characterized along with the Atku80 and Atparp1parp2 (Atp1p2) 

mutants. Due to the absence of both the C-NHEJ factor AtKu80 and the putative B-NHEJ 

factors AtParp1 and AtParp2, the Atp1p2k80 mutant was hypersensitive to DNA damage 

agents resulting in more DNA damage, but it still had the ability to repair DNA damage 

as measured in comet assays. " e absence of AtParp proteins restored end joining in the 

background of AtKu80-de! cient plants, suggesting the presence of another alternative 

NHEJ pathway, which is suppressed by AtKu and AtParp proteins under normal conditions. 

End joining assays with di# erent linear DNA substrates with di# erent ends in cell-free leaf 

protein extracts showed that AtKu played a role in DNA end protection and AtParp proteins 

were involved in micro-homology mediated end joining (MMEJ). " e Atp1p2k80 mutant 

showed a reduced T-DNA integration e$  ciency after % oral dip transformation. " e gene 

targeting frequency of the triple mutant was not signi! cantly di# erent from that of the 

wild-type.

Introduction

For living organisms, DNA double strand breaks (DSBs) are one of the most harmful lesions 

that can promote mutation and induce cell death. " ere are two primary pathways to repair 

DNA DSBs: non-homologous end joining (NHEJ) and homologous recombination (HR). 

NHEJ is a DNA repair pathway, which rejoins the DNA ends directly and does not depend 

on homology. HR utilizes a homologous stretch of DNA as a template to align and join 

the DNA ends. HR is the major pathway used in lower eukaryotes like yeast, whereas 

NHEJ is the prevailing pathway in higher eukaryotes, such as mammals and plants. DNA 

transformation also depends on integration of the newly transformed genes by HR or NHEJ 

(1-3). When NHEJ is blocked in yeast, integration occurs exclusively by HR (2;3). " is 

could open a possibility for increasing the frequency of gene targeting (GT) in plants and 

mammals. GT is a useful technique for the modi! cation of endogenous genes using HR, 

but unfortunately occurs with a very low frequency in higher eukaryotes.

Distinct NHEJ pathways have been identi! ed in mammals. One is the classical NHEJ 

(C-NHEJ) pathway, which is dependent on Ku70/Ku80 and DNA-PKcs. DNA ligase IV 

(Lig4), XRCC4 and XLF/Cernunnos are also utilized as central components in C-NHEJ. 
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In the absence of C-NHEJ core factors, back-up NHEJ (B-NHEJ) pathways were identi! ed 

(4). Some proteins were shown to be involved in B-NHEJ, such as Parp1, Parp2, DNA ligase 

III (Lig3) and XRCC1 (5;6). In the absence of C-NHEJ, micro-homologous sequences (5-

25 bps) " anking the break are more frequently used to join the DNA ends, resulting in 

deletions. # is error-prone pathway has been called micro-homology mediated end joining 

(MMEJ). It seemed that MMEJ is the predominant pathway among the B-NHEJ pathways. 

Most components involved in MMEJ are still elusive. 

In plants, homologs for most mammalian C-NHEJ factors have been identi! ed, 

suggesting a similar NHEJ mechanism. However, the existence of B-NHEJ pathways 

and the proteins involved is still unclear. Here we hypothesized that Parp proteins were 

also involved in B-NHEJ in plants as in mammals. # e triple mutant Atparp1parp2ku80 

(Atp1p2k80) was obtained and functionally characterized. # e sensitivity to DNA damage 

and the end joining activity were tested for this triple mutant, and T-DNA integration and 

gene targeting were also analyzed.

Material and methods

Plant material

# e Atparp1, Atparp2 and Atku80 T-DNA insertion lines were obtained from the 

GABI-Kat T-DNA collection (GABI-Kat Line 692A05) or the SALK T-DNA collection 

(SALK_640400, SALK_016627), respectively. Information about it is available at http://

signal.salk.edu/cgi-bin/tdnaexpress (7). # e homozygotes of those mutants isolated in our 

lab (chapter 2 and 3) were crossed and the homozygous Atparp1parp2 (Atp1p2) double 

mutant and the homozygous Atparp1parp2k80 (Atp1p2k80) triple mutant were obtained.

Assays for sensitivity to bleomycin and methyl methane sulfonate (MMS)

Seeds of wild-type, Atp1p2, Atp1p2k80 and Atku80 plants were surface-sterilized as described 

(8) and germinated on solid ½ MS medium (9). Four days after germination, the seedlings 

were transferred to liquid ½ MS medium without additions or ½ MS medium containing 

0.2 µg/ml and 0.4 µg/ml BleocinTM (Calbiochem), 0.007% and 0.01% (v/v) MMS (Sigma). 

# e seedlings were scored after 2 weeks of growth. Fresh weight (compared with controls) 

was determined by weighing the seedlings in batches of 20 in triplicate, which were treated 

in 0%, 0.006%, 0.008% and 0.01% (v/v) MMS for 2 weeks.

Comet assay 

One-week-old seedlings were treated in liquid ½ MS containing 0.01% MMS for 0 h, 2 h 

and 24 h. Some seedlings with 24 h treatment were recovered in liquid ½ MS for another 

24 h. DNA damage was detected by comet assays using the A/N protocol as described 

in chapter 3. # e fraction of DNA in comet tails (%tail-DNA) was used as a measure of 

DNA damage (10). Measures included 4 independent gel replicas totaling about 100 comets 
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analyzed per experimental point. ! e result was represented by the mean value ( ±standard 

deviation = S.D.) from four gels, based on the median values of %tail-DNA of 25 individual 

comets per gel. ! e student’s t-test was used to test for signi# cant di$ erence compared to the 

wild-type with the same treatment.

In vivo end joining assay 

Arabidopsis mesophyll protoplasts isolation and protoplasts DNA transformation using the 

polyethylene glycol (PEG) transformation protocol (11) were described in chapter 2. In 

each experiment, 2×104 protoplasts were transformed with 2 µg of circular or linear plasmid 

pART7-HA-GFP(S65T) (Figure 1), which was cleaved with BamHI. Recircularization of 

Table 1. Sequences of primers used for end joining assays.

Name Sequence
q8 5'-GTGACATCTCCACTGACGTAAG-3'
q9 5'-GATGAACTTCAGGGTCAGCTTG-3'
q10 5'-CAAGCTGACCCTGAAGTTCATC-3'
q11 5'-GTTGTGGCGGATCTTGAAG-3'
q30 5'-GTTTCGGTGATGACGGTG-3'
q31 5'-TGGCACGACAGGTTTCC-3'
q40 5'-GCTGTAGGATGGTAGCTTGGCAC-3'
q41 5'-ATCCTACAGCTGGAATTCGTAATC-3'
q46 5'-TGGAATTCGTAATCATGGTCATAGC-3'
q47 5'-CGTTGGATCCGAATTCGTAATCATGGTCATAGC-3'
q48 5'-CGTTGGTACCGAATTCGTAATCATGGTCATAGC-3'
q49 5'-CGTTGAGCTCGAATTCGTAATCATGGTCATAGC-3'
q50 5'-CGATGGATCCGCTGTAGGATGGTAGCTTG-3'
q51 5'-CGTTGGTACCGCTGTAGGATGGTAGCTTG-3'
q52 5'-CGTTGAGCTCGCTGTAGGATGGTAGCTTG-3'
q53 5'-CGTTGAATTCGCTGTAGGATGGTAGCTTG-3'
PPO-PA 5'-GTGACCGAGGCTAAGGATCGTGT-3'
PPO-1 5'-GCAAGGAGTTGAAACATTAG-3'
PPO-4 5'-CATGAAGTTGTTGACCTCAATC-3'
Sp319 5'-CTATCAAAGAGCACAGACAGC-3'

Figure 1. Schematic diagram of pART7-HA-GFP. 
! e primers for Q-PCR are shown by arrows.
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the linear plasmid in protoplasts was analyzed by Q-PCR with two pairs of primers: q8+q9 

and q10+q11 (chapter 2). ! e sequences of the primers are listed in Table 1. ! e e"  ciency 

of end joining is presented by the ratio of PCR products using q8+q9 primers and q10+q11 

primers in comparison with the controls. ! e value obtained with wild-type protoplasts 

was set on 1. Q-PCR was performed as three replicates and the assays were performed in 

triplicate. ! e PCR products with the primers of q8 and q9 were puri# ed with QIAquick 

gel extraction kit (Qiagen) and cloned into pJET1.2/blunt Cloning Vector (CloneJETtm 

PCR Cloning Kit, Fermentas). Individual clones were # rst digested by BamHI. ! e clones 

resistant to digestion by BamHI were sequenced by ServiceXS.

In vitro end joining assay 

Protein extracts were obtained from leaves as described in chapter 3. ! e DNA substrates 

with di$ erent ends were ampli# ed by PCR with di$ erent sets of primers. ! e template 

for all the PCRs was the 3kb plasmid pUC18P1/4 (chapter 3), which was obtained from 

Liang (12;13). PhusionTM DNA high-# delity polymerase (Finnzymes) was used for PCR 

to generate blunt ends. Sticky ends were generated by digesting the PCR products with 

di$ erent restriction enzymes. ! e di$ erent ends are also listed in Table 2. 

! e linear DNA substrates (300 ng) were incubated with 1 µg protein extract from 

leaves in 50 mM Tris-HCl (pH7.6), 10mM MgCl
2
, 1mM dithiothreitol, 1 mM ATP and 

25% (w/v) polyethylene glycol 2000 at 14°C for 2 hour in a volume of 20 µl. DNA products 

were puri# ed by electrophoresis through 0.6% agarose gels. A 600-bp fragment containing 

the end-joined junction was ampli# ed with q30 and q31 primers * anking the junction 

by PCR, followed by puri# cation and cloning into pJET1.2/blunt Cloning Vector as 

mentioned above. Individual clones were # rst digested by corresponding restriction enzymes 

to check if they were joined precisely or via MMEJ. ! e clones resistant to the digestion 

were sequenced by ServiceXS. 

Table 2. Di$ erent ends for end joining assay.

End type
Restriction 
enzyme

Recognize site Primers

Sticky 
ends

Compatible
3’-overhangs KpnI GGTAC^C q48+q51

5’-overhangs BamHI G^GATCC q47+q50

Incompatible
3’-overhangs 
+5’-overhangs

KpnI
EcoRI

GGTAC^C
G^AATTC

q48+q51

Blunt 
ends

With micro-homology (10bp) q40+q41

Without micro-homology q40+q46
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Floral dip transformation and gene targeting

Floral dip transformation was performed according to the procedure described by Clough 

and Bent (14). ! e Agrobacterium strain AGL1 (pSDM3834) (15) was used for infection. 

Plasmid pSDM3834 is a pCambia 1200 derivative (hpt selection marker). Seeds were 

harvested from the dry plants after maturation and plated on solid MA medium (16) without 

sucrose containing 15 µg/ml hygromycin, 100 µg/ml timentin (to kill Agrobacterium cells) 

and 100 µg/ml nystatin (to prevent growth of fungi). Hygromycin-resistant seedlings were 

scored 2 weeks after germination and transformation frequency was determined (50 seeds 

is 1 mg) (17).

