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METFORMIN PROMOTES VLDL-TG CLEARANCE BY BAT

ABSTRACT

Metformin is the first-line drug for the treatment of type 2 diabetes. Besides its well-
characterized antihyperglycemic properties, metformin also lowers plasma very low-
density lipoprotein (VLDL)-cholesterol and VLDL-triglycerides (TG). In this study,
we investigated the underlying molecular mechanisms in APOE*3-Leiden.CETP
mice, a well-established model for human-like lipoprotein metabolism. We found that
metformin markedly lowered plasma total cholesterol and TG without affecting body
weight, food intake and plasma levels of glucose, insulin and free fatty acids. Analysis
of lipoprotein profiles revealed that metformin reduced plasma VLDL and slightly
increased high-density lipoprotein levels. Metformin did not affect hepaticVLDL-TG
production, VLDL particle composition and hepatic lipid composition. In contrast,
metformin selectively enhanced clearance of glycerol tri[’H]oleate-labeled VLDL-like
emulsion particles into brown adipose tissue (BAT). At the molecular level, this was
accompanied by higher AMPKal activity and increase in both hormone-sensitive
lipase and mitochondrial content, suggesting that metformin enhances VLDL-TG
uptake, intracellular TG lipolysis, and subsequent mitochondrial fatty acid oxidation in
BAT. Collectively, our results identify BAT as an important player in the TG-lowering
effect of metformin, suggesting that targeting this tissue might be of therapeutic
interest in the treatment of dyslipidemia.
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CHAPTER 7

INTRODUCTION

Metformin is one of the most widely used glucose-lowering agents for the treatment
of type 2 diabetes [1] and is now considered as the first-line drug therapy for patients
[2]. This antidiabetic drug from the biguanides family is prescribed for its effective
antihyperglycemic action, mostly achieved through a potent reduction of hepatic
glucose production secondary to inhibition of gluconeogenesis [3]. Interestingly,
another important but often overlooked property of metformin relies on its beneficial
effect on blood lipid profile which is characterized by a significant reduction in
circulating triglycerides (TG) and very low-density lipoprotein (VLDL) cholesterol,
and increased high-density lipoprotein (HDL) cholesterol levels [4]. This metabolic
feature might partly be involved in its cardio-protective effect observed in obese
patients treated with the drug [5]. Despite extensive efforts during the last years [6],
the exact molecular mechanism(s) of action of metformin still remain incompletely
understood, especially the one by which the drug exerts its lipid-lowering action.
In 2001, Zhou et al. were the first to report that metformin activates hepatic AMP-
activated protein kinase (AMPK), emphasizing the putative role of this energy-sensing
kinase in the mechanism of action of the drug [7].

AMPK is a well-conserved serine/threonine protein kinase that plays a crucial
role in the regulation of catabolic/anabolic pathways by acting as a cellular energy
and nutrient sensor [8, 9]. AMPK consists of a heterotrimeric complex containing
a catalytic a subunit and two regulatory B and y subunits. Each subunit has several
isoforms (al, a2; B1, B2; y1, y2, y3), which are encoded by distinct genes, giving
multiple heterotrimeric combinations with tissue-specific distribution [8, 9]. The a
subunit contains a threonine residue (Thr 172) whose phosphorylation by upstream
kinases, such as the liver kinase B (LKB1), is required for AMPK activation. The
subunit acts as a scaffold to which the two other subunits are bound, and also allows
AMPK to sense energy reserves in the form of glycogen [8, 9]. Binding of AMP
and/or ADP to selective domains on the y subunit leads to AMPK activation via a
complex mechanism involving direct allosteric activation, phosphorylation on Thr172
by AMPK upstream kinases and inhibition of dephosphorylation of this residue by
specific protein phosphatases that remain to be identified [8, 9]. Thus, any decrease
in cellular energy status activates AMPK, which results, through phosphorylation of
various downstream targets, in concomitant inhibition of energy-consuming processes
and stimulation of ATP-generating pathways in order to restore energy balance.
Interestingly, the mechanism by which metformin activates AMPK, involving specific
inhibition of the mitochondrial respiratory chain complex 1 [10, 11], was recently
clarified [12, 13], although the contribution of the LKB1/AMPK axis in its hepatic
effects still remains controversial [14-18].

