
Mining Structured Data
Nijssen, Siegfried Gerardus Remius

Citation
Nijssen, S. G. R. (2006, May 15). Mining Structured Data. Retrieved from
https://hdl.handle.net/1887/4395

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/4395

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4395

1 Introduction

The title of this thesis, ‘Mining Structured Data’, consists of several terms:‘data’, ‘mining’

and ‘structured’.What do these terms mean?The target of this introduction is first to provide

answers to this question, and then to provide a short overviewof this thesis.

1.1 DataMining

Recent developments in information technologyhave led to increasing amounts of data in

companies, in government and in science.With this increase of data, there is also an increas-

ing demand for techniques to analyze this data, and that iswhat this thesis is about:algorithms

for analyzing data.

Depending on the application area, there are usuallymanyways to analyze data, andmany

research areas deal with the problemof analyzing data, for example statistics and machine

learning.What then is ‘data mining’?Unfortunately, there is no clear answer.If one wants to

analyze data successfully, however, one has to deal with at least the following issues:

• one has to collect data;

• one has to prepare data (for example, clean the data, or change its representation);

• one has to applyan analysis technique;

• one has to present results.

Some researchers refer to this process as the ‘Knowledge Discoveryin Databases’ (KDD)

process, and saythat data mining is one of the possible analysis techniques [5, 67];others

tend to call the whole process ‘data mining’ [195].

What is clear, is that ‘data mining’ relates stronglyto several research areas.Data mining

involves statistics, database technology, machine learning and visualization.For successful

data mining data collection, data preparation and data presentation have tobeperformed.The

2 1.Introduction

target of data mining is to ‘analyze (often large) observational datasets to find unsuspected

relationships and to summarize the data in novel ways that are both understandable and useful

to the data owner’ [78] or to ‘extract implicit, previously unknown, and potentially useful

information from data’ [195].

One can distinguish various goals for a data mining algorithm. One distinction that can

be made is that between predictive and descriptive data mining. In predictive data mining

the goal is to find a model which can be used to make predictions in the future. The classic

example here is that of learning a classifier: assume that a database consists of examples that

are labeled by either ‘A’ or ‘B’; then the taskof a classifier is to find a model that can later

be used to predict accurately for new examples whether they are ‘A’ or ‘B’. The nature of

this taskdiffers from the descriptive taskofminingcorrelations(sometimes also referred to

assubgroup discovery). When one is mining for correlations, one is interested in phenomena

that strongly contribute to examples being ‘A’ or ‘B’. The difference with classification is

subtle; clearly, if one knows why examples correlate with a target class, one can use that

information to classify new examples. On the other hand, if one has a classifier, this provides

a description about correlations between examples and classes. Amain difference between

mining correlations and learning classifiers lies in the treatment of two observations that

correlate in the same way to a target class. While in prediction it is sufficient to include one

of these observations in the model, in descriptive data mining one is often equally interested

in both observations. Thus, in descriptive data mining the taskis not to find a predictive model

which predicts as accurate as possible, but the taskis to find a description which for human

users contains as much interesting knowledge as possible.

In this thesis we will constrain ourselves to descriptive data mining. Although descriptive

data mining algorithms can serve as a basis for predictive data mining, we do not give much

attention to that topic.

The ideal of data mining would be to performmagic: given a database as input to the pro-

cess, an optimal classifier or a concise description of interesting relations should come out.

Generally, however, it is accepted that a computer cannot perform magic, and that this ideal-

ized view of data mining is a fairy tale. For successful data mining active human involvement

is required. If one has a system in which all human knowledge is encoded, one can use this

system to filter the relations that have been found by a data mining algorithm. However, such

an expert systemapproach is time consuming and error prone: it requires a lot of time to build

an expert system, it is very hard to make such a system really complete, and to involve this

knowledge in data mining increases the computational burden on the data mining algorithms

[5].

Abetter approach may be to recognize that data mining is an iterative process, and to

make sure that data mining tools support this process. With this observation in mind the idea

of inductive databaseswas proposed [90, 125, 50]. In this framework, a run of an algorithm,

for example a machine learning algorithm, is considered to be a query against the data. Simi-

lar to other database queries, this query has parameters, and similar to other database queries,

it produces output which has to be stored. If the user changes his mind and wants to lookat

the data from a different viewpoint, this is nothing more than a new query, which may reuse

the output of a previous query to obtain faster or better results.

Given the point of view that the knowledge discovery process consists of a series of (in-

ductive) queries, it is a natural question what kind of parameters these queries could have.

1.1. Data Mining 3

Most machine learning algorithms have parameters: one can think of correlation measures

used during the search, or stopping criteria; these parameters are natural elements of inductive

queries. Additionally, in recent years also the concept of constraint-based mining has gained

attention. In constraint-based mining one poses restrictions on the kind of models or patterns

that one is interested to find, and the algorithm is restricted to returning models or patterns

within these constraints. Clearly, constraint-based mining algorithms fit perfectly within the

inductive database idea, and a significant amount of research on inductive databases is ded-

icated to constraint-based mining. Although in the research of inductive data mining also

other issues are involved, such as reuse of query outputs, or query languages, we will not deal

with those issues in this thesis, and we will usually unify the terms inductive data mining and

constraint-based mining.

Within the idea of inductive databases almost any inductive algorithm that works on data

may be conceived as an inductive query. From a database query point of view, some inductive

queries may look very strange however. Database query languages, for example SQL, have

become popular because they allow for abstraction: one can conceptually understand what

the output of a query is, without understanding or having deeper knowledge of the algorithm

that produces the output. Database queries are declarative: one specifies what output one

wants, and the database engine determines a strategy to compute exactly that output. The out-

put of a database engine can be checked precisely: the output should contain all information

that was specified, nothing more and nothing less.

Machine learning algorithms are often much less deterministic and declarative. They try

to determine a reasonable output, but do not provide any guarantee that their output is com-

plete. Often one even has to check the source code of the algorithm to understand the com-

position of its output. For instance, even though decision tree learning algorithms produce

models that are perfectly understandable, if multiple tests are equally powerful, it is often un-

clear which will be used in the root of the decision tree. Furthermore, the output of a machine

learning algorithm usually has a different structure than its input. The input of a decision

tree learning algorithm is usually not a decision tree; thus, one can not apply a decision tree

learner on its own output, as is the case with other database queries.

In this thesis, we concentrate on a class of inductive queries that are much more similar to

traditional database queries, in the sense that their output is easily specified, is complete and is

deterministic. The idea is that a user specifies the pattern type that he is interested in, specifies

the constraints under which the pattern is considered to be interesting, and demands that the

algorithm produces all the patterns that satisfy these constraints. Such algorithms build on

the experience that has been gained in the research topic of miningfrequent itemsets, which

are the most simple kind of algorithms that search for all patterns under certain constraints:

they search for ‘itemsets’ that satisfy the constraint that they are ‘frequent’. The concepts

of ‘itemsets’ and ‘frequencies’ will be discussed in more detail in the next chapter. Given

that these algorithms produce all patterns, an inherent problem of these approaches is that

their output can be very large if the constraint is not restrictive enough. Especially for these

algorithms it is therefore important that there are possibilities to analyze the output of the

algorithms further using (inductive) queries, or to pose additional constraints.

For many researchers an essential part of data mining is that data mining deals with large

datasets. For constraint pattern mining algorithms this assumption especially poses chal-

lenges, as for these algorithms also the search space can be very large. In this thesis, we

4 1. Introduction

give much attention to the efficiency issues involved in pattern mining. Our aim is to develop

methods which work efficiently both in cases where the dataset is large and the search space

is large. The basic form of constraints that we are considering is the minimum frequency

constraint; usually, it is easy to adapt algorithms which apply this constraint to incorporate

additional constraints.

1.2 Structured Data

The second component in the title of this thesis is ‘structured data’. What is structured data?

Again, this question is a difficult one to answer precisely. Although the term ‘structured data’

is rather vague, it is important to have a clear idea what we mean by it. The concept is

most easily introduced by looking at database tables. A table is a matrix which consists

of columns and rows. Each column has a particular, predefined meaning. In a table one can

describe a certain predefined number of attributes of a set of objects; the attributes correspond

to columns, the objects to rows. It does not matter in which order the columns are, as long as

it is clear what the meaning of the column is. The structure of the information in the table is

thus not of importance: one could swap the order of columns, or the order of rows, without

affecting the meaning of the information that is stored in the table. A table associates objects

with values of attributes, and nothing more. Machine learning algorithms that learn within

this setup are known as attribute-value learners.

Tables are simple, yet they are very powerful. Many interesting problems can be encoded

in a single table; therefore, for example, most research in classification also focuses on clas-

sification in a single table. The aim of the classifier is simple: given a row in the table, try

to predict the value of one (target) attribute, using the values of the other attributes in the

row. To perform this task in an accurate way is a challenge, and large numbers of studies are

devoted specifically to building good predictive models for this situation (see [195, 167] for

overviews).

Structured data, however, is more complex data: this is data that cannot be stored sen-

sibly in one table, or does not have a single table representation in which rows or columns

are not related to each other. Structured data is also common. Multi-relational databases —

databases of multiple tables— are common in large companies [100]. Some problems in-

volving molecules, proteins, phylogenetic trees, social networks and web server access logs

cannot be tackled if rows in a single table are not explicitly linked to each other.

Although we claim that some problems can only be tackled with advanced techniques for

mining structured data, of course this does not mean that all problems involving molecules,

proteins, and so on, can only be tackled using such special algorithms. To apply attribute-

value learners to structured data, however, the original data has to be transformed into a

single table by throwing away or summarizing information. In the case of molecules, one

could ask a chemist to define a procedure for turning molecules into rows of attributes. For

many purposes this approach can be sufficient. In this thesis, however, we focus on techniques

that do not require such a step. We are interested in techniques that allow for the incorporation

of all available data in inductive queries.

An application which we payed special attention to during our research, is that of mining

1.2. Structured Data 5

C

C

C

C

C

C

C

C

Figure 1.1:TheCuneanemolecule doesnothave a unique encoding in Daylight’spublishedspecification

ofCanonicalSmiles[193]. Two representationsare depicted here.

molecules. Molecules are structured objects which illustrate some of the problems of mining

structured data very nicely. Let us consider the application of mining molecules in more

detail. In recent years there have been large screening programs in which the activity of

molecules has been tested with respect to aids inhibition, toxicity or mutagenicity. Chemists

are interested in finding ‘structure activity relationships’ between molecules and activities,

and databases can be used to gain more insights into these relationships. There are reasons

to believe that substructures (‘fragments’) of molecules can be essential to the activity of

molecules. However, there are many ways in which molecules can be encoded. One can

choose a detailed level of description —the atomic level—, or more abstract levels in which

properties of fragments that are known to be of importance (hydrogen donors, aromatic rings,

. . .) are also incorporated in the data or the mining algorithm. In practice, mining molecules

reduces to a repeated sequence of in silico experiments in which the researcher gradually

tries to get an idea about the factors of importance, and tries to find the correct encoding in

combination with the most interesting constraints. Already early in data mining research it

was realized that this problem of molecule mining seems very well suited as a showcase for

inductive database technology. Based on the algorithms described in this thesis, we developed

a set of tools that allow chemists to analyze their data.

To deal with structured data all kinds of problems have to be tackled that are almost triv-

ially solved in attribute-value mining algorithms. While some operations on rows of attributes

are very easily performed —for example, to determine if an attribute in a row has a certain

value, is a trivial operation— in structured data the counterpart operations —for example, to

determine if a molecule contains a certain fragment— are very complicated, both computa-

tionally and conceptually. Computationally, it is known that to determine whether a molecule

contains a certain fragment is among the hardest problems that one can ask a computer to

solve. For arbitrarily large molecules and fragments currently no algorithms are known that

are guaranteed to find an answer within reasonable time.

The conceptual difficulty of the fragment inclusion problem is illustrated by a paper of

the Weilinger family in 1989. Weilinger, Weilinger and Weilinger are well-known in chemin-

6 1. Introduction

formatics for their development of SMILES, which is a representation language for chemical

compounds [192]. To allow SMILES to be used in database indexing, they developed canon-

ical SMILES in 1989, which, according to their claims, was a unique encoding for molecules

that can be computed in polynomial time. Yet, this claim turns out to be false. We found that

the cuneane molecule which is depicted in Figure 1.1 —a molecule which is not very com-

mon, but certainly chemically stable— does not have a unique representation in Canonical

SMILES. The problem of this molecule is that all atoms have the same number of connections

to other atoms, and that all neighboring atoms are of the same type. Yet, Canonical SMILES

fails to note that some carbon (‘C’) atoms are part of a triangle, while others are not1.

From a computer scientist’s perspective the problems involved when mining molecules

are very challenging: we are confronted with large datasets, large search spaces and hard com-

putations to relate datasets and patterns. In this thesis we give much attention to these com-

putational aspects. We develop mechanisms that work well on several structured databases,

including molecular databases; however, we also devote much space to proving formally that

our algorithms do not only work well in practice, but also perform the task that they are

supposed to do.

1.3 Overview

Many publications in recent years have studied the same problems as we have considered

during our research. In most cases, these publications describe a new system that can be used

to perform a well-defined data mining task ‘efficiently’. The disadvantage of such system-

based publications is however that a good overview of how these systems relate to each

other, is missing. Furthermore, relations to other research topics, such as complexity theory,

have not been given much attention by most researchers either, in some cases perhaps even

because the contribution of some papers would otherwise be recognized as rather small. In

this thesis we set ourselves the ambitious goal of not only describing our own systems, but

also of providing a more general overview of the research that has been going on in this

field in recent years. An overall contribution of this thesis, also in comparison with our own

previously published papers, is therefore that we try to build a theoretical framework in which

not only our own algorithms, but also other algorithms can be fitted. Finally, we not only

theoretically compare our systems to a large number of other systems, but also perform a

broader set of experiments than has been published before. As a consequence, the thesis is

organized as follows.

In Chapter 2 we introduce the problem of frequent itemset mining. Frequent itemset

mining is the simplest form of frequent pattern mining as it involves only one constraint

and applies to single tables only. Many of the methods for constrained pattern mining are

essentially extensions of approaches for mining frequent itemsets, and it is therefore most

instructive to review these approaches first. In this chapter, we will see that generally two

search orders are employed in frequent itemset mining: breadth-first and depth-first; further-

1It is therefore not a surprise that the Daylight Tools, in which the Weilinger family implemented their algorithm,

quietly do not use the canonical SMILES representation of 1989 any more.

1.3. Overview 7

more, there are two ways to evaluate constraints in databases: using additional datastructures

such as occurrence sequences, or by recomputing occurrences of patterns in the data.

In Chapter 3 we review the general problem of mining patterns under constraints. Most

theoretical concepts that are of importance for future chapters are introduced in this chapter,

among which relations (that describe how patterns relate to each other and to data), mono-

tonic and anti-monotonic constraints (that can be used to prune the search space), refinement

operators (that describe in which way the search space is traversed), and general frameworks

in which constraint pattern mining algorithms can be fitted. We review a large set of existing

algorithms for constrained pattern mining. Of importance in this chapter is the introduction

of merge operators. We believe that the concept of a merge operator enables a more precise

specification of many efficient pattern mining algorithms. One of the purposes of this chapter

is to show that structured data causes a large set of additional problems, but that there also ad-

ditional chances to combine several types of structures (for example, ordered and unordered)

with each other.

In Chapter 4we treat our first type of structured data: the multi-relational databases. We

define patterns in terms of first order logic and consider three possible relations between such

patterns in multi-relational databases. Exploiting the existence of primary keys in many rela-

tional databases, we define the weak Object Identity relation between sets of first order logic

atoms, and show that this relation has several desirable properties. We use this relation as an

element of F, which is an algorithm for mining frequent atom sets more efficiently than

other algorithms. Essential elements of this algorithm are discussed, such as its merge oper-

ator and its algorithm for evaluating patterns in the data. Also here an overview is provided

comparing our work to other work in this field. Large parts of this work have been published

in [144, 146, 147, 150].

In Chapter 5we treat the second type of structured data: the rooted trees. We intro-

duce several kinds of relations between rooted trees, provide refinement operators, merge

operators, and give alternative evaluation strategies. A contribution in this chapter is a new

refinement operator for traversing search spaces of unordered trees. We show how this re-

finement algorithm relates to a well-known enumeration algorithm for such search spaces.

Furthermore, we introduce a new incremental algorithm for evaluating the subtree relation

efficiently. All these elements are then evaluated, not only theoretically, but also experimen-

tally. Of course, we compare our work extensively with other work. Parts of this work were

published in [145, 37].

In Chapter 6we extend approaches for mining trees to deal with the third type of struc-

tured data: the graphs. By searching first for trees, and then for graphs, we hope to obtain

more efficient algorithms. Furthermore, some constraints, like a constraint on the smallest

distance between nodes in a pattern, are more easily pushed in the mining process if we

search for trees first. We repeat the exercise of providing refinement operators, merge op-

erators and evaluation strategies. We compare our work thoroughly with other work. This

chapter includes a discussion of the Galgorithm for mining frequent subgraphs, which

was first published in [151], and also presented in [148, 149].

Although in most chapters we give some experimental results, the most extensive ex-

perimental results are provided in Chapter 6. In this chapter we also reflect on some of the

properties of other frequent pattern miners that we presented in the previous chapters, and

we provide an even more detailed idea about the issues involved in obtaining frequent pattern

8 1. Introduction

mining algorithms of good performance.

In Chapter 7 we return to the more general problem of mining correlated patterns. We

show that correlated pattern mining is very closely related to the frequent pattern mining

problem; in terms of inductive queries, we show that it can be solved by a combination of

frequent pattern mining queries of which the results are postprocessed, thus providing an

example of how inductive queries can be combined to obtain meaningful new queries. As a

main contribution to existing work, we show that this approach extends even to correlated

pattern mining in databases where there is a target class attribute with multiple values. This

chapter was published in [152].

2 Frequent Itemset Mining

In this chapter we provide a brief review of frequent itemset mining research. First we intro-

duce the problem of frequent itemset mining; then we discuss the details of the most well-

known algorithms: in chronological order we introduce the breadth-first, horizontal A

algorithm, the vertical E algorithm and the depth-first FP-Galgorithm, all of which

are intended to solve the problem as efficiently as possible. Our aim is to introduce several

concepts within their original setting of frequent itemset mining before extending them to

structure mining in later chapters.

2.1 Introduction

Frequent itemset mining has its roots in the analysis of transactional databases of supermar-

kets. Early in the nineties the introduction of bar code scanners and customer cards allowed

supermarkets to start maintaining detailed databases. The natural question arose if there were

ways to exploit this data. In 1993 Agrawal et al. [6] introduced itemset mining as a means of

discovering knowledge in transactional supermarket data. Although since then itemset min-

ing has been applied in many other application domains and for many other purposes —we

will see examples later—, the terminology still reflects these historic roots.

Itemset mining algorithms take as input a database of transactions. Each transaction con-

sists of a set of items (also called a basket). In the supermarket application, a transaction may

correspond to the products that have once been bought by one particular customer. A small

example is given in Figure 2.1.

Itemset mining algorithms have been designed as an aid in the discovery of associations

between products. These association rules formalize observations such as

all customers that buy broccoli and egg, also buy aubergine

—at least, in our example database. Eventually, we wish to construct an algorithm which dis-

covers such potentially surprising associations between products completely automatically.

10 2. Frequent Itemset Mining

Tid Itemset

t1 {broccoli}

t2 {egg}

t3 {aubergine, cheese}

t4 {aubergine, egg}

t5 {broccoli, cheese}

t6 {dill, egg}

t7 {cheese, dill, egg}

t8 {aubergine, broccoli, cheese}

t9 {aubergine, broccoli, egg}

t10 {aubergine, broccoli, cheese, egg}

Figure 2.1:Asmall example of an itemset database.

More formally, it is said that there is a set of items I= {i1, . . . , in}, a finite set of transaction

identifiers A and a database D ⊆ {(t, I)|t ∈A, I ⊆ I} that contains exactly one itemset for

each transaction identifier. An itemset with k items is called a k-itemset. Every transaction

in the database can be identified through a transaction identifier (the Tid t), which makes

sure that two customers that buy the same set of items are still treated as different customers.

Equivalently, one could also define D as a multiset; in that case the transaction identifier is

not necessary.

The set of occurrences of an itemset I, which is denoted by occD(I), is defined by
1:

occD(I) = {t | (t, I
′)∈D, I ⊆ I′}.

The support of an itemset I, which is denoted as supportD(I), is defined as:

supportD(I) = |occD(I)| .

In the example database we have that supportD({broccoli, egg}) = |{t9, t10}| = 2. We will omit

D in the notation if this is clear from the context.

An association rule is a rule of the form

I1→ I2,

where I1, I2 ⊆ I. The support of an association rule, support(I1→ I2), is defined by

support(I1→ I2) = support(I1∪ I2).

The confidence of an association rule is defined by

confidence(I1→ I2) =
support(I1∪ I2)

support(I1)
,

1Sometimes the set of occurrences is also called the cover or the support set, but we will never use that terminol-

ogy.

2.2. Frequent Itemset Mining Principles 11

where it is required that support(I1) , 0. In the example the confidence of the association rule

{broccoli, egg} → {aubergine} is

confidence({broccoli, egg} → {aubergine}) =
support({aubergine, broccoli, egg})

support({broccoli, egg})
=
2

2
= 1.

The idea behind association rule mining is that rules with both a high support and a high

confidence are very likely to reflect an association of interest, and one would therefore be

interested in finding all such rules. The example rule has the highest confidence possible and

may therefore be of interest.

In the remainder of this chapter, we review some of the basics in itemset mining research.

In section 2.2 we provide the basic principles of frequent itemset mining. After an intermezzo

in section 2.3, in which we introduce notation, we review the most important algorithms for

mining frequent itemsets: A (section 2.4), E (section 2.5) and FP-G (sec-

tion 2.6). Section 2.7 concludes.

2.2 Frequent Itemset Mining Principles

Although the idea of finding all itemsets with high support may sound attractive, several

problems have to be addressed to make frequent itemset mining successful. The foremost

problem is the large number of possible rules. For |I| items there are 2|I| possible itemsets.

From each of these itemsets an exponential number of rules can be obtained. In most cases it

will therefore be intractable to consider all itemsets.

The essential idea that was presented in 1993 was to restrict the search only to those

itemsets for which the support is higher than a predefined threshold value, the so-called min-

imum support. Initially such itemsets with high support were called large itemsets [6, 8, 7].

However, this term caused confusion as most people felt that ‘large’ referred to the number

of items in an itemset, and did not reflect support. In 1995, therefore, the terminology was

changed and the term frequent itemset was introduced [176]. An itemset I is therefore now

called a frequent itemset iff:

support(I) ≥ minsup,

for a predefined threshold value minsup. An itemset is large if it has many items.

The set of all frequent itemsets in the example of Figure 2.1 is illustrated in Figure 2.2.

In this figure the products have been abbreviated with their first letter. The lines visualize the

subset relation: a line is drawn between two itemsets I1 and I2 iff I1 ⊂ I2 and |I2| = |I1|+ 1.

Such a figure is usually called aHasse diagram.

An important property that will always hold for itemsets is the following:

if I1 ⊆ I2 then support(I1) ≥ support(I2). (2.1)

This property follows from the fact that every transaction that contains I2 also contains I1. In

our example,

support({egg}) = |{t2, t4, t6, t7, t9, t10}| = 6 ≥ support({broccoli, egg}) = |{t9, t10}| = 2.

12 2. Frequent Itemset Mining

{A,B,C,D} {A,B,C,E} {A,B,D,E} {A,C,D,E} {B,C,D,E}

∅

{A} {B} {C} {D} {E}

{A,B} {A,C} {A,D} {A,E} {B,C} {B,D} {B,E} {C,D} {C,E} {D,E}

{A,B,C} {A,B,D} {A,B,E} {A,C,D} {A,C,E} {B,C,E}{B,C,D}{A,D,E} {B,D,E} {C,D,E}

{A,B,C,D,E}

Figure 2.2: A visualization of the search space for the database of Figure 2.1;frequent itemsets for

minsup = 2 are highlighted.

A consequence of this property is that

if support(I) < minsup then for all I′ ⊇ I : support(I′) ≤ support(I) < minsup.

When we are searching for frequent itemsets this observation means that we do not have to

consider all supersets of an itemset that is infrequent, as one can easily see that every super-

set is also infrequent. Therefore, if the search is performed such that itemsets are considered

incrementally, itemsets can be pruned from the search space by applying this property. Al-

though the size of the search space remains of size 2|I| theoretically, the seducing challenge

posed by frequent itemset mining is to implement algorithms that traverse the search space

such that the search becomes tractable in practice. As the extent to which this is possible

clearly depends on the predefined threshold minsup, part of the challenge is to define al-

gorithms that still work on as low supports as possible. Many such algorithms have been

developed; a brief overview of the most important algorithms will be given in later sections.

2.3 Orders and Sequences

Before turning to the introduction of the frequent itemset mining algorithms, however, we

need to introduce some formal notation. We will come back to these definitions in more

detail in the next chapter.

Definition 2.1 (Orders)Given is a set X and a binary relation R which is a subset of X×X.

We call relation R

2.3. Orders and Sequences 13

1. reflexive if for all x ∈ X, xRx holds.

2. transitive if for all x,y,z ∈ X, xRy and yRz imply that xRz.

3. antisymmetric if for all x,y ∈ X, xRy and yRx imply that x = y.

4. total if for all x,y ∈ X, either xRy or yRx holds (or both).

Relation R is called a quasi-order if R is reflexive and transitive. If a quasi-order R is anti-

symmetric, this relation R is called a partial order. If a partial order R is total, the relation is

called a total order. We denote orders using symbols like �. If x � y and x , y this is denoted

by x � y. If the order is clear from the context x ≡ y is a shorthand for x � y and y � x. Fur-

thermore, for relations denoted by x � y, we will also use y � x as an alternative notation if

this is more convenient.

As an example, on the domain of natural numbers (X = N) the traditional comparison

between numbers (≥) is a total order, as for every i ∈ N, i ≥ i holds; for all integers i, j and k,

i ≥ j and j ≥ k imply that i ≥ k; if i ≥ j and j ≥ i, then i = j; for all integers i, j ∈ N it holds

that i ≥ j or j ≥ i, or both.

Definition 2.2 (Sequences) Let X be a domain.

1. X∗ denotes the set of finite sequences over X. A typical sequence is denoted by S , S 1,

S 2, . . .

2. ε denotes the empty sequence;

3. |S | denotes the length of sequence S ;

4. S [k] denotes the kth element of sequence S , if 1 ≤ k ≤ |S |, and is undefined otherwise;

5. S 1 •S 2 denotes the concatenation of sequences S 1 and S 2;

6. S • x denotes the concatenation of element x ∈ X after sequence S ;

7. S [k . . . `] denotes the subsequence of sequence S consisting of the consecutive elements

S [k],S [k+1], . . . ,S [`], if 1 ≤ k ≤ ` ≤ |S |, and is undefined otherwise.

8. S −1 denotes the reverse of sequence S ;

9. prefixk(S) denotes the prefix of length k of sequence S , if 0 ≤ k ≤ |S |, or denotes the

prefix of length |S |+ k if −|S | ≤ k < 0, and is undefined otherwise.

10. prefix(S) denotes the prefix of length (|S | −1) of a non-empty sequence S ;

11. S 1uS 2 denotes the largest prefix that sequences S 1 and S 2 have in common;

12. suffixk(S) denotes the suffix of length k of sequence S , if 0 ≤ k ≤ |S |, and is undefined

otherwise.

13. suffix(S) denotes the suffix of length (|S | −1) of a non-empty sequence S ;

14 2. Frequent Itemset Mining

14. first(S) and last(S) denote the first and the last element of a sequence S , if |S | ≥ 1, and

are undefined otherwise.

15. S 1/S 2 is the sequence S which satisfies S 1 = S 2 • S , when such a sequence can be

found, and is undefined otherwise;

16. Rlex denotes the lexicographical order on sequences, where the elements in the se-

quence are ordered by relation R;

17. set(S) denotes the set X = {S [k] | 1 ≤ k ≤ |S |} for sequence S ;

18. x ∈ S is a shorthand notation for x ∈ set(S).

As examples consider the sequences S 1=ABC and S 2=AB. According to our defini-

tions the following statements hold: prefix2(S 1) = AB, suffix2(S 1) = BC, S 1 • S 2 = ABCAB,

(S 1/S 2)=C, first(S 1)=A, S 1[3]=C. If the domainX= {A,B,C} is totally ordered as follows:

C � B � A (alphabetical), we have that S 1 �
lex S 2.

For itemsets we furthermore introduce the following notation: given an itemset I ⊆ I and

an order > on the items in I,

seq>(I)

denotes the sequence S = i1i2 . . . in that contains all elements of set I exactly once, such that

ik+1 > ik for all 1 ≤ k ≤ n− 1. Thus, operator seq(I) can be used to transform itemsets into

sequences in a unique way.

Given the alphabetic order on X = {A,B,C}, we have that seq({A,B,C}) = ABC. Usu-

ally it would be cumbersome to write down all conversions between sets and sequences.

Therefore, if the order is clear from the context, we also use implicit conversions. We as-

sume that the order is alphabetical in most of our examples. In that case, for example, we

will also write that prefix({A,B}) = A, although strictly speaking we would have to write that

prefix(seq�({A,B})) = A for an alphabetical order �.

2.4 A

The most well-known frequent itemset mining algorithm is the A algorithm. This algo-

rithm was independently proposed in the summer of 1994 by both American [8] and Finnish

[126] researchers. A joint paper about the algorithm was published in 1996 [7]. The algorithm

is based on the idea of maximizing the use of equation (2.1), which was therefore called the

a priori property by these authors. An overview of the algorithm is given in Figure 2.3.

The A algorithm traverses the itemsets strictly increasing in size, and uses a generate-

and-test approach. In an initial pass through the database it is determined which single items

are frequent. Then repeatedly candidate itemsets are generated and their frequency is deter-

mined. More details of these two phases are discussed in the next sections.

2.4. A 15

(1) A(D):

(2) F1 := { frequent itemsets with one item};

(3) order the items;

(4) k := 2;

(5) while Fk−1 , ∅do

(6) Ck := A-G(Fk−1);

(7) for all (t, I) ∈ Ddo

(8) for all candidates C ∈ Ck for which C ⊆ Ido

(9) support(C) := support(C)+1;

(10) Fk := {C ∈ Ck |support(C) ≥ minsup};

(11) k := k+1;

(12) return∪kFk;

Figure 2.3: The A algorithm.

A-G

The input of A-G is the set of all frequent (k−1)-itemsets, Fk−1. Although items are

initially unordered, before starting the algorithm an order is imposed upon them. We assume

an alphabetical order in our examples.

The candidate generation procedure consists of two phases. In the first phase, all pairs

of item sequences C1 and C2 ∈ Fk−1 with prefix(C1) = prefix(C2) and last(C1) < last(C2) are

combined to obtain itemsets with k items. In the example itemsets {A,B,C} and {A,B, E} ∈ F3,

whose sequences ABC and ABE share common 2-prefix AB, are combined into {A,B,C,E}.

Itemsets {B,C} and {C,E} are not combined, as they do not have a common 1-prefix. Every

itemset that is generated in this way has at least two frequent subsets. To make sure that all

subsets are frequent, a second step is performed. Given a candidate C ∈ Ck, the following

check is computed:

is for all i ∈C the set C\i an element of Fk−1? (2.2)

As we noted that candidates generated in the first phase already have two frequent subsets,

this test is equivalent to the following more efficient test:

is for all i ∈ prefixk−2(seq(C)) the set C\i an element of Fk−1? (2.3)

In the example database this means that for the preliminary candidate {A,B,C,E} it is checked

whether {{B,C,E}, {A,C,E}} ⊆ F3. As {B,C,E} < F3 we can use the a priory property to con-

clude that {A,B,C,E} can never be part of F4. In the second phase of candidate generation

such candidates are therefore removed from Ck.

To implement the generation of candidates, in [8, 7] the use of a hash tree was proposed.

Here we will discuss a variation of this same idea, the (prefix)trie [25]2. An illustration of

a trie for a set of frequent itemsets is given in Figure 2.4. The main purpose of the trie is to

allow for a quick search for a sequence S , by performing the following procedure:

2Trie stands for word retrieval tree [196].

16 2. Frequent Itemset Mining

A B C D

B C E C E E E

Figure 2.4: A prefix trie of F2 for the database of Figure 2.1.

A B

B C C

C E E E

Figure 2.5: A trie of C3 for the database of Figure 2.1.

1. set i to 1, and let v be the root of the trie;

2. search for S [i] in node v;

3. let v be the child node associated to S [i] in the trie, increase i with 1, and go to 2.

Thus, every node in the trie has a table in which items are stored. To allow for a quick search

the table can be implemented as a hash index [8, 7] or as a sorted array [25].

It is clear that if we search for an item sequence in a trie, one unique path through the trie

is traversed. If we search for a k-sequence in a prefix trie of k-itemsets, we end our traversal

in one of the leafs. Furthermore, itemsets with common (k−1)-prefixes will always end up in

the same leaf. Indeed, in Figure 2.5, the prefix AB has corresponding node C E , which

represents sequences ABC and ABE.

The task of candidate generation can be formulated as a problem of creating a ‘new’

prefix trie from an ‘old’ prefix trie. Figure 2.5 illustrates the prefix trie that is created from

the trie in Figure 2.4.

The structure of the prefix trie can be used in several ways during candidate generation.

First, we saw that two k-itemsets with a common (k− 1)-prefix are represented in the same

node. In phase one of the generation all candidates can therefore be obtained by combining

itemsets within one node. In our running example, frequent itemset {B,C} ∈ F2 is stored in

trie node C E (Figure 2.4). It is joined only with itemset {B,E}, which is stored in the

same node. This operation yields the rightmost leaf of the trie in Figure 2.5.

Second, to compute the pruning test of equation (2.2), repeatedly the existence of (k−1)-

itemsets in Fk−1 has to be determined. This search is performed efficiently by searching for

2.4. A 17

these sets in the trie of Fk−1.

We already noted that items should be ordered totally before running the algorithm. Al-

though one could choose this order arbitrarily (for example, alphabetically), the order may

have consequences on the efficiency of the total candidate generation. It has therefore been

proposed to determine a ‘good’ order heuristically before starting the main loop of A.

One such order could be determined using the supports of the individual items. In our exam-

ple items A, B and C have support 5, item D has support 2 and item E has support 6. First,

consider an order of decreasing support, E < A < B < C < D. In that case itemsets {C,E} and

{D,E} would be represented by sequences EC and ED, which would be joined into candidate

ECD. This candidate is removed again in the second phase. What we see is that itemsets that

are contained in one trie node are relatively infrequent, and that therefore their join is very

likely to be infrequent too. Overall, the join is therefore not very efficient.

However, in the order of increasing support, D < A < B < C < E, we would have that

{C,E} and {D,E} are represented by sequences CE and DE, which are not joined. As in

general this ascending order ‘pushes’ frequent items to the ‘back’ of item sequences, it is more

likely that two frequent itemsets with common prefixes will generate a frequent itemset when

joined. In general it has therefore been claimed that for the candidate generation of A

it is favorable to consider items in ascending order of support [25]. One should remember,

however, that this is nothing more than a heuristic [104].

Candidate counting

Once a set of candidates has been built the real frequencies of these candidates have to be

determined. In the A algorithm this operation is performed by scanning the entire

database. To find out which candidates are included in a transaction, the prefix trie can be

exploited again. For this purpose the itemsets in the leafs3 of the trie are extended with count

fields, in which the frequencies of the itemsets are stored.

The pseudocode of Figure 2.6 illustrates the counting procedure at a high level, without

optimizations. Line (2) essentially determines the intersection between items in the trie node

and items in the transaction. There are many ways to implement this intersection, among

others:

• If both the transaction and the table are stored as sorted arrays, the computation comes

down to traversing both arrays to obtain the intersection [25].

• If the transaction is stored in a binary array such that the ith bit is 1 iff item i is included

in the transaction, then one only has to traverse the candidate array and to check the

status of the corresponding bit in the binary array [159].

• If the transaction is stored as a sorted array, and the candidates are stored in a hash table,

then one has to traverse the transaction and to check the presence of the transaction in

the hash table [8, 7].

Several other optimizations can be applied. For more details, we refer the reader to the origi-

nal publications.

3In practice many algorithms also store supports in other nodes; most of these algorithms do not repeatedly build

new tries, but modify existing datastructures in memory.

18 2. Frequent Itemset Mining

(1) Apriori-Count-Rec(Transaction Itemset I, trie node v):

(2) for all i ∈ I stored in trie node v do

(3) if i has an associated child v′ in v then

(4) A-C-R(I, v′);

(5) else

(6) count(v, i) := count(v, i)+1;

(1) Apriori-Count(Transaction (t, I), Prefix TriePT):

(2) A-C-R(I, root(PT))

Figure 2.6: An algorithm for counting candidates in a transaction.

Item Tids

Aubergine {t3, t4, t8, t9, t10}

Broccoli {t1, t5, t8, t9, t10}

Cheese {t3, t5, t7, t8, t10}

Dill {t6, t7}

Egg {t2, t4, t6, t7, t9, t10}

Figure 2.7: The vertical representation of the itemset database in Figure 2.1.

2.5 E

As we saw in the previous section, the A algorithm takes as input a database which

is repeatedly scanned to count candidates. The database itself is not modified by the algo-

rithm. Early in the nineties, this approach was necessary as the amount of main memory in

computers was relatively limited, and most databases therefore had to be kept on disk. In the

A algorithm it is possible to independently process blocks of transactions, thus limit-

ing the amount of main memory required, while additional storage space is only required for

maintaining the candidates.

With the increase of hard disk capacities and main memory sizes, researchers started to

investigate approaches that demand more storage space. One such approach was based on the

idea of storing databases vertically instead of horizontally, and was presented by Zaki et al.

in 1997 [207]. Figure 2.7 illustrates the vertical representation of our example database. For

each item i in the database, in the vertical representation the set occ(i) is stored.

The vertical mining approach now uses the observation that in A a k-itemset (with

k > 1) is always generated by joining two other itemsets, and it is always possible to determine

the occurrences of a new itemset by computing the intersection between the occurrences of

the generating itemsets. In our example, we have that

2.5. E 19

occ({A,B,C}) = occ({A,B}) ∩ occ({A,C}) = {t8, t9, t10} ∩ {t3, t8, t10} = {t8, t10}.

Also in general it can easily be seen that

occ({i1, i2, . . . , in}) = occ({i1, i2, . . . , in−1}∪ {i1, i2, . . . in−2, in}) =

occ({i1, i2, . . . , in−1})∩occ({i1, i2, . . . , in−2, in})

is always true. If we store the occurrence sets not only of single items, but also of larger

itemsets, support could always be computed by intersecting occurrence sets. Clearly, this

approach requires more storage as all occurrences have to be stored somewhere. Several

studies have attempted to reduce this burden. We will discuss several of them.

Encoding issues

When dealing with occurrence sets, an important factor is the representation that is chosen to

store such sets. There are many possibilities:

1. store occurrence sets in arrays such that each array element contains the identifier of a

transaction included in the sets [207, 205]; alternatively, one could choose to store the

elements in a list or more elaborate data structures;

2. store occurrence sets in arrays such that each element contains the identifier of a trans-

action that is not included in the sequence [205]; note that the original sequence can

easily be reconstructed by listing ‘missing identifiers’ if transactions are numbered

consecutively;

3. store occurrence sets in binary arrays such that the ith element of the array is 1 iff the

ith transaction is part of the sequence [207], and 0 otherwise;

4. use elaborate compression schemes to store bit arrays, such as variations of run length

encoding [174].

For future reference we elaborate here on of the second option. One of the major issues

with occurrence sets is their potentially large size in the case of dense datasets. If an item is

present in almost all transactions, its occurrence set will be very large; also, in later stages,

the occurrences of itemsets with and without this item will not differ very much. Such large

occurrence sets are a problem as they increase both the computation time and the amount of

storage required.

Taking this problem into account, Zaki et al. [205] proposed the use of diffsets. While an

occurrence set contains the transactions that support an itemset, in a diffset the identifiers are

stored of transactions that do not support a given itemset. More precisely, given an itemset

sequence I, it is defined that

diff (I) = occ (prefix (I))\occ (I) . (2.4)

In our example, we have that

diff(ABC) = occ(AB)\occ(ABC) = {t8, t9, t10}\{t8, t10} = {t9}.

20 2. Frequent Itemset Mining

Note that the diffset does not contain the identifiers of all transactions that do not support

an itemset (as implied in option 2. above), but that the diffset only stores the difference in

comparison with its prefix itemset. Furthermore note that it follows that

occ (I) = occ (prefix (I))\diff (I) , (2.5)

as we know that occ (I) ⊆ occ (prefix (I)). The support of an itemset can therefore be deter-

mined using

support (I) = support (prefix (I))− |diff (I)| .

The computation of diffsets and supports can now proceed as follows. Assume that given is

a set of k-itemset sequences with common (k− 1)-prefixes, and that we have the diffset and

support of each itemset. Then for two itemsets I1 ≤ I2, the diffset of I1∪ I2 is

diff(I1∪ I2) = diff (I2)\diff (I1) ,

as

diff(I1∪ I2) = occ (prefix (I1∪ I2))\occ (I1∪ I2) (Definition, Eq. 2.4)

= occ (I1)\ (occ (I1)∩occ (I2)) (prefix (I1∪ I2) = I1)

= occ (I1)\occ (I2) (Set theory)

= (occ (prefix (I1))\diff (I1))

\ (occ (prefix (I2))\diff (I2)) (Eq. 2.5)

= diff (I2)\diff (I1) .

In the last step we use set theory and the facts that the sets diff(I1) and diff(I2) are subsets of

occ (prefix(I1)) = occ (prefix(I2)). The support of I1∪ I2 is determined by

support (I1∪ I2) = support (I1)− |diff (I1∪ I2)| .

Although it is possible to perform the entire search using diffsets or occurrence sets, the

two approaches can also be combined. We saw that diff(I1 ∪ I2) = occ(I1)\occ(I2): thus, one

can also choose to switch from occurrence sets to diffsets during the search. To switch the

other way around is more complicated and possibly undesirable. As the diffset only stores the

difference with the largest proper prefix, the diffset of each prefix is required to recompute

the occurrence set:

occ(i1i2 . . . ikik+1 . . . in) = occ(i1i2 . . . ik)\diff(i1i2 . . . ik+1)\···\diff(i1i2 . . . in),

where i1i2 . . . ik is the largest prefix for which an occurrence set is known. Clearly, to switch

from diffsets to occurrence sets one has to store large numbers of occurrence sets and diffsets,

also for very small itemsets.

Depth-first search

Already early in frequent itemset research it was noticed that there are also recursive ways to

find all frequent itemsets. The basic observation is simple: given an order R on items I and

one frequent item i ∈ I, from a given databaseD one can build a new database that:

2.5. E 21

(1) Depth-First-Search(Itemset I, DatabaseD):

(2) F := F ∪{I};

(3) determine an order R on the items inD;

(4) for all items i occurring inD do

(5) Create fromD projected databaseDi, containing:

(6) - only transactions that inD contain i;

(7) - only frequent items inDi that are higher than i in R.

(8) Depth-First-Search(I∪{i},Di);

Figure 2.8: A high-level overview of a depth-first frequent itemset mining algorithm.

• consists of only those transactions that contain item i;

• consists of only those items i′ that are higher than i, according to R.

Such a database is called a projected database. If i′ is a frequent item in the projected

database, we know that {i, i′} is a frequent itemset in the original database. By recursively

projecting projected databases longer frequent itemsets can be found. The A property

is applied implicitly by projecting only on frequent items and not on infrequent ones. A gen-

eral outline of such a procedure is given in Figure 2.8.

We will first consider the case that the database is stored vertically using occurrence sets,

as given in Figure 2.7. The Depth-First-Search algorithm is called with itemset ∅ and the

collection of all occurrence sets as parameter. After adding ∅ to F the Depth-First-Search

algorithm orders the items in the database, for example, in ascending order of support: D <

A < B < C < E. Each of these items is then considered in isolation. We will consider item A

as an example. The projected databaseDA should contain the following information:

occDA ({B}) = occD({A,B}) = occD({A})∩occD({B}) = {t8, t9, t10};

occDA({C}) = occD({A,C}) = occD({A})∩occD({C}) = {t3, t8, t10};

occDA({E}) = occD({A,E}) = occD({A})∩occD({E}) = {t4, t9, t10}.

Those sets which turn out to be infrequent are not included in DA; as in our example all

itemsets are frequent, no previously computed occurrence sets are deleted.

The Depth-First-Search procedure is recursively called for this projected database. This

time {A} is added to F at the start of the procedure. The items in DA are sorted again, B <

C < E; each is considered in turn again, for example B. Again the database is projected:

occDAB({C}) = occDA({B,C}) = occDA({B})∩occDA({C})

= occD({A,B})∩occD({A,C}) = {t8, t10};

occDAB({E}) = occDA({B,E}) = occDA ({B})∩occDA ({E})

= occD({A,B})∩occD({A,E}) = {t9, t10}.

22 2. Frequent Itemset Mining

ForDAB Depth-First-Search is called recursively again. Within this call, {A,B} is added to F ,

the items inDAB are ordered, C < E, andDAB is projected on item C:

occDABC ({E}) = occDAB({C,E}) = {t10}.

As item E is not frequent withinDABC , this occurrence list is removed. One last time Depth-

First-Search is called with an empty database. This call adds {A,B,C} to F , but does not

recurse further.

Also in general it is easily seen that this procedure is correct and adds each frequent

itemset to F exactly once. We believe that the key to an easy understanding is the concept

of a ‘projected database’. There are however many other ways in which one could think

of depth-first algorithms. We wish to mention some of the links with the original A

algorithm:

• In depth-first algorithms the items are often reordered during the search, while in A-

 the order is fixed once. In A a reordering would be impractical as it would

make the search in the prefix trie more complicated, but in depth-first algorithms this

is much less of a problem.

• Both algorithms extensively use the fact that is very easy to organize itemsets in a tree:

A stores itemsets in a tree datastructure, while Depth-First-Search organizes the

search in a tree. Both trees are closely related to each other. For example, A stores

itemsets with a common prefix in one trie node; Depth-First-Search uses itemsets with

a common prefix to build a projected database.

• There memory requirements of A and depth-first algorithms are different; which

one is more efficient, depends on the data. For example, in our example A stores

the following collection of frequent itemsets in a trie of itemsets of size 3:

{A}, {B}, {C}, {D}, {A,B}, {A,C}, {A,E}, {B,C}, {B,E}, {C,E}, {D,E};

itemsets {C} and {D} are implicitly stored in the trie as they are part of the prefix of

{C,E} and {D,E}. The following 3-itemsets are stored later:

{A}, {A,B}, {A,B,C}, {A,B,E}

While considering the projected database of item A we saw that the depth-first algo-

rithm has the following frequent itemsets in memory:

{A}, {B}, {C}, {E}, {A,B}, {A,C}, {A,E}.

Itemsets {{A,B}, {A,C}, {A,E}} are part of the projected database; also still in memory

are itemsets {{B}, {C}, {E}} as the procedure will backtrack to these sets later. While

considering the projected database for AB the following itemsets are in memory

{{{A}, {B}, {C}, {E}, {A,B}, {A,C}, {A,E}, {A,B,C}, {A,B,E}}.

It has been claimed that in practice depth-first algorithms require less memory than

breadth-first algorithms when using occurrence sets.

2.6. FP-G 23

• An issue of debate is whether depth-first algorithms perform ‘candidate generation’ or

not. A first generates a set of itemsets, and then computes the support of these

generated itemsets. For the occurrence set based algorithm one can surely argue that it

also generates candidates: all pairs of items in the projected databases are joined just

like in A; the supports of the resulting itemsets are determined afterwards by

intersecting occurrence sets. However, as we will see in the next section, it has also

been claimed that some depth-first algorithms do not perform candidate generation.

2.6 FP-G

An important next step in the development of depth-first algorithms was the introduction

in 2000 of the FP-G algorithm by Han et al. [77]. We will briefly discuss it here for

the sake of completeness. Essential to FP-G is its datastructure for storing (projected)

databases: instead of storing occurrence sets, FP-G uses a prefix trie to store the trans-

actions. To this purpose, each field of the trie is extended with additional information:

• the number of transactions that has been sorted down this field;

• a pointer to a field in another trie node.

The additional pointers are used to link together all fields that contain the same item. Pointers

to the starts of these item lists are stored in a header table.

The trie is constructed in several steps. In an initial pass the supports of the items in the

original database are determined. The frequent items are sorted in descending order. Then, in

a second pass, each transaction is sorted down an initially empty trie. Here, each transaction

is represented by the sequence of items in support descending order. The descending order is

a heuristic that attempts to make sure that the tree is as compact as possible.

An example of the resulting FP-Tree is given in Figure 2.9. In comparison with the ver-

tical database representation, the FP-Tree abstracts from the original transaction identifiers

and obtains a more compact representation of identical transactions.

The projection of an FP-Tree on a certain item is performed in two phases of computation.

Each of these phases consists of a traversal of the corresponding item list. Each element in

the item list is the end of a path that starts in the root of the tree. Each path corresponds to

transactions containing the projecting item. In the first phase for each item on each of these

paths the frequency is determined within the set of transactions represented by the paths. It

can be shown that this can be accomplished by only considering the count fields within the

FP-Tree. At the end of this phase, we know the supports of all items that are going to be part

of the new projected database.

Then, in the second phase, the new FP-Tree is actually built. Again, only transactions

contained in the item list are considered, and of these transactions only the items ‘above’ the

item list, which are the items with higher support in the current projected database. When

adding the projected transactions to the new trie, the items are ordered in support descending

order. This order was determined in the first phase.

24 2. Frequent Itemset Mining

E A B

6 2 2

A C D

3 1 1

B

2

C

1

D

1

B C

1 1

C

1

C

1

E

A

B

C

D

Header table

Figure 2.9: An FP-Tree for the database of Figure 2.1.

It has been claimed that the FP-Tree is a very compact representation for many practical

databases and that its construction procedure is very efficient [77]. Also independent studies

have concluded that FP-G is among the most efficient algorithms, both in terms of

memory requirements as in terms of runtimes [76]. The key source of efficiency seems to

be the efficient compact representation, which abstracts from transaction identifiers. Several

variants of the algorithm, all of which use this representation, perform consistently very good

[76].

One can easily see that there are many similarities between E and FP-G. Both

algorithms use a depth-first procedure and recursively project databases. At first sight it may

seem that E and FP-G use different item orders, but this is not the case. FP-G

sorts the items in support descending to obtain compact FP-Trees. Next, the projection pro-

cedure of FP-G includes all items in the projected database that are lower than the item

that is used to project. With the descending support order these are exactly the items that have

higher supports in the projected database, just like in E.

A matter of taste is whether FP-G performs candidate generation or not. The au-

thors of FP-G have explicitly titled their work as a method formining frequent patterns

without candidate generation [77]. The name of the algorithm —Frequent Pattern Growth—

is also intended to reflect this. We believe that one might as well reason differently: during

the first phase of the construction of FP-Trees in FP-G the supports of several items

are determined in a projected database. This implies that, just like in E, all these items

are considered to be candidate extensions; indeed, one has to allocate memory at some time

to maintain the support counters for these candidates. Be it in an array or in a hash structure:

by allocating memory one initializes these items as candidates, for which one is going to

compute the support. Due to a lower amount of pruning, this number of candidates can even

2.7. Conclusions 25

be larger than in A (consider a database that contains one transaction with all items).

The main difference between E and FP-G with respect to candidate generation is

that E intersects the sets of any pair of items, while FP-G will only combine pairs

of items that are found together in at least one transaction. It is only a matter of taste whether

one considers this dynamic way of allocating counters candidate generation or not.

2.7 Conclusions

After introducting the problem of frequent itemset mining, we have reviewed several algo-

rithms to solve this problem. In terms of search strategy we subdivided these algorithms into

two classes: the A breadth-first algorithm and the depth-first algorithms, among which

FP-G and variants of E. The breadth-first algorithms have a generate-and-test ap-

proach and try to minimize the number of passes over the original database. The depth-first

algorithms, on the other hand, build intermediate representations of the database to speed-up

the search. We have seen two such representations: the vertical occurrence set representation

and the FP-Tree.

Although the algorithms are different in many aspects, they also share essential properties.

In some way they all use the A property to restrict the search space. Equally important

is however the low complexity of organizing itemsets into prefix trees. All algorithms either

store itemsets in a prefix tree or perform a search that is organized according to prefixes.

This makes it possible to easily find all frequent itemsets without duplicates. Although the

observation seemed of little importance, it proved of vital importance that we could easily

transform itemsets into item sequences just by sorting the items in no matter what order.

3 TheoryofInductive Databases

We provide an overview of the concepts that are of importance to constrained mining algo-

rithms, including refinement operators, lattices, monotonic constraints and anti-monotonic

constraints, and give an overview of constrained pattern mining algorithms, among which

depth-first and breadth-first algorithms. For an efficient search we determine that refinement

operators are of importance. We introduce the concepts of merge operators and suboptimal re-

finement operators, and show that for some types of structures depth-first mining with merge

operators is difficult. Throughout the whole chapter we have a focus on patterns in general;

our purpose is to demonstrate some of the difficulties of general pattern mining. We use fre-

quent sequence mining as an example.

3.1 Introduction

In the first chapter we introduced the idea of inductive databases and the challenges of mining

complex structures. In this chapter we will introduce the formal concepts that are of impor-

tance to such inductive databases.

As an inductive database has to search through a search space, it is of importance to have

an algorithm that determines how new nodes in the search tree are generated. This concept

is formalized through the refinement operator in section 3.2. We identify which properties

of refinement operators are of importance in inductive databases. One of these properties is

that of optimality. If a refinement operator is optimal this guarantees that each pattern in a

search space is considered at most once by the algorithm. For many pattern domains optimal

refinement turns out to be hard to achieve; to deal with these issues, we relax the definition

of optimality to suboptimality.

If the search space is large, we have to define mechanisms to limit the size of the search

space. Typically, such a limitation can be obtained by applying constraints. We review pos-

sible constraints in section 3.4, and show how these constraints interact with the refinement

operator. One of the most important constraints is the minimum frequency constraint which

28 3. Theory of Inductive Databases

we saw in the previous chapter. We will show that it can be hard to define this constraint in a

usable way.

Even if the search space is constrained, and it is computationally feasible to search it

entirely, the set of results can be too large to be inspected manually. Section 3.5 provides an

overview of condensed representations that have been proposed to summarize the results of

inductive queries. We show that these representations extend to any kind of structures.

From an algorithmic point of view, refinement operators are sufficient to traverse a search

space. We saw in the previous chapter that there are two popular search orders: depth-first and

breadth-first. In the case of itemset mining candidates are generated by joining itemsets with

common prefixes. Also in algorithms for other pattern domains it can be useful to generate

candidates through joins, as this may allow us to force the constraints more thoroughly. In

section 3.6 we introduce the concept of merge operators to formalize this idea.

Many algorithms have been proposed to mine under constraints. Some of these approaches

extend to all pattern domains, others do not. Section 3.7 provides an overview of constrained

pattern mining algorithms, and discusses to what extent these pattern mining algorithms can

be applied to more general domains than the most studied domain of itemset mining.

In this chapter we frequently use the problem of mining subsequences to illustrate the

issues of mining under constraints. An overview of frequent sequence mining algorithms is

provided in section 3.8 for the sake of completeness. In section 3.9 we conclude.

3.2 Searching through Space

Intuitively, for a given databaseD we are searching within a certain pattern space X for a set

of patterns X ⊆ X that satisfies constraints as defined by the user. Depending on the kind of

constraints, the solution to this search may or may not be unique. In this thesis we mainly

consider problems of the following kind:

find all patterns x ∈ X for which q(x) = true,

where q is a (deterministic) boolean function that returns true only for patterns that satisfy the

constraint q; this function is the inductive query that is posed to the database, as introduced

in Chapter 1. As we are studying the analysis of data in this thesis, the inductive query q is

assumed to be based on the databaseD in some way. Note that within this setup there are only

unary constraints on the patterns, and no higher dimensional constraints. As a consequence,

the result of the inductive query is straightforwardly uniquely defined. We will come back to

different possibilities in later chapters.

Let us cast the frequent itemset mining problem into this framework. The search space of

frequent itemset mining consists of all subsets of a set of items I, so X = 2I. As constraint

we have that q(I) := true iff supportD(I) ≥ minsup. The database consists of transactions of

itemsets.

To find all patterns that satisfy constraints, a systematic search has to be performed. There

are many kinds of systematic search, among others: breadth-first search, depth-first search, or

hybrids of these search methods. Although different from many perspectives, all these search

3.2. Searching through Space 29

methods require a mechanism that determines for given (sets of) patterns which patterns to

consider next. We saw in the previous chapter that frequent itemset mining algorithms use a

procedure in which itemsets are joined with each other under certain constraints. For general

patterns such a procedure may be hard to define straightforwardly. We will therefore start

our discussion with the most basic procedure that can be used to traverse a search space:

the refinement operator. There is a strong relation between refinement operators and more

complicated mechanisms for generating candidates, as we will see in a later section.

Definition 3.1 Let X be a domain of structures, and let X ⊆ X be a finite subset.

• A refinement operator is a total function ρ : X→ 2X;

• A refinement operator ρ is (locally) finite if for every x ∈ X, ρ(x) is finite. Unless stated

otherwise, we assume that refinement operators are locally finite.

• ρn(x) denotes the n−step refinement of some structure x ∈ X:

ρn(x) =

{

ρ(x) if n = 1;

{z ∈ ρ(y) |y ∈ ρn−1(x)} otherwise.

• ρ∗(x) denotes the set

ρ∗(x) = {x}∪ρ(x)∪ρ2(x)∪ρ3(x)∪

• ρ∗(X) denotes the set

{y | x ∈ X,y ∈ ρ∗(x)}.

• (X,ρ) is a globally complete refinement procedure for X if ρ∗(X) = X; within such a

procedure, the refinement operator ρ is called globally complete.

• (X,ρ) is an optimal refinement procedure if ρ is locally finite, (X,ρ) is globally complete

and for all x ∈ X, either (1) x < X and x ∈ ρ(y) for exactly one y ∈ X, or (2) x ∈ X and

x < ρ(y) for all y ∈ X.

Typically, a refinement procedure starts from a single element in X and can be applied

recursively to traverse the search space of X. A complete refinement procedure makes sure

that every element of the search space is considered. On top of that, an optimal refinement

guarantees that every element is considered exactly once. An optimal refinement operator

organizes the domain in a forest, every element in X being the root of a tree in the forest.

Every structure that is not in X has one predecessor in the tree. For an optimal refinement

procedure we can therefore define a function ρ−1(x) on X.

As an example we will consider two refinement operators on itemsets. For itemsets the

search space is X = 2I. For finite I, a locally finite refinement operator is:

ρ(I) = {I∪{i} | i ∈ I, i < I} ⊆ 2I. (3.1)

The resulting tuple (∅,ρ) is globally complete, but not optimal as {A,B} ∈ ρ({A}) and {A,B} ∈

ρ({B}).

30 3. Theory of Inductive Databases

Assuming that the set of items I is finite, another refinement procedure on domainX= 2I

is (I,ρ), where ρ is

ρ(I) = {I\{i} | i ∈ I} ⊆ 2I. (3.2)

This operator removes elements from an itemset. Again, this procedure is globally complete,

but not optimal.

In the previous chapter we saw that frequent itemset mining algorithms can be obtained

which consider frequent itemsets exactly once by applying an order on items in itemsets.

This observation can be reformulated in terms of refinement operators. If we assume that

total order > sorts the items, operator

ρ(I) = {I∪{i} | i ∈ I,∀i′ ∈ I : i > i′} (3.3)

can be used in an optimal refinement procedure (∅,ρ).

Another domain are the sequences over a set of items: X = I∗. A straightforward refine-

ment operator is:

ρ(S) = {S • i | i ∈ I}. (3.4)

As an example consider the space {A,B,C}∗; then ρ(AB) = {ABA,ABB,ABC}. The refinement

procedure (ε,ρ) is:

• locally finite, as long as I is finite;

• globally complete: for every S : either S = ε or S ∈ ρ(prefix(S));

• optimal: for every S : either S = ε or ρ−1(S) = prefix(S).

This refinement operator demonstrates the ease of refining sequences: every refinement step

corresponds exactly to the concatenation of an element after an existing sequence. A sequence

can therefore be “read”as a sequence of consecutive refinement steps. This property is useful

when dealing with other domains than sequences.

Let us consider a general domain X. Given a structure x ∈ X, if there is an optimal refine-

ment operator, then there is a unique refinement chain

z = y0→ y1 ∈ ρ(y0)→ y2 ∈ ρ(y1)→ ·· · → x = ym ∈ ρ(ym−1),

for one element z ∈ X. To refine z into x we have to make m choices, at each refinement step

one. If one can determine an alphabet ∆ in which to encode these choices, every structure can

be encoded by a tuple consisting of z and a sequence

δ1δ2 . . . δm,

where δi ∈ ∆ encodes the “difference”between patterns yi and yi−1. We believe that most

structures for which there exists an optimal refinement operator can be encoded similarly in

a sequence domain.

In practice, it is often easiest to define the transformation struct from sequences to struc-

tures first. For itemsets such a transformation was defined through the set(S) operator, which

mapped several sequences to the same itemset. For example, set(AB) = set(BA) = {A,B}. The

situation is illustrated more abstractly in Figure 3.1. Sequences which are mapped to the same

3.2. Searching through Space 31

Refinement

Mappings between domains

Domain BDomain A
(e.g., Structural) (e.g., Sequence)

seq(x)

struct(S)

Figure 3.1: Mappings between two domains. An optimal refinement procedure for one domain (A)cor-

responds to a non-optimal refinement operator for another domain (B).

structure (itemset, in our example) are equivalent sequences under struct(S). For a reverse

mapping(from structures like itemsets to sequences) one ofthe equivalent sequences has to

be chosen as thecanonical sequence. The operatorseq(I) is sucha canonization procedure.

Note that in generalstruct must be chosen suchthatset(struct(x)) = xfor all x ∈ X.

Assume that we have an optimal refinement operator ρfor a structural domain, andthat

we have a canonical mappingseqfrom the structural domain to the sequence domain. Then

we can use these operators to define a refinement operator ρ′ for the sequence domain:

ρ
′(S) =seq(ρ(struct(S))).

What we are most interestedin is the other direction:assume that one has a refinement

operator ρ that is optimal for the domain ofcanonical sequences (so, the range under the

function seq), then we can use that operator to perform optimal refinement ρ′ in the entire

original domain:

ρ
′(x) =struct(ρ(seq(x))). (3.5)

For example, we can use the followingoperator to refine item sequences:

ρ(S) = {S • i | i ∈I,S = ε ∨ i > last(S)}. (3.6)

Iffor a refinement operator ρ in a sequence domain it holds that the operator

ρ
′(x) =struct(ρ(seq(x)))

is an optimal refinement operator for X, suchas in equation (3.6), then we saythat ρ is an

optimal refinement operator under the canonizationseq.

32 3. Theoryof Inductive Databases

Optimal refinement operators can often be obtained from non-optimal refinement oper-

ators and canonization algorithms. Assume that a sequence refinement operator ρ is given,

then the following is also a refinement operator in the structural domain:

ρ
′(x) = {struct(S ′) |S ′ ∈ ρ(seq(x)),seq(struct(S ′)) = S ′}.

This operator first applies a large set of possible refinements, and then filters out those refine-

ments which are not canonical. If this refinement operator ρ′ is optimal in X, we say that ρ

defines the following suboptimal refinement operator under seq:

ρ
′′(S) =

{

∅ if seq(struct(S)) , S ;

ρ(S) otherwise.
(3.7)

The suboptimal refinement operator reflects that, although finally an optimal refinement op-

erator in the structural domain can be obtained, a generate-and-test method is required. Al-

though by this definition every optimal refinement operator is also suboptimal, in the future

we only call an operator suboptimal if it is not optimal.

The distinction between optimal and suboptimal refinement operators is not very strong.

Consider this different way of specifying equation (3.6):

ρ(S) = {S • i | i ∈ I,seq(set(S • i)) = S • i}. (3.8)

We saw that this operator is optimal. However, it hints towards an implementation in which

first all refinements are computed, and then some of them are filtered out. The operator can

easily be rewritten in the form of equation (3.7). In this thesis, we will still refer to equa-

tion (3.8) as an optimal refinement operator under seq. The idea is that no matter how the

refinement internally works, any algorithm that uses this operator will never make use of the

structures that are internally considered by the operator. If an algorithm uses a suboptimal

refinement operator, this means that it exploits the fact that some structures are considered

multiple times. From an efficiency point of view, however, an optimal refinement operator

that characterizes refinements precisely is most desirable. We strive for such operators; ide-

ally, we would obtain a refinement operator which is O(|ρ(x)|) for any structure x.

Encodings are essential for performing a systematic search through the space of all structures

of a particular kind. In this thesis we devote most of our attention to developing canonical

sequences for several kinds of more complicated structures than itemsets. We define refine-

ment operators on these sequence domains that are either optimal, or suboptimal. We use the

following approach:

• we define a sequence domain, and a mapping from this sequence domain to the struc-

tural domain;

• if multiple sequences map to the same structure, we define which of these sequences is

considered to be canonical;

• we define a refinement operator on the sequences which is (sub)optimal for the corre-

sponding structural domain.

3.3. Relations between Structures 33

We will use sequence codes that are based on the idea of listing refinement steps. In such

codes, a refinement corresponds to adding a tuple at the back of the sequence. Such codes

can have several advantages:

• canonical refinement of a sequential representation is straightforward; it always comes

down to concatenating one additional element to an existing canonical sequence, such

that the new sequence is again canonical;

• to prove the optimality of a refinement operator only a number of things have to be

shown:

– every structure has one canonical sequential representation, or, in other words,

the mapping to the sequence domain is total (to prove completeness);

– every prefix of a canonical sequence is also canonical (to prove completeness);

– the refinement operator extends a canonical sequence only to all canonical se-

quences of which it is a prefix (to prove optimality), or only canonical sequences

are refined (to prove suboptimality).

3.3 Relations between Structures

Another essential concept for our algorithms, is the concept of a relation. A refinement op-

erator already relates structures to each other, in the sense that one structure may be the

refinement of another; however, a more thorough introduction to relations is also necessary

for the second essential part of a data mining algorithm: the relations between patterns and

data.

We saw in the previous chapter that relations can have several properties. One example is

the subset relation between itemsets, which defines a partial order: we define that I1 � I2 iff

I1 ⊆ I2. The idea here is that I1 ishigher in order than I2 because I1 is more general than I2:

clearly, in frequent itemset mining, I1 is contained in at least as many transactions as I2, and

can be considered a more general statement.

For ordered sets many concepts are of importance. We will introduce several next.

Definition 3.2Given are a quasi-ordered set (X,�), a structure x ∈ X and a set of structures

X.

• x is an upper boundof X if for all y ∈ X : x � y.

• x is a lower boundof X if for all y ∈ X : y � x.

• x is a least upper bound(lub) of X if x is an upper bound of X and y � x for all upper

bounds y of X.

• x is agreatest lower bound(glb) of X if x is a lower bound of X and x � y for all lower

bounds y of X.

34 3. Theory of Inductive Databases

• x is a minimal upper bound (mub) of X if x is an upper bound of X and for all upper

bounds y of X: x � y⇒ x ≡ y.

• x is a maximal lower bound (mlb) of X if x is a lower bound of X and for all lower

bounds y of X: y � x⇒ x ≡ y.

As an example, itemset {A} is an upper bound of X = {{A,B,C}, {A,B,D}} as {A} ⊆ {A,B,C}

and {A} ⊆ {A,B,D}. Itemset {A} is however not a least upper bound of X, as {A,B} ⊆ {A,B,C}

and {A,B} ⊆ {A,B,D} while {A,B} * {A}. Itemset {A,B} is also a minimal upper bound. One

can show that for any two itemsets I1 and I2 it holds that

mub(I1, I2) = lub(I1, I2) = I1∩ I2, mlb(I1, I2) = glb(I1, I2) = I1∪ I2 :

clearly, if I is an upper bound of I1 and I2, then I ⊆ I1 and I ⊆ I2, and therefore I ⊆ I1 ∩ I2.

Also, if I is a lower bound of I1 and I2, then I1 ⊆ I and I2 ⊆ I, and therefore I1 ∪ I2 ⊆ I.

Intuitively we have in Figure 2.2 that an upper bound of an itemset is above the itemset in the

picture, while a lower bound is below the itemset.

For sequences it is already less straightforward to define relations. We will first consider

these possibilities:

• subsequences without gaps: S 1 � S 2 iff ∃S 3,S 4 : S 2 = S 3 •S 1 •S 4;

• subsequences with unlimited gaps: S 1 = a1a2···an �(0,∞) S 2 = b1b2···bm iff there exist

indexes 1 ≤ k1 < k2 <···< kn ≤ m such that for all 1 ≤ ` ≤ n : bk` = a`.

• subsequences with (α,β)-gaps (β ≥ α integers): S 1 = a1a2···an �(α,β) S 2 = b1b2···bm
iff there exist indexes 1 ≤ k1 < k2 <···< kn ≤ m such that for all 1 ≤ ` ≤ n : bk` = a`,

where for all 1 ≤ ` < n: α+1 ≤ k`+1− k` ≤ β+1.

The following examples illustrate these relations: AB�AABC; AB 6�ADCB; AB�(0,∞) ADCB;

AB 6�(0,1) ADCB; AB �(0,2) ADCB. Note that �(0,0) corresponds to �.

To illustrate some further concepts of Definition 3.2, consider the set of sequences S =

{AB,CD} and relation �(0,β), with β ≥ 0. Then sequences ABCD, CDAB and CDABA are

lower bounds of S. Sequences ABCD and CDAB are maximal lower bounds: there are no

subsequences of these two sequences that are more specific than all sequences in S. As

CDAB �(0,β) CDABA sequence CDABA is not a maximal lower bound. Sequences AB and

BC do not have a greatest lower bound; in general one can show that greatest lower bounds

need to be equivalent, but sequences ABCD and CDAB are incomparable with each other.

In general the relation �(α,β) has particular properties:

• if α>0the relation is not reflexive. To prove this consider that AB 6�(α,β) AB if β≥ α>0.

For α =0the order is reflexive and anti-symmetric.

• if 0< β <∞ the relation is not transitive. To prove this consider that AC �(α,β) AB
βC

and ABβC �(α,β) AB
β(β+2)C do not imply that AC �(α,β) A

β(β+2)C; for β =0or β =∞ the

order is transitive.

3.3. Relations between Structures 35

ε

A AA B BB

AB BA

Figure 3.2: The quasi-order (X,�I),where X = {S |S ∈ {A,B}
∗, |S | ≤ 2}. An arrow from sequence S 1 to

sequence S 2 denotes that S 1 �I S 2. All relations are shown. Boxes denote equivalence classes. Thick

arrows denote refinement steps computed by the downward refinement operator of equation (3.6).

Therefore only relations without gaps or with unlimited gaps are partial orders.

We already noticed that there is a close connection between itemsets and sequences as

every itemset can be transformed into a sequence. It is easy to see that for any item relation

R and pair of itemsets I1 and I2 it holds that I1 � I2⇔ seqR(I1) �(0,∞) seqR(I2). Now consider

the set(S) operation again. This operation can be used to define yet another relation between

sequences:

S 1 �I S 2 iff set(S 1) � set(S 2).

As examples we have that BA �I AB and AABBB �I ABC. This quasi-order is not a partial

order as it is not anti-symmetric: BA �I AB and AB �I BA, yet BA , AB.

Definition 3.3 Given are a quasi-ordered set (X,�) and an element x ∈ X. Then the equiva-

lence class of x, denoted by [x]�, is defined by

[x]� = {y ∈ X|y ≡� x}.

All patterns in the equivalence class are said to be equivalent.

The situation is also illustrated in Figure 3.2 for a finite set of sequences. In this example

there are four equivalence classes: [ε] = {ε}, [A] = {A,AA}, [B] = {B,BB} and [AB] = {AB,BA}.

All elements in [AB] are a greatest lower bound of e.g., A, AA and B.

Now, it is a well-known fact that every quasi-order can be used to define a partial order

on equivalence classes:

[x]� R [y]� iff x � y.

We omit a proof [142]. Under �I every equivalence class of sequences corresponds to a

unique itemset: ∀S 1,S 2 ∈ [S] : set(S 1) = set(S 2). The partial orders on itemsets and on equiv-

alence classes of �I are identical.

Definition 3.4A partially ordered set (X,�) is called a lattice if for every pair x,y ∈ X the

glb(x,y) and lub(x,y) are defined. Moreover, if glb(X) = ⊥ and lub(X) = > are defined, the

lattice is bounded. 1

1Please note that this partial order may be obtained from quasi-orders through the equivalence class construction.

We deviate from [142] here.

36 3. Theory of Inductive Databases

For a partial order on itemsets (2I,⊆), the glb and the lub of two elements is uniquely

defined; therefore itemsets constitute a lattice. If I is finite, the lattice is also bounded. Then,

> = ∅ and ⊥ = I.

Let us consider the relations between sequences next. As relation �I is not a partial order,

it never defines a lattice on sequences either. The subsequence relations �(0,∞) and �(0,0) are

partial orders, but never define lattices: we have already seen that the sequences AB and CD

do not have a glb.

Although the �I relation never defines a lattice, this is not the case for the corresponding

relation on equivalence classes. Therefore, one may wonder whether �(0,β) defines a lattice

on equivalence classes. This is not the case, as for two maximal lower bounds of sequences

AB and CD: [ABCD]�(0,β) , [CDAB](0,β).

An interesting observation is that also relations themselves can be ordered again. Given

two relations R1 and R2, both applied to structural domain X, one can define a relation

R1 � R2 iff for all x,y ∈ X : xR2y→ xR1y.

The order of sequence relations is illustrated in Figure 3.3. To illustrate that relations-of-

orders need not be total, also the following relations are included:

• S 1 �
←→
(α,β)
S 2 iff (S 1 �(α,β) S 2 ∨ S 1 �(α,β) S

−1
2
), where S −1 = anan−1 . . .a1 denotes the

reverse sequence of S = a1a2 . . .an. As an example, AB �
←→
(0,0)
BAC. We will refer to this

subsequence relation as the subpath relation. One can have subpaths with and without

gaps. Unless mentioned otherwise, we assume path relations without gaps.

• S 1 �prefix S 2 iff S 1 = prefix(S 2). As an example, AB �prefix ABC.

A subpath relation is never a partial order as the relation is not anti-symmetric: AB �←→
(0,β)

BA∧AB �←→
(0,β)
BA, but AB , BA. The prefix relation is a partial order. However, as AB and AC

never have a glb the relation never defines a lattice.

In later chapters we will consider the interconnections between relations of more compli-

cated patterns. Sequences are however already illustrative for the problems that one encoun-

ters with other kinds of patterns than itemsets: the orders may not be lattices; indeed, they

may not even be transitive or reflexive.

Relations and refinement

We have introduced refinement operators as a means of systematically listing structures

within a search space. We will discuss now how refinement operators and relations between

structures relate to each other.

Definition 3.5Let (X,�) be a quasi-ordered set. A downward refinement operator for (X,�)

is a refinement operator ρ, such that ρ(x) ⊆ {y | x � y}, for every x ∈ X. An upward refinement

operator for (X,�) is a function δ, such that δ(x) ⊆ {y |y � x}, for every x ∈ X.

Definition 3.6Let (X,�) be a quasi-ordered set, and let x,y ∈ X, such that x � y and there is

no z with x � z � y. Then x is an upward cover of y and y is a downward cover of x.

3.3. Relations between Structures 37

�←→
(0,∞)

�←→
(1,∞)

�←→
(2,∞) · · · �←→

(k,∞)

�(0,∞) �(1,∞) �(2,∞) · · · �(k,∞)

...
...

...

�←→
(0,2)

�←→
(1,2)

�←→
(2,2)

�(0,2) �(1,2) �(2,2)

...
...

...

�←→
(0,1)

�←→
(1,1)

�(0,1) �(1,1)

�←→
(0,0)

�(0,0)

�prefix

�I

�prefix : Sequence prefix

�(α,β) : Subsequence with limited gap

�←→
(α,β)

: Subpath with limited gap

�I : Subset

Figure 3.3: A visualization of the relations between several sequence orders. An edge from R1 to R2
denotes that R1 is more general than R2, R1 �

′ R2. Only edges which do not follow from transitivity are

shown.

38 3. Theory of Inductive Databases

Definition 3.7 Let (X,�) be a quasi-ordered set and let ρ be a downward refinement operator

for (X,�).

• ρ is locally complete iff for every pair x,y ∈ X such that x � y, there is a z ∈ ρ∗(x) with

z ≡ y.

• ρ is proper if for every x ∈ X, ρ(x)∩ [x]� = ∅.

• ρ is ideal iff it is locally finite, locally complete and proper.

• ρ is a cover refinement operator iff for every x ∈ X, if y ∈ ρ(x), y is a downward cover

of x.

• ρ is an optimal refinement operator under order � if (mub(X),ρ) is an optimal refine-

ment procedure.

Note that a cover refinement operator is also proper. The foremost difference between optimal

and ideal refinement operators is the completeness property.

It depends on the application how important these properties are. Locally complete oper-

ators are useful in heuristic algorithms. If an operator is not locally complete, the refinement

operator limits the superstructures that can grow from a certain structure; as a consequence,

the number of structures that is considered by the search algorithm may be smaller than jus-

tified by the heuristic: there is a certain bias in the search.

A proper refinement operator makes it impossible to endlessly refine a structure without

ever reaching a more specific structure. On top of this a cover refinement operator guarantees

that no structures are “skipped”during refinement. Optimal refinement operators are most

useful in the situations that we consider in this thesis.