In order to test the frequency of gene targeting in the mutants, the same procedure was 

performed with Agrobacterium strain AGL1 (pSDM3900) using the protoporphyrinogen 

oxidase (PPO) system (18). Plasmid pSDM3900 is a pCambia 3200 derivative 

(phosphinothricin (ppt) selection marker). About 1 gram seeds were plated on solid MA 

without sucrose containing 15 µg/ml ppt, 100 µg/ml timentin and 100 µg/ml nystatin to 

determine the transformation frequency. ! e rest of the seeds were all sowed on solid MA 

without sucrose containing 50 µM butafenacil, 100 µg/ml timentin and 100 µg/ml nystatin 

to identify gene targeting events. ! e butafenacil-resistant plants were analyzed with PCR to 

determine if they represent true gene targeting (TGT) events (Figure 2). 

Results

DNA damage response of the Atku80, Atp1p2 and Atp1p2k80 mutants 

In order to study whether the AtParp proteins and the AtKu80 protein function in 

Figure 2. ! e design for the targeted modi# cation of the Arabidopsis PPO locus.
! e white box marked PPO represents the PPO coding region, and the black lines represents 
$ anking plant genomic DNA. ! e two mutations conferring butafenacil resistance are indicated 
as stars. ! e T-DNA repair construct contains the BAR resistance gene linked to the truncated 
5’∆PPO (LB for left border and RB for right border). ! e primers for PCR analysis of the gene 
targeting events are indicated by arrows.
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di  erent or similar DNA repair pathways, the Atp1p2k80 triple mutant was obtained and 

the homozygotes were identi" ed using PCR analysis (chapter 2 and 3). # e Atp1p2k80 

mutant had no obvious phenotype under normal growth conditions as compared with the 

wild-type. When it was treated with genotoxic agents (bleomycin or MMS), it was more 

sensitive to both agents than the Atp1p2 and Atku80 mutants (Figure 3). # e radiomimetic 

chemical bleomycin induces mainly DNA double strand breaks (DSBs) (19), whereas the 

monofunctional alkylating agent MMS induces mainly DNA single strand breaks (SSBs) 

that can be converted into DSBs during replication (20). As discussed previously in chapter 

2 and 3, the AtKu80 protein functions mainly in DSBs repair via C-NHEJ, whereas the 

AtParp proteins play an important role in SSBs repair and probably in B-NHEJ as well. 

Figure 3. Response to DNA-damaging treatments.
(A) Phenotypes of wild-type plants and Atp1p2, Atp1p2k80 and Atku80 mutants after bleomycin 
or MMS treatment. Four-day-old seedlings germinated on solid ½ MS were transferred to liquid 
 ½ MS medium (control) or ½ MS medium containing di  erent concentrations of bleomycin 
(Bleo) or MMS and were scored 2 weeks after germination.
(B) Fresh weight of 2-week-old wild-type plants, Atp1p2, Atp1p2k80 and Atku80 mutants treated 
with 0, 0.006%, 0.008% or 0.010% MMS. For each treatment 20 seedlings were weighed in 
triplicate. Fresh weight of the wild-type grown for 2 weeks without MMS was set at 1. Student’s 
test: * P<0.05, ** P<0.001 (comparing mutants with the wild-type of the same treatment).
 (      wild-type (WT);     Atp1p2;     Atp1p2k80;     Atku80)
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To quantify the e! ect of MMS treatment, the fresh weight of seedlings was determined 

after 2 weeks of continuous MMS treatment (Figure 3). With the highest concentration of 

MMS (0.01%), all the plant lines were very sick and did not grow at all. With the lower 

concentrations of MMS (0.006% and 0.008%), the growth of the Atp1p2 and Atp1p2k80 

mutants was retarded more than the growth of the wild-type and the Atku80 mutant. In the 

presence of 0.008% MMS, the fresh weight of the Atp1p2k80 mutant was reduced to half 

of the weight of the Atp1p2 mutant, or one fourth of the weight of the Atku80 mutant. As 

expected, the Atp1p2k80 triple mutant was most sensitive to the exposure of MMS among 

all the plant lines, probably due to the de" ciency of multiple DNA repair pathways in this 

triple mutant.

In order to quantify the DNA damage in these mutants after MMS treatment, comet 

assays (A/N protocol) were performed, that identify SSBs and DSBs. For each treatment, 

around 100 randomly chosen nuclei from 4 independent mini gel replicas were analyzed 

by using CometScoreTm. Without any treatment, the genomic DNA of the Atp1p2, 

Atp1p2k80 and Atku80 mutants already had more DNA damage than that of the wild-type, 

demonstrating that AtParp proteins and AtKu80 are involved in DNA repair systems (Figure 

4). # e Atp1p2 and Atp1p2k80 mutants had a higher level of nuclear DNA damage than the 

wild-type and the Atku80 mutant after 2 h MMS treatment, which can be explained by the 

essential role of the AtParp proteins in SSBs repair. # e Atp1p2k80 triple mutant had more 

DNA damage than the Atp1p2 mutant, in accordance with the result of the fresh weight 

measurements after the MMS treatment. After 24 h MMS treatment, the di! erences among 

the various plant lines were not signi" cant, since 24 h MMS treatment was very deleterious 

to all of them. After 24 h of recovery the DNA damage was repaired in the wild-type to the 

situation before the treatment. In the mutants about half of the DNA damage was repaired 

after 24 h recovery compared to the situation before treatment. Since AtKu80 is a major 

Figure 4. Quanti" cation of DNA damage by Comet assay.
# e fraction of DNA in comet tails (%tail-DNA) was used as a measure of DNA damage in wild-
type plants and Atp1p2, Atp1p2k80 and Atku80 mutants. Around 100 nuclei for each treatment 
were analyzed. # e means of %tail-DNA after MMS treatment are shown.
(     t=0;     t=2h;     t=24h;     24h+24h recovery) 
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component of C-NHEJ, DNA repair capacity was expected to be reduced in the Atku80 

mutant. Interestingly, even in the Atp1p2k80 triple mutant, half of the additional DNA 

damage was repaired, suggesting the existence of another SSBR pathway besides the AtParp 

mediated SSBR.

End joining in the Atku80, Atp1p2 and Atp1p2k80 mutants

To directly test the function of AtParp proteins and AtKu80 in NHEJ, an in vivo plasmid 

rejoining assay was utilized to quantify the capacity of the Atparp and Atku80 mutants 

to repair DSBs generated by restriction enzymes. To this end, we transformed protoplasts 

from leaves with circular (control) or BamHI linearised plasmid DNA. BamHI digests the 

plasmid DNA in the N-terminal part of the GFP coding sequence. Rejoining of linear 

plasmid by the NHEJ pathway in vivo will result in GFP expression. GFP ! uorescence was 

indeed detected in the wild-type protoplasts which were transformed with the linearized 

plasmid. But it was di"  cult to quantify the di# erence in GFP expression between the 

wild-type and the mutants under the ! uorescence microscope. $ erefore, we analyzed 

the rejoining e"  ciency by Q-PCR, using primers around the BamHI site compared to 

primers in the GFP coding region. $ e results showed that the rejoining e"  ciency was 

reduced by half in the Atku80 mutant compared with the wild-type, whereas the e"  ciencies 

were reduced mildly in the Atp1p2 mutant (Figure 5). $ is demonstrated that AtKu80, 

a core component in C-NHEJ, played a crucial role in NHEJ. AtParp proteins could be 

participants in B-NHEJ. When the C-NHEJ was well functioning, the de% ciency in AtParp 

genes did not much in! uence the capacity of end joining. Surprisingly, the Atp1p2k80 triple 

mutant had nearly the same ability of end joining as the wild-type. $ is suggests that there 

may be other robust alternative NHEJ pathways in plants, which probably are inhibited by 

both Ku-dependent C-NHEJ and Parp-dependent B-NHEJ and only become active in the 

absence of these pathways.

End joining products of the Atku80, Atp1p2 and Atp1p2ku80 mutants

In order to investigate the mutagenic potential of the di# erent NHEJ pathways, the spectra of 

end-joining products with DNA substrates with di# erent type of DNA ends was tested with 

Figure 5. Plasmid end joining assay with protoplasts. 
Fraction of rejoined plasmid DNA was determined by PCR. $ e value obtained in wild-type 
protoplasts was set on 1. Values of end joining in protoplasts from the mutants are given relative 
to that of the wild-type.
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cell-free protein extracts from leaves of the wild-type and the mutants. Analysis of the joined 

products showed that the joining was accurate for the DNA substrates with compatible ends 

of 5’-overhangs, whereas the joining was prone to be inaccurate for the other types of ends, 

such as compatible 3’-overhangs, incompatible ends and blunt ends (Figure 6). In most cases 

deletions were produced for inaccurate end joining, suggesting that the DNA substrates 

were prone to be resected. Small deletions (<10 bp) were often seen among the products 

from all the di! erent plant lines. Large deletions (>10 bp) were rarely obtained for the wild-

type and the Atp1p2 mutant. " e number of large deletions, some of which utilized micro-

homology, was increased in the Atku80 and Atp1p2k80 mutants, suggesting that AtKu80 

protected the DNA ends from resection and prevented the formation of deletions. " e 

sequencing results of the di! erent ends are shown in Table 3. " e sequencing results of the 

end joining assay for 5’-overhangs in leaf protoplasts revealed that most of the ends had 

been joined precisely, except for some small deletions, which occurred in all the di! erent 

Figure 6. Plasmid end joining assay with protein extracts. 
DNA substrates with compatible 5’-overhangs, compatible 3’-overhangs, incompatible ends, 
blunt ends without micro-homology and blunt ends with 10 bp micro-homology were used. 
Spectra of the junctions are shown generated from DNA substrates with di! erent ends in protein 
extracts from leaves of the wild-type and Atp1p2, Atp1p2k80 or Atku80 mutants. After end 
joining, the junction was ampli# ed by PCR and cloned. " e number of plasmids with speci# c 
types of junctions was shown compared to the total number analyzed. 
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plant lines. One junction, the result of a large deletion (29-125 bps) on sites of 8 bp micro-

homology, was found in the Atku80 mutant. ! is also pointed out that AtKu80 may inhibit 

MMEJ by protecting the DNA ends from resection.

Table 3. Sequence results for the in vitro end joining assay.

