Mining Structured Data
Nijssen, Siegfried Gerardus Remius

Citation

Version: Corrected Publisher’s Version
License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden
Downloaded from: https://hdl.handle.net/1887/4395

Note: To cite this publication please use the final published version (if applicable).
Bibliography

Index

\(\theta\)-subsumption, 69

AcGM, 202
AD1-Mine, 198
AGM, 201
Aho, Hopcroft and Ullman’s tree isomorphism algorithm, 134
Alternating path, 143
Anti-monotonicity, 40
Apriori
 algorithm, 14
 property, 14
AprioriSMP, 233
Association rules, 9
Augmenting path, 143
Automorphisms, 179

Backbone depth tuple order, 172
Backtracking sequence, 133
Bias, 43, 73
Bipartite involved matchings problem, 143
Bongard datasets, 92

C-ARMR, 98
CAP, 60
CBA, 237
CBAMs, 237
CHARM, 64
Chemistry, 4, 94, 165, 211
CHOPPER, 151
Chung’s subtree algorithm, 141, 201
CLOSE, 63
Closed itemsets, 51
CLOSEGRAPH, 162, 197
CMAR, 237
CMTREEMINER, 152

CN2-SD, 238
Complexities
 graph isomorphism algorithms, 163
 subgraph isomorphism algorithms, 163
 subtree isomorphism algorithms, 110
 tree isomorphism algorithms, 110
Confidence, 10
Constraint
 anti-monotonic, 41
 convertible, 43
 monotonic, 40
 Succinct, 44
Contingency table, 229
CoreClass, 235
Cover, 10
Covers, 36
Cycle, 105

D-LAB, 97
Data tree, 110
Depth sequence, 114
Depth tuple, 114
Diffsets, 19, 191
Dryade, 153
DualMiner, 60

ECLAT, 18
Edge sequence, 162
Enumeration, 39, 130
Equivalence classes, 35
ExAnte property, 61

FARMER, 83
FFSM, 198
Formal concept analysis (FCA), 247
Formal concepts analysis (FCA), 52
INDEX

FP-Bonsai, 61
FP-Growth, 23, 60
Frequent itemsets, 51
FREEMiner, 200, 201
FREQ, 139
Frequent itemsets, 9
FSG, 203
FST-Forest, 151
GBI, 204
GraphML, 113, 166
Graphs, 105
Greatest lower bound, 33
GSP, 64
gSpan, 162, 196
GXL, 113, 166
HYBRIDTreeMiner, 151, 199
Hypergraphs, 112, 165
Inductive Logic Programming (ILP), 68, 165
Itemset occurrences, 10
Kirchoff’s matrix-tree theorem, 167
k-Prefix, 13
Large itemsets, 11
Lattice, 35
Learning from entailment, 97
Learning from interpretations, 97
Least upper bound, 33
Leftmost path, 172
Lexicographical order, 13
Maximal frequent itemsets, 50
Merge operators, 53
Merging
...of cyclic graphs, 185
...of free trees, 176
...of ordered trees, 115
...of unordered trees, 124
basic definitions, 54
...downward, 55
Modes, 79
MoFA, 198
MolFea, 61
Monotonicity, 40
Multi-relational data mining, 4, 113, 165
Multicast dataset, 112
Nauty, 204
Next prefix node, 120
Non-derivable itemsets, 51
Object exchange model, 151
Object Identity, 71
Occurrence sequence, 136, 189
Occurrence tree, 145
Orders, 12
Path
rooted, 106
simple, 105
PathJoin, 151
Pattern tree, 110
PolyFarm, 99
Prefix trie, 15
PREFIXSPAN, 64
Primary key, 74
Projected database, 20
Proteins, 165
Query packs, 99
RADAR, 101
Receiver Operating Characteristic (ROC), 229
Refinement
...of cyclic graphs, 179
...of free trees, 173
...of ordered trees, 115
...of unordered trees, 117
basic definitions, 29
downward, 36
suboptimal, 31
upward, 36
Relations, 12
Rightmost path, 114
SD-APRIORI, 237
Sequences, 13
SiGRAM, 164, 203
Simple occurrence sequence, 136
SMILES, 5
Spin, 199
Stamp point, 229
STUCCO, 235
SUBDUE, 204
Subgraphs, 161
Subpaths, 36
Subsequences
...with \((\alpha, \beta)\) gaps, 34
...with unlimited gaps, 34
...without gaps, 34
Subtrees
 bottom-up, 110
 embedded ordered, 107
 embedded unordered, 107
 induced ordered, 107
 induced unordered, 107
 ordered leaf, 109
 prefix ordered, 109
Support, 10
Symmetry, 170

Transaction, 9
Transaction based support, 47
TreeFinder, 152
TreeMinerV, 135
Trees, 105

uFREQT, 141, 148
Ullman’s subgraph isomorphism algorithm, 204
UML, 100
uNOT, 140

Version space, 50
VF Algorithm, 204

WARM, 83

XML, 113, 166
Acknowledgements

I would like to thank Eric-Wubbo Lameijer for building the molecular model of Cuneane of which a photo is included in this thesis. I enjoyed the discussions that I had with Eric-Wubbo and Jeroen Kazius about mining molecular databases. These discussions have motivated me very much, and I would like thank them for that. Of course I would also like to thank all colleagues that I used to have lunch and ‘coffee’ breaks with for making the period in Leiden an enjoyable one.