The objective of this study was to investigate the molecular mechanisms underlying
the effects of metformin on lipoprotein metabolism, by using APOE*3-Leiden.
CETP (E3L.CETP) transgenic mice, a well-established model with a human-like
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lipoprotein metabolism. Collectively, our data show that treatment of E3L.CETP
mice with metformin is able to recapitulate the lipid-lowering effect of the drug
evidenced in humans, i.e causing a reduction in plasma VLDL-TG associated with a
parallel mild increase in HDL-cholesterol. Remarkably, this effect is not mediated by
apparent changes in hepatic VLDL-TG production but rather by a selective increase
in VLDL-TG clearance by the brown adipose tissue (BAT). At the molecular level,
we found an increase in AMPKal activity and protein expression of both hormone-
sensitive lipase (HSL) and mitochondrial respiratory-chain complexes, suggesting that
metformin promotes intracellular TG lipolysis and subsequent mitochondrial fatty
acid (FA) oxidation in BAT.

MATERIALS AND METHODS

Materials
All chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA).

Ethics

All mouse experiments were performed in accordance with the Institute for
Laboratory Animal Research Guide for the Care and Use of Laboratory Animals and
have received approval from the university Ethical Review Boards (Leiden University
Medical Center, Leiden, The Netherlands).

Animals, diet, and metformin treatment

Homozygous human CETP transgenic mice were crossbred with hemizygous
APOE*3-Leiden (E3L) mice at our Institutional Animal Facility to obtain E3L.CETP
mice, as previously described [19]. In this study, 12 weeks-old E3L. CETP female mice,
housed under standard conditions in conventional cages with ad libitum access to food
and water, were fed a Western-type diet containing 0.1% (w/w) cholesterol (Hope
Farms, Woerden, the Netherlands) for 4 weeks. Upon randomization according to
body weight, plasma total cholesterol (TC) and triglyceride (TG) levels, mice next
received a Western-type diet with or without 200 mg/kg BW/day (0.2%, w/w)
metformin for 4 weeks. Unless otherwise mentioned, experiments were performed
after 4 h of fasting at 13:00 pm with food withdrawn at 9:00 am.
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CHAPTER 7

Plasma lipid and lipoprotein analysis

Plasma was obtained via tail vein bleeding and assayed for TC, TG and PL using the
commercially available enzymatic kits 236691, 11488872 and 1001140 (Roche Molecular
Biochemicals, Indianapolis, IN, USA), respectively. Free fatty acids (FA) were measured
using NEFA-C kit from Wako Diagnostics (Instruchemie, Delfzijl, the Netherlands). The
distribution of lipids over plasma lipoprotein fractions was determined using fast protein
liquid chromatography. Plasma was pooled per group, and 50 pl of each pool was injected
onto a Superose 6 PC 3.2/30 column (Akta System, Amersham Pharmacia Biotech,
Piscataway, NJ, USA) and eluted at a constant flow rate of 50 pl/min in ImM EDTA in
PBS, pH 7.4. Fractions of 50 pl were collected and assayed for TC and TG as described
above.

Hepatic VLDL-TG and VLDL-apoB production

Mice were fasted for 4 h prior to the start of the experiment. During the experiment, mice
were sedated with 6.25 mg/kg BW Acepromazine (Alfasan, Woerden, The Netherlands),
6.25 mg/kg BW Midazolam (Roche, Mijdrecht, The Netherlands), and 0.31 mg/kg BW
Fentanyl (Janssen-Cilag, Tilburg, The Netherlands). At t = 0 min, blood was taken via tail
bleeding and mice were i.v. injected with 100 pl PBS containing 100 uCi Trans™S label
(ICM Biomedicals, Irvine, CA, USA) to measure de novo total apoB synthesis. After 30 min,
the animals received 500 mg of tyloxapol (Triton WR-1339; Sigma-Aldrich) per kilogram
body weight as a 10% (w/w) solution in sterile saline, to prevent systemic lipolysis of newly
secreted hepatic VLDL-TG. Additional blood samples were taken at t = 15, 30, 60, and 90
min after tyloxapol injection and used for determination of plasma TG concentration. After
90 min, the animals were sacrificed and blood was collected by orbital bleeding for isolation
of VLDL by density-gradient ultracentrifugation, as previously described [19-25].%S-apoB
was measured in the VLDL fraction and VLDL-apoB production rate was calculated as
dpm.h', as previously reported [19-25].