5’ overhangs (BamHI)

CAAGCTACCATCCTCAGCG^GATCCGAATTCGTAATCATGGTCATAGC

WT

CAAGCTACCATCCTCAGC··ATCCGAATTCGTAATCATGGTCATAGC

CAAGCTACCATCCTCAG···ATCCGAATTCGTAATCATGGTCATAGC

3’ overhangs (KpnI)

CAAGCTACCATCCTACAGCGGTAC^CGAATTCGTAATCATGGTCATAGC

WT

CAAGCTACCATCCTACAGCGGTAC·GAATTCGTAATCATGGTCATAGC (2)

CAAGCTACCATCCTACAGCGGT··-145bp···ACTGCCCGCTTTCCAGT

Atp1p2

CAAGCTACCATCCTACAGCGGTAC·GAATTCGTAATCATGGTCATAGC

CAAGCTACCATCCTACAGCGGTACAGAATTCGTAATCATGGTCATAGC

CAAGCTACCATCCTACAGCGGTACAACCGAATTCGTAATCATGGTCATAG

CAAGCTACCATCCTACAGCGGTACGTACCGAATTCGTAATCATGGTCAT (2)

Atp1p2k80

CAAGCTACCATCCTACAGCGGTAC·GAATTCGTAATCATGGTCATAGC (2)

CAAGCTACCATCCTACAGCGGTACGTACCGAATTCGTAATCATGGTCAT (2)

Atku80

CAAGCTACCATCCTACAGCGGTAC·GAATTCGTAATCATGGTCATAGC

CAAGCTACCATCCTACAGCGGTACGCGAATTCGTAATCATGGTCATAGC

CAAGCTACCATCCTACAGCGGTACGTACCGAATTCGTAATCATGGTCAT (2)

AAAATACCGC······-336bp···TACCGAATTCGTAATCATGGTCAT

TCGCTATTACGCCAGCTG·····-291bp·····CATTAATGAATCGGCCAACGCG

3’ overhangs (KpnI) +5’ overhangs (EcoRI)

CAAGCTACCATCCTACAGCGGTAC^C G^AATTCGTAATCATGGTCATAGC

CAAGCTACCATCCTACAGCGGTACAATTCGTAATCATGGTCATAGC
WT

CAAGCTACCATCCTACAGCGGTA·AATTCGTAATCATGGTCATAGC (2)

CAAGCTACCATCCTACAGCGGTAC·ATTCGTAATCATGGTCATAGC (3)

CAAGCTACCATCCTACAGCGGTA··ATTCGTAATCATGGTCATAGC 

CAAGCTACCATCCTACAGCGGTAC···TCGTAATCATGGTCATAGC 

CAAGCTACCATCCTACAGCGGTAC····CGTAATCATGGTCATAGC 

CAAGCTACCATCCTACAGCGGTAC·····GTAATCATGGTCATAGC (2)

CAAGCTACCATCCTACAGCG·········GTAATCATGGTCATAGC 
Atp1p2

CAAGCTACCATCCTACAGCGGTA·AATTCGTAATCATGGTCATAGC (2)

CAAGCTACCATCCTACAGCGGTAC·ATTCGTAATCATGGTCATAGC 

CAAGCTACCATCCTACAGCGGTAC·····GTAATCATGGTCATAGC (2)

CAAGCTACCATCCTACAGCGGTA······GTAATCATGGTCATAGC 

CAAGCTACCATCCTACAGCG···-75bp···GCTCACAATTCCACACAA
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Atp1p2k80

CAAGCTACCATCCTACAGCGGTA·AATTCGTAATCATGGTCATAGC

CAAGCTACCATCCTACAGCGGTAC·ATTCGTAATCATGGTCATAGC (3)

CAAGCTACCATCCTACAGCGGTAC··TTCGTAATCATGGTCATAGC

CAAGCTACCATCCTACAGCGGTAC···TCGTAATCATGGTCATAGC

CAAGCTACCATCCTACAGCGGTAC····CGTAATCATGGTCATAGC (3)

CAAGCTACCATCCTACAGCGGTAC·····GTAATCATGGTCATAGC (4)

CAAGCTACCATCCTACAGCGGTAC···-12bp···ATGGTCATAGC

CAAGCTACCATCCTACAGCGGTAC····-14bp····GGTCATAGC

Atku80

CAAGCTACCATCCTACAGCGGTA·AATTCGTAATCATGGTCATAGC 

CAAGCTACCATCCTACAGCGGTAC·····GTAATCATGGTCATAGC (4) 

CAAGCTACCATCCTACAGCGGTA······GTAATCATGGTCATAGC (3)

CAAGCTACCATCCTACAGCGGTA········AATCATGGTCATAGC

CAAGCTACCATCCTACAGCGGTAC····-14bp····GGTCATAGC

CAAGCTACCATCCTACAGCGGTAC····-41bp·····TTATCCGC

CAAGCTACCATCCTACAGCGGTAC····-118bp·····TAATGAG

Blunt ends without micro-homology

GTGCCAAGCTACCATCCTACAGC^TGGAATTCGTAATCATGGTCATAGC

WT

GTGCCAAGCTACCATCCTACA····GAATTCGTAATCATGGTCATAGC 

GTGCCAAGCTACCATCCTAC·····GAATTCGTAATCATGGTCATAGC (2)

GTGCCAAGCTACCATCCTACAG····AATTCGTAATCATGGTCATAGC

GTGCCAAGCTACCATCC········GAATTCGTAATCATGGTCATAGC

GTGCCAAGCTACCATCCTA·····-91bp····AGTGTAAAGCCTGGG

TCAGAGCAGATTG···-251bp···GAATTCGTAATCATGGTCATAGC

Atp1p2

GTGCCAAGCTACCATCCTACAG··GGAATTCGTAATCATGGTCATAGC (2)

GTGCCAAGCTACCATCCTACAG···GAATTCGTAATCATGGTCATAGC 

GTGCCAAGCTACCATCCTACA···GGAATTCGTAATCATGGTCATAGC (4)

GTGCCAAGCTACCATCCTAC····GGAATTCGTAATCATGGTCATAGC (2)

GTGCCAAGCTACCATCCTA······GAATTCGTAATCATGGTCATAGC 

GTGCCAAGCTACCATCCTACA······ATTCGTAATCATGGTCATAGC 

GCCAAGCTACC·····-11bp····GGAATTCGTAATCATGGTCATAG 

Atp1p2k80

GTGCCAAGCTACCATCCTACAG·TGGAATTCGTAATCATGGTCATAGC (1)

GTGCCAAGCTACCATCCTACAGC··GAATTCGTAATCATGGTCATAGC (2)

GTGCCAAGCTACCATCCTACAG···GAATTCGTAATCATGGTCATAGC 

GTGCCAAGCTACCATCCTACAG····AATTCGTAATCATGGTCATAGC 

GTGCCAAGCTACCATCCTACA····GAATTCGTAATCATGGTCATAGC (2)

GTGCCAAGCTACCATCCT··········-24bp·········CATAGC

GTGCCAAGCTACCATCCTA············-28bp···········C

GTGCCAAGCTACCATCCTACAGC····-78bp······CCGGAAGCAT
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In order to test whether AtParp proteins are involved in MMEJ, a DNA substrate with 

blunt ends containing 10 bp micro-homology sequences was used for end-joining assays 

in the wild-type and Atp1p2, Atku70, Atku80 and Atp1p2k80 mutants as described for 

the Atparp mutants in chapter 3. When end joining occurs via MMEJ using the 10 bp 

microhomology, an XcmI site (CCAN9TGG) will be generated (chapter 3). To determine 

the fraction of the products joined via MMEJ using the 10 bp microhomology, the PCR 

products were digested with XcmI. Compared with the wild-type, the Atp1p2 and Atp1p2k80 

mutants had about two fold less MMEJ products, whereas the Atku mutants had about two 

fold more MMEJ products, indicating that the AtParp proteins are involved in MMEJ 

(chapter 3), while the AtKu proteins prevent MMEJ by the AtParp proteins (Figure 7). ! is 

Atku80

GTGCCAAGCTACCATCCTACAGC··GAATTCGTAATCATGGTCATAGC 

GTGCCAAGCTACCATCCTACAG··GGAATTCGTAATCATGGTCATAGC

GTGCCAAGCTACCATCCTACAG···GAATTCGTAATCATGGTCATAGC 

GTGCCAAGCTACCATCCTACA···GGAATTCGTAATCATGGTCATAGC 

GTGCCAAGCTACCATCCTAC····GGAATTCGTAATCATGGTCATAGC 

GTGCCAAGCTACCATCCTAC·····GAATTCGTAATCATGGTCATAGC (2)

GTGCCAAGCTACCATCCTAC······AATTCGTAATCATGGTCATAGC 

GTGCCAAGCTACCATCC········GAATTCGTAATCATGGTCATAGC 

GCCAAGCTACCATC··········-22bp········ATGGTCATAGC

CCAGTGCCAAGCTACCATCC···-56bp···GCTCACAATTCCACACAACA

ACGCCAGGGTTTTCCCAGTC···-204bp···GGGAAACCTGTCGTGCCAG

Blunt ends with micro-homology

GTGCCAAGCTACCATCCTACAGC^ATCCTACAGCTGGAATTCGTAATCA

WT

GTGCCAAGCTACCATCCTACAG·ATCCTACAGCTGGAATTCGTAATCA (5)

Atp1p2

GTGCCAAGCTACCATCCTACAG·ATCCTACAGCTGGAATTCGTAATCA (8)

GTGCCAAGCTACCATCCTA····ATCCTACAGCTGGAATTCGTAATCA (2)

GTGCCAAGCTACCATCCTACAGCAATCCTACAGCTGGAATTCGTAATCA

GTGCCAAGCTACCATCCTACAGCGGATCCTACAGCTGGAATTCGTAATCA

GTGCCAAGCTACCATCCTACAGCGTGATCCTACAGCTGGAATTCGTAATC

Atp1p2k80

GTGCCAAGCTACCATCCTACAG·ATCCTACAGCTGGAATTCGTAATCA (5)

GTGCCAAGCTACCATCCTAC···ATCCTACAGCTGGAATTCGTAATCA 

GTGCCAAGCTACCATCCTA····ATCCTACAGCTGGAATTCGTAATCA 

GTGCCAAGCTACCATCCTACAGCATCATCCTACAGCTGGAATTCGTAATCA

GTGCCAAGCTACCATCCTACAGCTGGGAATCCTACAGCTGGAATTCGTAA

Atku80

GTGCCAAGCTACCATCCTACAG·ATCCTACAGCTGGAATTCGTAATCA (2)

GTGCCAAGCTACCATCCTA····ATCCTACAGCTGGAATTCGTAATCATG

! e recognition sequences for restriction enzymes are shown as bold letters. ! e number in 
brackets indicates multiple clones obtained for that sequence. ! e dots represent the deletion 
and the italic letters represent the insertion. ! e micro-homologous sequences are underlined.



105

4

suggested that there is a competition between AtParp and AtKu proteins to regulate the 

use of di! erent NHEJ pathways. " e products that were not repaired via MMEJ were also 

sequenced and these turned out to contain small deletion or insertions.