As an example consider the lattice (2{A,B,C,D,E},⊆). Then the refinement operator of equa-

tion (3.1). is downward, complete, proper and ideal. The operator of equation (3.2) is upward,

as for all I′ ∈ ρ(I) : I′ ⊆ I. An artificial refinement operator is this operator:

ρ(I) =

{

2I if I = ∅;

I otherwise.

This operator is an optimal downward refinement operator. The operator is however not a

cover operator. Cover operators are in general desirable as they guarantee that refinement

takes place in small steps.

Let us consider sequences and the refinement operator of equation (3.4) next. If the se-

quences are ordered by �I then this operator is a downward refinement operator.The refine-

ment operator is not proper: ABA ∈ ρ(AB), but ABA ≡ AB. The operator is locally complete:

consider two sequences S 1 � S 2; then S 2 ≡ S 1 •S 2, while (S 1 •S 2) ∈ ρ
∗(S 1).

Ordered by �(0,β) the refinement operator of equation (3.4) is no longer locally complete.

Consider that AB �(0,β) BAB (for all β ≥ 0), but that no S ≡ BAB exists with S ∈ ρ
∗(AB). The

operator is proper as for all S ′ ∈ ρ∗(S) it holds that |S ′| > |S |, while we have seen that under

�(0,β): |S | = |S
′| if S ′ ≡ S . The operator is a cover operator; we have already seen that it is

optimal.

Ordered by �(α,β) with α > 0 the operator is no longer a downward refinement operator: a

sequence of length k > 2 is never a subsequence of a sequence of length k+1. The refinement

operator remains optimal, however.

3.4. Constraints and Inductive Queries 39

Moving to more general patterns

Many algorithms depend on the condition that an optimal, proper, or ideal refinement operator

exists. However, for several ordered sets of structures it turns out to be impossible to define an

optimal downward refinement operator. Especially, for many relations between structures it

is impossible to define a refinement operator that is both complete and proper: if one chooses

to be complete, it is no longer possible to define a canonical sequence; if one chooses to be

proper it is impossible to perform a complete or an optimal search. Given their importance to

search algorithms, a large part of the remainder of this thesis is devoted to an extensive study

of refinement operators on several kinds of structures. We will come back extensively to the

issues of choosing canonical sequences, defining mappings between patterns and sequences,

and of computing optimal refinements.

To summarize, the following issues are of importance when dealing with structures:

• What are the relations between the original structures?What are the properties of the

relations?Which kinds of refinement are possible?

• How can these structures be mapped to sequences?Is there an efficient algorithm to

map structures to sequences and vice-versa?

• How can one define efficient refinement operators on these sequences?

Optimal refinement operators are closely related to enumeration problems. An efficient opti-

mal refinement operator makes it possible to efficiently output a list of all patterns within a

certain space, and thus to enumerate that search space. Enumeration problems have recently

drawn the attention of well-known computer scientists such as Donald Knuth [102] and in

literature (complexity) results for many kinds of enumeration problems are available. These

results provide strong hints about what is possible and impossible when performing optimal

refinement. Furthermore, there is much literature on (the complexity of) algorithms for com-

paring complex structures. In later chapters we will discuss the importance of these issues for

concrete structural domains.

3.4 Constraints and Inductive Queries

If the pattern space is very large or even infinite, a mechanism is needed for discarding parts

of the search space. Constraints are a mechanism for limiting the result set and possibly the

search. In algorithms that rely on refinement, a desirable requirement on an inductive query

q is:

for all x,y ∈ X, such that x ∈ ρ(y) : if q(x) = true then q(y) = true. (3.9)

This also means that

for all x ∈ ρ∗(y) : if q(y) =false then q(x) =false,

due to the transitive nature of the refinement relation. As a consequence the recursion of the

refinement procedure can always be stopped when the constraint q is no longer satisfied.

40 3. Theory of Inductive Databases

In case that structures are ordered by some relation �, a distinction can be made between

downward refinement operators and upward refinement operators. A similar distinction can

also be conceived for constraints. Which terminology is used depends on the choice of no-

tation for the � relation. In the previous section we defined a partial order for itemsets as

follows: I1 � I2 iff I1 ⊆ I2. Some readers may have felt that this notation was counterintuitive.

Indeed, also the reverse definition has been used (I1 � I2 iff I1 ⊇ I2) [49, 32, 155, 156, 28].

Our notation is based on the notion of ‘generality’between patterns which is common in Ma-

chine Learning literature [142] and states that a pattern that is more‘general’pattern should

be higher in order.

A function f on a domain is considered to be monotonic iff for all a ≤ b in the domain it

holds that f (a) ≤ f (b); a function is anti-monotonic or antitone iff f (a) ≥ f (b) for all a ≤ b

in the domain. Is the A property an anti-monotonic property or a monotonic property?

Both views have been defended: in [54, 50, 55] the constraint is considered to be monotonic,

while in [49, 32, 155, 156, 28] it is defined to be anti-monotonic. The outcome seems highly

dependent on the choice of notation. Taking our partial order as notation it would make sense

to say that the A property is monotonic as I1 � I2 ⇒ support(I1) ≥ support(I2); con-

sidering the subset relation one would be inclined to say the property is anti-monotonic as

I1 ⊆ I2 ⇒ support(I1) ≥ support(I2). We choose to call the minimum frequency constraint

monotonic. A constraint on structures is therefore monotonic iff

for all x,y ∈ X such that x � y : if q(y) = true then q(x) = true,

where � is a relation between structures and q(x) is a constraint on patterns. The minimum

frequency constraint is an example of a monotonic constraint. One can also imagine many

other monotonic constraints, some of which depend on the application and the structural

domain. One can make a rough subdivision between two types of constraints:

• constraints that depend on the data for their fulfillment, like minimum support con-

straints;

• syntactical constraints on the structures themselves. Examples are:

– q(x) := (x � y), for some given structure y; when structures are ordered by quasi-

order � this constraint is monotonic as for all x′ � x, if q(x) = (x � y) = true,

then also (x′ � y) = true due to transitivity. This constraint enforces that discov-

ered itemsets are a subset of a given itemset (itemset case) or that sequences are

subsequences of a given sequence (item sequence case).

– q(x) := (x 6� y), for some given structure y; under the same assumption as above

this constraint is monotonic. This constraint enforces that itemsets do not con-

tain a particular itemset (itemset case) or that sequences do not contain a certain

subsequence (item sequence case).

For specific domains more syntactical constraints can be enforced. For example, regular

expressions have also been considered as monotonic constraints [74, 10].

Monotonic constraints are useful in combination with downward refinement operators.

3.4. Constraints and Inductive Queries 41

Also combinations of monotonic constraints can again be monotonic. For example, if we

have a set of monotonic constraints q1, . . . ,qn, the following constraint is also monotonic:

q(x) = true iff |{i | qi(x) = true}| ≥ minconstr,

for a fixed threshold minconstr:

for all x � y if q(y) = true⇔

|{qi | qi(y) = true}| ≥ minconstr

then |{qi | qi(x) = true}| ≥ |{qi | qi(y) = true}| ≥ minconstr⇔

q(x) = true.

As a consequence of this observation, also disjunctions and conjunctions of monotonic con-

straints are monotonic.

Similar observations hold for anti-monotonic constraints. A constraint on structures is

anti-monotonic iff

for all x,y ∈ X such that x � y : if q(x) = true then q(y) = true.

Also anti-monotonic constraints can be combined using disjunctions and conjunctions. Ex-

amples of anti-monotonic constraints are:

• constraints that depend on data, like a maximum support constraint;

• syntactical constraints on the structures. General examples are:

– q(x) := (y � x), where y is a given structure; when structures are ordered by quasi-

order � this constraint is anti-monotonic as for all x′ � x, if q(x) := (y � x) = true,

then also (x′ � y) = true due to transitivity. This constraint enforces that itemsets

are a superset of a given itemset (itemset case) or that sequences contain a given

sequence as subsequence (item sequence case).

– q(x) := (x 6� y), where y is a given structure; under the same assumption as above

this constraint is anti-monotonic. This constraint enforces that all itemsets are not

a subset of a given itemset (itemset case) or that sequences are not a subsequence

of a certain sequence (item sequence case).

Of course, both monotonic and anti-monotonic constraints can also be combined into one in-

ductive query using logical connectives. In analogy with ‘traditional’ (non-inductive) database

queries, it has been observed that by rearranging constraints inductive queries may be opti-

mized [54, 50, 114]. As an example consider query

(

qm1 (x)∨
(

qm2 (x)∧q
a
3(x)
))

∧qm4 (x),

where qm
1
, qm
2
and qm

4
are monotonic constraints and qa

3
is an anti-monotonic constraint. As-

sume that we have an algorithm that solves problems of the form qm(x)∧ qa(x), then the

following query evaluation plan can be used:

• determine the set of structures X1 which satisfy q
m
1
(x)∧ true;

42 3. Theory of Inductive Databases

• determine the set of structures X2 which satisfy q
m
2
(x)∧qa

3
(x);

• compute in X3 the union of structure sets X1 and X2;

• determine the set of structures X4 which satisfy q
m
4
(x)∧ true;

• intersect structure sets X3 and X4.

In this evaluation plan many calls to the mining algorithm are required; furthermore it may

not be a good idea to compute a possibly large set X3 first and then to intersect that with

another small set X4. An equivalent query plan is:

(

qm1 (x)∧q
m
4 (x)
)

∨
((

qm2 (x)∧q
m
4 (x)
)

∧qa3(x)
)

. (3.10)

In this plan only two calls to the mining algorithm are required:

(

qm1 (x)∧q
m
4 (x)
)

and
((

qm2 (x)∧q
m
4 (x)
)

∧qa3(x)
)

.

The union of two potentially smaller structure sets is computed.

Further optimizations are feasible if constraints are related to each other. An example is

provided by the following constraints on patterns ordered by a quasi-order �:

qm2 (x) = (x � x2), qa3(x) = (x � x3),

for some fixed structures x2 and x3. The query of equation (3.10) becomes

(

qm1 (x)∧q
m
4 (x)
)

∨
(

x � x3∧ x � x2∧q
m
4 (x)
)

.

Now assume that we know that x3 ≺ x2; then (x � x3∧ x � x2) can never be true and the query

reduces to

qm1 (x)∧q
m
4 (x).

Obviously, there is a strong connection between inductive queries and traditional database

queries: both have an intuitive definition in terms of formal logic and support concepts such

as query plans, query rewriting and query optimization. Taking these observations as starting

points researchers have devised languages in which queries can be formulated, either based

on logic [49] or on SQL [133]. Expressions in these languages can potentially be optimized

by a query optimizer afterwards.

As we saw in our example, the computation of an answer to an inductive query may

require the computation of a union or an intersection of structure sets. To perform this com-

putation algorithms are required that can perform comparisons between structures. One way

to do this systematically is to store structures in a canonical sequence representation, as then

only sequences need to be compared. Preferably, this sequence representation is the same as

the canonical sequence that is used by the refinement operator. Again, we see that a represen-

tation of patterns as sequences is of vital importance.

3.4. Constraints and Inductive Queries 43

Convertible constraints

Until now we have only considered constraints that are either monotonic or anti-monotonic.

Besides these constraints, there are of course constraints that do not fall into either one of

these classes. We wish to consider one particular class of constraints here for which still nice

solutions are available: the convertible constraints.

Assume that besides a set of items I also a function f : I → R is available that assigns

weights to items. Then a constraint on sequences may be that

avg(S) ≥ minavg,

where

avg(S) =

∑|S |

i=1
f (S [i])

|S |
.

This constraint is neither monotonic nor anti-monotonic. Consider as weights f (A) = 1,

f (B) = 2 and f (C) = 3, and as starting sequence S = B. The average weight of BA is 1.5,

while the average weight of BC is 2.5. The average weight can increase as well as decrease.

In the case of sequences there is not much that one can do to deal with the minimum

average weight constraint in an efficient way.

The situation is different for itemsets. It should be remembered that for an efficient search

the monotonic property of equation (3.9) is the bottom line requirement. This requirement

can still be met if the items are reordered appropriately. Assume that items are ordered in

decreasing order of associated weight:

i1 < i2 iff f (i1) ≥ f (i2),

so C < B < A in our example. The consequences of this choice are significant: the prefixes of

a given itemset sequence constitute a series that monotonically decreases in average weight

as the size increases: avg(C) = 3, avg(CB) = 2.5, avg(CBA) = 2. Therefore, if the items are

ordered in decreasing order of associated weight, the minimum average weight constraint is

converted into a constraint that is monotonic under the prefix relation between such itemset

sequences.

Similarly, the maximum average weight constraint can be converted into a constraint that

is usable in combination with upward refinement operators. Simple modifications of itemset

mining algorithms are sufficient to deal with a minimum average weight constraint.

However, the sequence domain already illustrates that it depends on the pattern domain

whether a constraint is convertible or not. How convertible is the average weight constraint

when one is dealing with other pattern domains?Within our previously introduced framework

of refinement through canonical codes, our conjecture is that it is hard to deal with potentially

convertible constraints if the order of elements in the canonical sequence is of importance: in

such cases the order of refinement cannot be changed to suit a convertible constraint as the

order is already used for different encoding purposes.

Constraints on the pattern language

We would now like to point out some peculiarities of the constraints that are sometimes also

referred to as the language bias constraints. We already discussed basic constraints that can be

44 3. Theory of Inductive Databases

applied in any domain that is quasi-ordered: q(x) := (x � y), q(x) := (x 6� y), q(x) := (x � y) and

q(x) := (x � y). A subtle theoretical issue, but possibly with practical consequences, is how

to incorporate these constraints in the problem definition. To illustrate this we will consider

the is-more-specific constraint in the item sequence domain. Let us assume that we have the

following constraint:

q(S) := (support(S) ≥ minsup)∧ (S � S ′),

for some monotonic support definition and some sequence S ′. Then the search could be

specified as follows:

given items I, find all S ∈ I∗ : support(S) ≥ minsup∧S � S ′. (3.11)

Another equivalent definition is however:

given items I, find all S ∈ I∗ •S ′ •I∗ : support(S) ≥ minsup, (3.12)

where I∗ •S ′ •I∗ is the domain of all sequences that contain S ′. In this equivalent definition

the constraint is moved to the domain of the search. Such a constraint, which can be pushed

in the definition of the search space, is called a succinct constraint [141].

Observe that the domain of sequences does not constitute a lattice, and that in general

there is therefore not a most specific element in the domain. The most reasonable starting

point for the search is therefore the most general element. Starting from this element a down-

ward refinement operator can be applied to traverse the search space.

The definition of equation (3.11) hints towards an algorithm that starts searching from the

empty string. For refinement the optimal refinement operator of equation (3.4) can be used.

The definition of equation (3.12), however, hints towards an algorithm that starts search-

ing from another most general element: the sequence S ′. What kind of refinement operator

may be used to traverse the search space starting from this element?

A first idea could be to use the refinement operator of equation (3.4) again. However,

this refinement operator is no longer optimal for the current space of sequences. Consider

sequence S ′ = AB. The sequence CAB is in I∗ •AB •I∗, but the given refinement operator

will never reach this sequence as it only appends items. Another refinement operator may

seem:

ρ(S) = {S • i, i•S | i ∈ I}.

It is clear that this operator can construct any sequence that contains AB. However, this op-

erator is not optimal. Consider the sequence ABAB. This sequence can be reached from two

sequences: by appending B after ABA and by prepending A before BAB.

This example makes clear that simple language constraints can be incorporated in the

definition of the search space, but that the resulting search space is often more complicated

to traverse optimally. Yet, if one can obtain an optimal cover refinement operator for the new

search space, the resulting algorithm has a promise of being more efficient as the search is

more effectively focused on the domain specified by the user.

To conclude, one may wonder whether an optimal cover refinement operator exists for

this sequence domain. We will give a brief overview of such an operator here, and will use

the opportunity to illustrate our canonical sequence based approach. We encode a sequence

3.4. Constraints and Inductive Queries 45

(1) Transform-Sequence(S):

(2) Let R := ε;

(3) for i := 1to |S |do

(4) Let (d, i) := S [i];

(5) if d > 0thenR := R• i;

(6) elseR := i•R;

(7) returnR;

Figure 3.4: A procedure for transforming sequences in the domain N× ({−1,1} ×I)∗ to sequences in

the domain I∗.

(1) Refine-Sequence((`,S), I):

(2) Let (d, i) := last(S), S:=∅;

(3) if d > 0then

(4) for alli ∈ Ido

(5) if (i , S [`])∨ (prefix`−1(S) , suffix`−1(S))then

(6) S := S∪ (S • (1, i));

(7) for alli ∈ Ido

(8) S := S∪ (S • (−1, i))

(9) returnS;

Figure 3.5: A procedure for refining sequences in the domain ({−1,1}×I)∗.

using a tuple N× ({−1,1}×I)∗: so, the structure consist of a natural number (that encodes the

length of the original starting pattern) and a sequence of tuples, each of which consists of a

minus one or a plus one, and an item. The procedure for mapping sequences in ({−1,1}×I)∗

to our original sequence domain is given in Figure 3.4. The purpose of the integers is to

define for each item whether it should be appended after the sequence, or prepended before

the sequence. As an example, the sequence (1,A)(1,B)(−1,C) is mapped to sequence CAB.

Each of the elements of this sequence thus encodes the difference with the prefix sequence.

Clearly, every original sequence can be encoded with such new sequences, as one can always

use append-tuples only.

For this new sequence domain, we can define a refinement operator as given in Figure 3.5.

This operator defines an optimal refinement operator for the original domain, as defined in

equation (3.5).

To prove that the operator is indeed optimal, we have to show that for every sequence

in I∗ • S ′ • I∗ this operator enumerates exactly one sequence in the N× ({−1,1},I)∗ do-

main. Given a sequence S = S 1 • S
′ • S 2 which contains the given starting sequence S

′,

there are many ways to encode this sequence in the new sequence domain. For example,

CABD may be encoded by (2, (1,A)(1,B)(−1,C)(1,D)), or (2, (1,A)(1,B)(1,D)(−1,C)), or

(2, (1,B)(1,D)(−1,A)(−1,C)), etc. Our refinement operator is based on the idea that in every

sequence S that contains S ′, there is only one last position in S at which S ′ starts. Canonical

46 3. Theory of Inductive Databases

is the encoding which starts with the encoding of the last occurrence of the starting sequence

S ′. Indeed, every sequence S is obtained once if we follow these two phases:

1. first only add items after starting sequence S ′, where we make sure that in every ex-

tended sequence starting sequence S ′ does not occur at a later position than the first

position (line 5 of R-S); thus, (2, (1,A)(1,B)(1,A)) may not be refined into

(2, (1,A)(1,B)(1,A)(1,B));

2. then only prepend items before the sequence obtained in the first phase (line 3 of

R-S). Any items that we prepend will not affect the latest possible starting

position of the starting sequence. Sequence (2, (1,A)(1,B)(−1,B)) may be refined to

(2, (1,A)(1,B)(−1,B)(−1,A)). This encoding still starts with the last occurrence of AB

in the original sequence.

Using these rules a sequence S can be transformed into one unique new encoding: first search

for the last position of the starting sequence S ′ in S . Encode the starting sequence using only

tuples of the form (1, i), then add all items after the last ending position using tuples of the

form (1, i) and finally add all items before the last starting position using tuples of the form

(−1, i). Every prefix of a canonical sequence in the new sequence domain is also canonical:

• every prefix starts with the last occurrence of S ′ in the corresponding sequence;

• every prefix starts with a sequence of positive tuples followed by a sequence of negative

tuples.

The operator is therefore guaranteed to enumerate all sequences and is optimal.

For many domains it is currently unknown whether optimal cover refinement from starting

structures is possible or not; also, issues like optimal refinement frommultiple structures have

never been studied.

We will consider many transformations between patterns and sequence domains in more

detail in later chapters. For these other domains we will also provide more extensive proofs

of correctness. Once again, we have seen now already that for an efficient refinement operator

an appropriate sequential encoding can be of vital importance.

Constraints based on data

Most common are constraints based on data. We have often referred to the most popular such

constraint already: the minimum support constraint. We will take a closer look at such data

constraints now.

These constraints assume that a databaseD is given and that there is some kind of mono-

tonic mapping from patterns in the search space to supports as obtained from the data. Most

common is the following approach:

• subdivide the database into separate parts; in literature these parts have been given

names like ‘instances’, ‘examples’, ‘transactions’ or ‘interpretations’; these parts are

transformed to the pattern domain. Formally, D ⊆ {(t, x) | x ∈ X, t ∈ A}, where for all

(t1, x1), (t2, x2) ∈ D : t1 = t2⇒ x1 = x2;

3.4. Constraints and Inductive Queries 47

• use a quasi-order between patterns to define occurrences as

occD(x) = {t | (t,y) ∈ D, x � y}.

• define support through this set of occurrences:

supportD(x) = |occD(x)|.

• define a monotonic minimum support constraint such as

q(x) := (supportD(x) ≥ minsup),

or an anti-monotonic maximum support constraint such as

q(x) := (supportD(x) ≤ maxsup).

We call this approach the transaction based approach. To search through the space of struc-

tures a refinement operator is used that is a downward refinement operator for the quasi-order

�.

This approach relies on the assumption that the database can be split into parts reasonably,

and furthermore assumes that it does not matter how many times patterns occur in a single

part of the data. For transactional supermarket databases these choices are obvious, but for

other domains this may not be the case. We will use the item sequence domain again to

illustrate this issue.

Assume that we are given one large sequence, and that we would be interested in finding

‘frequent’ subsequences of this single string. What are the possibilities? We will first consider

a relation similar to the �(0,0) quasi-order. Given a database D (which is a single non-empty

sequence), the support of a sequence can be defined as:

supportD(S) =
∣

∣

∣{k |1 ≤ k ≤ |D|∧S is a prefix of suffixk(D) }
∣

∣

∣ .

As an example we will consider D = AABAB. Then supportD(AB) = |{2,4}| = 2. If used in

a minimum support constraint the constraint is monotonic when the patterns are ordered by

�(0,0).

Another definition of support is:

supportD(S) =
∣

∣

∣{k |1 ≤ k ≤ |D|∧D[k] = S [1]∧S �(0,∞) D[k . . . |D|] }
∣

∣

∣ .

In this case supportD(AB) = |{1,2,4}| = 3. When patterns are ordered under �prefix the min-

imum support constraint is monotonic: if sequence S starts at position i, then clearly any

prefix of S starts at that position too. The constraint is however no longer monotonic when

the patterns are ordered under �(0,0). For example: supportD(B) = |{3,5}| = 2, which is lower

than the support of AB, although B �(0,0) AB. As a consequence, only algorithms that use re-

finement operators that are downward or upward under �prefix can be used; fortunately, many

refinement operators are indeed downward under this relation.

Similar observations hold when patterns are ordered under�(0,∞). One may wonder whether

there is a definition of support which is monotonic under�(0,0) or�(0,∞). We propose one here:

supportD(S) = min
1≤k≤|S |

wD(k,S),

48 3. Theory of Inductive Databases

where

wD(k,S) = |{1 ≤ j ≤ |D| | D[j] = S [k] ∧

S [1 . . . (k−1)] �(0,∞) D[1 . . . (j−1)] ∧

S [(k+1) . . . |S |] �(0,∞) D[(j+1) . . . |D|] }|.

For this definition it holds that supportD(AB) =min{|{1,2,4}|, |{3,5}|} = 2. To prove the mono-

tonicity under �(0,∞) consider a sequence S
′ �(0,∞) S and an arbitrary series of indexes 1 ≤

k1 < k2 < · · ·< k` ≤ |S | such that S
′[j]= S [k j], for 1≤ j≤ `= |S

′|. Then it holds thatwD(j,S
′)≥

wD(k j,S): to all positions to which the k jth element of S can be mapped, also the jth element

of S ′ can be mapped. Furthermore, it holds that min1≤k≤mwD(k,S) ≤ min1≤ j≤`wD(k j,S).

Therefore

supportD(S) = min
1≤k≤|S |

wD(k,S) ≤ min
1≤ j≤`

wD(k j,S) ≤ min
1≤k≤`

wD(k,S
′) = supportD(S

′).

This examples shows that one must be careful in the selection of the support definition, but

also demonstrates that for many quasi-orders one can still define minimum support constraints

that are monotonic. We will use a similar approach in a later chapter.

Combining relations

Until now we have seen several elements of inductive data mining algorithms: refinement

operators, relations between patterns and relations between patterns and data. As long as

only one relation is involved, the situation is most of the time clear, as for example in the

case of itemsets. However, if the query involves multiple relations, or when complex kinds of

structures are involved, the picture is less clear. As this problem has not been studied as far

as we are aware of, we will provide some comments on it here.

We believe that an inductive query within our basic setting consists of two parts:

• a definition of the search space: itemsets, sequences, paths, . . .

• a definition of constraints on the structures in the search space.

The constraints determine which relations between the patterns are important. This in turn

determines which search procedures can be used.

As an illustration, consider the following inductive query on the search space of item

sequences:

q(S) := (support
�(0,0)

D
(S) ≥ minsup1∧ support

�(0,β)

D
(S) ≥ minsup2),

where minsup2 > minsup1 and we assume transaction based supports. To perform a search

using a downward refinement operator for the support
�(0,β)

D
(S) ≥ minsup2 constraint, we need

a relation between sequences for which this constraint is monotonic. Relation �(0,β) is not

such a relation. We have already seen that �(0,β) is not transitive. Different relations between

sequences however do have the transitivity property and are usable in combination with �(0,β)-

like relations:

• �(0,0): if S
′ �(0,β) S

′′ and S �(0,0) S
′, then one can show that S �(0,β) S

′′.

3.4. Constraints and Inductive Queries 49

• �prefix: if S
′ �(0,β) S

′′ and S �prefix S
′, then one can show that S �(0,β) S

′′.

As under these relations optimal refinement operators do exist for the search space, we can

use these relations instead. The completeness of the search is still guaranteed. Which of the

above two relations is preferable? The �(0,0) relation is less restrictive than the �prefix relation.

It therefore offers additional opportunities for pruning; more precisely: for the �prefix relation

one can design an upward refinement operator which checks for a given sequence whether all

its subsequences are frequent, in a similar fashion as the A algorithm.

In general, there may be many relations that can be used during the search. The least

restrictive relation that still is a quasi-order and guarantees the monotonicity of the constraints

will offer the largest number of possibilities for pruning with an upward refinement operator.

Which relation is used exactly is an element of choice when designing mining algorithms.

In the example query two support constraints were included. Several query evaluation

plans are feasible, similar to those for other (inductive) queries. An option is to evaluate both

support
�(0,0)

D
(S) and support

�(0,β)

D
(S) in one pass over the data, and to continue refinement only

if both constraints are satisfied. We can use one refinement operator to this purpose.

Another possibility is to use two separate algorithms to compute the sets of results, and to

merge these results later. Such an approach is especially beneficial for queries like this one:

q(S) := (support
�(0,0)

D
(S) ≥ minsup1∧ support

�I
D
(S) ≥ minsup2),

where again minsup2 > minsup1. To find the answer to this query one can proceed in three

steps:

1. conceive D as an itemset database using function set(S); find all frequent itemsets for

this database;

2. find all �(0,0)-frequent sequences inD;

3. determine for each frequent sequence whether it represents a frequent itemset found in

the first phase.

Alternatively, one can also merge these two last phases and prune in the second phase already:

after all, if a sequence is not frequent as an itemset, none of its supersequences can be frequent

as an itemset, and we do not need to consider that sequence any further. If all three phases are

merged into one phase by repeatedly counting sequences as itemsets, a redundant number of

computations would be performed. A good inductive query engine would appropriately split

the computation in at least two phases.

An engine which answers such queries systematically may also be of interest if one is

interested in the following kind of knowledge. Assume that one has a database that consists

of item sequences, and it is of interest to know whether some sets of items always occur in

the same order, then the following query may find those sequences:

q(S) := (support
�(0,0)

D
(S) ≥ minsup1∧ |support

�(0,0)

D
(S)− support

�I
D
(S)| ≤ d),

where d is a threshold like minsup1. This query searches for frequent sequences for which

the support (almost) equals the support of the corresponding itemset. If this is the case, then

50 3. Theory of Inductive Databases

this set of items (almost) always occurs in the same order. As we know that support
�I
D
(S) ≥

support
�(0,0)

D
(S) this query can be rewritten into:

q(S) := (support
�(0,0)

D
(S) ≥ minsup1∧ support

�I
D
(S) ≥ (minsup1+d)∧

|support
�(0,0)

D
(S)− support

�I
D
(S)| ≤ d);

the first part of this query was our starting point.

To the best of our knowledge such inductive queries which include multiple orders have

not been studied extensively in literature, and no theory on the optimizations of such queries

exists. Our example illustrates that queries can combine constraints both in ordered and un-

ordered domains, and that to answer these queries, algorithms that separately answer elements

of the query can be useful.

3.5 Condensed Representations

As the number of structures that satisfy the constraints may be very large, it is often desirable

to present results in a compact form that is still powerful enough to deliver all the information

that one was interested in.

If one is interested in sets of structures, but not in statistics (like support), then boundary

representations are important. As an example consider the frequent itemset mining problem.

If one is not interested in the individual supports of itemsets, it suffices to only outputmaximal

frequent itemsets [16]. Maximal frequent itemsets are itemsets which are not included in

another frequent itemset. In the example of Figure 2.2 the maximal frequent itemsets are:

{{A,B,C}, {A,B,E}, {C,E}, {D,E}}.

The set of maximal frequent itemsets constitutes a border that separates frequent and infre-

quent itemsets from each other. From this border all frequent itemsets can be reconstructed,

although the exact supports are lost.

Similar to the border for this monotonic constraint, also a border for an anti-monotonic

constraint can be obtained. Again this border separates patterns from each other that do and

do not satisfy the constraint.

If both monotonic and anti-monotonic constraints are combined these two borders enclose

a subspace of the original search space. The monotonic constraints define a border of most

specific patterns (the S-border), while the anti-monotonic constraints define a border of least

general patterns (the G-border). As this growing procedure is similar to growing S-borders

and G-borders when learning concepts from positive and negative examples, the correspond-

ing theory of Mitchell [134] and Hirsh [80] on version spaces in machine learning is also

applicable here.

Definition 3.8Let (X,�) be a partially ordered set and let X ⊆ X. Then the S-border of X

is the set {x ∈ X |¬∃y ∈ X : x � y}. The G-border of X is the set {x ∈ X |¬∃y ∈ X : y � x}.

Set X is a boundary-set representable version space iff X = {x ∈ X|∃y ∈G-border(X),z ∈

S-border(X) such that y � x � z}.

3.5. Condensed Representations 51

Top element of the partial order

Version

Space (1)

G−Border(1)

S−Border(1)

VersionSpace (2)

G−Border(2)

S−Border(2)

Top element of the partial order

S−Border

G−Border

Version Space

M
o
re g
en
eral

M
o
re sp
ecific

(b) A 2 Dimensional Version Space(a) A 1 Dimensional Version Space

Figure 3.6:Version spaces.

A typical illustration of a boundary-set representable version space is given in Figure 3.6(a).

In most practical situations there is one top element (similar to> in lattices) in the quasi-order.

Two borders enclose the resulting set of structures. However, the result sets of queries of the

form

q(x) := (qm1 (x)∧qa1(x))∨ (qm2 (x)∧qa2(x))

may not be version spaces. An illustration of one of the potential result sets of this query

is given in Figure 3.6(b). In this case there is a set of patterns in between the most general

G-border and the most specific S-border that is not part of the result set. Intuitively, however,

it is clear that the result set seems to consist of two version spaces. De Raedt, Lee et al.

introduced the concept of higher dimensional version spaces to cope with such situations.

Theoretical questions include:

• what is the dimension of a result set?

• what is the complexity of finding a low dimensional version space?

These issues are addressed in [114, 50, 54] and are closely related to the issue of query

rewriting.

Just like minimum support is the most commonly used monotonic constraint, maximum

support is one of the most commonly used anti-monotonic constraints. The idea is that a

pattern which is frequent in one database and infrequent in another, distinguishes these two

databases from each other. It can be argued that in some situations, the only border that is then

of interest is the G-border: theseminimal discriminating patterns are the smallest patterns that

still distinguish the two databases from each other according to the frequency constraints.

Other patterns either do not discriminate, or are a superpattern of one of the minimal ones.

If one is interested in more statistics about discovered structures, less compact represen-

tations are necessary, as was initially observed in [124]. Several such representations have

been studied, mostly in the domain of frequent itemset mining.

One of the first representations to be introduced was based on free itemsets (also some-

times called generator itemsets [154, 105]). An itemset I is free if support(I), support(I′) for

52 3. Theory of Inductive Databases

all I′ ⊂ I.The set of all free itemsets is not sufficient to recompute all frequent itemsets and

their supports.Possibilities to make the representation concise are to add negative generator

borders [105],or to add the maximal frequent itemsets [26].Also for more general structures

the set of free structures together with the maximal structures (or negative generator borders)

is sufficient to recompute all supports,as follows.Let Xfree denote the set of free structures

found bya free structure mining algorithm,and let Xmaximal denote the set of maximal fre-

quent structures. Given a structure x ∈ X, if y � x for an y ∈ Xmaximal, then x is infrequent.

Otherwise, we have that

support(x) := min
y�x,y∈Xfree

support(y).

Clearly, the support of xmust equal the support of some structure y � x, y ∈Xfree. The support

of a structure cannot be higher than that of the substructure with the lowest support, due to

the monotonicity of the support constraint.

In the context of itemsets a nice property of the free itemset constraint is that it is mono-

tonic: a superset of an itemset that is not free, cannot be free either. This property does not

generalize to other structures, however. Consider sequences ordered by �(0,∞) and a database

that contains two sequences: AB and BA. Both sequences with one item, A and B, are not

free, as the empty sequence has the same support. However, the supersequences AB and BA

are free again, and should not be pruned. A less trivial example is provided by a database of

sequences ABC and BACB. Here AB, AC and BC are not free subsequences. Still, ABC is free,

thus violating the monotonicity property.

The free itemsets were used by Pasquier et al. in [154] to find another condensed repre-

sentation: the closed itemsets. An itemset I is closed if support(I) , support(I′) for all I′ ⊃ I.

As maximal itemsets are also closed, it is not necessary to store maximal itemsets explicitly

within this condensed representation. The support of any structure can again be computed

from the set of closed structures Xclosed:

support(x) = max
x�y,y∈Xclosed

support(y).

The argumentation is similar as for free itemsets: the support of a structure must equal the

support of one of its closed superstructures (otherwise it is closed itself); the support of a

structure must be higher than that of the most frequent superstructure. For the discovery of

closed itemsets several other algorithms have been proposed, also for other domains. While

the C algorithm of Pasquier et al. was based on the traditional A algorithm, the

Calgorithm of Zaki et al. was based on the E[206], and the Calgorithm of

Pei et al. was based on FP-G[157].

In their seminal paper, Pasquier et al. also remarked that there is strong connection be-

tween closed itemsets, Formal Concepts Analysis (FCA) and the Galois (concept)lattices

that are part of FCA: as the union and the intersection of closed itemsets are again closed

itemsets, the closed itemsets (when ordered by the subset relation) constitute a (join) semi-

lattice. As for other structures the join is not defined (two sequences cannot be joined into one

unique new sequence), this observation does not hold for other structures; however, to over-

come this theoretical problem one has proposed to use powersets of structures as elements of

a lattice instead [34].

Yet another condensed representation relies on non-derivable itemsets, and was proposed

by Calders et al. [33]. Abstractly, a non-derivable itemset is an itemset whose support cannot

3.6. Mining under Monotonic Constraints; Merge Operators 53

be computed from the supports of its subsets. We have already seen that, due to the mono-

tonicity property, the support of an itemset can be bounded from above by the supports of

its subsets. Essential in the work of Calders et al. is that supports of itemsets can also be

bounded from below. For example, support({A,B,C}) ≥support({A,B}) +support({A,C}) −

support({A}).Atightlowerboundforanitemsetcanbedeterminedbyconsideringmulti-

plerulesofthiskind;similarly, alsotightupperboundscanbeobtained.Ifthelowerbound

matchestheupperbound, theitemsetisderivable.

Theideaofnon-derivableitemsetscannoteasilybegeneralizedtootherkindsofstruc-

tures.ConsideranexampledatabasewithtwosequencesACBandABC.Herewehaveunder

relation�(0,∞) thatsupport(AB) =2,support(AC) =2,support(A) =2, A �(0,∞) AB, A �(0,∞)
AC, AB�(0,∞) ABCandAC�(0,∞) ABC;yetwecannotobtainalowerboundonthesupportina

similarwayasforitemsets:support(ABC) = 1 <support(AB)+support(AC)−support(A) =2.

Severalofthecondensedrepresentationsdiscussedinthissectionhavealsobeenused

explicitlyininductivequeryminingalgorithms.Wewillseeanexamplelater.

3.6 Mining under Monotonic Constraints; Merge Operators

Themostbasicconstraintsthatcanbeusedinthedataminingprocessarethemonotoniccon-

straints, amongwhichthewell-knownA constraint.Themostbasicstructuremining

algorithmsarethereforethealgorithmsthatmineundermonotonicconstraintsonly.Wewill

considertheirgeneralsetupinthissection.Animportantelementofthisdiscussionisafor-

malismfordealingwithmorecomplicatedsearchproceduresthanthosethatexplicitlyrely

ondownwardrefinement.Inthenextsection, wewillconsiderabroaderclassofalgorithms

thatalsodealwithanti-monotonicconstraints.

Themostwell-knownalgorithmistheAalgorithm, whichcanbeformalizedasin

Figure3.7formonotonicinductivequeriesq andstructuresX ingeneral.Letusconsider

thecasefirstthatonlydownwardandupwardrefinementoperatorsareused.Thecandidate

generationcanthenbeformalizedasinA-G-R-S:inthisprocedure

firstanoptimaldownwardrefinementoperatorisappliedtorefinestructuresthatpreviously

satisfiedtheconstraints(line(4)).Then, asanoptionalnextstep, thestructuresthusobtained

arerefinedupwardtoprunethesetofcandidatesfurther(line(5)).

Togrowstructuresinassmallstepsaspossible, itisdesirablethatthedownwardre-

finementoperatorisacoveroperator.Strictly, however, thisisnotnecessary, andaproper

refinementoperatorissufficient.Furthermore, notethatonecanalwayschooseδ(y) = ∅ as

upwardrefinementoperator;inthatcasenoadditionalpruningisperformed.

Wesawinthepreviouschapter, however, thatmostfrequentitemsetminingalgorithms

donotusearefinementoperatorthatgeneratesitemsets.Instead, theyuseamechanismin

whichitemsetsaremergedtogeneratenewitemsets.Howdosuchmechanismsforgenerating

candidatesfitwithinthegeneralA-Salgorithm?Tomakethatclear, wewill

introducemergeoperatorshereinasimilarwayasrefinementoperatorshavebeendefined

54 3.TheoryofInductiveDatabases

(1) Apriori-Gen-Refine-

Structures(F ,Fk−1):

(2) Ck := ∅;

(3) for all x ∈ Fk−1 do

(4) for all y ∈ ρ(x)do

(5) if δ(y)\F = ∅then

(6) Ck := Ck ∪{y};

(7) returnCk;

(1) Apriori-Gen-Merge-

Structures(F ,Fk−1):

(2) Ck := ∅;

(3) for all x,y ∈ Fk−1 do

(4) for all z ∈ µ(x,y)do

(5) if δ(z)\F = ∅then

(6) Ck := Ck ∪{z};

(7) returnCk;

(1) Apriori-Structures(D):

(2) C1 := {x ∈ mub(X) |q(x) = true};

(3) k := 1;

(4) whileCk , ∅do

(5) Fk := {x ∈ Ck |q(x) = true};

(6) F := F ∪Fk;

(7) k := k+1;

(8) Ck := A-G-*-S(Fk−1);

(9) returnF ;

Figure 3.7:TheAalgorithmformininggeneralstructures.Candidategenerationcanbeperformed

throughrefinement(left)orthroughmerges(right).

previously in literature. An example of a merge operator is:

µ(I1, I2) =

{

{I1 •last(I2)} iflast(I1) <last(I2) and prefix(I1) = prefix(I2);

∅ otherwise.
(3.13)

This operator reflects the way that Amerges item sequences with common prefixes. As

we will see, most merge operators for other structures also rely on sequences and common

prefixes of sequences for an efficient implementation. We will see some exceptions in Chapter

6on graph mining, however.

Definition 3.9Let X be a domain of structures, and let X be a finite subset of X.

• A merge operator is a total function µ : X×X→ 2X.

• Merge operator µ is finite if for all x,y ∈ X: µ(x,y) is finite. Unless stated otherwise, we

assume that merge operators are finite.

• µn(X) denotes the n−step merge of the set of structures X:

µn(X) =

{
⋃

x,y∈X µ(x,y) if n = 1;
⋃

x,y∈µn−1(X) µ(x,y) otherwise.

• µ∗(X) denotes the set

X∪µ(X)∪µ2(X)∪µ3(X)∪ . . .

• (X,µ) is a globallycomplete merge procedure for domain X if µ∗(X) = X.

3.6. Mining under Monotonic Constraints; Merge Operators 55

• (X,µ) isanoptimalmergeprocedureif(X,µ) isgloballycompleteandforeveryx ∈ X,

ifthereisnotexactlyonetuple(y,z) inX×X forwhichx ∈ µ(y,z), thenx ∈ X and

x < µ(y,z) foralltuples(y,z) ∈ X×X.

• mergeoperatorµ isdownwardunderrelation� iffforallx,y,z ∈ X : x ∈ µ(y,z)⇒ y �

x∧ z � x.

• downwardmergeoperatorµ iscoverunderrelation� iffforallx ∈ µ(y,z), x isadown-

ward cover of both y and z.

Using the merge operator, the A-G-M-S procedure can be written

as in Figure 3.7.

Note that in our definition of merge operators there is a straightforward connection be-

tween refinement operators and merge operators. If ρ is an optimal downward cover refine-

ment operator, then the following is an optimal downward cover merge operator:

µ(y,z) =

{

ρ(y) if y = z;

∅ otherwise.

However, this operator is highly undesirable from an efficiency point of view. The merge

operator of A is based on the idea that it is more efficient to generate itemsets by com-

bining two other itemsets, as this gives a higher chance of generating itemsets that cannot be

pruned by a subsequent upward refinement operator. Ideally, one would therefore have opti-

mal downward cover merge operators for which µ(x, x) = ∅ for every x ∈ X. Do such merge

operators always exist? Unfortunately, the sequence domain already illustrates that this is not

the case. Sequence AAAA has only one element in its upward cover. It is therefore impossible

to define a downward cover merge operator that merges two different sequences with this se-

quence as a result. The question is therefore not ifit is always possible to define a nice merge

operator, but to what extent this is the case.

To gain insights in that question it appears of interest to write optimal downward cover

merge operators in the following form:

µ(x,y) = {z ∈ ρ(x) |δ(z) = {x,y}}, (3.14)

where ρ is an optimal downward cover refinement operator, and δ is an upward cover refine-

ment operator, such that for all x,y ∈ X : y ∈ ρ(x) =⇒ x ∈ δ(y). Any optimal cover merge

operator can be written in this form as ρ and δ can be defined as follows:

ρ(x) = {z ∈ µ(x,y) |y ∈ X}; (3.15)

δ(z) = {x,y |z ∈ µ(x,y)}.

One can easily see that the operators thus defined are indeed optimal downward and upward

cover refinement operators.

This rewriting can also be used in the reverse direction. Let (X,µ) be a merge procedure.

Then if µ can be written as in equation (3.14), such that (X,ρ) is a known optimal downward

cover refinement procedure, and δ is an upward cover refinement operator, then we know that:

• µ is downward cover;

56 3. Theory of Inductive Databases

(1) Depth-First-Structures(x,F):

(2) Fk:=∅;

(3) for all y ∈ ρ(x) do

(4) if δ(y)\F = ∅ then

(5) if q(y) = true then

(6) F :=F ∪{y};

(7) Fk:=Fk ∪{y};

(8) for all y ∈ Fk do

(9) D-F-S(y,F);

(10) return F ;

(1) Depth-First-Structures(x,Fk−1,F):

(2) Fk:=∅;

(3) for all z ∈ {µ(x,y) |y ∈ Fk−1} do

(4) if δ(z)\F = ∅then

(5) if q(z) = true then

(6) F :=F ∪{z};

(7) Fk:=Fk ∪{z};

(8) for all z ∈ Fk do

(9) D-F-S(z,Fk,F);

(10) return F ;

Figure 3.8:Adepth-first algorithm for mining general structures. Candidates can be generated through

refinements (left) or through merges (right).

• (X,µ) is globally complete;

• (X,µ) is optimal.

Given the close relationship between refinement operators and merge operators, we can now

also define suboptimal merge procedures: we call a merge procedure suboptimal if the merge

operator can be defined by the combination of an upward refinement operator and a subopti-

mal downward refinement operator.

Let us illustrate the use of merge operators by considering A. For the sake of sim-

plicity, we assume that the search space is X = 2I\∅, and that the search starts from the set of

single items, X = {{i} | i ∈ I}. The merge operator of equation (3.13) can also be specified as:

µ(I1, I2) = {I1 • i | i ∈ I, i > last(I1), I2 = prefix(I1)• i}.

Decomposed as in equation (3.15) the merge operator is thus specified by downward refine-

ment operator ρ(I) = {I • i | i ∈ I, i > last(I)} and upward refinement operator δ(I) = {prefix(I),

prefix−2(I) • last(I)} (where |I| ≥ 2). As both are cover, µ must also be cover. The optimality

of µ follows from the optimality of ρ.

We noted already that our definition of merge operators is such that any optimal refine-

ment operator can be turned into a trivial optimal merge operator. For many purposes it

is convenient to separate the merge operator in two parts, which we call the join operator

join(x,y) = µ(x,y) with x , y and the extension operator extend(x) = µ(x, x). For a maximum

amount of pruning, it is desirable that the extension operator always returns the empty set.

Similar to the A algorithm also depth-first algorithms can be described in general

ways (Figure 3.8). In the most basic form only a downward refinement operator is used,

optionally combined with an upward refinement operator. Many depth-first algorithms do not

store the set F in a datastructure that is efficiently accessible: indeed, to save memory most

algorithms write every frequent itemset to disk immediately after it is found. Therefore most

algorithms do not use an upward refinement operator in line (4). If an operator is used, special

care should be taken that only substructures are generated that could have been considered

already by the algorithm.

More advanced algorithms use a merge operator instead of a pure refinement operator.

However, in comparison with A this merge operator can only merge structures locally

3.6. Mining under Monotonic Constraints; Merge Operators 57

if they occur together in the same set Fk during the depth-first recursion. So, even if the merge

operator is complete, the depth-first procedure may have as consequence that the merge of

two structures is never considered. To guarantee that the search is still complete, the merge

operator must satisfy the additional following constraint:

∀x , y ∈ X : if µ(x,y) , ∅ then there exists a z such that x,y ∈ ρ(z), (3.16)

where ρ is the optimal refinement operator as defined by optimal merge operator µ. This can

be seen by observing that the refinement operator ρ (as defined by equation (3.15)) determines

exactly the set of structures that are put into the set Fk for a given structure x. If in an optimal

merge procedure some structure can only be reached through ajoin, these two structures must

be part of the same set Fk, which is guaranteed in a merge procedure that satisfies the above

condition.

The A merge operator is an example of a merge operator that satisfies condition

(3.16). If I3 ∈ µ(I1, I2), then prefix(I1) = prefix(I2) and last(I2) > last(I1) > last(prefix(I1)).

Therefore, I1, I2 ∈ ρ(prefix(I1)) and prefix(I1) is the itemset whose existence we have to prove.

Optimal or suboptimal refinement?

When incorporating refinement operators in pattern mining algorithms the distinction be-

tween optimal and suboptimal refinement can be very blurred. Let us consider the example

of mining itemsets using an algorithm with the following properties:

• it searches depth-first;

• it builds an occurrence sequence of transaction identifiers for each node in the search

tree;

• it applies the refinement operator of equation (3.3) to generate candidates, by allocating

an integer array with an element for each allowed refinement, initialized to zero;

• it determines the frequencies of candidates by scanning each entire transaction of which

the identifier was stored; for each item in the transaction we increase the counter in the

integer array if the item is part of the integer array.

One can argue that this algorithm in fact applies suboptimal refinement: if every transaction is

scanned entirely, including items which are ordered lower than the highest item in the itemset

that is refined, the algorithm internally considers a non-canonical refinement, which however

is not counted.

Note that this algorithm can be turned optimal if we use a bit vector representation for the

transactions; in that case we can start scanning each transaction from the lowest allowed item,

and we would only consider allowable refinements. It is therefore a matter of datastructures

and implementation to what extent the algorithm is truly optimal.

We will see that many pattern mining algorithms are very similar to this example: when

they scan the data to obtain counts for canonical candidates, they consider elements in the data

which, if counted, do not correspond to canonical refinements. However, they reject most of

such data elements immediately using O(1) tests, and do not (try to) count these suboptimal

refinements. Usually, we will see, if one has an efficient optimal refinement operator, this

58 3. Theory of Inductive Databases

also means that one can perform an O(1) test to reject elements corresponding to suboptimal

refinements. By using appropriate datastructures such algorithms can be made truly optimal,

as in the example of itemsets using bit vectors. We believe that it is therefore reasonable to

say that these algorithms use an optimal refinement operator, as this allows us to abstract from

the details of the frequency evaluation. It is however clear that refinement and evaluation can

never be considered entirely in isolation. On the one hand the refinement operator determines

which parts of the data must be scanned, while on the other hand some datastructures may

implicitly result in the consideration of a larger set of candidates than desired.

Downward cover depth-first merge operators — difficulties

In this section we list some further observations with respect to downward cover merge oper-

ators.

First, we wish to illustrate that there are optimal cover merge operators that are not usable

in depth-first mining algorithms. Let us consider the sequence domain again, together with

the merge operator defined by the following refinement operators:

ρ(S) = {S • i | i ∈ I}, δ(S) = {prefix(S),suffix(S)},

which can also be written as

µ(S 1,S 2) =

{

{S 1 • last(S 2)} if suffix(S 1) = prefix(S 2);

∅ otherwise.

As an example of this merge operator consider µ(ABC,BCD)= {ABCD}. Under relation �(0,0)
and starting from sequences {i | i ∈ I} this operator is downward cover, as ρ and δ are cover,

and optimal. However, it cannot be used in join-only depth-first mining algorithms, as ABC ∈

ρ(AB) but BCD < ρ(AB), which violates condition (3.16).

This merge operator also provides insight in the overall existence of join-only merge pro-

cedures. Consider the domain of sequences that contain each item at most once. Then every

sequence of more than one item has at least two different cover subsequences under �(0,0).

The above merge operator is then not only optimal downward cover, but also never requires

extension. A-like algorithms can therefore generate candidates very effectively for this

domain. Our conjecture is that if every structure in a domain has at least two different upward

covers, then an optimal merge-only downward cover merge operator should be constructable,

although it may be hard to obtain an operator that is also practical.

A natural question is whether join-only merging is also always possible in depth-first min-

ing algorithms. The item sequences show that this problem is much harder. Let us assume that

sequence ABCD can be obtained through an optimal downward cover depth-first join-only

merge operator. Then ABCD ∈ µ(ABC,BCD) or ABCD ∈ µ(BCD,ABC), ABC ∈ µ(AB,BC) or

ABC ∈ µ(BC,AB), and BCD ∈ µ(BC,CD) or BCD ∈ µ(CD,BC). For depth-first algorithms,

the corresponding downward refinement operator must be such that {AB,BC} ∈ ρ(B) and

{BC,CD} ∈ ρ(C). However, this would contradict that ρ is an optimal refinement operator,

as BC ∈ ρ(C) and BC ∈ ρ(B). An optimal downward cover merge operator that is usable in

depth-first algorithms can therefore never exist, even for sequences in which items are not

repeated.

3.6. Mining under Monotonic Constraints; Merge Operators 59

Given this negative result, the next question is whether depth-first suboptimal joining is

possible. We can also answer that question negatively using the previous example, at least,

as long as we stick to the gap-free subsequence relation. Assume that the item sequences

are encoded in some other sequence domain (see also section 3.4 for an example), and that

there is a mapping from the new sequence domain to the old one. To relate the sequences in

the new domain we use the gap-free subsequence relation of the old domain. In principle a

suboptimal refinement operator in the new domain could generate BCmultiple times, but only

if two different representations were generated (in our example of section 3.4, (1,B)(1,C) and

(1,C)(−1,B)). A representation of ABCDmust however be the join of representations of ABC

and BCD; in a depth-first, join-only procedure both sequences can only be refinements of

a single representation of CD. Accordingly, the representation of ABC can only be obtained

through the join of single representations of AB and BC, which must have been obtained from

a single representation of sequence B. Similarly, we can also reason that C is the single parent

of BC, and we obtain a contradiction again.

Of interest is to determine where these negative results come from, for if we know this,

we may find ways to work around them. We believe that the clue lies in the relation that is

used: if we relax the subsequence relation by allowing gaps, suddenly the possibilities for

joining sequences increase drastically, even in depth-first algorithms: any sequence S can

be obtained by joining prefix(S) and prefix−2(S) • last(S). Please note that it is possible that

prefix(S)= prefix−2(S)• last(S), in which case we strictly do not have a join, but an extension.

Given the similarity between this extension and the other joins, we call this extension a self-

join.

Can we use this observation to mine frequent paths without gaps? A solution could be to

introduce a new pattern language of almost gap-free sequences. An almost gap-free sequence

could be conceived as a tuple (S ,σ), where σ ∈ Σ∪ {ε}. We could define that (S 1,σ1) �(0,0)
(S 2,σ2) iff there is a position k in S

′
2
= S 2 •σ2 such that S

′
2
[k . . . (k+ |S 1| − 1)] = S 1 and, if

σ , ε, S ′
2
[k′] = σ, for a k′ > k+ |S 1|: so, the traditional part of the sequence must be mapped

without gaps, but we have the option of including an additional symbol σ which must be

mapped with a gap. Then we can define a downward refinement operator which only refines

sequences of the form (S , ε):

ρ(S , ε) = {(S •σ,ε), (S ,σ) | σ ∈ Σ},

while the following upward refinement operator can be used:

ρ(S ,σ) =















{(prefix(S), ε), (prefix−2(S), last(S)} if σ = ε;

{(S , ε), (prefix(S),σ)} otherwise.

It can be checked that this merge procedure allows a similar amount of joins as a merge

procedure for sequences with gaps. By only considering those patterns in which σ = ε, the

original search space of gap-free sequences is obtained. Using these operators, a new fre-

quent gap-free sequence miner could be implemented that still relies on joins or self-joins

only. However, this feature comes at the expense of a suboptimal refinement operator in com-

bination with a modified relation between non-canonical sequences. It does not weaken our

claim that optimal depth-first, join-only mining of frequent sequences is impossible.

60 3. Theory of Inductive Databases

3.7 Inductive Database Mining Algorithms

It is clear from the previous section that algorithms that solve queries of the form qm(x)∧qa(x)

are core elements of inductive database systems. In this section we will provide a brief review

of algorithms that were specifically designed to solve combinations of monotonic and (some)

anti-monotonic constraints. Most such algorithms were developed for the specific domain of

itemsets. We will comment on their suitability for more general domains, however.

One of the first algorithms to incorporate constraints was developed by Srikant et al.

[178]. This algorithm allowed users to enforce constraints on items in output itemsets. This

work was extended by Ng et al. in the A-like CAP algorithm [141, 140]. In this algo-

rithm two kinds of constraints were exploited during the search: monotonic constraints, and a

class of succinct anti-monotonic constraints. We have already seen that the inclusion of suc-

cinct constraints in the search is also possible within other structural domains, but additional

fine-tuning is required to obtain efficient approaches.

Pei et al. extend the FP-G algorithm for mining itemsets in [155, 156] to deal with

monotonic and anti-monotonic constraints, as follows. Itemsets that do not satisfy monotonic

(minimum support) constraints are removed from projected databases. Anti-monotonic con-

straints are checked for each itemset again, as long as the constraints are not satisfied. An

anti-monotonic constraint is thus no longer checked in one branch of the recursion if the

database is projected on an itemset that satisfies the constraint. Furthermore, the union of an

itemset and all items in its projection is also checked against anti-monotonic constraints; if the

union does not satisfy the constraint, the branch of the search tree is no longer investigated.

A convertible constraint is tackled by appropriately ordering items.

The idea of checking the union of items in a projected database against anti-monotonic

constraints was investigated further by Bucilǎ et al. in the E-like DualMiner algorithm

[32]. Contrary to the modification of FP-G, DualMiner searches depth-first for a bound-

ary representation of the itemsets that satisfy the constraints. A triplet (Iin, Icheck, Iout) is as-

sociated with every node in the depth-first search tree. Element Iin defines the itemset whose

supersets are considered in the corresponding branch of the search tree. Items in Icheck are cur-

rently not included in the itemset, but can be added deeper down the recursion (these items

are part of the projected database). Items in Iout are items which should not be added to the

itemset as it is known that they never lead to itemsets that satisfy the monotonic constraints.

When an item of Icheck is added to Iin as part of the recursing procedure, an iterative proce-

dure is applied to determine a final triplet (Iin, Icheck, Iout) for the new search tree node, and to

determine whether the recursion should continue:

• it is checked whether the set Iin satisfies all monotonic constraints. If not, stop.

• it is checked which individual items in Icheck can be added to Iin to satisfy the monotonic

constraints. Only those that do satisfy the constraints are kept in Icheck, others are moved

to Iout.

• it is checked whether the set Iin∪ Icheck satisfies the anti-monotonic constraints. If not,

stop. Every item i ∈ Icheck for which itemset (Iin ∪ Icheck)\i does not satisfy the anti-

3.7. Inductive Database Mining Algorithms 61

monotonic constraints, is added to Iin. Finally, the procedure is iterated again to deter-

mine whether Iin still satisfies the monotonic constraints.

If the loop reaches a fixed point and items are still left in Icheck the recursion continues, unless

it also appears that Iin ∪ Icheck satisfies the monotonic constraints and Iin satisfies the anti-

monotonic constraints.

Another algorithm which relies on the idea of reaching a fixed point is the FP-B

algorithm [23] of Bonchi et al.. The FP-B algorithm searches for the exact supports

of all itemsets that satisfy monotonic and anti-monotonic constraints. It performs this task by

pruning FP-Trees more aggressively than the algorithm of Pei et al.: it exploits a property that

was the called theExAnte property by its authors, and which comes down to the observation

that a transaction which does not satisfy anti-monotonic constraints, will never support an

itemset that satisfies the anti-monotonic constraints. While building an FP tree all transactions

can be removed that do not satisfy the anti-monotonic constraints. As a result, some items may

become infrequent, and a new tree must be constructed. In this new and smaller tree some

anti-monotonic constraints can become unsatisfied. The process is therefore repeated until a

stable new FP tree is reached.

To what extent can these algorithms be modified easily to deal with other structural do-

mains? The key issue is that both DualMiner and the modification of FP-G use the

property that itemsets constitute a bounded lattice: by joining items in a projected database

one obtains a lower bound for all itemsets in the branch of the recursion. This lower bound is

used to cut away the branch if possible. Such a single lower bound however does not exist in

many other domains; the sequence domain, for example, is already unbounded and cannot be

pruned in such a way.

The FP-B approach, on the other hand, is applicable to structured databases. Also

in structured databases, structures that do not satisfy anti-monotonic constraints can safely

be removed. To use the ExAnte property effectively it is however of importance to apply this

property repeatedly; otherwise, the pruning possibilities are limited to the initialization phase.

Unfortunately, for many structures it turns out to be a hard task to define projected databases

in a correct and efficient way.

More generally applicable may therefore be approaches that do not rely on a maximal

lower bound. The MolFea algorithm of the De Raedt et al. includes such an approach [114,

50, 54, 55, 70] and was originally developed for the item sequence domain. In its basic setup

[114, 54, 55] the algorithm consists of two phases: a forward phase and a backward phase. The

forward phase is similar to the traditional A algorithm; during this phase a downward

refinement operator is used and the monotonic constraints are taken into account to restrict the

search space. As a result of this phase the most specific sequences are found that still satisfy

the monotonic constraints (the S-border). These sequences are taken as the starting points for

a new level-wise algorithm. This algorithm uses an upward refinement operator and removes

sequences that do not satisfy the anti-monotonic constraints. In this way it is fully exploited

that monotonic constraints and anti-monotonic constraints are completely dual.

Let us consider this approach in slightly more detail for a combination of two particular

constraints: a minimum support constraint on one dataset in combination with a maximum

support constraint on another database. So, we are searching for structures

{x ∈ X|supportD1 (x) ≥ minsup∧ supportD2 ≤ maxsup}.

62 3. Theory of Inductive Databases

In MolFea this is solved by first computing F1 = {x ∈ X|supportD1 (x) ≥ minsup} and then

determining F2 = {x ∈ F1 |supportD2 (x) ≤maxsup}. The advantage of this approach is that we

do not only know the borders of the structures that satisfy the constraints, but also the support

of all structures in the output is completely known. It should be pointed out, however, that

evaluation in an upward direction can be costlier than in the other direction. For example,

given two occurrence sets occ(I1) and occ(I2): occ(I1 ∩ I2) , occ(I1)∪ occ(I2). Therefore,

if one is not interested in exact supports, and for example only the S-border and G-border

are of interest, other level-wise approaches may be equally good or even better. The result

set can also be computed by first computing F1 as given above, then computing F2 = {x ∈

F1 |supportD2 (x) >maxsup}, and finally determining F3 = F1\F2. Both approaches are more

or less dual in the set of structures that is evaluated in D2. The final efficiency depends on

which of these two sets is most efficiently evaluated in practice, also taking into account

datastructures such as occurrence sets.

An interesting modification of this approach was presented by Fischer et al. in [70] and

is focused on finding a boundary representation. The approach builds on the observation that

for every structure two constraints have to be evaluated: the monotonic constraints and the

anti-monotonic. A positive evaluation for a monotonic constraint can also be obtained by

evaluating supersequences; a negative evaluation for the monotonic constraint can also be

obtained by evaluating subsequences. Similar observations also apply to the anti-monotonic

constraints.

The idea is to store tuples (S ,q) of sequences S and constraints q in a priority queue (so,

the same sequence S may occur twice, as (S ,qm) for the monotonic constraint, and as (S ,qa)

for the anti-monotonic constraint). A tuple (S ,q) is put in the priority queue if the outcome

of the query q(S) is not known yet. The tuple with the highest priority is iteratively removed

from the queue, the query q(S) is evaluated, and the queue is updated:

• if q is monotonic and q(S) is true, all tuples (S ′,q′), where S ′ �(0,0) S and q
′ is either

monotonic or anti-monotonic, are removed from the queue (including (S ,q) itself);

these sequences are marked with a positive evaluation on q in a prefix trie;

• if q is monotonic and q(S) is false, all tuples (S ′,q′), where S �(0,0) S
′ and q′ is either

monotonic or anti-monotonic, are removed from the queue (including (S ,q) itself);

these sequences are marked with a negative evaluation on q in a prefix trie;

• if q is anti-monotonic and q(S) was false, all tuples (S ′,q), where S ′ �(0,0) S , are re-

moved from the queue and marked as evaluated on q in a prefix trie.

• if q is anti-monotonic and q(S) was true, all tuples (S ′,q), where S �(0,0) S
′, are re-

moved from the queue and marked as evaluated on q in a prefix trie.

If a tuple (S ,q) is removed from the queue and q is a monotonic constraint that evaluates

to true, an optimal refinement operator is applied to refine the sequence. The refinement

continues recursively until sequences are obtained for which the outcome of the monotonic

constraint qm can no longer be predicted from the sequences that have already been evaluated.

The unknown sequences are again entered in the priority queue.

A nice feature of this approach is that it allows for optimization of the search through

manipulations of the priorities. In [70] an approach is taken that tries to estimate for a single

3.7. Inductive Database Mining Algorithms 63

tuple how many passes through the database can be saved by evaluating that tuple. In this

way it is attempted to minimize the number of evaluations of data-based constraints.

Furthermore, it is possible to apply this approach to any structural domain for which

reasonable upward and downward refinement operators exist.

Several issues of this approach have however not been addressed yet. The approach allows

for the efficient computation of a boundary representation, but does not build a representation

of all exact supports within the version space. It assumes that the construction of a prefix-trie

of found structures is feasible. Finally, many itemset mining algorithms are efficient due to the

creation of efficient intermediate datastructures, such as vertical databases or FP-trees. It is

not yet clear how such additional datastructures, which sometimes are only feasible in depth-

first algorithms that work in a downward direction, can be incorporated into this framework.

In some cases, it can be argued that only the G-border is the border of interest. Of course

all algorithms for mining under combined monotonic and anti-monotonic constraints can

be used to find this border, but in some cases significant improvements can be achieved.

Most obvious is this for the algorithms that check the anti-monotonic constraints in the most

straightforward way, by evaluating them immediately for every pattern that has been found to

satisfy the monotonic constraint: in that case one can stop refining any pattern that satisfies the

anti-monotonic constraint, as any superpattern will also satisfy this constraint. Any structure

mining algorithm, breadth-first or depth-first, can be modified in this simple way. In breadth-

first algorithms, the pruning is performed almost ‘automatically’if an upward refinement

operator is used: if in A-S (see Figure 3.7) we remove from Fk all patterns

for which we discovered after evaluation that it satisfied both the monotonic and the anti-

monotonic constraints, no other patterns will ever be put by A-G-*-S in Ck
which contain this pattern. So, the output only needs to consist of those patterns which after

evaluation were removed from Fk because they were found to satisfy both constraints.

In depth-first algorithms, a little more additional care should be taken. Due to the search

order, it may be possible that a pattern is evaluated for which a subpattern has already been

found that satisfies both constraints; also, it may be possible that a pattern is evaluated that

satisfies both constraints, and is a subpattern of patterns previously considered in the search.

Efficient ways of making sure that the output only consists of patterns on the G-border have

not been studied extensively yet.

In the previous section we saw that boundary representations are not the only repre-

sentations that have been studied. Not much research has been done on the combination

of other representations with anti-monotonic constraints. Some results were obtained by

Boulicaut et al. [27] for a modification of the A-like C algorithm. The main is-

sue that is addressed in this work is illustrated by the following example. Assume that we

have q(I) = (support(I) ≥ 2 ∧ {A,C} ⊆I) as constraint, and furthermore support({A}) = 3,

support({A,B}) = 3, support({A,B,C}) = 2. Then {A,B} is not free and would be pruned by the

original C algorithm. The idea here is that the support of {A,B,C} can be computed from

itemset {B,C} as we know that A can always be added to an itemset that contains B. However,

if we would only output free itemsets that satisfy the constraints, the itemset {A,B,C} would

not be recomputable. The issue is basically addressed by checking the monotonic constraints

on the closures of itemsets instead of on the original itemsets, thus effectively checking anti-

monotonic constraints in the concept lattice instead of on the original lattice.

64 3. Theory of Inductive Databases

3.8 Frequent Sequence Mining Algorithms

In this chapter we repeatedly used the example of mining frequent subsequences. The idea

of mining frequent subsequences is not new, and many algorithms have been developed for

mining such sequences. This section provides a brief overview.

The earliest most well-known algorithm for mining frequent subsequences is the GSP

algorithm of Srikant and Agrawal, published in 1996 [177]. GSP’s problem setting is slightly

more general than our example problem setting, in the sense that GSP mines frequent sub-

sequences of itemsets. GSP allows for the specification of gap constraints: the maximum

distance between two itemsets in an occurrence can be constrained. Algorithmically, the GSP

algorithm is an instance of the A algorithm: it generates candidates breadth-first, and

passes these candidates through the database afterwards.

A broader collection of item sequence mining approaches was lined out by Vilo in 1998

[185]. Vilo proposed an algorithm that allowed for gap constraints, mined one single se-

quence or multiple sequences, and mined depth-first, breadth-first, or otherwise, depending

on the setup of a priority queue. For frequency evaluationVilo proposed the use of occurrence

sequences. Vilo’s occurrence sequence consists of all positions in the database to which the

last element of a pattern can be mapped. The refinement operator of equation (3.4) is used.

The occurrence sequences of refined sequences are computed by scanning the database, start-

ing from occurrences of the common parent.

A similar approach was chosen in 2001 by Pei et al. in the PS algorithm [158],

this time for the problem of mining sequences of itemsets.

The first algorithm to evaluate frequencies using occurrence sequences and to use joins at

the same time, was the CHARM algorithm of Zaki [206]. Although CHARM was introduced

to mine itemset sequences, we only considered item sequences. In that case, an occurrence

sequence in CHARM is not a sequence of positions, as in PS, but a sequence of

position pairs. Each pair consists of a position for the last element of a subsequence, and

a position for the second last element. Algorithmically, such occurrence sequences can be

joined in a very similar way as occurrence sequences for embedded subtrees, which we will

discuss in detail in Chapter 5. When Zaki’s occurrence sequences are used it is no longer

necessary to store the original database, as in PS.

To mine frequent subsequences without gaps, it was already noted by Vilo that A-

like algorithms are not strictly necessary. Contrary to the number of frequent subsequences

with gaps, the number of frequent subsequences without gaps is bounded polynomially by

the size of the database, as each position in a sequence is the start of a linear amount of

gap-free subsequences. To index all subsequences in a database, it suffices to build a suffix

tree. Several algorithms are known which construct such a tree in linear time (linear in the

length of the sequence), for example Ukkonen’s online algorithm [182]. To output all frequent

subsequences a quadratic scan of this suffix tree is sufficient. Thus, all frequent subsequences

in a sequence database can be outputted in quadratic time. Of course, this does not mean

that this solution is always the most practical one. If the database is large, and the frequent

subsequences are expected to be short, it can still be beneficial to apply an A like

algorithm.

3.9. Conclusions 65

3.9 Conclusions

In this chapter we provided an overview of the theory that is of importance for inductive

databases. We payed much attention to the problems involved with optimal refinement. An

optimal refinement operator guarantees that the search is performed complete and as efficient

as possible. Using the relation between itemsets and item sequences we illustrated the issue

of encoding structures as sequences. We promoted the use of canonical sequences for the pur-

pose of efficient refinement, and illustrated the setup on the optimal refinement of sequences

within a restricted search space.

We provided an overview of condensed representations and algorithms for mining un-

der anti-monotonic constraints. From this overview it becomes clear that optimal refinement

operators are of importance in any algorithm. Furthermore, it was shown that an algorithm

that solves inductive queries only under monotonic constraints is an essential part, or a good

starting point otherwise, for algorithms that solve more complex constraints. To illustrate this,

we introduced the novel idea of combining ordered and unordered structures into one query.

This would allow users to define queries that find knowledge about the importance of order in

certain databases. This example also conveys the idea that combining ordered and unordered

structures may be an issue of interest, and that the relations between ordered and unordered

structures justify further study. We will do so in later chapters for more complex structures.

4 Inductive Logic Databases

We consider the use of first order logic in constrained pattern mining algorithms. There are

two basic relations between data and patterns: θ-subsumption and Object Identity (OI) sub-

sumption. Both approaches have advantages and disadvantages; we present weak OI as a

trade off between the two extremes. Taking weak OI as starting point, we define a refinement

procedure that can be used in inductive logic programming (ILP) algorithms. We implement

this idea in a new frequent atom set mining algorithm F. This algorithm includes sev-

eral optimizations for speeding up the evaluation of atom sets. In contrast to other work, our

focus is here on optimizations that do not assume independence of atoms in atom sets.

4.1 Introduction

First order logic is a powerful formalism. Most data of interest can be expressed in first

order logic; if one could mine all data that is represented in a first order logic language,

this would be strong evidence that any kind of knowledge can be mined. An algorithm that

extracts patterns from first order logic data could also be used to benchmark more specialized

algorithms: an algorithm which performs worse than a general first order logic data mining

algorithm, is not worth considering. In this chapter we will consider an algorithm that can be

used to extract knowledge from databases that are expressed in terms of a subset of first order

logic. We will see that this first order logic is still powerful enough to express the problems

of frequent itemset mining, frequent sequence mining, frequent directed subgraph mining

and frequent undirected subgraph mining. We introduce an algorithm called F that is

a suitable general purpose mining algorithm. Experiments show to what extent F is

competitive with special purpose algorithms.

The research presented in this chapter is mainly inspired by earlier research of Dehaspe

et al. on a frequent query miner called W [59, 60, 61]. We pay special attention to

the possible relations between atom sets. Here, we use the idea of subsumption under Object

Identity. This idea was introduced by Esposito et al. [69, 118]; we define a new relation that is

68 4. Inductive Logic Databases

somewhere in the middle between ‘traditional’ subsumption and OI subsumption. Intuitively,

the disadvantage of Object Identity is that it forces an ‘identity’ even to attributes of objects.

The main observation that we exploit is that in practice a lot of meta information is available

about datasets, such as for example the primary keys of relations. This information can be

used, for example, to distinguish attributes from objects in an intuitive way. This observation

is somewhat in contrast to other work, where it is claimed that one application of data mining

is to obtain meta information. We believe that for the discovery of basic meta information that

we exploit, such as primary keys, other algorithms than frequent atom set mining algorithms

are more suitable; the Tane algorithm [89]or the Bellman algorithm [48]are examples of

such algorithms that are specially targeted at discovering keys in datasets. They can be used

as a preprocessing step to our algorithm.

The chapter is organized as follows. In section 4.2 we introduce required background

knowledge from the field of inductive logic programming (ILP), including refinement op-

erators, the θ-subsumption relation and the OI-subsumption relation. All these elements are

necessary building blocks for a data mining algorithm, but it turns out that these traditional

relations have undesirable properties when we want to use them in data mining algorithms,

as illustrated in this section. Therefore, we first propose a new relation, the weak OI relation,

in section 4.3. We show that there exists an ideal refinement operator for this relation. As this

refinement operator is mainly of theoretical interest, in section 4.4 we show how to obtain

a refinement operator that can more readily be applied in ILP algorithms. This problem of

frequent atom set mining is then finally introduced in section 4.5. Among others, in this sec-

tion we deal with the issue of defining the support of an atom set. We introduce the F

algorithm, which solves the frequent atom set mining problem by incorporating an optimal

merge operator based on weak OI, in section 4.6. In this section most attention is given to

proving that the merge operator is optimal. We also show that the optimal operator can be

modified in several ways to deal with either more complex types of bias, or more simple

types of bias. Efficient pattern mining involves more than refinement operators, however, for

example, mechanisms for determining support efficiently. These issues are discussed in more

detail in section 4.7, where we introduce our optimizations for situations where atoms are not

independent from each other, as is often the case when using weak OI. Section 4.8 presents

experimental results with our algorithm. Finally, in section 4.9 we give an overview of related

work and section 4.10 concludes.

4.2 First Order Logic

We will briefly review some terminology of first order logic and inductive logic programming

[142, 138]. An atom a = p(t1, . . . , tn) consists of a predicate p of arity n followed by n terms ti
as arguments. A term is traditionally either a constant, a variable, or a function symbol with

terms as arguments. We denote constants and functions with lowercase symbols, while vari-

ables are denoted with capitals. Furthermore we use typewriter fonts to distinguish concrete

predicates, variables and constants from other symbols in this thesis.

If an atom does not contain any variables, the atom is called a fact or a ground atom. We

only consider function-free terms, so a fact consists only of a predicate symbol and of con-

4.2. First Order Logic 69

a

a

G3

abaa

b

a

G2

b

a
a ba

c

G1

a

ab

G4

Figure 4.1: Directed,edge labeled graphs.

Graph From To Label

g1 n1 n2 a

g1 n2 n1 a

g1 n2 n3 a

g1 n3 n1 b

g1 n3 n4 b

g1 n3 n5 c

Figure 4.2: A directed graph represented in a single table.

stants. We defineA(P,C) as the of atoms that can be constructed from the predicate symbols

P and constant symbols C. Definite clause logic without functions is known as Datalog as

there is a close relation between this logic and (relational) databases. For example, a mul-

tiset of facts for a predicate can easily be stored in a relational table: the predicate symbol

corresponds to the name of the table, while the values of the arguments can be stored in the

columns of the table.

As an example we use the representation of a directed, edge labeled graph using a predi-

cate e with four arguments, representing a graph identifier, two node identifiers and an edge

label. Graph G1 in Fig. 4.1 can be represented with the following facts:

D = {k(g1),e(g1,n1,n2,a),e(g1,n2,n1,a),e(g1,n2,n3,a),e(g1,n3,n1,b),

e(g1,n3,n4,b),e(g1,n3,n5,c)}.

To represent graphs as atom sets, we have to introduce identifiers for each of the nodes in the

graphs. In the example we did this in a random way; the order of identifiers is not important

for the conceptual structure of the graph. The edges of the graph can be represented in a table

(see Figure 4.2). In our notation, we have thatP= {e/4,k/1}, C= {n1,n2,n3,n4,n5,g1,a,b,c},

e(g1,n1,n2,a), e(G1,N1,N2,a) ∈ A(P,C). Here p/n denotes that predicate p is of arity n.

In this chapter we only consider databases that consist of collections of facts. These are

exactly the databases that can be represented in (multiple) tables in relational databases. As

patterns we consider sets of atoms. In order to define a search space, to obtain refinement

operators, and to determine a definition of support, it is necessary that we define relations

between sets of atoms.

In the literature, the traditional relation between patterns and data is the so-called θ-

subsumption relation [160]. This relation is based on substitutions of variables. A substitution

θ is a set of the form {V1/t1, . . . ,Vn/tn} where Vi is a variable and ti is a term. One can apply

70 4. Inductive Logic Databases

a substitution θ to an atom a, yielding atom aθ, by simultaneously replacing all variables Vi
in a by their corresponding terms ti. Substitutions can also be applied to sets of atoms by

applying the substitution simultaneously on all atoms in the set.

Alternatively, a substitution can be conceived as a function that maps terms to new terms.

Given an atom set A, a substitution is total if it maps all variables in A to (new) terms. Every

substitution can be extended to a total substitution by adding identity substitutions V/V. An

injective substitution is a total substitution that does not map two variables to the same new

term.