In vivo clearance of VLDL-ike emulsion particles

Mice were fasted overnight with food withdrawn at 06:00 p.m. During the experiment,
mice were sedated as described above. At t = 0 min, blood was taken via tail bleeding and
mice received a continuous intravenous infusion of glycerol tri’H]oleate-labeled emulsion
particles mixed with albumin-bound [*C]oleic acid (4.4 pCi 'H]TG and 1.2 uCi [*CJFA,
both purchased from GE Healthcare Life Sciences, Little Chalfont, UK) at a rate of 100 ul/h
for 2.5 h, as previously described [26,27]. Blood samples were taken using chilled paraoxon-
coated capillaries by tail bleeding at 90 and 120 min of infusion to ensure that steady-state
conditions had been reached. Subsequently, mice were sacrificed and organs were quickly
harvested and snap-frozen in liquid nitrogen. Retention of radioactivity in the saponified
tissues was measured per milligram of tissue and corrected for the corresponding plasma-
specific activities of ["'H|FA and [“C]FA, as described [26, 27].
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Hepatic lipid composition

Liver lipids were extracted according to a modified protocol from Bligh and Dyer [28].
Briefly, small liver pieces were homogenized in ice-cold methanol. After centrifugation,
lipids were extracted by addition of 1800 pl CH,OH:CHCI, (1:3 v/v) to 45 ul homogenate,
followed by vigorous vortexing and phase separation by centrifugation (14000 rpm; 15 min
at RT). The CHCI, phase was dried and dissolved in 2% Triton X-100 in water. TG, TC
and PL concentrations were measured using commercial kits as described above. Liver lipids

were expressed as nmol per mg protein, which was determined using the BCA protein assay
kit (Pierce, Rockford, IL, USA).

Western blot analysis

Snap-frozen liver or brown adipose tissue samples (~50 mg) were lysed in ice-cold buffer
containing: 50 mM Hepes (pH 7.6), 50 mM NaFE 50 mM KCl, 5 mM NaPPi, 1 mM
EDTA, 1 mM EGTA, 1 mM DTT, 5 mM B-glycerophosphate, I mM sodium vanadate,
1% NP40 and protease inhibitors cocktail (Complete, R oche, Mijdrecht, The Netherlands).
Homogenates were centrifuged (13,200 rpm; 15 min, 4°C) and the protein content of the
supernatant was determined using a bicinchoninic acid protein assay kit (BCA Protein
Assay Kit, Pierce, Rockford, UK). Proteins (10-50 pg) were separated by 7-10% SDS-
PAGE followed by transfer to a polyvinylidene fluoride transfer membrane. Membranes
were blocked for 1 h at room temperature in tris-buffered saline tween-20 buffer with
5% non-fat dry milk followed by an overnight incubation with specific antibodies (see
Supplemental Table 1). Blots were then incubated with horseradish peroxidase-conjugated
secondary antibodies for 1 h at room temperature. Bands were visualized by enhanced
chemiluminescence and quantified using Image J (NIH, UK).

AMPK kinase assay

AMPK activity was assayed after immunoprecipitation with specific antibodies directed
against al- or a2-AMPK catalytic subunits (Kinasource, Dundee, Scotland), as previously
described [13, 14].

RNA purification and quantitative Reverse Transcription-coupled real-time PCR

RNA was extracted from snap-frozen liver or brown adipose tissue samples (~25 mg) using
Tripure RNA Isolation reagent (Roche Molecular Biochemicals, Indianapolis, IN, USA).
Total RNA (1-2 pg) was reverse transcribed and quantitative real-time PCR was then
performed with SYBR Green Core Kit on a MylQ thermal cycler (Bio-Rad, Hercules,
CA, USA). mRNA expression was normalized to CypD mRINA content and expressed as
fold change compared to control mice using the AACT method. All the primers sets used
were designed for spanning an exon in order to avoid eventual amplification of gDNA and
have an efficiency of ~100£5% (Supplemental Table 2).
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Statistical analysis

All data are expressed as mean + SEM. Statistical analysis was performed using SPSS 17.0
software package for Windows (SPSS, Chicago, IL, USA) with two-tailed unpaired Student’s
test. Differences between groups were considered statistically significant at P<0.05.

RESULTS

Metformin reduces plasma cholesterol and triglycerides levels

To investigate the effect of metformin on lipoprotein metabolism, E3L. CETP mice were
first fed a cholesterol-rich (0.1%) Western-type diet for 4 weeks and next treated with
or without metformin (200 mg/kg BW/day) added to the diet for another 4 weeks. As
compared with the control group, metformin did not affect body weight, food intake and
plasma glucose, insulin and FA levels throughout the intervention period (Supplemental
Figure 1). However, metformin rapidly reduced both plasma TC (-27% and -36% at week 2
and 4, respectively; P<0.05) and TG (-26% and -38% at week 2 and 4, respectively; P<0.05)
in a time-dependent manner (Figure 1A,C). Plasma lipoprotein profile analysis showed that
this lipid-lowering effect mostly resulted from a reduction of VLDL particles. In addition,
a slight shift in plasma cholesterol profile, from VLDL-C to HDL-C (-37% and +37%,
respectively), was evidenced (Figure 1B).