T-DNA integration and gene targeting in the Atku80, Atp1p2 and Atp1p2k80 mutants

Double strand break repair mechanisms are hypothesized to control the integration 

of Agrobacterium T-DNA in plants. In chapter 2, we found that the Atku mutations 

signi# cantly reduced the $ oral dip transformation frequency as compared to the wild-type, 

and in chapter 3 that the absence of AtParp proteins did not cause a signi# cant decrease in 

T-DNA integration frequency via $ oral dip. To test if T-DNA integration still can happen 

when both C-NHEJ and B-NHEJ are blocked, the Atp1p2k80 mutant was transformed by 

Agrobacterium using the $ oral dip method. " e transformation frequency was determined as 

the number of Hpt-resistant seedlings per total number of plated seeds. " e transformation 

frequencies of the Atp1p2k80 mutant was signi# cantly reduced compared with the wild-

type, and was even lower than that of the Atku80 mutant (Figure 8). However T-DNA 

Figure 7. MMEJ catalyzed by protein extracts from leaves. 
(A) After incubation of linear DNA substrate with protein extracts, a 600-bp fragment was PCR-
ampli# ed on the end-joined products and subsequently digested with XcmI. Only the products 
joined via MMEJ can be digested with XcmI resulting in two fragments of 400 bp and 200 bp.
(B)Quanti# cation of MMEJ activity from (A). " e relative contribution of the 10-bp MMEJ was 
calculated as the percentage of the XcmI-digested fragments of total PCR products (sum of the 
XcmI- digested and undigested fragments).



106

4

integration still happened in the triple mutant when both NHEJ pathways were inactivated.

If NHEJ is blocked, the chance for DNA repair via HR could be increased, so that 

the frequency of gene targeting could also be increased (2;3;21;22). ! e frequency of gene 

targeting was tested in the wild-type, the Atp1p2, Atp1p2k80, and Atku80 mutants. About 

1 butafenacil-resistant plant in 1000 transformants was found in the wild-type (chapter 2). 

! ere were 1 or 2 butafenacil-resistant plants found in around 1000 transformants of the 

Atp1p2, Atku80 and Atp1p2ku80 mutants. ! e butafenacil-resistant plants were analyzed 

by PCR to determine whether they indeed represented gene targeting events. In case of a 

GT event, PCR products obtained with the combination of the PPO primers (Figure2) 

can be digested by KpnI. ! e butafenacil-resistant plants of the wild-type were GT events 

(data not shown). However, the PCR products of the butafenacil-resistant plants of the 

Atku80 and Atp1p2ku80 mutants were resistant to KpnI digestion, indicating they were 

escapes (data not shown). ! e butafenacil-resistant plants of the Atp1p2 mutants were too 

small for PCR analysis. It seemed that the gene targeting frequency was not signi" cantly 

increased in the triple mutant compared with the wild-type, suggesting that inactivation 

of components from both the C-NHEJ and the B-NHEJ pathways did not induce the HR 

pathway. Together with the results from the T-DNA integration experiments, this indicated 

that an additional pathway of NHEJ must exist. 

Discussion

Here the Atp1p2ku80 triple mutant, which was de" cient in both Ku-dependent C-NHEJ 

and Parp-involved B-NHEJ pathways, was obtained and functionally characterized. ! e 

triple mutant was more sensitive to the stress of SSBs and DSBs than the wild-type, the 

Atp1p2 and Atku80 mutants, but it could still repair DNA damage to some extent according 

to the comet assay. ! e data from end joining assays and # oral dip transformations showed 

that the Atp1p2k80 mutant still had ability for end joining and T-DNA integration. All 

Figure 8. Transformation frequencies using the # oral dip assay. One gram of seeds from the wild-
type and the Atp1p2, Atp1p2k80 or Atku80 mutants obtained after # oral dip transformations 
were selected on hygromycin. ! e number of hygromycin resistant seedlings was scored 2 weeks 
after germination. ! e transformation frequency is presented as the ratio of the percentage of 
hygromycin resistant seedlings in the mutants and the wild-type.



107

4

these results suggested that either there is another alternative NHEJ in plants or that the 

C-NHEJ and B-NHEJ were not completely inactive in the triple mutant. ! e end joining 

capacity of the Atku80 mutant was much lower than that of the wild-type, while the end 

joining capacity of the Atp1p2 mutant was only mildly a" ected (Figure 5). However, 

unexpectedly the Atp1p2k80 triple mutant had a similar end joining capacity as the wild-

type. ! is suggests that indeed an additional pathway is present, which is suppressed under 

normal conditions, and becomes active when both the C-NHEJ and B-NHEJ are blocked. 

! is hypothesis also explains the residual T-DNA integration and low GT frequency in the 

triple mutant. Recently, a similar result was also reported from the DNA repair kinetics after 

γ-irradiation in the Atku80xcrr1 mutant by Charbonnel et al. (23). ! ough the Atp1p2k80 

mutant did not reduce the end joining frequency in the leaf protoplasts, it still had lower 

T-DNA integration frequency via # oral dip transformation, compared with the wild-type. 

Possibly, the additional pathway is less active in the gametophytic cells (used in # oral dip 

transformation) than in the somatic leaf cells (used in the end joining assay). Alternatively, 

T-DNA integration in chromosomes may be more dependent on C-NHEJ than end joining 

of naked plasmid molecules. 

Results from end joining assays with di" erent DNA ends in cell-free extracts revealed 

that in the Atku80 mutant more large deletions were found than in the wild-type, suggesting 

that Ku80 plays a role in keeping genome integrity in plants. ! is is in accordance with 

some reports in mammals, which also showed that Ku may serve as an alignment factor 

that not only increases NHEJ e$  ciency but also accuracy (24-28). ! ough NHEJ is an 

error-prone DNA repair pathway compared with HR, it still results in a high % delity when 

Ku-dependent C-NHEJ is active. Mutation of C-NHEJ core factors resulted in loss of 

the accuracy of DNA repair (27). As in the results described here, the C-NHEJ de% cient 

mutants preferred end joining using micro-homology so that the chance for deletions was 

highly increased and the genome was instable (25;27). Of the known end-joining pathways, 

C-NHEJ is relatively fast and accurate, so that it is the % rst choice for the organisms to repair 

DNA DSBs.

! e Atp1p2 and Atp1p2k80 mutants gave less MMEJ products than the wild-type, 

whereas the Atku80 mutant gave more MMEJ products than the wild-type in the in 

vitro end joining assays (Figure 7). ! e latter is not consistent with the percentages of the 

di" erent joined products from the results of sequencing (Figure 6). Sequencing indicated 

that the Atku80 mutant formed a similar percentage of MMEJ products as the wild-type. 

It is possible that the PCR products in Figure 7 were not completely digested. But both 

experiments indicated that AtParp1 and AtParp2 are involved in MMEJ (chapter 3) and 

AtKu80 can inhibit MMEJ. ! ese results point to a regulatory mechanism, in which 

competition between Parp and Ku determines whether C-NHEJ or B-NHEJ is used, as 

was found for mammalian systems (6). When the Ku protein is absent, Parp may bind the 

DNA ends and direct the DNA repair pathway to B-NHEJ, which more often uses micro-

homology. Katsura et al. (29) reported that Ku80 could also be involved in MMEJ, but 
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MMEJ is less dependent on Ku80 than NHEJ. Recently, it was shown that Ku regulated 

the choice of repair pathway by inhibition of end processing and thus by repression on 

HR and MMEJ (30;31). MMEJ leads to deletion and is therefore mutagenic and may be 

harmful for the genome stability. When the major DNA DSB repair pathway, C-NHEJ, 

is available, MMEJ is suppressed by C-NHEJ for optimal genome stability. Ku and Parp 

proteins could be involved in regulating this. ! e Atp1p2k80 triple mutant might be used as 

a tool to further investigate the mechanism of the regulation and to identify components of 

the additional NHEJ pathways in future.
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Abstract

DNA ligases catalyze the joining of DNA ends and thus play important roles in DNA 

replication and DNA repair. Eukaryotes possess multiple ATP-dependent DNA ligases with 

distinct roles in DNA metabolism. Some of them have been well characterized, such as 

DNA ligase I (Lig1) and DNA ligase IV (Lig4). A novel plant-speci! c DNA ligase has been 

identi! ed, termed DNA ligase VI (Lig6), but its function is still unclear. " e expression 

pattern analyzed via Genevestigator showed that the expression level of AtLig6 was lower 

than that of AtLig1 and AtLig4 and was especially induced at the stages of seed germination 

and # owering. Two homozygous mutants of AtLig6 were isolated and crossed with the Atlig4 

mutant to obtain the double mutants (Atlig4lig6-1, Atlig4lig6-2). All these four homozygous 

ligase mutants were phenotypically indistinguishable from the wild-type under normal 

growth conditions. " e two Atlig6 single mutants could tolerate bleomycin treatment equally 

well as the wild-type. " e Atlig4lig6-1 and Atlig4lig6-2 double mutants were hypersensitive 

to bleomycin, but no di$ erence was observed from the Atlig4 single mutant. " e frequency 

of T-DNA integration was also not disturbed by the de! ciency of AtLig6, and the frequency 

of gene targeting seems not to be increased in absence of both AtLig6 and AtLig4. " is 

indicates that other ligases function in NHEJ when AtLig6 and AtLig4 are inactive. One 

candidate was identi! ed by in silico searching for homologs of ATP-dependent DNA ligases 

in Arabidopsis, which may represent a novel plant speci! c DNA ligase involved in back-up 

non-homologous end joining (B-NHEJ) for DSB DNA repair.

Introduction

DNA ligases seal broken DNA molecules with 3’ OH and 5’ PO
4
 ends, which is essential for 

many biological processes, including DNA replication, DNA repair and DNA recombination 

(1). On the basis of the di$ erent cofactor preferences, the large family of DNA ligases is 

divided into two groups (2;3). " e ! rst group consists of the NAD+-dependent DNA ligases, 

which are utilized by most eubacteria. " e second comprises the ATP-dependent DNA 

ligases, which are utilized mainly by eukaryotes (4). Eukaryotic organisms have evolved 

multiple ATP-dependent ligase isoforms, including DNA ligase I (Lig1), DNA ligase III 

(Lig3), DNA ligase IV (Lig4) and DNA ligase VI (Lig6). Lig1 and Lig4 are expressed and 

conserved in all eukaryotes, whereas Lig3 is unique to vertebrates and Lig6 is plant-speci! c 

(4;5). Each ligase has a distinct function in DNA metabolism for the maintance of genomic 

integrity (6).

Lig1 plays a vital role in DNA replication by joining the Okazaki fragments and also in 

DNA repair pathways, such as nucleotide excision repair (NER), base excision repair (BER), 

single strand break (SSB) repair and probably double strand break (DSB) repair (3;7). Lig4 

mediates the ! nal ligation step in the classical non-homologous end joining (C-NHEJ) 
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pathway (8;9), which is the predominant mechanism for DSB repair in mammals and plants. 