Definition 4.1 (θ-subsumption)An atom set A1 θ-subsumes an atom set A2 (A1 �θ A2) if

there exists a substitution θ such that A1θ ⊆ A2.

We have that θ-subsumption is a quasi-order, but not a partial order as the relation is

not anti-symmetric (consider that {p(a),p(X)} ≡ {p(a)}, or that {p(X)} ≡ {p(Y)}; ≡ denotes the

equivalence relation under θ-subsumption). An atom set is reduced if it is not equivalent with

any of its subsets (so, {p(a)} is reduced, but {p(a),p(X)} is not). Reduced atom sets are the

smallest representatives of a large class of equivalent atom sets.

It can be shown that if two reduced atom sets are equivalent under θ-subsumption, these

atom sets are alphabetic variants of each other: the substitutions involved in the mutual sub-

sumptions only map variables to variables, and thus only give different names to variables.

An interesting question is now the following: given a search space X = [2A(P,C)]θ (so, a

search space consisting of the equivalence classes under θ-subsumption of 2A(P,C)), can one

define optimal, downward cover and ideal downward refinement operators, including locally

complete, locally finite and proper operators, as defined in Section 3.3?

Unfortunately, in [142] it was shown that ideal downward refinement operators cannot

exist. First, it was shown that if an ideal refinement operator exists for a quasi-order, every

structure in that quasi-order must have a finite set of downward covers. Given atom set A1 =

{p(X1,X2),p(X2,X1)} it was then shown that every atom set A2 = A1∪{p(Y1,Y2),p(Y2,Y3), . . . ,

p(Y3n−1,Y3n),p(Y3n,Y1)} with n ≥ 1 is a downward cover of A1 and is reduced. A downward

refinement operator can therefore never be ideal. Of course, as we are dealing with finite

data in data mining, in most cases one can straightforwardly define a maximum size on pat-

terns in the search space. However, that situation would still be far from desirable: atom sets

could frequently be refined up to that maximum size, and the number of refinements may be

impractically large.

Similarly, in [142] it is also shown that a downward cover refinement operator cannot

exist. The observation here is that an atom set A = {p(X,X)} has no upward cover. Every atom

set A′ for which A′ �θ A can only contain atoms of the form p(X,Y) (with X , Y); any such

atom set A′ subsumes atom set Cn = {p(Xj,Xk) | j , k,1 ≤ j,k ≤ n}, where n is the number of

different variables in A′. As A′ �θ Cn �θ Cn+1 �θ A, no upward cover can be constructed.

The remaining question is whether an optimal refinement operator exists for the equiv-

alence classes of atom sets, even if not downward cover. Regretfully, at the time of writing,

this question is unanswered. It is only known that optimal refinement operators exist for other

relations than θ-subsumption and in many less general languages than the one that we defined

here. We will see several examples later. Whether or not an optimal refinement operator ex-

ists seems to be an open problem if we do not require that an optimal refinement operator is

downward cover (as in [142]).

4.2. First Order Logic 71

We can show however that simple restrictions on the search space can alreadybe suffi-

cienttomakeoptimalrefinementofequivalenceclassesimpossible. Forexample,consider

thesearchspaceofallatomsetsthatcontainatleasttheatomsetB = {p(Y1,Y2),p(Y2,Y1)}.

LetAn = {p(X1,X2),p(X2,X3), . . . ,p(X2n,X2n+1),p(X2n+1,X1)}forn ≥ 1. ThenAn ∪ Bwithn ≥

1 isreducedandpartofthesearchspace: anevennumberofX variableswouldbere-

quiredtomapthevariablesofAn totheY variablesofB. Ontheotherhand,everyatom

set(An ∪ B)\{p(Xi,Xj)} with1 ≤ i ≤ 2n+ 1 andj = i mod(2n+ 1)+ 1 isnotreducedunder

θ-subsumption. OptimalrefinementstartingfromatomsetB isnotpossibleaslocallyan

infinitenumberofrefinementswouldberequired.

Thissameexamplealsoshowsthatinthefullatomsetdomainoptimalrefinementisnot

possibleifonlyrefinementsofoneatomareconsidered. Foreveryatoma ∈ (A1 ∪ B) atom

set(A1∪B)\{a}isnotreduced. Thismeansthatatleastoneoftheprefixesoftherefinement

sequenceofA1∪Bisnotreducedandisequivalenttoitsprefix.

Giventheproblemsofrefiningatomsetsunderθ-subsumptionalsootherrelationsbe-

tweenatomsetshavebeenintroduced. Thefollowingsubsumptionrelationhasbeenstudied

inseveralcontexts[52,79],butwefollowterminologyhereasproposedbyEspositoetal.

[69].

Definition 4.2 (OI-subsumption)AnatomsetA1 OI-subsumesanatomsetA2 (A1 �OIA2)

ifthereexistsaninjectivesubstitutionθ forA1,suchthatA1θ ⊆ A2 andθ doesnotmapany

variabletoaconstantalreadyoccurringinA1.

Notethatforthesakeofthesimplicityofthedefinition,werequirethesubstitutionθto

betotal.

Letusillustratethesubsumptionrelationsintheexampleofedgelabeledgraphs. The

assumptionisthatweareinterestedinatomsetswithpredicatese(G,V1,V2,L) (whichencode

thatthereisanedgefromvertexV1 toavertexV2 withlabelL) andis(L,K) (whichencode

thatalabelL isalabelintheclassK). So,ourlanguageconsistsofthesetofpredicates

{e/4,is/2};furthermore,weassumethesetofconstantsis{a,b}. Thefollowingatomsets

canbeexpressedinthislanguage:

A1 = {e(G,V1,V2,L1),is(L1,a)},

A2 = {e(G,V1,V2,L1),is(L1,a),e(G,V3,V4,L2)},

A3 = {e(G,V1,V2,L1),is(L1,a),e(G,V4,V5,L3)},

A4 = {e(G,V1,V2,L1),is(L1,a),e(G,V3,V4,L2),e(G,V4,V5,L3)}.

AtomsetA1 statesthatagraphcontainsanedgeofclassa. AtomsetA4 statesthatagraph

containsanedgeofclassaandfurthermorecontainsavertexwithatleastoneincomingand

oneoutgoingedge,independentofthelabel. Undertraditionalsubsumption,A1 ≡θ A2 ≡θ A3
andA1 �θ A4,andnotA4 �θ A1.

Awell-knownrefinementoperator[142]fortraditionalatomsetsappliesoneofthefol-

lowingrefinementstoanatomsetA:

• itunifiesapairofdifferentvariablesinA byapplyingasubstitutionthatmapsone

variableontoanother;

• itsubstitutesavariablewithaconstant;

72 4.InductiveLogicDatabases

• it adds a new atom without constants; the atom should be (syntactically)different from

existingatoms in A,but can be equivalent.

By addingnew atoms in two steps,and by then unifyingtwo variables,A4 can be obtained

from A1.In whatever order the last two atoms ofA4 are added,however,each intermediate

clause is equivalent with A1: A2 ≡θ A1 and A3 ≡θ A1.This refinement operator is therefore

not proper.Ifone would decide not to allow a refinement from A1 to A2 or A3,the operator

would not be complete: one can show that A1 cannot be refined to A4 in that case.

Ifone applies OI-subsumption as relation, the situation is different: A1 �OI A2 �OI A4 and

A1 �OI A3 �OI A4. For example, to A2 one may not apply θ = {V3/V1,V4/V2,L2/L1} to obtain

A1, as it maps variables to variables already occurring in A2.

For OI-subsumption one can obtain an ideal refinement operator by modifying the above

three refinement operations:

• an atom set A may be refined by substituting a variable with a constant that does not

occur in A;

• an atom set A may be refined by adding a new atom, which may contain terms already

occurring in A.

An interesting property of OI-subsumption is that atom sets can only be equivalent if they

are variable renamings of each other. Consequently, the second refinement step of the OI

refinement procedure is always proper. As the number of predicates and constants in the

language and the number of variables already occurring in the atom set limit the number of

nonequivalent atoms that can be added, this step is also finite. Similar observations also hold

for the first refinement step. Combined it can be shown that the operator is also complete and

therefore ideal [69]. We will show later in this chapter that also optimal refinement operators

exist under OI.

A different way to define OI is to use traditional θ-subsumption. We will follow this

practice here. Given a set of atoms A, we defineconstr(A) to be the set of atoms

constr(A) = {(t1 , t2)|t1 , t2, t1, t2 ∈ terms(A)}

where , is a binary predicate denoted in infix notation, and terms(A) is the set of all terms

occurring in atom set A. Predicate , should not occur in the original language. For example:

constr({is(L1,a),is(L1,K1)}) = {(L1 , a), (L1 , K1), (a , L1),

(a , K1), (K1 , L1), (K1 , a)}.

OI-subsumption can then equivalently be defined as:

A1 �OI A2⇔ (A1∪constr(A1)) �θ (A2∪constr(A2)).

When evaluating example set A4, we see that under OI

{(V1 , V2), (V2 , V3), (V3 , V4), (V4 , V5), (L1 , L2), (L2 , L3)} ⊆constr(A4) :

nodes are forced to be different, but also all labels must be different.

4.3. Weak Object Identity using Primary Keys 73

OI’s obligatory inequality of edge labels can be undesirable. The labels can be conceived

as attributes of the edges; one can equally be interested in patterns in which labels are not

required to differ from each other. Under OI one cannot express such patterns with the current

predicates. Is there a method to workaround this restriction by using other predicates?

Assume that one would like to express in one atom set the disjunction of these two atom

sets:

{e(G,V1,V2,L1),is(L1,a),e(G,V2,V3,L2)}

{e(G,V1,V2,L1),is(L1,a),e(G,V2,V3,L1)}

Then one could map the problem to a language with predicate e/4 and predicate ea(G,V1,V2),

which is defined by this first order clause:

ea(G,V1,V2)← e(G,V1,V2,L),is(L,a),

which states that a predicate ea is true for a pair of nodes between which there is an edge

with a label in class a. The following atom set can then be expressed:

{ea(G,V1,V2),e(G,V2,V3,L2)},

and states that there is an edge between two nodes in class a, and that to one of these nodes

an edge is connected with unspecified label L2. Label L2 can equal the label between nodes

V1 and V2. However, this representation also allows for this atom set:

{ea(G,V1,V2),e(G,V1,V2,L1)};

according to OI-subsumption, this atom set is not equivalent with any smaller atom set, but by

the definition of ea we know that the last atom can be removed. Thus, the new representation

introduces ‘semantical’redundancy. To get around this problem we would have to take into

account the definitions of the predicates. The rewriting also potentially enlarges sets of facts:

if a label is part of multiple classes, each occurrence of this label will yield multiple atoms,

one for each class. To conclude, at least from an efficiency point of view, the solution of

rewriting the problem may not always be desirable either.

From our point of view, the best solution would be to force Object Identity constraints

only to some variables in an atom set. The question is how this can be done without loosing

the desirable, ideal and optimal properties of OI. In the next section we will provide an answer

to this question.

4.3 Weak Object Identity using Primary Keys

In the previous section we have seen some of the disadvantages of θ-subsumption and Object

Identity. In this section we propose a solution for some of these problems: the Weak Object

Identity relation. In this relation, we exploit the idea that in many relational databases there is

a natural way to defineprimarykeys. Let us start therefore by formally defining a language

bias of a language with primary keys. Immediately after the definitions, we illustrate their

meaning using examples.

74 4. Inductive Logic Databases

Definition 4.3 A weak Object Identity bias B is a quadruple (P,C,K ,OI), where P is a finite

set of predicate symbols (each p ∈ P of which has a unique arity arity(p)), C a finite set of

constants, K is a function which defines a set of primary keys for each predicate p ∈ P; a

primary key for a predicate p is a subset of {1, . . . ,arity(p)}. OI is a function which for each

p ∈ P defines a subset of {1, . . . ,arity(p)} and thus partitions the arguments of each predicate

into OI arguments (arguments which are part of OI(p)), and OI-free arguments (arguments

which are not part of OI(p)).

Definition 4.4 Atom set A is constrainedby primary key K ∈ K(p) iff:

∀p(t11, . . . , t1n), p(t21, . . . , t2n) ∈ A :

(∀k ∈ K : t1k = t2k)⇒ p(t11, . . . , t1n) = p(t21, . . . , t2n). (4.1)

The intuition is that in an atom set there may be no two different atoms of the same predicate

which are equal in the terms that are part of the primary key.

Our definition of primary keys closely matches that of primary keys as known from re-

lational database theory. Just like predicates correspond closely to tables, also our primary

keys for predicates closely correspond to primary keys of tables. Similarly, an atom set of

facts complies with a set of primary keys if the corresponding table also complies with the

corresponding primary keys.

We will continue with our example of directed, edge labeled graphs. Assume that we

know that between each pair of nodes there is at most one edge in each direction, with only

one label. Then we can express this knowledge using one primary key for the predicate e:

K(e) = {{1,2,3}};

this key states that an edge can be identified uniquely by giving a graph and two vertices.

Following common practice in database theory, we allow for multiple primary keys for each

predicate; therefore, the function K defines a set of primary keys. The following atom set is

not constrained by the single primary key in K(e):

{e(G,V1,V2,a),e(G,V1,V2,b)}

Using OI(e) = {1,2,3} we define that the first three arguments of e are OI arguments. Terms

that are used as OI arguments, in the example G, V1 and V2, we will refer to as OI terms.

OI-free terms are terms that are used in OI-free arguments, in the example constant b.

Definition 4.5An atom set A is part of the language L(B) defined by a bias B iff:

• A ⊆A(P,C);

• A is constrained by each primary key in K ;

• no single term in A is both OI and OI-free;

• there is a sequence S of atoms of A in which every atom a = p(t1, . . . , tn) ∈ A has at least

one primary key K ∈ K(p) that satisfies exactly one of these cases for every term tk in

this key, k ∈ K:

4.3. Weak Object Identity using Primary Keys 75

– tk is a constant;

– tk is a variable and k ∈ OI(p);

– tk is a variable and tk occurs before a in S ;

We call the above three constraints on a key the properness constraints. Sequence S is

called a proper sequence.

In our example assume furthermore that the primary key of is is defined by K(is) =

{{1,2}} and that is has no OI arguments, OI(is) = ∅; then the following atom set is not in

L(B):

{e(G,V1,V2,L1),is(L1,C1)};

in the last atom C1 is new and does not occur at an OI position, while there is no key which

does not include C1. For the other order of the atoms, the same problem remains. Using biasB,

is atoms may only have constants as second argument. If eitherOI(is)= {2} orK(is)= {{1}}

would be part of the bias B, the atom set is part of L(B).

The technical reasons for the proper sequence constraint will become clear after we have

defined weak OI-subsumption. The idea behind weak Object Identity is that some variables,

although they are not forced to have an own ‘identity’ through Object Identity, will always

have a distinctive identity through their relation to other variables.

Definition 4.6 Given two atom sets A1,A2 ∈L(B), A1 B-OI-subsumes A2, denoted by A1 �B−OI
A2, iff (A1∪ constrB(A1)) �θ (A2∪ constrB(A2)), where

constrB(A) = {(t1 , t2)|t1, t2 ∈ OI-termsB(A), t1 , t2}

and OI-termsB(A) is the set of terms occurring in A at argument positions k of predicates p

for which k ∈ OI(p) ∈ B.

The main difference with traditional OI-subsumption is that OI constraints are only forced

to some variables in an atom set. Consider the following atom sets which are part of L(B):

A2 = {e(G,V1,V2,L1),is(L1,a),e(G,V3,V4,L2)}

A5 = {e(G,V1,V2,L1),is(L1,a),e(G,V3,V4,L1)}

then A2 �B−OI A5 while A5 6�OI A2. In comparison with traditional OI, (L1 , L2) < constrB(A2).

Now consider the following refinement operator ρ.

Definition 4.7Given an atom set A ∈ L(B), A′ ∈ ρ(A) iff A′ is constrained by K and either:

• A′ = Aθ, where θ = {t1/t2}, t1 is a variable in terms(A), and t2 is one of the following:

– t2 is a constant in C if t2 < OI-terms(A).

– t2 is a variable in terms(A) if t2 < OI-termsB(A) and t1 < OI-termsB(A).

• or, A′ = A∪ p(t1, . . . , tn) and there is at least one primary key K ∈ K(p) such that for

every argument tk in that key (k ∈ K):

– tk is either a constant,

76 4. Inductive Logic Databases

– or tk is a variable and k ∈ OI(p),

– or tk is a variable and tk occurs in A.

In our example, A2 ∈ ρ(A1), A3 ∈ ρ(A2), A3 ∈ ρ
∗(A1) and A5 ∈ ρ(A2). Our claim is now:

Theorem 4.8Refinement operator ρ for languageL(B) with quasi-order �B−OI is finite, com-

plete and proper, and therefore ideal.

Proof.Finiteness Clearly, the number of substitutions is finite (the number of variables is

finite, as well as the number of constants in the language). Also the number of possible new

atoms is finite, assuming that of each possible new atom set only one alphabetic variant is

considered (for example, by numbering new variables in the new atom in order of occurrence,

instead of giving them names).

PropernessWe distinguish two cases:

• refinement by substitution. One can show that (A∪ constrB(A))θ = Aθ∪ constrB(Aθ).

Furthermore, one can show that an atom set refined by the above substitutions is more

specific under traditional subsumption. Under traditional subsumption (A∪constrB(A))θ

is more specific than A∪ constrB(A), consequently also Aθ 6≡B−OI A.

• refinement by adding an atom. Assume that A∪a ≡B−OI A. Then there is a substitution

such that exactly one atom a1 ∈ A∪a is mapped to exactly one atom a2 ∈ A∪a, a1θ= a2,

while at least a1 = a or a2 = a. No more atoms may be affected, as otherwise (A∪a)θ

would yield a clause smaller than A. Furthermore, as A∪ a is a refinement of A, a1
must be different from a2 in all primary keys. Every primary key in a1 must contain an

OI-free variable that is substituted by θ.

As A is in L(B) there must be a proper sequence S for A. As the added atom a is con-

strained to satisfy the properness constraints, S •amust be a proper atom sequence too.

In this order, a1 must satisfy the properness constraints, and there must be a primary

key for a1 which contains an OI-free variable that occurs in another atom before a1 in

S . This contradicts our observation that a substitution may only affect one atom.

CompletenessWe first note that any subset of an atom set in L(B) also obeys the primary key

constraints. One can safely —and should— always remove atom sets that disobey primary

key constraints.

Given are two atom sets A1,A2 ∈ L(B), A1 �B−OI A2; θ is the substitution involved in this

weak subsumption. Without loss of generality, we assume that we consider the alphabetic

variant of A2 for which the substitution involved is the smallest. In this case substitution θ

only maps from variables in A1 to variables in A1 or to constants. Furthermore, only for OI-

free variables does substitution θmap from variables to variables; it can only map to constants

not in OI-terms(A1).

We claim that refinement operator ρ can perform all substitutions in θ in some order;

therefore ρ∗(A1) 3 A3 = A1θ ⊆ A2. As A2 ∈ L(B), there is a sequence S 2 of atoms in A2 which

obeys the properness constraints.

We claim furthermore that ρ can incrementally extend A3 with all atoms in A2\A3, in

an order such that in each intermediate step the atom set obeys the properness constraints.

4.3. Weak Object Identity using Primary Keys 77

Consider the following sequence of atoms: S ′
2
= S 3 • S 4, where S 3 is a proper sequence of

atoms in A3 and S 4 is the list of atoms in A2\A3 in order of occurrence in S 2. Given an atom a

in a sequence S , let S (a) denote the set of atoms occurring before a in that list (not including

a). We observe that for each a ∈ A2\A3, S 2(a) ⊆ S
′
2
(a). For each atom in S 4 the properness

constraints are therefore obeyed; S ′
2
is also a proper sequence for A2 and for each atom a ∈ S 4

also S ′
2
(a)•a ∈ ρ(S ′

2
(a)).

This construction shows that every specialization of an atom set A can be constructed

using operations in ρ.

�

Subsumption between atom sets and facts Subsumption is not only useful to relate pat-

terns to each other, but can also be used to relate patterns and data. We will see more details

later, but we like to show already one example of weak OI subsumption in this section. As-

sume that we have a bias B containing:

P = {p/1,q/2,r/2,s/2}

C = {a,b}

K(q) = {1}, K(r) = {1}, K(s) = {1}, K(t) = {1}

OI(p) = {1}, OI(q) = {1}

Then the following atom sets are included in L(B):

A0 = {p(a),q(a,b),r(b,b),s(b,b)}

and

An = {p(X),q(X,Y1),r(Y1,Y2),s(Y2,Y3),r(Y3,Y4),s(Y4,Y5), . . . ,r(Yn−2,Yn−1),s(Yn−1,Yn)};

both sets satisfy the primary key and the OI constraints. However, we also note that An �B−OI
A0 (for any n ≥ 1). Weak OI therefore does not guarantee that an atom set only subsumes an

atom set of at least the same length!In the example atom set An, the properness constraints

make sure that only atom sets that constitute a chain starting from an OI variable are part of

the search space; this means that for any atom set An only the subsets An′ with n
′ ≤ n are

part of the search space. Each of these atom sets is certainly reduced, and the refinement is

therefore proper, finite and complete.

Equivalence of atom sets under weak Object Identity Given our observation of the pre-

vious paragraph, one may wonder when atom sets are equivalent under weak Object Identity.

We can prove the following:

Theorem 4.9LetB be a weak OI bias. Then every atom set A ∈L(B) is reduced under �B−OI .

Proof. As A is in L(B) there must be a sequence S of the atoms in A which satisfies the

properness constraints. Then if A is not reduced, and A is therefore equivalent to a subset,

there is a smallest substitution θ such that Aθ = A′ ⊂ A. Let a be the first atom in S in which

substitution θ changes a variable. Then aθ is mapped to a different atom in A than a. Of the

variables in a that are affected by θ we know that they are OI-free. Then we know that either:

78 4. Inductive Logic Databases

• all these variables are not part of one primary key; however, then aθ and a are two

different atoms that are equal in their primary key; this is not possible;

• some of these variables are part of all primary keys; however, these affected variables

would then have to occur earlier in S , which is not possible either as we assumed that

a was the first atom in which variables were affected.

This contradiction proves the claim. �

From this theorem follows the next theorem.

Theorem 4.10 Given two atom sets A1,A2 ∈ L(B). Then A1 ≡B−OI A2 iff A1 and A2 are al-

phabetic variants.

Proof. “⇐”This is straightforward.

“⇒”This follows from the fact that A1 ≡B−OI A2 iff A1 ∪ constr(A1) ≡θ A2 ∪ constr(A2),

and the assumption that the infix predicate , is not part of the original language. Under θ-

subsumption it is well known that two equivalent reduced clauses can only be alphabetic

variants. �

So, if we wish to decide whether two atom sets are equivalent under weak OI subsump-

tion, it suffices to find out whether they are alphabetic variants. Given a sequence of atoms,

the following renaming procedure is useful as part of such an algorithm.

Definition 4.11 Given an atom sequence S , letvars(S) be the set of variables occurring in S ,

and let seq(vars(S)) be the sequence of all variables invars(S) in order of first occurrence in

S . Then the normally named atom sequence of S is defined by

norm(S) = S θSnorm,

where

θSnorm = {V/Vk |V ∈vars(S), k is the position of V in seq(vars(S))}.

As an example, we have that

norm(p(X,Y)q(Y,Z)r(X,Z)) = p(V1,V2)q(V2,V3)r(V1,V3).

From these observations it follows that two atom sets A1 and A2 are only equivalent if there

exists a total order R on the atoms of A1 such that norm(seqR(A1)) = norm(seqR′(A2)), where

R′ is some order on the atoms of A2.

4.4 APractical Refinement Operator

Our observations of the previous section about refinement using weak Object Identity can

easily be incorporated in practical systems and refinement algorithms. In this section, we

apply our observations to the refinement of atom sets using modes. Mode refinement is a

4.4. A Practical Refinement Operator 79

strategy taken in several recent ILP algorithms [19, 61, 137]. Modes are a common concept

in logic programming [11]and were originally introduced by Mellish in [132]. A mode is a

declaration of the form

m = p(c1, . . . ,cn),

where ck is either +, − or #. Atom sets are refined only by adding new atoms according to

these declarations. Given an atom set A, atom a = p(t1, . . . , tn) may only be added to A if a

mode has been specified such that for every 1 ≤ k ≤ n:

• ck is #and tk is a constant;

• ck is − and tk is a variable not occurring in A;

• ck is + and tk is a variable occurring in A.

Conceptually, the search space therefore consists of only those atom sets in L(B) for which

there is a sequence of refinements that is allowed by the mode declarations.

The question is in which cases this refinement operator is proper if we take weak Object

Identity as quasi-order. According to our theory, a refined atom set should satisfy the proper-

ness and the primary key constraints, while OI terms and OI-free terms must be disjoint. A

check for primary key and disjunction constraints should be performed by the refinement

algorithm while refining clauses according to the modes. The properness constraint can how-

ever be checked beforehand. It suffices to check every mode: for at least one primary key

K ∈ K(p) in every mode m, for every k ∈ K, ck should be either #or +, or if ck is −, k ∈OI(p)

should hold.

Continuing our graph example, the following modes yield a proper refinement operator:

M = {e(−,−,−,−),e(+,−,−,−),e(+,+,−,−),is(+,#)}.

Example atom sets A1, . . . ,A5 can be constructed using these modes. The refinement operator

is proper, although the last argument of e and the first argument of is are OI-free.

In many ILP algorithms, the mode principle is extended with the notion of types. Using

a description language similar to the mode definition language, in these algorithms every

argument of each predicate is given a type; during atom set construction these types forbid

sets in which the same variable is used in arguments with different types. In many cases, this

is a useful restriction, as it makes atom sets impossible such as

{e(G,V1,V2,L1),e(G,L1,L1,L2)}

which would otherwise be generated by mode setM. As one sees here, our mechanism of

OI-arguments and OI-free arguments is a special case in which only two mode types are

used. Our approach can however easily be extended to a situation with multiple types. In

that case, instead of defining OI and OI-free arguments, one has to specify which types are

considered to be OI types and which types are OI-free types. The argument types then force

the same subdivision between OI and OI-free arguments as we discussed here, and force some

additional restrictions on top of that.

80 4. Inductive Logic Databases

Maximum numbers of occurrences We continue this section with a discussion of further

mechanisms that have been proposed to specify search spaces of atom sets even more pre-

cisely. One such idea is to specify a maximum number of mode applications [22]. As an

example consider these modes (in a language without types):

M = {a(−,−),a(+,+),b(−,−),b(+,+)},

and assume that all modes may be applied at most once. Then this atom set is disallowed:

{a(X1,X2),a(X3,X4)},

as this would require a double application of the same mode. However, although this kind of

refinement may seem intuitively simple, it is difficult to specify this kind of refinement in a

concise way for atom sets. Consider this atom set:

{a(X1,X2),b(X1,X2)}.

Can this atom set be refined with atom b(X2,X1)?This question cannot be answered given our

intuitive definition of bounded mode refinements, as it is unclear how many times the b(+,+)

mode is applied to create this atom set. There are two sequences of refinements that could

be used to create this atom set starting from the empty atom set; each of these sequences

uses a different subset of the 4 modes. To get around this problem, one could define that

a mode refinement can be applied if there is at least one order in which the refinement is

allowed; alternatively, one could forbid a refinement if there is at least one order in which

the refinement is not allowed. Both cases would require additional computations in which

different orders of the atoms in the atom set are considered, thus increasing the complexity

of the refinement procedure. A bounded number of mode applications thus only makes real

sense if we consider atom sequences instead of sets.

For atom sets we believe that it makes more sense to define a maximum number of pred-

icate occurrences instead. So, we define that maxis a function on the domain of predicate

symbols. This function specifies the maximum number of times that a predicate may occur in

an atom set. The advantage of this approach is that it is order independent.

Mode sequences Although primary keys, modes, types, and limitations on the number

of predicate occurrences already allow for the precise specification of subspaces of 2A(P,C),

they are not sufficient in some application domains, at least — as long as one does not in-

troduce more complex first order languages than atom sets and more complex relations than

θ-subsumption. We will use the example of edge labeled, undirected graphs to illustrate this

(see Chapter 5 and 6 for more details about graphs). As the arguments of predicates are or-

dered by definition, it is hard to encode such graphs in a neat way. One encoding is based

on the observation that an undirected edge corresponds to two directed edges with the same

label. The following atom set may be seen as an encoding of an undirected graph with two

edges:

{e(G,V1,V2,a),e(G,V2,V1,a),e(G,V2,V3,b),e(G,V3,V2,b)}.

This atom set would be part of a search space defined bymodesM= {e(−,−,−,#), e(+,+,+,#}.

The search space defined by these modes would however be unnecessarily large:

{e(g1,v1,v2,a),e(g1,v2,v1,b)}

4.4. A Practical Refinement Operator 81

would also be part of the search space if C= {a,b}. To restrict the search space more precisely,

it should be possible to specify that a refinement with one atom should always lead to a

refinement with another atom. A common solution to this problem is to conceive modes as

templates that can include multiple atoms [22]. So, a mode is now a sequence

m = p1(c1, . . . ,c`1)p2(c`1+1, . . . ,c`1+`2) . . . pn(cs−`n+1, . . . ,cs),

where pk/`k ∈ P for 1 ≤ k ≤ n and s =
∑n
k=1 `k. Besides allowing the traditional +, − and

as mode parameters, also integer numbers are allowed, such that each ck ∈ {+,−,#} ∪ {r ∈

N |1 ≤ r < k,cr ∈ {+,−,#}}. Atom sets are refined by adding a set of atoms according to these

declarations.

Definition 4.12 (Mode Refinement) Given are a weak Object Identity bias B, a set of mode

sequencesM, and an atom set A1 ∈ L(B). Then A1∪A2 ∈ ρ(A1) iff A1∪A2 ∈ L(B) and there

is a sequence of atoms

S 2 = p1(t1, . . . , t`1)p2(t`1+1, . . . , t`1+`2)···pn(ts−`n+1, . . . , ts)

such that set(S 2) = A2 and there is a mode sequence m ∈M such that for every 1 ≤ k ≤ s:

• ck is an integer and tk = tck ;

• ck is # and tk is a constant;

• ck is − and tk is a variable not occurring in A
′
1
;

• ck is + and tk is a variable occurring in A
′
1
.

Here, A′
1
= A1∪ set(prefixk′(S 2)) where k

′ is the largest integer for which
∑k′
k′′=1 `k′′ < k.

An example of a set of mode sequences is:

M = {p(−,−)q(2,1), q(−,−), p(+,+) }.

According to the first mode sequence it holds that {p(X1,X2),q(X2,X1)} ∈ ρ(∅), for some

bias with appropriate predicates, constants and primary keys. Be aware, however, that also

{p(X1,X2),q(X2,X1)} ∈ ρ({q(X2,X1)}) and {q(X2,X1)} ∈ ρ(∅): the same atom set can be reached

in two different ways that require a different number of refinement steps, if refinements us-

ing mode sequences are counted as one refinement. When developing an optimal refinement

operator based on modes we will have to take into account this kind of situations.

When we include modes in a weak OI bias, we obtain a mode bias. A mode bias defines

a new search space. Let B be a weak OI bias andM be a set of modes on the predicates of B,

then we define that A ∈ L(B,M) iff A ∈ L(B) and A ∈ ρ∗(∅), where ρ is the mode refinement

operator of Definition 4.12.

Conclusions In the last paragraphs we have seen the following elements that can be used

in the definition of a search space of atom sets:

• a definition of predicates P and constants C in the language;

82 4. Inductive Logic Databases

• a typing of predicate parameters and constants;

• a subdivision of parameters in Object Identity and Object Identity-free parameters;

• a specification of primary keys of predicates in the language;

• a specification of mode sequences to specify how atoms can be added;

• a bound on the maximum number of occurrences of predicates.

All these elements can be combined into one refinement operator. We already saw how sim-

ple modes, primary keys and weak OI can be combined in a refinement operator that pre-

processes a set of modes. It is straightforward to incorporate maximum numbers of occur-

rences in this framework. Furthermore, in mode sequences integer parameters can be con-

ceived as input parameters (if they refer to variables) and as constants (if they refer to con-

stants), thus allowing weak OI conditions to be pre-processed (partially) for such sequences

in a similar way as for simple modes.

This list of features shows the power of using logic as representation language: it is possi-

ble to specify very precisely what kind of patterns one is interested in, while it is also possible

to define the relation between two atom sets such that some parts of the atom sets are treated

injectively, while other parts are treated without some sort of ‘identity’. The combination of

these features has as result that atom set mining algorithms generalize over many kinds of

other patterns.

4.5 Frequent Atom Set Mining

In the previous chapter we introduced the problems of data mining under constraints. In this

section, we will finally start to use our weak OI relation for data mining. As discussed in

the previous chapter, besides the relations between patterns and the refinement operators, we

also need to formalize a definition of support. In multi-relational data, two different, although

largely equivalent, definitions have been studied. Both approaches are related to the learning

from interpretations approach for inductive logic programming [52, 20, 51].

One approach assumes that the database is a collection of transactions, each of which

consists of a set of facts. The support of an atom set is then the number of transactions that is

subsumed by the pattern atom set.

The other approach assumes that the database is one set of facts. We will follow this

approach here. Under this approach, we assume that the user specifies a mode bias; this mode

bias satisfies the following limitations:

• there is one special predicate k such that

– the arity of k is 1;

– exactly one mode sequence contains predicate k, and only at the beginning of that

sequence;

– the single parameter of the mode for k is an output (−) parameter;

4.6. F 83

– the maximum number of occurrences of k is 1: max(k) = 1;

– consequently, OI(k) = {1};

• every mode for a predicate other than k has at least one input parameter.

The special predicate k is called the key of the search. For simplicity we restrict k to unary

predicates, but an extension to predicates of higher arity is also possible. Every atom set in

the search space contains at least a subset that is equivalent to {k(X)}. The other constraints

make sure that other atoms are linked to the key. The definition of support is then:

supportD(A) = #{c ∈ C|Aθ �B−OI D, where θ = {X/c} for k(X) ∈ A}.

The general form for frequent atom set mining is to find all atom sets A ∈ L(B,M) such that

supportD(A)≥minsup. To perform this task we will require algorithms for refining the search

space and for evaluating the weak OI subsumption relation. We will present such algorithms

in the next sections.

The first algorithm to implement the problem of discovering frequent atom sets, was the

W algorithm as proposed by Dehaspe et al. [59, 60, 61]. W is an instantiation of

the general A-Salgorithm of Figure 3.7, in combination with the A-

G-R-Sprocedure. W orders atom sets with traditional θ-subsumption

instead of OI based subsumption. The refinement operator is mode based. To avoid the con-

sideration of equivalent atom sets W performs an equivalence test between generated

patterns and pattern already included in the set F and in the current set Ck. Each atom set

that turns out to be equivalent is removed from the set of candidates. As a result some atom

sets may not found, depending on the choice of modes: atom set

A = {k(X1),p(X1,X2),p(X2,a),p(X1,X3),p(X3,b)}

cannot be found for a bias with mode set

M = {k(−),p(+,−),p(+,#)} :

Wwould need to apply p(+,−) two times; the second application would always be equiv-

alent to the first. W is therefore not globally complete.

4.6 F

In this section we present an outline of F. F is a frequent atom set mining algo-

rithm just like W; however, instead of traditional θ-subsumption, it uses weak OI sub-

sumption. Furthermore, it uses an optimal merge procedure to enumerate the entire search

space defined through modes instead of a refinement procedure. We will first discuss how the

algorithm works without mode sequences.

In our algorithm, atom sequences are stored in a trie tree as given in Figure 4.3. This tree

is very similar to the itemset trie of Figure 2.4. Every node consists of a sequence of atoms,

84 4. Inductive Logic Databases

e
(
V
1
,
V
2
,
V
4
,
a
)

e
(
V
1
,
V
3
,
V
4
,
a
)

e
(
V
1
,
V
2
,
V
4
,
b
)

e
(
V
1
,
V
3
,
V
4
,
b
)

e
(
V
1
,
V
4
,
V
5
,
a
)

e
(
V
1
,
V
4
,
V
5
,
b
)

1. 2. 2. 2.* 2. 3.

e
(
V
1
,
V
2
,
V
4
,
a
)

e
(
V
1
,
V
3
,
V
4
,
a
)

e
(
V
1
,
V
2
,
V
4
,
b
)

e
(
V
1
,
V
4
,
V
5
,
b
)

e
(
V
1
,
V
3
,
V
4
,
b
)

*2. 2. 2. 2. 3.

e(V1,V2,V3,a) e(V1,V2,V3,b)

k(V1)

Figure 4.3: An atom sequence trie.

stored for example in a linked list or an array. To avoid confusion with the atom sequences

that are represented in the trie, we will always refer to the sequences stored in trie nodes

as trie node sequences. Each of the atoms in the trie node sequence corresponds to an atom

sequence that starts in the root of the trie. Every trie node therefore corresponds to a prefix

atom sequence of all atom sequences represented in the node. Once an atom sequence is

counted, its support is stored in the associated node.

As all atoms in a trie node are ordered also all atom sequences in a trie are ordered.

Definition 4.13 (Order of atom sequences in a trie) Let S 1 and S 2 be two atom sequences

stored in a trie T . Then we define that S 2 �T S 1 iff there are S
′,a1,a2,S

′′
1
and S ′′

2
such that

S 1 = S
′ •a1 •S

′′
1
, S 2 = S

′ •a2 •S
′′
2
, S ′ is the largest common prefix of S 1 and S 2, and a2 > a1

in the trie node that corresponds to prefix S ′.

If A2 �T A1, then A1 is called an earlier atom set than A2 or A2 is called a later atom set

than A1.

An outline of the F algorithm is given in Figure 4.4 and 4.5. In line (6) of Fig-

ure 4.4, the order in which nodes are expanded is intentionally left unspecified. The order is

only restricted by the precondition of F-E. In line (6) of F,andline (4) of

F-E(Figure 4.5) the monotonicpropertyof the minimumfrequencyconstraintis

used.

In the algorithmthe new variables of an atomare the variablesthatdidnotoccurin any

of theatomsbefore thatatomin thesequence. Newvariablesarecloselyconnectedto output

modes,asonlyoutputmodescan introduce newvariables. The normprocedure (see page78)

makessurethattheatomsequencesarerepresentedin apredictable way.

Note thatthe firstclassof atoms(line (4) of F-E) thatare addedcorrespond

to ajoin of two sequencesin the trie:foranytwo atomsequencesS 2 �T S 1,suchthat

prefix(S 2) = prefix(S 1),itisdefinedthatµ(S 1,S 2) = S 1 • last(S 2). The secondandthird

classesof newatoms(lines(5–6) of F-E) are extensions:theyonlytake asinput

one sequence S andusethemodestoaddasubsetof all possible refinementsto S . F is

therefore neitherajoin-onlynoran extension-onlyalgorithm.Wehavealreadyshown forthe

domain of frequentsubsequenceminingthatalgorithmsare impossible thatonlyjoin locally;

4.6. F 85

(1)F():

Input:AmodebiasB,adatabaseDandathresholdminsup.

Output:AtreeT withallfrequentatomsetsinL(B).

(2) ReadDanddeterminethesetofconstants;

(3) T :=atreewithonlythekeyatomintheroot;

(4) repeat

(5) Countthefrequencyofalluncountedqueries;

(6) foralloneormorepreviouslyuncounted,unmarked,nowfrequentleafsdo

(7) ExpandthatleafusingF-E;

(8) untilT contains no uncounted queries;

(9) Remove all marked nodes;

Figure 4.4:OutlineoftheFalgorithm.

(1) F-E():

Input: An atom sequence S in a trie T with counts for (1) all prefix atom se-

quences of S , (2) all earlier sequences S ′, |S | �T |S
′|; (3) all later sequences S ′

which are a brother of an ancestor of S .

Output:An atom sequence trie with uncounted expansions S ′ of S , |S ′| = |S |+1.

(2) Let a be last(S); let ap be the parent of a and S p = prefix(S) the atom sequence

associated with ap;

(3) Add as child of a all atoms a′′ = last(norm(S • a′)) such that set(S • a′)∈L(B)

and a′ is either:

(4) 1. a frequent atom occurring after a in the trie node corresponding to S p, where

new variables in a′ are renamed such that they are also new in S •a′;

(5) 2. a dependent atom, which is any atom that uses at least one variable that was

new in a;

(6) 3. a copy of a if a has new variables; those new variables are given new names in

the copy;

(7) Remove the new child atom a′′ if the corresponding atom set is equivalent to an

earlier atom set, unless the child is only equivalent to a brother. In that case a is

marked but kept in the tree.

Figure 4.5:OutlineofthecandidategenerationprocedureofF.

86 4. Inductive Logic Databases

as many of these problems can be modelled in first order logic, an algorithm that relies on

local joins is also impossible for frequent atom set mining.

To perform the equivalence test of line (7) essentially an exhaustive search is necessary, as

in some cases this problem comes down to computing a graph isomorphism. In this exhaus-

tive search permutations of the current atom sequence are enumerated; while testing these

permutations it is determined if these permutations already occur in the trie, or it is found out

where they would have to occur in the trie. Partial permutations that would be stored later

in the trie than the atom sequence for which we are determining the canonization, are not

checked further as they cannot be canonical. In our implementation we also store atom sets

that have previously been found to be infrequent in the trie. If the enumeration of permuta-

tions encounters a subset of the current atom set that is infrequent, the search is also stopped

and the atom set is pruned due to the monotonicity constraint. In this way we can exploit

the exhaustive search for two different purposes: to determine whether an equivalent atom

set has already been found, and to determine whether a subset has already been found to be

infrequent. Note that we cannot use the absence of an atom set in the trie as evidence of its

infrequency: some atom sequences have also been pruned to guarantee that every atom set is

only considered once.

To prove that the algorithm is globally complete, we will first consider the resulting tree

T when all atom sets are frequent and line (7) of F-E, which makes sure that du-

plicates are avoided, is absent. Under these assumptions, and given modes {k(−),e(+,−,−,#),

e(+,+,−,#)}, Figure 4.3 shows for each atom set of length two how it is obtained from atom

sets of length one by applying F-E. Each number indicates which of the three

possibilities is applied to generate a new atom.

Lemma 4.14 Assume given an atom sequence S which occurs in the atom sequence trie T

and an atom a < S which is a valid refinement of S (i.e. set(S • a) ∈ L(B)). Then an atom

sequence S ′ = norm(S 1 •a•S 2) exists in the tree T , for S = S 1 •S 2. Furthermore, S is either

a prefix of S ′ or S �T S
′.

Proof.As a is a valid refinement of S , there is a prefix S p •ap of S such that the normalized

atom a′ = last(norm(S p •ap •a)) is a dependent atom of ap. This dependent atom is generated

in line (5) of the F-E algorithm. If ap is the last atom of S , our statement is clear.

Therefore assume that ap has a different successor ap+1 in S . This atom ap+1 is also an

element of the child trie node of ap in T . Consider the order of a
′ and ap+1 in this child trie

node:

• if a′ occurs before ap+1, ap+1 is later than a
′. The copying mechanism in line (4) will

copy ap+1 as a child of a
′; all steps which created S are applicable subsequently and

result in an atom sequence S ′.

• if a′ equals ap+1, both have output variables. In line (6) a self-duplicate ap+1 of a
′ is

generated. All steps which created S are applicable subsequently.

• if a′ occurs after ap+1, a
′ is copied as a child of ap+1. This child of ap+1 may be earlier

or later than ap+2 (the next atom in the original atom sequence). We can recursively

apply our arguments until one of the above conditions holds.

Also the order of the old and new atom sequence follows from these arguments. �

4.6. F 87

Theorem 4.15 (Global completeness) For every atom set A1 ∈ L(B) there is at least one

atom sequence S 2 in a tree T such that set(S 2) = A2 ≡B−OIA1, for a trie T that results from a

finite number of calls to F-E.

Proof. Iteratively apply Lemma 4.14. First, transform atom set A1 into a sequence S 1 such

that S 1 corresponds to an order in which the atoms of A1 can be added according to the mode

definitions. A normalized naming of the first atom of S 1 is a child of the search tree’s root

node. Then, for the first two atoms of S 1, according to the lemma, there must be an equivalent

atom set for those two atoms in the tree. This procedure is repeated, if necessary. �

Two equivalent queries that still coexist without line (7) in F-E are indicated

with a (*) in Figure 4.3. We will now consider the algorithm with this line added. We have

to prove that by removing an atom from the tree, we do not remove an atom that otherwise

would have been used in a merge to create an atom set for which no equivalent atom sequence

can be constructed in the trie.

Lemma 4.16Let T be the tree obtained after iterative application of F-E (Fig-

ure 4.5) without line (7). Assume that an atom sequence S 2 is equivalent with an atom

sequence S 2 �T S 1. Then every atom sequence S
′
2
which has S 2 as prefix must have an

equivalent atom sequence earlier in the tree.

Proof. As S 2 is equivalent with S 1, there is a permutation of atoms of S 2 followed by a

renaming θ that makes S 2 equal to S 1. This substitution θ can be applied to all atoms in S
′
=

(S ′
2
/S 2). Some of these atoms are now valid refinements of S 1. According to Lemma 4.14

one by one these atoms can be added to S 1, yielding atom sequences S
′
1
that are refinements

of S 1, and occur below S 1 in the trie, or have an equivalent refined sequence elsewhere in the

trie. �

Theorem 4.17For every atom set defined by the bias, F generates exactly one canonical

atom sequence if all atom sets are frequent.

Proof. It is clear that no two sequences for the same atom set can occur: in line (7) of Fig-

ure 4.5 and line (9) of Figure 4.4, any sequence which has an equivalent lower sequence is

removed. Theorem 4.15 showed that in case equivalents are not removed, at least one equiva-

lent atom sequence is found. According to Lemma 4.16, if an atom sequence S is equivalent

to an earlier atom sequence, all of its descendants must also be equivalent to an earlier atom

sequence and S should therefore not be expanded further. The only remaining role of atom

last(S) is its function as an expansion for earlier brothers in line (4) of Algorithm 4.5. In case

S is equivalent to an earlier atom sequence S ′ which is not a brother, last(S) is not required

as a building block for earlier brothers: the brother atom can be added to S to yield a query

S ′ �T S
′′ and every refinement of S ′ can also be added to S ′′ (similar to the construction of

Lemma 4.16). By the marking mechanism only those atoms are kept as building block that

are equivalent to an earlier brother. �

Mode sequences Until now we assumed that the mode bias only consists of simple modes,

and not of longer mode sequences. We will now briefly discuss how mode sequences can be

88 4. Inductive Logic Databases

r(V1) r(V2) p(V1,V3)q(V2,b)q(V2,a)

r(V1) r(V2) p(V1,V3) r(V1) r(V2) p(V1,V3)

r(V2) p(V1,V3) p(V1,V3) q(V3,b) r(V3)r(V2) p(V1,V3) p(V1,V3) q(V3,a) q(V3,b) r(V3)

p(V1,V2) r(V1)

k(V1)

p(V1,V4) p(V1,V4)

2 2

21 30 0

1

1 1 1 1
1

1 1 1 0 0 2 3 1 1 1 0 2 3

Figure 4.6:Atrie containing all atom sequences up to length 5 generated byF for mode sequence

setM = {k(−),p(+,−)q(2,#),r(+)}.

dealt with. To illustrate the procedure, we use the following set of mode sequences:

M = {k(−),p(+,−)q(2,#),r(+)}.

We assume that there are no types, that k is the key and that all parameters are evaluated

under Object Identity. The trie that contains all atom sequences up to length 5 is shown in

Figure 4.6.

We modify F in the following way:

• as a preprocessing step, we build a prefix trie for all mode sequences; for simplicity, we

reject a mode bias in which two equivalent modes would be part of the same trie node,

or one mode sequence is a prefix of the other; we call two modes equivalent if they can

both introduce the same atom. This is for example the case if one mode contains a +

while the other contains an integer number that refers to a variable. These limitations

make sure that for every atom in an atom sequence we can always uniquely identify

which node in the mode trie would introduce this atom;

• we annotate each atom in the atom sequence trie with the identifier of a node in the

mode trie;

• in line (5) of F-E only the modes in the root of the mode trie are used to

introduce single atoms (so we extend by one atom at a time, and relax the definition of

L(B) to include some atom sets that include ‘intermediate’ steps of a mode sequence

application);

• between line (3) and line (4), if an atom sequence is unfinished, we add as first child

atoms all atoms that can be introduced by the child modes of the mode that introduced

the last (unfinished) atom; an atom in a sequence is called unfinished if it was intro-

duced by a mode that has a child in the mode trie; an atom sequence is called unfinished

if it contains an unfinished atom. In the example, we have marked atoms with the op-

tion of lines (4–6) that was used to generate the atom. Atoms are marked with a zero if

they were introduced by this additional mechanism;

4.6. F 89

• in line (4) and line (6) we never copy an atom that was introduced by a mode not in the

root of the mode trie; in this way we prevent that in the example

{k(V1),p(V1,V2),q(V2),r(V2)}

would be generated;

• in line (7) we only test the equivalence of finished atom sequences;

• in line (7) an atom sequence is only pruned if it is equivalent with an earlier finished

atom sequence. In the example, this atom sequence is pruned:

k(V1)p(V1,V2)q(V2,b)p(V1,V3)q(V3,a);

• in line (7) of F no unfinished atom sequences are expanded unless only the last

atom is unfinished. For example, this sequence is not expanded:

k(V1)p(V1,V2)r(V1).

As a result of this procedure, the trie is no longer guaranteed to contain one canonical form

for each sequence. This approach was chosen to accommodate for the possibility that two

different sequences for the same atom set may yield different refinement possibilities. On the

other hand, for every finished sequence the equivalence with an earlier sequence is still tested.

The procedure therefore still guarantees that all finished atom sequences are unique and all

atom sets in the original search space are put in the output exactly once.

By adding atoms one at a time, F also guarantees that atom sets are correctly dealt

with that can be reached through refinement sequences of different lengths. On the other hand,

by copying sibling atoms multiple times for a sequence of atoms generated from one mode

sequence, we may be performing a redundant number of computations, especially if some of

the atoms are not very selective and are true in most cases.

Efficient bias For every (finished) atom sequence in the trie F has to perform an ex-

haustive search to make sure that no equivalent sequence occurs earlier in the trie. Is this

necessary for all kinds of bias?We will show here that for one kind of bias this is not neces-

sary.

Assume that a simple mode bias is given in which every predicate has only one mode,

and the inputs of every mode contain a primary key, then we know that:

• we never need to perform self-duplication (line (6) of F-E), as this would

violate the primary key constraints;

• all parameters, except those that may refer to the variable introduced by the key, can be

OI-free: therefore this bias can also be applied in situations in which Object Identity is

not desirable;

• the atoms in atom sets can be ordered partially: first, we can define a relation �, such

that for all a1,a2 ∈ A: a2 � a1 iff a2 uses an output variable of atom a1 in one of its

inputs. The transitive closure of this relation is partially ordered.

90 4. Inductive Logic Databases

The latter observation can be used to prove that every atom set can only occur once, even

without applying line (7) of F-E. Assume given an atom set A. First we observe

that the partial order of A has one lowest element: the key predicate of the search. When

transforming the atom set into an atom sequence we therefore have one fixed starting atom

in the sequence. Then, iteratively, we have a subset of atoms in A that can be added to the

sequence under construction (these are the atoms of which all inputs have been introduced in

the sequence). The only freedom in determining the canonical sequence is the order between

these atoms. However, in the trie all these atoms are children of the prefix atom sequence

to which they can be added (note: due to the primary keys there are no two atoms which

only differ in their output variable names; without primary keys it would have been possible

that a dependent atom is not part of the set of children, as the dependent atom is created

later through self-duplication). Due to our trie construction method, all these child atoms are

ordered arbitrarily; only the rightmost of these atoms in the trie will get all its (frequent) right

siblings as its children. This rightmost atom is therefore the only atom that will be added next

in the canonical representation; the other atoms will never get all necessary remaining atoms

in the atom set as child.

4.7 Depth-First and Breadth-First Algorithms

In the algorithm discussed in the previous section, many elements have been left unspecified.

In this section, we provide some details about this missing elements.

Order of atom sequence expansion We distinguish two query expansion orders: breadth

first and depthfirst. In the breadth first approach, all nodes at the lowest level of the tree are

expanded. This yields a tree in which all nodes at the new lowest level are uncounted. The

nodes are counted next, and the process is repeated until no new level can be added. This

approach corresponds to the traditional Aapproach.

In the depth first approach, only one node is expanded; the new children are counted

immediately. Starting with the first child, the process is repeated recursively. Only after the

complete subtree of the first child has been constructed, the next child is recursively expanded.

This approach matches the general depth first approach.

Atom sequence counting To determine whether an atom sequence is OI-subsumed by

a database of facts, an exponential search is required (one can easily see that this problem

is equivalent to the subgraph isomorphism problem, which is known to be NP-complete).

Especially those atom sequences which can not be satisfied for a given key substitution are

computationally very expensive as many variable assignments have to be checked before

this can be concluded. The task of the algorithm is to reduce the number of substitutions

which result in false as much as possible, and to reduce the cost of such an evaluation if the

computation is required.

One strategy to reduce the computational cost, is to overlap the computation of atom

sequences. Consider an atom sequence S with several child expansions. One can backtrack

4.7. Depth-First and Breadth-First Algorithms 91

over all possible assignments of S as long as one of the child expansions is not satisfied. This

is more efficient than to evaluate each child expansion separately.

The advantage of the breadth-first approach is that the number of queries that should

be evaluated at a certain level is maximal. For a given substitution of the key variable, the

evaluation of many atom sequences can be combined. Our breadth first implementation uses

this evaluation technique, which is similar toquerypacks as discussed in [21]for W.

To reduce the number of false evaluations, a substitution ID list approach can be used.

For each atom sequence that is evaluated, one can store a sequence of all key substitutions for

which the query can be satisfied. One can easily see that a query which is constructed from

an atom sequence S (either by copying last(S) or by expanding S) can never be true for key

substitutions for which S is false. Therefore only substitutions in S ’s substitution list need to

be evaluated.

To reduce the cost of evaluation, with each key substitution θ one can also store the assign-

ments of other variables that satisfy each atom sequence S . If the backtracking over variables

is performed in a deterministic order from left to right, one can continue the evaluation of

each expansion of S starting from the assignment that satisfied S without having to recom-

pute that assignment. Some assignments are skipped in this way, but one can show that this

can safely be done. To reduce the memory demand of the approach, for each atom sequence

S and substitution θ we only store the differences ∆(θ,S) between variable assignments of S

and prefix(S).

Order of children There are many possible child orders:

• The order in which children are generated in Figure 4.5.

• A lexicographical order. To determine atom sequence equivalence, one repeatedly has

to search for a given atom in a set of children. With a lexicographical order, in combi-

nation with binary search and hashing, one can speed up this search.

• Sorted by support. Atoms with a lower support occur earlier in an atom sequence in this

case, which results in a quicker evaluation of atom sequences that cannot be satisfied

(the most selective atoms occur earliest).

• Sorted by backtrackingprogression. Consider an atom sequence S , a key substitution

θ and a set ∆(θ,S) of variable assignment changes. The position of the leftmost vari-

able affected by ∆(θ,S) in S is the backtracking progression of S for θ. By averaging

∆(θ,S) over all θ one can compute the average backtracking progression of each atom

sequence. When a candidate atom sequence S •a is generated by copying atom a below

sequence S , both ∆(θ,S) and ∆(θ,prefix(S) •a) could be used as starting point for the

evaluation of S •a; best would be to always use the assignment which has backtracked

most. However, when the evaluation of several atom sequences is overlapped, much

additional bookkeeping would be required to guarantee that each offspring a of S is

only taken into account after the joint backtracking procedure proceeds after the first

assignment of the offspring S • a. As tradeoff we always use ∆(θ,S) as starting point,

but sort to make sure that the parent has backtracked the most on average.

92 4. Inductive Logic Databases

Note that in the last two orders, some special care has to be taken in the equivalence proce-

dure, as the order of children is only known after they are counted.

From the possibilities discussed in this section, we implemented and tested several. The

experimental results are provided in the next section. We implemented a depth-first algorithm

which incorporated overlapping evaluation and a complex sorting order: given an atom se-

quence S that is going to be expanded, all children of nodes that are not an ancestor of S

are stored in lexicographical order to allow for quick equivalency checks; nodes on the path

corresponding to S are also sorted first on backtracking cost, then on support and finally lex-

icographically. These two orders can be combined in an efficient way. From our experiments,

we concluded that it is the most beneficial. As a consequence of this complex order, the data

structures are unfortunately less simple.

4.8 Experimental Results

In this section we provide results for our final depth-first implementation of F. We

compare Fwith several other algorithms. First, we use a breadth-first implementation of

F with naive sorting order and evaluation without substitution sequences as a reference

algorithm. Furthermore we also mention the results of the gSpan and FSGgraph miners, for

as far as they are applicable; see Chapter 6 for more details about these algorithms.

Bongard dataset In our first experiment we use a Bongard dataset to compare W,

depth-first and breadth-first F (Figure 4.7). Experiments were performed on a Linux

Pentium II 350Mhz with 192MB RAM; F was compiled using the GNU C++ compiler,

version 2.96, with O3 code optimization setting.

Bongard datasets are traditionally used when testing ILP algorithms [57]. They consist

of descriptions of simple images consisting of circles, rectangles, and so on. We used a

dataset that was provided by Blockeel et al. as part of the W package [21]. This Bon-

gard dataset is relatively simple and consists of facts for the predicates circle/2,square/2,

triangle/2, in/3 and config/3; for example, atom set {circle(b1,c1),in(b1,c1,t1),

triangle(b1,t1), config(b1,t1,up)} encodes that a Bongard image consists of an upward

pointing triangle within a circle. We only includes modes for circle,triangle andsquare

in which the second argument is a −. In this way the background knowledge is exploited that

the triangle, square and circle shapes are disjoint. The inpredicate has a mode with only

inputs (+) to allow for inclusion relations between shapes. For inand configwe include

modes with both − and + arguments. Object identify was applied to all arguments.

In the experiments, F was clearly several orders of magnitude faster than W.

One should however realize that in these experiments, we forced Object Identity in W by

adding inequality atoms. W was not optimized for this. Part of the efficiency difference

may also be due to the different programming language that was used (Prolog for W,

instead of C++).

Comparing the breadth first and depth first approach, it is interesting to see that the ef-

ficiency difference is minimal. In fact, for many child orders the depth first algorithm was

4.8. Experimental Results 93

 100

 1000

 10000

 100000

 1e+06

 0 2 4 6 8 10 12 14 16 18 20

R
u
n
ti
m
e
 (
m
s
)

minsup (%)

Farmer Breadth-First
Farmer Depth-First

WARMR

 0.1

 1

 10

 100

 1000

 0 2 4 6 8 10 12 14 16 18 20

R
u
n
ti
m
e
/q
u
e
ry
 (
m
s
)

minsup (%)

Farmer Breadth-First
Farmer Depth-First

WARMR

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 0 5 10 15 20 25 30 35 40

R
u
n
ti
m
e
 (
m
s
)

Number of examples x 392

Farmer Breadth-First
Farmer Depth-First

WARMR

Figure 4.7: Results on the Bongard dataset. Default dataset size is 392,minsup = 5%.

slower than the breadth first algorithm.

Predictive ToxicologyEvaluation Challenge (PTE) Execution times for PTE were pub-

lished in some earlier publications [199, 107, 109] on graph mining. The PTE dataset can be

obtained from [3]; it consists of 340 molecules. We will consider these results in more detail

in later chapters. In this chapter, we only consider the efficiency of some early algorithms in

comparison with F. In this comparison, the atom and bond information was extracted

to construct labeled, undirected graphs and one searches for connected frequent subgraphs.

To emulate the setup of gSpan and FSG, Object Identity is a necessity. To deal efficiently with

connected, undirected graphs, we used a bias of mode sequences:

M = {k(−)atom(+,−,#),bond(+,+,−,#)atom(1,3,#)bond(1,3,2,4),

bond(+,+,+,#)bond(1,3,2,4)}

As we know that edges and atoms only have one label, we optimize the search by also speci-

fying that

K(atom) = {1,2}

K(bond) = {1,2,3}

Furthermore, we also use three parameter types: molecules (the first arguments of all pred-

icates), atoms (the second argument of atomand the second and third arguments of bond),

atom types (the third argument of the atompredicate) and bond types (the last argument of

the bondpredicate).

Figure 4.8 displays some execution times. All runtimes are the mean of three independent

runs on the same machine; the FSG, gSpan and W algorithms were provided as binaries

by their authors. As far as applicable the algorithms were compiled under GNU C++ 3.2

with O3 compiler settings; they were run on an AMD Athlon XP1600+ with 512MB main

memory, running the Mandrake 9.1 Linux OS. More detailed experiments with this dataset

can be found in Section 6.12.

The reader may wonder why we used bond(+,+,−,#)atom(1,3,#)bond(1,3,2,4) as mode

sequence in stead of the more intuitive bond(+,+,−,#)bond(1,3,2,4)atom(1,3,#); the only

reason for this choice is that this order obtains a slightly better performance, as for the given

dataset the second bond atom is always known to succeed.

We may conclude that our algorithm does not reach the performance of the special pur-

pose gSpan and FSG graph miners. We could easily compute all frequent subgraphs down to

94 4. Inductive Logic Databases

minsup % 3% 4% 5% 6% 7% 8% 10% 20% 30%

minsup Absolute 10 14 17 20 24 27 34 68 102

Number of graphs 22758 5935 3608 2326 1770 1323 844 190 68

FSG 43.9s 11.0s 6.3s 4.0s 2.9s 2.4s 1.6s 0.6s 0.3s

gSpan 20.3s 6.3s 3.4s 2.0s 1.4s 1.0s 0.6s 0.3s 0.2s

F 572s 172s 93s 54s 37s 28s 17s 6s 4s

→ Candidate counting 524s 162s 88s 50s 34s 25s 15s 5s 4s

W ilProlog 1.1.146 - - - - - - 11351s 733s 172s

→ Candidate counting - - - - - - 25s 5s 2s

Figure 4.8: Experimental results on the PTE dataset.

a support of 3%. To investigate how much time is spent in the candidate generation and can-

didate evalution, we performed the following kind of experiment: we multiplied the dataset

several times (thus obtaining larger datasets), and determined the runtime of the algorithms

for each of these datasets. We saw in the previous experiment that the algorithms scale linearly

with respect to the dataset size. Using linear regression we can compute what the expected

runtime would be if there were no dataset (and thus only candidate generation, dataset read-

ing, and so on would be performed). This time is substracted from each runtime to obtain an

estimate of the time spent in candidate counting.

This procedure reveals that both in terms of candidate evaluation and candidate genera-

tion the frequent atom set mining algorithms perform worse than the graph mining algorithm.

We will look at the possible reasons later, when we have considered the graph mining algo-

rithms in more detail. One of the main reasons seems to be that the frequent atom set mining

algorithms are less able to exploit the labels of the graphs in a good way; in terms of candi-

date generation the exhaustive equivalence search clearly also is far from optimal. The run

time differences between F and W seem to be mainly caused by the inefficient

candidate generation of the implementation of W that we considered. This may however

also be due to the way that W handles Object Identity.

Mutagenesis The Mutagenesis dataset is very similar to the PTE dataset and was also used

in [21]. We use it to compare F with W without Object Identity. Using a minimum

support of 20%, W discovers 91 frequent queries in 207s (of which 205s are spent while

generating candidates). On the same machine F discovers 1075 frequent queries in 73s.

Clearly, F discovers more queries. This is due to the fact that graphs like C−C−C and

C−C are not equivalent when Object Identity is applied. The set of queries found by F

is a proper superset of those found by W.

Experiments with WeakObject Identity In order to gain further insight in the benefits and

drawbacks of weak Object Identity we performed further experiments with the molecular

PTE dataset.

We first evaluate all types under Object Identity and isolate the effect of introducing pri-

mary keys. Results are shown in Figure 4.9; as one sees here, the relative number of avoided

atom sequences due to primary keys is low; the most likely reason for this phenomenon is the

4.8. Experimental Results 95

Absolute Number of Total number Number of

threshold avoided queries of evaluated queries frequent queries

30% 4749 141881 1065

20% 9741 311343 2343

10% 96447 4325893 22786

Figure 4.9: Overviewof query evaluation savings using primary keys.

Absolute Number of frequent queries

threshold without nc with nc, OI with nc, weak OI

150 61 63 1852

125 65 74 1873

100 71 137 3648

75 163 262 8521

Figure 4.10: Number of frequent queries discovered.

effective merging procedure of F: if no primary keys are specified, infrequent combina-

tions of atoms are still quickly discovered and used to avoid the further generation of useless

combinations.

We also consider different kinds of frequent patterns for the PTE dataset. For example,

it is known that in some benzene ring structures instead of carbons also nitrogens can occur,

while this difference does not matter in all situations. Nitrogens and carbons can therefore be

put into an equivalence class. In an ILP algorithm one can easily formalize this by adding

a predicate nc(T) to the knowledge base, where nc(c) is true for elements c (carbon) and n

(nitrogen), and false for all other elements; in a very basic form, the bias can become:

M = {k(−)atom(+,−,−),bond(+,+,−,#)bond(1,3,2,4)atom(1,3,−),

bond(+,+,+,#)bond(1,3,2,4),nc(+)}.

Consider the following atom set:

{atom(M,A1,T),nc(T),bond(M,A1,A2,single),bond(M,A2,A1,single),atom(M,A2,c)}.

Under full OI, T would be restricted to nitrogen!Within our framework, however, it is possi-

ble to remove the OI constraint from T , after which the semantics of the query is as expected.

Figure 4.10 gives a short overview of the resulting numbers of atom sequences. Only when

one adds the nc predicate with weak OI, the number of frequent atom sequences increases

exactly as desired.

Note that it is also straightforward to define more elaborate search spaces that assume

hierarchies on the labels: for example, if one also wishes to extend the search space to include

fragments with carbon and nitrogen instead of the more general nc label only, the following

96 4. Inductive Logic Databases

bias could also be used for this purpose:

M = {k(−)atom(+,−,−)nc(4),bond(+,+,−,#)bond(1,3,2,4)atom(1,3,−)nc(11),

bond(+,+,+,#)bond(1,3,2,4),c(+),n(+)}

Here c and n are predicates that are only true if the argument is carbon or nitrogen, respec-

tively. Within F this bias would however not be optimal, as the special new atoms for

c and n are added as children of the atom atoms, while it would be more efficient to evaluate

them only if we know that the third argument of an atom falls in the nc class. It is however

possible to incorporate such optimizations in an (artificial) new bias:

M = {k(−)atom(+,−,−)nc(4,−),bond(+,+,+,#)bond(1,3,2,4),

bond(+,+,−,#)bond(1,3,2,4)atom(1,3,−)nc(11,−),c(+),n(+)},

where we introduce a new type for the second argument of nc and the arguments of c and

n. This type consists of two constants, newcarbon and newnitrogen. We define that nc is

only true for the following cases: nc(c,newcarbon) and nc(n,newnitrogen), and that n and

c are only true for n(newnitrogen) and c(newcarbon), respectively. This small exercise

shows that by a careful definition of predicates and background knowledge in the set of facts,

F can be used to emulate many kinds of mining problems, although the resulting bias

gets less intuitive and the performance is still far from the performance of special purpose

algorithms.

A more elegant bias may be

M = {k(−)atom(+,−,−)nc(4)n(4),k(−)atom(+,−,−)nc(4)c(4),

k(−)atom(+,−,−)nc(4),bond(+,+,+,#)bond(1,3,2,4),

bond(+,+,−,#)bond(1,3,2,4)atom(1,3,−)nc(11)c(11),

bond(+,+,−,#)bond(1,3,2,4)atom(1,3,−)nc(11)n(11),

bond(+,+,−,#)bond(1,3,2,4)atom(1,3,−)nc(11)};

in this bias we allow one mode sequence to be the prefix of another. Within our current setting

this is forbidden; however, the reason for disallowing one mode sequence to be a prefix of

the other was to avoid ambiguity with respect to the modes that are used to generate a certain

sequence. In the current bias, there is no such ambiguity as the n and c predicates are not

part of separate modes: if the predicate is added, this happens after another mode sequence.

A basic modification would be to allow situations such as sketched in this example.

4.9 Related Work

An important part of the inductive mining algorithm is the declarative bias that is used. Be-

sides the mode bias, in literature several other formalisms for defining biases have been in-

troduced. We next discuss a number of these formalisms. One bias formalism is the D-L

4.9. Related Work 97

formalism [58]. An example of a D-Lab declaration is:

1 · · ·1 : {p(X,Y),q(X,Y)} ← 2 · · ·2 : {p(Y,X),0 · · ·2 : {q(Y,X),q(Y,Y)}}; (4.2)

essentially, the set of clauses defined by this bias consists of all subsets of the given sets, such

that the number of elements chosen from each set is within the range given before that set.

The following clauses are part of the search space:

p(X,Y) ← p(Y,X)

p(X,Y) ← p(Y,X),q(Y,X)

p(X,Y) ← p(Y,X),q(Y,Y)

p(X,Y) ← p(Y,X),q(Y,X),q(Y,Y)

q(X,Y) ← p(Y,X)

q(X,Y) ← p(Y,X),q(Y,X)

q(X,Y) ← p(Y,X),q(Y,Y)

q(X,Y) ← p(Y,X),q(Y,X),q(Y,Y)

The D-L declarative bias was implemented in the C algorithm [52, 51]. The C-

 algorithm is very similar to the W and F algorithms; it differs in its choice

for (Horn) clauses as pattern language, and does not use a minimum frequency threshold:

instead, C outputs all clauses for which no counter example can be found in the data.

The D-L declarative bias has advantages and disadvantages. It does not allow for the

definition of infinite search spaces, but on the other hand, some search spaces can be described

more precisely than with modes. Note that the tree of mode sequences that we defined is

very similar to a D-Lab declaration. It should be possible to merge D-Lab declarations with

mode sequence trees to obtain a declarative formalism that merges the characteristics of both

formalisms. The incorporation of such a mechanism in F should also be possible.

W and F are both algorithms that can be thought to work within the setting

of learning from interpretations [53]. When learning from interpretations examples are con-

ceptually treated asHerbrand interpretations; a pattern covers an example if the example is

a model for the pattern. For example, p(a,b) is a model for (∃X,Y : p(X,Y)). Under learning

from interpretations p(a,b) is not a model for (∃X,Y : p(X,Y)∧p(Y,Z)); this formula is there-

fore more specific. When learning from interpretations, atom sets should thus be conceived

as conjunctions of atoms in which variables are existentially quantified.

More common in ILP is the setting of learning from entailment. When learning from

entailment a pattern is said to cover an example if the pattern entails the example. Under

learning from entailment p(a,b) is entailed by (∀X,Y : p(X,Y)), but not by (∃X,Y : p(X,Y)).

Intuitively, when learning from entailment, longer conjunctions are more general: p(a,b) is

also entailed by (∀X,Y : p(X,Y)∧p(Y,Z)).

Atom set mining can conceptually also be considered within the setting of learning from

entailment. In that case, the atom set {p(X,Y),p(Y,Z)} should be conceived as a formula

φ = (@X,Y : p(X,Y)∧p(Y,Z))};

atom set {p(a,b),p(b,c)} in the database should be conceived as ψ = ¬(p(a,b)∧p(b,c)), as

then φ |= ψ.

98 4. Inductive Logic Databases

Both when learning from interpretations and when learning from entailment, it is possible

to incorporate background knowledge in the form of clauses. Our algorithms did not incorpo-

rate this feature, although an extension with such a feature should be possible. Traditionally,

when learning from interpretations, background clauses are used to derive new facts from

existing facts. From a database point of view, the background clauses define new views on the

original data.

An interesting additional way to use background clauses was presented in the C-A al-

gorithm of De Raedt and Ramon [56]. The C-A algorithm modifies the W algorithm

to deal with semantic free and semantic closed atom sets. In its simplest form the algorithm

assumes that the background knowledge consists of clauses like

bond(M,A1,A2,T) ← bond(M,A2,A1,T)

nc(T) ← n(T)

nc(T) ← c(T)

A semantic free atom set is then defined as an atom set which is not subsumed by one of these

rules. For example, this set is not free:

{atom(M,A1,T),nc(T),bond(M,A1,A2,single),bond(M,A2,A1,single),atom(M,A2,c)},

as bond(M,A2,A1,single) follows from bond(M,A1,A2,single), or the other way around.

Every semantic free atom set can be turned into a semantic closed atom set by applying the

rules in the background knowledge. A semantic closed atom set is an atom set to which no

additional atoms can be added by applying the clauses in the background knowledge. The

advantage of this approach is that it ensures that frequent atom sets are in general rather short

(as in the output one considers free atom sets), while also the equivalences are treated as

expected (to compare atom sets, their closures are compared).

Furthermore the set of background clauses can also be used to incorporate constraints that

forbid certain subset atom sets. For example, a clause false← n(X),c(Y) in the background

knowledge could be used to forbid sets that contain both n and c predicates at the same time.

Both C-A and F use (variants of) Object Identity subsumption instead of general

subsumption to order the atom sets. This idea was first presented, however, as part of the S

algorithm of Malerba and Lisi [122, 123]. In comparison with the W algorithm the S

algorithm includes more enhanced support for taxonomies over the constants. As an example,

in S one can introduce a special constant nc that generalizes over the n and c constants.

Any atom atom(M,A1,c) would also be considered as an atom(M,A1,nc) atom; atom sets are

also refined by replacing general constants (like nc) with more specific constants (like c).

Newly introduced constants are initialized to general constants, and never to constants lower

down the taxonomy. In this way, taxonomies are taken care off in a neat way.

Most W-based algorithms have a setting in which atom sets are counted by consid-

ering one single key predicate that is predefined by the user. It was noticed by Goethals and

Van Den Bussche [75] that in some multi-relational databases it may also be interesting not

to fix the table that is used for counting. Let A be an atom set and let Θ be the set of all

substitutions θ for which Aθ⊆D. Then each such substitution can be projected on a subset of

the variables in A, and the support of an atom set can be defined as the size of the projection

of Θ. A pattern found by Goethals and Van Den Bussche consists of a tuple of an atom set

4.9. Related Work 99

and a set of projection variables. The support of this tuple is the number of different projected

substitutions for which the atom set can be satisfied. The search starts from the largest possi-

ble set of projection variables; one possible refinement is the deletion of a variable from the

projection variables. By removing a projection variable the support can only go down, so the

monotonicity requirements are satisfied. The algorithm does not use mode declarations and

performs refinement with the three traditional steps: 1) unification of two variables, 2) intro-

duction of a new atom with only new variables, 3) substitution of a variable with a constant.

A difficulty of the algorithm is to choose a good initial set of variables. This set can not be

too large, as it is highly desirable that all variables in the projection set of variables also occur

in the atom set (or, in ILP terms, it is desirable that the query is range restricted).

While we implemented F in C++, and W and C-A were implemented in

Prolog, Clare and King [42] also created a new implementation of W, this time in

Haskell. To deal with their particular application (the analysis of the yeast genome), these

researchers needed an implementation which could handle much larger amounts of data than

the other implementations. For this purpose Clare and King developed their parallel Poly-

FARM algorithm for use on a Beowulf cluster. Among the conclusions of this research was

that the lazy nature of Haskell was hard to combine with the original purpose of developing

a really large-scale data mining algorithm.

Large amounts of research were done to speed up separate parts of ILP algorithms such

as W. Among others, Blockeel et al. implemented the query pack mechanism to speed

up the evaluation of a set of queries [21]. The query pack implements the same idea that we

also applied in our breadth-first implementation of F: by putting atom sets in a trie,

large parts of many queries can be evaluated together instead of separately. One of the main

ideas is that a backtracking procedure needs to be applied to find a substitution (given that

the problem is in general NP-complete). By evaluating those atoms first for which it is hard

to find a satisfying substitution, the hard part of many queries is only evaluated once, thus

saving overall execution time. It was shown by Blockeel et al. that the query pack mechanism

is not only useful for frequent pattern mining, but that there are also applications in other ILP

algorithms. The experiments that we reported on in this chapter were all performed with an

implementation of W that did include query packs.

An overview of further optimizations was provided by Santos Costa et al. in [47]. All

optimizations assume that θ-subsumption is used to order the patterns. Four optimization

techniques are introduced:

• the removal of redundant atoms from an atom set (for example, if an atom set contains

an atom bond(M,A1,A2,c), another atom bond(M,A1,A2,T) can be removed, as its truth

value depends on that of the first atom). This optimization depends highly on the kind

of bias that is used.

• the cut-transformation: if atom sets can be subdivided into separate, independent parts

(for example, in {p(X,Y),q(Z} the two atoms are independent as they do not share vari-

ables), it does not make sense to continue searching if one independent part of the

atom set can not be satisfied, or to continue searching for a part that has already been

satisfied. This transformation uses Prolog’s cut-operator to subdivide the search into

independent pieces. Under OI this optimization can only be applied when a typed logic

is used, and two parts refer to variables of different types. For example, assume the fol-

100 4. Inductive Logic Databases

lowing predicates (types are given as parameters): k(T1),p(T1,T2),q(T1,T3),r(T3,T3),

and the following atom set: {k(X),p(X,Y),q(X,Z1),r(Z1,Z2)}.Givenasubstitutionfor

thekeyvariableX,assoonasitisknownthatp(X,Y) canbesatisfied,itisnotnec-

essarytoconsideranyothersubstitutionforY,astheotherpartoftheatomset—

{q(X,Z1),r(Z1,Z2)}—canbeevaluatedindependently.

• theonce-transformation:theonceoptimizationisarecursiveextensionofthecut-

transformation:itmaybethatafterasetofatomsisgroundedbyasubstitution,an-

othersubsetofatomsfallsapartinindependentpieces.Theoptimizationisbasedon

theideaoforganizingtheevaluationofanatomsetsuch thatitfallsapartintosmall

independentpiecesassoonaspossible.