Metformin does not affect hepatic VLDL-TG production

Plasma VLDL-TG levels are determined by the balance between VLDL-TG production
by the liver and VLDL-TG clearance by peripheral organs. Therefore, we first assessed the
effect of metformin on hepatic VLDL-TG and -apoB production by injecting Trans™S
and tyloxapol in 4 h-fasted control and metformin-treated E3L. CETP mice. Despite the
significantly lower basal plasma TG levels (1.724£0.26 mM versus 2.65+0.36 mM, P<0.05;
data not shown), metformin did not affect the time-dependent accumulation of plasma
TG tollowing tyloxapol injection when compared to control E3L.CETP mice (Figure
2A).Therefore, the VLDL-TG production rate, calculated from the slope of the curve, was
not significantly different (Figure 2A), although a trend for a slight decrease can eventually
be suggested. The rate of VLDL-apoB production (Figure 2B), the ratio of TG-apoB
(Figure 2C), as well as the composition of the VLDL particles secreted (Figure 2D), were
not significantly altered, indicating that metformin did not affect the hepatic lipidation of
VLDL particles. In line with these results, the TG, TC and phospholipid (PL) content in the
liver from E3L. CETP mice did not significantly differ between the control and metformin
groups, although hepatic TC content tended to be decreased in the metformin-treated
group (-21%,P=0.07; Supplemental Figure 2). Furthermore,in our experimental conditions,
metformin treatment did not affect hepatic AMPK activity, as assessed by phosphorylation of
Thr172-AMPK and Ser79-Acetyl-CoA Carboxylase (ACC), the main downstream target
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of AMPK (Supplemental Figure 2). Finally, the hepatic expression of key genes involved in
lipid and lipoprotein metabolism were determined (Table 1). Metformin did not affect FA/
TG uptake, synthesis and oxidation genes but significantly down-regulated Lrp1 and Scarp1,
both involved in cholesterol uptake. In addition, the expression of Abca1, Leat and Pltp were
also found to be significantly down-regulated by metformin, suggesting that part of the
HDL-enhancing effect of the drug could result from subtle changes in hepatic lipoprotein
metabolism.
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Figure 1. Effect of metformin on plasma cholesterol and triglyceride levels and lipoprotein
distribution. Blood samples from 4 h-fasted control (open bars) and metformin-treated (black bars)
mice were collected by tail bleeding using chilled paraoxon-coated capillaries at different time-points.
Plasma total cholesterol (TC; A) and triglycerides (TG; C) levels were determined. The plasma samples
collected after 4 weeks of treatment were pooled group-wise and size-fractionated by fast-protein liquid
chromatography. The individual fractions were analysed for cholesterol (B) and TG (D). Data are means
+ SEM (n=9/group). * P<0.05 vs control.

Metformin promotes VLDL-TG clearance by brown adipose tissue

As clearance of TG from plasma is the other major determinant of TG metabolism,
the eftect of metformin on whole-body lipid partitioning was next investigated. For
this purpose, the tissue-specific retention of FA derived from both ["H|TG-labeled
VLDL-like emulsion particles and albumin-bound ["*C]FA was determined after
continuous tracers infusion for 2.5 h. Strikingly, metformin did not affect the uptake of
["H]TG-derived FA by liver, heart, skeletal muscle and various WAT depots but
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markedly increased ["H] TG retention in BAT (+58%, P<0.05; Figure 3A).The uptake
of albumin-bound ["C]FA was not different for any of the organs studied (Figure
3B), suggesting that metformin does not affect FA uptake per se but rather promotes
lipoprotein lipase (LPL)-mediated VLDL-TG hydrolysis in BAT.
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Figure 2. Effect of metformin on hepatic VLDL-TG production. After 4 weeks of treatment,
4 h-fasted control (open squares/bars) and metformin-treated mice (black squares/bars) were injected
with Trans*S label (t=-30 min) and tyloxapol (t=0 min), and blood samples were drawn up to 90 min
after tyloxapol injection. Plasma TG concentrations were determined and plotted as the increase in
plasma TG as compared with baseline (A, left panel). The rate of TG production was calculated from
the slopes of the curves from the individual mice (A, right panel). After 120 min, mice were
exsanguinated and the total VLDL fraction was isolated by ultracentrifugation. The rate of newly
synthesized VLDL-**S-apoB (B), the TG-on-"S-apoB ratio (C), as well as the amount of triglycerides
(TG), total cholesterol (TC), and phospholipids (PL) per mg VLDL protein (D) were measured. Data
are means £ SEM (n=5-8 per group). * P<0.05 vs control.
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Table 1. Effect of metformin on hepatic expression of genes involved in FA/TG and lipoprotein
metabolism. Livers were isolated from 4 h-fasted mice treated with or without metformin for 4 weeks.
mRNA expression of the indicated genes were quantified by RT-PCR relative to CypD gene and expressed
as fold difference compared with the control group. Data are means +/- SEM (n=8). *, P<0.05.