C-NHEJ joins the DNA ends directly independent of sequence homology by utilizing 

Ku70/80 proteins and the Lig4/XRCC4/XLF complex. ! e vertebrate-speci" c Lig3 has 

two variants, Lig3α and Lig3β. Lig3α is ubiquitously distributed, whereas Lig3β has only 

been found in testes and may function in meiotic recombination (10). Lig3α plays a role 

in BER and SSB repair and interacts with XRCC1 (11). Evidence also points to Lig3 to be 

involved in the back-up NHEJ (B-NHEJ), which was identi" ed to repair DSBs in absence 

of the major components of C-NHEJ (12;13). ! e B-NHEJ pathway is prone to use micro-

homology, and is therefore sometimes referred to as the micro-homology mediated end 

joining (MMEJ) pathway (14). In mammals both Lig3 and Lig1 are involved in MMEJ, 

but Lig4 is not (15). 

Lig6 is a novel DNA ligase that was recently discovered in higher plants by the analysis 

of plant genomic databases (5;16). Due to its domain structure, it is distinct from the other 

DNA ligases. It displays a signi" cant sequence similarity to Lig1 (5) and contains three 

conserved regions in the N-terminus, which are characteristic for Pso2/Snm1 proteins. 

! ese proteins belong to the β-CASP family and play an important role in interstrand DNA 

crosslink repair (5;16;17). Recently, Waterworth et al. (17) reported that Arabidopsis thaliana 

Lig6 is required for rapid seed germination and it is a determinant of seed longevity and 

quality. AtLig6 is probably involved in a rapid and strong DNA DSB response, activated in 

the earliest stages of seed imbibitions to repair DNA damage that accumulated over time. In 

order to further analyze its role in DNA repair, we isolated the Atlig6 and Atlig4lig6 double 

mutants and determined the e# ects of the mutations on T-DNA integration and gene 

targeting frequencies. Further in silico studies on homologs of DNA ligase in Arabidopsis 

were also done to " nd other putative DNA ligases.

Material and methods

Plant materials

Two T-DNA Col-0 insertion lines of Atlig6 were obtained from the SALK T-DNA collection 

(Atlig6-1: SALK_065307, Atlig6-2: SALK_079499). Information about them is available 

at http://signal.salk.edu/cgi-bin/tdnaexpress (18). ! e homozygous mutants were isolated. 

! ey were crossed with Atlig4 (chapter 2) to get the Atlig4lig6-1 (Atlig6-1 crossed with 

Atlig4) and Atlig4lig6-2 (Atlig6-2 crossed with Atlig4) double mutants.

Expression pro! ling with Genevestigator tools

! e expression pattern of three ligase genes (AtLig6: At1G66730, AtLig4: At5G57160, 

AtLig1: At1G08130) in Arabidopsis were analyzed with Genevestigator analysis tools 

(https://www.genevestigator.com/gv/index.jsp) using publicly available microarray data. 

! e data were selected from the 22k A# ymetrix ATH1 Genechip arrays of high quality, 

totaling 5747 arrays and including datasets obtained from all available datasets online. 
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Characterization of two Arabidopsis T-DNA insertion mutants of AtLig6

DNA was extracted from individual plants using the CTAB DNA isolation protocol (19). 

! e T-DNA insertion site was mapped with a T-DNA Left Border (LB) speci" c primer 

LBa1 and a gene-speci" c primer. Pairs of gene-speci" c primers around the insertion site were 

used to determine whether the plants were homozygous or heterozygous for the T-DNA 

insertion, and the PCR products were sequenced. Southern blot analysis was performed as 

described in chapter 2. ! e DIG probe was produced using the PCR DIG Labeling Mix 

(Roche) with speci" c primers SP271 and SP272 that ampli" ed an 850-bp fragment from 

the T-DNA of pROK2. ! e RNA expression of AtLig6 in the two mutants was also analyzed 

(chapter 2). Speci" c fragments (about 200 bp) were ampli" ed from cDNA with pairs of 

primers around the T-DNA insertion sites. All sample values were normalized to the values 

of the house keeping gene Roc1 (Primers Roc5.2, Roc3.3) and were presented as relative 

expression ratios. ! e value of the wild-type was set on 1. ! e sequences of all the primers 

are listed in Table 1.

Assays for sensitivity to genotoxic agents

Seeds from wild-type, Atlig6-1, Atlig6-2, Atlig4lig6-1 and Atlig4lig6-2 were surface-

Table 1. Sequences of primers used for characterization of the two Atlig6 mutants and

Q-PCR.

Name Locus Sequence

LBb1 T-DNA LB 5'-GCGTGGACCGCTTGCTGCAACT-3'

Sp264 Atlig6-1 5'- GTCAACTCTGTCAATGGTCC -3'

Sp265 Atlig6-1 5'- AATATCAAACACGAAGACGCAGAC -3'

Sp266 Atlig6-2 5'- TAAGTGCTACGGTAGTTTCTC -3'

Sp267 Atlig6-2 5'- CTGTTCTGTAGTAAGGCGGC -3'

Sp271 pROK2 Probe 5'-CCCGTGTTCTCTCCAAATG-3'

Sp272 pROK2 probe 5'-CAGGTCCCCAGATTAGCC-3'

q5 Atlig6-1 5'- ATCAAGTAACTTATGGATCTGG -3'

q4 Atlig6-2 5'- CAAGGTTAAGCGAGATTATG -3'

q3 Atlig6-2 5'- GACACGGCAGACACTCTG -3'

q1 Atku70 5'-TCTACCACTCAGTCAACCTG-3'

q2 Atku70 5'-CAATAGACAAGCCATCACAG-3'

q6 Atlig4 5'-GACACCAACGGCACAAG-3'

q7 Atlig4 5'-AAGTTCAATGTATGTCAGTCCC-3'

Roc5.2 Roc1 5'-GAACGGAACAGGCGGTGAGTC-3'

Roc3.3 Roc1 5'-CCACAGGCTTCGTCGGCTTTC-3'

PPO-PA PPO 5'-GTGACCGAGGCTAAGGATCGTGT-3'

PPO-1 PPO 5'-GCAAGGAGTTGAAACATTAG-3'

PPO-4 PPO 5'-CATGAAGTTGTTGACCTCAATC-3'

Sp319 PPO 5'-CTATCAAAGAGCACAGACAGC-3'
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sterilized as described (20) and were germinated on solidi! ed ½ MS medium (21) without 

additions or containing 0.1 µg/ml, 0.2 µg/ml, 0.3 µg/ml and 0.4 µg/ml BleocinTM antibiotic 

(Calbiochem). $ e seedlings were scored after 3 weeks of growth. 

Floral dip transformation and gene targeting

In order to test the frequency of T-DNA integration and gene targeting in the Atlig6 

mutants, % oral dip transformation was performed, as described by Clough and Bent 

(22), with the Agrobacterium strain AGL1 (pSDM3900) for gene targeting using the 

protoporphyrinogen oxidase (PPO) system (23). Plasmid pSDM3900 is a pCambia 3200 

derivative (phosphinothricin (ppt) selection marker). About 1 gram seeds were plated on 

solid MA medium (24) without sucrose containing 15 µg/ml ppt, 100 µg/ml timentin and 

100 µg/ml nystatin to determine the transformation frequency. Posphinothricin-resistant 

seedlings were scored 2 weeks after germination and the relative transformation frequency 

was determined compared to the wild-type. $ e value of the wild-type was set on 1. $ e 

rest of the seeds were all sowed on solid MA medium without sucrose containing 50 µM 

butafenacil, 100 µg/ml timentin (to kill Agrobacterium cells) and 100 µg/ml nystatin (to 

prevent growth of fungi) to identify gene targeting events. $ e butafenacil-resistant plants 

were analyzed with PCR to determine if they represent true gene targeting (TGT) events 

(Figure 1). 

Sequence analysis and phylogeny

$ e protein sequences of DNA ligases were searched using the BLAST program on the 

National Center for Biotechnological Information (NCBI) web page (http://www.ncbi.nlm.

nih.gov/). AtLig1 (At1G08130), AtLig4 (At5G57160), AtLig6 (At1G66730) and DNA 

Figure 1. $ e design for the targeted modi! cation of the Arabidopsis PPO locus.
$ e white box marked PPO represents the PPO coding region, and the black lines represents 
% anking plant genomic DNA. $ e two mutations conferring butafenacil resistance are indicated 
as stars. $ e BAR resistance gene is linked to the truncated 5’∆PPO of the T-DNA (LB for left 
border and RB for right border). $ e primers for PCR analysis of the gene targeting events are 
indicated by arrows.
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ligase 3 of Homo sapiens (GI 73747829) were used as a query to ! nd possible homologous 

proteins. Multiple sequence alignments were built using Jalview software (http://www.

jalview.org/) with default settings. " e algorithm used here is neighbour joining using % 

identity. 

Results

Isolation and characterization of the two Atlig6 mutants

In yeast and fungi, deletion of Lig4 leads to a disruption of NHEJ and an almost complete 

loss of T-DNA integration (25). In plants this is not the case (8). In the Atlig4 mutant 

T-DNA is integrated with equal e#  ciency as in the wild-type suggesting that another ligase 

is responsible for T-DNA integration. Recently the plant speci! c ligase Lig6 was discovered 

(5). In order to investigate AtLig6 functions in T-DNA integration, we ordered seeds 

from T-DNA insertion mutants from the Salk collection and propagated these in order 

to obtain homozygous Atlig6-1 and Atlig6-2 mutants. " e homozygotes were identi! ed 

by PCR analysis. When two gene-speci! c primers $ anking the insertion site were used, 

PCR products were ampli! ed for wild-type and heterozygotes. No PCR products were 

obtained for homozygous mutants by using these two gene-speci! c primers, because the 

PCR products in the mutants would be >10 kb in size and will not be ampli! ed with the 

PCR condition used here. When a T-DNA-speci! c primer from left border (LB) or right 

border (RB) was used in combination with one gene-speci! c primer, PCR products for 

the T-DNA insertion mutants were ampli! ed, whereas no PCR products were obtained 

for the wild-type. We identi! ed homozygous mutants harboring a T-DNA insertion in the 

AtLig6 gene in the o& spring of the heterozygous plants obtained from the Salk collection. 