• thesmartcalltransformation.Assumethatforagivenatomsetwehaveasetofall

keyvariablesubstitutionsforwhich theatomsetcanbesatisfied.Theniftheatomset

isrefinedwith anindependentnewatom,itisnotnecessarytoevaluatetheoriginal

atomsagain,aswealreadyknowthatthisoldpartoftheatomsetcanbesatisfiedfor

thestoredkeysubstitutions.Toevaluatethenewatomsetwethereforeonlyhaveto

evaluatethenewatomforallstoredkeysubstitutions.Thesmartcalltransformation

generalizesthisideatoavoidthere-evaluationofatoms.

OurimplementationofF doesnotincludetheseoptimizations.Asweevaluateatom

setsunderObjectIdentity,thiswouldonlymakesenseifthenumberoftypesinthetyped

logicwouldbelarge,butthiswasnotthecaseinthedatasetsthatweconsidered.Mostofour

optimizationswerethereforedesignedwith atomsetsinmindthatdonotfallapartininde-

pendentpieces.ManyoftheoptimizationsdiscussedbySantosCostaetal.couldhowever

alsobeincorporatedinF,ifrequired,although thecombinationofthesmartcallwith

ourapproachforstoringsubstitutionsisnotstraightforward.

EventhoughDatalogoffersanaturalformalismforspecifyingqueriesovermulti-relational

databases,otherformalismshavealsobeenconsidered:treesandgraphscanalsobeusedto

minerelationaldata.Here,weliketomentionanapproachthatwasinitiatedbyKnobbeetal.

andisbasedontheuseofUMLclassdiagrams[101].Insuch diagramsthenodesrepresent

tables,whileanedgerepresentsanassociationbetweenanattributeinonetableandasecond

attributeinanothertable.Byallowingtheusertospecifyadirectionforeachedge,astarting

pointisobtainedfortheautomaticgenerationofamodebiasformulti-relationaldatabases:

eachedgeistransformedintoamodeforthepredicate(ortable)towhichtheedgeisdirected,

wherethemodehasa+parameterfortheattributethatisinvolvedintheassociation,andall

otherparametersare−.Furthermore,modesareaddedforbinarycomparisonpredicates;an

exampleofthisistheispredicate.Thispredicateisonlytrueifthefirstargumentequals

thesecondargument.Usingisatomsthevaluesofattributesintablescanbetested.Inthe

approach ofKnobbeetal.theuserhastheabilitytospecifyforwhich attributesthistestis

performed;thesespecificationsaretransformedintoadditionalconstraintsonthefirst-order

language.

Takingtree-shapedUMLdiagramsastheirstartingpoint,YimamandMehrotradevel-

opedaspecializedmulti-relationaldataminingalgorithmin[170].Thesearchspaceissimi-

lartothatdefinedbyKnobbeetal.,exceptthatitisexplicitlyspecifiedthateachpredicatecan

onlyoccuronceineverypattern;theuseoftheispredicateisnotrestricted,which makes

4.10. Conclusions 101

it possible to test all attributes of all tables. By applying these restrictions, the authors ob-

tain exactly the same restricted bias that we defined on page 89. The authors experimentally

compare their algorithm with our F implementation using a bibliographic dataset. By

temporarily storing the results of ‘join’nodes (which correspond to modes for other predi-

cates than the is predicate), these authors report significant speed-ups in comparison with

our implementation. Further studies would be required to find out which elements of their

algorithm are the source of this reported difference. The implementation of F that was

used in these experiments did not contain any optimizations for the special tree-shaped bi-

ases; it may be that by avoiding the exponential search that is performed in F when

generating and evaluating candidates, and by introducing more elaborate subsumption sets,

similar speed-ups can also be obtained in F for specific situations. We will return to

these issues in the next chapter.

Our F implementation was also used in experiments by Clare et al. in [43] to assess

the performance of their R algorithm. In this algorithm Clare et al. introduce the idea of

using inverted indexes. The inverted index is a variation of theTid-sequences that are used in

vertical itemset mining algorithms. By joining such sequences for constants in the data, an

algorithm can get a closer idea about which rows in multi-relational databases to consider.

Clare et al. compare F to R and the original W algorithm. Even though in

their experiments W and R use a globally incomplete refinement operator under

traditional subsumption (and consequently the search space for F is much larger) they

find that our algorithm is the fastest on small datasets, but F appears to have problems

when dealing with large datasets as all data is loaded in main memory.

Finally, Lee and De Raedt worked on the application of frequent pattern mining to se-

quential logic databases [115]. In this setting the data and patterns do not consist of atom

sets, but of atom sequences, and a subsumption relation is defined that takes the order of

atoms in sequences into account. It turns out that many of the problems of mining atom sets

vanish when one considers atom sequences: atom sequences of different lengths are never

equivalent, while also optimal and ideal refinement are efficiently achievable.

4.10 Conclusions

We showed that both traditional subsumption and Object Identity subsumption have undesir-

able properties. While for traditional subsumption no ideal refinement operator exists, Object

Identity restricts the expressiveness of single clauses too much. We proposed to restrict full

clausal languages to languages that do not violate primary key constraints. In most situations,

this is a desirable restriction as it restricts the full clausal language to expressions that make

sense from a user point of view. For these more restricted languages, we have given a proof

which shows that, using a weak subsumption operator, it is not necessary to force Object

Identity on all variables to obtain an ideal refinement operator; this allows single clauses to

express more interesting patterns.

Thus, we have shown how concepts from relational database theory can also be used for

other useful purposes than the reduction of the number of evaluated queries. Several ques-

102 4. InductiveLogic Databases

tions have however been left unanswered. On the theoretical side, it would be interesting

to investigate how other constraints, such as foreign keys and participation constraints, but

also more general constraints [56], can be exploited further. Similar to primary keys, these

constraints can also restrict the search space of ILPalgorithms;the relations between these

constraints and refinement operators deserve further study. On the practical side, we have

evaluated weak OIhere in the context of frequent atomset mining and concluded that the

capabilities of primary keys to limit the search space may be limited. We would expect differ-

ent results in learners that use more traditional refinement operators, but further experiments

would have to confirm this.

We incorporated the weak OI relation in a frequent atom set mining algorithm called

F. This algorithm includes some optimizations for the evaluation of atom sets that can

not be split into separate, independent parts. Among others, we stored subsumption sets and

presented schemes for reordering atoms in atom sequences. The resulting algorithm turns out

to perform better than earlier frequent atom set mining algorithms, but its performance is still

disappointing in comparison with more specialized algorithms. We will therefore consider

more specialized algorithms in the next chapters.

We decided to offer our implementation of F for free on the Internet. An interesting

consequence of this choice is that also other researchers have started using our implementa-

tion in their experiments. This research has confirmed the results that we also obtained in our

experiments: under OI, the number of discovered patterns is often larger as the search space

becomes larger for globally complete refinement procedures; on small datasets, our algorithm

performs quite well, but on special kinds of datasets, or on very large datasets, there is room

for improvement.

5 MiningRootedTrees

In this chapter we continue our studies of structure mining algorithms by developing rela-

tions, refinement operators and evaluation strategies for rooted trees. As the simplest kind of

rooted tree is the ordered rooted tree, we discuss approaches for mining ordered trees first.

Our main contributions however involve the mining of unordered trees. We introduce an op-

timal refinement operator and show that this is operator is the most efficient operator that

can be achieved. Furthermore, to evaluate the frequency of unordered trees, we modify an

existing polynomial subtree computation algorithm to determine occurrences in a database

incrementally. This incremental algorithm has a much better theoretical complexity than in-

cremental algorithms that have been used in other studies, and is also shown to perform well

experimentally. To make clear what the differences are between our and other algorithms, we

continue our tradition of also giving many detail of other algorithms.

5.1 Introduction

In inductive query mining algorithms several elements are of importance: relations, refine-

ment operators, merge operators and evaluation strategies. Once these elements have been

defined, the implementation of data mining algorithms is almost a straightforward matter.

The setup of this chapter reflects this subdivision. In section 5.2, we introduce a set of re-

lations between rooted trees; we define the difference between ordered and unordered trees.

An overview is provided of the complexities of the relations. These complexities and their

underlying algorithms are of importance: once we have a refinement procedure and an eval-

uation strategy, we essentially have all elements to implement a basic breadth-first A-

Salgorithm for mining trees under monotonic and anti-monotonic (frequency) con-

straints, and we know therefore what the bottom line complexity for mining rooted trees is.

In section 5.3 we provide an overview of the applications of tree mining algorithms.

Subsequent sections list refinement operators and merge operators for several kinds of

trees: in section 5.4 we redefine the search order of a previously proposed algorithm in terms

104 5. Mining Rooted Trees

of a refinement operator; in section 5.5 we show how this refinement operator can be extended

to refine unordered trees in an efficient way. Section 5.6 contains extensive proofs that show

that the proposed refinement operator of section 5.5 is both correct and efficient, and can

safely be skipped by readers not interested in these technical details. We already pointed

out that there is a close relationship between optimal refinement operators and enumeration

algorithms. In section 5.7we show that our refinement operator is optimal in terms of time

complexity:we show that the refinement operator can be used to enumerate unordered trees

in O(1) time per enumerated tree, which clearly is the best complexity that one can hope to

achieve.

After this discussion of relations and refinement operators, we start building data mining

algorithms. First, we observe in sections 5.8and 5.9that for some relations, it is not necessary

to develop new algorithms:it suffices to map the tree mining problems to frequent itemset

mining algorithms.

The simplest way to obtain a specialized tree mining algorithm is to generate candidates

using a refinement operator (or a merge operator), and to determine the support of candidates

by using a ‘standard’algorithm for computing subtree relations. In experiments we will see

however that algorithms that use a special incremental evaluation algorithm are in practice

much faster. Therefore we will also devote attention to developing such specialized algo-

rithms. In section 5.10 we review earlier work on mining embedded subtrees; in section 5.11

we review earlier work on mining induced subtrees. We extend both these evaluation strate-

gies in our own algorithms. In section 5.12 we introduce our FT algorithm for computing

the induced unordered subtree relation incrementally. We show that in contrast to the other

published methods, the worst case complexity of our strategy is bounded polynomially per

computed relation. As part of this discussion we will briefly review some earlier work on bi-

partite matching and computing subtree relations, as this is required for a good understanding

of our methods. Besides this algorithm with a good worst case complexity, we also introduce

the details of a theoretically less efficient method in section 5.13. We will see that this method

often works well in practice, and will extend this algorithm in the next secton when mining

subgraphs.

Finally, section 5.14 provides an overview of other related work. In section 5.15 we eval-

uate a large set of rooted tree miners experimentally. One of the essential questions that we

ask ourselves then is how the exponential evaluation strategies compare to the polynomial

strategies. In the last section we conclude.

5.2 Graphs and Trees: Basic Definitions

Although chapter focuses on rooted trees, we believe that the correct way to introduce these

formally is to define the concepts of graphs first.

Definition 5.1 (Graphs)Let V denote a set of nodes, E ⊆ V ×V a set of edges, Σ an alphabet

of symbols and λ a function from V ∪E to Σ.

• A directed graph is a tuple G = (V,E).

5.2. Graphs and Trees: Basic Definitions 105

• A loop-free graph is a directed graphG = (V,E) for which ∀v ∈ V : (v,v) < E. From now

on, we assume that graphs are always loop-free: all graphs are simple.

• An undirected graph is a directed graph (V,E) for which ∀(v1,v2) ∈ V ×V : (v1,v2) ∈

E⇔ (v2,v1) ∈ E.

• A node labeled directed graph is a quadruple G = (V,E,λ,Σ) such that (V,E) is a di-

rected graph and λ is a total function from V to Σ.

• A node labeled undirected graph is a node labeled directed graph G = (V,E,λ,Σ) such

that (V,E) is an undirected graph.

• An edge labeled directed graph is a quadruple G = (V,E,λ,Σ) such that (V,E) is a

directed graph and λ is a total function from E to Σ.

• An edge labeled undirected graph is an edge labeled directed graph G = (V,E,λ,Σ)

such that (V,E) is an undirected graph and for all1 (v1,v2) ∈ E : λ(v1,v2) = λ(v2,v1).

• A labeled(un)directed graph is a quadrupleG = (V,E,λ,Σ) such thatG′ = (V,E,λ′,Σ) is

a node labeled (un)directed graph, andG′′ = (V,E,λ′′,Σ) is an edge labeled (un)directed

graph. Here, λ′ is a total function for which ∀v ∈ V : λ′(v) = λ(v), and λ′′ is a total

function for which ∀e ∈ E : λ′′(e) = λ(e).

The components of a graph are also denoted by VG, EG, ΣG and λG if it is unclear to which

graph is referred. For later definitions it is useful to define one special graph, the undefined

graph. Every operation on an undefined graph is undefined again.

By definition every undirected graph is also a directed graph. Consequently, most con-

cepts that apply to directed graphs also apply to undirected graphs.

Let us introduce some notational conventions. From now on, we use the courier font for

node identifiers. For example, (V,E) with V = {v1,v2} and E = {(v1,v2)} denotes a graph with

two connected nodes. Variables over sets of nodes are denoted in italic fonts; for example,

∀v3,v4 ∈ {v1,v2} includes v3 = v1 as possible assignment.

In this chapter we mostly consider node labeled graphs. For the sake of simplicity, when

we speak of graphs we refer to node labeled graphs.

Definition 5.2 (Simple path)Given a directed graph G = (V,E), a simple pathin G is a

sequence of nodes S = v1v2···vn, such that for all 1 ≤ k < n: (vk,vk+1) ∈ E, and for all

1 ≤ j < k ≤ n: v j , vk.

Definition 5.3(Simple cycle)Given a directed graph G = (V,E), a simple cycle in G is a

simple path S = v1v2···vn in G, such that also (vn,v1) ∈ E.

Definition 5.4 (Connected graph) An undirected graph is connected if there is a simple path

between every pair of nodes.

1Please note that we use λ(v1,v2) as a shorthand notation for λ((v1,v2)).

106 5. Mining Rooted Trees

Definition 5.5 (Free Tree) An undirected graph F = (V,E,λ,Σ) is a free tree if it is connected

and does not contain simple cycles.

Definition 5.6(Unordered Tree) A node labeled unordered tree is a quintupleU = (V,E,λ,Σ,r)

such that (V,E,λ,Σ) is a free tree; node r ∈ V is the root of the rooted tree.

Definition 5.7(Ordered Tree) A node labeled ordered tree is a sextuple T = (V,E,λ,Σ,r, �)

such that (V,E,λ,Σ,r) is a node labeled rooted tree and � is a total order on the nodes of V .

We denote an ordered tree with a capital T ; an unordered tree is denoted with a capital

U. Given an ordered tree T , unorder(T) is the unordered tree that can be obtained from T by

removing the order �.

One can show that between each pair of nodes in a tree there is exactly one simple path.

For rooted trees one can define a special kind of paths, which we call the root paths. Given

a node v ∈ V in a rooted tree, we denote by Π(v) the sequence of nodes on the simple path

between the root and node v: Π(v) = r · · ·v.

Definition 5.8The depth of a node v in an unordered tree U, denoted by depthU (v), is the

integer depthU(v) := |ΠU (v)|. The depth of an unordered tree U, denoted by depth(U) is

the integer depth(U) := maxv∈VU depthU(v). The set of children of a node v, denoted by

childrenU (v), is the set of nodes childrenU (v) := {v
′ ∈ VU | (v,v

′) ∈ EU ,v
′
< ΠU (v)}. Given a

node v, v , rU , with parentU(v) the unique node v
′ for which v ∈ childrenU(v

′) is denoted.

Nodes which have the same parent are called siblings. If v2 ∈ ΠU (v1), then v1 is a descen-

dant of v2; v2 is an ancestor of v1. If furthermore v2 , v1, v1 is a proper descendant of v2
and v2 is a proper ancestor of v1. The set of leafs, denoted by leafs(U), is the set of nodes

leafs(U) := {v ∈ VU | childrenU (v) = ∅}.

The definitions are similar for ordered trees. Furthermore, we define that for two siblings

v1 and v2 in a rooted, ordered tree T = (V,E,λ,Σ,r,�), we say that v1 is a left sibling of v2, or

that v2 is a right sibling of v1, iff v2 � v1. As � defines a total order on children, for ordered

trees we define that children(v) is a sequence of nodes instead of a set; with children(v)[k] the

kth child of v is denoted.

Although any total order can be used in the definition of an ordered tree, some particular

total orders are most commonly used. One of these is the pre-order, which we define next.

Definition 5.9Given an ordered tree T = (V,E,λ,Σ,r,�), we say that � is a pre-order iff for

all v1,v2 ∈ V: v1 ∈ Π(v2) implies that v2 � v1.

If the relation � between the nodes in an ordered tree is not a pre-order, a new pre-order

relation �′ can always be constructed in which the order among siblings is the same as in �.

From now on, if we consider ordered trees, we assume that the nodes are pre-ordered.

We use sequence notation for sets of nodes of an ordered tree; for example, VT [k] is the kth

node of the pre-ordered tree T . Furthermore, we assume without loss of generality that in an

ordered tree the name of the kth node in the pre-order is vk.

Relations between trees

Now that we have introduced our notation, we consider relations between trees. As we saw

in previous chapters, these relations are important both to order patterns and to determine the

frequency of structures in databases.

5.2. Graphs and Trees: Basic Definitions 107

We will first consider unordered trees.

Definition 5.10 (Induced Unordered Subtree) Given two unordered trees U1 and U2, we

define that U1 is an induced subtree of U2, denoted by U1 �ind U2, iff there is an injective

function φ : VU1 → VU2 such that ∀v ∈ VU1 : λU1 (v) = λU2(φ(v)) and ∀v1,v2 ∈ VU1 : (v1,v2) ∈

EU1 iff (φ(v1),φ(v2)) ∈ EU2 . As before, we define that U1 and U2 are equivalent, denoted by

U1 ≡ind U2, iff U1 �ind U2 and U2 �ind U1.

Intuitively, if U1 �ind U2, tree U1 can be obtained from tree U2 by repeatedly removing

leafs or the root of the tree. Parent-child relations must be preserved.

Definition 5.11 (Embedded Unordered Subtree) Given two unordered trees U1 and U2,

we define that U1 is an embedded subtree of U2, denoted by U1 �emb U2, iff there is an

injective function φ : VU1 → VU2 such that ∀v ∈ VU1 : λU1(v) = λU2(φ(v)) and ∀v1,v2 ∈ VU1 :

v1 ∈ ΠU1 (v2)⇐⇒ φ(v1) ∈ ΠU2 (φ(v2)).

Intuitively, if U1 �emb U2, tree U1 can be obtained from tree U2 by repeatedly removing

nodes, reconnecting an ancestor with descendants if a node somewhere in the middle of the

tree is removed. The embedded subtree relation preserves relations between ancestors and

descendant, but the parent-child relation is not necessarily preserved.

Outside data mining literature the embedded subtree relation is known as the included

subtree relation [96, 36].

Another option is to consider ordered trees.

Definition 5.12 (Induced Ordered Subtree) Given two ordered trees T1 and T2, we define

that T1 is an induced subtree of T2, denoted by T1 �ind T2, iff there is an injective func-

tion φ : VT1 → VT2 such that ∀v ∈ VT1 : λT1 (v) = λT2 (φ(v)); ∀v1,v2 ∈ VT1 : (v1,v2) ∈ ET1 ⇐⇒

(φ(v1),φ(v2)) ∈ ET2 and ∀v1,v2 ∈ VT1 : v1 �T1 v2⇐⇒ φ(v1) �T2 φ(v2).

The only difference with unordered trees is that the order between siblings must be pre-

served by the mapping. For embedded trees the definition is similar:

Definition 5.13 (Embedded Ordered Subtree) Given two ordered trees T1 and T2, we define

that T1 is an embedded subtree of T2, denoted by T1 �emb T2, iff there is an injective function

φ : VT1 → VT2 such that ∀v ∈ VT1 : λT1(v) = λT2 (φ(v)); ∀v1,v2 ∈ VT1 : v2 ∈ΠT1 (v1)⇐⇒ φ(v2) ∈

ΠT1 (φ(v1)) and ∀v1,v2 ∈ VT1 : v1 �T1 v2⇐⇒ φ(v1) �T2 φ(v2).

As an example consider the trees in Figure 5.1. For these trees the relations that hold are

given in Figure 5.2. The other relations illustrated in this Figure are explained in the sequel.

Please be aware that the embedded subtree relation can be subtle: T5 and T6 are not embedded

in T as the ancestor relation between the nodes in the data tree is not reflected in the pattern.

A definition for equivalence between unordered trees is the following.

Definition 5.14 (Tree equivalence/isomorphism) Unordered treesU1 andU2 are equivalent,

denoted by U1 ≡ U2, iff there is a bijective mapping φ : VU1 ↔ VU2 with ∀v ∈ VU1 : λU1 (v) =

λU2 (φ(v)), ∀(v1,v2) ∈ EU1 : (φ(v1),φ(v2)) ∈ EU2 and rU2 = φ(rU1).

Intuitively, two unordered trees are equivalent if one tree can be obtained from the other

by renaming nodes. It is easy to see that U1 ≡ind U2 ⇔ U1 ≡emb U2 ⇔ U1 ≡ U2: there are

108 5. Mining Rooted Trees

A

B E

C D

T , U

B

C D

T1, U1

B

D C

T2, U2

A

E

T3, U3

A

D E

T4, U4

A

D B

T5, U5

A

B D

T6, U6

A

B

C D

T7, U7

Figure 5.1:Examples ofrooted trees;the root ofa tree is depicted on top. For ordered trees we depict a

left sibling to the left ofa right sibling. The trees can be conceived as ordered trees or unordered trees.

T
re
e

�
in
d
T

�
em
b
T

�
ro
o
ti
n
d
T

�
b
o
tt
o
m
u
p
T

�
p
re
fi
x
T

�
le
a
f
T

T1 yes yes no yes no no

T2 no no no no no no

T3 yes yes yes no no yes

T4 no yes no no no no

T5 no no no no no no

T6 no no no no no no

T7 yes yes yes no yes yes

T
re
e

�
in
d
U

�
em
b
U

�
ro
o
ti
n
d
U

�
b
o
tt
o
m
u
p
U

�
le
a
f
U

U1 yes yes no yes no

U2 yes yes no yes no

U3 yes yes yes no yes

U4 no yes no no no

U5 no no no no no

U6 no no no no no

U7 yes yes yes no yes

Figure 5.2: Relations between the trees ofFigure 5.1.

T6 (1,A)(2,B)(2,D)

T7 (1,A)(2,B)(3,C)(3,D)

T (1,A)(2,B)(3,C)(3,D)(2,E)

T5 (1,A)(2,D)(2,B)

T4 (1,A)(2,D)(2,E)

T3 (1,A)(2,E)

T1 (1,B)(2,C)(2,D)

T2 (1,B)(2,D)(2,C)

Figure 5.3: Depth sequences for all the trees ofFigure 5.1,sorted in lexicographical order. Tree T5
is the canonical form ofunordered tree U5,as its depth sequence is the highest among equivalent

representations: T6,for which unorder(T6) ≡ U5,is not canonical.

5.2. Graphs and Trees: Basic Definitions 109

many equivalent definitions. Graph equivalence is usually called graph isomorphism. We

will follow that tradition from now on.

Similar to isomorphism between unordered trees, isomorphism between ordered trees

can be defined. In this case, the bijective mapping should also preserve the order between the

nodes in the two trees.

For several purposes the following operator is useful. This operator removes a subset of

nodes from the tree, together with all adjacent edges.

Definition 5.15 Let T = (V,E,λ,Σ,r,�) be an ordered tree, and let V ′ ⊆ V be a subset of nodes

in V . Then we define that

T ∩V′ =

{

(V′,E′,λ′,Σ,r′,�′), if (V′,E′) is connected;

undefined, otherwise.

where:

• E′ = {(v1,v2) ∈ E | v1,v2 ∈ V
′};

• ∀v′ ∈ V′ : λ′(v′) = λ(v′);

• ∀v1,v2 ∈ V
′ : v1 �

′ v2⇔ v1 � v2;

• r′ is the node in V′ such that for all v′ ∈ V′ : r′ ∈ ΠT (v
′).

For example, this operator can be used to define the induced subtree relation in another

way:

T1 �ind T2⇔∃V
′ ⊆ VT2 : T1 ≡ (T2∩V

′).

Note that if two trees are equivalent, both trees are not undefined, and thus connected. This

definition reflects the intuition that an induced subtree can be obtained by removing nodes

from a tree. Using this idea, we can also define the rooted induced subtrees.

Definition 5.16 (Rooted Ordered Induced Subtree) Given two ordered trees T1 and T2,

we define that T1 is a rooted ordered induced subtree of T2, denoted by T1 �rootind T2, iff

∃V′ ⊆ VT2 : T1 ≡ (T2∩ (V
′∪{rT2 }).

This relation differs from the original induced subtree relation as we require that the root

of the subtree is mapped to the root of the larger tree.

Definition 5.17 (Ordered LeafSubtree) Given two ordered trees T1 and T2, we define that

T1 is an ordered leaf subtree of T2, denoted by T1 �leaf T2, iff ∃V
′ ⊆ leafs(T2) : T1 ≡ (T2 ∩

(
⋃

v′∈V′Π(v
′))).

An ordered leaf subtree contains a subset of the leafs of another larger tree. Unordered

leaf subtrees can be defined similarly.

Definition 5.18 (PrefixOrdered Subtree) Given an ordered tree T , we define that its k−prefix

is the tree prefixk(T) = T ∩prefixk(VT) (remember that VT is a sequence of nodes). Given two

ordered trees T1 and T2, we define that T1 is a prefix of T2, denoted by T1 �prefix T2, iff

∃k : T1 ≡ prefixk(T2).

110 5. Mining Rooted Trees

�rootind�prefix

�leaf �bottomup

�ind �emb

Figure 5.4:Avisualization of the relations between several ordered tree orders.

Definition 5.19 Given an ordered tree T and a node v ∈ VT the bottom-up subtree of v ∈ VT ,

is the tree

subtreeT (v) = T ∩{v
′ ∈ VT | v ∈ Π(v

′)}.

For unordered trees the definition is similar.

Intuitively the subtreeT (v) consists of all nodes below v in T . We can use the subtree

operator to define yet another relation.

Definition 5.20 (Bottom-up Subtree) Given two ordered trees T1 and T2, we define that T1
is a bottom-up subtree of T2, denoted by T1 �bottomup T2, iff ∃v

′ ∈ T2 : T1 ≡ subtreeT2 (v
′).

A similar definition is also applicable to unordered trees. Also these relations are illus-

trated in Figure 5.2.

We have now introduced a number of relations between trees, similar to the relations be-

tween sequences in Chapter 3. The relations are visualized in Figure 5.4: this diagram shows

how mining algorithms are related to each other. For example, assume that we are interested

in finding frequent ordered root induced subtrees in a transactional database (so, a database

consisting of transactions, each of them being an ordered tree): then we can solve that problem

by first mining the frequent ordered embedded subtrees, as a frequent root induced subtree is

also a frequent embedded subtree. The frequent root induced subtrees, and their precise sup-

ports, can be obtained through a post-processing step in which the supports are determined

according to the root induced subtree relation, and infrequent trees according to this relation

are discarded. From this point of view, the most general tree mining problems that one can

solve are the embedded subtree mining problems.

To make a distinction between the subtrees that are found by the mining algorithm, and

the original trees that constitute the database, we will call the former pattern trees and the

latter data trees.

The question is now: what are the complexities of deciding these relations exactly?An

overview of the known worst case complexities is given in Figure 5.5. The complexity of

T1 �emb T2 was obtained by Cheng in 1998 [36]. The complexity of T1 �bottomup T2 follows

from the Knuth-Morris-Pratt algorithm [103] (we give more details later). The complexity

of U1 �ind U2 was shown by Shamir and Tsur [173] in 1999 for a similar relation on free

trees. We conjecture that the method can be modified for application on rooted trees. The

complexity of U1 �bottomup U2 follows from the combination of an O(n) normalization for

trees [9] (see later for more details) and the complexity of T1 �bottomup T2. The complexities

5.2. Graphs and Trees: Basic Definitions 111

T1 �emb T2 O(nl)

T1 �ind T2 O(nm)

T1 �rootind T2 O(n)

T1 �leaf T2 O(n)

T1 �bottomup T2 O(n)

T1 �prefix T2 O(m)

U1 �emb U2 NP-complete

U1 �ind U2 O(nm1
1
2 / logm)

U1 �rootind U2 O(nm1
1
2 / logm)

U1 �leaf U2 O(nm1
1
2 / logm)

U1 �bottomup U2 O(n)

Figure 5.5:Worst case complexities of the best known algorithms that determine whether a tree relation

holds between two trees; m is the number of nodes in the pattern tree, l is the number of leafs in the

pattern tree, n the number of nodes in the database tree.

listed for T1 �rootind T2 and T1 �leaf T2 are not taken from literature; we conjecture that greedy

algorithms exist with these complexities. The T1 �rootind T2 relation was shown to haveO(nm)

complexity by Kilpeläinen in 1992 [96]; it is unclear whether this algorithm can be improved

using Cheng’s method of 1998. Remaining complexities are also given in the PhD thesis of

Kilpeläinen [96], as well as some other relations that we did not introduce in this section.

When developing mining algorithms an important issue is the definition of support. The

most straightforward case is the transaction based setup, in which the database consists of a

set of trees and the support is defined as the number of trees in the database to which a tree

can be related. However, also other definitions are imaginable. We will give one example. We

saw three relations that are root preserving: �rootind, �prefix and �leaf. If the database consists

of one large tree, or a forest of trees,D, an alternative definition for support is:

supportD(T) = |{v ∈ VD | T � subtreeD(v)}|,

where � is a root preserving relation. We will call this setup root based. Also this definition

is monotonic: the number of nodes to which the root of a pattern tree can be mapped can only

decrease if the pattern tree is enlarged.

We wish to link the new relations to those in Figure 3.3. It is clear that every sequence

can be transformed into a rooted tree:

Definition 5.21 Let S be a sequence in the domain Σ∗. Then the ordered, labeled, rooted tree

corresponding to S is

tree(S) = (V,E,λ,Σ,v1,�),

where V = {v1, . . . ,v|S |}, λ(vk) = S [k] for all 1 ≤ k ≤ |S |,

E = {(vk,vk+1), (vk+1,vk) | 1 ≤ k ≤ |S | −1}

and vk � v j for all 1 ≤ j ≤ k ≤ |S |.

This operator creates a tree in which the first node of the sequence is the root. It can

be shown that S 1 �(0,0) S 2 ⇔ tree(S 1) �ind tree(S 2) and that S 1 �(0,∞) S 2 ⇔ tree(S 1) �emb
tree(S 2). The connection between sequences and trees suggests that also for trees concepts

like minimum andmaximum gaps can be defined. Furthermore, we can reuse our observations

on the existence of merge operators. For instance, as we found in section 3.6 that under the

�(0,0) relation depth-first optimal local joining is not possible, we cannot expect this to be

possible for induced subtrees either.

112 5. Mining Rooted Trees

5.3 Applications

In the previous section we introduced several relations between trees; in this section, we will

consider a list of applications to which inductive tree mining algorithms can be applied, and

we will try to identify which kind of tree (relations) are most suitable.

Parse tree analysis Since the early nineties large Treebank datasets have been collected con-

sisting of sentences and their grammatical structure. An example is the Penn TreeBank

[128, 127]. To formulate inductive queries over these parse trees ordered subtree min-

ers can be useful. Sekine, for example, notes that to discover differences in domain

languages it is useful to compare grammatical constructions in two different sets of

parsed texts; insight in such issues could also be obtained by embedded or induced

subtree miners [171].

Computer networkanalysis IPmulticast is a protocol for sending data to multiple receivers.

The idea behind IP multicast is that a webserver sends a packet once and that routers

copy a packet if two different routes are required to reach multiple receivers. Typically,

during a multicast session rooted trees are obtained in which the root is the sender and

the leafs are the receivers. For the analysis of multicast sessions several traces were

collected by Chalmers et al. [35], of which it is of interest to determine commonly

occurring patterns. The trees are typically unordered and rooted.

Webserver access loganalysis When users browse a website, this behavior is reflected in

the access log of the webserver. Typically, information is collected such as the webpage

that was viewed by a client, the time of the viewing, and the webpage that was clicked

to reach the webpage. The access logs can be transformed into ordered trees, such

that each tree corresponds to a website visitor, each node corresponds to a webpage,

and children correspond to pages that were reached by clicking a webpage, in viewing

order. Backward edges are discardeds. Punin et al. developed the WWWPal tool to

perform this transformation in a sensible way [163], taking into account issues such

as webbrowser caches. The access logs are typically rooted, ordered trees; however,

to discover whether users have a preference for clicking on links in a certain order,

inductive queries which combine unordered and ordered tree mining could be useful.

Phylogenetictrees One of the largest tree databases currently under construction is the Tree-

BASE database2 which is comprised of a large number of phylogenetic trees [135].

The trees in the TreeBASE database are submitted by researchers and are collected

from publications. Originating from multiple sources, it is inevitable that they regu-

larly disagree with each other on parts of the phylogenetic tree. To find out to what

extent a large number of submitted trees agree, Zhang and Wang have proposed to use

frequent subtree mining. A web interface to their inductive mining algorithm, which

is connected to the TreeBASE database, is also available; see [208]. The phylogenetic

trees are typically unordered; labels among siblings are however unique.

2The TreeBASE project was sponsored and hosted by Leiden University.

5.3. Applications 113

Hypergraph mining Hypergraphs are graphs in which one edge can have more than two

endpoints. Hypergraphs in which nodes are labeled uniquely can be mined with un-

ordered rooted tree miners by transforming the hypergraphs in unordered trees, as fol-

lows. First, an artificial root is constructed. Second, all edges of the hypergraph are

added as children of the root; these nodes are labeled by the labels of the hyperedges.

Multiple hyperedges can have the same label. Finally, the labels of nodes within hy-

peredges are added as leafs of the tree. If a node is an element of multiple hyperedges,

its label is duplicated as a leaf of multiple hyperedge nodes. An unordered, induced

subtree which is found on such data can be mapped back to a hypergraph: nodes of

the subhypergraph are found in the leafs (where multiple occurrences of the same label

are joined together again). The children of the root correspond to edges of the subhy-

pergraph. It was observed by Bringmann et al. that bibliographic data can be mapped

to hypergraphs as follows. Transactions correspond to papers, nodes correspond to au-

thors cited by papers, and hyperedges connect co-authors of cited papers [31]. Also

other properties of papers, such as place of publication, etc., can easily be incorporated

in the mapping to unordered trees, by adding new children to the hyperedge nodes of

the tree.

Multi-relational data mining It was observed by Knobbe [100] that in manymulti-relational

databases tree shaped selection graphs can already express interesting patterns. If the

UML diagram of a multi-relational database is also tree shaped, or a view is created

which is tree shaped, the selection graphs found by Knobbe’s approach are a subclass

of induced unordered rooted subtrees in which no two siblings have the same label.

Indeed, such multi-relational databases can be conceived as trees as follows. First, the

root of each tree in the database corresponds to a row in the ‘key table’. The children

of the root correspond to attributes in the row. A foreign key relationship to (mul-

tiple entries of) another table can be encoded by (multiple) children labeled by the

name of the table to which is referred. Attributes in those tables can again be encoded

through child labels, and so on. By searching for frequent subtrees in these trees, we

can emulate Knobbe’s approach; moreover, we are able to introduce many optimiza-

tions: we can use a (time) optimal refinement operator and polynomial algorithms for

frequency evaluation. While Knobbe’s selection graphs are a restricted type of subtree,

our setup can also find trees that reflect one-to-many relationships. Tree shaped views

on databases such as the financial dataset [17] thus become minable.

XMLdata mining Several authors have stressed that tree mining algorithms are most suit-

able for mining XML data [189, 203, 12]. Indeed, XML is a tree shaped data format,

and tree miners may be helpful when trying to construct Document Type Definitions

(DTDs) for such documents. On the other hand, we believe that people are not only

interested in discovering the format of data, but also in discovering knowledge about

the problem domain represented by the data. Trees may not always be the most use-

ful datastructure for such purposes. For example, XML-based graph formats such as

GraphML [29] or GXL [194] encode graphs which are not necessarily trees.

For the last three applications we wish to repeat that they do not refer to a particular ap-

plication domain. We mention them to stress that any application that can be represented

114 5. Mining Rooted Trees

(1) tree(sequence S ∈ (N×Σ)∗):

(2) if |S | = 0∨depth(S [1]) , 1 then return undefined;

(3) T := ({v1},∅,Σ, {v1 7→ λ(S [1])},v1,∅);

(4) for k := 2 to |S | do

(5) T := expand(T,S [k]);

(6) return T ;

Figure 5.6: A procedure for turning sequences into trees.

as either hypergraphs, XML, or multi-relational databases, is potentially minable with tree

mining algorithms.

5.4 Ordered Trees: Encodings and Refinement

As pointed out in Chapter 3 we require sequence encodings for structures, and thus also for

trees. For reasons that will become clear later we choose to use a depth sequence encoding.

Definition 5.22 (Depth Sequence) Given an ordered tree T , the depth sequence of T is the

sequence

seq(T) = (depthT (VT [1]),λT (VT [1]))

•(depthT (VT [2]),λT (VT [2]))

•· · ·

•(depthT (VT [|V |]),λT (VT [|V |]))

⊆ (N×Σ)∗.

For a depth tuple ` = (d,σ) ∈ seq(T), we define that depth(`) = d and that λ(`) = σ.

Examples are provided in Figure 5.4.

Definition 5.23 (Rightmost Path Expansion) Assume given an ordered tree T . Then the

rightmost path of T is the root path ΠT (last(VT)). Given a tuple ` = (d,σ) ∈ N× Σ, tuple

` is said to define a rightmost path expansion if 1 < d ≤ depthT (last(VT)) + 1; the func-

tion expand(T, `), which expands T with ` = (d,σ), yields a new tree (V ′,E′,Σ,λ′,r,�′)

with the following characteristics: V′ = V ∪{v|VT |+1}; E
′
= E∪{(v,v|VT |+1), (v|VT |+1,v)}, where

v = ΠT (last(VT))[d − 1]; thus, the ‘new’ node v|VT | is connected to a node on the rightmost

path; λ′ = λ∪ {v|VT |+1 7→ σ}; ∀1 ≤ j ≤ k ≤ |VT |+ 1 : vk �
′ v j. If the expansion tuple does not

define a rightmost path expansion, the tree resulting from expand is undefined.

Intuitively, the expansion tuple describes how an ordered tree is enlarged by connecting

a new node to the rightmost path of the tree. The depth at which the node is connected is

described through the depth element of the expansion tuple, while the label of the new node

is given by the σ element of the expansion tuple.

5.4. Ordered Trees: Encodings and Refinement 115

To turn a depth sequence into an ordered tree it basically suffices to repeatedly apply

expand, as in Figure 5.6. The following observations can easily be proved.

Theorem 5.24 Given an alphabet Σ and a sequence S ∈ (N×Σ)∗ for which:

1. |S | > 0;

2. S [1] = (1,σ) with σ ∈ Σ;

3. for all 1 < k ≤ |S |: λ(S [k]) ∈ Σ and 1 < depth(S [k]) ≤ depth(S [k−1])+1.

Then seq(tree(S)) = S , and S is thus the depth sequence for tree tree(S).

Theorem 5.25 Given an ordered, labeled tree T , tree(seq(T)) ≡ T .

Therefore, it follows that depth sequences and ordered trees have a one-to-one relation-

ship with each other; both are representations for the same kind of structure. In particular, we

can note the following:

seq(expand(T, `)) = seq(T)• `,

if depth(`) ≤ depth(last(seq(T)))+ 1. Depth tuple sequences can therefore be conceived as

sequences that describe how a tree is built using expansions. For the search space of ordered,

rooted trees with labels from the alphabet Σ we can now define the following refinement

operator:

ρordered(S) = {S • (d,σ) | 1 < d ≤ depth(last(S))+1,σ ∈ Σ}. (5.1)

For ease of representation, we define the operator on depth sequences instead of on their

corresponding trees. The operator is illustrated in Figure 5.7. Starting from the depth se-

quences {(1,σ) | σ ∈ Σ} it is easily seen that this operator defines an optimal refinement

procedure on ordered trees. It is downward cover under �ind, �emb, �rootind, �prefix, but not

downward under �bottomup and �leaf: for S 1 = (1,A)(2,B) and S 2 = (1,A)(2,B)(3,B) clearly

tree(S 1) 6�bottomup tree(S 2), although S 2 ∈ ρordered(S 1).

It is also of interest to develop a merge operator. For ordered, induced trees such an

operator, the µordered-ind operator, is given in Figure 5.8. An illustration is given in Figure 5.9

(also for future reference). It is shown here that there are two ways to merge trees:

• joining in line (5): the common prefix of two trees is merged, while the last nodes of

the two trees are attached to the common prefix;

• extension in line (6): new children are attached below the last node of the rightmost

path.

A special case is the merge of two identical trees (Figure 5.9(d)), as also in that case line

(5) is executed. Strictly speaking, the tree obtained in line (5) is an extension: indeed, no

second tree would be used to prune the resulting tree; such pruning options were the reason

for introducing merge operators. However, due to the similarity to other joins, we will call

this extension a self-join.

116 5. Mining Rooted Trees

t2

A

A B

A

A

B

B

B

BA

A

A

A AA

A

A AA

A

A A

A

A

A

B

B

A

A

B B A

A A

B B

A

B

A

A

A B

t3 t4

t1

Figure 5.7:Part of the refinement tree of operator ρordered in equation (5.1), for Σ = {A,B}; trees t1 and

t2 are equivalent representations of the same unordered tree.

(1) µordered-ind(sequences S 1,S 2 ∈ (N×Σ)
∗):

(2) if prefix(S 1) , prefix(S 2)∨depth(last(S 1)) < depth(last(S 2)) then

(3) return ∅;

(4) else

(5) S := {S 1 • last(S 2)};

(6) if S 1 = S 2 then S := S∪{S 1 • (depth(last(S 1))+1,σ) | σ ∈ Σ};

(7) return S;

Figure 5.8: A procedure merging two depth sequences of ordered trees.

5.5. Unordered Trees: Encodings and Refinement 117

As shown in section 3.6 every merge operator can be reformulated in terms of a downward

and an upward refinement operator. One can see that the operator of Figure 5.8 is equivalently

specified by the combination of ρordered and the following upward refinement operator:

δind(S) =



















{prefix(S),prefix−2(S)• last(S)},

if depth(last(S)) ≤ depth(last(prefix(S)));

{prefix(S)}, otherwise.

(5.2)

The reason for the condition is that if the last node of the tree (in the pre-order) is a child

of the second last node, we cannot remove the second last node and keep the last node, as

the resulting tree would be unconnected. From these observations it follows that µordered-ind is

optimal.

A slightly different merge operator is possible under the �emb relation. Here, we can define

another upward refinement operator:

δemb(S) =



















{prefix(S),prefix−2(S)• last(S)},

if the last node of T is not a child of the second last node,

{prefix(S),prefix−2(S)• (depth(`)−1,λ(last(S)))}, otherwise.

(5.3)

This operator reflects that in the embedded subtree relation it is allowed to ‘skip’ nodes. We

can therefore perform upward refinement to a tree which is an embedded subtree, but not an

induced subtree. The operator resulting from the combination of ρordered and δemb is denoted

by µordered-emb and is also illustrated in Figure 5.9. This example shows that using ρordered-emb
almost all trees can be obtained through a join. Still, also this merge operator does not allow

for join-only enumeration, in the strictest sense:

δemb((1,A)(2,A)(3,A)) = {(1,A)(2,A)} or δemb((1,A)(2,A)(2,A)) = {(1,A)(2,A)}.

These cases are however similar to the self-join of µordered-ind; one can show that all embedded

subtrees can be enumerated using joins and self-joins.

The µordered-emb operator can also be described in a more procedural way as in Figure 5.8;

the refinement operators describe this operator however sufficiently.

5.5 Unordered Trees: Encodings and Refinement

The sequence notation that we introduced in the previous chapter for ordered trees can also

be used to define a sequence notation for unordered trees: we define that the canonical depth

sequence for an unordered tree is the highest among all possible sequences that could be

obtained by ordering the nodes in a prefix order.

Definition 5.26 Given an unordered tree U, and a total order ≥Σ on the symbols in Σ, we

define that the canonical depth sequence for U is:

seq(U) = max
unorder(T)=U

seq(T),

where seq(T1) is higher than seq(T2) iff seq(T1) �
lex seq(T2) and depth tuples are compared

also lexicographically: (d1,σ1) � (d2,σ2) iff (d1 > d2)∨ (d1 = d2∧σ1 �Σ σ2).

118 5. Mining Rooted Trees

(1,A)(2,B)(3,A)

A

B

A
(1,A)(2,B)(2,B)

A

B B

µordered-ind (• , •)

Join

A

B

A

B

(1,A)(2,B)(3,A)(2,B)

(1,A)(2,B)(2,A)

A

B A

(1,A)(2,B)(2,B)

A

B B

µordered-ind (• , •)

Join

A

B A B

(1,A)(2,B)(2,A)(2,B)

(1,A)(2,B)(2,A)

A

B A

(1,A)(2,B)(2,B)

A

B B

µordered-emb (• , •)

Join

A

B A B

(1,A)(2,B)(2,A)(2,B)

A

B A

B

(1,A)(2,B)(2,A)(3,B)

(a) Induced Subtrees: (b) Induced Subtrees: (c) Embedded Subtrees:

Join Join Join

(1,A)(2,B)(2,A)

A

B A

µordered-ind (• , •)

Self-Join Extension

A

B A A

(1,A)(2,B)(2,A)(2,A)

A

B A

A

(1,A)(2,B)(2,A)(3,A)

A

B A

B

(1,A)(2,B)(2,A)(3,B)

(1,A)(2,B)(2,A)

A

B A

µordered-emb (• , •)

Self-Join

A

B A A

(1,A)(2,B)(2,A)(2,A)

A

B A

A

(1,A)(2,B)(2,A)(3,A)

(d) Induced Subtrees: (e) Embedded Subtrees:

Self-Join and Extension Self-Join

Figure 5.9: Examples of the induced subtree merge and the embedded subtree merge. In the case

of induced subtrees less trees are generated through joins; an extension is necessary. Consider

(1,A)(2,B)(2,A)(3,B) as an example: this tree is generated byµordered-ind through an extension, while

byµordered-emb through a join.

5.5. Unordered Trees: Encodings and Refinement 119

Clearly, every unordered tree can now be turned into a sequence, and a sequence can be

turned into an unordered tree again: unorder(tree(seq(U))) ≡ U.

As an example, consider this depth sequence, which is not canonical:

S 1 = (1,A)(2,A)(2,B);

this sequence is canonical:

S 2 = (1,A)(2,B)(2,A);

we see that unorder(tree(S 1)) ≡ unorder(tree(S 2)).

We can also use this example to illustrate the central issue of this section. Consider the

following sequence, which is canonical:

S = (1,A)(2,A).

If we would use the refinement operator ρordered of the previous section, we would have that

S 1 ∈ ρ(S), and thus we would allow for a refinement to a non-canonical sequence. On the

search space of unordered trees the refinement operator of the previous section is therefore

not optimal. Our task here is to determine an efficient refinement operator ρunordered which is

optimal. In the following pages, we will introduce such a refinement operator. We delay the

correctness proofs of this operator to the next section.

First, we require some additional notation.

Definition 5.27 Given a sequence S = (d1,σ1) · · · (dn,σn) ∈ (N×Σ)
∗ and an integer d′ ∈N, we

denote by S +d′ the sequence

S +d′ = (d1+d
′,σ1) · · · (dn+d

′,σn).

Definition 5.28 Given an ordered tree T and a node v ∈ VT , the subsequence of node v in VT
is the sequence subseqT (v) = seq(subtreeT (v))+ (depthT (v)−1).

For example, if T = tree((1,A)(2,B)(3,C)), then we have seq(subtreeT (v2)) = (1,B)(2,C)

and subseqT (v2) = (2,B)(3,C).

Of major importance is now the following theorem.

Theorem 5.29 Given an ordered tree T with an order �Σ on the symbols in Σ, seq(T) is the

canonical depth sequence for unorder(T) iff for every pair of siblings v �T v
′ ∈ VT :

subseqT (v) �
lex subseqT (v

′).

This theorem means that one can perform an easy check on the tree itself to determine

whether it is canonical. According to this theorem, the following tree would be canonical:

S 1 = (1,A)(2,A)(3,B)(3,A)(2,A)(3,A),

as (2,A)(3,B)(3,A) �lex (2,A)(3,A) and (3,B) �lex (3,A). Indeed, the following tree in its

equivalence class is lower:

S 2 = (1,A)(2,A)(3,A)(2,A)(3,B)(3,A).

120 5. Mining Rooted Trees

If depicted, this canonical tree is the one which looks left heavy: the left branches of the tree

are the longest.

This theorem is an essential intermediate step for other theorems in this section. For

instance, the following theorem is then easily proved:

Theorem 5.30 Given an unordered canonical tree T,everyprefixofseq(T)isalso canonical.

Proof.Assume that k = |VT |,then we will showthat the (k −1)-prefix of seq(T) isalso

canonical; other prefixesthenfollowbyrepeatedapplication. LetT ′ = prefix(T) andv =

last(VT). Thenwe have to checkinT
′ againwhether for allv1 ∈ ΠT (v) everyleftsiblingv2

of v1 definesahigher subtree: seq(subtreeT ′ (v2)) �
lexseq(subtreeT ′(v1)). For eachv1: S

′
=

seq(subtreeT ′ (v1)) =prefix(seq(subtreeT (v1))), andtherefore S =seq(subtreeT (v1)) �
lexS ′;

then,seq(subtreeT ′(v2)) =seq(subtreeT (v2)) �
lexS �lexS ′. �

Thistheoremhasasanimportantconsequence. Assume thatwe have arefinementoper-

ator ρunorderedsuchthat

ρunordered(S) = {S • ` ∈ ρordered(S) |seq(unorder(tree(S • `))) = S • `}

thenthisoperator definesanoptimalrefinementprocedure!Indeed, everyunorderedtree is

consideredexactlyonce,asonthe onehandeverytreehasonlyonecanonicaldepthsequence,

while onthe otherhandeverytree cangrowfromacanonicaldepthsequenceandistherefore

reachable.

To implementthisrefinementoperator, we require ameanstodetermine whichdepthtu-

ples̀maybeappendedafteracertaincanonicaldepthsequence S suchthatS •` iscanonical.

We willdevelop amechanismfor thatpurpose now.

Definition 5.31Givenanorderedtree T , we callanode v ∈ ΠT (last(VT)) aprefixnodeiff

seq(subtree(v)) isaprefix ofseq(subtree(v′)) where v′ isthe immediate leftsiblingof v. We

callaprefix node vthelowestprefixnodeif depth(v) isminimalamongthe prefix nodes.

Please note thatsome treesdo nothave prefix nodes. For example, none of the treesin

Figure 5.1 hasa(lowest) prefix node.

Definition 5.32Givenanorderedtree T inwhichv isthe lowestprefix node andv j isthe

immediate leftsiblingof the lowestprefix node. Thennode v j+n isthe nextprefixnode,

where n = |subseqT (v)|.

Figure 5.10illustratesfor two differenttreesthe nextprefix nodes; inthese examplesthe

order of labelsisalphabetical.

We canusethenextprefix node to showthe following.

Theorem5.33Givenanordered, canonicaltree T , relation�Σ onthesymbolsof alphabetΣ,

anddepthtuple ` = (d,σ), orderedtree T ′ =expand(T,̀) iscanonicaliffboththe following

twoconditionsare met:

1. if `hasaleftsiblingw inT ′: λ(w) �Σ σ;

2. if T hasanextprefix node w: ` � (depth(w),λ(w)).

5.5. Unordered Trees: Encodings and Refinement 121

(6,A)

D

C C

B A B

(5,A)

(4,D)

(5,C)

(6,B)

(6,A)

(5,C)

(6,B)

CD

C

CD

D

Lowest prefix node w’

Next prefix node w

Left sibling of lowest prefix node w’’ w’

C C

B A B

A

D

A

(1,D)

(2,D)

(2,C)

(3,D)

(4,C)

(3,C)

(4,D)

(5,C)

(6,B)

(6,A)

(5,C)

(6,B)

(6,B)

D

C C

B A B

(4,D)

(5,C)

(6,B)

(6,A)

(5,C)

(6,B)

CD

C

CD

D

Lowest prefix node w’

Next prefix node w

Left sibling of lowest prefix node w’’ w’

C C

B A B

D

(1,D)

(2,D)

(2,C)

(3,D)

(4,C)

(3,C)

(4,D)

(5,C)

(6,B)

(6,A)

(5,C)

Figure 5.10:An example oflowest prefixnodes and next prefixnodes.

(1) IVE(canonical sequence S ∈ (N×Σ)∗, tuple `):

(2) if there is a next prefix tuple S [k] and ` � S [k]thenreturnfalse;

(3) if λ(`) �Σ λ(Π(last(Vtree(S)))[depth(`)])thenreturnfalse;

(4) returntrue;

Figure 5.11: Afunction for determining whether a depthtuple can be added after a canonicaldepth

sequence.

122 5. Mining Rooted Trees

(1) DNP(integer k ∈ N, canonical sequence S ∈ (N×Σ)∗, tuple `):

(2) if k ,0and ` = S [k] then return k+1;

(3) Let v j := Π(last(Vtree(S)))[depth(`)];

(4) if λ(`) = λ(v j) then return j+1;

(5) return0;

Figure 5.12: A function for determining the next prefix node in a new canonical depth sequence,where

k points to the next prefix node in the prefix of the new sequence,S .

The results of this theorem are summarized in Figure 5.11; the theorem shows that this

procedure exactly determines which depth tuples can be added to a depth sequence, and which

ones cannot. Using this function, we obtain this refinement operator:

ρunordered(S) = {S • ` ∈ ρordered(S) | IVE(S , `) = true}. (5.4)

We can easily turn this refinement operator into a suboptimal refinement operator, which

only refines fromcanonical sequences instead of only refining to canonical sequences. The

IVE function can be used to checkwhether a sequence should be refined, by

considering whether the last tuple was a valid refinement of the proper prefix.

Although we have now defined the refinement operator conceptually more clearly, this

definition still does not tell us how to implement refinement in an efficient way. Fortunately,

it turns out that there is an efficient, incremental way to determine the next prefix node. This

procedure is summarized in Figure 5.12. Essentially, when a new node is added, we compare

its label with its left sibling, and initialize the next prefix node if the labels are equal. As long

as a new node matches the next prefix node, the pointer to the next prefix node is moved to

the next position in the pre-order sequence of the tree.

Bringing the pieces together, an equivalent specification for the ρunordered refinement op-

erator is given in Figure 5.13. It integrates the procedures DNP and IV-

E. The idea is to first determine in lines (5)–(12) the highest depth tuple that can be

added to the depth sequence. Lines (5)–(8) reflect the case that there is a next prefix node

which limits the maximum depth; otherwise, the highest tuple can be added below the right-

most path. After this initialization, all lower tuples are added in lines (14)–(23). In the inner

loop we lower the label of the new tuple (line (18)), in the outer loop the depth is decreased

(line (20)). Also for other depths we start by adding the highest label (line (21)). As there is

a left sibling for each node that is added to the rightmost path below the last node, the label

is initialized to the label of the left sibling in line (21); in this initial situation the next prefix

node is the node after the left sibling (line (22)). In other situations there is no next prefix

node (line (17)).

From a complexity point of view, the complexity is linear for each enumerated structure:

in line (2) the rightmost path is determined, for which a linear scan is required, while in line

(16) the sequence S is copied. For many purposes a linear complexity is sufficient. How-

ever, theoretically a better enumeration complexity can be obtained if one is not interested in

outputting each tree entirely. We will address that issue in a later section.

5.5. Unordered Trees: Encodings and Refinement 123

(1) RUT(integer k ∈ N, canonical sequence S ∈ (N×Σ)∗):

(2) S ′ := Π(last(Vtree(S)));

(3) R := ∅;

(4) // initialize to highest possible depth and highest possible label

(5) if k , 0 then

(6) d′ := depth(S [k]);

(7) σ′ := λ(S [k]);

(8) k′ := k+1;

(9) else

(10) d′ := depth(last(S))+1;

(11) σ′ := maxσ′∈Σσ
′;

(12) k′ := 0;

(13) // traverse all other depths and labels

(14) repeat

(15) repeat

(16) R := R∪ (k′,S • (d′,σ′));

(17) k′ := 0;

(18) Set σ′ to the highest label lower than σ′;

(19) until no lower such label σ′ exists;

(20) d′ := d′ −1;

(21) σ′ := λ(S ′[d]);

(22) k′ := j+1, where v j = S
′[d′];

(23) until d′ = 1;

(24) return R;

Figure 5.13: A procedure for refining canonical depth sequences; k is the position of the next prefix node

in the depth sequence S ; k = 0 if there is no next prefix node.

124 5. Mining Rooted Trees

Merge operators

Now that we have determined an optimal refinement procedure for unordered trees, the next

question of interest is what kind of merge operators are possible. We will consider upward

refinement operator δind of equation (5.2) first. This upward refinement operator applies two

ways of refinement, if possible: it removes the last element of the depth sequence or the

second last element. We have already seen that the last depth tuple can be removed and that

the resulting depth sequence is canonical. The question now is: if the second last depth tuple

can be removed, is the resulting depth sequence again canonical?The next theorem shows

that this is the case.

Theorem 5.34Given an ordered canonical tree T such that

seq(T) = S 1 • (d1,σ1)• (d2,σ2)

and d2 ≤ d1. Then

S ′ = S 1 • (d2,σ2).

is also canonical.

Proof. As seq(T) is canonical, in S 1 there is either a left sibling tuple `, or a next prefix

tuple `, such that ` � (d1,σ1), or there is no left sibling or next prefix tuple. As d2 ≤ d1 and

σ1 �Σ σ2 if d2 = d1, (d1,σ1) � (d2,σ2). If there was a left sibling or a next prefix node `,

then again ` � (d1,σ1) � (d2,σ2). Tuple (d2,σ2) is therefore also a canonical refinement of

sequence S 1. �

The merge procedure µunordered-ind, which is defined by the combination of ρunordered with

δind, is therefore also optimal. As an example reconsider Figure 5.9 again. The join of Fig-

ure 5.9(a) is also performed by µunordered-ind, as the resulting tree is canonical. The join of

Figure 5.9(b) is not performed, as the refinement is not allowed by ρunorder. All self-joins and

extensions of Figure 5.9(d) are allowed.

Summarizing, we have obtained a setup which is relatively desirable: it can be determined

very efficiently which tuples can be added after a given depth sequence, while the merge

operator is also optimal. A large number of trees is generated through joins.

The situation is different for the δemb upward refinement operator. Consider this example:

S = (1,A)(2,B)(2,A)(3,C);

we have that:

S ′ = (1,A)(2,B)(2,C) ∈ δemb(S),

which is not canonical. A merge procedure which relies on δemb would therefore not be op-

timal: as sequence S ′ is not part of the search space, while S can only be obtained through

S ′, sequence S is not part of the search space either. Unless one is willing to sacrifice some

optimality, it is therefore not possible to use the upward refinement operator δemb to define a

merge operator for embedded subtrees.

5.6. Unordered Trees: Refinements — Proofs 125

5.6 Unordered Trees: Refinements — Proofs

Before we are able to give the main proofs, we require several observations, which are listed

in the following lemmas.

Lemma 5.35 Given an ordered tree T and a node v ∈ VT , subseqT (v) �(0,0) seq(T).

Proof. Let v = vk, then clearly subseqT (v) = seq(T)[k] •···• seq(T)[k+ |VsubtreeT (v)| −1]. Es-

sential is the well-known fact that in a pre-order listing of nodes in an ordered tree, all an-

cestors of a node are listed before any other nodes are listed. The order of the nodes in the

subtree is not affected: subtree preserves node orders; similarly, also seq reflects the pre-order

of the nodes. �

Lemma 5.36 Given is an ordered tree T . Then

seq(T) = (1,λ(rT))

•(seq(subtree(children(rT)[1]))+1)

•···

•(seq(subtree(children(rT)[|children(rT)|]))+1).

Proof. We show this by induction on the depth of the tree T . If depth(T) = 1, then seq(T) =

(1,λ(rT)) and the statement clearly holds. Assume that it holds for all subtrees subtreeT (v),

v ∈ VT , with depth(T) ≤ d. Clearly the root of T is an ancestor of all nodes in T , and its

tuple occurs therefore first in the depth sequence. From the previous lemma, all depth tuple

sequences of its children’s subtrees must be subsequences. These subsequences must occur

in the order of the roots of the subtrees. If one determines the subtree depth tuple sequence

of all nodes in children(rT)[k]using seq(subtree(children(rT)[k]), the root of the subtree has

depth 1; in the original tree T , it occurs as a child of r, and has depth 2; also for all other

nodes the depth is increased in T by 1. �

Lemma 5.37Given two unordered trees U1 and U2, trees U1 and U2 are isomorphic iff

λU1 (rU1)= λU2 (rU2) and there exists a bijective mapping φ : childrenU1 (rU1)↔ childrenU2 (rU2)

with ∀v ∈ childrenU1(rU1) : subtreeU1 (v) ≡ subtreeU2(φ(v)).

Proof. Consider definition 5.14. If two trees are equivalent, there is a bijective mapping φ′

according to this definition. This bijective mapping must map one root onto the other. The

bijective function then necessarily also maps two subtrees onto each other. On the other hand,

if we have a bijective mapping φ between the children of two tree roots such that the subtrees

are equivalent, we can obtain a bijective mapping between both entire trees by merging the

bijective mappings for the subtrees. �

Let us now repeat Theorem 5.29.

Theorem 5.38Given an ordered tree T with an order �Σ on the symbols in Σ, then seq(T) is

the canonical depth sequence for unorder(T) iff for every pair of siblings v �T v
′ ∈ VT :

subseqT (v) �
lex subseqT (v

′).

126 5. Mining Rooted Trees

Proof. “⇒”: Assume that a tree T is canonical and that for two siblings v2 �T v1 we have

subseq(v2) �lex subseq(v1). Both subseq(v1) and subseq(v2) are subsequences of seq(T); as-

sume now that

seq(T) = S 1 • subseq(v1)•S 2 • subseq(v2)•S 3;

S 1, S 2 and S 3 are subsequences, the latter two of which may be empty. Assume that the

positions of v1 and v2 in the sibling order are exchanged, then we obtain an ordered tree T
′

which is in the same equivalency class of unordered trees. The depth tuple sequence becomes

seq(T ′) = S 1 • subseq(v2)•S 2 • subseq(v1)•S 3.

Now, by the assumption that subseq(v2) �
lex subseq(v1) either subseq(v1) is a proper prefix

of subseq(v2), or first(subseq(v2)/(subseq(v2)u subseq(v1))) > first(subseq(v1)/(subseq(v2)u

subseq(v1))). The second case is clearly a contradiction of the assumption that T was canon-

ical, as seq(T ′) �lex seq(T). For the first case we note that

depth(first(subseq(v2)/subseq(v1))) > depth(first(S 2 • subseq(v1))),

as the first node of S 2 • subseq(v1) is a sibling of v2. Again it follows that seq(T
′) �lex seq(T),

and the assumption is contradicted.

“⇐”: We will show this by induction on the depth of subtrees. The idea is to show in a

bottom-up fashion that when small subtrees are canonical, also larger subtrees are canonical.

The base case is defined by subtrees of depth 1, which are the leafs. For leafs v ∈ VT it is

clear that seq(subtreeT (v)) is canonical. Now assume that for all subtrees subtreeT (v) of T

with depth(subtreeT (v)) < d: seq(subtreeT (v)) is canonical and consider a subtree of depth d.

Let v be the root of this subtree, then

seq(subtreeT (v)) = (1,λT (v)) • (seq(subtreeT (childrenT (v)[1]))+1)

• · · ·

• (seq(subtreeT (childrenT (v)[n]))+1),

where n = |childrenT (v)|. From the next observations we conclude that seq(subtreeT (v)) is

also canonical in T :

• First, we observe that in a canonical ordered tree for unorder(subtreeT (v)) each subtree

subtreeT (childrenT (v)[k]) (where 1≤ k ≤ n) must be canonical: in an ordered tree which

contains a non-canonical ordered subtree, this subtree can always be substituted with

an equivalent canonical subtree to obtain an ordered tree with a higher depth tuple

sequence: if

seq(T ′) �lex seq(subtreeT (childrenT (v)[k])),

for an ordered tree T ′ with unorder(T ′) ≡ unorder(subtreeT (childrenT (v)[k])), then

seq(subtreeT (v)) = S 1 • (seq(subtreeT (childrenT (v)[k]))+1)•S 2

�lex S 1 • (seq(T
′)+1)•S 2;

From this we may conclude that the canonical depth tuple sequence consists of a con-

catenation of canonical subtree sequences.

5.6. Unordered Trees: Refinements — Proofs 127

• Now consider the tree T ′ defined by the following expansion tuple sequence:

seq(T ′) = (1,λT (v)) • (seq(subtreeT (childrenT (v)[k1]))+1)

• · · ·

• (seq(subtreeT (childrenT (v)[kn]))+1),

where {k1, . . . ,kn} is a permutation of the numbers {1, . . . ,n}. In seq(T) the permutation

of children is k j = j (j = 1,2, . . . ,n). Assume now that there exists a permutation such

that seq(T ′) �lex seq(subtreeT (v)). Consider the lowest j for which

S 2 = seq(subtreeT (childrenT (v)[k j])) , seq(subtreeT (childrenT (v)[j])) = S 1.

Note that k j > j. As seq(T ′) �lex seq(subtreeT (v)), there are two possibilities:

1. S 1 is a prefix of S 2, as then depth(first(seq(subtreeT (childrenT (v)[j+1])))) = 1 <

depth(first(S 2/S 1)). However, in that case we would have S 2 �
lex S 1; this contra-

dicts our assumption about T .

2. S 1 is not a prefix of S 2; obviously then again S 2 �
lex S 1, which contradicts the

assumption. �

We will continue with Theorem 5.33, which is repeated here:

Theorem 5.39 Given an ordered, canonical tree T , relation �Σ on the symbols of alphabet Σ,

and depth tuple ` = (d,σ), ordered tree T ′ = expand(T, `) is canonical iff both the following

two conditions are met:

1. if ` has a left sibling w in T ′: λ(w) �Σ σ;

2. if T has a next prefix node w: ` � (depth(w),λ(w)).

Proof. “⇒”. One can easily check the two conditions:

1. if ` has left sibling w, as T ′ is canonical first(subseqT (w)) � ` must hold; this is only

possible if λ(w) �Σ σ;

2. if T has a next prefix node w, it also has a lowest prefix node v; as T ′ is canonical,

subseqT (v
′) = subseqT ′(v

′) �lex subseqT ′(v), where v
′ is the left sibling of the lowest

prefix node v. If depth(`) < depth(v), the statement is true as depth(v) ≤ depth(w). If

depth(`) = depth(v), consider the possibilities for w: first, if depth(w) > depth(v′) =

depth(v), the statement is true; second, if w = v, then the next prefix node is exactly

the left hand sibling of the new node, so the statement is true too. Finally consider

the case depth(`) > depth(v). Then the new node is an element of subtreeT ′ (v); as T
′

is canonical subseqT ′ (v
′) �lex subseqT ′ (v). Both subseqT ′(v

′) and subseqT ′(v) have the

common prefix subseqT (v); clearly then ` � first(subseqT ′(v
′)/subseqT (v)).

“⇐”. For every pair of siblings v′ �T ′ vwhich are not inΠT ′ (last(VT ′)) the validity of relation

subseqT ′ (v
′) �lex subseqT ′ (v) follows from subseqT (v

′) �lex subseqT (v). Only for nodes v ∈

ΠT ′ (last(VT ′)) the canonization condition has to be checked again. Let v
′ denote the left

sibling of v, if there is such a sibling. We will consider all possible nodes v on ΠT ′ (last(VT ′)):

128 5. Mining Rooted Trees

• for v = last(VT ′) the subseqT ′ (v
′) �lex subseqT ′(v) relation follows from condition 1.

• for all v ∈ ΠT ′(last(VT ′)) with v , last(VT ′) (in case there is no lowest prefix node)

or depth(v) < depth(w′) (in case there is a lowest prefix node w′), as the subtree of v

is not a prefix of v′, there is a tuple first(subseqT (v′)/(subseqT (v′)u subseqT (v))) �

first(subseqT (v)/(subseqT (v′) u subseqT (v))). The addition of a node to subtreeT (v)

(which leads to the concatenation of a tuple to subseqT (v)) does not change this re-

lation; therefore also subseqT ′(v
′) �lex subseqT ′(v).

• if there is a lowest prefix node and v is that node, it is clear that subseqT (v
′) �lex

subseqT (v). To determine the relation subseqT ′ (v
′) �lex subseqT ′(v), the relation be-

tween the next prefix node and the new node, which is added as new last tuple to

subseqT (v), is the only one of importance; the correctness of this relation is granted by

condition 2.

• finally we consider nodes v ∈ ΠT ′ (last(VT ′)) for which

depth(w′) < depth(v) < depth(last(VT ′)) = depth(`),

if there is a lowest prefix node w′. In this case, a node is added to subtrees below the

lowest prefix node. As both v,v′ ∈ subtreeT (w
′), both subseqT (v) and subseqT (v

′) are

a subsequence of subseqT (w
′′) too, where w′′ is the left sibling of w′. More precisely,

one can see that

subseqT (w
′′) = S 1 • subseqT (v

′)• subseqT (v)•S 2,

for

subseqT (w
′) = S 1 • subseqT (v

′)• subseqT (v),

and some sequences S 1 and S 2 which are both not empty. Sequence S 2 cannot be empty

in the case considered here: we are adding a depth tuple ` below the lowest prefix node

of T ; given condition 2, this is only allowed if depthT (w) > depthT (w
′), which excludes

the possibility that the next prefix node and the lowest prefix node of T are the same

node. So, summarizing, first(S 2) = (depth(w),λ(w)). As we know that T is canonical,

we know that in subseqT (w
′′): subseqT (v

′) �lex subseqT (v) • S 2. By condition 2, we

know that first(S 2) � `. It is clear then that

subseqT ′ (v
′) = subseqT (v

′) �lex subseqT (v)•S 2

�lex subseqT (v)• ` = subseqT ′(v),

which proves the statement that seq(T ′) is canonical. �

We used this theorems to show how to determine canonical refinements of a canonical

depth sequence. However, we also need an efficient mechanism for computing the next pre-

fix node. The following theorems show that the procedure that was given in Figure 5.12 is

correct.

Theorem 5.40 Given an ordered canonical tree T with a next prefix vk ∈ VT , and a depth tuple

` = (depth(vk),λ(vk)), T
′
= expand(T, `) is also canonical and the next prefix node of T ′ is

vk+1.

5.6. Unordered Trees: Refinements — Proofs 129

Proof. That T ′ is canonical follows from the previous theorem. Let w′ be the lowest prefix

node of T and w′′ be the left sibling of w′. If subseqT (w′) is a proper prefix of subseqT (w′′),

clearly subseqT (w′)•` is still prefix of subseqT (w′′). No node with a lower depth can become

the lowest prefix node as the depth tuple sequence of the subtree of such a node should have

been a prefix of its left sibling already; the lowest prefix node of T ′ is the same as that of T .

If subseqT (w′) = subseqT (w′′), the new node is equal to its left sibling. The new node itself

becomes the lowest prefix node (also here no node with a lower depth can become the new

lowest prefix node). The new next prefix node is clearly the node after w′ in the pre-order

walk. �

Theorem 5.41 Given an ordered canonical tree T which does not have a prefix node, and a

depth tuple ` such that T ′ = expand(T, `) is also canonical. Then if λ(`) = λ(vk), where vk is

the left sibling of ` in T ′, the next prefix node of T ′ is vk+1. If λ(`) , λ(vk), T
′ does not have

a prefix next node.

Proof. Clearly the new node is the lowest prefix node; the node after vk in the pre-order walk

of T ′ is the next prefix node. �

Theorem 5.42 Given an ordered canonical tree T with next prefix node w ∈ VT , and a depth

tuple ` such that T ′ = expand(T, `) is also canonical. If ` , (depth(w),λ(w)) then T ′ has a

next prefix node iff ` has a left sibling vk in T
′ and λ(`) = λ(vk); the next prefix node of T

′ is

in that case node vk+1.

Proof. First we observe again that only prefix nodes on the path ΠT (last(VT)) or the new

node ` can possibly be prefix node in the new tree T ′. One by one we will consider which

nodes can be a prefix node in the new tree T ′.

• if the new node ` is added and its label equals its left sibling, certainly this new node is

a prefix node.

• if the lowest prefix node w′ of T is part of ΠT ′(last(VT ′)), certainly w
′ is not a prefix

node in the new situation; subseqT (w
′) must have been a proper prefix of subseqT (w

′′)

(as depth(`)> depth(w′)) and subseqT (w
′)•` is not a prefix of the sequence subseqT ′(w

′′)=

subseqT (w
′′)• (depth(w),λ(w))•S ′, where w′′ is the left sibling of w′ and S ′ is a tuple

sequence.

• the interesting cases are the other prefix nodes v ∈ ΠT (last(VT)) of T with depth(w
′) <

depth(v) < depth(`), which were originally not a lowest prefix node. The depth tuple

sequence of T must have the following composition:

seq(T) = S 1 • S 2 • subseqT (v)•S 3 • subseqT (v)•S 4

• S 2 • subseqT (v)•S 3 • subseqT (v),

where

subseqT (w
′′) = S 2 • subseq(v)•S 3 • subseq(v)•S 4

and

subseqT (w
′) = S 2 • subseqT (v)•S 3 • subseqT (v).

Here:

130 5. Mining Rooted Trees

– S 1 , ε as the root is never a prefix node;

– S 2 , ε as we assumed that depth(v) > depth(w′);

– S 4 , ε as we assumed that depth(`) > depth(w′), and ` was a canonical expansion

whose depth must be lower than that of the next prefix node first(S 4);

– S 3 , ε as T was canonical and therefore subseq(v) • S 3 �
leq subseq(v) • S 4 must

hold, where S 4 , ε.

We assumed that ` , first(S 4) = (depth(w),λ(v)), and therefore that ` ≺ first(S 4). At

the other hand first(S 4) � first(S 3) as T was canonical; therefore ` ≺ first(S 3), and

subseqT ′(v) = subseqT (v)• ` is not a prefix of subseqT ′(v
′) = subseqT (v′).

This shows that the only possible prefix node is the new node; consequently, this is the only

possible lowest prefix node and the next prefix node can only be vk+1. �

The results of the last three theorems are summarized in the algorithm of Figure 5.12:

Theorem 5.42 shows that if k , 0 and ` , S [k] it is valid to continue in line 3. Theorem 5.41

shows that this line can also be executed if k = 0. Finally, Theorem 5.40 shows that if k , 0

and ` = S [k] line 2 is correct.

5.7 Enumeration of Unordered Trees

In section 3.3 we noted that there is a close connection between optimal refinement and

structural enumeration. We like to illustrate that connection for the case of unordered tree

enumeration. If one wishes to enumerate all unordered trees up to a certain number of nodes,

the RUT procedure of Figure 5.13 can be transformed into the procedure of

Figure 5.14. In this procedure, we have replaced the symbols in the alphabet Σ by integers:

it is assumed that the labels are numbered from 1 to maxlabel. To enumerate all trees the

procedure is to be called with EUT(1,0,σ) for all 1 ≤ σ ≤ maxlabel.

To obtain this enumeration procedure, we have modified the following elements of the

refinement procedure:

• we have replaced the (local) sequence S by two global arrays depth and label;

• instead of determining the rightmost path repeatedly, we maintain an array path, such

that path[d] is the index in the depth and label arrays of the node at depth d on the

rightmost path;

• we introduce an undopath variable which allows for undoing a modification of the path

array: please note that a refinement will only change the rightmost node of one depth;

• we test whether the maximum size is obtained;

• we call EUT recursively to enumerate all patterns.

5.7. Enumeration of Unordered Trees 131

(1) Let depth be an array of integer[1 . . .maxsize];

(2) Let label be an array of integers[1 . . .maxsize];

(3) Let path be an array of integers[1 . . .maxsize], path[1] initialized arbitrarily;

(4) Let size be an integer initialized to 0;

(5) EUT(integer d, integer k, integer σ):

(6) size:= size+1;

(7) depth[size] := d;

(8) label[size] := σ;

(9) undopath := path[d];

(10) path[d] := size;

(11) if size < maxsize then

(12) // initialize to highest possible depth and highest possible label

(13) if k , 0 then

(14) d′ := depth[k];

(15) σ′ := label[k];

(16) k′ := k+1;

(17) else

(18) d′ := depth[size]+1;

(19) σ′ := maxlabel;

(20) k′ := 0;

(21) // traverse all other depths and labels

(22) repeat

(23) repeat

(24) EUT(d′,k′,σ′);

(25) σ′ := σ′−1;

(26) k′ := 0;

(27) until σ′ = 0;

(28) d′ := d′−1;

(29) σ′ := label[path[d′]];

(30) k′ := path[d′]+1;

(31) until d′ = 1;

(32) //Process the tree here

(33) path[d] := undopath;

(34) size:= size−1;

Figure 5.14: A procedure for enumerating unordered, labeled trees; compare this procedure to the

refinement procedure of Figure 5.13.

132 5. Mining Rooted Trees

We observe that the number of calls of EOT is a good measure of

time complexity: if we sum the total number of times that each line in the procedure is exe-

cuted, that number is at most as high as the number of calls of EUT:

clearly, lines (6)–(21) and (33)–(34) are executed at most as often as the procedure is called;

furthermore, lines (22)–(31) are executed at most as often as the function call that is per-

formed in the inner loop.