Fold change

Function Gene Protein Control Metformin
FA uptake Fabp1 FABP1 1.00 £ 0.16 1.16 £ 0.14
Cd36 CD36 1.00 £ 0.13 0.89 £ 0.06
Lyl LPL 1.00 £ 0.07 0.83 £ 0.10
FA/TG synthesis Srebf1 SREBP-1A 1.00 £ 0.14 0.84 £ 0.16
Srebf1 SREBP-1C 1.00 = 0.06 0.94 £ 0.09
Nrih3 LXRa 1.00 = 0.06 0.97 £ 0.04
Fasn FAS 1.00 £ 0.16 0.97 £0.25
Sed1 SCD1 1.00 £ 0.22 0.82 £ 0.16
Dgat1 DGAT1 1.00 £ 0.13 0.89 £ 0.10
FA oxidation Pparagcla PGCla 1.00 £ 0.10 0.72 £0.16
Ppara PPARa 1.00 £ 0.10 0.93 £ 0.06
Cptla CPT1la 1.00 £ 0.05 0.94 £ 0.06
Acaca ACC1 1.00 £ 0.12 0.83 £0.14
Acach ACC2 1.00 £ 0.22 1.07 £0.13
Acox1 ACOX1 1.00 £ 0.06 0.92 £0.09
Lipoprotein uptake Ldlr LDLr 1.00 £ 0.10 0.96 £ 0.12
Lip1 LRP1 1.00 £ 0.09 0.85 + 0.07*
Scarb1 SRB1 1.00 £ 0.05 0.86 + 0.05*
VLDL synthesis Apob ApoB 1.00 £ 0.05 0.88 +0.07
Mttp MTP 1.00 £ 0.10 0.95£0.12
Cholesterol synthesis Srbp2 SRBP2 1.00 £ 0.06 1.07 £ 0.11
Humnger HMG CoA-R 1.00 £ 0.15 1.13+£0.21
Humges1 HMG CoA-S1 1.00 £ 0.10 1.04 £0.18
Himnges2 HMG CoA-S2 1.00 £ 0.06 0.99 + 0.06
Sqle SQLE 1.00 £ 0.20 1.07 £ 0.21
Idi1 IDI1 1.00 £ 0.10 1.30 = 0.10*
Fdps FDPS 1.00 £ 0.23 1.21 £0.17
Fdfi1 FDFT1 1.00 £ 0.09 0.87 £ 0.14
Cholesterol excretion Abcg5 ABCG5 1.00 £ 0.10 0.82 + 0.09
Abcg8 ABCGS8 1.00 £ 0.07 0.83 £0.12
HDL metabolism Apoal ApoAl 1.00 £ 0.10 0.96 + 0.15
Lipe HL 1.00 £ 0.30 0.70 £ 0.16
Pltp PLTP 1.00 £ 0.11 0.78 £ 0.10*
Abcal ABCA1 1.00 £ 0.07 0.78 £ 0.09*
Lcat LCAT 1.00 £ 0.04 0.87 + 0.06*
Cetp CETP 1.00 £0.17 0.73 £ 0.20
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Figure 3. Effect of metformin on peripheral VLDL-TG clearance. 4 h-fasted control (open bars)
and metformin-treated (black bars) mice were continuously infused with [’H]TG-labeled VLDL-like
emulsion particles mixed with albumin-bound ["*C]FA for 2.5 h. Blood samples were taken using chilled
paraoxon-coated capillaries by tail bleeding at 90 and 120 min of infusion to ensure that steady-state
conditions had been reached. Subsequently, mice were euthanized and organs were quickly harvested and
snap-frozen in liquid nitrogen. Plasma levels of TG and FA were determined in plasma and uptake of the
radioactively ["H]TG-labeled emulsion particles (A) and albumin-bound ["*C]FA (B) was determined in
the organs. Data are means + SEM (n=8 per group). * P<0.05 vs control. gWAT, gonadal white adipose
tissue; sWAT, subcuataneous white adipose tissue; vWAT, viscerial white adipose tissue; BAT, brown
adipose tissue.