" e insertion point was mapped by sequencing of the PCR products generated using one 

of the T-DNA speci! c primers in combination with one of the gene-speci! c primers. For 

the Atlig6-1 and Atlig6-2 mutants, there were PCR products produced with LBa1 and both 

gene-speci! c primers (Atlig6-1: Sp264 and Sp265, Atlig6-2: Sp266 and Sp267), indicating 

that at least 2 T-DNA copies were inserted as an inverted repeat in the Atlig6 locus. " e 

combination of the primers is shown in the Figure 2. " e genomic DNA was digested by 

HindIII for Southern blotting (Figure 2). With T-DNAs inserted in the loci identi! ed by 

PCR, the ampli! ed bands will be detected on the blot with the following sizes: for Atlig6-1: 

2677 bp and 3584 bp and for Atlig6-2: 3742 bp and 4058 bp. If T-DNAs are inserted in 

other loci, additional bands probably with di& erent sizes will be detected. If there are 2 

or more T-DNAs inserted in one locus as direct repeat, an additional band of 4317 bp, 

representing a complete T-DNA, will be detected. If there are 2 or more T-DNAs inserted in 

one locus as inverted repeat, an additional band of 3634 bp will be detected with LBs in tail 

to tail orientation. Sequencing results and Southern blot analysis indicated that the T-DNAs 

were all inserted at the position as reported by the Salk database. A detailed characterization 

of the T-DNA insertions is shown in Figure 2. " ere were additional bands for both Atlig6 
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mutants on the Southern blot, indicating that more than 2 T-DNAs were inserted in the 

genome. ! e T-DNA of AtLig6-1 was integrated in exon 11 and had 35 bp " ller DNA. The 

Figure 2. Molecular analysis of the T-DNA insertion in the AtLig6 locus.
Genomic organization of the AtLig6 locus is indicated with the positions of the inserted T-DNAs 
in Atlig6-1 (A) and Atlig6-2 (B). Exons are shown as black boxes. 3’ and 5’ UTRs are shown as 
gray boxes. Introns are shown as lines. ! e primers used for genotyping and Q-RT-PCR analysis 
are indicated. ! e probes (▬) and the restriction enzyme digestion sites used for Southern blot 
analysis are also indicated. Genomic DNA sequences (g-DNA) # anking the T-DNA insertion 
are shown in italic. (C) Southern blot analysis of the T-DNA insertion. ! e genomic DNA was 
digested by HindIII. M: λHindIII Marker, H: HindIII. (D) RNA expression of the AtLig6, 
AtLig4 and AtKu70 genes were determined by Q-RT-PCR in wild-type, Atlig6-1 and Atlig6-2 
plants. Expression of Atlig6 was analyzed with two di$ erent sets of primers. All the sample values 
were normalized to Roc values. ! e values of the wild-type were set on 1.
(     wild-type;     Atlig6-1;     Atlig6-2)
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two bands had segregated in the individual plant 6 of Atlig6-1, indicating that this plant 

lost two additional T-DNAs inserted in other loci, and therefore it was chosen for further 

research. ! e T-DNA of AtLig6-2 was integrated in exon 17 and had 3 bp " ller DNA. An 

additional band of around 4300 bp was shown for both Atlig6 mutants, suggesting that they 

contained additional T-DNA copies in direct repeat. 

Q-RT-PCR analysis was performed for the Atlig6-1 and Atlig6-2 T-DNA insertion lines 

using primers # anking the respective insertion sites (Atlig6-1: Sp264+q5, Atlig6-2: q3+q4). 

! is resulted in a product with the two pairs of primers for AtLig6 in the wild-type, but no 

correct products in the Atlig6-1 and Atlig6-2 mutants with the respective pairs of primers 

# anking the insertion (Figure 2). In the Atlig6-1 mutant, a small amount of PCR product 

was seen, but this was shown to be of the wrong size through agarose gel electrophoresis 

(data not shown), suggesting that it was a non-speci" c PCR product. ! is indicated that 

the plants are homozygous mutants indeed. ! e expression levels of the AtKu70 and AtLig4 

gene were also checked in the wild-type and the two Atlig6 mutants as a reference. ! e Atlig6 

mutants had similar expression levels for the AtKu70 and AtLig4 genes as the wild-type. 

! e two Atlig6 mutants were crossed with the Atlig4 mutant (chapter 2) and homozygous 

Atlig4lig6-1 and Atlig4lig6-2 mutants were obtained. No obvious di$ erences in growth were 

observed in these mutants compared with the wild-type under normal growth conditions.

Expression pro� ling of AtLig6

We compared the expression of the three ligase genes of A. thaliana, i.e. AtLig1, AtLig4 and 

AtLig6, using the genevestigator analysis tool (Figure 3). ! e expression levels of the three 

ligase genes were quite low in all organs, except for sperm cells where the expression levels of 

AtLig1 and AtLig6 were extremely high, indicating that AtLig6 may play a role in meiosis as 

does AtLig1. ! e data also revealed that the developmental expression pattern of the three 

ligases was broadly similar to each other and that the expression level of AtLig6 was rather low 

compared with AtLig4 and AtLig1 during the whole plant life cycle. ! e highest expression 

of AtLig6 occurred during seed germination and # ower development. In order to " nd out 

whether the expression level of AtLig6 responds to certain stimuli, the genevestigator data 

relating to the abiotic stimuli were analyzed. ! is showed that the expression of all the three 

ligase genes hardly changed upon genotoxic stesses, but it changed about 2-fold for some 

other abiotic stresses. For AtLig6, its expression was induced by high light or heat.

Sensitivity to genotoxic agents

Since AtLig4 (chapter 2) and AtLig1 (7) are involved in DNA repair, we hypothesized that 

the plant speci" c AtLig6 would also be involved in this process. ! erefore, we determined 

whether the Atlig6 mutants were more sensitive to DNA damaging agents than the wild-

type. ! e wild-type and the Atlig6-1, Atlig6-2, Atlig4lig6-1 and Atlig4lig6-2 mutants were 

treated with the DNA-damaging agent bleomycin. After 3 weeks, the Atlig4, Atlig4lig6-1 

and Atlig4lig6-2 mutants turned out to be hypersensitive to bleomycin compared with the 
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wild-type, whereas the two Atlig6 single mutants seemed to tolerate the stress of bleomycin 

as well as the wild-type (Figure 4). As described in chapter 2, AtLig4 is the main DNA 

ligase involved in the NHEJ pathway. ! erefore, the mutants, in which AtLig4 is de" cient, 

were expected to be sensitive to DNA damaging agents. ! e double mutants were not more 

Figure 3. Expression pattern of the three ligase genes AtLig6, Atlig4 and AtLig1 in Arabidopsis.
Data were retrieved using Genevestigator analysis tools of anatomy (A), development (B) and 
stimulus (C, D). Scatterplot outputs of tissue-speci" c (A) and developmental (B) expression 
patterns are shown. AtLig6 is indicated as red dot, AtLig4 as blue dot, and AtLig1 as green 
dot. ! e numbers of arrays are also shown. Heat maps (C, D) show the expression levels of 
AtLig6, AtLig4 and AtLig1 in response to various stimuli. Columns represent probe sets, and rows 
represent stimuli. ! e expression was normalized for colour from red through black to green. 
Red, black and green indicate relatively higher, the same and lower expression levels, respectively. 
! e stimuli which could change the expression of AtLig6 are shown in (C). ! e expression levels 
in response to genotoxic treatments for the three ligase genes are shown in (D).
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sensitive to bleomycin than the Atlig4 single mutant, suggesting that if any, AtLig6 has only 

a minor role in the process of DSB DNA repair.

T-DNA integration and gene targeting in the Atlig6 mutants

Our previous study showed that host proteins involved in DNA repair were involved in 

Agrobacterium T-DNA integration via ! oral dip transformation, and thus AtLig6 could 

also be involved in that process. Our group has found that Lig4 is essential for T-DNA 

integration in yeast and fungi, but not in plants. It might be that this was due to redundancy 

of Lig4 with the plant-speci" c Lig6. # erefore, we determined T-DNA transformation in 

the Atlig6 and Atlig4Atlig6 double mutants, and also established whether the gene targeting 

e$  ciency was increased in these mutants. # e ! oral dip transformation experiments were 

done at least 3 times independently for each mutant. # e transformation frequencies of the 

Figure 4. Response of Atlig6 mutants to the DNA-damaging agent bleomycin.
# e wild-type, the Atlig6-1, Atlig6-2, Atlig4lig6-1 and Atlig4lig6-2 mutants were treated with 
di% erent concentrations of bleomycin on the solid ½ MS media and were scored 2 weeks after 
germination. 

Figure 5. Transformation frequencies using the ! oral dip assay. 
One gram of seeds from the wild-type and the NHEJ mutants obtained after ! oral dip 
transformations were selected on ppt. # e number of ppt resistant seedlings was scored 2 weeks 
after germination. # e transformation frequency is presented as the percentage of ppt resistant 
seedlings compared with the wild-type, and the value of the wild-type is set on 1.
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Atlig6-1 and Atlig6-2 mutants were at the same level as that of the wild-type (Figure 5). ! e 

transformation frequency of the Atlig4 mutant was reduced mildly compared with the wild-

type (chapter 2), and the transformation frequencies of the Atlig4lig6-1 and Atlig4lig6-2 

mutants were similar to that of the Atlig4 mutant (Figure 5). ! is indicated that AtLig6, 

like AtLig4 (chapter 2), was not required for e"  cient Agrobacterium T-DNA integration in 

plant germline cells. 

Subsequently, the frequency of gene targeting was determined with the same mutants. 

About 1 butafenacil-resistant plant in 1000 transformants of the wild-type (chapter 2) were 

obtained. One butafenacil-resistant plant in 744 transformants of the Atlig4lig6-1 mutant, 

and none butafenacil-resistant plants were found in 1000 or more transformants for the 

Atlig4, Atlig6-1, Atlig6-2 and Atlig4lig6-2 mutants (Table 2). ! e butafenacil-resistant plants 

were analyzed by PCR to determine whether they were indeed the result of gene targeting 

(GT) events. ! e PCR products with the primers PPO-PA and PPO-4 were sensitive to 

KpnI, indicating that the 5’ end of PPO is replaced via HR (Figure 6A). ! is was con# rmed 

by KpnI digestion for the PCR products of nested PCR reactions with the primer PPO-1 

and PPO-4 (Figure 6B). In order to test whether the 3’ end of PPO is also replaced via HR, 

PCR products with the primers PPO-PA and Sp319 were cleaved by KpnI. ! e butafenacil-

resistant plants of the wild-type represented true gene targeting (TGT) plants (chapter 2). 

However, the PCR products from the butafenacil resistant Atlig4lig6-1 plant were resistant 

to KpnI, indicating it represented an ectopic gene targeting (EGT) event. ! e number of 

transformants tested of the double mutants was too low to make a solid conclusion, but 

it seemed that the absence of both AtLig4 and AtLig6 did not increase the gene targeting 

e"  ciency. 

Discussion

Under both normal growth conditions and under genotoxic stress, no speci# c phenotype 

Table2. ! e numbers of di$ erent events found in gene targeting experiments.