As the number of calls (assume this is n) exactly equals the number of patterns that are

enumerated, the time complexity of the total procedure is O(n), or O(1) per enumerated pat-

tern. This result closely matches that of other research on the enumeration of unordered trees.

Although the first reported use of a depth sequence to represent (unlabeled) trees is a publi-

cation of Scoins in 1968 [169], the first and best known result on constant time enumeration

of unordered trees was obtained in 1980 by Beyer and Hedetniemi [18]. They introduced an

algorithm with the following properties:

1. it enumerates unlabeled trees;

2. it enumerates trees of a fixed length only;

3. it uses depth sequences (consisting of integers);

4. it maintains a pointer p to the last node which is not at depth 2;

5. it maintains an array containing for each node the index of its parent;

6. it defines a procedure which changes a given canonical sequence in the next sequence in

the enumeration; the enumeration consists of a repeated application of this procedure.

To show that this algorithm cannot straightforwardly be applied to optimal refinement, we

will provide a short example that illustrates how the algorithm works. Consider the depth

sequence

123442222,

where p points to the underlined node (see point 4. above). First, the parent of that node is

determined; in this case, this is the single node at depth 3. Then the subsequence starting at

the parent and ending at the element before p is copied repeatedly, starting from position p.

During this copying pointer p is moved to the last element in the sequence. The next sequence

in the enumeration is then:

123434343.

If the enumeration procedure is then called again, this sequence results:

123434342.

In the next call p’s parent is determined again, and a subsequence is copied:

123434333.

It seems that a large amount of copying is performed in this procedure. However, in each

copy operation pmoves forward. The enumeration stops only if p arrives at the first position;

5.8. Mining Bottom-Up Subtrees 133

to arrive there, p has to move back again. The number of times that p is decremented is

therefore a good complexity measure. It can be shown that p is decreased at most two times

per call of the enumeration procedure, and that the output complexity is therefore constant

per enumerated structure.

Both our algorithm and Beyer and Hedetniemi’s algorithm have many aspects in common.

For example, the copy operation of Beyer and Hedetniemi is more or less performed in small

steps in our algorithm through the use of a next prefix node, which can be conceived as a

pointer to the next tuple that is copied. A difference is that our algorithm enumerates all trees

up to a certain size, while the algorithm of Beyer and Hedetniemi enumerates all unlabeled

trees of a certain size. Our algorithm can easily be adapted to that situation. First, unlabeled

trees can be enumerated by assuming one label. Second, we can fill the depth array with depth

2 as a default situation, and output the entire array instead of the part depth[1 . . .size]: in this

way every tree is padded with 2’s, which always yields a canonical tree. Finally, we forbid the

further refinement of any tree in which the last two depth tuples at indexes ≤ size have depth

2.Inthiswayalltreesinwhich the last n depth tupleshave depth 2are enumerated at most 3

times.Wecanchoosenot tooutput alltreesinwhichdepth[size] =2;the resultingprocedure

thenenumerateseach tree at most once,with constant time complexity(amortized).

Recently,alsootherresearchersrealized that modified enumerationproceduresaresome-

timesnecessary.Forexample, LiandRuskeyintroduceanalgorithmforenumeratingtrees

underconstraints[116];thisalgorithmreliesinpartonthesametechniqueasthatofBeyer

andHedetniemi.VerysimilartoouralgorithmistheapproachthatwaspresentedbyNakano

andUnointhesamemonthasouralgorithm[139]:alsotheirapproachreliesonalowest

prefixnode, andallowsfortheenumerationofalllabeledtreesuptoacertainsize.The

approachesdifferinsomedetails, suchastheuseofanextprefixnode.

5.8 Mining Bottom-Up Subtrees

Intheprevioussectionsweintroducedrefinementoperatorsundertheinducedandembedded

subtreerelations.Inthissectionwewillbrieflyconsidertheproblemofminingbottom-up

subtrees.

Anotherdepth-firstencodingthatwasproposedtorepresentorderedtrees, istheback-

trackingsequence.Inthisencodingaspecialsymbolisaddedtothealphabet, forexample

‘−’.Thecodeisobtainedbyperformingadepth-firstwalkthroughanorderedtree.Each

timethatanodeisscannedforthefirsttime, itslabelisaddedtotheendofthesequence

underconstruction.Ifthedepth-firstprocedurebacktracks(or, equivalently, passesthrough

anodeforthelasttime), thespecialsymbol‘−’isappendedtothesequence.Forexample,

thebacktrackingsequenceforthetree(1,A)(2,B)(3,C)(3,D)(2,E)isABC−D−−E−−.This

codehastheusefulpropertythatifS 1isabottom-upsubtreeofS 2, thenS 1isasubsequence

ofS 2, S 1 �(0,0)S 2.Thereversedoesnothold.IfS 1andS 2arebothbacktrackingsequences,

S 1 �(0,0)S 2 doesnotmeanthattreeS 1 isabottom-upsubtreeoftreeS 2;forexample, S 1
couldalsobeaprefix.

Thecodeishoweverusefulinabottom-upsubtreeminingalgorithm.Itwasalreadymen-

134 5.MiningRootedTrees

tioned in Chapter 3 that to mine gap-free subsequences, a quadratic algorithm is sufficient.

We can reuse an algorithm for mining frequent subsequences, and output only those subse-

quences that represent bottom-subtrees (which can be characterized by an equal number of

‘-’ symbols and other symbols). Bottom-up subtree mining can therefore be considered as a

constrained type of subsequence mining.

To mine unordered bottom-up trees, we can add a pre-processing step that puts each

transaction in the database into a canonical form. We define that the tree with the canonical

depth-sequence is canonical. Aho, Hopcroft and Ullman provide an algorithm which can

compute this canonical form for an unordered tree inO(n) time [9]. As we need this algorithm

later again, we provide a brief overview here. The algorithm consists of the following steps:

1. We determine in O(n) time a list of (depth,label) depth tuples.

2. We sort this list using Radixsort in O(n+ |Σ|) time; as a result for each depth we have

a sorted list of labels occurring at that depth; we renumber the labels for each depth

independently. Thus, we obtain node labelnumbers in O(n) time.

3. We then start the traversal of the tree at the highest depth. The leafs are sorted (in

decreasing order) according to their node label numbers, which takes O(nk) time when

using Binsort, where nk is the number of nodes at the current (highest) depth; note that

due to the initial renumbering, the numbers of the labels are bounded by the number of

nodes;

4. we move to the next depth;

5. we label each node at the current depth with a string that consists of the concatenation

of (1) its node label number (2) the node label numbers of its children, in sorted order,

as previously determined. These strings can be obtained by scanning the node label

number sorted nodes at depth k+1, and by appending the node label numbers of each

of them to the list of its corresponding parent, giving total complexity O(nk+1).

6. the strings of node label numbers achieved in the previous phase are sorted; as the total

length of these strings is nk+1, we can use the Radixsort algorithm for sorting these

strings in O(nk+1) time (again, the node label numbers are bounded);

7. each string is given a unique node label number according to its position in the sorted

list of strings (repetitions of the same string get the same number);

8. renumber the nodes at depth k with the node label numbers of their strings, obtained in

the previous phase;

9. as the nodes at depth k are sorted according to numbers again, we can go back to step

4.

All these steps take either O(nk) or O(nk+1) time. Summing over all levels, the complexity is

O(n). It can be shown that this procedure computes exactly the canonical depth sequence. As

a result, the complexity results for mining unordered bottom-up trees also apply to unordered

bottom-up trees.

Frequent prefixes of ordered trees can be mined in a similar fashion, as every node in a

tree defines a prefix.

5.9. Mining Induced Leaf Subtrees 135

5.9 Mining Induced Leaf Subtrees

In this section we consider a special kind of tree databases: databases in which a pair of

siblings never has the same label. Such trees are very similar to the trie datastructure that

we introduced earlier, and are often easier to deal with. This is illustrated by the problem of

mining unordered induced leaf subtrees. Consider two root-leaf paths, then there is only one

way tojoin these two paths into a tree: by merging the largest common prefix of the sequences

of labels. For example,

(1,A)(2,A)(3,A)(4,A) and (1,A)(2,A)(3,B)(4,B)

can only be merged into

(1,A)(2,A)(3,A)(4,A)(3,B)(4,B).

Of interest is now that all root-leaf paths in the database can be conceived as an item in an

itemset database. A frequent itemset corresponds to a set of frequent root-leaf paths, which

can only be merged in one way into a tree. By re-encoding a tree database, it is therefore

possible to mine leaf subtrees using a traditional itemset mining algorithm.

This setup can also be extended to ordered tree databases. Again, every root-leaf path can

be mapped to an item; each tree is then encoded as a sequence of such items. A frequent

sequence miner can be used to find all frequent sequences; all these sequences can be trans-

formed back into trees in a unique way, given the assumption that siblings are never equally

labeled, and correspond exactly to all frequent leaf subtrees.

5.10 Mining Embedded Subtrees

In sections 5.4 and 5.5 we introduced downward merge operators under the embedded subtree

relation. In this section we review the TMV algorithm of Zaki [203, 204] that was

designed to mine trees under this relation. We need this algorithm as background knowledge,

as we will later use the simple occurrence sequences. A variation of these sequences was first

introduced in this algorithm.

Additionally, we will list some further ideas about the use of anti-monotonic constraints

in this algorithm.

The TMV algorithm is a depth-first merge algorithm that follows the general out-

line of Figure 3.8. In the ordered case it relies on merge operator µordered-emb of Section 5.4.

To compute frequencies TMV uses occurrence sequences. Recall that to embed

one tree into another tree a mapping φ is required that maps a subtree to a larger tree. One

such mapping is called an embedding; the occurrence sequence is a sequence of embeddings.

During the remainder of this chapter, we will use the example database of Figure 5.15 to

illustrate several tree mining algorithms. In this example the (simplified) embedding sequence

for pattern tree (1,A)(2,B) is:

(t1,12)(t1,16)(t2,12)(t2,16)

136 5. Mining Rooted Trees

A

B B

DC

E

A

B B

DC E

t1 t2

[4,4][3,3] [5,5]

[2,5]

[1,6]

[6,6]

[3,3]

[5,5]

[6,6]

[1,6]

[2,5]

[4,5]

Figure 5.15:Adatabase of two trees;[k, j] denotes that the scope of node k is [k, j].

It is assumed that the nodes in the database are numbered in pre-order. Each tuple (t,S) in the

sequence contains the identifier t of a tree in the database, and a sequence of node numbers

such that S [k] is the number of the node in tree t to which the kth node of the pattern tree is

mapped. It assumed that the tuples in the occurrence sequence are sorted in lexicographical

order. We will see this kind of occurrence sequence often, and will refer to it as the simple

occurrence sequence, as from a conceptual point of view they are most easily understood:

the simple occurrence sequence simply consists of a list of all possible mappings φ between

a pattern and the data.

Observe that it is easy to compute the support from such occurrence sequences: the trans-

action based support can be determined by counting the number of different transaction iden-

tifiers in the sequence, which is easy as the sequence is sorted. A root node based support

is computed by considering the number of different nodes to which the root node can be

mapped.

For all trees of size two the embedding sequences are constructed by scanning the original

database. Other occurrence sequences are essentially obtained by joining the sequences of the

trees that are merged: please note that by means of µordered-emb all trees can be enumerated

through either joins or self-joins. To be able to merge occurrences, some modifications of

the simple occurrence sequence are required, however. Consider these two pattern trees as an

illustration:

S 1 = (1,A)(2,B) and S 2 = (1,A)(2,C).

The result of µordered-emb(S 1,S 2) consists of:

(1,A)(2,B)(2,C) and (1,A)(2,B)(3,C).

Now consider a pair of embeddings for S 1 and S 2: (t1,12) for T1 and (t2,13) for T2. Es-

sential to the idea of merging occurrence sequences in TMV is that (t1,123) is an

occurrence of a merged tree. However, we saw that µordered-emb produces multiple results for

a join between two trees. Of which resulting tree is the merged embedding an occurrence?

To determine that, we would have to know whether node v3 in the database tree t1 is a de-

scendant of v2. Zaki determined that a solution is to incorporate scopes in embedding tuples.

The scope of a node is the range of nodes in the bottom-up subtree below it. They are also

given in Figure 5.15 as [k, j] pairs. Consequently, an embedding tuple is of the form (t,S , j),

where j is the last node in the bottom-up subtree below node vlast(S) in database tree t. An

5.10. Mining Embedded Subtrees 137

B

A A

C

A

BB

A

B

C

(t2,126,6)
(t1,126,6) (t1,123,3)

(t2,123,3)

(t1,12,5)
(t1,13,3)
(t2,13,3)

(t1,15,6)
(t2,12,5)
(t2,16,6)

Figure 5.16: The merge of two trees

1l

l l l...

2 3 n

l

l l l

PT

...

2 3 k

1

Figure 5.17: A pattern tree (right)and a database tree (left)for which the number of embeddings is

exponential.

example of the merging of embedding sequences is provided in Figure 5.16. Here, we see

that (t1,12,5) and (t1,13,3) are merged into (t1,123,3); The pattern tree corresponding to

the merged embeddings is (1,A)(2,B)(3,C). An interesting result is that also all self-joins can

be evaluated through joins of occurrences, as illustrated in Figure 5.16. As a result, it is not

necessary to consider the original database again after the embedding sequences have been

constructed.

Although conceptually simple, from a complexity point of view the method is far from

optimal. An embedding sequence of TMV can be much larger than a database tree T

itself, as illustrated in Figure 5.17. The example database tree consists of n− 1 nodes con-

nected to a root, while all vertices have the same label; clearly, the number of subtrees of this

database tree is small: there are in total n different subtrees. Yet the size of the embedding

sequence can be exponential in the size of T : consider the right hand pattern tree P in Fig-

ure 5.17, which consists of k nodes. There are
(

n−1
k−1

)

=
(n−1)(n−2)···(n−k+1)
(k−1)(k−2)···1

≥ (n−1
k−1
)k−1 ≥ (n

k
)k/2

different subsets of nodes in T to which the nodes of P can be mapped. In a bad case we can

assume that the largest frequent tree has size m ≥ n/2, so that the support of at least one tree

of size k = n/2 needs to be determined, yielding a list of size Ω(2n/4) that needs to be con-

structed. Clearly, the list size is exponential in the worst case. On the other hand, the number

of mappings in a tree is always lower than
(

n
min(n/2,m)

)

≤ nm. To determine all embeddings of a

pattern tree in a database tree clearly an exponential number of computations can be required.

This is a disappointing result, as we saw already that an O(nm) algorithm is known to exist

[36].

138 5. Mining Rooted Trees

Embedded unordered subtree mining

The mining problem is more complicated when mining unordered embedded subtrees. We

saw that the ρunordered and δemb-based merge operator is not complete. One solution could

be to use the δind-based merge operator, in combination with a different evaluation strategy.

Another solution was chosen by Zaki in [204], and is similar to approaches independently

proposed by other authors [86, 40]. Instead of an optimal merge procedure, a suboptimal

procedure is used:

µunordered-emb(S 1,S 2) =















µordered-emb(S 1,S 2) if S 1 = seq(unorder(tree(S 1)));

∅ otherwise.

To determine whether S = seq(unorder(tree(S))) our O(1) next prefix method could be used,

as we know that only trees S for which prefix(S) is canonical are considered.

To compute the occurrences of all trees (also those that are not canonical) the embedding

sequences are used again. In comparison with the ordered trees, two embeddings can now

also be merged in an embedding in which the nodes are not listed in pre-order. In the example

database of Figure 5.15 the occurrence sequence of (1,A)(2,B)(2,B) is for example:

(t1,126,6)(t1,162,5)(t2,126,6)(t2,162,5).

Also in the unordered case the size of the occurrence sequence is exponential in the worst

case. However, this complexity is more acceptable here, as it is known that unordered subtree

embedding is an NP-complete problem [96].

Mining under anti-monotonic constraints

The algorithms of Zaki can be characterized by their reliance on occurrence sequences and

joins, even if this means that a suboptimal refinement operator has to be used. From this

point of view, these algorithms are very similar to the E algorithm for mining frequent

itemsets (see section 2.5). We argued in Chapter 2 that a set of occurrence sequences of E

can be considered as a projected database. A similar argumentation can also be applied here.

Given a tree, all the occurrence sequences of its refinements can together be considered as

a projected database that contains exactly all information that is required to compute the

support of subtrees in one branch of the search tree. On page 61 we introduced the FP-B

algorithm that was designed to mine under constraints by repeatedly reducing a projected

database. We envision that a combination of the FP-B approach with TMV is

therefore also possible, thus making constrained tree mining more efficient.

To illustrate this in a little more detail, consider an occurrence (t1,12,5) for ordered tree

(1,A)(2,B) in Figure 5.15. This occurrence is extended to:

(t1,126,6) for pattern tree (1,A)(2,B)(2,B),

(t1,123,3) for pattern tree (1,A)(2,B)(3,C),

(t1,124,4) for pattern tree (1,A)(2,B)(3,D),

(t1,125,5) for pattern tree (1,A)(2,B)(3,E).

Now assume that a weight is associated to every label, and that we have a minimum weight

constraint on the sum of weights in a pattern tree. Then if the nodes v6, v3, v4 and v5 in

5.11. Mining Induced Subtrees using Refinement 139

A

B B

DC E

t1

A

B B

DC

E

t2

2

1 1

6

3 4 5

2

3

4

6

5

A

A

B

A

BB

(t1,1)(t2,1)

(t1,2)(t1,6)(t2,2)(t2,6)

(t1,6)(t2,6)

Figure 5.18: A tree database and three ordered trees with their occurrence sequences according to the

F algorithm.

the database do not sum up to the required minimum weight, we can remove the (t1,12,5)

occurrence and all its extended occurrences listed above, as no embedding of a valid pattern

tree can be found in this part of the database. As a consequence, the support of some refined

trees may become lower than the minimum frequency. After removing these refined pattern

trees and their occurrence sequences, it can be checked again whether the reduced projected

database still has a promise of satisfying the constraints, and so on.

5.11 Mining Induced Subtrees using Refinement

To mine induced ordered subtrees Asai et al. developed the F algorithm [12], which

uses the refinement operator of equation (5.1) that adds expansions to the rightmost path.

To determine the support of trees F uses an occurrence sequence based approach. For

each pattern tree, a sequence records all nodes in the database that are the image of the

rightmost node of the pattern tree under some mapping φ. Examples are given in Figure 5.18.

To obtain occurrence sequences for all refinements F uses the following procedure. First,

we observe that starting from the occurrences of the last node of the ordered tree, we can

recompute an entire occurrence for all nodes on the rightmost path: contrary to the embedded

subtree case, we know here that connected nodes in the database must also be connected in

the pattern. Each right sibling of an occurrence in the database corresponds to the occurrence

of a refined tree. If we maintain occurrence sequences for all refined trees in parallel, we can

scan the siblings in the database of all rightmost path occurrences once, and add these siblings

to the occurrence sequences of corresponding refined trees. After this scan of all occurrences

the infrequent trees can be thrown away, and we have computed all occurrence sequences

for the frequent refined trees. The transaction based support of a sequence is determined by

counting the number of transaction identifiers in the sequence.

Note that this approach is purely extension based. An optimization could still be achieved

140 5. Mining Rooted Trees

by incorporating a merge operator: F builds occurrence sequences for all refined trees,

while by using a merge operator we could avoid the construction of some of these lists.

Memory could be saved that is now used for constructing redundant occurrence sequences.

An approach in which these occurrence sequences are merged in a similar way as in

TMVis not possible, as the occurrence sequences do not contain sufficient informa-

tion on themselves to determine whether two occurrences of rightmost nodes can be merged.

The original database has to be scanned to determine extensions.

The approach of F has large complexity advantages over the approach of T-

MV. While the number of embeddings in TMV (or the number of different in-

duced subtree mappings) can be exponential, the number of rightmost node occurrences is

linear in the size of the data tree. Potentially exponential computations for the construction of

occurrence sequences are therefore avoided, while the algorithm remains relatively simple.

F can easily be modified for the discovery of rooted induced subtrees. Whether in-

duced or induced rooted subtrees are found depends entirely on the initialization of the first

occurrence sequence.

Induced unordered subtree mining

The simplest databases for mining frequent unordered induced subtrees are those in which

siblings never have the same label, as then also ordered subtree mining algorithms can be

used. Using the algorithm of section 5.8 each tree in the database can be normalized such that

all child labels are ordered. A frequent tree found in such an ordered database is also frequent

in the original unordered database, and vice-versa.

The situation is different for unordered trees with equal sibling labels. Several algorithms

have been proposed to deal with such databases, one of which is our own algorithm. In this

section we summarize the N algorithm of Asai et al. [13], which extends the FT algo-

rithm to the unordered case; our own algorithm is the topic of the next section.

To extend FT to the unordered case, in N the simplified occurrence sequence is

used that we discussed in section 5.10. Each occurrence in the occurrence sequence thus

consists of a mapping for all nodes in the pattern tree. For example, tree (1,A)(2,B)(2,B) has

(t1,126) as occurrence in our running example. To limit the size of the occurrence sequence,

Asai et al. note that some occurrences are equivalent in the sense that they refer to exactly

the same set of nodes in the database. In our example database occurrences (t1,126) and

(t1,162) are equivalent. Occurrence sequences in N are constructed such that only one

of many equivalent occurrences is entered in the occurrence sequence. On the other hand,

our worst case example of the previous section also applies to the occurrence sequences of

N, and the worst case occurrence sequence length is therefore exponential in the size of

the database.

To compute the occurrence sequences N uses an extension based approach. All sib-

lings of an occurrence of a rightmost path node are considered. Those siblings which are not

yet part of an occurrence, and correspond to an allowable refinement, yield a new occurrence

of a refined tree. Some additional tests make sure that only one occurrence out of a set of

equivalent occurrences is added to the occurrence sequence.

5.12. Mining Unordered Induced Subtrees using Refinement: FT 141

5.12 Mining Unordered Induced Subtrees using Refinement:

FT

Parallel to the development of the N algorithm, we also investigated the possibilities for

modifying F to the unordered tree mining problem. One of our design criteria was that

the algorithm should evaluate the frequency of a tree with a time complexity comparable to

that of computing the induced subtree relation. For the development of our algorithm it is

therefore of importance to know what the complexity of computing this relation is, and how

this complexity is obtained.

The complexityof computing unordered induced subtrees

Using observations of Matula from 1968 [130], the first author to claim an efficient algorithm

was Reyner in 1977[164], who claimed a complexity of O(nm1
1
2). However, the complexity

analysis of this algorithm turned out to be incorrect, as published in 1989[184]. The first cor-

rect algorithm to correctly achieve an O(nm1
1
2) complexity was therefore Chung’s algorithm

of 1987 [41] (remember that m is the number of nodes in the pattern tree and n the number of

nodes in the data tree). Only more recently, in 1999, Shamir and Tsur published a more effi-

cient algorithm with an O(nm1
1
2 / logm) complexity [173]. Although these authors apply their

new algorithm to free trees only, we conjecture that it can easily be adapted to rooted trees.

The better complexity is obtained through a modification of Chung’s algorithm of 1987.

Our evaluation strategy also relies on the ideas that are at the basis of Chung’s algorithm.

Before introducing our strategy, it is therefore instructive to give an informal overview of

Chung’s algorithm. We will do so by applying it to the pattern tree of Figure 5.19(b) and

the set of data trees in Figure 5.19(a). Thus, in our discussion we conceive the database

as one large (unconnected) tree, instead of as a set of separate trees. Superficially, the idea

of the algorithm is to perform a bottom-up levelwise walk through the pattern tree, and to

build an occurrence sequence for each node in the pattern tree by considering the occurrence

sequences of its children. The occurrence sequence of a node v in a pattern consists of a

sequence of nodes w in the database such that subtree(v) �rootind subtree(w). The computation

proceeds as follows:

1. First, it is assumed that the nodes in the database tree are given in some prefix order.

For each node label occurring in a leaf a sequence of occurrences of that label in the

database tree is determined. The occurrences are sorted first on depth; the original order

is used for nodes at the same depth (thus, we obtain a level order). In the example,

(t1,6) is part of the occurrence sequence of label E.

2. The algorithm starts at the second highest depth k of the pattern tree, which is k = 2 in

our example;

3. By induction, it is assumed that all occurrence sequences for nodes at depth k+1 have

been determined, and that these occurrence sequences are sorted in a level order.

142 5. Mining Rooted Trees

A

B B

DC E

t1

A

B B

DC

E

t2

2

1

3

4 5 6

1

2 3

4 5

6

(a) A database.

A

B B

E (t1,6)(t2,6)

(t1,2)(t1,3)(t2,2)(t2,3)

(t1,1)(t2,1)

(t1,2)(t2,2)

(b) Chung’s algorithm.

A

B B

E

(t1,3)(t2,3)

(t1,1)(t2,1)

(t1,2)(t2,2)

(c) F.

Figure 5.19: A database of two trees (a) and a pattern tree with the associated occurrence sequences

according to (b) the algorithm of Chung [41]and (c) the F algorithm.

4. For each internal node v at depth k, the occurrence sequences of the children are tra-

versed in parallel. The parent w of an occurrence w′ of a child v′ of v is a potential
occurrence of v if the labels of v and w match, as illustrated in Figure 5.20. Due to

the sorting order, a sequence of nodes w to which v can potentially be mapped can be

constructed. Furthermore it is known to which children of w each child v′ of v can be
mapped. To determine whether v can indeed be mapped to w, it has to be determined

whether all children of v can injectively be mapped to children of w. To determine the

existence of an injective mapping, a maximum bipartite matching on the bipartite graph

G(v,w) has to be solved. This graph consists of all children of v, all children of w, and

contains an edge (v′,w′) if v′ can be mapped to w′. In our example of Figure 5.19, the
pattern tree’s root A has two children. According to both its children, node 1 in tree

t1 is a node to which A can potentially be mapped. One child of A can be mapped to

node 2, the other child to node 2 or node 3. To determine whether A can be mapped to

node 1 in t1, we have to find an injective mapping from all children of A to the nodes 2

and 3. This problem corresponds to finding the largest possible matching in a bipartite

graph, which is a problem also known as the maximum bipartite matching problem or

the marriage problem. Algorithms are known for solving maximum bipartite matching

problems in O(|E|
√
|children(v)|) time [82, 172], where |E| is the number of edges in

the bipartite graph. As we will use this algorithm too, we will discuss some details

of this algorithm later in this section. If a matching can be found which matches all

children of v to children of w, v can be mapped to w and a pointer to w is added to the

occurrence sequence of v.

5. We decrease k, and if k ≥ 1, we continue in step 3.

5.12. Mining Unordered Induced Subtrees using Refinement: FT 143

v w

Mapping between children

v w

D
ata T

ree
P
at
te
rn
 T
re
e

children of children of

G(v,w)

v’

Figure 5.20: Illustration of the bipartite matching problem that has to be solved when computing the

induced subtree relation efficiently.

Although we omit the details, it is clear that this algorithm is polynomial: the total complexity

derives from the complexity of repeatedly solving bipartite matchings:

∑

v∈VUp

∑

w∈VUd

O(|children(v)|1
1
2 |children(w)|) = O(|VUp |1

1
2 |VUd |),

where Up and Ud are the pattern tree and the database tree, respectively.

Maximum bipartite matching

An essential part is an algorithm for solving maximal bipartite matching problems. For the

sake of completeness we briefly discuss the essentials of maximal bipartite matching algo-

rithms here. The most well-known algorithms rely on the concept of alternating paths. Given

a matching between the sets of nodes in a bipartite graph, an alternating path is a path in

the bipartite graph in which every other edge belongs to the matching. An augmenting path

for a matching is an alternating path that starts and ends in a node that is not matched yet.

Augmenting paths for a matching are of importance as a larger matching can be obtained

from an augmenting path, simply by reversing which edges of the augmenting path are part

of the matching. It is known that a given matching must have an augmenting path if a larger

matching can be obtained. To determine an augmenting path for a given matching an O(|E|)
algorithm is known. As each call of the augmenting path algorithm increases the size of the

matching with at most one edge, in the worst case O(|children(v)|) calls are necessary, yield-
ing a total complexity of O(|children(v)| · |E|) for this simple algorithm. It can be shown that
by subdividing the algorithm in two phases, such that multiple (small) augmenting paths are

searched for in the first phase, the complexity can be brought down to O(
√
|children(v)| · |E|)

[82].

A slight variation of the problem of finding the maximum bipartite matching is the prob-

lem that we will refer to as the bipartite involved matchings problem. While in the maximum

bipartite matching problem we are interested in finding the largest possible matching—if this

matching does not contain a mapping for all children of a node in the pattern tree, we cannot

144 5. Mining Rooted Trees

map the father— in the bipartite involved matchings problem we are interested in finding

all edges in the bipartite graph that are contained in at least one possible maximum bipartite

matching. The problem is therefore slightly stronger than the maximum bipartite matching

problem, as we are not interested in the existence of one solution, but also in the characteris-

tics of a large set of solutions, if there is a solution. The problem can be solved by a simple

modification of the maximum bipartite matching problem. The idea is to iteratively leave

out one edge and its two connecting nodes, and to solve the maximum bipartite matching

problem on the remaining graph. If a solution is found on this remaining maximum bipartite

matching problem, we know that there is a matching for the original bipartite graph in which

the two removed nodes were connected. At first sight, it may seem inefficient to repeatedly

solve a bipartite matching problem, but fortunately we can optimize the algorithm by reusing

solutions of matching problems. We can observe that when we remove two nodes and their

connecting edges, at most two mappings of an old bipartite matching problem are removed,

but that we also re-insert two connected nodes that were previously removed, leading to at

most a decrease of one of the bipartite matching size. If we sum the total decrease of bipartite

matchings during the run of the algorithm, the task of the augmenting paths algorithm is to

correct for this decrease. This requires a number of calls that is at most two times as large

as the total decrease: one call to increase the bipartite matching size again and one call to

conclude that further improvement is not possible. Overall, the bipartite involved matchings

problem can therefore be solved with one call to a maximum bipartite matching problem, and

a number of calls of the augmenting paths algorithm that is bounded by the number of edges

in the initial bipartite graph. Note that each time that a bipartite matching problem is solved,

evidence is gathered about which edges can occur in a bipartite matching. In the procedure

which iteratively removes edges, we can skip those edges for which a bipartite matching has

already been found, thus improving the efficiency of the procedure further in practice.

Computing induced subtrees incrementally

Our strategy for evaluating the frequency of unordered subtrees is based on the idea of com-

puting the occurrence sequences of Chung’s algorithm incrementally. In comparison with

Chung’s algorithm, we store the following occurrence sequences with each pattern tree:

• We only associate occurrence sequences to nodes on the rightmost path, and to siblings
of nodes on the rightmost path that have the same label as the node on the rightmost

path; for the example pattern tree of Figure 5.19, we would not store the occurrence se-

quence of node E. The motivation is that only occurrences of children of the rightmost

path are of importance to determine the occurrences of refined trees.

• We only store an occurrence v 7→ w if there is at least one mapping φ from the entire
pattern tree to the data tree in which φ(v) = w; in the example, we would not store

a mapping from the last B to node 2 of trees t1 and t2, as there does not exist any

mapping in which this occurrence is used.

This is also illustrated in Figure 5.19(c).

Note that to compute the support of a tree in a transaction based setup, we have to count

the number of different transaction identifiers in the mapping of the root node. If the support

5.12. Mining Unordered Induced Subtrees using Refinement: FT 145

4

5(3,A) 0

6(4,A) 0with same label
#leftsiblings(depth,label)

vector of pointers to children

position
in seq(T)

(1,B)

3(3,B) 0

2(2,A) 0

1

2

3

4

5

seq(T)

1 4 v
2
v

6

10v
1

v
3

5v

6v

(2,A)

Figure 5.21: Illustration of the data structure which stores the unordered tree

(1,B)(2,A)(3,B)(2,A)(3,A)(4,A) in FT. Only information drawn within boxes is stored.

is root node based, it suffices to determine the length of the occurrence sequence of the root

node.

Clearly, the total length of the occurrence sequences is at most O(nm), and not exponen-

tial. The procedure for finding occurrence sequences for refined trees is polynomial. In detail,

this procedure works as follows.

The first step of the counting algorithm is the determination of frequent 1- and 2-subtrees.

After this step, infrequent edges are removed from the data tree. For each frequent label we

construct initial occurrence sequences. If the user is interested in rooted induced subtrees

only, the set of initial trees is limited to those which can be mapped to the root of transactions.

In our implementation we use data structures of C++’s Standard Template Library (STL).

Each node consists of a label and a map which maps from a label to the subset of children

with that label. Given a map with k labels, the map datastructure allows to retrieve the subset

of children with that label in O(log(k)) time. Given a label, we can therefore determine in

O(log(k)) time whether there is a child with this label; we store the size of a list separately to

allow for an O(1) determination of the number of child nodes with a certain label. Using the

map datastructure, starting from the first label found, lower labels can be found in O(1) time

per label, in decreasing order.

To store the pattern we use the datastructure that is illustrated in Figure 5.21. Each node

in the tree contains a field that stores how many left siblings have the same label.

To store the occurrence sequences the datastructure illustrated in Figure 5.22 is used. Note

that we use a different database example here than in the previous examples. All occurrences

are stored in a tree. Each node consists of a list of occurrences for a pattern node v. An

occurrence does not only consist of a pointer to a node in the database, but also contains a

vector. In this vector for each child of v in the pattern tree a pointer is stored that points to a

child in the occurrence tree. In the example, there is a mapping from the pattern tree to the

database tree such that the root v1 can be mapped to node w1 in the database. Assuming that

node v1 is mapped to node w1, there are mappings in which v1’s first child v2 is mapped to

w2 or to w4; these occurrences are therefore stored in the first child of v1 in the occurrence

tree. Similarly, assuming that v1 is mapped to w1, and that v4 is mapped to w4, v5 can be

mapped to w8 and w9; these occurrences are therefore again stored in the same node. Thus,

146 5. Mining Rooted Trees

 1

w
 2

w
 4

w
 6

w
 8

w
 9

w
 10

w
 11

w
 12

w
 13

w
 2

w
 3

w
 4

w
 5

w
 6

w
 7

w
 8

w
 9

w
 13

w
 12

w
 11

w
 10

w
 1

v
 1

v
 2

v
 4

v
 5

v
 5

v
 6

v
 6

v
 6

List of mappings for

Vector of pointers to list of mappings

Pattern node v

Pattern node v

(b) Explanation of notation

wMapped−to node in Data Tree

B

A

(a) Data tree

(c) Occurrence tree

kth element = th child in pattern treek

A AA

B A

A A

B A

AAA

w
 4

w
 2

w

Figure 5.22: Illustration of an occurrence tree for the pattern tree (1,A)(2,A)(3,B)(2,A)(3,A)(4,A) of

Figure 5.21 and a data tree.

the entire sequence of occurrences for a node v in the pattern is subdivided into pieces, each

piece corresponding to a different mapping for the ancestors of v. The separate pieces are

however interconnected in a list.

To compute the refined occurrence trees, the algorithm considers each node v on the right-

most path independently. First, using the IVE procedure it is determined which

labels can be attached to v. Then, the occurrence sequence of v is traversed entirely (following

the links between the occurrence sequence pieces). For each occurrence w in the sequence,

we determine in the database how many children w has with the highest allowed label. The

O(logk) search procedure offered by the maps in the database tree is used to perform this

computation efficiently. If the number of children of w with this label is strictly higher than

the number of children of v with this label, we increase the counter for the current refine-

ment with one, unless for the current database tree the counter has already been increased

earlier. The argumentation is as follows. As we can assume that an occurrence is only part of

an occurrence sequence if there is a mapping φ in which v maps to w, a new child of v can

always be mapped to one of the remaining children of w if the number of children of w is

higher. For labels lower than the lowest allowed label, the comparison between child numbers

is not necessary. As a result of this phase we have determined the frequency of all possible

refinements; the complexity is relatively low.

Consider as example that we wish to find extensions below node v4 in the tree of Fig-

ure 5.21, for the data tree of Figure 5.22. Then we first determine that the highest allowed

new label below v4 is A. Then, we scan the occurrence sequence of v4. The first occurrence

is node w2. As w2 has one child labeled with A, while v4 would have two such children upon

extension, we cannot increase the support of refinement (3,A). We continue to occurrence

5.12. Mining Unordered Induced Subtrees using Refinement: FT 147

w4. Node w4 in the database has two children labeled with A. Therefore, we can increase the

support of refinement (3,A).

In the second phase, we traverse the occurrence sequence of v again; this time the purpose

is to construct the new occurrence trees for all refinements that were found to be frequent in

the previous phase. By only constructing the occurrence trees for frequent refined pattern

trees, we hope to reduce memory requirements and to avoid computations for building trees

that would otherwise turn out to be infrequent.

The computation is performed bottom-up. Let w be an occurrence of v. Then in the old

occurrence tree each child v′ of v has a sequence of occurrences w′ that are children of w.
Each frequent allowed (partly new) child label ofw is considered in isolation. If the number of

children of w with the extension label is larger than the number of children of v, we know that

there must be a mapping φ for the pattern tree that maps v to w. We now have to determine to

which nodes the new node can be mapped exactly. For each label node w has a set of children

w′ with that label. From the (partly new) children of v and the (partly new) children of w we
obtain a bipartite graph. For this graph we have to solve a bipartite all matchings problem, as

previously defined. This can be performed in polynomial time. In this way we obtain for all

(new) children v′ of v a list of nodes w′ that occur in at least one mapping. These nodes w′

are added to their respective occurrence sequences. All ancestors of w are also added to their

respective sequences —in so far they were not already added— and parent-child pointers are

added.

In our example we consider occurrence w2 for node v4 first. The highest allowable la-

bel below v4 is A again. In the set of children of w4 this label is searched again. The num-

ber of labels is insufficient, therefore w2 is not added to the occurrence list of v4 for the

tree refined with (3,A). We continue with node w4. Node w4 has 2 children labeled with an

A, while v4 also has 2 such children in the pattern tree refined with (3,A). We now have

to find out to which nodes v5 and the new node, v7, can be mapped. Therefore, we have

to solve a bipartite all matchings problem, for the bipartite graph consisting of the edges

{(v5,w8), (v5,w9), (v7,w8), (v7,w9)}. When we solve this problem we find out that all edges are
part of a matching. The ancestors of w8 and w9, which are the nodes w4 and w1, are added to

the occurrence tree of refinement (3,A) too.

After this phase we have all occurrence sequences of the nodes on the rightmost path.

However, we have also have to update the occurrence sequences of the left siblings of the

rightmost path. In the example, node v2 can no longer be mapped to node w4 in the tree

refined with (3,A), as v4 can now only be mapped to v4.

We solve this as follows. For every occurrence w of a node v on the rightmost path we

have a sequence of occurrences w′ for each child v′ in the tree: for nodes on the rightmost
path, we have determined these occurrences in the previous phase, while for the siblings we

still have the occurrences of the unrefined tree. Remember: the bottom-up subtrees of left

siblings of the rightmost are unaffected by the rightmost path expansion, and their occurrence

sequences still reflect a potential mapping. By solving an all matchings problem for each set

of children, we can determine which mappings of the unrefined tree are still valid.

Overall, the complexity of determining the occurrence trees for refined trees is polynomial

in the size of the database trees and the size of the pattern tree. Experiments will have to

show whether this better complexity also pays off in terms of better practical run times. One

can expect that the overall efficiency is highly dependent on the efficiency of the bipartite

148 5. Mining Rooted Trees

matching problem solver. Setubal performed a large set of experiments with several variants

of bipartite matching solvers [172] and found that among many other algorithms the BFS

algorithm performs most efficiently when the size of the bipartite graph is relatively small, but

the number of problems to be solved is large. As we expect that in most mining situations the

number of nodes is not large (thousands of nodes), we choose to use this BFS implementation,

which, just as the other implementations, was put online by the author [172]. The resulting

tree miner was called F.

5.13 Mining Induced Subtrees using Merges

Until now we considered algorithms that mine induced subtrees only using extensions. In

this section, we will consider mining using a merge operator. First we will introduce a simple

algorithm for mining induced ordered subtrees. This algorithm uses a modification of the

occurrence sequences of the TMV algorithm. Then we will introduce the details of

our F-Nunordered tree mining algorithm.

As ordered tree merge operator we use the µordered-ind operator that we introduced earlier.

To perform the frequency computation we associate a simple occurrence sequence with every

pattern tree. As a quick reminder, a simple occurrence is a tuple (t,S), where t is a transaction

identifier and S is a sequence that encodes a possible mapping: for a mapping from a pattern

tree to a database tree, the sequence S is composed such that S [k] is the number of node in

the database to which the kth pattern node can be mapped.

Our algorithm is a depth-first mining algorithm which operates by manipulating this kind

of sequences. Given the merge operator, we know that there are three ways in which a pattern

tree can be constructed:

• using a join;

• using a self-join;

• using a (pure) extension.

We have to derive a method for building occurrence sequences in each of these three cases.

Let us first consider the join. If two trees T1 and T2 are joined by µordered-ind(seq(T1),seq(T2))

they share a common prefix. Let (t1,S 1) and (t2,S 2) be two occurrences of two pattern trees

that can be merged. Then if t1 = t2 and prefix(S 1) = prefix(S 2) we know that both occurrences

map to the same set of nodes for the nodes in the prefix, and that below the occurrence of

some node in T1 there is a node last(S 1), while below the occurrence of some (potentially

other) node in T2 there is a node last(S 2). In the case of ordered trees, (t1,S 1 • last(S 2)) is an
occurrence of µordered-ind(seq(T1),seq(T2)) if last(S 2) > last(S 1), and we add that occurrence

to the sequence of the joined tree. If we assume that the occurrence tuples are sorted lexico-

graphically, it is easy to make sure that the joined sequences are also sorted lexicographically

again.

The self-join can be performed in a similar fashion: simply take the same occurrence

sequence as input two times. Only additional care should be taken that the same occurrence

is not added twice to the output sequence.

5
.1

3
.
M

in
in

g
In

d
u

c
e

d
S

u
b

tre
e

s
u

s
in

g
M

e
rg

e
s

1
4

9
(t1,−,1)(t2,−,1)(1,A)

(1,A)(2,B)(2,B) (t1,1,6)(t2,3,6)(1,A)(2,B)(3,C) (t1,1,3)(t2,3,3)(1,A)(2,B)(3,E) (t1,1,5) (1,A)(2,B)(3,D) (t1,1,4)(t2,3,4)

(1,A)(2,B) (t1,1,2)(t1,1,6)(t2,2,2)(t2,2,6)

(1,A)(2,B)(3,D)(3,E) (t1,1,5) (1,A)(2,B)(3,D)(2,B) (t1,1,6)(t2,2,6)(t2,2,5)(1,A)(2,B)(3,D)(4,E)

(1,A)(2,B) (t1,1,2)(t1,1,6)(t2,2,2)(t2,2,6)

(t1,−,1)(t2,−,1)(1,A)

(1,A)(2,B)(3,D)(2,B) (t1,1,6)(t2,2,6)(t2,2,5)(1,A)(2,B)(3,D)(4,E)

(1,A)(2,B)(3,C) (t1,1,3)(t2,3,3)(1,A)(2,B)(3,E) (t1,1,5) (1,A)(2,B)(3,D) (t1,1,4)(t2,3,4)

Join

Extension Self−Join

Extension

Extension

(1,A)(2,B)(2,B) (t1,1,6)(t1,2,2)(t2,3,6)(t2,4,2)

A

B B

DC

E

1

2

t2

6

5

43

A

B B

DC E

2

1

6

53 4

t1

Extension
Extension Self−Join

Extension Join Join

(a) Occurrence Sequences − Ordered Trees

(b) Occurrence Sequences − Unordered Trees

(c) Database

Figure 5.23: An example of the data structure that stores the occurrence sequences for an (un)ordered pattern tree (1,A)(2,B)(3,D),its children,its

siblings,its ancestors,and the siblings of the ancestors.

150 5.MiningRooted Trees

The final case is the extension. We compute extensions by traversing the occurrence se-

quence. Let (t,S) be an occurrence. Then k = last(S) is the index of a node in database tree

t. The children v′ of vk in the database correspond to refinements of the tree. For each of
the children, (t,S • v′) is added to the occurrence sequence of the extension corresponding
to λ(v′). To this purpose, we use a hash table, or an array, in which possible extensions are
stored, together with the sequence under construction. Also this operation takes care that the

occurrences are added in lexicographical order.

Conceptually one can conceive each occurrence as a (t,S) tuple, but we implement the

occurrences slightly differently in our algorithm. When we study the depth-first algorithm, we

note that, due to the backtracking nature, all ancestors and the siblings of the ancestors are also

still in memory. We choose to keep their occurrence sequences in memory too, and to encode

occurrences mainly by storing the differences with the parent occurrences in the refinement

tree. In detail, an occurrence is then a triple (t, j,k), where t is a transaction identifier, j is the

index of an occurrence of the parent tree, and k is the index of a node in the data tree that was

added to the occurrence of the parent. The advantage is that also the test whether the prefixes

match can be performed more efficiently as this test reduces to the comparison of two indices

j1 and j2.

An example is provided in Figure 5.23. The dotted arrows in this figure show which kind

of merge is performed, and indicate which trees are involved. In each box a pattern tree is

shown (left) and its occurrence sequence in the short notation (right). Gray arrows indicate to

which parent occurrences the indexes j point.

To mine unordered trees with this technique a few small changes are required. First,

the join of some structures must be forbidden (consider the join of (1,A)(2,B)(3,E) and

(1,A)(2,B)(3,D) in Figure 5.23(a)); also some extensions can be disallowed by a next prefix

node. If the depth sequences are sorted downward lexicographically (as in the figure), one

can see that µunordered-ind(seq(T1),seq(T2)) is only allowed if seq(T1) is before seq(T2) in the

downward order. This order of pattern trees is easily maintained when extending and joining

trees.

Second, more occurrences must be allowed, as the nodes in a mapping are not necessarily

increasing in prefix-order. In the example, both (t1,126) and (t1,162) are valid occurrences,

all of which have to be recorded in the occurrence sequences. These additional possibilities

are taken into account by dropping one of the restrictions on joining two occurrences in the

ordered case.

Note that although joining may be performed linearly in practice, the worst case is quadratic

in the length of the occurrence sequence. As an example, consider the self-join of an occur-

rence sequence (t1,12)(t1,13) . . . (t1,1n):

(t1,123)(t1,124) . . . (t1,12n)(t1,131)(t1,132)(t1,134) . . . (t1,13n) . . .

The increase in complexity of the join is related to the number of siblings with equal labels.

Only in that case two occurrences in the same occurrence sequence can share a common

prefix. As we already pointed out that simple occurrence sequences can be exponential in

size, the occurrence sequence based approach is only feasible for databases in which this

‘branching factor’ is not too large. If it is feasible to apply a simple occurrence sequence

technique to a database, the complexity of the joins for these databases is expected to be

almost linear.

5.14. Related Work 151

Is it possible to construct an algorithm which relies on (self-)joins only? With the merge

operators that we introduced here, this is not the case. If one is willing to relax the search

space in a similar way as we did in section 3.6 for almost gap-free subsequences, we are

convinced that there are possibilities. We will not go into the details of such an approach

here, however, although it would allow for inductive tree mining algorithms built on the idea

of FP-B (see page 61 and page 138).

5.14 Related Work

Most closely related to our work is the unordered induced subtree mining algorithm H-

TM of Chi et al. [39]. This algorithm uses an evaluation strategy which is con-

ceptually very similar to the one described in the previous section. To represent the patterns,

Chi et al. proposed two different representations, a depth-first encoding and a breadth-first

encoding. The depth-first encoding defines a canonical form similar to our depth-first cod-

ing, but does not allow for the efficient refinement of our code. The breadth-first encoding

defines a new canonical form for which only suboptimal refinement is possible. Given the

breadth-first encoding of the HTM, trees are grown in a level-wise fashion in

this algorithm. Trees that only differ in the last node on the deepest level are joined; joins

do not increase the depth of the pattern trees. To obtain deeper trees an extension operator is

used that iteratively determines all extensions of nodes at the deepest level of the tree.

Another algorithm for finding embedded ordered subtrees was presented by Wang et al.

in [186]. This C algorithm exploits the fact that ordered trees can also be converted

into sequences (using the pre-order of the nodes), and that frequent trees can be converted

into frequent subsequences. C searches for frequent trees by first searching frequent

sequences; for these frequent sequences it is determined in a second phase whether frequent

trees can be constructed from them.

Several algorithms have been developed that exploit the simplifying assumption that no

two siblings have the same label, as pointed out in section 5.9. The first authors to use this

observation were Wang and Liu [189], who built an algorithm by using the Object Exchange

Model (OEM) for semi-structured data. In their algorithm first the frequent root paths are

determined. In a next phase frequent root subtrees are constructed by combining these paths.

More recently Xiao et al. applied the same idea in the PJ algorithm [198]. In a

preprocessing step of their algorithm all paths in the database are stored in a FST-Forest data

structure. Every root path in the FST-Forest corresponds to a frequent path in the database and

has an associated occurrence sequence. Each element of the occurrence sequence is a tuple

consisting of a tree identifier and a node identifier; this node identifier is the identifier of a

node in the database at which the root path starts. The FST-Forest is illustrated in Figure 5.24.

After the construction of the FST-forest and the determination of all frequent paths, the

search for frequent trees starts. PJ uses a combination of a depth-first algorithm with a

breadth-first algorithm to find the frequent trees. The search starts with a single node. Then, in

a breadth-first fashion all trees of depth 2 are determined (where also an upward refinement

operator is used to check the monotonicity constraint). Each of these trees is recursively

152 5. Mining Rooted Trees

B

E

D

C E

(t2,2)

(t1,2)

(t1,2)(t2,2)(t1,2)(t2,2)

(t1,2)(t1,6)(t2,2)(t2,6)

Figure 5.24: The FST forest ofthe PJ algorithm,for the database ofFigure 5.15.

expanded depth-first to find all nodes that can be connected at depth 3; the subsets of these

nodes are found breadth-first again, and so on. Overall, all levels are scanned in a depth-first

fashion, while all possibilities at each level are determined breadth-first.

As each pattern tree is a rooted induced subtree of a tree in the FST forest, for each leaf

at the lowest level of the pattern tree a potential set of children can be obtained from the FST

forest. The support of a candidate is computed by joining the occurrence sequences of the

leafs of the pattern tree; these sequences are obtained from the FST forest.

Several other relations than those introduced in this chapter have been studied. Termier et

al. [179] presented an algorithm, TF, for finding subsumed subtrees. The subsump-

tion tree relation is similar to the embedded unordered subtree relation, except that nodes in

the pattern tree which are not ancestors of each other, are allowed to be mapped to nodes

which are ancestors in the database: the ancestor relations in the data thus do not need to

be reflected in the pattern. The approach of Termier et al. differs furthermore from the other

approaches in that it tries to find frequent subtrees heuristically, and that no complete refine-

ment operator is used. Furthermore, the authors formulate their problem in terms of first order

logic instead of tree structures themselves.

A similar relation was studied by Bringmann [30]. His tree incorporation relation can be

conceived as an ordered case of the tree subsumption relation, as it requires that, if sibling

pattern nodes are mapped to siblings in the data, these siblings in the data have the same

order. To evaluate frequencies Bringmann uses a modification of the occurrence sequences of

TMV.

In a recent publication Wang et al. investigated how to mine more simple patterns than

subtrees in tree databases, with applications to Phylogeny [188]. Although casted within a

frequent pattern mining setting, the patterns found by these authors correspond to 2-itemsets

under distance restrictions.

Finally, condensed representations have been studied by Wang et al. [189], Xiao et al.

[198], Chi et al. [40] and Termier et al. [180]. The algorithms presented by Wang et al. [189]

and Xiao et al. [198] search for maximal frequent subtrees. To a large extent these algorithms

only perform postprocessing to find the maximal trees. Chi et al. presented a depth-first mod-

ification of the HTM algorithm, CMTM [40], to discover all closed fre-

quent subtrees and maximal frequent subtrees. The idea behind this algorithm is also easily

understood using depth sequences: assume that in a depth-first algorithm based on occurrence

sequences it is found that all occurrences of (1,A)(2,B) can be extended to occurrences of

(1,A)(2,B)(2,B), then other refinements of (1,A)(2,B) should not be considered as they are

5.15. Experimental Results 153

not closed; in our small example, one would know that all occurrences of (1,A)(2,B)(2,A)

can be extendedto occurrences of (1,A)(2,B)(2,B)(2,A).Bycarefullychoosingthe order in

whichthe depth-first search is performed, and by maintaining if all occurrences have been

extended, some branches of the search tree can be pruned as it is known that they cannot lead

to closed subtrees.Although this setup prunes some branches, it does not guarantee that only

(unordered)closed subtrees are found.This can be solved by either postprocessing the results,

or by employing a suboptimal refinement operatorwhich also considers other extensions than

rightmost path extensions.

Termier et al.[180]studied the use of closed representations under the embedded un-

ordered subtree relation, and implemented such a representation in the D algorithm.

This algorithm performs the mining taskusing a merge procedure which is not cover:new

trees are generated by interconnecting frequent trees already found.It is shown that the prob-

lem of finding such combinations of trees can be transformed into a frequent itemset mining

problem.The approach is similar to the approach ofPJ, which also combines depth-first

and breadth-first mining.

5.15 Experimental Results

In this section we present a performance study of algorithms for mining frequent embedded

ordered subtrees, induced ordered subtrees and frequent induced unordered subtrees.Fig-

ure5.25shows the characteristics of all the data sets that wewill be using for the performance

study and Figure 5.26gives the explanation for each parameter in Figure 5.25.

Alarge set of the experiments listed in this section were performed by Yun Chi, as part

of a joint paper on tree mining algorithms [37].The figures presented here are used with his

permission.

Frequent embeddedandinducedorderedsubtrees

To set the algorithms for mining unordered subtrees into a perspective, we will first illustrate

the performance of ordered tree mining algorithms.From a large set of experiments, we will

showone experiment here that was performed on the T1M dataset, whose characteristics are

also summarized in Figure 5.25.The T1M dataset was created using the dataset generator of

Zaki [203].This data set mimics web access trees of a web site, as follows.First, one large

mastertreeis generated, which can be conceived as a file system tree on a webserver.In our

dataset, we used a master tree of 10,000nodes, 100labels, a depth of 10, and a maximum

fanoutof 10(the fan out of a node is the number of children of that node).Adistribution is

associated to each set of children.Then, 1,000,000subtrees of this master tree are generated,

by repeatedly starting at a random node in the master tree.At random children of each node

are recursively added to the generated subtree, using the previously constructed distribution.

To mine embedded ordered subtrees we consider the TMValgorithm;for mining

induced ordered subtrees we will use the FTalgorithm.

In the performance study, we mainly use two performance measures:the total run time

and the memory usage.All experiments in this section and in the next section were done

154 5.MiningRootedTrees

Name |V | |T | |V |/|T | |F|/|V | |max(F)|/|T | |D|/|T | |V |/|D| |Σ|

µ σ µ σ µ σ µ σ µ σ

T1M 2563796 1000000 2.56 2.01 1.10 0.201 1.26 0.54 2.24 1.08 1.10 0.216 100

CS-LOG 716263 59691 12.0 21.0 1.60 0.269 4.89 7.25 4.28 4.57 2.45 2.54 13209

Multicast 163753 1000 163.8 62.1 1.94 0.298 5.76 1.41 257.3 1494.8 5.83 2.16 321

T2 (10) 500000 10000 50.0 0.00 1.96 0.00 6.43 1.15 11.5 1.51 4.41 0.572 1000

Figure 5.25:Characteristicsofthetreeminingdatasets.

|V | Number of nodes in the database

|T | Number of trees in the database

|V |/|T | Mean number of nodes per tree

|F|/|V | Mean fan-out per node (Mean number of children per node)

|max(F)|/|T | Mean maximum fan-out per tree (Largest number of children per tree)

|D|/|T | Mean diameter (Mean length of longest path in the tree)

|V |/|D| Mean number of nodes per diameter (if 1, the tree is a path)

|Σ| Number of labels in the database

µ Mean

σ Standard deviation from the mean

Figure 5.26:ExplanationoftheabbreviationsusedinFigure5.25.

on a 2GHz Intel Pentium IV PC with 2GBmain memory, running the RedHat Linux 7.3

operating system. All algorithms were implemented in C++and compiled using the g++

2.96 compiler with –O3 optimization level. For FT, we have used an improved version

of Kudo’s implementation given in [106]. We used the original implementation of Zaki of

TMV [203].

Because for a given minimum support, the number of frequent embedded subtrees and

the number of frequent induced subtrees are different, we compare the average run time per

frequent subtree for TMV and FT.

From Figure 5.27(a) we can see that when the minimum support is high, TMV is

more efficient. This is an interesting observation, as we already noted that induced subtrees

can also be obtained by postprocessing embedded subtrees for the same support value. How-

ever, as the minimum support decreases, FT becomes more efficient while TMV’s

average run time increases drastically. A possible reason may be that with a lower value for

minimum support, the size of the frequent trees increases. In FT the size of a pattern tree

does not influence the evaluation time per occurrence; because longer patterns in general have

lower support values and therefore fewer occurrences, in FT the average computation time

per frequent tree decreases. In TMV, on the other hand, the size of the pattern is of

importance as an occurrence contains match labels for all pattern vertices. Combined with

possibly longer occurrence sequences (due to the exponential nature of the number of oc-

currences), the amount of computation time in TMV increases with lower minimum

support.

Figure 5.27(b) shows the memory usage for the two algorithms with different minimum

supports (for minimum support less than 0.01%, TMV exhausts all available memory).

As we can see from the figure, FT’s memory usage remains flat for different minimum

support, but TMV increases sharply as the minimum support decreases. Again, the

most likely reason is the exponential increase of the size of the occurrence sequences. Not

5.15. Experimental Results 155

 0.0001

 0.001

 0.01

 0.1

 1

 0.001 0.01 0.1 1

A
v
e
ra
g
e
 R
u
n
 T
im
e
 (
S
e
c
o
n
d
s
)

Minimum Support (%)

T1M

TreeMiner
FREQT

(a)Average run time

 100

 1000

 0.001 0.01 0.1 1

M
e
m
o
ry
 U
s
a
g
e
 (
M
B
)

Minimum Support (%)

T1M

TreeMiner
FREQT

(b)Memoryusage

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0.001 0.01 0.1 1

N
u
m
b
e
r
o
f
F
re
q
u
e
n
t
T
re
e
s

Minimum Support (%)

T1M

TreeMiner
FREQT

(c)Number of frequent trees

Figure 5.27:Acomparison of TMV and F.

mentioned here are the results of Wang et al. on their C algorithm[186]. These authors

also come to the conclusion that TMV has serious memory problems. Although these

authors provide another explanation —they claim that the problem of TMV is that it

generates too much candidates— also their results support our explanation.

For a given minimum support,the total number of frequent embedded subtrees is much

larger than that of induced subtrees,as shown in Figure 5.27(c). We can see that both the

number of frequent embedded subtrees and the number of induced subtrees increase expo-

nentially as the minimum decreases. However, the number of frequent embedded subtrees is

much larger (and grows faster) than that of frequent induced subtrees. This is understandable

as every frequent induced subtree is also a frequent embedded subtree.

Frequent induced unordered subtrees

In this section we compare the performance of four algorithms for mining rooted unordered

subtrees: FT [145], HTM [39], PJ [198], and F-N. Because

PJ does not allow siblings to have the same node labels, experimental results for PJ

are limited to data sets satisfying this constraint.

CS-LOG The first data set, as described in [203], contains the web access trees of the Com-

puter Science department of the Rensselaer Polytechnic Institute during one month, and was

generated using the WWWPal tool (see [162], and Section 5.3). There are a total of 59,691

transactions and 13,209 unique node labels (corresponding to the URLs of the web pages).

Only for this experiment we used another computer than in the other experiments of this

chapter. We used a 2.8Ghz Pentium IV PC with 512MB of main memory, which allows us to

compare this experiment with a result in the next chapter.

From Figure 5.28 we can see that the run time for all algorithms remains steady for

minimum support greater than 0.3%. After that, as the minimum support decreases further,

the run time rises sharply. (Notice the logarithmic scale of the y-axis.) According to the

experiment results, when the minimum support decreases from 0.25% to 0.20%, the number

of frequent subtrees grows from 3,999 to 102,571!One possible reason for this behavior

is that as the minimum support falls below a certain threshold, the access trees generated

by web crawlers, as opposed to regular web surfers, become frequent and these web access

trees are usually much larger than the ones generated by regular web surfers. With respect

156 5. Mining Rooted Trees

1

10

100

1000

0.2 0.3 0.4 0.5 1 2 5

R
u

n
 T

im
e

 (
S

e
c
o

n
d

s
)

Minimum Support (%)

CS-LOG

uFreqt
uFreqt-New

HybridTreeMiner

(a)Runtime

10

20

30

40

50

100

0.2 0.3 0.40.5 1 2 5

M
e
m
o
ry
 U
s
a
g
e
 (
M
B
)

Minimum Support (%)

CS-LOG

uFreqt
uFreqt-New

HybridTreeMiner

(b)Memoryusage

10

100

1000

10000

100000

1e+06

0.2 0.30.40.5 1 2 5

N
u
m
b
e
r
o
f
F
re
q
u
e
n
t
T
re
e
s

Minimum Support (%)

CS-LOG

(c)Numberoffrequenttrees

Figure 5.28:PerformanceofunorderedinducedsubtreeminersontheCS-LOG dataset.

to memory usage, for supports lower than 0.25% the amount of memory required to perform

the computation was larger than the amount of memory available for both HTM

and F-N. Experiments on another computer revealed that 1.1GB of memory would be

required to perform this experiment. The difference between FT and the other algorithms

can be explained in the same way as the difference between FT and TMV. For low

supports the memory requirements for (simple) occurrences increase exponentially. In the

CS-LOG dataset we have determined that in 9,479 trees it happens that multiple siblings

have the same label. In the most extreme among these trees, 403 siblings have the same label

‘3525’. Although the trees with these extreme amounts of equally labeled siblings are not

frequent, some of the frequent trees can be mapped to these trees. If every different occurrence

is stored separately —as in simple occurrence sequences— the number of mappings explodes

exponentially: consider a pattern tree with k� 403 siblings labeled with ‘3525’, then there

are O(403k) possible mappings. This exponential blow up of occurrence sequences is avoided

in the FT algorithm.

Multicast The second data set, as described in [40] and Section 5.3, consists of IP multicast

trees. The multicast trees were measured during the NASA shuttle launch between the 14th

and 21st of February, 1999 [35]. It has 333 distinct vertices where each vertex takes the IP

address as its label. The data was sampled from this NASA data set with 10 minutes sampling

interval and has 1,000 transactions. This data set is dense in the sense that most transactions

are very similar: the transactions are the multicast trees for the same NASA event at different

times. Therefore, frequent subtrees with very large size occur at very high minimum support.

From Figure 5.29 we can see that it is difficult for all the algorithms to deal with minimum

support values lower than 65%. Note that in this dataset no two siblings are equally labeled.

We can therefore also apply PJ or an ordered tree miner such as FT. PJ has

the best run time performance. However, as the minimum support decreases, the memory

usage of PJ grows much faster than the other algorithms. As the size of the occurrence

sequences cannot grow exponentially if the labels among siblings are unique, one sees in this

dataset that the simple occurrence sequence based algorithms also perform very well. Among

these algorithms, the FT-N algorithm requires less memory and is faster. Most likely

this is due to the use of a more efficient tree structure. The FT algorithm is far less

efficient, probably because the overhead in computing the occurrences is much larger than

with the simple occurrence sequences.

5.15. Experimental Results 157

1

10

100

1000

10000

100000

65 70 75 80 85 90 95

R
u

n
 T

im
e

 (
S

e
c
o

n
d

s
)

Minimum Support (%)

Multicast

uFreqt-New
HybridTreeMiner

uFreqt
PathJoin

(a) Run time

1

10

100

65 70 75 80 85 90 95

M
e

m
o

ry
 U

s
a

g
e

 (
M

B
)

Minimum Support (%)

Multicast

uFreqt-New
HybridTreeMiner

uFreqt
PathJoin

(b) Memory usage

10

100

1000

10000

100000

1e+06

1e+07

65 70 75 80 85 90 95

N
u

m
b

e
r

o
f

F
re

q
u

e
n
t

T
re

e
s

Minimum Support (%)

Multicast

(c) Number of frequent trees

Figure 5.29: Performance of unordered tree miners for the multicast dataset.

1

10

100

1000

10000

100000

10 15 20 25 30

R
u

n
 T

im
e
 (

S
e

c
o

n
d

s
)

Maximal Seed Tree Size (number of nodes)

T2

uFreqt-New
HybridTreeMiner

uFreqt
PathJoin

(a) Run time

10

100

1000

10 15 20 25 30

M
e

m
o

ry
 U

s
a

g
e

 (
M

B
)

Maximal Seed Tree Size (number of nodes)

T2

uFreqt-New
HybridTreeMiner

uFreqt
PathJoin

(b) Memory usage

10000

100000

1e+06

1e+07

1e+08

1e+09

10 15 20 25 30

N
u

m
b

e
r

o
f

F
re

q
u

e
n

t
T

re
e

s
Maximal Seed Tree Size (number of nodes)

T2

(c) Number of frequent trees

Figure 5.30: Performance of unordered tree miners for the T2 data set.

Furthermore, observe that the number of candidates is extremely large in this dataset,

given the large number of frequent subtrees. Still, the simple occurrence sequence approach

performs very well. In our opinion this denies the claim of Wang, Pei et al. [186] that memory

problems of occurrence sequence algorithms are due to large numbers of candidates.

T2 The third data set is built using the dataset generator given in [40]. In this data set, we

want to control the size of the maximal frequent subtrees. A set of 100 subtrees is sampled

from a large base (labeled) graph. We call this set of subtrees the seed trees. Each seed tree

is the starting point for |D|·|S | transactions where |D| (=10000) is the number of transactions

in the database and |S | (=1%) is the minimum support. Each of these |D|·|S | transactions

is obtained by first randomly permuting the seed tree, then adding more random vertices to

increase the size of the transaction to |T | (=50). After this step, more random transactions

with size |T | are added to the database to increase the cardinality of the database to |D|. The

number of distinct edge and vertex labels is controlled by the parameter |L| (=10), which is

both the number of distinct edge labels and the number of distinct vertex labels. The size of

the seed trees |I| ranges from 10 to 30.

The total number of frequent subtrees grows exponentially with the size of the maximal

frequent subtrees and thus the run time of the algorithms (other than PJ) increases

exponentially as well, as shown in Figure 5.30. Given that the labels among siblings are

unique in this dataset, the occurrence tree of FT does not offer advantages, although the

algorithm is competitive with the HTM. The occurrence tree of FT-N

offers a clear advantage above that of the HTM.

158 5. Mining Rooted Trees

Conclusions Among the algorithms on mining frequent rooted unordered subtrees, for

most of the data sets that we have studied, F-N has the best time performance (except

for multicast) and the smallest memory footprint. For the multicast data set, PJ has the

best time performance; for the CS-LOG data set, F has the smallest memory usage. Our

study suggests that the memory usage of PJ is directly affected by the total number of

frequent subtrees.

An important property of datasets is whether siblings are labeled uniquely. If this is the

case the simple occurrence sequences are linear in size. By combining an occurrence tree and

efficient optimal refinement, F-N performs best on such databases. If some siblings

are labeled equally, the performance of simple occurrence sequences deteriorates quickly for

low supports. Although FT did not perform more efficiently in terms of run time, it was

shown that FT performed much better memory-wise on such databases.

5.16 Conclusions

This chapter provided an overview of aspects involved in the design of inductive query min-

ing algorithms on tree databases. It has provided us with several key insights. First, we have

shown that there is a large range of possible tree relations; especially the induced unordered

rooted subtree relation has a close relationship to the mining of multi-relational databases as

discussed in the previous chapter. By conceiving databases as trees, we have gained insight

in the theoretical complexities of mining algorithms. We have introduced a refinement op-

erator which is optimal from every possible perspective. Among others we have shown that

this operator achieves the same O(1) complexity as the best known enumeration strategy in

literature.

The second element of a tree mining algorithm is the strategy that is used to evaluate the

frequency of trees. We have shown that there is an essential distinction between two kinds of

strategies: the conceptually simple, but potentially exponential evaluation strategies (both in

terms of memory requirements as well as in terms of run time), and the conceptually more

complex, but polynomial evaluation strategies. Experimentally, we showed that the simple

strategies perform well on many datasets, but that the performance suffers on databases in

which siblings have the same label. As we saw in our overview of applications that this sit-

uation arises typically when mining multiple relations or when mining hypergraphs, both

polynomial and exponential algorithms have their advantages. Our conclusion that the evalu-

ation strategy is most important seems to weaken arguments by other authors who claim that

the number of candidates is the main reason for different run time behaviors. However, within

a set of algorithms that rely on the same idea of building simple occurrence sequences, we

showed that our approach, which combines an optimal merge operator and a tree datastruc-

ture for storing occurrences, performs most efficiently, both in terms of run time as in terms

of memory requirements.

6 Mining Free Trees and Graphs

We continue our investigation of refinement, merging and frequency evaluation by consid-

ering structures without order or root, such as free trees, paths and general graphs. We in-

vestigate the idea of a quickstart: when subgraphs are mined, many patterns can be simple

structures, such as trees or paths; the question is whether it can be beneficial to treat these sim-

pler structures with more efficient algorithms. We show that a refinement operator for graphs

can be obtained which incorporates this observation, and introduce the G graph mining

algorithm, which includes this refinement operator. We provide an extensive experimental

comparison between a large number of graph mining algorithms, and attempt to identify in

detail which elements of graph mining algorithms are important, including implementation

details. We obtain new insights in efficient graph mining in practice.

6.1 Introduction

General graphs have undesirable properties. For the problems of graph isomorphism and

subgraph isomorphism currently no efficient algorithms are known. Still, a general subgraph

mining algorithm has to deal with these problems in one way or another. The observation that

we try to exploit is that for many special classes of graphs efficient algorithms are known. It is

a reasonable assumption that most patterns and data are not part of the most difficult classes

of graphs. In this chapter, we propose a general refinement operator that deals with paths

and free trees in a special way, and implement a method in which every structure is encoded

in several different ways; the purpose of one encoding is to reflect the order of refinement,

while the purpose of the other code is to allow for an efficient determination of canonical

refinements. This setup allows us to deal with paths, trees and cyclic graphs in almost isolated

procedures and to use optimized methods for each type of structure. We obtain a suboptimal

refinement operator for paths, free trees and graphs. It computes refinements for paths and

trees in polynomial time, while the complexity of cyclic graph refinement is bounded in a

desirable way.

160 6. Mining Free Trees and Graphs

Given its distinction between paths, trees and cyclic graphs, our enumeration algorithm

concentrates much more on structure than on labels. As a consequence, we will see that a

constraint on the minimum distance between nodes in a pattern is more easily integrated in

our algorithm than in other algorithms.

Although theoretical complexity results are nice, data mining algorithms are often judged

by their practical performance. We will show experimentally that algorithms based on our

refinement operator also perform well in practice. An important question remains however

which properties of our algorithms really contribute to this good performance. It would be

too simple to claim that the good performance is mainly due to the refinement operator. De-

tailed evidence would be required to support such a claim. A theory which links practical

performance in detail to characteristics of algorithms, implementations and datasets is re-

quired. Graph mining is a good candidate for such a study, as many different algorithms have

already been proposed by many different authors, and thus it is possible to get a larger picture

of the issues that are really of importance to obtain good performance. We provide an exten-

sive comparison between many algorithms in this chapter, and try to get a more detailed idea

about the mechanisms that lead to a good or a bad performance. Among others, our study re-

veals that merge operators that focus on trees lead to more efficient algorithms, but that there

are also many other aspects that contribute to a good performance; the most clear finding is

that well-implemented depth-first graph mining algorithms offer the best trade-off between

computation time and memory requirements.

The chapter is organized as follows: first we introduce some additional concepts with

respect to graphs; we will discuss the complexity of the graph relations under consideration,

and show how an edge sequence can be obtained for any graph (section 6.2).

In the subsequent three sections we motivate our work. Section 6.3 shows for which

applications graph mining is important. Our choice for the quickstart idea is motivated in

section 6.4, where we show why we believe that in most cases frequent subgraphs are simple

graphs. Finally, in section 6.5 we investigate situations for which it is not necessary to develop

specialized graph mining algorithms; this provides insight in the situations in which graph

mining algorithms are necessary.

Then, we will introduce specialized codes, refinement operators, and merge operators,

first for paths (section 6.6), then for free trees (section 6.7), and finally for cyclic graphs

(section 6.8). We will sow that these codes have desirable properties from a complexity theory

point of view. On the other hand, the large number of sections that we require to prove this,

shows that these properties come at the expense of conceptual complexity.

To determine the frequency of the subgraphs we introduce two evaluation strategies: an

evaluation strategy based on occurrence sequences (section 6.9) and a strategy based on re-

computing occurrences (section 6.10). For both of these strategies we will introduce several

optimizations.

To compare our algorithms with other graph mining algorithms, also from a theoretical

point of view, we provide an overview of a large number of other algorithms in section 6.11.

This section provides all ingredients to perform a thorough performance study, which is pre-

sented in section 6.12.

6.2. Graphs and Trees: Basic Definitions — Continued 161

6.2 Graphs and Trees: Basic Definitions — Continued

In the previous chapter, we mainly introduced relations between rooted structures. In this

chapter we will only consider structures in which there is no root, or a starting point similar

to a root. As a model for such structures we will use the node labeled graph. The only rela-

tion between graphs that we will consider in this chapter is the subgraph relation between

undirected graphs.

Definition 6.1 (Subgraph)Given two undirected graphs G1 and G2, we define that G1 is a

subgraph ofG2, denoted byG1 �G2, iff there is an injective function φ : VG1 → VG2 such that

∀v ∈ VG1 : λG1 (v) = λG2 (φ(v)) and ∀v1,v2 ∈ EG1 : (v1,v2) ∈ EG1 =⇒ (φ(v1),φ(v2)) ∈ EG2 and

λG2 (φ(v1),φ(v2)) = λG1 (v1,v2). As before, we define that G1 and G2 are isomorphic, denoted

by G1 ≡G2, iff G1 �G2 and G2 �G1.

Note that while in the previous chapter we only considered node labeled graphs, we will

consider node and edge labeled graphs in this chapter. We only demand that ∀v1,v2 ∈ EG1 :

(v1,v2) ∈ EG1 =⇒ (φ(v1),φ(v2)) ∈ EG2 . A different well-known subgraph relation is the in-

duced subgraph relation, which also requires that (φ(v1),φ(v2)) ∈ EG2 =⇒ (v1,v2) ∈ EG1 . We

do not consider this relation, although some of the approaches presented in this chapter can

be extended to induced subgraphs.

In this chapter we mainly consider connected (sub)graphs. Again, the subgraph isomor-

phism relation is straightforwardly extended to unconnected subgraphs.

In the previous chapter we introduced one special kind of (connected) graph: the free

tree, which is a graph without cycles. Here, in this chapter, we consider one additional type

of graph: the path. We say that a (connected) graph is a path if two nodes have degree 1 and

all other nodes have degree 2. We will use the letter P to denote paths.

There are many codes in which one can encode connected graphs — some of them will

be seen later this chapter. Here we wish to introduce one of the most straightforward codes,

which applies to all graphs with at least one edge. The code is obtained as follows:

1. sort the edges in some order, e1�·· · �en, which does include every (undirected) once;

2. let S := ε, i := 1, φ := ∅, m := 0;

3. for ei = (vk,v j):

• if φ(vk) is defined, let k
′ := φ(vk); otherwise let k

′ := m, φ := φ∪{vk 7→ n} and

m := m+1;

• if φ(v j) is defined, let j
′ := φ(v j); otherwise let j

′ := m, φ := φ∪{v j 7→ n} and

m := m+1;

4. if both φ(vk) and φ(v j) were defined, let k
′′ := max{k′, j′} and j′′ := min{k′, j′} (this

edge is called a backward edge); otherwise, let k′′ := min{k′, j′} and j′′ := max{k′, j′}

(this edge is called a forward edge);

162 6. Mining Free Trees and Graphs

A

A B

C

X X

X

X

Figure 6.1: A small cyclic graph.

5. append to S quintuple

(k′′, j′′,λ(φ−1(k′′)),λ(φ−1(k),φ−1(j)),λ(φ−1(j)));

6. let i := i+1, and go to step 3, as long as i ≤ n.

As an example consider the graph of Figure 6.1. Some sequence encodings of this graph are:

• (1,2,A,X,A)(2,3,A,X,C)(2,4,A,X,B)(4,1,A,X,B);

• (1,2,A,X,B)(3,4,A,X,C)(3,1,A,X,A)(3,2,B,X,C);

• (1,2,A,X,B)(2,3,B,X,A)(3,4,A,X,C)(3,1,A,X,A).

We call these sequences edge sequences. From an edge sequence S one can obtain a cor-

responding graph. We denote this corresponding graph by graph(S). Edge sequences re-

flect how a connected graph could be constructed in several downward cover refinement

steps. As we only consider refinement of connected graphs, from now on, we assume that

graph(prefixk(S)) is connected for every 1 ≤ k ≤ |S |. In such sequences it can be seen that

each backward edge introduces at least one new cycle in the graph. We will therefore also

call backward edges cycle closing edges.

Within our framework, we use edge sequences as one of the codes in our double encoding

of structures. We will develop fine-tuned code sequences for several kinds of structures, which

all work closely together with the edge sequences.

Edge sequences have been used in earlier frequent subgraph mining algorithms: the gSpan

and CG algorithms are based on a subclass of these sequences [199, 201]. We will

briefly return to these algorithms later. Furthermore, we wish to point out that the edge se-

quence code is very similar to a first order logic atom sequence encoding of graphs: the first

example encoding can straightforwardly be mapped to the following atom sequence:

e(v1,v2,a,x,a)e(v2,v3,a,x,c)e(v2,v4,a,x,b)e(v4,v1,a,x,b).