Metformin increases AMPK activity and mitochondrial content in brown adipose tissue

To further investigate the molecular mechanism by which metformin increased
VLDL-TG clearance by BAT, we determined the mRNA expression of genes
involved in FA/lipoprotein uptake, FA metabolism, mitochondrial functions and BAT
differentiation, but did not find any significant effect of the drug treatment in our
experimental condition (Supplemental Table 3). By contrast, we found that metformin
selectively increased the activity of al- (+19%, P<0.05), but not of a2-containing
AMPK heterotrimers in BAT (Figure 4A). This was associated with a significant
increase in Thr172 phosphorylation (+21%, P<0.05) and expression of the AMPKal
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Figure 4. Effect of metformin on AMPK signalling and expression of key lipolytic proteins in
brown adipose tissue. Brown adipose tissue from 4 h-fasted mice was collected after 4 weeks of treatment
with (black bars) or without metformin (control, open bars) and immediately snap-frozen in liquid nitrogen.
The AMPK activity was measured by kinase assay after immunoprecipitation of either AMPKal or a2
catalytic subunits with specific antibodies (A). The phosphorylation states of Thr172-AMPK and Ser79-
ACC, and the protein expression of AMPKal,AMPKa2,ACC, HSL and ATGL were assessed in tissue lysate
by Western blot (B), followed by densitometric quantification (C).Tubulin expression was used as internal
housekeeping protein. Data are means = SEM (n=8 per group). * P<0.05 vs control.
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isoform (+38%, P<0.05),and with a trend for elevated Ser79-phosphorylation of ACC
(+21%, P=0.08; Figure 4B-C). We next examined whether some of the key players
involved in the regulation of TG lipolysis and FA oxidation in BAT were affected by
metformin. Interestingly, the protein expression of the lipolytic enzyme hormone-
sensitive lipase (HSL), but not of adipose triglyceride lipase (ATGL), was significantly
increased by metformin in BAT (+30%, P<0.05; Figure 4B-C). In addition, we found
an increase in protein expression of two of the main regulators of mitochondrial
biogenesis, eNOS and PGC-1la (+23% and +127%, respectively; P<0.05), together
with a significantly higher mitochondrial content in BAT from metformin-treated
E3L.CETP mice (+24%, P<0.05) (Figure 5A-B). Of note, the mitochondrial
respiratory-chain complex 2-on-1 expression ratio was also increased by metformin
in BAT (+17%, P<0.05), whereas the expression of uncoupling protein 1 (UCP1)
was unchanged. Taken together, these results show that metformin treatment does not
only promote VLDL-TG uptake by BAT but also enhances both intracellular lipolytic
and mitochondrial FA B-oxidation capacity in this highly oxidative tissue (Figure 6).

DISCUSSION

Metformin does not only improve glycemic control in type 2 diabetic patients, but also
exerts beneficial effects on plasma lipid profiles [29] by a mechanism that remained,
so far, poorly understood. In the present study we have therefore investigated the
molecular mechanism(s) underlying this lipid-lowering property of metformin using
E3L.CETP mice, a well-characterized transgenic model displaying a human-like
lipoprotein metabolism and human-like responses to lipid-modulating drugs when fed
a Western-type diet [19-25]. Our results show that chronic treatment of E3L.CETP
mice with metformin recapitulates the effects on circulating lipoproteins observed in
patients treated with the drug, i.e reduction in plasma TG associated with significant
reduction inVLDL [30].We next demonstrated that metformin does not affect hepatic
VLDL-TG production, but instead selectively promotes VLDL-TG clearance by BAT,
an effect associated with enhanced intracellular lipolysis and FA oxidation machinery
in this highly active metabolic tissue. To the best of our knowledge, this study is the
first one reporting that BAT is involved in the lipid-lowering effect of metformin, and
therefore constitutes an important target tissue for the drug.