Plant lines
Tr a n s f o r m a n t s 

tested
B u t a f e n a c i l 

resistant
ppt resistant

Tr a n s f o r m a t i o n 
frequency

WT 2600 2 1 1

Atlig4 1537 0 - 0.64

Atlig6-1 1820 0 - 0.91

Atlig6-2 1998 0 - 0.90

Atlig4lig6-1 744 1 1 0.62

Atlig4lig6-2 996 0 - 0.63

! e transformation frequency was shown as the ratios compared with the wild-type and the 
value of the wild-type was set on 1.
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was observed in the Atlig6 mutants. Since all DNA ligases are closely related, it could be 

that their function is redundant. ! e expression level of AtLig6 is much lower than that of 

AtLig1 and AtLig4, and therefore the function of AtLig6 may be overshadowed when AtLig1 

and AtLig4 are present. ! e AtLig6 gene is most highly expressed during seed germination 

and " ower development. Waterworth et al. (17) reported that AtLig6 plays a role in seed 

germination and is a determinant of seed quality and longevity, probably by functioning 

in DNA repair at the earliest stages of seed germination to repair the DNA damage that 

had accumulated during seed storage. ! is suggests that AtLig6 primarily functions only 

during certain speci# c stages of plant development. During the remaining parts of the life 

cycle, the other two DNA ligases seem to play the major role in DNA repair. ! e expression 

analysis also revealed that the expression of AtLig6 was in" uenced by light and was induced 

by heat. Light and heat stresses can also induce DNA damage and AtLig6 could speci# cally 

be recruited for DNA repair under such averse growth conditions. 

! e absence of AtLig6 did not disturb T-DNA integration neither in the background of 

the wild-type nor in that of the Atlig4 mutant, indicating that AtLig6, like AtLig4 (chapter 

2), had no or only a minor role in T-DNA integration in germline cells. In mammalian cells, 

a low level of Lig4 and Lig3 is su$  cient for e$  cient NHEJ (26). ! is could also be the case 

in plant cells, and all the three known ligases may collaboratively be involved in T-DNA 

integration. When both AtLig4 and AtLig6 were absent, T-DNAs were still integrated 

e$  ciently in the plant genome, suggesting that there must still be another ligase to take over 

that function. ! e frequency of gene targeting was not increased in the double Atlig4lig6-1 

mutant.

A candidate may be AtLig1, which is mainly involved in the ligation of Okazaki 

fragments during DNA replication, but may in addition also act in DNA repair (6). It is 

Figure 6. Gene targeting analysis for the butafanecil-resistant plant of Atlig4lig6-1 mutant. 
PCR products were ampli# ed with primers on PPO gene or non-coding regions (A: PPO-PA+4, 
B: PPO-1+PPO-4, C: PPO-PA+Sp319) followed by digesting with KpnI. ! e two lanes for 
Atlig4lig6-1 in (A) are PCR products from the same butafanecil-resistant Atlig4lig6-1 plant. WT: 
wild-type. +: positive control for true gene targeting event.
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also possible that another, so far unknown DNA ligase takes over from AtLig4 and AtLig6 

in their absence. In order to ! nd indications about the presence of other putative ligases in 

the A. thaliana genome, we retrieved sequences that shared homology and determined their 

relationship to the DNA ligases 1, 4 and 6 by construction of a phylogenetic tree using the 

neighbour joining algorithm (Figure 7A). " e adenylation domain and the oligonucleotide/

oligosaccharide binding-fold (OBF) domain comprise a common catalytic core unit for 

the ATP-dependent DNA ligase family. " e conserved domains of DNA ligases from 

plants, mammals and yeast are shown in Figure 8. Di# erent DNA ligases contain other 

speci! c domains. " e Lig4 ligases of higher eukaryotes contain a breast cancer suppressor 

protein, carboxy-terminal (BRCT) domain, while the Lig3 ligases contain a poly(ADP-

ribose) polymerase and DNA ligase Zn-! nger (ZF-Parp) region. " e Lig6 ligases contain a 

lactamase (Lac) domain and a DNA repair metallo-beta-lactamase (DRMBL) domain, like 

the proteins of the Pso/Snm1 family. " e phylogenetic analysis resulted in a tree composed of 

four major clades (the Lig1, Lig4, Pso/Snm1 and Lig6 clades). Two putative DNA ligase-like 

proteins (GI_15222077 and GI_15223519) were found in Arabidopsis. GI_15222077 is 
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in the clade of Lig1 and close to AtLig1. GI_15223519 is in the clade of Pso/Snm1 (16), 

suggesting it could be involved in DNA crosslink repair. ! e GI_15222077 protein only 

contains the conserved domains of the adenylation domain and the OBF domain, while 

the GI_15223519 protein only contains the conserved lactamase and DRMBL domains; 

therefore, it is unlikely that this protein is a genuine ligase protein. Another phylogenetic tree 

was built with the adenylation domain and the OBF domain of DNA ligases from plants, 

mammals and yeast (Figure 7B). ! e Lig1 and Lig4 genes are present in lower eukaryotes 

indicating they are the oldest DNA ligases in nature. Until now Lig3 has been identi" ed 

only in animals, and Lig6 has been found only in plants. ! e phylogenetic tree suggests that 

Lig3 and Lig6 were derived from Lig1 later in evolution in animals and plants, respectively. 

Figure 7. Phylogenetic analysis of DNA ligases.
! e trees were calculated using Jalview software and the distances were also shown. ! e algorithm 
is the neighbour joining using % identity. (A) Tree of the plant DNA ligases. (B) Tree of the 
conserved adenylation and OBF domains of the DNA ligases in plants, mammals and yeast. 
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Since the homozygous Atlig1 mutant is lethal, the GI_15222077 protein is not redundant 

with AtLig1.! e expression level of the GI_15222077 protein is even lower than AtLig6 

under normal conditions according to the data of the Genevestigator data base (data not 

shown). But it is highly increased under hypoxia, drought, UV and light stress, and therefore 

may be a very good candidate for having a role in B-NHEJ.
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SUMMARY

DNA double-strand breaks (DSBs) are one of most dangerous forms of DNA damage 

for organisms. ! ese breaks can be repaired by homologous recombination (HR) using 

homologous sequences or by non-homologous end joining (NHEJ). ! e latter mechanism 

is the major route for DSB repair in higher eukaryotes, such as animals and plants. Until 

now, evidence showed that there are several pathways for NHEJ. ! e " rst identi" ed pathway 

is the classical NHEJ (C-NHEJ), which is dependent on the Ku70/Ku80 dimer, and utilizes 

Lig4/XRCC4/XLF to ligate the DNA ends. In mammals, DSBs still can be repaired in the 

absence of C-NHEJ via the so-called backup NHEJ (B-NHEJ) pathway. All these DSB 

repair pathways are regulated in a competitive and cooperative manner to maintain genome 

stability. It has been found that DSB repair is also largely responsible for the integration of 

exogenous DNA that is added for the purpose of obtaining genetically modi" ed cells and 

organisms. If we could manipulate the balance of the DSB repair pathways towards HR on 

purpose, it would be possible to increase the frequency of gene targeting (GT), which would 

have enormous advantages in studies on gene function, and would enable the targeted 

modi" cation of genes in the genome and precise genetic modi" cation of crops. ! e current 

knowledge of cell responses to DSBs and gene targeting is reviewed in chapter 1. ! e aim of 

my thesis was to study DSB repair in plants and thereby identify potential factors, by which 

gene targeting can be increased in plants.

! e studies described in chapter 2 focused on the characterization of Arabidopsis 

thaliana mutants which were de" cient in C-NHEJ, including the Atku70, Atku80 and Atlig4 

mutants. ! e homozygous mutants were phenotypically indistinguishable from wild-type 

plants. However they were sensitive to DNA damaging agents such as bleomycin and MMS, 

indicating that AtKu70, AtKu80 and AtLig4 play an important role in DNA repair. ! e 

results from comet assays showed that these mutants had more DNA damage than the wild-

type, but these mutants still have the ability to repair DSBs. ! is was in line with the results 

of in vitro end joining assays, which showed that the NHEJ mutants were still capable of end 

joining though the capacity was lower than that of the wild-type. ! is revealed that there 

exists a B-NHEJ pathway in plants. Since NHEJ may be the major route for Agrobacterium 

T-DNA integration, the frequencies of T-DNA integration and gene targeting were also 

tested for these NHEJ mutants and previously described Atku70 and Atmre11 mutants. ! e 

Atku70, Atku80 and Atmre11 mutants had decreased T-DNA integration in Arabidopsis 

germline cells, whereas the Atlig4 mutant was hardly a# ected. It showed that most NHEJ 

factors were important for T-DNA integration in plants except AtLig4. Some other ligase 

may take over the role of DNA ligation in absence of AtLig4. Unfortunately, the frequency 

of gene targeting was not altered in the Atku70, Atku80 and Atlig4 mutants, although a 

slight increase was seen in the Atmre11 mutant. It revealed again that there must be some 

B-NHEJ pathways in plants as well. In chapters 3 to 5, we investigated these putative 

B-NHEJ pathways.
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In mammals, Poly(ADP-ribose) polymerase 1 (Parp1) and Parp2 have been reported 

to be involved not only in DNA single strand break (SSB) repair, but also to be a major 

component in B-NHEJ. ! e homologues of Parp1 and Parp2 have been identi" ed in plants, 

and evidence showed they are involved in stress tolerance and programmed cell death. 

Whether they are also involved in DNA repair in plants was unclear. ! e study on this issue 

is described in chapter 3. Two Arabidopsis T-DNA insertion mutants (Atparp1 and Atparp2) 

were functionally characterized. ! e results showed that AtParp1 is involved in DNA repair, 

and that it has an important role especially in SSB repair. ! ough the Atparp2 mutant 

could tolerate the genotoxic stress equally well as the wild-type, the Atparp1parp2 (Atp1p2) 

double mutant was more sensitive to the genotoxic stress than the Atparp1 single mutant. 

! e expression of AtParp2 was increased in NHEJ mutants. All these results suggested that 

AtParp2 may also be involved in DNA repair, but probably has a minor role. ! e capacity 

of DNA end joining was slightly reduced in all the Atparp mutants. ! e products of in vitro 

end joining assays revealed in lower amounts of products of micro-homology mediated end 

joining (MMEJ) with the extract from the Atp1p2 mutant compared with that from the 

Atparp1 and Atparp2 single mutants and the wild-type. AtParp1 and AtParp2 may thus be 

functionally redundant and play a role in MMEJ, which is a characteristic of B-NHEJ in 

mammals. ! e frequency of Agrobacterium mediated T-DNA transformation via # oral dip 

did not change in the Atparp mutants probably because C-NHEJ plays the major role in that 

process, as was described in chapter 2. 

Chapter 4, describes experiments in which the mutations in AtParp1 and AtParp2 were 

combined with those in the C-NHEJ pathway (Ku80) in Arabidopsis. ! e Atparp1parp2ku80 

(Atp1p2k80) triple mutant was hypersensitive as compared to the individual mutants to agents 

generating DSBs (and SSBs), indicating that the AtParp proteins acted in a di$ erent pathway 

of DSB repair than Ku and are thus involved in the alternative B-NHEJ pathway. Both the 

Atp1p2 and the Atp1p2k80 triple mutants were especially de" cient in MMEJ, indicating 

that the Parp-mediated B-NHEJ facilitates MMEJ in plants as well as in mammals. ! e end 

joining products obtained in the Atku80 mutant revealed that Ku protected the DNA ends 

from resection, suggesting that Ku and Parp proteins are involved in distinguished NHEJ 

pathways and probably compete with each other. Surprisingly, a de" ciency of AtParp1 

and AtParp2 rescued end joining de" ciency in the AtKu80. ! e results of the comet assays 

showed that the triple mutant had more DNA damage than other mutants, but it still had 

the ability to repair it to some level. It revealed that a third NHEJ pathway must exist, which 

is probably suppressed by Ku and Parp proteins under normal conditions. ! e Atp1p2k80 

mutant had a reduced T-DNA integration e%  ciency via # oral dip transformation. But the 

gene targeting frequency of the triple mutant was not signi" cantly di$ erent from that of the 

wild-type. Another unknown alternative NHEJ pathway may take control of this process 

when both C-NHEJ and B-NHEJ are absent.