When we want to build a mining algorithm that outputs frequent graphs exactly once,

there are two problems that have to be dealt with:

• we have to make sure that no two graphs are isomorphic;

• we have to compute the subgraph relation repeatedly.

6.2. Graphs and Trees: Basic Definitions — Continued 163

Graphs: G1 �G2 NP-complete G1 ≡G2 Graph isomorphism

Planar graphs: G1 �G2 O(cm logmn) G1 ≡G2 O(m)

Uniquely labeled graphs: G1 �G2 O(m) G1 ≡G2 O(m)

Free trees: F1 � F2 O(nm1
1
2 / logm) F1 ≡ F2 O(m)

Paths: P1 � P2 O(n) P1 ≡ P2 O(m)

Figure 6.2: Worst case complexities of the best known algorithms that determine relations between

graphs;m is the number of edges in the pattern graph,n the number of edges in the database graph.

Of interest is the state of the art of computing these relations: an overview is given in Fig-

ure 6.2. The general graph isomorphism problem is not known to be NP-complete, but a

polynomial algorithm is not known either. It is believed that the complexity of graph isomor-

phism is somewhere in between NP and P, unless P=NP.

A special class of graphs are graphs in which no two nodes have the same label, which

we refer to as uniquely labeled graphs. For such graphs it is straightforward to compute graph

isomorphism as a graph can be normalized easily by only sorting the nodes. Also subgraph

isomorphism is straightforward: depending on the representation that is used to store the

pattern graph and the database graph, this computation is O(m) (adjacency matrix for data,

adjacency list for pattern) or O(n) (adjacency list for both), where m is the number of edges

of the pattern graph and n is the number of edges of the data graph against which subgraph

isomorphism is tested. The complexities listed in the table for paths, free trees and graphs

therefore only apply in cases where large numbers of nodes have the same label.

The subpath complexity can be obtained from a double application of the Knuth-Morris-

Pratt algorithm [103], where we simplify the worst case complexity O(n+m) to O(n). The

subtree complexity is obtained by Shamir and Tsur’s algorithm, which is an improvement of

the algorithm of section 5.12 [173].

Besides free trees and paths, many other classes of graphs have been studied in the litera-

ture. One such class of graphs is the class of planar graphs, of which we also list the complex-

ities in the table. A planar graph is a graph which can be drawn on a plane such that no two

edges cross each other. An O(cm logmn) algorithm for subgraph isomorphism was obtained by

Eppstein [68]. This result shows that for small pattern graphs planar subgraph isomorphism is

still efficiently computable even in very large data graphs. Other classes of graphs for which

efficient algorithms often exist are graphs with bounded treewidth. Treewidth is a concept in-

troduced in a series of articles by Robertson and Seymour (see, for example, [165]). The idea

behind treewidth is that graphs with a small width are more similar to trees. Indeed, treewidth

is defined such that free trees have treewidth 1. The concept is however different from the

approach that we take later this chapter: we consider a graph to be tree-like if the removal of

a small number of edges is sufficient to turn it into a free tree.

The linear complexity of planar graph isomorphism is due to Hopcroft and Tarjan [83].

The linear complexity of the other isomorphism relations follows from this result as well.

Not included in the table are the relations between paths and graphs, paths and free trees,

and so on. It is known that it is NP-complete to decide subgraph isomorphism in an arbitrary

graph, independent of the type of pattern graph. On the other hand, to decide whether a

164 6. Mining Free Trees and Graphs

free tree contains a path a straightforward O(nm) algorithm is sufficient. To decide whether

a graph is planar, a tree or a path, linear algorithms are known; in particular, Hopcroft and

Tarjan showed that it can be decided in linear time whether a graph is planar [84].

One aspect of frequent subgraph discovery is the definition of support. The most straight-

forward case is again the transaction based setup. A monotonic definition of support is more

difficult to obtain when the input database consists of one (large) graph. While in the case of

rooted trees we could exploit the parent-child relationship to define a support, no such order

is present in graphs. A solution has been proposed by Kuramochi et al. as part of the SGM

algorithm [110]. If for a graph one determines the set of all its subgraph isomorphism map-

pings (which are simple occurrences as defined in the previous section), then some of these

mappings may share an edge in the database graph. Kuramochi et al. show that the maximal

number of ‘edge disjoint mappings’ is a monotonic frequency measure, and provide both

exact and heuristic algorithms to compute such a frequency. It turns out that heuristic algo-

rithms are often required, as the problem of determining the maximal number of edge disjoint

mappings can be mapped to the maximal independent set problem, which is a problem that is

also known to be NP-complete [73].

Given the high complexity of this support definition, we propose a different support mea-

sure here. Let us assume that the database consists of one large graph D, then we can define

the support of a subgraph as:

supportD(G) = min
v∈VG
|{v′ ∈ VD | ∃a subgraph isomorphism φ : VG → VD in which φ(v) = v

′}|,

where φ is a subgraph isomorphism mapping from G to D. This definition of support is

similar to the support that we proposed on page 48 for sequences, and avoids that another

NP-complete problem has to be solved. As the minimum number of database nodes to which

a pattern node is mapped can never increase, this measure is monotonic, as desired.

6.3 Applications

Since the introduction of graph mining algorithms several datasets have been identified to

which they can be applied. A short overview is given in this section.

Medicinal Chemistry Most studied in literature are the compound databases that we will

also use later in this chapter [24, 81, 94, 63]. These databases contain possibly large

sets of relatively small molecules. Often the application of frequent graph mining to

structure-activity relationship discovery is considered: there are several databases of

compounds that have been screened for their toxicity or activity, for example as a

drug for HIV or cancer; the challenge is to discover whether there are substructures

within the molecules that particularly contribute to chemical activity. Although ILP al-

gorithms were used initially for the analysis of such databases [62, 97], recently graph

mining algorithms have become more popular. In their two dimensional representation

molecules can be conceived as graphs in which atoms are nodes and bonds are edges.

Connected subgraphs can be conceived as fragments of the molecules. The resulting

6.3. Applications 165

graphs have as property that the number of labels is rather low, but also the degree of

nodes is bounded.

A different application of frequent graph mining in molecular databases has recently

been studied by Yan et al. [202]. Over the last decades, large databases of chemical

compounds and associated information have been built, which are used by chemists

as a reference. To allow for the efficient execution of substructure queries in such

databases, a well-built index is required. Yan et al. have shown that frequent graph

mining algorithms can be used to determine on which fragments an index should be

built.

Protein Structure Analysis Several algorithms have been proposed to turn proteins into

graphs according to their secondary structure [85, 153]. In the approach of Huan et

al. each amino acid is a node; edges connect two amino acids if they are close to each

other in the three dimensional structure. To determine when amino acids are considered

to be close to each other, Huan et al. investigated several alternatives, which we will

skip here. Using a frequent graph miner approximations of frequent three dimensional

structures are discovered. These can be used as features for algorithms that distinguish

protein families from each other. Huan et al. report however that the protein structure

graphs can be very hard to mine, sometimes requiring 24 hours of computations. A

possible explanation for this is that these graphs can contain many cycles and large

numbers of labels. Thus they constitute a category of graphs for which frequent graph

mining is very hard.

Sociological or Biological Networks Apart from datasets consisting of large numbers of

small(er) graphs, frequent subgraph mining can also be applied to datasets consist-

ing of one large graph. At the moment of writing only citation networks have been

investigated [110]. In this application a clustering algorithm was used to cluster papers

into categories. The nodes in the graph correspond to papers that are labeled with their

cluster. Edges represent citations. By replacing the node labels with more general la-

bels frequent subgraph mining becomes possible. A similar approach should also be

applicable in other networks applications.

Webserver access loganalysis Although access logs can be represented as trees, as men-

tioned in the previous chapter, a representation of user sessions as cyclic graphs may

be more natural: in this case, every node can represent a webpage, and an edge corre-

sponds to a link that was followed by the web page visitor.

Furthermore we wish to stress that also most applications that we mentioned in the previous

chapter can be mined with either free tree or graph mining algorithms:

Hypergraph miningIn the previous chapter we showed that hypergraphs with unique node

labels can be mined with unordered rooted tree mining algorithms. If the node labels

are no longer unique we cannot apply tree mining algorithms any longer; hypergraphs

can however straightforwardly be mapped to bipartite traditional graphs in which every

edge is represented by a node.

166 6. Mining Free Trees and Graphs

Multi-relational data mining If the patterns of interest in a multi-relational database are

cyclic in nature, a mapping from the multi-relational database to a database of cyclic

graphs is often possible in a similar way as discussed in the previous chapter. How-

ever, depending on the application, it may sometimes be sensible to restrict the search

space of the graph miner. For example, one could demand that every frequent graph

contains a node for the key table. Furthermore, to reduce the search space it may be

sensible to consider directed graphs instead of undirected graphs. For the application

of graph mining to relational data mining we expect therefore that constrained graph

mining algorithms, which allow for a language bias definition similar to that of most

ILP algorithms, may be useful.

XMLdata mining Although XML is a tree-shaped data format, the semi-structured infor-

mation that is stored in XML data is often cyclic in nature. We already mentioned the

XML-based graph formats GraphML [29] or GXL [194] as examples.

Some of the applications that we mentioned in the previous chapter are less suitable for undi-

rected graph mining. For example, in multicast trees the parent-child relationship is meaning-

ful as it reflects the sender-receiver relationship. Similarly, the parent-child relationships in

phylogenetic trees are also meaningful. As rooted trees can be conceived as directed graphs,

directed subgraph mining algorithms may also be applied to this data.

6.4 On the Complexity of Graph Mining

Although it is intuitively clear what the task of a frequent graph mining algorithm is, it is

of interest to study first in which situations frequent graph mining is at all feasible from a

theoretical point of view. In the previous section we already considered the complexity of

frequent (sub)graph isomorphism in several cases. Obviously frequent graph mining is only

feasible in those cases where computing (sub)graph isomorphism is feasible. In this section,

we study when frequent graph mining is infeasible even if these properties are fullfilled.

Given that graphs with unique labels are the easiest class of graphs with respect to (sub)graph

isomorphism, we investigate the problems that one encounters for such graphs.

As a first case, assume that the following graph is frequent:

(1,2, ε, ε,σ1)(1,3, ε, ε,σ2) · · · (1,n+1, ε, ε,σn),

then one can easily see that the number of frequent subgraphs must be Ω(2n): every subset

of nodes 2 . . .n+ 1 defines a subgraph which is also frequent. Therefore, frequent subgraph

mining is not feasible if there is a frequent subgraph in which n is too large. When we imple-

ment a frequent subgraph miner, we can therefore assume that the number of siblings with

different labels is not too large: otherwise we cannot even apply the frequent subgraph miner.

As a second case we consider the number of backward edges that is required to encode a

frequent subgraph. Assume that we have a frequent subgraph which is encoded with n back-

ward edges. Then there are 2n combinations of backward edges that one can remove from this

6.5. Mining Subgraphs in Uniquely Labeled Graphs 167

graph to obtain a new frequent subgraph. As we can observe that there may be many encod-

ings of graphs, each of which yields a different set of backward edges that can be removed, we

can conclude that the number of subgraphs is Ω(2n). Better bounds may be obtained through

Kirchoff’s matrix-tree theorem [98], which states that the number of spanning trees can be

computed exactly by determining the eigenvalues of a modified adjacency matrix — we leave

that as future work, however.

Summarizing these arguments, we conclude that the following conditions must be full-

filled to a certain degree when performing frequent subgraph mining:

• the number of backward edges must be bounded by a constant; otherwise subgraph

isomorphism becomes intractable (if the number of labels is small) or the possible

number of frequent subgraphs is too large (if the number of labels is high);

• the maximum number of neighbors must be bounded: if the number of neighbors with

different labels is too large, the number of frequent subgraphs may be too large; if the

number of neighbors with equal labels is too large, the subgraph isomorphism problem

may become intractable if the graph is cyclic.

Most frequent graph mining algorithms rely implicitly on some of these assumptions. The

G algorithm that we will introduce in this chapter is the first that exploits explicitly the

property that frequent subgraphs can never be very cyclic.

6.5 Mining Subgraphs in Uniquely Labeled Graphs

From our discussions in the previous two sections, we can immediately derive an efficient

algorithm for mining unconnected subgraphs in graphs in which edges and nodes are labeled

uniquely. Every uniquely labeled graph can be transformed into an itemset in a straightfor-

ward manner:

• for each node v in the graph, add an item (λ(v)) to the itemset, if we are interested in

subgraphs that contain isolated, unconnected nodes;

• for each edge (v1,v2) in the graph, add an item (λ(v1),λ(v1,v2),λ(v2)) to the itemset,

where λ(v1) �Σ λ(v2).

In the itemset we consider (λ(v)) and (λ(v1),λ(v1,v2),λ(v2)) to be atomic. Any frequent item-

set that one derives from an itemset database through this transformation corresponds to an

unconnected subgraph in a uniquely labeled graph.

6.6 Paths: Encodings and Refinement

As a first step in our proposed method, we require a method for refining paths, and conse-

quently an encoding for paths. Let P = (V,E,λ,Σ) be a labeled path, then the main issue is

168 6. Mining Free Trees and Graphs

that paths have two ends, both of which could be used as a starting point for an encoding. Let

v1 be one end, and vn be the other end of the path, then the path S = v1v2 . . .vn from v1 to vn
could lead to two straightforward label sequences:

λ(v1)λ(v1,v2)λ(v2) · · ·λ(vn−1,vn)λ(vn),

and

λ(vn)λ(vn,vn−1)λ(vn−1) · · ·λ(v2,v1)λ(v1),

which are sequences of odd length. Clearly, every sequence S ∈ Σ∗ whose length |S | is odd can

be transformed into a path (graph). In this section we only consider label sequences of odd

length. The operator which accomplishes the transformation from sequences in Σ∗ to paths is

called the path operator. The problem of refining paths is that there exist S 1 , S 2 ∈ Σ
∗ with

path(S 1) ≡ path(S 2).

Note that there is a close connection between paths and the subpath relation of section 3.3.

If path(S 1) � path(S 2) then S 1 �
←→
(0,0)
S 2. The reverse statement also holds if the labels of

nodes and edges are disjoint.

If we would use odd sequences in the domain Σ∗ as encoding for paths, the most straight-

forward refinement procedure would be:

ρ(S) = {S •σ1 •σ2 | σ1,σ2 ∈ Σ},

where the search starts from sequences in S = {σ | σ ∈ Σ}. However, this refinement operator

is not optimal for the path domain, as every asymmetric sequence is enumerated twice (in

each direction once).

We therefore choose to develop a different refinement operator, which is best understood

by considering edge sequences as a second encoding. Given an edge sequence S such that

graph(S) is a path, we can obtain one unique label sequence by taking the orientation of

the first edge in the edge sequence as direction, as defined by the label-seq procedure in

Figure 6.3, and illustrated by this example:

S = (1,2,D,X,D)(2,3,D,X,B)(3,4,B,X,C)(1,5,D,X,A),

for which label-seq(S) = AXDXDXBXC.

Given a path P, we will give a recursive definition for the canonical edge sequence S for

the path P.

Definition 6.2 Given an edge sequence S such that graph(S) is a path, sequence S is canoni-

cal iff one of these cases holds:

• |S | = 1 and S [1] = (1,2,σ1,σ2,σ3), for σ1,σ2,σ3 ∈ Σ, σ1 � σ3.

• |S | > 1 and prefix(S) is canonical, and

graph(prefix(S)) ≡ path(max{prefix(label-seq(S)), (suffix(label-seq(S)))−1}),

and, if label-seq(prefix(S)) is symmetric, last(S) = (|S |, |S |+ 1,σ1,σ2,σ3), for some

σ1,σ2,σ3 ∈ Σ.

6.6. Paths: Encodings and Refinement 169

(1) label-seq(S):

(2) Let (j,k,σ1,σ2,σ3) := S [1], R := σ1 •σ2 •σ3, b := 1,e := 2;

(3) for i := 2 to |S | do

(4) Let (j,k,σ1,σ2,σ3) := S [i];

(5) if j = e then R := R•σ2 •σ3; e := k;

(6) else R := σ3 •σ2 •R; b := k;

(7) return R;

Figure 6.3: A procedure for transforming edge sequences into label sequences, given an edge sequence

that encodes a path.

Note how this definition reflects the core of our method: for every structure, we use two

encodings: one which defines the refinement order, and one which is used to determine which

refinements are allowed. The edge sequence reflects the refinement order, the label sequence

defines which new edge quintuples can be added. Both work together to obtain the desired

complexity.

One can see that no two canonical edge sequences (according to the above definition) can

be mapped to the same path: in any encoding of a path, one of the two ends is added last;

this definition states unambiguously which end is added last: intuitively, the lowest end is

added last. Therefore, we can obtain an edge sequence which is indeed unique for every path;

conceptually, we define that function edge-seq(P) obtains this edge sequence.

Note that by definition this canonical sequence has the desired property that every prefix

is also canonical. As an example reconsider the code

S = (1,2,D,X,D)(2,3,D,X,B)(3,4,B,X,C)(1,5,D,X,A),

for which label-seq(S) = AXDXDXBXC. This code is canonical because:

graph(prefix(S)) ≡ path(label-seq(prefix(S)))

= path(DXDXBXC)

?
≡ path(max{prefix(label-seq(S)), (suffix(label-seq(S)))−1})

≡ path(max{AXDXDXB,CXBXDXD})

!
≡ path(CXBXDXD}),

and also prefix(S) is canonical, as can be checked in a similar way.

Again, a straightforward optimal refinement operator is now:

ρpath(S) = {S • ` | ` ∈ N
2×Σ3,S • ` is canonical }.

To allow for more efficient refinement, we would like to have a precise characterization of

canonical refinements, such that it can be checked inO(1) time whether a refinement is canon-

ical, or such that we efficiently refine only to canonical codes. The remainder of this section

shows how we achieve an optimal refinement procedure which has O(n+m) complexity,

170 6. Mining Free Trees and Graphs

where n is the length of the path that is to be refined, and m is the number of canonical

refinements. This improves the naive complexity that would result from a generate-and-test

approach. On the other hand, we have not been able to eliminate the n factor from the refine-

ment operator. It is unclear whether this is possible or not.

To characterize refinements we use an approach in which three symmetry variables are

computed for every edge sequence S : a complete-symmetry variable for label-seq(S), a front-

symmetry variable for prefix(label-seq(S)) and a back-symmetry variable for the suffix se-

quence suffix(label-seq(S)). Each of these variables has one of three values: 0, if the cor-

responding sequence is symmetric; −1, if the reverse sequence of the current orientation is

lexicographically higher; +1, if the sequence of the current orientation is lexicographically

higher.

Given a sequence S , let e be the index of the node at the end of label-seq(S), and b the

index of the node at the begin of label-seq(S) (as also defined in the procedure of label-seq).

Then the refinement

(e, |S |+2,last(label-seq(S)),σ1,σ2)

iscanonicaliffallofthefollowingconditionshold:

• complete-symmetryisnot0, orcomplete-symmetryis0ande = |S |+1;

• (prefix2(label-seq(S)))
−1 �lex σ1 •σ2, or(prefix2(label-seq(S)))

−1
= σ1 •σ2 andback-

symmetryisnot−1.

Thesituationissimilarforthebeginning;

(b, |S |+2,first(label-seq(S)),σ1,σ2)

iscanonicaliffalltheseconditionshold:

• complete-symmetryisnot0;

• suffix2(label-seq(S))�
lex
σ1 •σ2, orsuffix2(label-seq(S))=σ1 •σ2andfront-symmetry

isnot+1.

Thecomplete-symmetryvariableisthereforeusedtomakesurethatasymmetricpathis

onlyextendedinonedirection;thefront-symmetryandback-symmetryareusedtomakesure

thattheextendedpathgrowsfromthehighestpredecessor, eveninthecasethatthefirst

andlastlabelsofthenewpatharethesame.Tocomputethevalueofb, e, front-symmetry,

back-symmetryandcomplete-symmetryclearlyalinearalgorithmissufficient.

Giventhisrefinementoperator, canweobtainanoptimalmergeoperator?Ourobserva-

tionsonrefiningandmergingdirectedpaths(seesection3.6) alsoapplytoundirectedpaths,

withminormodifications.Inprincipleitispossibletoobtainallpathsthroughjoinsorself-

joins;adepth-firstmergeoperatorthatonlyappliesself-joinsorjoinshowevercannotexist.

Evenworse, onecanshowthatifwewanttomaximizethenumberofjoinsinadepth-first

miningalgorithm, wehavetouseamergeoperatorwhichrefinestoallnon-canonicalpaths

inthedownwardcover;thus, werequireamergeoperatorwhichishighlysuboptimal.

6.7. Free Trees: Encodings and Refinement 171

Centre/bicentre

(1,X,B)(2,X,B)(3,X,A)(3,X,A)(2,X,A)

(1,X,B)(2,X,B)(3,X,B)(2,X,C)(2,X,A)(3,X,C)ε(1, ,B)(2,X,B)(3,X,C)(2,X,B)(3,X,B)(3,X,A)(2,X,A)

Backbone sequences:BXBXB BXBXC

Backbone: BXBXBXBXC

Canonical depth sequence:

X

X

X

X

X X
X

X

X

X

X X X

X
X

BXBXA

AXBXBXBXBXBBackbone:

X

BXBXB

Canonical depth sequence:

A

B

A C

B

C

BBCB

A

BB

B

A

B

A

A

Backbone sequences:

Figure 6.4: Free trees,(bi)centres,backbones and canonicaldepthsequences

6.7 Free Trees: EncodingsandRefinement

In thissection we willintroduce an encodingandan optimalrefinement operator for free

trees.Asstatedin the introduction,theoperator buildson theoperatoroftheprevioussection

bygrowingfree treesfrompaths.Toexplain howwe encode andgrowtrees,we first define

fromwhichpathafree tree willbe grown.We make adistinction between centredtrees

andbicentredtrees;the refinementsofthese twotypesoftreesare shown separately.Also

free tree refinement can be reflectedin edge sequences;we willdiscussthisissue in the last

subsection,in whichwe alsodiscusshowan efficient merge operator can be obtained.

Backbones

A well-known property of free trees is that one can point out a (bi)-centre. Afree tree has a

bicentre if any longest path in the tree has an odd number of edges; the bicentre consists of

the two middle nodes on this path. Atree has a centre if any longest path in the tree has even

length; the middle of such a path is the centre. One can show that it does not matter which

longest path is chosen: every longest path will result in the same (bi)-centre. These concepts,

and all other concepts in this section, are illustrated in Figure 6.4. The length of the longest

path in a tree is also known as the diameter of the tree.

Acentred tree can be conceived as a single rooted tree, while a bicentred tree consists of

two separate rooted trees of which the roots are interconnected. Given a rooted, unordered

tree U derived from a free tree, we can obtain a root path sequence S = ΠU (v) for every node

v ∈ VU . From this root path we can construct a label sequence:

λU(ΠU (v)) = λU(S[1])λU(S[1],S[2])λU(S[2]) . . .λU(last(S)).

In centred free trees, the two lexicographically highest label sequences for root paths that

only have the centre in common, are called the backbone sequences. In bicentred free trees,

172 6. Mining Free Trees and Graphs

the lexicographically highest label sequences in each of the two rooted trees are the two

backbone sequences. The backbone of a free tree consists of a concatenation of the backbone

sequences, where the duplicate centre node is removed in centred free trees. Note that the

length of the backbone then equals the diameter of the free tree.

We do not only use the backbone to define from which path a free tree grows in the

refinement tree, we also use the backbone to define a canonical code for free trees. As all

bicentred free trees grow from a path with an even number of nodes and will therefore have

a backbone with an even number of nodes, and analogously all centred free trees grow from

paths of odd length, we can discuss our approaches towards centred and bicentred free tree

enumeration completely separately in the next two sections.

Bicentred free trees

Given is a free tree F with two backbone sequences B1 and B2. If the edge between the two

bicentres of a free tree is removed, two rooted, unordered trees U1 and U2 remain; to each

of these corresponds one of the two backbone sequences. To obtain a canonical code we

construct a depth sequence for both trees, where we take care of the edge labels by extending

the depth tuples with a field for the label of the edge that enters a node from the direction of

the root. For the root we use the label between the two bicentres as the entering edge label.

We can reuse the lexicographical order on depth sequences of the previous chapter. How-

ever, as we grow trees from paths, we have to make sure that we only enumerate trees that

include a certain path. The situation is therefore similar to the refinement of sequences under

constraints, as discussed in section 3.4. To incorporate the backbone in depth sequences, we

choose a solution in which the order between depth tuples is modified, such that the backbone

is the leftmost path of the unordered tree. So, instead of the standard lexicographical ordering,

we use the following lexicographical ordering:

Definition 6.3(Backbone depthtuple order)Given a rooted unordered tree U with back-

bone sequence B, labeled by symbols in an alphabet Σ that are ordered by relation �Σ, we

define for two depth tuples (d,σ1,σ2) and (d
′,σ′
1
,σ′
2
) that (d,σ1,σ2) �B (d

′,σ′
1
,σ′
2
) iff one

of these conditions holds:

1. d > d′, or

2. d = d′ and σ1 •σ2 = B[2d−1]•B[2d], or

3. d = d′ and σ1 •σ2 , B[2d−1]•B[2d] and σ1 •σ2 �
lex
Σ
σ′
1
•σ′
2
.

In this definition we exploit that in a backbone sequence B[2d− 1] is an edge label and

B[2d] is a node label. In the new relation, we force some tuples to be higher than other tuples,

even if the original label order would determine otherwise. Given a backbone sequence, depth

tuple sequences can be ordered totally using �B; we define again that the highest among

equivalent depth sequences is canonical, as in the previous chapter. We have the following

theorem:

Theorem 6.4Let seq�B(U) denote the canonical depth sequence for a tree U with backbone

sequence B, where the depth tuples are ordered by �B, then

seq�B(U) = (1,σ,B[1])(1,B[2],B[3])···((|B|+1)/2,B[|B| −1],B[|B|])•S
′,

6.7. Free Trees: Encodings and Refinement 173

where S ′ ∈ (N×Σ2)∗ and σ is the label between the two bicentres of the free tree from which

the rooted tree and its backbone derive.

Proof.This follows from the observation that for each depth, the label on the backbone is

ordered highest by �B. �

Now we define the canonical depth sequence for a bicentred free tree.

Definition 6.5 Given a bicentred free tree F. LetU1 andU2 be the two rooted trees that can be

obtained by removing the edge between the two bicentres, and let B1 and B2 be the backbone

sequences of these rooted trees. Then

seq(F) = seq�B1
(U1)• seq�B2

(U2)

where we assume that B1 �Σ B2 or B1 = B2 and seq�B1
(U1) �lex

B1
seq�B1

(U2).

Please note that we include the label of the edge between the two bicentres twice. The

depth sequence for a bicentred free tree has two depth tuples at depth one. Apart from the

depth numbers, the two backbone sequences are subsequences of the canonical depth se-

quence. We use the modified relation between depth tuples to compare the sequences of U1
and U2 if B1 = B2; this is possible as the same modified relation is used in both depth se-

quences.

The canonical depth sequence for a bicentred tree is illustrated in Figure 6.4. We have

underlined the backbone subsequences of the free tree depth sequence. In the first depth

sequence one sees that although (1,X,B) is lexicographically lower than (1,X,C), still (1,X,B)

occurs earlier in the depth sequence, as it is part of the backbone of the free tree.

Conceptually the refinement of a canonical free tree sequence is now straightforward.

The free tree depth sequence consists of two subsequences for rooted, ordered trees. We only

allow the refinement of the first tree if the second tree is not refined yet; refinement of the

first tree comes down to inserting depth tuples, refinement of the second tree to appending

depth tuples. For each rooted tree T , we can determine independently which refinements are

allowed if the backbones of both trees are different:

1. determine first which refinements are allowed for T according to ρunordered (see equa-

tion 5.4, page 122);

2. determine the backbone sequence B of the rooted tree;

3. disallow all refinements at a higher depth than (|B|+ 1)/2 (otherwise, the refined tree

could have grown from a longer path);

4. if B 6�lex
Σ
λ(ΠT (last(VT))) disallow all refinements at depth (|B|+ 1)/2 (otherwise, the

refined tree could have grown from a lexicographically higher backbone);

5. if λ(ΠT (last(VT))) = B[1 . . . (|B| − 2)] disallow refinements at depth (|B|+ 1)/2 with la-

bels higher than suffix2(B) (similar to 4.).

A little more care has to be taken if two backbones are equal. In that case the next prefix

node of the second subtree (which is used in step 1.) can be located in the first subtree, as

illustrated by the following examples:

174 6. Mining Free Trees and Graphs

• (1,X,A)(2,X,B)(2,X,A)(1,X,A)(2,X,B) can not be extended with depth tuple (2,X,B)

as (1,X,A)(2,X,B)(2,X,B)(1,X,A)(2,X,B)(2,X,A) is a higher code;

• (1,X,A)(2,X,B)(1,X,A)(2,X,B) can not be extended as the next prefix node of the sec-

ond rooted tree is the second (1,X,A), and no additional depth tuples at depth 1 may be

added.

• (1,X,B)(2,X,B)(3,X,B)(2,X,C), which is a prefix of the depth sequence of Figure 6.4(b),

can not be extended with (3,X,A), as the resulting rooted tree would have a root path

BXCXA which is higher than the current backbone sequence BXBXB.

Although we will not discuss the implementation of free tree refinement in as much detail as

unordered tree refinement, we wish to list some of the main ideas that we can apply to refine

bicentred free trees with almost the same complexity as unordered trees. Clearly, we cannot

claim the same complexity as paths are also free trees and we do not refine these with constant

time complexity. To determine how paths can be refined into real free trees which are not a

path, we have to transform canonical representations, and determine allowable refinements

for a new representation. These computations are all linear. The following ideas contribute to

a constant time enumeration per bicentred real free tree:

1. the depth sequence is stored as a linked list to allow for insertions and deletions in O(1)

time;

2. when a path is turned into a depth sequence, we have to compute whether the two

backbone sequences are equal; this information is used to initialize the next prefix

node of the second rooted tree: if the backbone sequences are equal, the next prefix

node of the second tree is the tuple after the first backbone sequence;

3. pointers to depth tuples on the backbone sequences are put into an array; the size of

this array corresponds to the length of the backbone;

4. pointers to depth tuples on the rightmost path of each rooted tree are maintained in

separate arrays; these arrays are initialized to the backbone sequences once a path is

turned into a tree, and are afterwards updated in O(1) time as in the previous chapter;

5. for each node in the tree an integer is computed which stores whether the root path

to that node is lower than the backbone sequence (−1), higher (+1) or equal (0): if

enumeration recurses on a refinement, the comparison value of the new node is easily

computed in O(1) time by considering the value of the parent and by comparing the

new depth tuple with a tuple on the backbone sequence.

Overall, we obtain a refinement operator ρfree(S) which refines a canonical depth sequence

for a bicentred real free tree. Together with the refinement operator for paths, and a procedure

for transforming paths into free tree depth sequences, we obtain a refinement operator which

refines all bicentred (real) free trees optimally.

6.7. Free Trees: Encodings and Refinement 175

Centred free trees

Although our approach for centred free trees is largely similar to that for bicentred free trees,

some details are different. As we pointed out, a centred free tree can be conceived as a rooted,

unordered tree. Straightforward would be to encode this tree using the canonical depth se-

quence of the previous chapter; again, we face the problem that we are only interested in the

enumeration of trees that include a certain path.

Let us first observe that we can also obtain the backbone sequences in a different, but

equivalent way, as follows:

1. split the centre of the free tree, such that every neighbor of the centre is the child of its

own copy of the centre;

2. for each of the rooted trees thus obtained determine the highest label sequence of all

root paths;

3. determine the highest two label sequences found in the previous step.

This approach gives us a clue for the definition of a canonical depth sequence for a centred

free tree.

Definition 6.6 Given a centred free tree F, assume that U1, U2, . . ., Un are the rooted un-

ordered trees obtained from F by duplicating the centre, and that B1, B2, . . ., Bn are the

highest label sequences of each of these trees, such that:

• B1 �
lex
Σ
B2;

• B2 �
lex
Σ
Bk for all 2 < k ≤ n;

• if B1 = B2 it holds that seq�B1
(U1) �

lex
B1
seq�B1

(U2);

• for all 2 ≤ k < n, it holds that seq�B2
(Uk) �

lex
B2
seq�B2

(Uk+1);

Then the canonical depth sequence of F is:

seq(F) = first(seq�B1
(U1))•

suffix(seq�B1
(U1))• suffix(seq�B2

(U2))• suffix(seq�B2
(U3))• · · · • suffix(seq�B2

(Un)).

An example is provided in Figure 6.4(a). Note that we use the order of the second highest

backbone sequence for all subtrees of the root, except for the subtree which corresponds

to the highest backbone sequence. We assume that seq�B(U) is defined as in the previous

subsection. We hope that our notation makes clear that the canonical depth sequence for a

centred free tree is a generalization of the canonical depth sequence for a bicentred free tree.

Refinement now proceeds in a similar fashion as for bicentred free trees, and starts from

a path. First, the path is transformed into a canonical depth sequence. As long as no depth

tuple has been appended after the canonical depth sequence, refinement is allowed both by

appending tuples and by inserting tuples before the second backbone’s subsequence. If the

backbone sequences are not equal to each other, we can grow the unordered tree around the

176 6. Mining Free Trees and Graphs

first backbone sequence independently from the unordered trees around and after the second

backbone sequence. Transitivity of the lexicographical order of label sequences makes sure

that no backbone sequence will be added higher than the current highest sequence. The next

prefix node is maintained initially for the first subtree, then for the remaining subtrees; if the

backbone sequences are equal, the next prefix node of the second subtree of the root can be

a node in the first subtree (as also becomes clear from our observation that then seq(F) =

seq�B(U)).

Merging

To introduce our merge operator, we will first consider the correspondence between depth

sequences and edge sequences. Our refinement takes place in several stages: first, a path is

constructed, which is considered to be the backbone of a tree; second, a tree is grown around

one part of the backbone; finally, a tree is grown around the other part of the backbone. Each

of these refinements comes down to adding a single node and an edge to a structure. The

order in which nodes and edges are added, can therefore be reflected in an edge sequence. To

sketch the idea, consider a path AXAXAXA; this path has canonical edge sequence:

(1,2,A,X,A)(2,3,A,X,A)(3,4,A,X,A),

which is transformed into a depth sequence

(1,X,A)(2,X,A)(1,X,A)(2,X,A),

that consists of two rooted trees. If we refine this tree by inserting a depth tuple before the

second backbone subsequence,

(1,X,A)(2,X,A)(2,X,A)(1,X,A)(2,X,A),

this refinement can also be described using edge tuple (2,5,A,X,A). The edge sequence which

reflects the canonical depth sequence code is then:

(1,2,A,X,A)(2,3,A,X,A)(3,4,A,X,A)(2,5,A,X,A). (6.1)

In general, we can transform a depth sequence of a free tree in a unique edge sequence which

reflects the order in which nodes and edges were added in consecutive refinement steps. As a

second example consider the canonical depth sequence

(1,X,A)3(2,X,A)2(3,X,B)1(1,X,A)4(2,X,A)5(3,X,A)6(2,X,C)7,

where the superscripts denote the order in which the depth tuples are added by the refinement

procedure. Then the corresponding canonical edge sequence is

(1,2,B,X,A)(2,3,A,X,A)(3,4,A,X,A)(4,5,A,X,A)(5,6,A,X,A)(4,7,A,X,C).

This shows how we can obtain a canonical edge sequence, edge-seq(F), for every free tree F.

For merging the following observation is of importance.

6.7. Free Trees: Encodings and Refinement 177

Theorem 6.7 Let S = S ′•(k1, j1,σ1,σ2,σ3)•(k2, j2,σ4,σ5,σ6) be a canonical edge sequence

for a free tree F, such that graph(S ′) is not a path, then if k2 , j1, these sequences are also

canonical edge sequences:

S ′ • (k1, j1,σ1,σ2,σ3) and S ′ • (k2, j2−1,σ1,σ2,σ3).

Proof. This follows from theorem 5.34 on depth sequences. We have to distinguish three

cases:

1. The last two edge quintuples correspond to depth tuples of the first rooted subtree;

removal of each of these quintuples is reflected in the depth sequence of the first rooted

subtree, and yields a canonical depth sequence for the first rooted tree; as the second

rooted tree can only be a path, the free tree depth sequence remains canonical.

2. The last edge quintuple corresponds to a depth tuple for the second rooted subtree,

while the second last edge quintuple corresponds to a depth tuple for the first rooted

subtree. Removal of the depth tuple of the last subtree keeps that tree canonical and

lower than the first subtree, thus the entire tree is canonical. Removal of the last depth

tuple of the first rooted subtree will keep that subtree canonical, but we have to show

that also the entire tree remains canonical. If the backbone is asymmetric, it is clear that

the entire tree remains canonical; if the backbone is symmetric, we use the assumption

that S ′ also represents a tree: the next prefix node constraint that should be applied to

the second subtree remains fulfilled as the removed node could never have been the

next prefix node of the second subtree. Thus the second subtree remains lower than the

first.

3. The last two edge quintuples correspond to depth tuples of the second rooted subtree;

removal of each of these is reflected in the depth sequence of the second subtree (or

later subtrees in the centred case). These depth sequences remain canonical if one of

the corresponding depth tuples is removed. �

Using this theorem we introduce a globally complete merge operator which makes a dis-

tinction between trees and paths. The merge operator is defined by this downward refinement

operator on canonical edge sequences S :

ρfree(S)=







































































∅, if S , edge-seq(graph(S));

{ S • ` | ` ∈ N2×Σ3,

graph(S • `) is a free tree },

if S = edge-seq(graph(S))

and graph(S) is a path;

{ S • ` | ` ∈ N2×Σ3,

graph(S • `) is a free tree and

edge-seq(graph(S • `)) = S • ` },

if S = edge-seq(graph(S))

and graph(S) is not a path,

Note that by S , edge-seq(graph(S)) we denote the check whether the edge sequence S

is canonical; to implement this test efficiently we can use depth tuples, or label sequences.

178 6. Mining Free Trees and Graphs

Furthermore, the merge operator is based on this upward refinement operator:

δfree(S • (k1, j1,σ1,σ2,σ3)• (k2, j2,σ4,σ5,σ6)) =














{S • (k1, j1,σ1,σ2,σ3),S • (k2, j2−1,σ1,σ2,σ3)} if k2 , j1;

{S • (k1, j1,σ1,σ2,σ3)} otherwise.

The previous theorem showed that the refinement operator is also globally complete for free

tree enumeration. We will skip the details of an efficient implementation of this merge oper-

ator. However, we wish to stress that by maintaining the edge sequences in parallel with the

label sequences and the depth sequences, we can characterize which refinements are canoni-

cal, or which structures are canonical.

Note furthermore that there is strong similarity with the refinement using depth sequences

alone, as discussed in the previous chapter: also here we can make a distinction between

extensions (the second case of the upward refinement operator), self-joins and joins (the first

case of the upward refinement operator). The extensions are required when the last node

introduced in the last edge sequence connects to the second last node, in other cases a join or

a self-join is possible.

The definition of the merge operator makes clear that the operator is not optimal: the re-

finement operator refines paths to paths or free trees that are not canonical. However, as soon

as we deal with real free trees that are not paths, the refinement operator becomes optimal and

the merging is performed optimally. This observation is essential, and is therefore formally

stated in the following corollary.

Corollary 6.8 Consider all free trees that cannot be turned into a path by removing one node.

Then merge operator µfree, which is defined by δfree(S) and ρfree(S), enumerates all such free

trees exactly once.

To what extent are the other trees enumerated multiple times? The following examples

illustrate this:

1. some paths are enumerated four times. Consider the path AXBXAXB. This path has

two possible parents, AXBXA and BXAXB; both these parents can be refined at both

ends to obtain the final path, yielding 4 edge sequences that are enumerated, while only

one is canonical;

2. some paths are enumerated once. Consider the path BXAXAXB. This path has one par-

ent AXAXB, which can only be refined with one edge quintuple to lead to BXAXAXB;

3. if a path is not symmetric, and neither its prefix nor its suffix is symmetric, the path

is evaluated twice: once as a refinement of the suffix and once as a refinement of the

prefix;

4. some free trees which can be turned into a path by the removal of one node are evalu-

ated three times. Consider the free tree of Figure 6.5 as an example: there are two paths

from which the target tree can be reached, while one of these paths is symmetric.

However, recall that free trees which are not (almost) paths are enumerated exactly once.

6.8. Cyclic Graphs: Encodings and Refinement 179

X X X
X

X X X
X

X X X
X

X X X
X

A A A A

C

A A A A

C

A

C

A A A

A A A C

A

Figure 6.5:Afree tree which is evaluated three times.

6.8 Cyclic Graphs: Encodings and Refinement

Until now we only considered edge sequences that consist of forward edges. In this section,

we consider edge sequences that do contain backward edges, and we define canonical edge

sequences for cyclic graphs.

The idea behind the canonical edge sequence is as follows. Given a cyclic graph G, we

can turn this graph into a free tree by removing a sufficient number of edges; for the resulting

spanning tree we compute a canonical edge sequence. The edges that were removed can

afterwards be added again by appending the backward edges after the forward edges of the

free tree.

The main problem that we have to deal with is that from most cyclic graphs several

different free trees can be obtained, depending on which edges are removed from the graph.

We therefore have to specify which free tree edge sequence is considered to be the prefix

of the canonical edge sequence of a cyclic graph. Furthermore, the free tree can contain

several automorphisms as a result of which two edge sequences with different backward edge

quintuples can still be equivalent. Each of these issues will be considered independently.

To define which sequence of forward edges is part of a canonical cyclic edge sequence,

we again use an approach in which a second code is used. For a given free tree F, we will use

the following code

cyclic-seq(F) = (d,B1,B2,S),

where d is the diameter of the free tree, B1 is the highest backbone sequence of the free tree,

B2 is the second backbone sequence and S is the canonical depth tuple sequence of the free

tree. We define that cyclic-seq(F1) = (d1,B11,B12,S 1) � cyclic-seq(F2) = (d2,B21,B22,S 2) iff

one of these cases is true:

• d1 > d2;

• d1 = d2 and B11 �
lex
Σ
B21;

• d1 = d2 and B11 = B21 and B12 �
lex
Σ
B22;

180 6. Mining Free Trees and Graphs

• d1 = d2 and B11 = B21 and B12 = B22 and S 1 �Σ S 2.

Of all spanning trees that can be obtained from a graph G by removing edges, we say that

the free tree F for which cyclic-seq(F) is maximal according to this order, defines the edge

sequence of forward edges.

At this point we can observe that the diameter of the spanning tree is thus an important

element of the code. The diameter of the deepest spanning tree corresponds to the length of

the longest path in the subgraph. If we engineer our refinement operator such that it never

allows a refinement which changes the depth of the deepest spanning tree, we can straight-

forwardly deal with a constraint on the maximum path length in a subgraph, by limiting the

length of the longest path that is allowed to be enumerated. We can also observe that if we

would choose the spanning tree with the smallest depth as the canonical spanning tree, we

could incorporate a constraint on the maximum shortest path length in the subgraph in a very

similar way.

To define the canonical sequence of backward edges, we use the following approach.

Let F be the canonical spanning tree of a cyclic graph G. Then of all edge sequences S =

edge-seq(F) •C, where C is a sequence of cycle closing edges, such that graph(S) ≡ G, we

define that the lexicographical maximal sequence of backward edges is canonical, where we

compare backward edges in a straightforward lexicographical way.

For an edge sequence which contains at least one backward edge, we then know the

following.

Theorem 6.9 Given a canonical edge sequence S = edge-seq(G)= edge-seq(F)•C for a graph

G, every edge sequence edge-seq(F)•prefixk(C) is also canonical, 0 ≤ k ≤ |C|.

Proof. Consider a prefix for a certain k: S k = edge-seq(F)•Ck, where Ck = prefixk(C). First,

we observe that graph(S k) cannot have another canonical spanning tree F
′, as otherwise we

could also add cycle closing edges to F′ to obtain a different canonical representation for G.

Second, we observe that the cycle closing edges must be sorted in lexicographical descending

order. Let us assume that S ′
k
= edge-seq(F)•C′ is the canonical representation of graph(S k),

where C′ ,Ck. Then C
′ �Ck. Consider the set of backward edges E that can be added to S k

to obtain a sequence S ′ for which graph(S ′) ≡G, then S ′ � S , as the backward edges E have

to be inserted in or appended to C′. This contradicts that edge-seq(G) is canonical. �

From this proof it follows that the canonical edge sequence (that consists of a concatena-

tion of path edges, tree edges and cycle closing edges) can be used in an optimal refinement

operator:

ρgraph-opt(S) = {S • ` | ` ∈ N
2×Σ3,S • ` canonical },

where S is a canonical edge sequence. Given this definition of a canonical code for a cyclic

graph, how can we compute whether a code is canonical? We cannot expect to derive a poly-

nomial algorithm in all cases, as we essentially have to solve a graph isomorphism problem.

We have however chosen our cyclic-seq code such that it can still be decided efficiently in

many cases whether an edge sequence is canonical. Let us assume that we want to determine

whether an edge sequence S for graphG = (V,E,λ,Σ) is canonical, where F is a spanning tree

as defined by the forward edges of S , cyclic-seq(F) = (d,B1,B2,D), and C is the sequence of

backward edges in S . Then our approach consists of the following stages:

6.8. Cyclic Graphs: Encodings and Refinement 181

1. Starting from an edge sequence for a cyclic graph, we enumerate all spanning trees of

this graph. For each spanning tree we recurse to step 2.

Many algorithms are known for enumerating spanning trees. Most efficient are the

algorithms with complexity O(N + |V |+ |E|) [175], where N is the number of spanning

trees. Note that N = O(
(

|E|
|C|

)

) = O(|E||C|): the number of edges that we have to remove

from a graph to obtain a spanning tree is |C|. We can conceive |C| as a measure of the

cyclic nature of the graph1. If the measure is low, then the graph is still very similar

to a tree. Note that some spanning trees can be isomorphic; N denotes the number of

all spanning trees, not the number of different free trees that can be obtained from the

cyclic graph.

Clearly, the enumeration of spanning trees can be performed efficiently if the number

of cycles is small. On the other hand, it is also easy to see that to find the spanning tree

with the highest diameter, we essentially have to solve a Hamiltonian path problem,

which is known to be NP-complete [73]. This part of the computation is therefore

already intractable if the number of cycles is large.

2. In O(|V |) time we determine the (bi)centre of the spanning tree, and the length of its

backbone d′, by walking from the leafs to the (bi)centre of the tree; if d′ > d, we stop

searching spanning trees and return that S is not canonical. Only if d′ = d, we continue

in the next step.

3. In O(|V |) time we determine the two backbone sequences B′
1
and B′

2
of the spanning

tree, by walking at most two times from the (bi)centre towards the leafs of the tree; if

B′
1
�lex
Σ
B1, or B

′
1
= B1 and B

′
2
�lex
Σ
B2, we stop searching spanning trees and return that

S is not canonical. Only if B′
1
= B1 and B

′
2
= B2 we continue in the next step.

4. In O(|V |) time we determine the order of the nodes in the canonical depth sequence D′

of the free tree, by walking from the leafs towards the (bi)centre of the tree, using the

procedure that we discussed in section 5.8, and incorporating the backbone orders; if

D′ �lex
Σ
D, we stop searching spanning trees and return that S is not canonical. Only if

D′ = D we continue in the next step.

5. In O((2|C|)!) time we determine the canonical sequence of cycle closing edges C′. If

C′ �C, we stop searching spanning trees and return that S is not canonical. Otherwise,

we continue searching by going to the next spanning tree. We will discuss the details

of the O((2|C|)!) complexity in the next subsection.

We observe that the total complexity of this procedure isO(|C|(2|C|)!|V ||E||C|). If |C| is bounded

by a small constant c, the complexity of this procedure is thus O(|V ||E|c). In such situations,

the canonical form is still efficiently computable.

Computing canonical backward edges

To show how we find the canonical sequence of backward edges for a certain graph graph(S),

given that we know that free tree F is its canonical spanning tree, we first have to introduce

the concept of automorphisms on rooted, unordered trees.

1In literature |C| is also known as the dimension of the minimum cycle basis of the graph.

182 6. Mining Free Trees and Graphs

Definition 6.10 (Automorphism) Given a rooted, unordered tree U = (V,E,λ,Σ,r). Then an

injective function φ : V → V is an automorphism iff:

• ∀v ∈ V : λ(v) = λ(φ(v));

• φ(r) = r;

• ∀v1,v2 ∈ V : (v1,v2) ∈ E =⇒ (φ(v1),φ(v2)) ∈ E and λ(φ(v1),φ(v2)) = λ(v1,v2).

If for two siblings v1 and v2 in a rooted, unordered tree U we have that seq(subtree(v1)) =

seq(subtree(v2)), we know that there are automorphisms in which φ(v1) = v2, and in which

φ(v2) = v1. Such nodes we call automorphic. Now let us assume that the nodes in U are

identified in the depth sequence order seq(U), then if subseq(vk) = subseq(vk+n), where n =

|subseq(vk)|, we obtain the following automorphism:

φ(v j) =



























v j+n if k ≤ j < k+n;

v j−n if k+n ≤ j < k+2n;

v j otherwise,

which corresponds to swapping the order of the trees below siblings vk and vk+n. Every auto-

morphism of a rooted tree can be described by a series of such swaps between automorphic

sibling nodes. Note that to determine whether two trees are part of the same equivalence class,

we have to compare the canonical depth sequence of the trees below these nodes. These equiv-

alence classes are a side product of the computation of the canonical depth sequence using

the procedure of section 5.8, and can thus be performed in O(|V |) time.

If the rooted, unordered tree U is in fact the canonical spanning tree of a cyclic graph,

each node in the unordered tree also has a number in the edge sequence of this graph. Let

ψ : V ↔ {1, . . . , |V |} be the bijection which assigns to each node in the unordered tree its

position in the canonical edge sequence of the free tree, then we can apply automorphism φ

to each edge quintuple in a sequence of backward edges, as follows:

φ(k, j,σ1,σ2,σ3)=















(ψ(φ(ψ−1(k))),ψ(φ(ψ−1(j))),σ1,σ2,σ3) if ψ(φ(ψ−1(k))) > ψ(φ(ψ−1(j)));

(ψ(φ(ψ−1(j))),ψ(φ(ψ−1(k))),σ3,σ2,σ1) otherwise.

As every automorphism of a rooted tree can be described by a series of swaps of automorphic

sibling nodes, each automorphism can lead to a different sequence of backward edges, as

described. To find out which sequence of backward edges is maximal, we essentially have

to traverse all automorphisms. An implementation which would generate all permutations of

automorphic siblings, could however generate O(|V |!) permutations, each of which leads to a

sequence of backward edges that can be sorted in O(|C|) time if we use Radix sort.

To optimize this approach, we use the observation that not all equivalence classes of

automorphic nodes are of importance when searching for the maximal sequence of backward

edges. Consider a rooted, unordered tree U again, and the sequence of closing edges C for

which we try to determine whether it is canonical. Then every backward edge induces two

nodes v1,v2 ∈ VU by applying ψ
−1. In this way one can determine from C a set of nodes V ′

which contains all nodes to which a cycle closing edge connects. From V′ we can construct

a set of ancestors V′′ = {v′′ ∈ ΠU (v
′) | v′ ∈ V′}. Then one can see that we need to check

6.8. Cyclic Graphs: Encodings and Refinement 183

1

2

7

8

10

11

A A

A A

A

A A A

A

B

A AA

B

A

A A

X X

X X

X

X

X

X

X

XX X XXXX

4

5

6

9 1312 14 3 15 16 17

Figure 6.6: A cyclic graph, depicted such that its canonical depth sequence is easily recognizable. The

nodes are numbered in the order in which they occur in an edge sequence.

permutations only for those automorphism classes of siblings for which at least one node is

in V′′. Other nodes are not involved in the determination of node numbers in the backward

edges.

An illustration is given in Figure 6.6. In the figure we have marked the nodes that are in

automorphism classes of nodes in V′′. We see that nodes {15,16,17} < V′′ are automorphic

(their subtrees are isomorphic), but the permutation of these nodes is not of importance.

On the other hand, nodes 7 and 5 are automorphic and both have a descendant to which

a cycle closing edge connects. In the depicted graph, we would have cycle closing edges

(12,10,A,X,A) and (12,2,A,X,A). By swapping 7 and 5 we could obtain cycle closing edges

(15,10,A,X,A) and (15,2,A,X,A). In the worst case of a symmetric backbone, we always

have to check the permutation of the backbone sequences.

Our second observation is that some edge sequences of cyclic graphs can be rejected

immediately by considering which nodes in an automorphism class are currently in V′′. If an

automorphism class consists of n nodes, but only 0< m < n of these are in V′′, we know that

the edge sequence can only be canonical if these m nodes are the highest numbered nodes

of the class, unless the free tree is symmetric and the automorphism class is the bicentre

or a child of the centre. The reasoning is as follows. If we map a lower numbered node to

an automorphic higher numbered one, we know due to the depth sequence order of node

introduction that all its descendants will also be numbered higher. Any cycle closing edges

which connect to the node or one of its descendants will therefore get a higher number.

From this observation, we can immediately conclude that the example graph of Figure 6.6

is not canonical: in the automorphism class of nodes 12, 13 and 14, only the lowest number is

in V′′. By mapping node 12 to node 14 we would already obtain a higher sequence of closing

edges (14,10,A,X,A) and (14,2,A,X,A).

If after this test we still have not rejected the current closing edges, we know that we only

need to check permutations of nodes that are in V′′ (and the permutation of the backbones in

some cases). Let us now estimate the total number of permutations that has to be checked.

The set of nodes V′′ can be subdivided into automorphism classes of siblings; permutations

184 6. Mining Free Trees and Graphs

of each of these classes have to enumerated, making for a total number of automorphisms of

2a1!a2! · · ·an!,

where ak is the number of nodes in class k, and we have that
∑n
k=1 an = |V

′′|. The multiplica-

tion by 2 applies in some cases in which the backbone is symmetric. Next, we will bound the

number of terms for which ak > 1, as follows. Consider that we compute V
′′ from V′ incre-

mentally by repeatedly adding root paths of nodes in V′ to V′′. Then each node on this root

path either (1) already occurs in V′′, (2) is not in V′′, but an automorphic sibling is, in which

case the size of that automorphism class is increased, or (3) we add a node which was not in

V′′ while also none of its siblings was in V′′, in which case we introduce an automorphism

class of size 1. It is easy to see that case (2) can only occur once for every node v ∈ V ′: if the

sibling of a node on the root path is in V′, we know that all ancestors of this node are on the

same root path, and thus belong to case (1). Therefore, there is a subsequence of indices k j,

such that

2a1!a2 · · ·an! ≤ 2ak1 !ak2 ! · · ·akm!,

where
∑m
j=1 ak j = |V

′|. From this it follows that

2a1!a2 · · ·an! ≤ 2ak1 !ak2 ! · · ·2akm ! ≤ |V
′|! ≤ 2(2|C|)!,

as every cycle closing edge introduces at most two new nodes in V′. If for each automorphism

we determine the corresponding sorted edge sequence in O(|C|) time, the computation has

complexity O((2|C|)!|C|). This proves our claim.

Optimizations

Although the algorithm that we described for normalizing cyclic graphs can always be used,

there are cases in which one can determine more quickly whether a cycle closing edge is

canonical or not. We discuss one conjecture which could allow for a large reduction of the

number of cycle closing edges with a relative low complexity.

Consider a cycle closing edge from a node v1 to a node v2, where v1 is a node which is not

part of the backbone. Then if furthermore v2 corresponds to a depth tuple earlier in the free

tree depth sequence than v1, and v2 is not an ancestor of v1, the cycle closing edge can not be

canonical. The reason is that node v1 can be disconnected from its parent, and can be turned

into a child of node v2. As v2 was earlier in the depth sequence this operation only obtains a

higher depth sequence, or possibly a tree with a longer backbone.

To illustrate this observation consider the cyclic graph of Figure 6.7, in which the nodes

are numbered in the order of the canonical edge sequence. All cycle closing edges that are

drawn in this graph fulfill the given constraints. For example, it is easy to see that making

node 8 a child of node 6 will yield a free tree with a higher depth sequence, and thus the

given free tree can not be the canonical free tree of the depicted cyclic graph. Furthermore,

consider the edge between nodes 12 and 14. Making node 14 a child of node 12 even yields

a free tree with a longer backbone, proving again that the given free tree is not the canonical

spanning tree.

Another example is provided in the graph of Figure 6.6. Although we used this example

to illustrate how we could compute the highest possible cycle closing edges (which may be

6.8. Cyclic Graphs: Encodings and Refinement 185

1

2

3

4

5

6

7

8 9

10

11

12

13 14

A

B A

B A

A A A A

A

A

A

A

A

X
X

X

X

X

X X X X
X X

X
X

X

X

X

X

Figure 6.7: A cyclic graph, depicted such that its canonical depth sequence is easily recognizable. The

nodes are numbered in the order in which they occur in an edge sequence.

required if during spanning tree generation we test the starting spanning tree first), we could

avoid this by observing that node 12 can be made a child of node 10 to obtain a higher depth

sequence for the spanning tree.

Merging

The most straightforward merge operator is defined by the following downward refinement

operator:

ρgraph(S)=







































































































































∅, if S , edge-seq(graph(S));

{ S • ` | ` ∈ N2×Σ3,

graph(S • `) is a cyclic graph or

a free tree },

if S = edge-seq(graph(S))

and graph(S) is a path;

{ S • ` | ` ∈ N2×Σ3,

graph(S • `) is a cyclic graph or

a free tree with

seq-edge(graph(S • `)) = S • ` },

if S = edge-seq(graph(S))

and graph(S) is a free tree,

but not a path,

{ S • ` | ` ∈ N2×Σ3,

graph(S • `) is a cyclic graph and

last(S) � ` },

if S = edge-seq(graph(S))

and graph(S) is a cyclic

graph,

and by this upward refinement operator:

δgraph(S • (k1, j1,σ1,σ2,σ3)• (k2, j2,σ4,σ5,σ6)) =


























{S • (k1, j1,σ1,σ2,σ3),S • (k2, j2−1,σ1,σ2,σ3)} if k2 , j1 and k2 < j2;

{S • (k1, j1,σ1,σ2,σ3),S • (k2, j2,σ1,σ2,σ3)} if k1 > j1;

{S • (k1, j1,σ1,σ2,σ3)} otherwise.

186 6. Mining Free Trees and Graphs

4

5 3

86 9

17

2

A

A A

AA A

AA

A

XX X X

XX

XX

X
X X

Figure 6.8: A free tree and some possible cycle closing edges. The free tree is depicted in the depth

sequence order. The nodes are numbered in the order of introduction in the edge sequence.

This operator is a straightforward modification of the merge operator µfree that we considered

in the previous section. It takes a suboptimal approach in which any non-canonical cyclic

refinement is allowed, but only those codes which are canonical are refined further. Again,

when refining free trees we exploit the optimal refinement of rooted trees by refining only to

canonical trees.

From an efficiency point of view, however, a more optimal downward refinement operator

would be desirable. We will show how an improvement can be obtained. Essential to this

improvement is that some cycle closing edges which lead to a non-canonical edge sequence

can be removed from consideration, as every edge sequence which would merge with this

sequence would neither be canonical.

To get a feeling for what we want to prove, consider the example free tree of Figure 6.8, of

which we assume that S is the canonical edge sequence. If we extend S with edge quintuple

(9,1,A,X,A) we can see that the resulting graph does not have S as its canonical spanning tree

any more, as a longer backbone can be constructed by making node 9a child node 1. In that

case we can immediately prune this cycle closing edge, as for any other graph S ′ obtained

from S by appending edge quintuples, if we append (9,1,A,X,A) after S ′, S ′ • (9,1,A,X,A)

is not canonical.

However, the situation is complicated due to automorphisms, as is illustrated by the edge

between nodes 3 and 1. This edge is not canonical either, as edge-seq(graph(S •(3,1,A,X,A)))=

S •(7,5,A,X,A). However, one can show that edge sequence S •(7,5,A,X,A)•(3,1,A,X,A) is

canonical. To obtain this sequence through a merge of edge sequences with common prefixes,

we would require that the suboptimal refinement to S • (3,1,A,X,A) is performed. What we

will show in the next theorem is in which situations exactly we mark a cycle closing edge as

prunable. Due to our approach of first generating cycle edges, and then testing whether they

are canonical, the importance of an edge which is marked prunable is that it will no longer

be considered in merges.

To obtain our result, we first need the following lemma.

Lemma 6.11 Assume given an unordered tree U. We want to refine this tree to a tree U′ =

(V′,E′,λ′,Σ) by adding a node v|VU |+1 which connects to node v ∈ VU , while the node label

of v is σ2 and the edge label of (v,v|VU |+1) is σ1: V
′
= VU∪{v|VU |+1}, E

′
= ET∪{(v|VU |+1,v),

(v,v|VU |+1)}, λ
′
= λ∪{v 7→ σ2, (v,v|VU |+1) 7→ σ1, (v|VU |+1,v) 7→ σ1}. Then seq(U

′) �lex seq(U).

6.8. Cyclic Graphs: Encodings and Refinement 187

Proof. Let us consider the position of node v in the depth sequence seq(U). Its children are

sorted in downward order according to their label. If we add a new node below v with label

σ1 •σ2, we can insert this node after the last child with the same label. The resulting ordered

tree T ′ will have a lexicographically higher depth sequence seq(T ′) than seq(U). Although

T ′ may not be canonical, the canonical order of nodes may only yield an even higher depth

sequence, from which it follows that seq(U′) �lex seq(U). �

We will use this lemma in the following theorem to show that if we remove edges from a

cyclic canonical edge sequence, where we do not remove edges from the backbone and do not

remove the last cycle closing edge, the resulting edge sequence is canonical, except possibly

for the last edge.

Theorem 6.12 LetG be a cyclic graph and sequence S = edge-seq(G) = S 1 •S 2 its canonical

edge sequence, where S 1 is the subsequence of backbone edges, and S 2 is the subsequence

of other edges. If for a given 0 ≤ k < |S 2| edge tuple last(S) is a backward edge in S ′ =

S 1 •prefixk(S 2)• last(S), then prefix(edge-seq(graph(S ′))) = prefix(S ′).

Proof. First, we observe that S ′ defines a free tree which must be a subtree of a spanning

tree of G. As we know that S is canonical, we know that no spanning tree can be deeper than

S , or if equal in depth, have higher backbone sequences than S , or otherwise have a higher

depth sequence. As the free tree defined by S ′ is a subtree of such a spanning tree and has at

least the same depth as the spanning tree defined by S , we know that its depth must be the

same as that of S , and that adding any missing nodes from G to the tree defined by S ′ will

not make that tree deeper. We also know that the free tree defined by S ′ cannot have higher

backbone sequences (given that this free tree is a subtree of a spanning tree), or have a higher

depth sequence (the latter follows from the previous theorem, as one could add the remaining

nodes of the spanning tree to the free tree of S ′). Therefore we can assume that forward edge

sequences of S ′ are canonical. Assume that S ′′ = prefix(edge-seq(graph(S ′))) includes some

backward edges. Then if we insert all remaining nodes of G before these backward edges,

even if we obtain a sequence of forward edges equal to that of S , we know that the backward

edges of S ′′ must be at most as high as those of S .

In this way we have shown that the edge sequence of edge-seq(graph(S ′)) is bounded

from ‘above’by that of S ′. On the other hand, we also know that prefix(edge-seq(graph(S ′)))

is bounded from ‘below’by prefix(S ′), as we know that prefix(S ′) = S 1 •prefixk(S 2) must be

a canonical representation for graph(prefix(S ′)). From this it follows that

prefix(S ′) = prefix(edge-seq(graph(S ′))).

Note that we cannot conclude that S ′ = edge-seq(graph(S ′)); the reason for this are the pos-

sible automorphism classes of the free tree. The last cycle closing edge may be automorphic

with an edge with higher numbers. �

We can use this observation to obtain a better downward refinement operator. Let us

consider the procedure that determines whether edge sequence S • ` (with ` a cycle closing

edge) is canonical, then this procedure returns true if no sequence edge-seq(graph(S • `)) ,

S • ` was found, orfalseotherwise.If this function returns false, however, this maybedue

to thefactthatforgraph(S • `)a longer backbonewas found or higher backbonesequences

188 6.MiningFreeTreesandGraphs

than those defined by S . In that case we knowthat prefix(edge-seq(graph(S • `))), S,and

we could prune S • ` accordingto the theorem,as every sequence which starts with S and

contains `cannot be canonical.

Similarly,the normalization procedure may stopbecause a higherdepth sequence ora

prefixofhighercycle closingedges was found. Usingthe same argumentation we can prune

S • `.

To formally define which search space is considered by the merge operatorwhichprunes

sequences usingthese observations,we have to specify which sequences are part ofa down-

ward refinement of a sequence S = S 1 • S 2, where S 1 is a sequence of backbone edges and

S 2 is a sequence of other edges. We observe that S • ` is not a refinement of S 1 • S 2, if for

some 0≤ k < |S 2|,

prefix(edge-seq(graph(S ′))) , prefix(S ′),

as determined by the canonization function which computes whether edge-seq(graph(S ′)) =

S ′ for S ′ = S 1 •prefixk(S 2)•`. If for no prefixdefined by k a call to the canonization function

reveals that the edge ` can be pruned, we call the edge sequence S 1 • S 2 • ` an unprunable

cyclic graph sequence. The following downward refinement operator then defines the im-

proved merge operator:

ρgraph(S)=







































































































































∅, if S , edge-seq(graph(S));

{ S • ` | ` ∈ N2×Σ3,

graph(S • `) is a cyclic graph or

a free tree },

if S = edge-seq(graph(S))

and graph(S) is a path;

{ S • ` | ` ∈ N2×Σ3,

S • ` is an unprunable cyclic graph

or graph(S • `) a free tree with

seq-edge(graph(S • `)) = S • ` },

if S = edge-seq(graph(S))

and graph(S) is a free tree,

but not a path,

{ S • ` | ` ∈ N2×Σ3,

S • ` is an unprunable cyclic graph

and last(S) � ` },

if S = edge-seq(graph(S))

and graph(S) is a cyclic

graph,

Although this formula defines which cyclic graphs are exactly considered by the merge

operator, this specification is not very operational. We skipmost details. The implementation

is roughly based on our previous observations. If two graphs can be merged because they

have a common prefix, and one of them contains a backward edge, we always generate the

resulting edge sequence. For this edge sequence we determine whether it is canonical, as

otherwise we do not need to recurse on it. When during this determination it turns out that

the additional cycle closing edge is not canonical as previously described, we remove the

refinement, as any sequence which merges with this sequence cannot be canonical either.

6.9. Evaluation using Occurrence Sequences 189

6.9 Evaluation using Occurrence Sequences

Several approaches can be taken to evaluate the frequency of graphs. In this section we will

consider an extension of the method of section 5.13, which builds occurrence sequences for

each pattern.

As a quick reminder, in the rooted tree mining case a simple occurrence is a tuple (t,S),

where t is a transaction identifier and S is a sequence that encodes a possible mapping:for

a mapping φ from a pattern tree to a database tree, the sequence S is composed such that

S [k] = j when vj = φ(vk). Here we assumed that the nodes were numbered in the pre-order

depth tuple sequence order.

This approach is easily re-applied to the situation of an edge sequence edge-seq(F) of

forward edges. In this case every quintuple also introduces a node, and we can define that

S [k] = j iff there is subgraph isomorphism mapping φ in which the kth node of the edge

sequence is mapped to the jth node of the database graph.

We saw in the previous section that in our merge operator if the last edge quintuple of

a merged structure does not connect to the second last edge quintuple, the edge sequence

is obtained through a join or a self-join, and otherwise through an extension. We will first

consider how occurrence quintuples are computed when joining trees. Assume that we have

two different trees F1 and F2, and that (t1,S 1) and (t2,S 2) are occurrences of these trees.

Then if F1 and F2 can be merged (µgraph(edge-seq(F1),edge-seq(F2)) , ∅), we know that

prefix(edge-seq(F1)) = prefix(edge-seq(F2)); if t1 = t2, prefix(S 1) = prefix(S 2) and last(S 1) ,

last(S 2) it follows that (t1,S 1 • last(S 2)) is also an occurrence of the single merged tree. Note

that in contrast to our approach for rooted trees we only have the condition that last(S 1) ,

last(S 2); this is necessary if the database graphs are cyclic. The occurrences can be imple-

mented in a tree structure (see Figure 5.23 on page 149).

Self-joins can be considered as a join of a structure with itself, and need no special treat-

ment.

Slightly more changes are involved to deal with extensions. We will first describe the

method from a conceptual viewpoint. Again, we traverse the occurrence sequence. From

each occurrence (t,S) we retrieve k = last(S) to determine to which node in the database

the last node of the edge sequence is mapped. Next, we scan the adjacency list of node vk
to find possible extensions. Assume that vk connects to a node v j. Then we have to test

whether j ∈ S : if so, we have found an occurrence of a cycle closing edge, otherwise, we

have found an occurrence of a forward edge. To perform this check we scan the sequence

S linearly, starting from the last node. The occurrence is added to the occurrence sequence

of the corresponding extension, unless the characterization of canonical refinements can be

used in O(1) to determine that the extension was not canonical. Canonical extensions whose

sequences are constructed, are stored in a multi-dimensional array, or a hash table.

At the implementation level we perform this computation as follows. Each node of the

occurrence tree contains a sequence of triples (t, j,k), where t is again a transaction identifier,

j is the index of an occurrence of the parent subgraph (in this case always a tree), and k is the

index of a node in transaction t. To find extensions of the last node of a pattern tree we scan

such a sequence to find the nodes vk in the database. We scan the adjacency list of vk, and

190 6. Mining Free Trees and Graphs

for each neighbor of vk we scan the current occurrence linearly by following the ‘pointers’

defined by the indices j in each occurrence triple. From several more elaborate alternatives

that we tried, this approach performed well most consistently.

Although we already briefly mentioned in our discussion of extensions that we can en-

counter cycle closing edges for which we have to build occurrence sequences, we did not yet

elaborate on that. Conceptually, an occurrence (t,S) of a cyclic edge sequence consists of a

sequence of nodes to which the nodes of the cyclic graph can be mapped. Clearly, a cyclic

graph does not extend the occurrences of its spanning free tree. However, some mappings of

the spanning free tree may no longer be possible after adding some cycle closing edges. The

occurrence sequence of a cyclic graph is thus a subsequence of the occurrence sequence of

its parent graph. The join of a cyclic graph with another graph thus reduces to computing an

intersection of two occurrence sequences.

At the implementation level we store the occurrence sequence of a cyclic graph as follows.

Each occurrence consists of a tuple (t, j), where t is again a transaction identifier, and j is the

index of an occurrence of the parent tree, whether this is a cyclic graph or a free tree. To

compute an occurrence sequence of a cyclic graph through a join, we basically intersect the

occurrence sequences of the subgraphs that generated the cyclic graph. These computations

are very similar to those of intersecting occurrence sequences in the frequent itemset mining

case.

Improving self-joins

Although at an implementation level several small optimizations can be of importance, we

mention only one optimization for which we found that the influence on the performance is

significant. The optimization is based on the assumption that the number of self-joins is very

large, but their success in delivering frequent graphs is often very small: every forward edge

can be joined with itself to obtain a new structure, but eventually for almost every forward

edge one self-join must fail (in some cases a self-join is not performed due to canonization

principles). It would be beneficial if we could avoid self-joins as much as possible. We used

the following observation to that purpose: a self-join returns a frequent occurrence sequence

iff the occurrence sequence from which it is computed refers to a sufficient number of trans-

actions in which two occurrences have the same prefix. Thus, if we determine this number

while building the occurrence sequence, we know at that moment already whether a self-join

can later be successful or not. In practice it turns out that the overhead of determining this

number while building an occurrence sequence is much smaller than the time required to scan

almost each occurrence sequence a second time to determine its self-join.

Memoryrequirements

Of great influence to the total amount of main memory used by our algorithm is the amount of

memory that is used to store each occurrence triple (t, j,k) in the datastructure. We included

the transaction identifier in each occurrence triple to be able to quickly determine the support

of each joined occurrence sequence. In our most basic approach, we use 32 bits for both

the transaction identifier and the pointer to a parent, and 16bit for storing node identifiers,

making for a total of 80 bits. However, we also implemented another variant which works

6.9. Evaluation using Occurrence Sequences 191

slightly different. Instead of storing a transaction identifier in every occurrence triple, we use

the parent pointers of the root occurrence sequences to store transaction identifiers (which are

the occurrence sequences of pattern graphs with only one node). These parent pointers were

originally not used as the root of the refinement tree does not have a parent. The disadvantage

of this approach is that it requires a scan of the root pointers also for joins, as to compute the

support we need to know which transactions occurrences refer to. The complexity of the join

therefore increases and accordingly the run time performance will become lower.

As another alternative we considered a reduction of the number of bits used to store

occurrences: 15 bits for storing transaction identifiers, 17bits for storing parent occurrence

pointers, and 8bits for storing node identifiers.

Although we feel that this method is quite low-level, we implemented it to set other, more

elaborate approaches for reducing memory requirements into a perspective. One of these

approaches is the following.

Diffsets

An important problem of using occurrence sequences is that not only the occurrence sequence

of the current pattern in the depth-first recursion is stored, but also of all siblings in the re-

finement tree on which we have to recurse later. As reviewed in section 2.5, diffsets have

been introduced in the context of frequent itemset mining to reduce the amount of memory

required to store occurrence sequences and to improve performance. We implemented a mod-

ification of the occurrence sequence mining algorithm which relies partly on the principles of

diffsets.

While in itemset mining the diffsets contain the identifiers of transactions in which the

itemset is not contained, a similar approach in graph mining is not usable. The main reason

is that to find all refinements we have to perform an extension. To find extensions we have

to go through occurrences of the pattern in the data, where we need to know exactly how the

pattern nodes are mapped to the data. Information only aboutwhich transactions or nodes are

(not) mapped to, is not sufficient, as this would not tell us howthe pattern nodes are mapped.

We therefore choose the following trade-off. We use the occurrence sequences of the

previous subsection to store all occurrences of the current graph in the recursion and all its

ancestors. For subgraphs which are not needed deeper down the recursion, but only later after

backtracking, we use a more compact representation of occurrences in which we only store

parent pointers, but no nodes or transaction identifiers. Of interest is that for such sequences

wecan store diffsets: a sequence of parent pointers defines a subset of the occurrences of the

parent pattern graph; instead of storing the ‘positive’set of occurrences, we can also build a

sequence of occurrences that are not refinable.

We approach the construction of these sequences as follows. When we perform an exten-

sion, for each extension we initially build a sequence of ‘positive’pointers to the occurrences

that could be extended. If it turns out that the negation is shorter, we build the ‘negative’

sequence and delete the original ‘positive’sequence.

When we later recurse on the graph, we transform the short positive or negative occur-

rence sequence back into a full positive occurrence sequence which does contain transaction

identifiers and node identifiers. For this reconstruction we have to determine how parent oc-

currences could be extended in detail; this is only possible by scanning these occurrences in

192 6. Mining Free Trees and Graphs

the data again.

To compute the join of a ‘positive’ occurrence sequence with a ‘negative’ sequence, it

is not necessary to turn the negative sequence into a positive one again. Assume that we

have an occurrence for a graph G1 which contains a pointer to a parent occurrence j (which

is ‘positive’ information as it encodes that the parent’s occurrence could be extended to an

occurrence for graph G1), and that we have a ‘negative’ pointer for graph G2 to the same

parent occurrence, to encode that the parent occurrence could not be extended for graph G2.

Then we know that the occurrence of graph G1 cannot be extended for the joined graph of

G1 and G2, and we can store a ‘negative’ pointer for the merged graph to the occurrence of

graph G1.

Further details about our method include how other joins are computed, and how joins

may ‘overshoot’ the real frequency of graphs. However, as our experiments turn out that this

approach has no large practical advantages, we will not treat these details further. The above

description is sufficient to understand how one could deal with diffsets in frequent graph

mining.

Other support measures

In the introduction we introduced a support measure for a database which consists of a single

graph. To compute the support of a subgraph according to this measure clearly a different

computation is required than we performed until now. In the transactional setup the support

counting problem reduces to determining the number of different transaction identifiers in

the occurrence sequence. The problem is more difficult if the database is one large graph. We

will give a short outline of how the support could still be computed in polynomial time in

the length of the last occurrence sequence. The idea is to traverse the occurrence sequence of

the last added node of the pattern graph;by traversing this sequence and all corresponding

occurrences in the occurrence sequences of the ancestor pattern graphs, for each pattern node

a list can be built of the database nodes to which the pattern node can be mapped. These lists

can be sorted in polynomial time;the support is determined by computing the minimum of

the different numbers of nodes in each of these sorted lists.

6.10 Evaluation by Recomputing Occurrences

As occurrence sequences can have exponential length their scalability to large databases is

limited. To deal with large datasets we therefore implemented an evaluation strategy which

does not store exponential numbers of occurrences. Instead, during the search we only main-

tain a sequence of transaction identifiers, and recompute the precise occurrences in the trans-

actions whose identifiers we store. The approach consists of the following elements:

• in an initial pass through the database we build a transaction identifier (TID) sequence

for each label triple (λ(v1),λ(v1,v2),λ(v2)) (where (v1,v2) ∈ VG for some G ∈D);

• each of these sequences is used as the start of a search. A brute-force recursive algo-

rithm is used to recompute all occurrences of a pattern graph; which transactions are

6.10. Evaluation by Recomputing Occurrences 193

considered, is determined by a TID sequence.

Note that the amount of memory required to store the initial TID sequences is linearly related

to the size of the database, as in the initial pass the TID of each edge is added to at most one

TID sequence.