PlasmaT G levels are determined by the balance between production of chylomicrons
and VLDL-TG in intestine and liver, respectively, and their LPL-mediated clearance
in peripheral tissues. In our study, all the experiments were performed in fasted mice,
thereby excluding any significant contribution of intestine-derived chylomicrons
to the change observed in circulating TG concentrations. Furthermore, metformin
treatment did not aftect the postprandial response to an oral lipid load (Supplemental
Figure 3), suggesting that impaired intestinal TG absorption is not involved in the TG-
lowering effect of the drug. Besides its central role in glucose homeostasis, the liver
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Figure 5. Effect of metformin on key mitochondrial proteins expression in brown adipose
tissue. Brown adipose tissue from 4 h-fasted mice was collected after 4 weeks of treatment with (black
bars) or without metformin (control, open bars) as described in the legends of Figure 4. The protein
expression of various mitochondrial respiratory-chain subunits (CI: NDUFBS; CII: SDHB; CIII:
UQCRC2; CIV: MTCO1; CV:ATP5A), and of UCP1,eNOS and PGC-1a were assessed in tissue lysate
by Western blot (A), followed by densitometric quantification (B). The mitochondrial tissue content was
estimated by the sum of the expression levels of all the mitochondrial respiratory-chain subunits. Tubulin
expression was used as internal housekeeping protein. Data are means £ SEM (n=8 per group). * P<0.05
vs control.
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plays a key role in lipid metabolism, notably by regulating synthesis and secretion of
ApoB-rich VLDL-TG particles [31]. Hepatic VLDL-TG production is mostly driven
by intracellular substrate availability resulting from both FA uptake from the circulation
and the balance between de novo lipogenesis and mitochondrial FA B-oxidation in
the liver [32]. In our study, we found that metformin did not significantly affect
plasma FA levels, hepatic lipid content, AMPK activity, expression of genes involved
in FA/TG uptake, synthesis and oxidation,VLDL-TG and -ApoB secretion rates and
composition of the excreted VLDL particles. To our knowledge, these findings are
the only data available reporting the in vivo effects of chronic metformin treatment
on hepatic lipid metabolism and VLDL production in rodents. Although we did not
find an apparent contribution of the liver to the TG-reducing effect of metformin, we
cannot completely exclude that some of its hepatic effects were lowered or masked
due to our experimental conditions, e.g. fasting state, and the pharmacokinetic features
of the drug. Of note, we found that expression of some genes involved in hepatic HDL
uptake (Lrp1, Scarb1) and remodeling (Abcal, Pltp) were decreased by metformin,
suggesting that part of the mild HDL-raising effect of the drug might be partly due to
subtle changes in cholesterol metabolism in the liver. Future studies are required for
clarifying the exact underlying molecular mechanism.

Plasma VLDL-TG clearance is driven by LPL-mediated lipolysis in the capillaries
of peripheral tissues [33]. The most striking result of our present study was that
metformin induced a potent and selective increase in VLDL-TG-derived glycerol
tri[’HJoleate retention in BAT without affecting VLDL-TG uptake by heart, muscle
and various white adipose tissues. Recently, Bartelt ef al. were the first to identify
BAT as a major organ involved in plasma VLDL-TG clearance in rodents [34]. In
this elegant study confirming previous observations [35], they reported that BAT
constitutes a quantitatively relevant lipid-clearing organ displaying a very high rates
of VLDL-TG uptake [34] by a mechanism that still remains to be fully characterized
[36]. In the present study, our observation that metformin promotes VLDL-["H|TG-
derived FA but not albumin-bound [*C]FA retention in BAT suggests that the TG-
lowering effect of the drug is mediated by a tissue-specific increase in LPL-mediated
VLDL-derived TG hydrolysis. At the molecular level, it remains to be clarified whether
increase in endothelial LPL expression and/or subtle changes in apolipoproteins and
angiopoietin-like proteins regulating local LPL activity [37] are involved in the BAT-
specific VLDL-derived TG hydrolysis induced by metformin.