In the last step of DSB repair, the DNA ends are ligated by ATP-dependent DNA ligases. 

Lig3 was reported to be involved in B-NHEJ together with Parp proteins in mammals. No 
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ortholog of Lig3 is present in plants, but Lig6 has been identi! ed as a novel plant-speci! c 

ATP-dependent DNA ligase. In silico studies indicated that Lig6 had more similarity to 

Pso2/Snm1, Lig4 and Lig3 than to Lig1, suggesting that it may also be involved in DNA 

repair. Chapter 5 described the function of AtLig6 and in silico analysis of its homologs. Two 

homozygous mutants of AtLig6 were obtained and crossed with the Atlig4 mutant to get the 

two double mutants (Atlig4lig6-1 and Atlig4lig6-2). " e two Atlig6 single mutants could 

tolerate bleomycin treatment equally well as the wild-type. " e Atlig4lig6-1 and Atlig4lig6-2 

double mutants were hypersensitive to bleomycin, but this was similar to the sensitivity of 

the Atlig4 single mutant. " e expression pattern analyzed via Genevestigator showed that 

the expression level of AtLig6 was lower than that of AtLig1 and AtLig4 and was especially 

induced at the stages of seed germination and # owering. It could be that AtLig6 only 

functions in some speci! c developmental stages. " e frequency of T-DNA integration was 

hardly a$ ected by the de! ciency of AtLig6 and AtLig4 (chapter 2), nor was the frequency of 

gene targeting di$ erent. " e alignment of DNA ligase sequences pointed to one candidate, 

which is a putative DNA ligase possibly functioning in the B-NHEJ. Another possibility is 

that AtLig1 is active in the B-NHEJ pathway.

In conclusion, plants have multiple systems for DSB DNA repair, not only the Ku-

dependent C-NHEJ, but also the alternative B-NHEJ. AtParp1 and AtParp2 play a role in 

B-NHEJ which prefers to utilize areas of micro-homology. As sessile organisms, the plants 

need to strongly adapt to all the assaults. It may therefore be necessary for plants to have more 

than one alternative B-NHEJ pathway to survive. It will be interesting to study the nature of 

this third or fourth pathway of NHEJ in the future. With a thorough understanding of all 

these NHEJ pathways, methods to increase the gene targeting frequency may be developed.
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SAMENVATTING

Dubbel strengs breuken (DBS-en) in DNA vormen een van de meest ernstige vormen van 

DNA schade. Organismen hebben twee manieren om zulke DNA breuken te herstellen, via 

homologe recombinatie of "non-homologous end joining" (NHEJ). De eerste manier maakt 

gebruik van homologe gebieden in het DNA, die gebuikt worden om de breuk foutloos 

te herstellen. Bij de tweede methode worden de DNA einden direct aan elkaar gezet. In 

eukaryoten zoals planten en dieren wordt voornamelijk deze laatste methode gebruikt. Er 

zijn aanwijzingen dat er meerdere routes voor NHEJ zijn. Er is de klassieke route (C-NHEJ) 

die afhankelijk is van het Ku70/Ku80 eiwitcomplex en het Lig4/XRCC4/XLF eiwitcomplex. 

Wanneer een van deze eiwitcomplexen niet functioneel is, wordt een alternatief of back-up 

NHEJ herstelmechanisme (B-NHEJ) actief in zoogdieren. Alle herstelmechanismen werken 

samen om zo goed mogelijk het genoom intact te houden. 

Herstelmechanismen voor DSB-en in het DNA zijn ook betrokken bij het inbouwen 

van exogeen DNA om genetisch gemodi! ceerde organismen te verkrijgen. Indien we de 

balans van de verschillende herstelmechanismen zouden kunnen manipuleren, zouden we 

in staat moeten zijn om de homologe recombinatie te bevorderen. Op die manier zouden we 

de frequentie van "gene-targeting" (GT; een methode om via homologe recombinatie een 

stuk endogeen DNA uit te wisselen met een ander stuk DNA) moeten kunnen verhogen, 

wat een enorm voordeel zou zijn voor studies naar de functie van genen en de precieze 

genetische modi! catie van gewas planten. In planten is deze methode zeer lastig, omdat de 

frequentie zeer laag is.

In hoofdstuk 1 wordt de huidige kennis beschreven van de cellulaire respons op het 

ontstaan en herstel van DSBs en de resultaten verkregen met gene-targeting. Het doel van 

mijn thesis was om herstel van DSB-en in planten te bestuderen en om zo potentiële factoren 

te identi! ceren, waarmee de frequentie van GT verhoogd kan worden.

In hoofdstuk 2 worden een aantal Arabidopsis mutanten bestudeerd die gestoord 

zijn in genen die actief zijn in de C-NHEJ route. De mutanten zien er onder standaard 

condities normaal uit, maar wanneer ze blootgesteld worden aan bleomycine, dat DNA 

schade veroorzaakt dat voornamelijk bestaat uit DSB-en, worden de planten erg ziek. Echter 

met behulp van zogenaamde comet-assays is te zien dat na een herstel periode wel DNA 

herstel plaats vindt. Dit is een aanwijzing dat er nog een tweede NHEJ route is, die in deze 

mutanten actief is. Omdat NHEJ DNA herstelroutes ook tijdens Agrobacterium T-DNA 

transformatie zorgen voor het inbouwen van het T-DNA in het plantengenoom, hebben we 

ook T-DNA integratie en GT bestudeerd in deze mutanten. In de Ku70, Ku80 en Mre11 

mutanten is de frequentie van T-DNA integratie slechts 10-20% ten opzichte van het wild-

type. Dit betekent dat Ku en Mre11 belangrijk zijn voor T-DNA integratie. Maar er wordt 

nog wel, zij het met lage frequentie, T-DNA ingebouwd in deze mutanten. Dus er vindt nog 

NHEJ plaats. In de Lig4 mutant is de frequentie niet lager dan in het wild-type. De functie 

van Lig4 wordt waarschijnlijk overgenomen wordt door een van de andere ligasen in het 
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geval dat Lig4 inactief is. De GT frequentie in de Ku en Lig4 mutanten is niet veranderd 

ten opzichte van de wild-type. De Mre11 mutant geeft wel een lichte verhoging. Al deze 

resultaten duiden erop dat er ook in planten een alternatieve NHEJ route moet zijn. In de 

rest van de hoofdstukken wordt deze route nader bestudeerd.

In dierlijke cellen speelt poly(ADP-ribose) polymerase1 (Parp) niet alleen een rol bij 

herstel van enkelstrengs breuken, maar ook in de alternatieve NHEJ route. In planten zijn 

twee Parp genen geïdenti" ceerd, die betrokken zijn bij stress tolerantie en geprogrammeerde 

celdood. Hun rol bij herstel van DNA schade wordt bestudeerd in hoofdstuk 3, met behulp 

van planten waarin een of beide Parp genen zijn gemuteerd. Hieruit blijkt dat Parp1 een 

rol speelt in het herstel van DNA schade, voornamelijk van enkelstrengs breuken. Mutatie 

van zowel Parp 1 als ook Parp 2 zorgt voor nog grotere gevoeligheid voor chemicaliën die 

DNA schade veroorzaken. In vitro "end joining" laat zien dat voornamelijk “end joining” 

via microhomologie (MMEJ) is verstoord in deze mutanten. Er was geen meetbaar e% ect 

van deze mutaties op T-DNA integratie en GT.

In hoofdstuk 4 worden de gevolgen bestudeerd van mutaties in beide NHEJ routes 

tegelijk. Deze mutanten (Ku80,Parp1,Parp2) zijn nog gevoeliger voor DNA schade dan 

wanneer alleen de klassieke of alternatieve route is uitgeschakeld. Dit betekent dat de eiwitten 

inderdaad betrokken zijn bij verschillende DNA herstel routes. “End joining” studies laten 

zien dat Parp betrokken is bij MMEJ en dat Ku de DNA uiteinden beschermt voor afbraak. 

Wanneer beide routes uitgeschakeld zijn, is de in vitro “end joining” weer onverwacht hoog, 

op het wild-type niveau. De twee Parp genen hebben beide eenzelfde functie in MMEJ en 

uitschakelen van beide genen is nodig om de MMEJ te inactiveren. T-DNA integratie is 

sterk verlaagd in de Parp/Ku mutant, maar nog steeds aanwezig. Al deze resultaten samen 

laten zien dat er nog steeds “end joining” plaats vindt als beide NHEJ routes uitgeschakeld 

zijn en dat er dus nog een derde NHEJ route moet zijn.

In de laatste stap voor herstel van DSB-en worden de DNA uiteinden aan elkaar gezet 

door ATP-afhankelijke DNA ligase enzymen. In zoogdieren is Lig3 verantwoordelijke 

voor deze stap in de B-NHEJ route. In planten is geen Lig3 aanwezig. Daarom is het 

plantspeci" eke Lig6 en zijn mogelijke rol in B-NHEJ bestudeerd met behulp van mutanten 

in het Lig6 gen. Tevens zijn planten bestudeerd die gemuteerd zijn in zowel Lig4 als ook in 

Lig6. Geen duidelijke functie voor herstel van DSB-en of het inbouwen van T-DNA of GT 

kon worden vastgesteld voor Lig6. Bestuderen van beschikbare DNA databases liet zien dat 

er mogelijk nog een ander ligase gen is in planten dat mogelijk de functie overneemt van 

Lig4 en Lig6 in het geval dat beide genen uitgeschakeld zijn.

Er kan dus worden geconcludeerd dat planten een aantal NHEJ routes hebben om 

DSB-en te herstellen, niet alleen de klassieke Ku-afhankelijke route, maar ook meerdere 

alternatieve routes. Omdat planten goed moeten kunnen omgaan met allerlei vormen 

van stress, omdat ze die niet uit de weg kunnen gaan, zou het noodzakelijk kunnen zijn 

om meerdere alternatieve NHEJ routes te hebben om te overleven. Het is een bijzonder 

interessante uitdaging om op te helderen welke factoren zorgen voor deze derde, tot nu 
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toe nog onbekende en hypothetische route. Een gedetailleerde kennis van alle in planten 

beschikbare NHEJ routes zal in de toekomst mogelijk wel kunnen leiden tot de ontwikkeling 

van methoden om de GT frequentie te verhogen.
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