We start searching from each label triple, as each triple corresponds to a subgraph with

only one edge. We traverse its TID sequence and in each transaction that is referred to, we

determine the occurrences through a linear scan of the edges in the transaction. We determine

the frequency of all allowed refinements by scanning the adjacency lists of the database nodes.

After the frequencies of all refinements have been determined, we recurse on each frequent

subgraph.

For refined graphs we use the TID sequence again to determine the transactions that have

to be considered, and we determine all occurrences using a brute-force algorithm. However,

now it may appear that some database graphs do not contain the pattern graph of which we

were searching refinements, as the initial TID sequence was built for single edges. The in-

formation that a transaction does not support the current subgraph is stored for future use by

changing the order of the active transactions in the TID sequence. The identifiers of those

transactions that do contain the current graph are moved to the front of the sequence, while

the other identifiers are moved to the back of the active sequence. If we recurse on the refine-

ments, we only mark the first part of the sequence as active; the remainder of the sequence

is inactive for all refinements. The advantage of this method is clear: once we recurse for

a refined graph, we have a more limited set of transactions to consider; on the other hand,

we do not require any additional memory to store this information. Please note that once we

return from the recursion, the transactions of the active part can be shuffled in some arbitrary

order; however, this change of order does not affect the correctness of the algorithm: we only

use the TID sequences to focus the search to a subset of database graphs. The order in which

database graphs are considered does not matter (as long as one assumes that the data fits in

main memory).

We implement the marking mechanism in a simple way by maintaining for each subgraph

an index that points to the last occurrence which is active. The index of each subgraph is lower

than or equal to that of the parent subgraph in the refinement tree.

The disadvantage of the method is that we have to recompute all occurrences in each

database graph to find all extensions. To find these occurrences an efficient algorithm is a

bottom-line requirement.

We tested several variants of subgraph isomorphism algorithms, and finally found that

one approach performed consistently well, which is based on the idea of queryoptimization.

The idea behind the approach is that we try to find a subgraph matching first for those parts

of the subgraph which are expected to be difficult to match. To that purpose, we permute

a pattern graph’s edge sequence S before it is passed through a set of database graphs, as

follows.

First, we determine which edge label in the subgraph has the lowest frequency in the

total database (for all labels these frequencies were collected in the pre-processing step). An

edge with this label is the first edge in the new edge sequence S ′. Then repeatedly we add an

edge from S to a S ′, where we restrict ourselves to edges connecting to nodes in S ′ to make

sure that prefixes represent connected graphs. We repeatedly choose the edge which has the

highest priority according to these rules:

194 6. Mining Free Trees and Graphs

(1) SGI(S ∈ (N2×Σ3)∗, index p, partial mapping φ,

(2) active nodes A ⊆ N, graph G):

(3) if p = |S |+1then

(4) foralla ∈ Ado

(5) forall(φ(va),v) ∈ EG do

(6) if ∃a′ < a : φ(va′) = vthen

(7) if necessary, update frequency of backward edge quintuple

(8) (a,a′,λ(va),λ(va,v),λ(v));

(9) else

(10) if necessary, update frequency of forward edge quintuple

(11) (a, |S |+2,λ(va),λ(va,v),λ(v));

(12) else

(13) Let (k, j,σ1,σ2,σ3) := S [p];

(14) forall(φ(vk),v) ∈ EG do

(15) if λ(φ(vk),v) = σ2 and λ(v) = σ3then

(16) if k > jthen

(17) if φ(v j) = vthenSGI(S ,p+1,φ, A, G);

(18) else

(19) SGI(S ,p+1,φ∪{v j 7→ v}, A, G);

Figure 6.9:Asimple algorithm for computing all subgraph isomorphism mappings between two graphs.

1. any edge which is a backward edge for S ′ has the highest priority;

2. otherwise, the edge with the most infrequent label triple has the highest priority;

3. otherwise, the edge which connects to a node with higher degree in S ′ has higher

priority;

4. other ties are broken by the order in the original sequence S .

As a result of this heuristic edge reorganization we have obtained an edge sequence in which

we expect the most ‘difficult’ edges to occur in the beginning of the sequence. Then we

use the brute-force algorithm of Figure 6.9 to search for all subgraph isomorphisms of edge

sequence S ′ in graph G.

Other arguments of the procedure are (2) a position p in the edge sequence, (3) the map-

ping that is under construction, (4) a set of pattern graph nodes for which refinements have to

be checked and (5) the database graph for which the subgraph isomorphism is computed.

To find neighboring edges in line (5) and line (14) we use the adjacency list representation,

to perform the test of line (6) we also maintain the inverse of φ during the recursion.

Characteristic to our approach is the use of a set of active nodes A. Note that the lines

(4)–(11) can have a significant impact on the total performance of the algorithm as these lines

are executed deep down the recursion for each mapping that is found.

6.10. Evaluation by Recomputing Occurrences 195

The lines (4)–(11) serve the purpose of determining the frequencies of the refinements of

a particular database graph. However, if we would consider all possible refinements that are

allowed by the downward refinement operator ρgraph, then for every free tree we would have

to check every node in the pattern graph, as a cycle closing edge may connect any pair of

two nodes in a free tree. The solution is to use the merge operator to restrict the number of

nodes of the pattern graph that have to be considered. The following example illustrates this.

Assume that these two graphs are frequent:

S 1 = (1,2,A,X,B)(2,3,B,X,C)(3,4,C,X,D)(3,5,C,X,E)

and

S 2 = (1,2,A,X,B)(2,3,B,X,C)(3,4,C,X,D)(3,5,C,X,F),

and that no other graphs with prefix prefix3(S 1) = prefix3(S 2) are frequent. Then if we recurse

on graph S 2 to find its frequent refinements, the merge operator tells us that we only need to

find occurrences of:

• cycle closing edges that connect to node 5 (which was the last node added to S 2);

• edges from node 3 to nodes with label E.

The active set of nodes A is therefore {3,5}. When in the database we find an edge with another

label than X that connects to node 3, we do not strictly need to update its frequency in line

(10). In our implementation we use a hash structure of multiple levels to find the counter

that has to be updated. Only those parts of the hash structure are initialized which may be

necessary as indicated by the merge. The hash structure is optimized for small numbers of

labels. Other choices however may also be reasonable.

In addition to these features, we implemented optimizations for the case that the length of

the frequent subgraphs is limited (not larger than 64 edge tuples). The idea is to augment every

node in the database with a small amount of bits to store additional occurrence data. Although

this increases the amount of memory required to store the database, this amount is again

linearly related to the size of the database. Assuming that we are searching all occurrences of

a pattern graph of k edge quintuples, with every database node we associate two bit vectors;

these vectors serve the following purposes:

• the kth bit of vector 1 is set to 1 iff an occurrence is found which maps to this database

node, or is 0 otherwise;

• the kth bit of vector 2 is set to 1 iff the first pattern node in the edge sequence can be

mapped to this database node, or is 0 otherwise.

These bits are used by SGI when searching occurrences for a refinement

of the graph. For example, the first bit vector is used to avoid that in line (19) we try to map

‘old’ pattern nodes to database nodes if we already know that there are no occurrences that

map to this database node.

The bit vectors may interact with our reordering optimization on edge tuples. We skip

further details however. Also note that we require bit vectors (and not individual bits) as the

search should be able to backtrack over pattern graphs.

196 6. Mining Free Trees and Graphs

In comparison with the occurrence sequences of the previous section, we see that the

datastructures of this section contain much less information. On the other hand, the sizes of

these datastructures are bounded linearly by the size of the data and therefore scale better

for large datasets. From an implementation point of view the challenge of frequent subgraph

mining is partly to find datastructures that are powerful enough to speed-up the search without

being unreasonably large. We feel that the approach of this section is a good trade-off between

speed and memory requirements.

6.11 Related Work

Most related to our work are the depth-first graph mining algorithms gSpan [199, 200, 201]

and FFSM[86], the molecule miner MoFA [24, 81] and the free tree miner HybridTreeMiner

[39]. We will briefly list the main features of these algorithms to make clear how our algo-

rithm differs from these related algorithms. After that, we provide a brief overview of other

(non-depth-first) algorithms for mining graphs and free trees, as we will also compare our

algorithm with these algorithms in our experimental evaluation of the next section.

Depth-first graph miners

Yan and Han’s frequent subgraph mining algorithm gSpan [199] is a depth-first algorithm

that uses depth-first search (DFS) on graphs to obtain canonical edge sequences, as follows.

Starting from every node in a graph, Yan and Han observe that a large number of different

depth-first walks can be performed. The order of the traversal defines a sequence of forward

edges and a sequence of backward edges. A code can be obtained by inserting backward

edges between forward edges. In gSpan, backward edges are inserted at the earliest positions

at which they are still backward edges. The edge sequences corresponding to the different

traversals are compared lexicographically; the lowest sequence is considered to be the canon-

ical representation of the graph.

An alternative way to define gSpan’s DFS code is to consider edge sequences directly.

Among all edge sequences that represent a graph, only one sequence can be the lexicograph-

ically highest. This code is modified by gSpan to obtain the canonical edge sequence, by

moving all backward edges to the earliest possible positions. A simplified variation of gSpan

can be obtained by skipping this reordering of backward edges, but such a simplification has

not been published yet.

The DFS code of gSpan has some nice properties. Its main advantage is that it uses the la-

bels in the subgraphs very effectively. For example, the label of a node must always be higher

than that of its left sibling in the DFS code; such an observation can be used to straightfor-

wardly discard some non-canonical DFS codes.

The power of DFS codes can be illustrated further by the following observation, which

however was neither published nor used by other authors2. Assume given a non-canonical

edge sequence S in which the last edge quintuple is a forward edge. Then if we replace

2We determined this experimentally using Valgrind. See later for more details.

6.11. Related Work 197

one of the labels in this last quintuple with a higher label, the resulting code can neither be

canonical: in gSpan labels must be as low as possible; for the modified sequence we can

also obtain an isomorphic lower sequence by applying a label modification on the canonical

sequence which is isomorphic to S .

This observation can be used to speed-up the computation of canonical edge sequences.

Assume that we have n refinements of a node j. Then we can conclude that we do not need

to compute whether all these n refinements are canonical. It suffices to consider logn cases in

the worst case, by applying binary search: after all, if one finds out that a label is canonical,

all lower labels must also be canonical; if one finds out that a label is not canonical, all higher

labels are neither canonical. Thus the number of exponential computations can be reduced

significantly. In G this observation is much harder to exploit, as we re-order labels to

deal with backbones of free trees.

To compute the frequency of subgraphs gSpan recomputes occurrences. Each pattern

graph is passed through the database and its refinements are counted, where the refinements

are determined using a suboptimal refinement operator. The algorithm recurses on the fre-

quent canonical refinements. Although gSpan does not explicitly use a merge operator, a

merge operator on DFS codes is easily defined. Implementations of gSpan based on occur-

rence sequences are possible, but have not been published yet.

The main difference between gSpan and our algorithm is the definition of the canonical

form. gSpan’s canonical form is easily computed when the number of labels in the pattern is

high. On the other hand, when the number of labels is low, gSpan’s normalization is essen-

tially an exponential procedure in which each order of nodes has to be tried. This exponential

complexity even applies when the graph is in fact only a free tree. Given that in such situ-

ations gSpan cannot prune refinements using simple rules either, the number of refinements

that gSpan counts may be very large, while our approach guarantees that most free trees are

counted exactly once, at the expense of less pruning power with respect to backward edges

and paths.

Another difference between gSpan’s code and our code is the range of constraints that

can be applied easily. Consider for example the (monotonic) constraint that a certain node

label must be included in every pattern. Then this constraint is easily integerated in gSpan by

forcing this label to be the highest possible node label, and by only enumerating codes that

start with this label. If in our code we choose the spanning tree with the smallest diameter to

be the canonical spanning tree, we saw that it easy to integerate a constraint on the maximum

smallest path length. In gSpan it is not straightforward to integerate such a constraint: one

can imagine a graph with a single cycle of 2n nodes (so, the largest smallest path contains n

edges). Then this graph can only be obtained by refining a path of length 2n− 1 (where the

largest smallest path length is 2n−2).

Several modifications of gSpan have been proposed [201, 187, 45]. Yan and Han modi-

fied the gSpan algorithm to obtain the closed subgraph mining algorithm CG [201].

CG obtains a speed-up by choosing a careful order of depth-first recursion to prune

some branches of the search tree. However, to guarantee that only closed subgraphs are found,

a suboptimal refinement operator is used which refines a subgraph to all graphs in its down-

ward cover; this is necessary to locally decide whether a graph is closed. CS is based

on the assumption that the computation time spent in the pruned branches of the search tree is

larger than the time spent in these additional computations. Experiments show that in general

198 6. Mining Free Trees and Graphs

this is the case, but the difference is often very small.

Wang et al. added an index to gSpan [187] to obtain the ADI-Mine algorithm. While

gSpan and our algorithm perform a linear scan to find the mappings for the first node in an

edge sequence, the ADI-Mine algorithm builds an index for the edge labels, possibly on disk.

In this way a speed-up is obtained for datasets with large numbers of labels, as for these

datasets the (sub)graph isomorphism problem is not the bottleneck.

The first depth-first graph mining algorithm to use simple occurrence sequences was the

MoFAmolecule mining algorithm ofBorgelt andBerthold [24]. This algorithm however only

uses extensions to compute occurrence sequences and does not perform joins. Furthermore,

MoFA’s refinement operator is not optimal: it applies a set of heuristic rules to make sure that

different representations of the same molecular fragments are not generated too often, but

does not guarantee unique enumeration.

Although the use of joins to compute occurrence sequences is common practice in other

structure mining algorithms, the first graph miner to use joins of occurrence sequences was

the FFSM graph miner of Huan et al. [86]. FFSM uses a canonical form based on the entries

in the upper triangle of the adjacency matrix:

Mk j =



























λ(vk) if k = j;

λ(vk,v j) if (vk,v j) ∈ EG;

0 otherwise.

The code consists of a concatenation of adjacency matrix entries:

M11M12M22M13M23M33...Mnn,

where n = |V |. Only those adjacency matrices are considered which represent connected

graphs. The canonical adjacency matrix is the matrix which is the lexicographically high-

est (where ‘0’ is considered to be the lowest possible label). Although at first sight this code

may seem very different from gSpan’s code, we believe that it is conceptually very similar.

To see this, consider a graph in which only the edges are labeled. Then the canonical form

must start with the highest labeled edge. Subsequently, assume that we have computed an

adjacency matrix for part of a graph, and that we want to determine which node should be

added as the next column to the canonical adjacency matrix. Each possible extension con-

nects to a node in the current graph. The node which connects to the lowest numbered node

in the current graph should be chosen as the next column of the adjacency matrix, as this will

yield a non-zero entry at the lowest possible row. Formulated differently, what we see is that

FFSM prefers codes which are higher according to a breadth-first traversal. If two candidate

extension nodes connect to the same set of nodes in the current graph and all edge labels are

equal, the search for the canonical code has to branch over these two alternatives. Again, what

results is an exponential procedure in which the canonical form is determined by the labels,

albeit this time using a breadth-first walk instead of gSpan’s depth-first walk.

We already mentioned that FFSM differs from gSpan in that it applies joins explicitly.

One special property of FFSM is that it enumerates all cyclic graphs through joins instead of

6.11. Related Work 199

extensions. In our notation, FFSM would consider this join:

µFFSM((1,2,C,X,B)(2,3,B,X,A), (1,2,C,X,B)(1,3,C,X,A)) =

(1,2,C,X,B)(2,3,B,X,A)(3,1,A,X,C).

The idea is that the last As of both input graphs are unified. Although due to this additional

join it is not necessary to search for cycle closing extensions, we argue that the gain obtained

by doing this is rather limited. First, in applications to which frequent graph mining can

reasonably be applied, the number of cycles will be rather limited. The additional join will

generate many candidates, most of which can only turn out to be infrequent. Furthermore, as

extension is required anyway to find non-cycle closing edges connecting to the last node in

the graph code, we still have to scan the database. One cannot expect to obtain large speed-ups

only by avoiding to increment some counters.

In a follow-up paper Huan et al. modified their algorithm to implement the maximal

subgraph miner S [87]. Presented at the same conference as our graph miners, S also

splits the search in phases: a tree mining phase and a cyclic graph mining phase. In the second

phase maximal frequent itemset mining techniques are applied to speed-up the search. A year

later, Huan et al. published a technical report with more details about their algorithm [88].

From this report we can conclude that there are several difference between S and G:

• In S the canonical form of a free tree is primarily label-based: the highest labeled

node is used as the root of the free tree. As a result the canonical form of the tree can

only be computed in quadratic time in the size of the tree, and not in linear time.

• To refine spanning trees the adjacency matrix of FFSM is used, with restrictions on the

joins to prevent cycles from being generated; no characterization of canonical forms is

given, and thus the refinement of spanning trees is not optimal. It is unclear how it is

checked whether an adjacency matrix is canonical. Given our observation that FFSM’s

adjacency matrix is a breadth-first encoding, the normal form may be obtained using a

quadratic algorithm, but the authors hint that an exponential algorithm is used.

• The search space is reduced in the last phase, where the backward edges are reordered

to attempt to enumerate mostly maximal subsets of these edges, thus reducing the num-

ber of cyclic graphs that the algorithm has to consider.

• To make sure that only maximal frequent subgraphs are outputted, for every tree it is

checked whether it is maximal, by searching for supertrees with the same occurrences.

S uses some ideas that were previously introduced by Chi et al. in the occurrence se-

quence based HTM [39]. In comparison with the variant of the HTM-

 which mines for rooted trees, the free tree miner variant of the HTM disre-

gards all rooted trees in which the second-deepest subtree of the root is more than one level

less deep than the deepest subtree. If one would conceive these special rooted trees as free

trees, the special property of these rooted trees is that the root is either the centre of the free

tree, or one of the bicentres. Thus, by using this simple restriction, the HTM is

easily modified for free tree mining.

200 6. Mining Free Trees and Graphs

T1

B

A

B A

A

E
x
te
n
d

E
x
te
n
d

E
x
te
n
d

Jo
in

Gaston

HybridTreeMiner

S
el
f−
jo
in

E
x
te
n
d

E
x
te
n
d

Jo
in

E
x
te
n
d

A

A

B

B

A

B

A

A

A

Jo
in

B B A B A

B A A

B B

B

A

A

A

B

B

A B

A

A

B A

B

B B

A A

T2

A

B B A

A

Figure 6.10: All steps involved in generating one particular candidate free tree in HTM and

G.

One of the differences between our graph miner G and the HTM is il-

lustrated in Figure 6.10. The HTMwill enumerate both T1 and T2, although they

represent the same free tree. One can see that in the HTM trees grow level-wise,

while in G first paths are grown and trees are constructed from paths. The approach

of G guarantees that the refinement of non-path free trees is performed using an opti-

mal refinement operator. The HTM does not provide such guarantees, and uses a

suboptimal operator for the entire search space: first, bicentred free trees are always evaluated

at least twice (every node of the bicentre is considered as the root once). Second, many free

trees with automorphisms are evaluated multiple times: the algorithm proceeds level-wise by

iterating a process in which first all nodes at a certain level are generated, and then the joins

of the nodes at this level are enumerated. To guarantee complete enumeration through joins,

the same extension of multiple automorph trees is considered.

In [166] Rückert et al. proposed the depth-first FTM. It differs from the H-

TM as it is searches for free trees in a database of graphs instead of trees, and

therefore uses a different evaluation strategy. The canonical form that is used to represent

free trees is similar to that of the HTM and relies on a level-wise traversal of the

(bi)centred free tree. For the same reasons as in the case of the HTM Rückert’s

refinement operator is suboptimal. To generate candidates a similar approach is used as by

the HTM. Given a tree of depth k, the algorithm first evaluates its frequency

by passing it through the database and determining all occurrences of the tree; at the same

time, all possible extensions for depth k+1 are determined, together with the transactions that

6.11. Related Work 201

support the extensions. Thus, a set of candidate extensions is obtained. Using a breadth-first

approach, instead of frequent subsets, pseudo-frequent subsets of this set of candidates are

determined, where the pseudo-frequency is determined by joining the occurrence sequences

associated to the candidate extensions. These pseudo-frequencies may be higher than the real

frequencies as the locations of the extensions within transactions are not taken into account.

For each possible deepest level thus obtained, the procedure is called recursively to determine

the real frequency and find the extensions at the next depth.

In a follow-up paper Chi et al. extended their HTM to obtain a closed free

tree miner. The approach is similar to the rooted tree mining case [40].

Breadth-first graph miners

Apart from these depth-first mining algorithms, many A-like breadth-first algorithms

have been proposed. The main problem that breadth-first algorithms face is again that most

paths cannot be generated through the join of two other paths with a common prefix. There-

fore, the well-known A approach which joins two codes with a common prefix is not

sufficient to generate all patterns. The algorithms differ in their solution to this problem.

The breadth-first FTM of Chi et al. uses a breadth-first (level-wise) code to

represent free trees. We will give a simplified description of the approach. To compute a

canonical form in the level-wise representation a polynomial algorithm is used. For a set of

candidates an index is built to allow for a quick search for a given canonical code in the set

of candidates. To generate candidates first from every pattern tree with k nodes each leaf is

removed, and the normal form of the resulting (k−1)-tree is computed; if the removed node

had the highest or second highest label among all leafs, the k-subtree is registered as a child

of the (k − 1)-subtree, together with the edge that could be added to the (k − 1)-subtree to

obtain the k-subtree. The label restriction is intended to make sure that a tree always grows

from a subtree by adding the highest labeled leaf. In this way, for each (k−1)-subtree a list of

k-supertrees is obtained. The join operator merges all pairs of trees in such lists. To make sure

that the search is globally complete, during this join all automorphisms of the (k−1)-subtree

are enumerated. Each resulting tree is normalized again, and stored in the index or discarded

if already present in the index of (k+ 1)-subtrees. To count candidates Chung’s polynomial

subtree isomorphism algorithm is used [41]; to avoid that this algorithm is run for every

pair of pattern tree and data tree, together with every pattern tree an occurrence sequence

of transaction identifiers is stored. This occurrence sequence is computed by intersecting the

occurrence sequences of the trees that are joined; contrary to the case of itemsets, however,

the intersection is not sufficient to determine the support exactly, as a data tree may support

two subtrees, but not all joins of these subtrees.

The interesting feature of Chi’s algorithm is that it only stores connected free trees, and

generates all candidates through joins. However, in case the numbers of labels are low, the

same tree can be generated through many joins; the merge operator is therefore highly sub-

optimal. The indexing structure is used to guarantee that only one canonical tree is kept;

the observation that prefixes of canonical free trees must also be canonical is not used: the

canonical representation may be generated through a join of two other trees, whose result was

normalized afterwards. From an efficiency point of view, it also requires additional run time

to generate all automorphisms.

202 6. Mining Free Trees and Graphs

The first breadth-first graph miner to be proposed was Inokuchi’s AGM algorithm [92].

Although initially proposed to mine unconnected subgraphs, we will only consider AGM

here, which is a modification of AGM that only mines connected subgraphs [93]. The canon-

ical code that is used by AGM is very similar to the adjacency matrix representation of

FFSM; the main difference is that FFSM stores node labels in the diagonal, while AGM

adds an additional row to the matrix in which the node labels are stored. The highest among

isomorphic codes is considered to be canonical. The join operator of AGM is considerably

different from that of FFSM. While FFSM’s merge operator is downward cover, the join of

two graphs in AGM always yields a graph with one additional node, where many edges from

both merged graphs may be inserted into the joined graph. The advantage of this approach is

that it allows AGM to be adapted easily to induced subgraph mining; the downside is that

the pruning power is smaller: many joins could result in infrequent graphs. Similar to other

algorithms, also AGM’s join is not sufficient to generate all connected graphs. The solution

which is chosen in AGM is to relax the search space to semi-connected graphs, which are

connected graphs with possibly one additional unconnected node. When a connected graph

is joined with a semi-connected graph, one possible result of the join is that the unconnected

node is connected to one of the other nodes. Interestingly, one could conceive this method as a

means to ‘emulate’ the extension that is performed by depth-first graph miners. Although this

approach allows every graph to be generated through joins, the approach may be disadvanta-

geous in situations where there is one label that can be added to almost all frequent graphs: in

that case a connected and a semi-connected representation are generated and evaluated both.

To speed-up the frequency evaluation AGM uses an approach in which a simple occur-

rence sequence is stored with every pattern graph: for every database graph which induces the

pattern graph the lexicographically lowest simple mapping is stored. This mapping is taken as

the starting point for the evaluation of the refined graphs. As the search is performed breadth-

first, and many candidates can be present at the same time, the occurrence sequences are

stored on disk during the run of the algorithm. Note that AGM’s occurrence sequences thus

contain significantly more information than the occurrence sequences of transaction identi-

fiers that are used by most other breadth-first pattern mining algorithms. On the other hand,

less information is stored than by the depth-first miners that store all simple occurrences.

In a follow-up paper Inokuchi extended AGM to mine frequent subgraphs with label tax-

onomies [91]. The taxonomy is modeled as a partial order. As a result of the label taxonomy,

a graph can be a subgraph of another graph with the same structure, because its labels are

more specialized. Inokuchi proposes to output only those subgraphs of which the labels are

not over generalized. We believe that this concept is most easily understood by considering

the link to closed subgraphs. Using the partial order on the labels, for each unlabeled graph a

partial order can be obtained of all frequent labeled subgraphs with this same graphical struc-

ture. Within each such partial order Inokuchi proposes to only output the closed frequent

subgraphs.

The observation of Inokuchi is that this problem is rather easily dealt with by modifying

AGM. By neglecting the taxonomy during candidate generation —thus generating both spe-

cialized and generalized graphs at the same time— no changes to the candidate generation

are required. The frequency counting method needs to be modified a little: for each subgraph

the total number of simple occurrences has to be computed, instead of one occurrence for

each database graph.

6.11. Related Work 203

Most additional work is only required after counting the candidate subgraphs. Then it

is checked for each frequent k-graph whether it is a generalization of another k-graph with

the same number of simple occurrences; if this is the case, the over generalized subgraph

is removed from the set of frequent subgraphs. This can safely be done, as any other graph

that contains this removed subgraph will also be over generalized. Otherwise, AGM remains

unmodified. In a post processing phase other over generalized graphs are removed.

Of interest is the relation between this variant of AGM and CloseSpan. Both search for (a

kind of) closed subgraphs, and use the total number of simple occurrences to prune the search

space. We believe that a depth-first mining algorithm that searches for truly closed subgraphs

under label taxonomies, is probably the most useful from an application point of view. A

modification of CloseSpan, which allows for specialization of general labels, could already

solve this problem, but other depth-first mining approaches which do not use a downward

cover refinement operator, are also imaginable.

The second breadth-first graph miner that was proposed was Kuramochi’s FSG algorithm

[107, 109]. Also FSG uses adjacency matrices as graph representation; the matrix represen-

tation is however different from that of FFSM and AGM, as it does not require that prefixes

of the graph code represent connected graphs. The order of the nodes in the matrix columns

and rows is determined first by label, and then by other properties such as node degree. FSG

generates all candidates through joins, and does not require the relaxation to semi-connected

graphs. To avoid extensions the same approach is used as that of Chi’s FTM, albeit

this time by using NP-complete algorithms to normalize graphs. When determining candi-

dates of size k+1 for every frequent subgraph of k−1 edges, a list is built for all the frequent

k-subgraphs that contain it. The k-subgraphs in such lists are joined in all possible ways,

where the automorphisms of the (k− 1)-subgraph are taken into account. The resulting pat-

tern graphs are normalized again and stored as candidates; an index is used to search for a

canonical representation efficiently and to avoid duplicates. The merge operator is downward

cover and suboptimal.

To evaluate frequencies FSG uses an approach in which all occurrences within database

graphs are recomputed. To reduce the set of database graphs for which a subgraph isomor-

phism algorithm is run, an occurrence sequence of transaction identifiers is stored with every

pattern graph. When two pattern graphs are joined also their occurrence sequences are inter-

sected. This approach may require large amounts of memory if the database is large and the

number of candidates is large.

Several subsequent modifications of FSG were proposed by its authors. The gFSG algo-

rithm augments nodes in graphs with coordinates, and defines a subgraph relation in which

coordinates of pattern graphs must match those of subgraphs of the data [108]. As this map-

ping is defined to be fault-tolerant, and a greedy approach is used to determine coordinates

in the pattern graphs, the search is however not guaranteed to be globally complete. On the

other hand, the use of coordinates has advantages both from a complexity point of view as

from an application point of view. The SGM algorithm mines for frequent subgraphs in

one large graph [110]. The support of a graph is defined in terms of the maximal number of

edge disjoint occurrences that can be found. Even if all occurrences are known, the problem

of finding the largest set of edge disjoint occurrences reduces to the maximal independent set

problem, which is again known to be NP-complete [73]. Besides an exact approach therefore

also several heuristic approaches are considered to estimate the number of non overlapping

204 6. Mining Free Trees and Graphs

occurrences instead of repeatedly computing this number exactly. In a further modification of

the algorithm not only the frequency evaluation is performed heuristically, but also the search

itself is globally incomplete [111].

The general problem of mining subgraphs has been studied longer than frequent subgraph

mining, mainly using heuristic algorithms. Examples of such systems are S [46] and

GBI [129].

Other related work

Not only data mining algorithms are related to our work, we also apply algorithms that have

been developed for other purposes. Inspired by the ideas of Beyer and Hedetniemi’s algorithm

for enumerating rooted trees [18], Wright et al. developed a constant time enumeration algo-

rithm for free trees in 1986 [197]. Also this algorithm starts the enumeration from the longest

path; however, as only unlabeled paths are considered in this publication, the enumeration of

these paths is trivial. Similar to our refinement operator for rooted trees, our refinement oper-

ator for free trees can also be reformulated as an enumeration algorithm. For unlabeled trees

our algorithm would achieve the same constant time complexity as Wright et al.’s algorithm.

Related to optimal graph refinement are the issues of graph isomorphism and subgraph

isomorphism. Although we have already shown the theoretical complexities of these rela-

tions, several algorithms have been developed that still work well in practice. To solve the

graph isomorphism problem McKay developed the Nauty algorithm [131]. This algorithm

repeatedly partitions nodes in equivalence classes according to graph invariants such as node

labels, degrees and connections. The partitioning procedure continues until either a unique

representation is obtained (which is in most cases) or no further partitioning is possible using

the built-in rules; in that case permutations of equivalent nodes have to be enumerated. The

Nauty algorithm has been tested successfully on large graphs. In a variant of our algorithm,

we also used the Nauty algorithm to determine the canonical form of a cyclic graph; the

results that we obtained with our normalization procedure were however better, most likely

due to the relatively small size of the frequent graphs and the low numbers of cycles in the

databases that we considered.

Another implementation of both a graph isomorphism algorithm and a subgraph isomor-

phism algorithm is the VF algorithm of Cordella et al. [71]. Similar to Nauty, it relies on large

sets of graph invariants to perform the search efficiently.

One of the first subgraph isomorphism algorithms was Ullman’s algorithm [183], which

operates by iteratively excluding possible mappings. Although on large graphs Ullman’s al-

gorithmmay have advantages, in isolated experiments that we performed with two implemen-

tations of this algorithm (one provided by Cordella et al. [71], one implemented by ourselves)

we found that the more simple algorithm of the previous section performed more efficiently

in our test datasets of relatively small graphs.

Other algorithms for computing the subgraph relation mostly rely on the same idea of

iteratively reducing the possible mappings; for example, the algorithm by Schmid and Druffel

[168] reduces the set of possible mappings by exploiting the mutual shortest distance between

nodes.

6.12. Experimental Results 205

6.12 Experimental Results

In this section we will present an extensive experimental comparison between a large number

of graph mining algorithms. We obtained binaries of the following graph miners: AGM [93],

FSG [107], gSpan [199] and FFSM [86], and source code of the free tree miners HT-

M [39] and FTM [38]. Furthermore, we also obtained a binary of Rückert’s

free tree miner [166]; however, as in initial experiments the performance of this algorithm

was very bad in comparison with the other algorithms, we decided not to use this algorithm

in further experiments. We implemented several variations of G. In all experiments we

report on the use of two ‘standard’ implementations of our algorithm:

• G (OS), which implements frequency evaluation through occurrence sequences,

and includes optimizations such as self-join prevention;

• G (RE), which implements frequency evaluation by recomputing occurrences,

and includes optimizations such as bit vectors to store hints for subgraph mapping, and

edge tuple reordering.

In separate experiments we determine the advantages of the optimizations.

All algorithms were implemented in either C or C++, and were compiled using the –O3

option of the GNU C compiler. The analysis of the algorithms is hampered by the unavail-

ability of source code. Experimentally we tried to determine some of the characteristics of

the algorithms, which are summarized in Figure 6.11. By > x we denote that for the given

property (for example, transactions) the number of allowed values is larger than x, but that

we did not determine the exact maximum. G is not included in the table as we can re-

compile G for any number of transactions and nodes. However, we wish to note that the

array datastructure that we use to store extensions in our current implementation is far from

optimal for large numbers of labels; in practice, the number of node labels is therefore also

limited.

In this section we perform several kinds of experiments. After presenting the datasets, we

perform the support–run time experiments which are common practice in frequent itemset

mining. Then, we will provide a more thorough analysis of the performance of the graph

miners by analyzing implementation independent measures. We conclude with an analysis of

the separate optimizations that we applied.

Datasets

To test the algorithms we used a range of 10 different datasets:

• Four tree datasets (A1, A2, A3, A4) were generated using an optimized implementation

of Zaki’s tree dataset generator [203]. The modified generator and the datasets can

be found via our website [143]. A4 is equal to A1, except that all node labels were

removed. Datasets A2 and A3 are generated such that most frequent trees only have

diameter 2, and differ mainly in degree of the nodes.

206 6. Mining Free Trees and Graphs

Algorithm Node labels Edge labels Nodes Transactions

gSpan < 257 < 257 < 257 > 65535

AGM < 257 < 257 > 512 > 65535

FFSM < 127 < 127 < 32765 < 32765

FSG > 65535 > 65535 > 65535 > 65535

Figure 6.11: Restrictions of the graph mining implementations.

A1 A2 A3 A4 CS-LOG

Number of graphs 5000 10000 10000 5000 59691

Number of nodes 62936 191846 183743 62936 716263

Number of edges 57936 181846 173743 57936 656572

Average largest number of

equally labeled nodes

2.7 2.5 3.9 12.6 1.9

Average number of nodes 12.6 19.2 18.4 12.6 12.0

Average largest number of

equally labeled neighbors

1.7 1.9 3.2 5.2 1.2

Number of node labels 10 20 10 1 13209

Number of edge labels 1 1 1 1 1

PTE Cancer Aids NCI Protein

Number of graphs 340 32557 42689 250251 40

Number of nodes 9189 857126 1092973 5545779 9502

Number of edges 9317 922081 11175143 5881934 22016

Average largest number of

equally labeled nodes

11.9 19.2 18.6 11.2 25.6

Average number of nodes 27.0 26.3 25.6 22.2 237.6

Average number of edges 27.4 28.3 27.5 23.5 550.4

Average largest number of

equally labeled neighbors

2.6 2.7 2.7 2.3 1.1

Number of node labels 66 67 63 110 20

Number of edge labels 4 3 3 3 1

Figure 6.12:Characteristics of the graph datasets.

6.12. Experimental Results 207

• One webserver access log tree dataset, as generated by Zaki through the WWWPal

program [203].

• Fourmolecular datasets. ThePTE dataset was obtained from [3] and encodes molecules

of which the carcinogenic properties have been determined experimentally. The pur-

pose of this dataset was to allow for Predictive Toxicology Evaluation (PTE), for ex-

ample, of machine learning algorithms. The Cancer dataset is a similar, albeit much

larger, dataset that was setup by the National Cancer Institute (NCI), and can be ob-

tained from [1]. Similar screening experiments were performed with respect to Aids,

and were collected in the Aids dataset. In this chapter we use datasets that contain all

molecules, independent of the outcome of the screening. Finally, the NCI also main-

tains a dataset of molecules which have not been screened yet. We collected all these

molecules in the NCI dataset. The Cancer and Aids datasets are subsets of the NCI

dataset.

• One protein dataset. This dataset was set up by Huan et al. [85], and encodes secondary

structure of proteins, as described earlier.

Those properties of the datasets which we consider to be of importance, are given in Fig-

ure 6.12.

As can be seen, some datasets have more node labels or more transactions than allowed

by some implementations. Although in principle we run every algorithm on each dataset,

these restrictions limit the extent of our experiments. Furthermore, some algorithms (FFSM,

AGM) crash for other unexplained reasons, and will neither be used in all experiments.

The encoding of molecules in graphs differs slightly between the datasets. In the PTE

dataset every atomis encoded as a node,including hydrogen atoms. In the other datasets the

hydrogen atoms are left out,which explains the difference in the average number ofequally

labeled nodes. In the NCI dataset we made a further distinction between carbon atoms inside

and outside benzene rings,while in other datasets carbon was always encoded with the same

label. As defined by the standard settings ofthe OpenBabel library [2],in the NCI dataset

alsoother elements were translated in multiple node labels according totheir positions in

the molecule,which explains the larger number ofnode labels. The removal ofhydrogen

atoms fromthe graphs reduces the number offrequent graphs that are found under the same

minimumsupport value,and allows torun the graph miners under lower supports. This was

beneficial considering the large size ofthe Aids,Cancer and NCI datasets.

Furthermore,the following properties are listed in the table:

• Average largest number ofequally labeled nodes:in each database graph a number of

nodes can have the same label;the maximumover all labels in each graph is listed in

the table,averaged per database graph. This property is ofimportance as it defines how

many starting points a simple recursive subgraph isomorphismalgorithmwould have

toconsider.

• Average largest number ofequally labeled neighbors:in a set ofneighbors multiple

nodes can have the same label;the maximumnumber ofsuch equally labeled neigh-

bors per database graph is listed in the table,averaged over the database graphs. This

208 6.MiningFreeTreesandGraphs

property is of importance as it defines the worst case branchingfactor that a simple re-

cursive subgraph isomorphism algorithm can encounter: if multiple siblings are equally

labeled, permutations of these nodes have to be considered. Note that in the molecular

dataset the average number of equally labeled neighbors is closer to 2 than to 3because

edge labels are also taken into account; although in most molecules there is at least one

atom with 3carbon neighbors, the number of equally labeled neighbors is not always

3when the bond types (single, double)are taken into account.

We believe that these datasets exhibit a large range of properties that allow us to compare the

algorithms fairly with each other:

• artificial datasets A1–A4exhibit various degrees of equally labeled neighbors, and pro-

vide insights in the possible branching factor of the subgraph isomorphism algorithm;

• several degrees of cyclicity are represented: the tree datasets do not contain cycles, the

molecular datasets have a relatively low numbers of cycles, the protein dataset is highly

cyclic;

• several numbers of labels are represented: the CS-LOGdataset represents a large num-

ber of a labels, the other datasets a moderate number of labels, and the A4dataset the

absence of labels;

• various database sizes are represented, from the tiny protein dataset to the large NCI

dataset.

Although less thoroughly, we also performed experiments with datasets with other properties,

or combinations of properties. Especially, not well represented in our experiments here is the

‘density’of datasets: if most graphs in a database are very similar to each other, with high

minimum supports already large numbers of frequent pattern graphs will be found. Still, we

believe that the experiments presented in this section provide a good insight in the relative

performance of graph mining algorithms.

Experiments with minimum support

To perform our experiments we relied on three different computers:

• all cyclic graph datasets, except the NCI dataset (see later), were mined on an AMD

Athlon XP1600+ with 512MB main memory, running Mandrake Linux 10;

• all free tree datasets were mined on an Intel Pentium IV2.8Ghz with 512MB main

memory, running Red Hat Linux 7.3;

• the NCI dataset was mined on a Sun Enterprise Server with 4processors of 400Mhz

and 4GB main memory, running Solaris 8(SunOs 5.8).

All timing experiments were measured using the Unix time command, and were performed

during the night, while as few other processes were running as possible. Timings are the

average over 3runs. To measure memory usage the Unix memusage program was used. The

datasets were copied to a local diskand not loaded over the network. Special care was taken

6.12. Experimental Results 209

 1

 10

 100

 1000

 70 75 80 85 90

R
u
n
 T
im
e
 (
S
e
c
o
n
d
s
)

Minimum Support (%)

Protein

Gaston (RE)
Gaston (OS)

FFSM
FSG
AcGM

Figure 6.13: Run time experiment on the Protein dataset.

Algorithm 2% 3% 4% 5% 6% 7%

G(OS) 7.9s 1.7s 0.6s 0.4s 0.3s 0.2s

G(OS,No-Opt) 9.5s 2.1s 0.7s 0.5s 0.3s 0.2s

G (OS, No-Opt, Free Trees) 8.1s 1.9s 0.8s 0.5s 0.4s 0.3s

G (OS, No-Opt, No Isomorphism) 10.0s 2.4s 0.9s 0.6s 0.4s 0.3s

G (OS, No-Opt, Nauty) 14.2s 2.7s 0.9s 0.6s 0.4s 0.4s

G (Diffset) 20.0s 4.2s 1.5s 0.9s

G (RE) 38.7s 8.5s 2.7s 1.6s 1.0s 0.8s

FFSM 30.3s 6.2s 2.0s 1.2s 0.7s 0.5s

gSpan 98.0s 20.3s 6.3s 3.4s 2.0s 1.4s

AGM 105.8s 21.1s 6.3s 3.9s 2.8s 2.2s

FSG 307.4s 43.9s 11.0s 6.3s 4.0s 2.9s

F 572s 172s 93s 54s 37s

Figure 6.14: Run time experiment on the PTE dataset.

to deal with the AGM algorithm, which is more disk intensive due to the repeated writing

of occurrence sequences to disk. On the Intel Pentium IV occurrence sequences were written

to a local disk, while on the AMD Athlon XP1600+ we set up a Linux ramdisk, and used the

ramdisk to store the occurrence sequences, thus eliminating potential disk I/O latencies; we

did not attempt to re-implement AGM to eliminate OS latencies.

Figures 6.15, 6.13 and 6.14 show the run times for all datasets for several minimum

support values.

The experiments on the tree datasets clearly show the importance of the branching factor

of subgraph isomorphism algorithms. On the A1 dataset, for which the branching factor is

low, the depth first graph mining algorithms perform very well. If the branching factor is

extremely large, as in the A4 dataset, all algorithms which rely on an exponential subgraph

isomorphism algorithm fail miserably; only the breadth-first FTMperforms well,

while this algorithm performed most inefficient in all other cases. The experiments also show

the difference between algorithms that have to find one occurrence per database graph, and the

210 6. Mining Free Trees and Graphs

 1

 10

 100

 1000

0.6 0.8 1 1.5 2 3 4 5

R
u

n
 T

im
e

 (
S

e
c
o

n
d

s
)

Minimum Support (%)

A1

Gaston (RE)
Gaston (OS)

gSpan
FFSM

HybridTreeMiner
FreeTreeMiner

FSG
AcGM

 1

 10

 100

 1000

1.5 1.75 2 3 4 5 10

R
u

n
 T

im
e

 (
S

e
c
o

n
d

s
)

Minimum Support (%)

A2

Gaston (RE)
Gaston (OS)

gSpan
HybridTreeMiner

FreeTreeMiner
FSG

 1

 10

 100

 1000

2 2.5 3 4 5 7.5 10 20

R
u

n
 T

im
e

 (
S

e
c
o

n
d

s
)

Minimum Support (%)

A3

Gaston (RE)
Gaston (OS)

gSpan
FFSM

HybridTreeMiner
FreeTreeMiner

FSG

 10

 100

 1000

26 26.5 27 27.5 28 29 30 31

R
u

n
 T

im
e

 (
S

e
c
o

n
d

s
)

Minimum Support (%)

A4

Gaston (RE)
gSpan

FreeTreeMiner
FSG

 10

 100

 1000

0.15 0.2 0.250.3 0.4 0.5 1 2

R
u

n
 T

im
e

 (
S

e
c
o

n
d

s
)

Minimum Support (%)

CS-LOG

Gaston (OS)
HybridTreeMiner
FreeTreeMiner

FSG

 30

 40
 50
 60

 80
 100

 200

 300

 400
 500
 600

4 6 10 15 20

R
u
n
 T
im
e
 (
S
e
c
o
n
d
s
)

Minimum Support (%)

Aids

Gaston (RE)
Gaston (OS)

gSpan
FSG

 30
 40

 60
 80
 100

 200

 300
 400

 600
 800
 1000

 2000

3 4 6 10 15 20

R
u
n
 T
im
e
 (
S
e
c
o
n
d
s
)

Minimum Support (%)

Cancer

Gaston (RE)
Gaston (OS)

gSpan
FFSM
FSG
AcGM

 200

 300

 400

 500
 600

 800

 1000

 1500

 2000

1.9 2.5 5 10 20

R
u
n
 T
im
e
 (
S
e
c
o
n
d
s
)

Minimum Support (%)

NCI

Gaston (RE)
Gaston (OS)

Figure 6.15:RuntimeexperimentsontheA1,A2,A3,A4,CS-LOG,Aids,CancerandNCIdatasets.

6.12. Experimental Results 211

algorithms that have to find all occurrences. For example, on the A3 dataset FSG performs

still well for relatively low supports. An explanation can be found by observing that the

number of equally labeled nodes is relatively high per database graph (3.9, see Figure 6.12),

as is the branching factor (3.2). In this dataset FSG finds one occurrence for each candidate

graph ratherquickly, while the depth first graph miners have to find all occurrences (including

permutations) to determine extensions of pattern graph nodes.

Among the depth first graph miners, it appears that both variations of G perform

better than all other depth first graph miners;in some cases the implementation of G

which recomputes occurrences is even slightly faster than FFSM, which stores occurrence

sequences and therefore requires much more memory.

Among the breadth-first miners it is remarkable that FSG often performs better than the

FTM, although these algorithms are similar in many aspects. The most likely

explanation is that the more simple exponential subgraph isomorphism algorithm of FSG

runs more efficiently on the small graphs considered here than the conceptually much harder

(sub)tree isomorphism algorithms of the HTM.

We wish to point out that in some experiments we were required to cut off depth-first

miners at high minimum support values because the algorithms ran out of main memory due

to the use of too long occurrence sequences, for example on the CS-LOG dataset, which

we also considered in the previous chapter. Other algorithms were stopped if they reached a

predefined time out.

It is of interest to compare the free tree mining results of the CS-LOG dataset with the

rooted tree mining results (see previous chapter). What we see is that the number of frequent

free trees in this dataset is almost the same as the number of frequent rooted trees. Indeed,

G and the HTM show very similar behavior as in the previous chapter,

G being faster than the HTM, but both running out of memory for supports

as low as 0.19%. Also FSG and the FTM run out of memory, probably due to a

large amount of occurrence sequences that are maintained breadth-first. In this light, it is a

good achievement that the FT algorithm runs well at this level of support; this provides

an indication that a modification of FT for free tree mining may also be useful.

The results on the cyclic graph datasets are very similar to those on the tree datasets.

Although our algorithms perform consistently better, on the Aids and Cancer datasets the

differences between our algorithms and gSpan and FFSM are rather small; these relatively

small differences support our belief that these algorithms are implemented in similar ways,

and differences in other experiments may very well be attributed to different merge operators.

It is not clear to what extent the (still visible) differences on these datasets can be explained

by differences in implementation details or by different merge operators. The experiments on

the Cancer and Aids datasets do show that the difference in performance between FFSM and

gSpan on this dataset (which was also observed earlier by Huan et al. [86]) can mainly be

attributed to the use of occurrence sequences instead of recomputed occurrences, and is not

due to the use of a ‘better’ merge operator, as also claimed by Huan et al.

The timing experiment for the NCI dataset was performed on a Sun computer as the

occurrence sequences of G (OS) were extremely large on this dataset, and did not fit

within the main memory of the PCs that we used for the other experiments. As the binaries

of the other algorithms were compiled for PCs, we could not perform experiments with other

algorithms on this dataset.

212 6. Mining Free Trees and Graphs

A1

Minimum support 50% 30% 15% 10% 8% 6%

Frequent paths 157 374 970 1676 2246 3103

Frequent near paths 226 664 2759 6043 9182 15700

Frequent free trees 236 838 5682 18552 36945 93979

Frequent evaluated free trees 519 1737 9155 25281 46320 108176

Free tree suboptimality 220% 207% 161% 136% 125% 115%

Frequent graphs 236 838 5682 18552 36945 93979

Frequent evaluated graphs 519 1737 9155 25281 46320 108176

Graph suboptimality 220% 207% 161% 136% 125% 115%

Free tree joins 1267 4388 19747 49450 86096 186952

Frequent free tree joins 296 1195 7137 20031 36972 87169

Free tree join efficiency 23% 27% 36% 41% 43% 47%

Non empty free tree joins 1253 4260 18483 46846 82312 181268

Free tree join usability 99% 97% 94% 95% 96% 97%

Self joins 10 78 923 3434 6918 17643

Figure 6.16:Characteristics ofthe G (OS) algorithm on the A1 dataset.

The run time differences between our algorithms and other algorithms are largest on the

PTEand Protein datasets. Most remarkably, G (RE) is again more efficient than FFSM

on the Protein dataset, while this dataset is highly cyclic and one would therefore expect that

the merge operator of FFSM is beneficial. We will provide a possible explanation later in this

section.

During the development of our algorithm we used the PTEdataset as our primary test

case. It is therefore not remarkable that our algorithms perform very well on this dataset. Our

most efficient implementation of G (OS), which includes the self-join optimization, is

almost 4 times faster than FFSM, while G (RE) is more than twice as fast as gSpan.

Other variations of G that are included in the figure are G (Nauty), which uses the

Nauty algorithm to avoid duplicate cyclic graphs [131], G (OS, No-Opt), which uses

simple occurrence sequences but does not include the self-join optimization, and G

(Diffset), which employs the diffset approach that we introduced earlier this chapter.

Implementation independent measures

The disadvantage of run time experiments is their sensitivity to implementation details. Al-

though we feel that a fair comparison of computational efficiency is hard to obtain other-

wise, we are convinced that other measures of performance are also worth consideration.

Figures 6.16, 6.17, 6.18 and 6.19 provide a large number of statistics that we collected from

runs of the G (OS) algorithm, and will help us to analyze more precisely the results of

our previous experiments.

The statistics that are listed in the tables are:

• frequent paths: the number of frequent paths; these graphs are enumerated subopti-

mally;

• frequent near paths: the number of frequent free trees that can be turned into paths by

removing one single node; also these graphs are enumerated suboptimally;

6.12. Experimental Results 213

A2 A3

Minimum support 5% 3% 2% 1.75% 7.5% 4% 3% 2.5%

Frequent paths 130 369 1046 1355 143 554 622 645

Frequent near paths 149 490 2447 3991 156 1371 2227 2575

Frequent free trees 149 509 3616 10164 156 1826 5405 10451

Frequent evaluated free trees 310 1094 7331 16468 330 3904 8728 14197

Free tree suboptimality 208% 215% 203% 162% 212% 214% 161% 136%

Frequent graphs 149 509 3616 10164 156 1826 5405 10451

Frequent evaluated graphs 310 1094 7331 16468 330 3904 8728 14197

Graph suboptimality 208% 215% 203% 162% 212% 214% 161% 136%

Free tree joins 890 4288 20603 35855 1166 10650 16485 22062

Frequent free tree joins 139 653 5922 13940 127 3134 7218 11411

Free tree join efficiency 16% 15% 29% 39% 11% 29% 44% 52%

Non empty free tree joins 873 4245 19149 33428 1164 10464 16216 21785

Free tree join usability 98% 99% 93% 93% 100% 98% 98% 99%

Self joins 2 12 187 968 0 155 833 2087

Figure 6.17: Characteristics of the G (OS) algorithm on the A2 and A3 datasets.

PTE Protein

Minimum support 20% 10% 6% 3% 2% 80% 75% 70%

Frequent paths 53 121 267 903 1724 3414 8281 20951

Frequent near paths 122 335 797 3349 7664 9481 30988 99661

Frequent free trees 177 779 2172 20481 119378 19992 135792 972246

Frequent evaluated free trees 283 1028 2725 22302 122824 25773 150498 1009916

Free tree suboptimality 160% 132% 125% 109% 103% 129% 111% 104%

Frequent cyclic graphs 13 65 154 2277 17571 6748 140505 1737085

Frequent graphs 190 844 2326 22758 136949 26740 276297 2709331

Frequent evaluated graphs 334 1330 3468 34398 226276 48066 604034 6541246

Graph suboptimality 176% 158% 149% 151% 165% 180% 219% 241%

Cyclic graph joins 41 252 591 10232 93296 24250 512509 6153484

Frequent cyclic graph joins 41 252 591 9664 82815 16919 382149 4892970

Cyclic join efficiency 100% 100% 100% 94% 89% 70% 75% 80%

Non empty cyclic graph joins 41 252 591 9652 83788 19818 350206 3743740

Cyclic join usability 100% 100% 100% 94% 90% 82% 68% 61%

Free tree joins 429 1849 5572 25596 103194 52636 228988 1292475

Frequent free tree joins 225 791 2079 16457 77849 20182 112247 713734

Free tree join efficiency 52% 43% 37% 64% 75% 38% 49% 55%

Non empty free tree joins 357 1431 4045 21915 92770 52582 226814 1276602

Free tree join usability 83% 77% 73% 86% 90% 100% 99% 99%

Self joins 6 51 197 1629 7756 365 4513 28093

Figure 6.18: Characteristics of the G (OS) algorithm on the PTE and Protein datasets.

214 6. Mining Free Trees and Graphs

Cancer Aids

Minimum support 9% 7% 5% 3% 10% 8% 6% 4%

Frequent paths 607 829 1312 2430 442 623 915 1469

Frequent near paths 1389 2058 3583 7695 954 1413 2228 4122

Frequent free trees 1764 2795 5449 14912 1147 1803 3044 6402

Frequent evaluated free trees 2759 4160 7585 18859 1879 2826 4518 8802

Free tree suboptimality 156% 149% 139% 126% 164% 157% 148% 137%

Frequent cyclic graphs 54 96 214 654 33 61 115 266

Frequent graphs 1818 2891 5663 15566 1180 1864 3159 6668

Frequent evaluated graphs 3086 4744 8883 22929 2082 3196 5220 10418

Graph suboptimality 170% 164% 157% 147% 176% 171% 165% 156%

Cyclic graph joins 348 721 1944 7197 212 381 794 2383

Frequent cyclic graph joins 137 239 571 2045 74 153 296 699

Cyclic join efficiency 39% 33% 29% 28% 35% 40% 37% 29%

Non empty cyclic graph joins 327 675 1814 6669 201 358 741 2225

Cyclic join usability 94% 94% 93% 93% 95% 94% 93% 93%

Free tree joins 6962 10778 19376 48345 4927 7240 11614 22798

Frequent free tree joins 1902 2903 5306 13153 1292 1944 3109 6178

Free tree join efficiency 27% 27% 27% 27% 26% 27% 27% 27%

Non empty free tree joins 6677 10296 18429 45738 4733 6946 11091 21634

Free tree join usability 96% 96% 95% 95% 96% 96% 95% 95%

Self joins 48 73 131 365 34 48 91 146

Figure 6.19: Characteristics of the G (OS) algorithm on the Cancer and Aids datasets.

• frequent free trees: the number of frequent free trees, including frequent near paths and

frequent paths;

• frequent evaluatedfree trees: the number of occurrence sequences that are constructed

corresponding to frequent free trees;

• free tree suboptimality: this measure is computed by dividing the number of frequent

free tree occurrence sequences by the number of frequent free trees, and measures the

average number of times that the same free tree is evaluated; the closer this measure is

to 100%, the more close to optimal the refinement was performed;

• frequent cyclicgraphs: the number of frequent cyclic graphs;

• frequent graphs: the number of frequent graphs, which is the sum of the number of

frequent free trees and the number of frequent cyclic graphs;

• frequent evaluatedgraphs:the number of occurrence sequences that are constructed

corresponding to frequent subgraphs;

• graph suboptimality: this measure is computed by dividing the number of frequent

subgraph occurrence sequences by the number of frequent subgraphs, and measures

the average number of times that the same subgraph is evaluated;

• cyclicgraphjoins: the number of joins that result in an occurrence sequence of a cyclic

graph, including joins that yield infrequent subgraphs;

6.12. Experimental Results 215

• frequent cyclic graph joins: the number of joins that result in an occurrence sequence

for a cyclic graph;

• cyclic join efficiency: this measure is computed by dividing the number of frequent

joins by the total number of joins; the closer to 100% this measure is, the more efficient

is the join operator in producing frequent structures;

• non empty cyclic graph joins: the number of joins that result in a non-empty occurrence

sequence for a cyclic graph;

• cyclic join usability: this measure is computed by dividing the number of non empty

joins by the total number of joins; the closer to 100% this measure is, the smaller the

possible disadvantage of using a merge operator, as the merge operator always gener-

ates graphs that have at least one occurrence in the data, and thus does not consider

much more candidates than an operator that collects candidates by scanning the data;

• free tree joins: the number of joins that result in an occurrence sequence for a free tree,

including (near) paths;

• frequent free tree joins: the number of joins that result in an occurrence sequence for a

frequent free tree;

• free tree join efficiency: this measure is computed from the previous two measures;

• non empty free tree joins: the number of joins that result in a non empty occurrence

sequence for a free tree;

• free tree join usability: this measure is computed by dividing the number of non empty

free tree joins by the total number of free tree joins;

• self joins: the number of self joins that is performed; note that in G (OS) self

joins are only performed if the outcome is already known to be frequent, as the fre-

quency of a self-joined occurrence sequence is determined during the construction of

the occurrence sequence.

These measures can also be computed for other graph mining algorithms. A major obstacle is

however that source code of these algorithms is not available, except for the HTM-

. To still be able to obtain the counts, we could re-implement the algorithms; however, the

disadvantage of such an approach could be that we miss some optimizations of the original

authors.

We decided to take an alternative route: get an impression about the algorithms by an-

alyzing the binaries of these algorithms. We found out that both gSpan and FFSM include

a function for checking whether a graph code is canonical: function isCanonicalForm for

FFSM and function isDuplicate for gSpan. The functionality of these functions was con-

firmed by the authors of the binaries. We used the Valgrind tool for Linux [4] to analyze the

number of times that these functions are called, as we can safely assume that these functions

are called for every frequent graph that is found. Furthermore, the FFSM binary contains

propose functions which seem to be called each time that a join is performed. As we can

trace the number of times that isCanonicalForm is called by the join function, we can

216 6. Mining Free Trees and Graphs

also get an idea about the efficiency of FFSM’s merge operator. Results are provided in Fig-

ures 6.20. As we did obtain the source code of the HTM, we computed the exact

measures for this algorithm. These results can be found in Figure 6.21.

As the HTM does not include a self-join optimization, we also computed

statistics for the ‘non-self join efficiency’, which is the efficiency of the join operator without

including self-joins.

The tables provide us some interesting information. Most important are some (very) neg-

ative results for our graph code:

• Due to the inefficient merging of paths and cyclic graphs, our graph code is less optimal

than the code of gSpan.

• Our graph code is less efficient for joining two graphs than the code of FFSM.

Furthermore, we see that gSpan’s graph code is much more optimal than that of FFSM3. In

these experiments, the code of the HTM performs better than that of G,

although much worse than that of gSpan. Overall, we can conclude that gSpan’s code seems

to perform best in practice, and that other codes that were invented afterwards are of limited

additional value.

Can we explain these results?To a certain extent, we can only guess. First, it seems that

the power of using labels in the data is very large; the power of using structure (through the

next prefix node) is much more limited. Furthermore, gSpan’s graph code is conceptually

very simple and rather easy to implement and optimize. For example, consider that gSpan

uses some (label) based optimizations to rule out some refinements; in our experiments, it

seems that FFSM is less thorough in the application of such pruning.

Slightly less guessing is required to explain the results for the HTM on the

A2 and A3 datasets. We constructed these datasets such that most frequent subtrees are (sin-

gle) centred: for example, for the lowest tested support on the A3 dataset, there are 10397

frequent free trees of diameter 2, and 54 of diameter 3. These statistics therefore reflect what

one would expect: the refinement operator of the HTM is almost optimal, while

also join efficiencies are high.

Still, we found in our run time experiments that G (OS) performs better than all

other algorithms, for all datasets. It is tempting to conclude that our self-join optimization

causes this difference, but this is not the case. We can observe that the self-join optimization

would not increase the join efficiency with an amount comparable to the increase in run

time performance, and that FFSM obtains similar join efficiencies, possibly by (unpublished)

similar optimizations.

Fortunately the source code of the HTM is available. It turns out that the H-

TM makes several choices in the implementation that could have a bad influence

on its performance:

• in G (OS) the computation of occurrence sequences can be summarized as fol-

lows:

3Contrary to what FFSM’s authors state in [86].

6.12. Experimental Results 217

A1 A3

Minimum support 30% 10% 8% 6% 7.5% 4% 3% 2.5%

Frequent graphs 838 18552 36945 93979 156 1826 5405 10451

gSpan —

Frequent evaluated graphs 860 19830 39813 101254 167 1848 5460 10507

Graph suboptimality 103% 107% 108% 108% 107% 101% 101% 101%

FFSM—

Frequent evaluated graphs 2594 42899 78536 183628 397 5273 13719 23523

Graph suboptimality 310% 231% 213% 195% 254% 289% 254% 234%

Joins 2310 56417 116645 310696 298 4826 14372 27233

Frequent joins 2293 39621 72574 169707 298 4768 13149 23102

Join efficiency 99% 70% 62% 55% 100% 99% 91% 85%

G—

Frequent evaluated graphs 1737 25281 46320 108176 330 3904 8728 14197

Graph suboptimality 207% 136% 125% 115% 212% 214% 161% 136%

Free tree joins 4388 49450 86096 186952 1166 10650 16485 22062

Frequent free tree joins 1195 20031 36972 87169 127 3134 7218 11411

Free tree join efficiency 27% 41% 43% 47% 11% 29% 44% 52%

PTE Protein

Minimum support 20% 10% 6% 3% 2% 80% 75% 70%

Frequent graphs 190 844 2326 22758 136949 26740 276297 2709331

gSpan —

Frequent evaluated graphs 264 1149 3119 31117 176812 - - -

Graph suboptimality 139% 136% 134% 137% 129% - - -

FFSM —

Frequent evaluated graphs 365 1323 3542 30226 184021 44426 398963 3572233

Graph suboptimality 192% 157% 152% 133% 134% 166% 144% 132%

Joins 419 1838 5164 51299 321895 72493 744256 6727071

Frequent joins 254 940 2572 22976 131648 27624 263276 2387971

Join usability 61% 51% 50% 45% 41% 38% 35% 35%

G—

Frequent graphs 190 844 2326 22758 136949 26740 276297 2709331

Frequent evaluated graphs 334 1330 3468 34398 226276 48066 604034 6541246

Graph suboptimality 176% 158% 149% 151% 165% 180% 219% 241%

Cancer

Minimum support 9% 7% 5% 3%

Frequent graphs 1818 2891 5663 15566

gSpan — Frequent evaluated graphs 2922 4651 8967 24800

gSpan — Graph suboptimality 161% 161% 158% 159%

G— Frequent graphs 1818 2891 5663 15566

G— Frequent evaluated graphs 3086 4744 8883 22929

G—Graph suboptimality 170% 164% 157% 147%

Figure 6.20: Characteristics of the gSpan,FFSM and G algorithms on the A1,A3,PTE,Protein

and Cancer datasets.

218 6. Mining Free Trees and Graphs

A1 A2 A3

Minimum support 10% 8% 6% 3% 2% 1.75% 4% 3% 2%

Frequent free trees 18552 36945 93979 509 3616 10164 1826 5405 10451

Frequent evaluated

free trees

29686 62054 162470 661 3852 10548 1877 5478 10550

Free tree subopti-

mality

160% 168% 173% 130% 107% 104% 104% 101% 101%

Free tree joins 93104 201336 546184 3085 13799 34132 5366 13703 24560

Frequent free tree

joins

19163 41105 114191 355 3389 9865 1765 5328 10356

Free tree join effi-

ciency

21% 20% 21% 12% 24% 29% 33% 39% 42%

Free tree non-self

joins

66150 145610 401675 2424 9951 23607 3489 8227 14015

Frequent free tree

non-self joins

15885 34382 96538 343 3208 9207 1616 4591 8543

Free tree non-self

join efficiency

24% 24% 24% 14% 32% 39% 46% 56% 61%

Non empty free

tree joins

89748 192496 515857 3042 13730 34019 5366 13701 24560

Free tree join us-

ability

96% 96% 94% 99% 99% 100% 100% 100% 100%

Figure 6.21: Characteristics of the HTM algorithm on the A1, A2 and A3 datasets.

for pattern graphs G1
for pattern graphs G2
scan occurrence sequences of G1 and G2 simultaneously

in the HTM this is implemented as

for pattern graphs G1
scan occurrence sequence of G1
for pattern graphs G2
scan part of the occurrence sequence of G2

So, while our algorithm joins two sequences independently of other pairs of sequences,

the HTM scans many sequences simultaneously. This difference can be of

importance in sequential run time experiments, as (parts of) two occurrence sequences

may fit in the cache of the CPU, while larger numbers of sequences may not. We will

also later see that cache effects can be significant.

• in the HTM occurrence sequences are repeatedly copied while G

(OS) avoids copying such sequences as much as possible, unless memory management

requires this.

A similar argument can also explain the difference between FFSM and G (OS). When

we consider the refinement operator of G in detail for the PTE dataset, we see that its

relatively bad performance is largely due to a bad performance when refining cyclic graphs.

However, as also observed by the authors of FFSM when implementing the Spin algorithm

6.12. Experimental Results 219

[88], the join of two occurrence sequences of cyclic graphs is more easily computed, as such

a join reduces to intersecting two sequences of integers. It is therefore a smaller problem if

cyclic graphs are generated more suboptimally.

Summarizing, it may very well be that the differences between G and the other algo-

rithms are also due to significant implementation differences, possibly offered by its different

order of refinement. To collect more evidence in this direction we will consider several of our

optimizations in more detail later this chapter.

Before investigating this issue further, however, we would like to provide some further

comments on the measures.

Continuing with our observation that for low minimum support values the suboptimality

of our operator is mainly caused by the inefficient merge of cyclic graphs, we see in the figures

that indeed the efficiency of our merge operator is different when restricting ourselves to free

trees: for example, on the PTE and Protein datasets our operator achieves a suboptimality

of almost 100%, which is significantly better than for the other algorithm(s). Furthermore,

while for most merge operator there does not seem to be a relation between suboptimality

and minimum support, our free tree merge operator clearly shows such a dependency: if the

minimum support gets lower, and the number of free trees increases in comparison with the

number of paths, its optimality increases.

Comparing the run time of G on the PTE dataset with the run time on the Aids and

Cancer datasets, several possible reasons for G’s good behavior on the PTE dataset can

be concluded from the measures:

• on the PTE dataset our graph representation is almost optimal: due to the large number

of frequent free trees, on average almost all frequent subtrees are evaluated exactly

once;

• on the PTE dataset our join is highly efficient: almost 75% of the joins result in a

frequent subgraph;

• on the Aids and Cancer datasets the join is relatively inefficient: in a remarkably con-

stant way, on average only 27% of the joins results in a frequent graph.

In most experiments the optimality of the merge operator improves as the minimum support is

lowered, due to a relative increase of the number of free trees that are enumerated. A notable

exception is the Protein dataset, in which the suboptimality increases quickly as the number

of frequent subgraphs increases.

Scale-up experiments

In our next experiments we determine how the algorithms behave when the dataset is enlarged

as follows: first, we run the experiment on the original dataset, then we repeat the transactions

two times, three times, and so on, until a convenient maximum number of times. Results on

several datasets for several algorithms are listed in Figures 6.22, 6.23 and 6.24.

On both the A1 and PTE dataset the scale-up of all algorithms is linear in the size of

the database. For these datasets we also show least squared-error linear regression functions

ax+ b, where x is the number of times that the dataset is repeated. The negative constants

220 6. Mining Free Trees and Graphs

Algorithm 1× 2× 3× 4× 5× 6× Regression

G (OS) 4.6s 9.5s 14.8s 20.3s 26.1s 32.2s 5.5x−1.4s

G (RE) 8.7s 17.7s 27.7s 37.7s 48.0s 58.1s 9.9x−1.8s

gSpan 15s 31s 47s 64s 81s 98s 16.6x−2.2s

FSG 17s 26s 35s 44s 53s 63s 9.1x+7.7s

HTM 46s 97s 146s 196s 248s 288s 48.9x−1.1s

FTM 243s 477s 715s 960s 238.9x+1.5s

Figure 6.22: Scale-up experiment on the A1 dataset for a minimum support of 1%.

in these functions can be explained again through a cache effect: when the dataset does no

longer fit within the cache, the increase in run time will be larger.

The experiment on the PTE dataset provides several insights. The constant in the lin-

ear regression function is mostly determined by computations which are independent of the

database size, such as computations required to perform graph normalization. The run time of

FSG on this dataset, which seemed rather bad at first sight on the earlier run time experiment,

can mainly be explained by a relatively inefficient candidate generation procedure. G’s

candidate generation, on the other hand, is highly efficient. The difference in candidate gener-

ation between G (OS) and G (RE) is mostly caused by computations that G

(RE) performs to rearrange edge tuples in a new heuristic order for frequency evaluation.

One can clearly see the influences of evaluation strategies: gSpan and FSG, which both

recompute occurrences without storing hints, use subgraph isomorphism algorithms with the

same complexity. G (RE) obtains a better scale-up, of which we will see the details

later. The performance of AGM’s occurrence sequences is roughly in between that of the

full occurrence sequences and the recomputed occurrences.

It is remarkable that gSpan and FSG have approximately the same run time for fre-

quency evaluation on the PTE dataset: remember that gSpan has to scan all occurrences in the

database, while FSG can stop searching at the first occurrence. It is an interesting finding that

in practice the amount of computations required to find all occurrences is thus not exponen-

tially more than the amount for finding one occurrence. Also in other experiments (not shown

here) we determined that G’s subgraph isomorphism algorithm usually requires more

than half of its time to find a first occurrence, providing evidence that once a first occurrence

is found in molecules, other occurrences are also easily found. To a certain extent, the dis-

covery that the computation of all occurrences is not extra-ordinarily more expensive justifies

the use of depth-first graph mining algorithms such as gSpan, which collect extensions from

data. Remember that the F algorithm (see Chapter 4) also performed extension, but did

not collect extensions from the data, but generated all extensions beforehand. F’s per-

formance is significantly worse than that of the graph miners that collect refinements from

the data.

The results on the Protein dataset are different. We cannot conclude that the scale-up

of all algorithms on this dataset is linear. A likely explanation is again the cache-effect. To

illustrate this effect once in more detail, we performed an additional experiment in which we

ran G and FFSM on two computers with different cache sizes. The results are reported

6.12. Experimental Results 221

Algorithm 1× 2× 3× Regression

G (OS) 7.9s 15.2s 23.0s 7.5x+0.4s

G (RE) 39.9s 76.3s 112.4s 36.2x+3.7s

FFSM 29.7s 55.7s 82.2s 26.3x+3.4s

gSpan 100s 186s 271s 85.4x+14.9s

FSG 316s 402s 489s 86.3x+229.8s

AGM 107s 170s 234s 63.5x+43.3s

Figure 6.23: Scale-up experiment on the PTE dataset for a minimum support of 2%.

Algorithm 1× 2× 3×

G (OS) 60s 116s 183s

G (RE) 148s 398s 643s

FFSM 177s 353s 554s

FSG 1253s 2264s 3275s

Figure 6.24: Scale-up experiment on the Protein dataset for a minimum support of 75%.

in Figure 6.25. While G (RE) performed more efficiently than FFSM on the original

(small) dataset, on repetitions of this dataset FFSM performs more efficiently. On a computer

with 256KBcache the turning point is reached when the dataset is duplicated 2 times, on a

computer with 512KBcache this point is reached later, when the dataset is duplicated 3 times.

The good performance of G (RE) on this dataset can therefore most likely be explained

by observing that most projected databases of this small dataset fit within the cache of the

CPU, while the occurrence sequences do not. Given the low branching factor of the dataset,

it may be more efficient to perform almost linear computations on data in the cache than to

fetch occurrence sequences from main memory.

Computer and algorithm 1× 2× 3×

Intel Pentium 4 2.8Ghz, 512KBCache

G Recomputed Occurrences 78s 166s 290s

FFSM 100s 195s 293s

AMD Athlon XP1600+, 256KBCache

G Recomputed Occurrences 148s 398s 643s

FFSM 177s 353s 554s

Figure 6.25: Results of a scale-up experiment for the protein dataset on two different computers, for a

minimum support of 75%.

222 6. Mining Free Trees and Graphs

Algorithm 2% 3% 4% 5% 6% 7%

G (OS) 9.1MB 4.4MB 3.4MB 3.0MB 2.7MB 2.1MB

G (OS, No-Opt,

Nauty)

16.2MB 5.4MB 3.9MB 3.4MB 3.1MB 2.4MB

G (Diffset) 4.4MB 1.8MB 1.5MB 1.4MB — —

G (RE) 1.5MB 1.3MB 1.3MB 1.3MB 1.3MB 1.3MB

FFSM 8.2MB 4.1MB 3.7MB 3.2MB 3.2MB 2.7MB

gSpan 3.8MB 2.8MB 2.8MB 2.8MB 2.8MB 2.8MB

AcGM 33.9MB 5.3MB 2.2MB 1.6MB 1.3MB 1.2MB

FSG 123.5MB 25.8MB 25.8MB 25.8MB 25.8MB 25.8MB

Figure 6.26: Memory usage of several algorithms on the PTE dataset.

Memoryrequirements

Equally important as run time behavior is the maximum amount of main memory used by

the algorithms. Clearly, the exact amount of main memory is highly dependent on the data-

structures that are used: an algorithm that is based on occurrence sequences and uses 8 bits

to identify database nodes requires less memory than an algorithm that uses 16 bits. Still,

we can analyze how large the dependence on datastructures is, and how the algorithms scale.

Results are reported for the PTE dataset in Figure 6.26, for the Cancer dataset in Figure 6.27

and for the NCI dataset in Figure 6.28.

The experiment on the PTE dataset shows that as the minimum support decreases, the

memory requirements of most algorithms increase. This can be expected as most algorithms

use some sort of occurrence sequences. Sole exceptions are G (RE) and gSpan. We

already explained why G does not require much additional memory; gSpan apparently

follows a similar approach. It is interesting to note that the breadth-first graph miners require

large amounts of main memory, although they do not use simple occurrence sequences. The

most likely explanation is that the number of candidates at certain levels is very large; for

each candidate an occurrence sequence is stored.

In the figure we also mention several variants of G. One of these uses the Nauty

tool to avoid isomorphic cyclic graphs from being generated [131], and requires additional

memory for storing previously found cyclic graphs in a hash structure.

On the Cancer dataset we experimented with several variations in datastructures of G-

 (OS). For G (OS) two memory requirements are given; the first is obtained for 32

bits parent occurrence pointers, 32 bits transaction identifiers, and 16 bits node identifiers.

The second is obtained for 15 bits transaction identifiers, 17 bits parent occurrence pointers

and 8 bits node identifiers. The G (OS, Small) implementation uses the alternative rep-

resentation in which transaction identifiers are not stored in the sequences, and uses 32 bits

parent occurrence pointers and 8 bits node identifiers. From the experiments we can conclude

that a careful bit encoding can achieve similar amounts of memory reduction as different

evaluation strategies, while the run time experiments show that the run time performance

of the algorithm is much less influenced by the different bit encoding than by the modified

evaluation strategy.

The difference between gSpan and G (RE) on the Cancer dataset is hard to explain.

6.12. Experimental Results 223

Algorithm Memory usage

G (OS) 430MB/230MB

G (OS, Small) 210MB

G (RE) 23MB

gSpan 46MB

FFSM 257MB

FSG 107MB

AGM 14MB+420MB

Figure 6.27: Memory usage of several algorithms on the Cancer dataset for minimum support 4%.

Algorithm Memory usage

G (OS) 1.7GB

G (RE) 150MB

Figure 6.28: Memory usage of several algorithms on the NCIdataset for minimum support 2.5%.

In both implementations 8 bits are used to store node and label identifiers; different memory

management procedures seem the only remaining explanation.

For AGMwe report both the amount of main memory used and the amount of disk space

used. The experiment shows that the amount of memory used to store occurrence sequences

in breadth-first algorithms can be very large; the amount of memory required for storing

candidates is much smaller.

Finally, the experiment on the NCI dataset clearly shows the disadvantage of using occur-

rence sequences: the amount of memory required to process this dataset is tremendous, while

an algorithm that recomputes occurrences is still manageable. As the run time experiment

shows that the run time performance of G (RE) is still reasonably good, G (RE)

seems to be the algorithm of choice.

Analysis ofrecomputation optimizations

Our algorithm for computing subgraph isomorphisms includes several optimizations. It is of

interest to study to what extent each of these optimizations contributes to the performance of

our algorithm. Results of a large set of experiments are given in Figure 6.29. Included in the

figure are the following variations:

• G (RE), which is the algorithm with all optimizations;

• G (DFS), which does not use the previously defined heuristic edge tuple order,

but puts the edge tuples in a DFS order similar to that of gSpan;

• G (DFS, no flags), which does not use the bit vectors of the database nodes;

224 6. Mining Free Trees and Graphs

Algorithm A1 0.6% A2 1.75% A3 2.5% A4 31%

G (RE) 52.5s 67.9s 82.7s 54.5s

— (DFS) 55.7s 76.2s 83.7s 55.4s

— (DFS, no flags) 58.1s 80.5s 80.0s 48.21s

— (DFS, no flags, no merge) 110.3s 270.4s 230.7s 200.2s

gSpan 89.8s 277.2s 230.9s 420.0s

Algorithm PTE 2% Cancer 3% Aids 4% Protein 75%

G (RE) 38.7s 455.6s 269.5s 146.8s

— (DFS) 47.6s 458.0s 269.7s 165.1s

— (DFS, no flags) 59.2s 630.2s 379.3s 173.1s

— (DFS, no flags, no merge) 99.4s 654.9s 385.3s 221.1s

gSpan 98.0s 560.2s 273.6s —

Figure 6.29: The influence of several optimizations on the run times of G (RE).

• G (DFS, no flags, no merge), which scans the neighbors of all occurrences of all

pattern nodes, and does not limit itself to the nodes that are pointed out by the merge

operator.

The experiments show that the effects of these optimizations strongly vary per dataset. Our

edge tuple order is advantageous on all datasets, although in some cases the differences are

very small. The bit vector optimization, which stores hints for the subgraph isomorphism

algorithm in the data, provides advantages in most cases, although on the more extreme tree

datasets they even have a negative effect. One can show that on these datasets the bit vectors

do not narrow down the search to a smaller set of nodes, so the additional tests only provide

unnecessary overhead.

The optimization which makes the largest difference, is the use of the merge operator. If

we would have to scan the neighbors of the occurrences of all pattern nodes the run time is

much higher. Please note that contrary to gSpan, G would have to scan all neighbors

to obtain all cyclic refinements. Even without merge operator gSpan can restrict itself to the

nodes on the rightmost path of the DFS code, which explains that the performance of gSpan

is better in most cases than that of G without merge operator.

Summarizing these results, we can conclude that various optimizations have limited ef-

fects on the performance, except for the merge operator, whose influence on the performance

is significant. These results provide evidence that even in algorithms which recompute occur-

rences the use of merge operators can be useful.

Computing all occurrences?

A particular property of the depth-first graph miners is that they compute all occurrences in

the database, instead of at most one occurrence per database graph. Of interest is the question

how large the overhead is which is caused by evaluating a larger number of occurrences;

in particular, one could wonder what the speed of depth-first mining algorithms could be if

it was not necessary to evaluate all occurrences. We performed a small experiment on the

6.13. Conclusions 225

Dataset PTE 2% PTE 3%

Single evaluation 44.6s 9.2s

Double evaluation; all occurrences 74.4s 16.2s

Double evaluation; first occurrence 53.2s 11.3s

Double evaluation; all occurrences, no flags 77.3s 16.5s

Figure 6.30: Howmuch time is spent searching for more than one occurrence?

PTE dataset to estimate this possible speed-up, of which the results are listed in Figure 6.30.

To perform the experiment we used an older version of G, which used Nauty to avoid

duplicate cyclic graphs, instead of graph codes. We performed the following runs:

• one run in which the database was only evaluated once per pattern graph, using all

optimizations (flags, etc.);

• one run in which the database was evaluated twice per pattern graph; the second time

we do not search for refinements, but only enumerate all occurrences;

• one run in which the database was evaluated twice per pattern graph; the second time

we do not search for refinements, and only search for one occurrence; consequently,

we cannot use some of the optimizations which rely on the fact that all occurrences

were traversed (like the flags);

• one run in which the database was evaluated twice per pattern graph; the second time

we do not search for refinements, and search for all occurrences, without using the flag

optimization.

From the experiment we can conclude that for a minimum support of 2% the time to find

all occurrences is 74.4s-44.6s=29.8s, in comparison to 53.2s-44.6s=8.6s to find first occur-

rences. We can assume that the run time for finding refinements is accordingly smaller, as

the number of occurrences for which we have to search refinements is also smaller; overall, a

speed-up of approximately 3 may be obtained if we were able to avoid the search for multiple

occurrences. Of course, in practice it will be very hard to always obtain such a situation. We

can therefore preliminarily conclude that a speed-up may be obtained by avoiding the search

for all occurrences, but that this speed-up may not be dramatically large (at most 3).

6.13 Conclusions

In this chapter we extended our refinement operator for rooted, unordered trees to free trees.

We showed that this refinement operator defines a merge operator which is optimal for real

free trees, but suboptimal for paths. Experiments showed the desirable property that for low

minimum support values our refinement operator is less suboptimal, in contrast to other re-

finement operators that have been proposed.

226 6. Mining Free Trees and Graphs

After introducing a refinement operator on free trees, we extended our approach by allow-

ing refinements of cyclic graphs. Both theoretically and experimentally we verified that the

number of cyclic graphs is limited in practical cases, and that our canonical form is efficiently

computable.

Thus we showed that our operator has a desirable complexity and implements the idea of

a quickstart: all simple, tree-like structures are refined efficiently, only for more complicated,

cyclic graphs exponential algorithms are used.

We looked at the practical performance of our algorithms, and that of other algorithms, in

a large set of experiments. From these experiments we could draw several conclusions. First,

one cannot say that in general either depth-first or breadth-first graph mining algorithms are

better; however, in those cases where the number of occurrences is practically limited depth-

first graph miners perform better. The depth-first graph miners can be subdivided into two

categories: those who use simple occurrence sequences, and those who recompute occur-

rences. Algorithms of the first class are almost always faster than the latter, but require much

more main memory, in some cases to such an extent that it is impossible to run them on cur-

rent PCs. The depth-first algorithms that recompute occurrences require less memory than

the breadth-first algorithms; in terms of run time the depth-first algorithms always perform

better, except for extreme cases. This is remarkable, as depth-first mining algorithms have

to find all occurrences of a graph in the data, instead of one single occurrence per database

graph, to allow for extensions based on the data.

In our experiments we compared the effectiveness of refinement operators using other

measures than execution times. This provided the insight that there does not seem to be a

strong relation between refinement operators and run times. In comparison with the refine-

ment operators of gSpan and FFSM, our refinement operator turns out to perform even less

efficient, in some cases even on free trees. We believe that the most likely explanation is that

in most datasets the complexity of the structures is limited, and that in most practical cases

the number of labels is sufficiently large to successfully apply exponential algorithms.

In our run time experiments our G graph miners were faster than the other graph

miners, and we tried to identify the reason for the better performance. We closely consid-

ered the issue of different implementation choices. We found evidence that the differences in

run time behavior between some algorithms can be explained mostly by the extent to which

they exploit cache locality. Possibly due to this phenomenon some algorithms that recompute

occurrences on small datasets are more efficient than algorithms that have to retrieve large

occurrence sequences.

7 Mining Correlated Patterns

For databases in which examples are labeled with classes, it can be very interesting to dis-

cover correlated patterns in stead of frequent patterns. In this chapter we show how correlated

pattern mining can also be seen as an inductive data mining task. One of the basic tasks that

has been identified in the literature is that of discovering all patterns with a high χ2 corre-

lation value. We show that this task is even more closely related to frequent pattern mining

than previously suspected. As a result of this insight, we propose a new method to deal with

multi-class pattern mining. Furthermore, we introduce several new inductive query primitives

and provide hints for how one can deal with these primitives algorithmically.

7.1 Introduction

While in the previous chapters we focused on the computational issues of frequent pattern

mining, in this chapter we concentrate on the problem of finding correlated patterns, which are

patterns that have a strong relationship with the value of a specified target attribute. Although

in literature several names have been proposed for this problem, like ‘mining contrast sets’

[14, 15], ‘mining class association rules’ [119, 120], ‘emerging patterns’ [64], ‘subgroup

discovery’ [99, 95, 113], ‘correlated itemset mining’ [136] or ‘cluster-grouping’ [209], we

believe that the solutions which have been proposed for most of these problems are highly

similar. Such an observation was also made by Zimmermann and De Raedt in [209]; we will

show here that this similarity reaches further than observed by these authors, as we will show

that minimum frequency thresholds can be mapped to minimum correlation thresholds, and

vice versa, even in the case that the number of values of the target attribute is large.

Essential to this chapter is the following question: given a criterion for what a set of highly

correlated patterns is, how can we compute the set of patterns that satisfies this criterion? Can

we give a clear, non-algorithmic specification of what kind of patterns such queries should

return? Thus, the problem is harder than the usual problem of building classifiers: when

building classifiers, usually methods are studied to find good classification rules instead of

228 7. Mining Correlated Patterns

all optimal ones. Certainly a method for computing optimal rules is more time consuming;

however, on the other hand, if algorithms were feasible to compute optimal rules, this would

be desirable as they can provide a 100% guarantee of good performance.

What a ‘highly correlated pattern’ is, is not a question that can be answered objectively.

Rather, the search for correlated patterns can be conceived as a query which the user should

be able to specify. The inductive data mining engine should provide the primitives that the

user can employ. Several such primitives will be proposed in this chapter.

Although the problem of correlated pattern mining differs from the problem of classi-

fication in the sense that it does not focus on finding a single predictive model, but rather

focuses on finding a set of patterns that strongly relate to certain observations, there are many

similarities between the approaches that can be used to solve both problems. For example,

to determine the quality of a pattern, it is very natural to judge the pattern as if it were a

classifier. For the analysis of classifiers in recent years ROC (Receiver Operating Character-

istic) analysis has become popular [161, 72]. We will use ROC graphs, and isometrics such

as introduced by Fürnkranz and Flach in particular [72], to illustrate the similarities between

frequent pattern mining and correlated pattern mining.

To show that correlated pattern mining is similar to frequent pattern mining we build on

an idea that was introduced by Morishita and Sese [136] in the context of binary correlated

pattern mining problems. These authors showed that it is possible to find all patterns that

correlate with a binary target attribute, where χ2 or gain ratio is used to assess the quality of

a pattern. Essential to their work is a theory which determines an upper bound on correlation

measures; this upper bound is used to prune branches of the search tree. We will show that

these upper bounds can be transformed into minimum frequency thresholds.

The chapter is organized as follows. First, we introduce the correlated pattern mining

problem and isometrics in Section 7.2. We consider accuracy and weighted relative accuracy

measures in section 7.3; here we introduce the ROC convex hull query. Section 7.4 studies

class neutral measures; here, we will introduce the χ2 and gain ratio measures for the two

dimensional case. Section 7.5 relates our work to previous work in this field. Section 7.6

extends the existing approaches to the multi-class case. Proofs of the theorems in this section

are given in section 7.7. In section 7.8 we introduce lattice based queries. Section 7.9 provides

a short experimental investigation; section 7.10 concludes.

7.2 Plotting Frequent Patterns in ROC Space

We consider a databaseD of examples, where each example is labeled by a class in a domain

of classes C through a function f :D→ C. The problem is to find rules of the form x→ c,

where c is a class label in C and x is a pattern in a pattern language X; a cover relation � is

defined between patterns in X and examples in D. To measure the extent of an association

between a class and a pattern, correlation measures can be used. Possible correlation measures

are accuracy, weighted accuracy, information gain, or χ2. We abbreviate these measures with

the h of heuristic, as these measures are usually used as heuristics during a search for a

classifier. The measures are computed from a contingency table. In problems with two classes

7.2. Plotting Frequent Patterns in ROC Space 229

the contingency table can be represented as follows:

a1(x)n1 (1−a1(x))n1 n1
a2(x)n2 (1−a2(x))n2 n2

a1(x)n1+a2(x)n1 n1+n2−a1(x)n1−a2(x)n2 n1+n2

Here n1 is the number of examples in class 1, n2 is the number of examples in class 2 and

ak(x) is the fraction of examples of class k that is covered by the body of rule x→ k; thus,

ak(x) is shorthand notation for|{(t,y)∈D|x � y, f (t,y) = k}|/|{(t,y)∈D|f (t,y) = k}|. When

this is clear from the context we do not write the argument x of function a. For convenience

we furthermore define N = n1+n2.

When inducing correlated patterns from a dataset the sizes of the classes ni are considered

to be fixed. In this section we furthermore assume that the head of the rule is fixed to class

1: we are only interested in patterns that occur together with the first class. In ROC analysis

the elements of the contingency table are then known as follows: a1(x)n1 is the number of

true positives (TP) and a1(x) is the true positive rate (TPR), a2(x)n2 is the number of false

positives (FP) and a2(x) is the false positive rate (FPR). A ROCgraph (ROC for ‘Receiver

Operating Characteristic’) is a graph in which rules are depicted in the FPR-TPR plane. APN

graph is a graph in which rules are plotted in the FP-TP plane [72]. For our purposes these

graphs are completely equivalent; one is only a rescaling of the other. Ideally a rule has a FPR

of zero and a TPR of one; the corresponding point, which is depicted in the upper left corner

of the ROC or PN graph, is known asROCheaven.

We will start our investigation by considering the very simple accuracy measure, which

can be formalized as
1

N
(a1n1+ (1−a2)n2),

and is a function of the vector ~a(x) = (a1(x),a2(x)), so we can write

hacc(x→ 1) = hacc(~a(x)) = hacc(a1(x),a2(x)) =
1

N
(a1(x)n1+ (1−a2(x))n2).

Adapting terminology proposed by Morishita and Sese [136], we call vector ~a(x) the stamp

point of pattern x. Provided that an accuracy value θ is given, the equation hacc = θ defines an

isometric of stamp points that achieve this accuracy:

(a1n1+ (1−a2)n2)

N
= θ⇐⇒ a1n1−a2n2 = θN −n2⇐⇒ a1 =

θN −n2

n1
+a2
n2

n1
, (7.1)

which can be drawn as a straight line in the ROC graph. An example for this isometric with

n1 = 20, n2 = 40 and θ =
44
60
is given in Figure 7.1.

This chapter is essentially based on the following observation for this example. If we

consider all rules for which the accuracy is higher than 44
60
, then all these rules also have

a frequency in class 1 which is higher than 2
10
(enter a2 = 0 into Equation 7.1 to verify

this). The minimum accuracy constraint can therefore be transformed into a tight minimum

frequency constraint on one class. If we consider itemsets as pattern domain, frequent itemset

mining algorithms can be used to find all rules that potentially achieve a predefined accuracy;

similarly, for any other pattern domain a corresponding frequent pattern mining algorithm

can be used.

230 7. Mining Correlated Patterns

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

a
1

a2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

a
1

a2

Figure 7.1: An isometric for the accuracy measure (left) or the class neutral accuracy measure (right).

The remainder of this chapter is devoted to studying the consequences and details of this

observation.

7.3 Accuracy and Weighted Relative Accuracy

ROC (Receiver Operating Characteristic) analysis was mainly introduced to deal with class

distributions and to take class misclassification costs into account. The accuracy measure is

highly dependent on the number of examples in each of the classes. A measure which is not

sensitive to class sizes, is the weighted relative accuracy measure [112, 181, 72]:

a1n1+a2n2

N

(

a1n1

a1n1+a2n2
−
n1

N

)

,

which has isometric

a1−a2 =
θN2

n1n2
⇐⇒ a1 =

θN2

n1n2
+a2,

where c is a weighted relative accuracy value. As observed by Fürnkranz and Flach [72],

the weighted relative accuracy measure is equivalent to the difference of frequencies a1 −

a2. To find patterns of which the minimum weighted relative accuracies exceed a certain

threshold value θ, it suffices to consider all patterns that are found by a frequent pattern

mining algorithm with minimum frequency threshold
θ(n1+n2)

2

n1n2
.

In between accuracy and weighted relative accuracy we can consider the following weighted

accuracy measure:

w1a1+w2(1−a2),

where 0 ≤ w1,w2 ≤ 1 with w1 +w2 = 1, are weights that are given to the classes. Accuracy

can be seen as the case in which wk = nk/N. If w1 = w2 =
1
2
we obtain a measure equivalent

to weighted relative accuracy. The isometric of this measure is

a1 =
θ−w2

w1
+
w2

w1
a2.

7.3. Accuracy and Weighted Relative Accuracy 231

Let us now assume that we run a frequent pattern mining algorithm with a certain minimum

frequency threshold on class 1, then this algorithm yields a set of patterns that can be depicted

as points in ROC space. It is easily seen that every straight line between two adjacent points

on the (topmost part of the) convex hull of the points in the ROC graph corresponds to an

iso-accuracy line for a weighted accuracy measure: straight lines define the parameters of iso-

accuracy lines uniquely. Each pattern on the convex hull is therefore the body of an optimal

rule for a particular choice of class weights.

If a minimum frequency constraint is applied, however, we do not find all points that we

may have found if there was no threshold. For given weights w1 and w2, and a frequency

threshold minfreq, no patterns are found for which the accuracy is lower than minfreq×w1 +

w2. In the general case, one should determine beforehand which weights and accuracies one

considers to be reasonable, and adapt the minimum frequency constraint according to that

choice.

To summarize, we have now seen the following primitives for an inductive query engine

for correlated pattern mining:

Correlation Query 1 given a dataset of two classes, a correlation measure, and a threshold

on this correlation measure, give all patterns for which the correlation measure exceeds

the threshold;

Correlation Query 2given a dataset of two classes, and thresholds on minimum accuracy

and class weights, give all patterns on the convexhull of ROCspace.

How can the answers to these queries be computed?Essentially, what is required is a frequent

pattern mining algorithm that computes all frequent patterns in class 1for a certain minimum

frequency.For these patterns we determine the frequencies in class 2, and filter out those that

do not satisfythe minimum correlation constraint, or are not part of the convexhull.Let us

illustrate this approach for the frequent itemset mining algorithm that we listed in Chapter 2:

• in the traditional A algorithm one has to determine the frequencyof itemsets in

both classes of the dataset, but onlyprune using the support of the first class [7];this is

the approach that was used byCBAms [119, 120].

• in the depth-first Ealgorithm one has to maintain occurrence sequences in both

classes of the dataset, but onlyprune using the support of the first class .

• in the depth-first FP-Galgorithm one should maintain two FP-Trees, one for

each class of the dataset;onlythe first tree should be used to prune;the frequencyin

both classes can be used to order the items and determine compact FP-Trees [77].

Other approaches are also possible.In Figure 7.1we can see that patterns with high accu-

racyare also characterized bya maximum frequency in class 2.We can therefore also apply

algorithms that use this constraint, such as listed in Chapter 3.

For weighted accuracywe saw that the class weights and the minimum accuracydeter-

mine minimum and maximum frequencies.The reverse is also true.We saw in Chapter 2that

minimum and maximum frequencies havebeen studiedpreviouslyin inductive database algo-

rithms [54].Parameters used bythese algorithms can easilybe converted into corresponding

232 7.MiningCorrelatedPatterns

weighted accuracy isometrics. This fits the intuition that patterns with a lowfrequency in the

first class,but a high frequency in the second class,are characteristic for the first class.

Further efficient approaches are possible by considering condensed representations such

as free itemsets or closeditemsets[154](see also Chapter 2). Free/closed pattern mining al-

gorithms would have to be modified with a mechanism to count multiple supports. Additional

care has to be taken that a correct definition for closedness and freeness is used: although only

the frequency in class 1 should be used to prune, a pattern must be considered free or closed

if it is free or closed in the entire database.

7.4 Class Neutral Measures

In the last two sections we assumed that we only search for rules that have a fixed class in the

head of the rule. In many learning algorithms the target of a rule is not fixed; rather, a rule is

assigned to the class for which some quality measure is maximized. To determine the quality

of a rule whose head has not been fixed yet, a class neutralquality measure must be used. A

class neutral version of weighted accuracy is:

max{w1a1+w2(1−a2),w1(1−a1)+w2a2},

which has an isometric defined by two equations:

a1 =
c−w2

w1
+
w2

w1
a2 and a2 =

c−w1

w2
+
w1

w2
a1.

For w1 =
20
60
, w2 =

40
60
and c = 44

60
this isometric is also illustrated in Figure 7.1. In comparison

with traditional ROC graphs, in this graph there is a ‘second ROC heaven’: it is equally good

to predict the second class correctly as predicting the first class correctly. Also the bottommost

part of the convex hull of stamp points is of relevance.

To find all patterns that achieve a certain accuracy, a single minimum frequency now no

longer suffices. A second minimum frequency is necessary, this time for the second class.

Thus, we have to find all patterns for which the frequency exceeds a minimum threshold

value, either on the first class, or on the second class, or on both.

To find a set of rules under an accuracy constraint, several approaches can be conceived.

One can split the search in two phases, in each of which one finds a set of optimal itemsets,

or merge these two phases, and count the support of an itemset in all classes simultaneously,

as discussed in the previous section.

Several other class neutral measures can be used to assess whether a pattern is a good

predictor for one of two target classes. The most common ones are the χ2 statistic and in-

formation gain. The χ2 statistic is computed as follows. Let Ei1 = (a1n1 + a2n2)ni/N, Ei2 =

((1−a1)n1+ (1−a2)n2)ni/N, Oi1 = aini and Oi2 = (1−ai)ni, then

χ2(~a) =
(O11−E11)

2

E11
+
(O12−E12)

2

E12
+
(O21−E21)

2

E21
+
(O22−E22)

2

E22
.

The χ2 measure and an isometric are depicted in Figure 7.2, for n1 = 20, n2 = 40 and c = 15.

Also for χ2 we observe that to find all rules that exceed a given χ2 threshold value, we

7.5. Related work 233

0
0.25

0.50
0.75

1.00

a20

0.5

1.0

a1

0

10

20

30

40

50

60

0

0.25

0.50

0.75

1.00

a1

0 0.25 0.50 0.75 1.00
a2

Figure 7.2: The χ2 correlation measure and the plane corresponding to a threshold value (left)and its

isometric(right),for the case oftwo target classes.

do not need to consider itemsets for which the frequencies in both classes are lower than

certain threshold values for these classes. The minimum frequency thresholds of the classes

are determined by the points where the χ2 statistic crosses the a1 and a2 axis, respectively.

Superficially similar in shape to the χ2 measure is the information gain measure:

hgain(~a) = −
n1

N
log
n1

N
−
n2

N
log
n2

N
+
a1n1+a2n2

N

(

P11 logP11+P21 logP21
)

+
(1−a1)n1+ (1−a2)n2

N

(

P12 logP12+P22 logP22
)

,

where Pi1 = aini/(a1n1+a2n2) and Pi2 = (1−ai)ni/((1−a1)n1+ (1−a2)n2). The gain measure

can be treated similar as the χ2 measure:the points where the gain isometric crosses the a1
and a2 axes, respectively, determine the minimum frequency thresholds for each of the two

classes.

7.5 Relatedwork

We already mentioned that the problems listed in previous sections are closely related to

(or known as) ‘mining contrast sets’[14, 15], ‘mining class association rules’[119, 120],

‘emerging patterns’[64], ‘subgroup discovery’[99, 95, 113], ‘correlated itemset mining’

[136] or ‘cluster-grouping’ [209]. We will review each of these problems here.

The problem of mining correlated patterns was introduced by Morishita and Sese [136]

and is most closely related to our work. Their ASMP algorithm was designed to answer

correlation query 1 and thus finds all patterns for which a correlation measure exceeds a

predefined threshold. Essential to ASMP is a formula for computing an upper bound

on achievable χ2 values, which is an idea that was introduced earlier by Bay and Pazzani [14]

when ‘mining contrast sets’. From our point of view the results of the previous section are

a more simple formulation of the methodology proposed in [14, 136, 15]. To show this we

234 7. Mining Correlated Patterns

Points that never need to be refined

Achievable high correlation values for

(1,1)

a−axis
(0,0)

b−axis

correlation threshold
Curve corresponding to

(a,b)
for one itemset

(a,b)
θ1

θ2

correlation threshold
Points satisfying

L

L’

Figure 7.3:Illustration of the χ2 pruning rule.

will briefly review the formulas that are used by these authors. Morishita and Sese denote the

contingency table as follows:

y m− y m

x− y n−m− (x− y) n−m

x n− x n

The χ2 statistic is defined as a function on (x,y). If a pattern with stamp point (x,y) is refined,

it is shown by Morishita and Sese that an upper bound for the χ2 value of refined patterns is

max{χ2(y,y),χ2(x− y,0)}.

Clearly, this notation is only a linear transformation of our setup. The claim of Morishita and

Sese can be specified in our notation. The upper bound of refinements of a pattern with stamp

point (a1,a2) is

max{χ2(0,a2),χ2(a1,0)}.

Assume that we are given a minimum χ2 threshold. Then Morishita and Sese use the upper

bound to stop refining if max{χ2(0,a2),χ2(a1,0)}<θ. From Figure 7.2 we can conclude that

it is equivalent to stop refining if condition

a2<θ2∧a1<θ1

is satisfied, where θ1 and θ2 are chosen such that χ2(0, θ2) = θ and χ2(θ1,0) = θ, where θ is

the given threshold on χ2. The issues are illustrated in Figure 7.3. To conclude, we observe

that the test of Morishita and Sese is equivalent to our test. Our visualization, however, makes

clear that there is a strong relation between this test and isometrics in ROC space.

Bay and Pazzani used a slightly different formula in their first paper [14]. They proposed

an upperbound which is based on determining for each cell of the contingency table the

highest possible contribution to χ2 after refinement, and summing all these maximum values.

For example, the following formula determines the highest value for the upper leftmost cell

7.5. Related work 235

of the table:

max















(a11n1− (a11n1+a21n2)n1/N)2N

(a11n1+a21n2)n1
,
(a21n2n1/N)2N

a21n2n1
,
(a11n1−a11n

2
1
/N)2N

a11n
2
1















;

the first term corresponds to a refinement in which the covered examples remain unchanged;

the second term corresponds to the case that no examples of the first class are covered any

more. Unfortunately, because each of the terms is maximized individually, it can be shown

that the upperbound is not tight. For example, if a11 =
1

20
, a21 =

1
5
, n1 = 100 and n2 = 50,

the upperbound according to Morishita and Sese is 21.4, while according to Bay and Pazzani

it is 43.5. In their subsequent journal publication [15], Bay and Pazzani also propose the

upperbound that was presented by Morishita and Sese. An advantage of Bay and Pazzani’s

original approach is that it can easily be modified to obtain a loose upperbound for correlation

problems with multiple target classes. In the next section we will show that Morishita and

Sese’s formula can also be modified to the multi-class case to provide a tighter upperbound.

Bay and Pazzani incorporated their formula in the S algorithm, which differs slightly

from the ASMP algorithm. First, S does not only prune rules with uninteresting χ2

values, but also rules for which the weighted relative accuracy is too small and for which the

support in a class gets so low that the χ2 test may not be reliable. Mapping this to our approach

for determining minimum frequencies for two classes, we can conclude that S could

equivalently compute the maximum of three threshold values for each of the two classes.

Second, according to the journal publication, S only recurses on itemsets for which

the support in at least one class is significantly different from that of its parent. The well-

known ‘Occam’s razor’ is used to argument this choice: small itemsets are preferable if they

are equally good. However, as the authors do allow for a margin in the necessary difference,

one can show that the output of the algorithm is no longer complete if this feature is used:

small steps in improvement can contribute to a unique high χ2 value which is not reached if

small, but non-zero steps are pruned.

As the number of class association rules can be large, it was proposed by Bay and Pazzani

[14] and by Liu et al. [121] to prune rules for which the real χ2 value matches an expected

value that is computed from (a subset of) smaller association rules. In the approach of Liu et

al. a k-itemset isdirection settingif it is correlated highly positively with its target attribute

(according to a threshold on χ2), while none of its (n−1)-subitemsets or 1-subitemsets is pos-

itively correlated. Only direction setting rules are presented as output. In Bay and Pazzani’s

approach the χ2 correlation values themselves must also match closely. Both representations

are not concise representations: they do not allow to recompute the original sets of correlated

patterns. As far as we are aware of, condensed concise representations for class association

rules have not been studied, although one can straightforwardly extend closed and free repre-

sentations to incorporate multiple supports per itemset.

A variation of the setup of Morishita and Sese is the following.

Correlation Query 3 given a dataset of two classes, a correlation measure, and an integer

n, give the (possibly only free or closed) patterns which achieve the n highest possible

correlation measures.

For n = 1 this problem was also studied by Morishita and Sese [136]; the case that n > 1

was studied by Webb for support and confidence measures as part of the Oalgorithm

236 7. Mining Correlated Patterns

[190], and by Zimmermann and De Raedt for χ2 values as part of the CC algorithm

[209, 210]. Both algorithms use a set of rules to decide which rules are considered to be the n

best. The upper bound (or minimum frequency in our setup) is gradually increased when a set

of ‘good’ patterns has been found. The algorithms thus distinguish themselves from frequent

pattern mining algorithms by the following aspects:

• they modify the order of search, in the hope of increasing the minimum support more

quickly; thus, the search is neither breadth-first nor depth-first, but best-first;

• the minimum support is determined by the itemsets that are part of the current set of n

most correlated patterns;

• they apply a set of rules to determine which itemsets are part of the set of n most

correlated patterns.

One can conceive several kinds of rules for determining the set of n best rules. Most easy

would be to include the n rules with the highest correlation measure; however, such an ap-

proach would suffer from the problem that rules with the highest correlation measures can be

very similar to each other, for example, because one is a subpattern of the other and supports

in all classes are equal. Zimmermann and De Raedt solve this problem as follows: during the

search, once it is found that two patterns have equal correlation value and one is a general-

ization of the other, only the most general pattern is included in the (temporary) set of n best

rules.

Several inductive query primitives related to this primitive can be conceived. First, instead

of considering the correlation measure as a whole, one could also consider the supports in all

classes separately; in that case the approach of Zimmermann andDe Raedt reduces to putting

free patterns in the set of n most optimal patterns. Clearly, an alternative would be to include

closed patterns instead.

To focus the search quickly to promising areas of the search space, Webb, Zimmermann

andDe Raedt perform a best-first search in combination with an optimal refinement operator:

those optimal refinements which seem most promising are considered first. As we saw in the

previous chapter some algorithms can run into memory management problems if temporary

datastructures are used to speed up the search. If the number of ‘active’ unrefined patterns

is too large, this approach may run into the same problem, and alternative algorithms can be

considered: one can perform an incomplete, greedy search first to obtain reasonable thresh-

old values; or one can relax the idea that highly correlated patterns should be considered first

and prefer traversing some parts of the search space to free up memory; of course, this only

makes sense if the speed-up of the additional datastructures is such that they compensate sig-

nificantly for considering a larger part of the search space. Some investigations with respect

to these issues were published by Webb in [190].

A different approach for building a set of correlated patterns was taken in the subgroup

discovery algorithms of Kavšek and Lavrač [95, 113] and the class association rule mining

algorithms of Lui et al. [119, 120] and Li et al. [117]. The outputs of these algorithms are not

easily specified as inductive query; rather, only descriptions of these algorithms themselves

are concise enough to specify their output. For given support and confidence thresholds, all

these algorithms first determine all class association rules, which are association rules that

7.5. Related work 237

have a value for one fixed target attribute in the head of the rule. Each of the algorithms then

postprocesses this set of rules in a different way.

In CBA [119] all association rules found are ordered first on confidence, then on support,

and finally lexicographically. Then, the highest rule in this order is chosen and added to the

output set of rules. The examples which were covered by this rule are removed from the

data; subsequently also all input rules are removed that only covered removed examples.

Of the remaining ordered set of rules the highest rule is chosen again, and the process is

repeated. A slight variation of this idea is applied in the CBAms algorithm [119]: as it is

observed that in CBA for classes with few examples few rules are found, in CBAms it is

proposed to mine frequent itemsets for each target class separately, instead of searching for

overall frequent itemsets. This approach is very similar to the approach that we discussed in

the previous section, but CBAms does not give further attention to the choice of minimum

support thresholds.

In CMAR [117] a similar approach is chosen; however, in this algorithm examples are

not removed immediately once they are covered by one pattern. Instead, examples are only

removed if they are covered by a certain number of rules that have been put into the output

set (as determined by a threshold value). Furthermore, in CMAR it is proposed not to allow

a rule and its generalization to be both part of the output if the generalization has a higher

confidence. Finally, rules are neither put in the output set if they do not exceed a certain given

χ2 correlation threshold, where the χ2 test is computed over a two dimensional contingency

table. If the target attribute has multiple class values, the two dimensional contingency table

for a rule x→ c is obtained by aggregating all classes other than c together.

Both CMAR and CBA rely on confidence to order rules. A variation of the covering

approach is applied by the SD-A algorithm [95]. In this algorithm the patterns are

ordered using a modified weighted relative accuracy measure that takes into account weights

of examples in the database. Repeatedly the highest ordered rule is chosen, removed from

the input set and put into the output set; examples are reweighted such that the examples that

have already been covered receive lower weight. Using the new weights the weighted relative

accuracy of remaining rules is redetermined, thus punishing rules that cover examples that

were already covered by other rules. Similar to CMAR this algorithm thus allows multiple

rules for the same set of examples to be put into the output set; therefore both algorithms are

better tuned for descriptive data mining than CBA.

S, CC, SD-A, CMAR and CBA yield sets of patterns that could also be

used in classifiers. Most of these algorithms have also been used or modified for classification

purposes [119, 120, 210, 95, 117]. The main question that has to be answered is how to

combine rules to perform predictions. Several approaches can be distinguished.

• An ordered set of rules can be conceived as a decision list, in which the first rule whose

body covers the example predicts the class (CBA and CC have been combined

with this approach [119, 210]);

• Each rule in the set of patterns is given a weight; the combined votes of all rules deter-

mine the predicted class (CC has also been combined with this approach [210]);

• The set of rules for each class is given a weight; the weight of each set is determined

by computing the average over a correlation value such as χ2, or a modification of χ2

(CMAR has been tested with this approach in [117]);

238 7. Mining Correlated Patterns

• The rules are only used to compute a set of (new) features for all examples, such that

each pattern represents a feature; other classifiers, such as Support Vector Machines

(SVMs) or decision trees, are used to perform predictions using these features.

Although these algorithms were originally introduced for the attribute-value case, and use

frequent itemset mining algorithms to search for patterns, the approaches can straightfor-

wardly be extended to other kinds of patterns. For instance, Kuramochi et al. use the FSG

algorithm to generate frequent graphs, construct features using the CBA algorithm, and use

these features in a SVM to classify molecules [63].

All the algorithms mentioned above rely on exhaustive rule search. Of course, there is

also a large body of work on rule learners that perform heuristic search. Here, we wish to

mention the CN2 algorithm [44], which builds an ordered rule set using heuristics, and has

also been modified for the problem of subgroup discovery in a similar way as A-SD.

The resulting CN2-SD algorithm uses weighted relative accuracy as performance measure

and determines weights for examples.

One can think of other kinds of combinations of inductive pattern mining algorithms with

classifiers. For example, one can use algorithms that search for optimal class association

rules to repeatedly determine ‘splits’ in decision trees, CN2, and so on; in comparison with

the approaches previously listed, one would then learn a new rule after each split, instead of

as a preprocessing step. Building on this idea, one can also search the n most optimal rules

and restart a search for the n most optimal rules after a certain number of splits. Extensive

studies on such combinations have not been published yet.

There is a clear relation between correlated pattern mining and mining for patterns satisfy

both a minimum and a maximum support constraint. We have seen in Chapter 3 that several

algorithms have been developed for mining under such constraints. Somewhere in the middle

between these algorithms and the class association rule algorithms are the algorithms of Dong

and Li that search for emerging patterns [64, 66, 65]. An emerging pattern is an itemset for

which the support in one class divided by the support in another class exceeds a predefined

threshold values. Dong and Li search for such patterns by using minimum and maximum

support constraints, as discussed in Chapter 3, and by using a modification of a maximum

frequent itemset miner to find a border representation of the version space of patterns. For

each of the resulting patterns a score is computed. Aggregates of scores were then used in a

classification algorithm called CAEP [66] to determine the class of unseen examples.

Finally, also related to mining correlated pattern are of course all algorithms that do not

choose a fixed target attribute for the head of the rule, among which the algorithms for finding

traditional association rules under minimum confidence constraints [7], or the work of Webb

et al. on mining the k-most confident rules without a fixed head [191].

7.6 Higher Numbers of Classes

Until now only situations were considered in which there are two target classes. In general,

however, there may be multiple target classes. To measure whether there is a correlation be-

tween a pattern and target classes, in literature several measures have been proposed, of which

7.6. Higher Numbers of Classes 239

0
0.25

0.50
0.75

1.00

a20

0.5

1.0

a1

0

0.17

0.33

0.50

0.67

0.83

1.00

0.13 0.25 0.38 0.50 0.63 0.75 0.88 1.00

a2
0.25

0.50

0.75

1.00

y

0.17

0.33

0.50

0.67

0.83

1.00

Figure 7.4: Isometrics for χ2 (left) and information gain (right) in three-class classification problems.

we will consider χ2 and information gain here. The contingency table is easily extended to

the multi-class case:

a1n1 (1−a1)n1 n1
a2n2 (1−a2)n2 n2
...

...
...

adnd (1−ad)nd nd
∑d
i=1 aini

∑d
i=1(1−ai)ni N

The definitions of Ei1,Ei2,Oi1 and Oi2, are straightforwardly extended by defining χ
2 as

χ2(~a) =

d
∑

i=1

{

(Oi1−Ei1)
2

Ei1
+
(Oi2−Ei2)

2

Ei2

}

,

where d is the number of target classes. Similarly, also the definition of gain ratio can be

extended. To give an impression of the shape of higher dimensional χ2 and information gain

measures, isometrics for three-class correlated pattern mining problems are given in Fig-

ure 7.4. The question that we are ask ourselves is: in order to find all patterns for which χ2 or

information gain exceeds a predefined threshold value, is it possible to define a minimum fre-

quency threshold on each of the classes, similar to the two dimensional case? Intuitively, this

means that we have to prove whether it is possible to put a ‘box’ completely inside the iso-

metric body, such that the corners of the box are determined by the points where the isometric

crosses the axes. This is illustrated in Figure 7.5.

Our main result here is that we obtained a proof which shows that for χ2 it is indeed

correct to use d minimum frequency thresholds if there are d target classes. In this section we

provide an outline of our proof. Full details can be found in the next section.

First, we introduce some notation. Let us denote byBd the set of all vectors (b1,b2, . . . ,bd)

such that bi ∈{0,1}. These vectors can be considered to be the corners of a hybercube.

For example, B2 = {(0,0), (1,0), (0,1), (1,1)}. By Bd,≥k we denote the subset of vectors in

Bd for which the sum of components is larger than or equal to k. As an example, B2,≥1 =

{(1,0), (0,1), (1,1)} and B2,≥2 = {(1,1)}.

240 7. Mining Correlated Patterns

0
0.25

0.50
0.75

1.00

a20

0.5

1.0

a1

0

0.17

0.33

0.50

0.67

0.83

1.00

Figure 7.5: Isometric for χ2 in a three-class classification problem; can a box be fitted within the isomet-

ric?

Definition7.1A d−dimensional function h is a suitable correlation function iff it satisfies the

following two properties:

• h(a1,a2, . . . ,ad) is convex;

• for every ~b ∈ Bd,≥2, every 0 ≤ α ≤ 1 and every 1 ≤ k ≤ d it must hold that:

h(α ·b1, . . . ,α ·bk−1,α ·bk,α ·bk+1, . . . ,α ·bd) ≤ h(α ·b1, . . . ,α ·bk−1,0,α ·bk+1, . . . ,α ·bd).

As an example, consider the χ2 test for two classes. Among other things, in [136] it was

shown that χ2 defines a convex function. The setB2,≥2 consists of one single vector {(1,1)}. As

χ2(α,α) = 0 it is clearly true that χ2(α,α) ≤ χ2(α,0) and χ2(α,α) ≤ χ2(0,α), for all 0 ≤ α ≤ 1.

This shows that the χ2 test for two classes defines a suitable correlation function. Note that

the χ2 function has several peculiar properties (χ2(1,0) = χ2(0,1) = n1+n2 and χ2(α,α) = 0),

but that correlation functions are not required to have these properties within our framework.

We then prove the following.

Theorem 7.2Let h be a suitable correlation function. Consider a stamp point~a= (a1,a2, . . . ,ad)

and let S ~a be the set of all stamp points (a′
1
,a′

2
, . . . ,a′

d
) with 0 ≤ a′

i
≤ ai. Then

max
~a′∈S~a

h(~a′) =max{h(a1,0, . . . ,0),h(0,a2,0, . . . ,0), . . . ,h(0,0, . . . ,ad)}.

Proof.See next section. �

From this theorem, it follows that to compute an upper bound on the highest achievable

correlation value for a given pattern, it suffices to compute a correlation value for each of the

classes separately, or —equivalently— to consider only d thresholds in the case of d classes.

To show that this theorem is also usable in practice, we also prove the following.

Theorem 7.3 The χ2 test on a contingency table of d classes defines a suitable correlation

function.

Proof.See next section. �

7.7. High Numbers of Classes — Proofs 241

These observations have practical consequences. If one is interested in finding all patterns

that correlate with a target attribute of multiple values, it suffices to apply frequent pattern

mining algorithms that maintain counts for each of the target class values. If one is only

interested in the k most optimal patterns, this approach allows for a monotonicity test which

is linear in the number of target values.

These nice properties do not apply straightforwardly to the information gain measure.

Consider a database with three target classes of sizes n1 = 30, n2 = 40 and n3 = 50. Then

hgain(0.9× 30,0.9× 40,0) > hgain(0.9× 30,0,0). We can therefore not determine minimum

frequency thresholds for each of the classes by considering the points on the a1, . . . ,ad axes

through which the iso-information gain body crosses. Still, intuitively, one should be able to

determine a largest possible hyper-rectangle that fits within an iso-information gain body, and

thus a set of minimum threshold values for each of the classes. We leave that issue as future

work.

7.7 High Numbers of Classes — Proofs

In this section we provide the proofs of Theorems 7.2 and 7.3. We will illustrate our argu-

mentation using a target attribute with 3 classes. First, however, we require the following

lemma.

Lemma 7.4 Let h be a suitable correlation function. Given a binary vector ~b ∈ Bd,≥2, then for

every k in this vector for which bk = 1 it holds that:

h(α~b) ≤ h(α~b′),where ~b′ is a vector such that b′
k
= 1 and b′

i
= 0 for 1 ≤ i ≤ d and i , k.

Proof. This follows from the second constraint on suitable correlation functions, which —in

words— states that by setting one coordinate to zero the correlation value can only increase.

More formally, the (bit) vector ~b consists of ones at the positions i1, . . . , ik, while the other

bits are zero. By setting first i1 to zero, than i2, and so on, until ik−1 becomes zero, a sequence

of bit vectors results, for which (according to the second constraint) the correlation values

increase monotonically. As we did not assume any order on the indices in~i, we can conclude

that we can construct a sequence which reduces every bit vector ~b to a bit vector in which

only one bit is one. �

In Figure 7.6 this is illustrated for the three-dimensional case. Consider a vector α ·

(1,1,1) = (α,α,α). According to the second constraint on correlation functions, h(α,α,α) ≤

h(0,α,α) ≤ h(0,0,α). Furthermore, among others, h(α,0,α) ≤ h(α,0,0). The theorem does not

claim that h(α,0,α) ≤ h(0,α,0) holds.

Proof. (Theorem 7.2) As the function h is assumed to be convex the following must hold:

max
~a′∈S~a

h(~a′) =max
~b∈Bd

h(a1 ·b1,a2 ·b2, . . . ,ad ·bd).

242 7. Mining Correlated Patterns

α

α

α

0

a2−axis

a1−axis

a3−axis

Figure 7.6:Situation sketch of Lemma 7.4.

This follows from the property that for convex functions any domain that can be characterized

by a bounding polygon is maximized on one of the vertices of the polygon. What remains to

be shown is that we can safely discard all elements of Bd,≥2.

Consider the given stamp point ~a = (a1, . . . ,ad) and consider one of its dimensions k such

that ak =max1≤ j≤d a j. Then the following points define a d−1 dimensional cube:

{ak ·~b |~b ∈ Bd,≥2,bk = 1}

The stamp point ~a is an element of this rectangle, as for all ai it holds that 0 ≤ ai ≤ ak. Note

that a hypercube in any dimension can be defined by giving two points ‘opposite’ from each

other. The hypercube here is defined by the two points (0, . . . ,0,ak,0, . . . ,0) and (ak, . . . ,ak).

From the convexity of h it follows that for a given ~a with ak =max1≤ j≤d a j:

max
~b∈Bd ,bk=1

h(ak ·~b) ≥ h(~a).

From Lemma 7.4 it follows that max~b∈Bd ,bk=1
h(ak ·~b) = h(ak ·~b

′), where ~b′ is the vector in

which all elements are zero except b′
k
, which is 1. For any given stamp point ~a we may

therefore conclude that

h(~a) ≤ h(ak ·~b),

where ak =max1≤i≤d ai.

Given a higher dimensional cube, note that each vertex of the polygon that bounds the

rectangle corresponds to a stamp point. For each such stamp point the above rule shows that

the correlation value can be bounded by the correlation value of a stamp point on one of the

axes. This concludes our proof. �

As an example consider the following stamp point: (1
2
, 3

4
, 1

2
). This stamp point is illustrated

in Figure 7.7. What we wish to show is that we do not need to consider this stamp point,

as its correlation value is always lower than that of one of the points in {(1
2
,0,0), (0, 3

4
,0),

(0,0, 1
2
)}. This would show that the only points that we need to consider are in {(1

2
,0,0),

(0, 3
4
,0), (0,0, 1

2
)}.

7.7. High Numbers of Classes — Proofs 243

1/2

3/4

1/2

0

a2−axis

a1−axis

a3−axis

Figure 7.7: Stamp point (1
2 ,

3
4 ,

1
2) in 3 dimensional ROC space.

As a2 =
3
4
≥ 1

2
= a1 = a3 the binary vectors of importance are

{~b |~b ∈ Bd,b2 = 1} = {(0,1,0), (0,1,1), (1,1,0), (1,1,1)}.

After multiplication with 3
4

the rectangle {(0, 3
4
,0), (0, 3

4
, 3

4
), (3

4
, 3

4
,0), (3

4
, 3

4
, 3

4
)} is obtained.

This rectangle is highlighted in the Figure. The original stamp point is part of this two dimen-

sional rectangle.

From Lemma 7.4 it follows that max{h(0, 3
4
,0),h(0, 3

4
, 3
4
),h(3

4
, 3
4
,0),h(3

4
, 3
4
, 3
4
)} = h(0, 3

4
,0).

Due to convexity all points within the rectangle are lower than the highest point on the bound-

ing polygon, therefore also h(1
2
, 3
4
, 1
2
) ≤ h(0, 3

4
,0). This proves that we do not need to consider

the given stamp point. Similar arguments apply to the points in {(1
2
, 3
4
,0), (0, 3

4
, 1
2
), (1
2
,0, 1
2
)}.

As an example, it is clearly true that h(1
2
,0, 1
2
) ≤ h(1

2
,0,0) for a suitable correlation function

h.

What remains to be shown is that suitable correlation functions indeed exist.

Proof. (Theorem 7.3) It was already observed in other work that the χ2 function for mul-

tiple classes is convex [209]. Here we will concentrate on the second constraint on suitable

correlation functions. As one can always change the order of arguments of h without loss of

generality we may state the we want to consider the following change in a contingency table:

αn1 (1−α)n1 n1
αn2 (1−α)n2 n2
...

...
...

αnk−2 (1−α)nk−2 nk−2
αnk−1 (1−α)nk−1 nk−1
0 nk nk
...

...
...

0 nd nd
∑k−1
i=1
αni

∑d
i=1
ni −
∑k−1
i=1
αni

∑d
i=1
ni

⇒

αn1 (1−α)n1 n1
αn2 (1−α)n2 n2
...

...
...

αnk−2 (1−α)nk−2 nk−2
0 nk−1 nk−1
0 nk nk
...

...
...

0 nd nd
∑k−2
i=1
αni

∑d
i=1
ni −
∑k−2
i=1
αni

∑d
i=1
ni

244 7. Mining Correlated Patterns

We denote the χ2 value of the contingency table before the change by χ2
~n
(α,k); after the

change the χ2 value is χ2
~n
(α,k−1). We will now show the following:

χ2
~n
(α,k)−χ2

~n
(α,k−1) =

α(α−1)nk−1

(

∑d
i=1 ni
)2

(

∑k−2
i=1 (1−α)ni+

∑d
i=k−1 ni

) (

∑k−1
i=1 (1−α)ni+

∑d
i=k
ni
) . (7.2)

Clearly, if equation 7.2 holds, for 0≤α≤ 1 it holds that χ2
~n
(α,k)−χ2

~n
(α,k−1)≤ 0 and therefore

that χ2
~n
(α,k) ≤ χ2

~n
(α,k−1).

We will now prove that the rewriting of equation 7.2 is correct. We use the following

notation:

• define N =
∑d
i=1 ni;

• denote the first expected value by Ei j, which is defined as follows:

Ei1 =
α(n1+ · · ·+nk−1)ni

N
, Ei2 = ni−Ei1;

• denote the first observed value by Oi j, which is defined as follows:

Oi1 =

{

αni if i ≤ k−1;

0 otherwise;
Oi2 = ni−Oi1;

• denote the second expected value by E′
i j

, which is defined as follows:

E′i1 = Ei1−
αnk−1ni

N
, E′i2 = Ei2+

αnk−1ni

N

• denote the second observed by O′
i j

, which is defined as follows:

O′i1 =

{

αni if i ≤ k−2;

0 otherwise;
O′i2 = ni−O

′
i1;

• then we have to show that:

d
∑

i=1

(Ei1−Oi1)2

Ei1
+

(Ei2−Oi2)2

Ei2
−

(E′
i1
−O′

i1
)2

E′
i1

−
(E′
i2
−O′

i2
)2

E′
i2

can be rewritten as given in equation 7.2. First, we rewrite this into:

d
∑

i=1

(Ei1−2Oi1+
O2
i1

Ei1
)+ (Ei2−2Oi2+

O2
i2

Ei2
)

− (Ei1−
αnk−1ni

N
−2O′i1+

(O′
i1

)2

E′
i1

)− (Ei2+
αnk−1ni

N
−2O′i2+

(O′
i2

)2

E′
i2

),

7.7. High Numbers of Classes — Proofs 245

and reduce this to

d
∑

i=1

2(O′i1−Oi1+O
′
i2−Oi2)+

O2
i1

Ei1
+
O2
i2

Ei2
−

(O′
i1

)2

E′
i1

−
(O′
i2

)2

E′
i2

.

It is easy to see that
∑d
i=1 2(O′

i1
−Oi1+O

′
i2
−Oi2) = 0, as the O elements only sum over

all observations, and this number does not change. Therefore we have to rewrite:

d
∑

i=1

O2
i1

Ei1
+
O2
i2

Ei2
−

(O′
i1

)2

E′
i1

−
(O′
i2

)2

E′
i2

,

which reduces to:

















d
∑

i=1

O2
i1

Ei1
+
O2
i2

Ei2
−
O2
i1

E′
i1

−
O2
i2

E′
i2

















+
(αnk−1)2

E′
(k−1)1

−
(1− (1−α)2)n2

k−1

E′
(k−1)2

.

or, equivalently:

















d
∑

i=1

O2
i1

Ei1
−
O2
i1

E′
i1

















+

















d
∑

i=1

O2
i2

Ei2
−
O2
i2

E′
i2

















+
(αnk−1)2

E′
(k−1)1

+
α(α−2)n2

k−1

E′
(k−1)2

. (7.3)

We will first rewrite the first term:

d
∑

i=1

O2
i1

Ei1
−
O2
i1

E′
i1

=

k−1
∑

i=1

α2n2
i
N

α(n1+ · · ·+nk−1)ni
−

α2n2
i
N

α(n1+ · · ·+nk−2)ni

=

k−1
∑

i=1

α2n2
i
(n1+ · · ·+nk−2)N −α2n2

i
(n1+ · · ·+nk−1)N

α(n1+ · · ·+nk−1)(n1+ · · ·+nk−2)ni

=

k−1
∑

i=1

−αnink−1N

(n1+ · · ·+nk−1)(n1+ · · ·+nk−2)

=
−α
(

∑k−1
i=1 ni

)

nk−1N

(n1+ · · ·+nk−1)(n1+ · · ·+nk−2)
=
−αnk−1N

n1+ · · ·+nk−2

Furthermore, we have that:

(αnk−1)2

E′
(k−1)1

=
(αnk−1)2N

α(n1+ · · ·+nk−2)nk−1
=

αnk−1N

n1+ · · ·+nk−2
,

246 7. Mining Correlated Patterns

therefore two of the terms in equation (7.3) cancel out. Next we consider:

d
∑

i=1

O2
i2

Ei2
−
O2
i2

E′
i2

=

k−1
∑

i=1

(1−α)2n2
i
N

(N −α(n1+ · · ·+nk−1))ni
−

(1−α)2n2
i
N

(N −α(n1+ · · ·+nk−2))ni
+

d
∑

i=k

n2
i
N

(N −α(n1+ · · ·+nk−1))ni
−

n2
i
N

(N −α(n1+ · · ·+nk−2))ni

=

k−1
∑

i=1

α(1−α)2niNnk−1

(N −α(n1+ · · ·+nk−1))(N −α(n1+ · · ·+nk−2))
+

d
∑

i=k

αniNnk−1

(N −α(n1+ · · ·+nk−1))(N −α(n1+ · · ·+nk−2))

=
α(
∑k−1
i=1 (1−α)2ni+

∑d
i=k
ni)Nnk−1

(N −α(n1+ · · ·+nk−1))(N −α(n1+ · · ·+nk−2))

Summing the remaining terms we have that:

















d
∑

i=1

O2
i2

Ei2
−
O2
i2

E′
i2

















+
α(α−2)n2

k−1

E′
(k−1)2

=

α(
∑k−1
i=1 (1−α)2ni+

∑d
i=k
ni)Nnk−1+α(α−2)nk−1N(N −α(n1+ · · ·+nk−1))

(N −α(n1+ · · ·+nk−1))(N −α(n1+ · · ·+nk−2))
.

This simplifies to

α(α−1)N2nk−1

(N −α(n1+ · · ·+nk−1))(N −α(n1+ · · ·+nk−2))
,

which is the final rewritten term that we were searching. Clearly, for 0 ≤ α ≤ 1 this term

is negative, and χ2 measure is therefore suitable. �

7.8 Inductive Queries that Relate Patterns

We mainly concentrated on inductive queries that do not relate patterns to each other.How-

ever,especiallythiskindofqueriescouldbeusefultoreducethenumberofpatternsthatare

found.Wealreadymentionedclosedandfreepatternsasanexample.Buildingontheidea

offreenessandclosedness,wecanmentionanothertypeofinductivequeryhere,whichwe

implementedaspartofasystemthatchemistscanusetominepatternsinmoleculardatasets:

Correlation Query 4 givenadatasetoftwoclasses,acorrelationmeasure,andathresh-

oldonthiscorrelationmeasure,givethepatternswhichachievethehighestpossible

correlationvalueslocallyinthequasi-order.

7.9. Experimental Results 247

The idea is as follows: once all frequent patterns in all classes have been determined,and we

have computed all their supports in all classes,we can materialize the entire quasi-order of

all patterns found. Assume that we have two patterns x and y, such that x is in the cover of y,

and the support of y is different from that of x in at least one class while the correlation value

of y is better than that of x, then we can decide to remove pattern x from the output, as we

know that there is a very similar pattern that achieves a better correlation.

Many parameters of this query can be envisioned. The following parameters are of im-

portance:

• does one consider the upward cover, the downward cover, or both;

• to what extent does one check covers: to reduce the number of patterns in the output

one could also check all patterns in the downward cover of the downward cover, and

so on;

• how does one deal with closed and/or free patterns: one could also consider the quasi-

order (semi-lattice)of closed or free patterns in stead of the original quasi-order.

The difference between the two last options for dealing with closed/free patterns is subtle: in

the first case a large pattern can be pruned if a small pattern achieves a better correlation, and

is part of the downward cover in the quasi-order of closed patterns, while this same pattern

need not be pruned in the second case if the distance between the small and the large pattern

is too large(in terms of the shortest path between the two patterns in the original quasi-order).

Although it can be conceptually attractive to materialize the quasi-order of all patterns,

this computation can also be expensive if the number of patterns is large. Acareful encoding

and efficient datastructures are required to store large numbers of patterns. Preferably the

patterns should be stored in their canonical form;to compute all patterns in the upward cover,

a quick computation of canonical forms is then required. In the case of graphs, we can again

use the observation that many frequent graphs are actually trees or paths.

Although there may be many ways to implement an efficient datastructure to store pat-

terns, we do not elaborate on this topic here. For our experiments we implemented an engine

to answer queries in a simple way.This engine suffices for small numbers of frequent patterns,

but runs into problems when the number of frequent patterns is large. For further optimiza-

tions an investigation of the research area ofFormalConceptAnalysis(FCA)could be useful.

7.9 Experimental Results

In this section we will provide a first experimental investigation of ROCspaces in relation

to frequent pattern mining. As our test case, we use the frequent graph miner G (RE)

(see Section 6.10). We apply this algorithm to search for frequent subgraphs in a molecular

database that was kindly composed and provided by Jeroen Kazius of the Leiden/Amsterdam

Center for Drug Research. The database consists of 4337molecules, which are grouped into

two classes: 2401active molecules and 1936inactive molecules. The molecules have been

248 7. MiningCorrelatedPatterns

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 500 1000 1500 2000 2500

In
a
c
ti
v
e

Active

Figure 7.8: All frequent subgraphs in PNspace (left)andall locallyoptimal subgraphs in PNspace

(right),together withan isometricfor the χ2 measure.

tested for their mutagenic properties. The target is to predict when molecules are active. For

a low threshold value on χ2, the PNgraph is given in Figure 7.8. Included in the figure is an

isometric for the χ2 measure. Accordingto this measure subgraphs around the stamp point

(750
2401
,
100
1936
)are optimal. However, the PNgraph also shows that the choice for an optimal

rule is highly dependent on the measure that was used. Many other stamp points on the lower

convexhull may also be feasible classifiers.

As pointed out, we can also assume that the head of a rule is fixed;in that case a min-

imum frequency constraint on the first class, and a maximum frequency constraint on the

second class, are sufficient. As discussed earlier to evaluate frequencies in both classes two

approaches can be used:

• evaluate the support in all classes when performing the depth-first search;

• first find the frequent subgraphs for the target attribute value, and then use the maximal

subgraphs as starting points for a search upward in the quasi-order.

Using our postprocessing tool to build the quasi-order of all frequent subgraphs, we can inves-

tigate for the molecular dataset which of these two approaches is most beneficial. When deal-

ing with graphs, we believe that the number of subgraph isomorphisms is a more reasonable

measure of efficiency than the number of database passes, as subgraph isomorphism is known

to be NP-complete. For a reasonably low minimum frequency of 4%on the active molecules,

we determined that the number of subgraph isomorphisms required to evaluate all frequent

subgraphs in the inactive part of the database is 2,349,207. The number of maximal sub-

graphs (subgraphs for which no supergraph is frequent) is 5,921. To determine the frequen-

cies of all these maximal subgraphs in the inactive molecules 5,921× 1,936 = 11,463,056

subgraph isomorphisms are required, which is approximately 5times more than the number

required by the simple approach. The reason is simple: G (RE) employs occurrence

sequences of graph identifiers to limit the set of database graphs for which subgraph iso-

morphism is tested. Incrementally we thus reduce the number of subgraph isomorphisms for

all classes. If evaluation was started from maximal elements, there is no such incremental

information that can be used. Depending on the number of maximal frequent patterns and

the frequencies of the patterns, it can therefore be just as efficient or even more efficient to

neglect maximum frequency constraints [54].

7.10. Conclusions 249

The picture gets even more unbalanced if we take into account the observation that sub-

graph isomorphism for small graphs is much less time consuming than for large graphs. A

measure which would take this observation into account, would be the sum of the sizes of all

graphs for which subgraph isomorphism is computed (where a subgraph is counted each time

that its inclusion in another graph is tested). For the same support and dataset as above, we

determined that the sum of the sizes of the maximal subgraphs is 87,306, making for a total

cost of 87,306× 1,936 = 169,024,416 to find out in which graphs the maximal subgraphs

occur. On the other hand, if we let G (RE) evaluate the frequencies for all classes of

the database, and exploit occurrence sequences again, the total cost for computing subgraph

isomorphism in the second class is 26,014,609, almost 6.5 times less than would be required

if we started from the maximal subgraphs. Intuitively, this is also clear as maximal subgraphs

will often be large subgraphs, and are given higher weight within this cost measure.

To illustrate a further inductive query we processed the results of the experiment on the

molecular dataset as follows:

• we remove subgraphs which would be part of a rule with confidence lower than 50%;

• we remove subgraphs which are not free or maximal;

• we remove subgraphs for which a subgraph in either the downward or the upward cover

has a better χ2 value (so, we check local optimality).

The reduction of the number of subgraphs is illustrated in Figure 7.8.

7.10 Conclusions

In this chapter we focused on the problem of using frequent pattern mining algorithms for

correlated pattern mining. We showed that to find all patterns that correlate with a target at-

tribute, it is sufficient to search for all patterns that satisfy a set of frequency thresholds, where

these thresholds are computed from thresholds on minimum correlation measures, such as in-

formation gain, accuracy, weighted accuracy or χ2. For the χ2 measure we showed that this

approach can even be used if the target attribute has multiple classes. This provides the insight

that most mining algorithms are highly related to each other, and that the most distinguishing

feature of engines for solving correlated pattern mining queries is the use of multiple disjunc-

tive minimum frequency thresholds. To evaluate the multiple frequencies several approaches

were considered. Experimentally we illustrated that it is not always beneficial to explicitly

use the anti-monotonic maximum frequency constraint.

The link between minimum frequency thresholds and correlation thresholds given in this

chapter has further advantages. If an inductive database is to process an inductive query that

involves correlation measures and minimum frequency thresholds, our observations allow the

optimization engine to determine a better strategy by transforming the correlation thresholds

into minimum frequency thresholds, and compare these to other thresholds defined by the

user. We gave some initial examples of this idea in this chapter, but more work in this direction

can be done.

250 7. Mining Correlated Patterns

During this chapter we listed several primitives for inductive, constraint based data mining

engines. Most of these primitives consider the set of resulting patterns as a whole instead of

considering each pattern in isolation:

• inductive queries for finding the ROCconvex hull relate patterns to patterns on the

convex hull;

• inductive queries for finding the n ‘best’patterns relate patterns to the current ‘best’

patterns found;

• inductive queries for finding closed or free patterns relate patterns to patterns in the

upward or downward cover;

• inductive queries for finding locally optimal patterns relate patterns to patterns in the

downward or upward cover.

A straightforward way to deal with these queries is to run a frequent pattern mining algo-

rithm first, and then to build the quasi-order explicitly. For small numbers of patterns this

approach is feasible. However, in those cases where the number of frequent patterns is in

the order of millions, naive approaches that try to build the entire quasi-order in main mem-

ory fail. To deal efficiently with such large amounts of patterns is a challenge that we did

not solve yet. We can envision several approaches, the first of which is to build algorithms

that integrate the above mentioned two phases. Many breadth-first pattern mining algorithms

which check the monotonicity condition using an upward refinement operator do implicitly

build the entire quasi-order of frequent patterns, and should easily be modified to most of

the above mentioned queries. For depth-first mining algorithms the challenge is larger, as

these algorithms do not explicitly generate all cover relations. It has been illustrated by other

researchers that depth-first mining algorithms are easily modified for closed pattern mining;

therefore queries which involve downward covers should also easily be implemented in such

algorithms; however, queries which involve upward covers are difficult and may require the

explicit construction of the quasi-order as a postprocessing step. Still, this latter approach may

be more efficient than the use of a breadth-first mining algorithm, as we observed that in the

case of frequent graph mining, depth-first graph mining algorithms provide a better trade-off

between speed and memory requirements. An algorithm that postprocesses depth-first min-

ing results would intuitively have to do what breadth-first algorithms do during their search:

repeatedly they would have to maintain sets of k-sized patterns and (k+1)-sized patterns (pre-

viously determined by the depth-first mining algorithm and stored per level, for example on

disk), and construct the relations between these patterns. If we assume that the use of large

amounts of disk space is less a problem than the use of large amounts of main memory, this

approach may have the advantage of performing most time consuming parts of the computa-

tion entirely in main memory for datasets of reasonable size. The disk would only be required

to store intermediate results of the frequent graph miner. However, which approach is most

efficient likely depends on the data and threshold values that one is interested in.

8 Conclusions

In this thesis we introduced several new algorithms for mining structured data under con-

staints, and we provided a broad overview of other algorithms for this task. We investigated

both the experimental and the practical elements of the algorithms. In this chapter, we provide

a summary of our work, and discuss the conclusions that can be drawn from our research. We

conclude with an overview of possible future research in this area.

8.1 Summary

Due to increasing amounts of data in society and in science, there is a demand for algorithms

that discover patterns in data. One way to discover patterns in data, is to formulate inductive

data mining queries over data. Similar to traditional queries that can be formulated in most

database systems, inductive queries are declarative: they describe what kind of patterns a

user is interested in to find, and the result of the query is not dependent on the details of the

algorithm that computes the result. Unlike traditional queries, however, inductive queries try

to induct new knowledge from data and search for patterns that are generally true in the given

data. To find these patterns, a search through a pattern space has to be performed. Two main

issues that have to dealt with are the potentially large size of the database, and the possibly

large size of the search space. Several questions need to be addressed:

• What kind of patterns are considered?

• When is a pattern of interest?

• How should the pattern space be traversed in search for interesting patterns?

• How do we present the results of the search?

We focussed ourselves on algorithms that discover all patterns that satisfy user defined con-

straints. For these algorithms, we presented a theory that formalizes the above mentioned

252 8. Conclusions

issues. This theory generalizes over concepts that have mostly been studied in frequent item-

setminingresearch. In frequent itemset mining research the main issue is how to compute as

quickly as possible all sets of ‘items’ that occur in a large fraction of the database.

Essential in our theory are relations (between patterns and data, for example), refinement

operators, and merge operators. A refinement operator is an operator which determines for a

given pattern, which patterns to consider next. It is desirable that this operator has the property

that every pattern is the refinement of exactly one other pattern, as this guarantees that every

pattern is considered at most once.

Throughout the whole thesis, we discussed a large number of pattern mining algorithms

that have been proposed in recent years. For many of these patterns algorithms we have seen

that they do not traverse the search space by refining patterns, but by merging patterns. It

turned out to be useful to formalize this idea in a mergeoperator, as we could then gener-

ally study properties of merge operators. We showed that there is a relation between merge

operators and refinement operators.

Although many data can be stored in a single table, we have seen that some data, such as

for example molecular data, cannot satisfactorily be stored in a simple single table. There is

a need for algorithms that can find patterns in structured data. Throughout the entire thesis

we have therefore had a stress on pattern mining in general, and not the more simple task

of mining ‘itemset’patterns from a single table. For several previously proposed itemset

mining algorithms, we argued why or why not they can be extended to more complicated

pattern domains. It appears that many algorithms rely on the assumption that for every pair

of general patterns, there is a single pattern which is the most general specialization of both

patterns. We used the problem of sequence mining to illustrate that this assumption does not

apply to many other pattern domains.

After our introduction of these general concepts, we turned our attention to concrete pat-

tern domains.

The first pattern domain that we considered, was that of mining sets of atoms in databases

that are represented in a simple kind of first order logic. Many kinds of data can be represented

in this logic, for example multi-relational databases, but also databases of sequences, trees or

graphs. Thus, an algorithm which is able to mine sets of atoms, can be seen as a benchmark

against which more specialized algorithms can be compared.

When mining patterns represented in first order logic, several problems with refinement

operators have been observed in the literature. These problems are the consequence of the

θ-subsumption procedure that is commonly used to relate patterns to each other and to data.

Under this θ-subsumption relation it is possible that a long pattern is equally expressive as a

short pattern. This could turn it practically impossible to search all patterns that satisfy the

constraints specified by the user, because it could sometimes be required to consider very

long, meaningless patterns before reaching a more interesting pattern. In literature it was

proposed to solve this problem by using another relation, the Object Identity subsumption

relation. Although OI subsumption solves the refinement problems, the relation can have un-

intuitive consequences on the meaning of atom sets. Exploiting the observation that in many

databases there is a well-defined set ofprimarykeyconstraints on the data, we introduced a

new subsumption relation which is somewhere in the middle between OI subsumption and

θ-subsumption. We believed that this relation combines the advantages of both subsumption

relations.

8.1. Summary 253

Starting from this new relation, we were able to define a refinement operator and a merge

operator. Both operators allow for a detailed specification of the search space by the user of

the algorithm. As a consequence the operators can be used to emulate the refinement of many

kinds of patterns, as desired by the user. We proved that our algorithm for merging atom sets

is correct.

Next, we developed several optimizations for algorithms that compute the new subsump-

tion relation between patterns and data. We combined this evaluation algortithm and the

merge operator in a new atom set mining algorithm that we called F. In theory this

algorithm can be used to mine sequences, trees and graphs, and therefore we did some ex-

periments to compare it to specialized graph mining algorithms. Although our algorithm is

several orders of magnitudes faster than comparable atom set mining algorithms, the exper-

iments showed that our algorithm is still much slower than specialized algorithms of which

the tasks can be emulated using F. A reason could be that our algorithm does not apply

several simplifying assumptions that have been used in specialized algorithms.

In subsequent chapters we studied such more specialized tasks in detail. First, we con-

sidered the problem of mining rooted trees. Rooted trees can be used to model some multi-

relational databases or XML documents, for example. One of the advantages of rooted trees

is that in literature algorithms have been published that also in theory compute relations

between patterns and data efficiently. Furthermore, also efficient methods for listing trees

uniquely are known. Thus, we can use a solid theoretical framework to build efficient al-

gorithms. Our contribution consisted of two elements. First, we defined a new refinement

operator for unordered, rooted trees. We proved that this refinement operator can be used

to enumerate unordered trees with exactly the same complexity as the algorithms that were

published in the literature. Second, we defined a new incremental algorithm for evaluating

the unordered subtree relation. As during the search many trees are similar to each other, our

hypothesis was that it is more efficient to reuse information from previous computations than

to start a computation from the ground up. As we obtained this algorithm by extending an

existing polynomial algorithm, this new algorithm is in theory at most as inefficient as the

original algorithm.

A survey of previously published unordered tree mining algorithms revealed however that

none of these use a polynomial algorithm for computing subtree relations. They all use rather

simple, exponential procedures. We confirmed in experiments that this choice for exponential

algorithms is justified in a reasonable amount of datasets. The reason is that in many datasets

the number of labels in the trees is large enough not to encounter problems with exponential

algorithms. However, our experiments showed that our algorithm is more robust, as it still

performed well when it encounters ‘difficult’ trees. In most cases its performance was equally

good or better as that of the exponential algorithms. We therefore believed that the use of a

polynomial algorithm was justified.

In the next chapter we studied the more general problem of mining graphs with cycles,

such as for example molecules. Although we saw that for graphs in general no efficient algo-

rithms for computing relations are known, our working hypothesis was that in practice many

graphs do not fall within this ‘difficult’ class. Experiments confirmed that in molecular appli-

cations most patterns are in fact trees. We therefore constructed an algorithm which divides

the search into several phases, among which a tree mining phase and a cyclic graph mining

phase. We proved that the refinement operator in this algorithm is polynomial in the worst

254 8. Conclusions

case, if the number of cycles is small. This refinement operator can be used to enumerate

a space of graphs without generating equivalent graphs. To compute the relation between

database graphs and patterns we used a simple exponential algorithm.

Experiments showed that several variations of our algorithm achieved significantly lower

run times than other graph miners. However, we did not believe that this was sufficient ev-

idence to prove that our ideas about refinement operators were correct. Therefore, we per-

formed an additional set of experiments, in which we tried to break down the run time per-

formance of the graph miners. We analyzed the effectiveness of a large number of refinement

operators, and discovered that although our refinement operator computes refinements faster

than other operators, the overall contribution of this computation in the total run time is negli-

gible; in most cases most of the run time is spent computing the relation between patterns and

the data. From another point of view —the number of patterns that is considered when the

refinement operator is used— our operator is even less efficient than other operators. Thus,

the good experimental performance of our algorithms (but also that of some other algorithms)

cannot be explained by the effectiveness of the refinement operator (as also claimed by some

other authors). We have performed several experiments to find out why our algorithm is still

more efficient in practice. We found out that some of the algorithms have a behavior which

can best be explained through their different use of the cache. We concluded that a possi-

ble explanation for the good performance of our algorithm is that it allows for more cache

efficient computations due to the use of specialized procedures for cyclic graphs and trees.

Several more general conclusions could also be drawn from these experiments. First, it

appeared that in most cases depth-first mining algorithms are more efficient than breadth-

first graph miners. Second, in practice it was often feasible to use algorithms that have an

exponential worst-case performance, not only in terms of run time, but also in terms of mem-

ory requirements. Only if very large databases were studied, it paid off to use less memory

consuming algorithms.

In the final chapter, we returned to the more general topic of mining correlated patterns,

which are patterns that correlate with a target attribute in a database; for example, a correlated

pattern could be a fragment that is highly correlated with the toxicity of a set of molecules.

We showed that correlated patterns can be discovered by a composition of several more basic

queries. Correlated pattern mining is therefore a good example of data mining using inductive

databases, as it demonstrates how simple queries can be composed to answer new questions.

This insight allowed us to develop a method for computing correlated patterns in databases

in which examples are partitioned in more than two classes. In this method the test to deter-

mine which patterns should be refined is linear in the number of classes, which significantly

improves the exponential tests that were previously proposed by other authors. In this chap-

ter we also touched on the topic of discovering more meaningful patterns by applying new

constraints on the relations between patterns.

8.2. Future Work 255

8.2 Future Work

In this thesis we collected several directions for future research. These directions are summa-

rized in this section.

First, one possible direction for future research centres around the topic of (post)processing

patterns that have been discovered in intelligent ways. Many pattern mining algorithms return

large amounts of patterns. To extract meaningful knowledge these pattern collections have to

be filtered, sorted or condensed in some way. To allow for such operations in a general way,

one needs a way to store collections of patterns in a compact way. For small numbers of pat-

terns a simple trie is a feasible datastructure, as evidenced by our work in Chapter 7; however,

how to deal with millions of patterns is a question that has not been given much attention.

One possibility to make the postprocessing of patterns more doable, is to use condensed

representations. In itemset mining research several condensed representations have been de-

veloped. Several of these also extend to other pattern domains. A question which has not

received much attention is however the development of specialized condensed representa-

tions for other pattern domains than itemsets, although there are some exceptions, such as the

representation of a set of sequences as a partial order [34].

Many pattern mining algorithms are used to discover patterns that have a predictive power.

As far as we are aware of, no condensed representations have been studied especially targeted

at this problem setting. One possible direction could be the development algorithms which

only compute the S-border of version spaces (patterns on this border are the most general

patterns that still distinguish two classes of examples from each other; see Chapter 3). This

set is usually much smaller than the entire set of patterns.

This brings us to the problem of mining under anti-monotonic constraints. Several al-

gorithms have been proposed for mining itemsets under such constraints, but only a few of

these algorithms are also easily applied to other pattern domains. However, we illustrated that

after some additional work, some results from itemset mining research can also be applied

in other pattern domains, such as for example the results based on the ExAnte property (see

section 3.7). For many pattern domains these issues have not been addressed yet.

In this thesis we considered several inductive data mining primitives. One of the interest-

ing possibilities that we signaled is the combination of several relations into one query: for

example, one could be interested in formulating queries that treat a pattern both in an ordered

and in an unordered way. Furthermore, we showed that there is a mechanism for comparing

correlated pattern mining queries and frequent pattern mining queries, as the first class of

queries can be conceived as a combination of frequent pattern mining queries. In both cases,

the essential observation is that there is a set of primitives that are repeatedly applied. A study

of how primitives relate to each other, could yield new optimization strategies for inductive

databases: it would obviously be an advantage if an inductive database could find out that a

certain pattern search does not need to be performed from the ground up, as it already has

sufficient information to compute the set of patterns more quickly from previous results.

Besides the above mentioned issues, an even more fundamental question is which primi-

tives should be provided in an inductive database. Predictive tasks are essential in data min-

ing, but no primitives have been proposed that deal with predictive data mining in an equally

256 8. Conclusions

declarative way as the tasks that we have considered in this thesis. It is an open question

which primitives could fill this gap.

While the above issues are general issues, several issues surfaced for more specific prob-

lem domains.

In our approach for mining sets of atoms, we exploited the existence of primary keys

in multi-relational databases to obtain a more desirable relation between patterns and data.

Several other constraints are often also known, such as foreign key constraints. Research

has been done in which these constraints are used for the automatic generation of a search

bias [101, 100]. It is not clear, however, whether there also additional ways to exploit these

constraints in the relation between patterns and data; furthermore, it may easily be possible

to use such constraints to obtain more compact representations of pattern sets.

We saw in our experimental comparison that there is still a large gap between the per-

formance of graph miners and atom set miners. Given our experimental results on graph

databases, we believe that it may be possible to obtain more efficient atom set miners. A key

feature of the depth-first graph miners is that they collect candidate patterns from the data,

under restrictions obtained from the refinement operator. No depth-first atom set miner is

currently available which follows a similar approach of extracting candidates from the data.

In thesis we had a strong focus on efficiency issues of pattern mining, both theoretical and

experimental. In retrospect, this focus has been too strong, and we should have given more

attention to the issues of problem representation. In our experiments on molecular datasets,

we observed that many of the patterns are very similar to one another, and that patterns are

often too detailed to be interesting to domain experts. We did some initial work to address

this issue by creating extended molecular graphs. Ideally, one would however be able to mine

molecules both at a detailed level and at a more general level at the same time. Specific

patterns should then only be returned if there is strong evidence to prefer them above gen-

eral patterns. How to conceive molecules at such multiple levels of granularity, and how to

combine multiple levels of granularity in a sensible way, are open questions in which more

research should be done.

Finally, we wish to observe that although we have considered many pattern domains in

this thesis, still many pattern domains and relations have not been studied. Between trees and

graphs already many relations have not been studied, and also many variations of these pattern

domains are conceivable. To deal with these domains and relations, is essentially a matter of

defining a good refinement refinement operator and an algorithm for computing relations

between patterns and data. Given the large number of conceivable possibilities, we believe

that it is not wisdom to invent a new pattern or relation; true wisdom is to invent a pattern

domain which fills an untackled need in an application in a fundamental way. Certainly from

that perspective, there is still much work to do.