Owing to its high mitochondrial and oxidative enzyme content, BAT has a marked
ability to oxidize both glucose and FA, the latter being either derived from LPL-
mediated hydrolysis of VLDL-TG or intracellular TG that are stored in lipid droplets.
Once released, FA are rapidly re-esterified in TG or directed to mitochondria for
oxidation or activation of UCP1, leading to dissipation of the proton gradient across
the inner mitochondrial membrane and heat production [38]. At the molecular level,
we found that metformin significantly increased AMPKal activity and Ser79-ACC
phosphorylation, an effect that is expected to promote mitochondrial FA transport
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and oxidation by relieving the inhibition of CPT1la by malonyl-CoA [9]. AMPK
activation 1s known to trigger mitochondrial biogenesis, at least in skeletal muscle
[39] and liver [40]. Interestingly, the expression of key proteins of the mitochondrial
respiratory-chain complexes, but not UCP1, was increased by metformin in BAT,
indicating enhanced mitochondrial content in this tissue. Mechanistically, the
expression of PGC-1a and eNOS, which are both recognized as important regulators
of mitochondrial biogenesis [41, 42] were found to be higher in BAT of metformin-
treated mice, suggesting activation of the AMPK-PGCla-eNOS pathway by
metformin in this tissue. Finally, we found that metformin affected the qualitative
composition of the mitochondrial respiratory chain in BAT, leading to an increase
in complex 2 relative to complex 1. This effect might also contribute to enhanced
FA oxidation by promoting electron supply to the respiratory chain complex 2.
Interestingly, modulating the ratio of FADH2-to-NADH oxidation will also affect
the stoichiometry of oxidative phosphorylation and promote metabolic uncoupling,
with the yield of ATP synthesis being lowered by approximately 40% when FADH2
1s oxidized as compared to NADH [43].Taken together, we propose that secondary to
its tissue-specific increase in VLDL-TG uptake, metformin promotes FA oxidation in
BAT by enhancing both intracellular lipolytic capacity and mitochondrial oxidative
machinery.

The recent discovery of active BAT in adult humans [44-47] has caused a revival
interest in this potential new therapeutic target for the treatment of obesity and
metabolic disorders [48]. Interestingly, in contrast to other glucose-lowering agents
such as sulphonylureas, glitazones or insulin, metformin treatment often results in
significant weight loss in obese diabetic patients. It is therefore tempting to speculate
that part of the weight-lowering property of the drug might be secondary to enhanced
lipid oxidation and energy dissipation in BAT. Further studies allowing imaging of lipid
metabolism in BAT from metformin-treated patients, for instance using '"F-labeled
FA incorporated into VLDL-TG coupled to position emission tomography scanning
[49], would be crucial to specifically address this point.

In summary, we demonstrate in the present study that metformin exerts a beneficial
effect on circulating lipids by lowering plasma TG, through a selective BAT-mediated
increase in VLDL-TG uptake/lipolysis (Figure 6). The present study is the first
identifying BAT as a new important mechanistic player in the lipid-lowering action
of metformin, suggesting that targeting this tissue, on top of being interesting for body
weight management, might also be of therapeutic importance in the treatment of
dyslipidemia.
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Figure 6. Proposed mechanism for the brown adipose tissue-mediated TG-lowering effect of
metformin. Metformin exerts a beneficial effect on circulating lipids by lowering plasma TG, through a
selective increase in T'G-derived FA uptake by BAT. In addition, metformin also improves intracellular
lipolytic capacity by increasing HSL expression, thereby enhancing FA release from TG stored in lipid
droplets. We propose that metformin next promotes FA oxidation in BAT by multiple (path)ways. First,
metformin activates AMPKal, leading to the subsequent phosphorylation and inactivation of its
downstream target ACC. This relieves the inhibition exerted by malonyl-CoA on CPT1, ultimately
promoting mitochondrial FA transport and oxidation. Second, metformin increases the tissue
mitochondrial content, an effect that might be due to AMPK-mediated stimulation of mitochondrial
biogenesis, as reflected by higher expression of eNOS and PGC-1a. Finally, by changing the qualitative
composition of the mitochondrial respiratory-chain, metformin can enhance respiratory-chain complex
2-mediated FA oxidation and metabolic uncoupling of oxidative phosphorylation.
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SUPPLEMENTAL DATA

Supplemental Table 1. Antibodies used for Western blots

Primary antibody Residue Supplier Reference Dilution
ACC - Cell Signaling #3662 1:2000
ACC Ser79 Cell Signaling #3661 1:2000
AMPKa Thr172 Cell Signaling #2535 1:1000
AMPKa - Cell Signaling #2532 1:1000
AMPKa1l - Kinasource AB-140 1:2500
AMPKa2 - Kinasource AB-141 1:2500
ATGL - Cell Signaling #2439 1:1250
eNOS (NOS3) - Santa Cruz sc-654 1:1000
HSL - Cell Signaling #4107 1:2000
MitoProfile - AbCam ab110413 1:1000
UCP1 - Sigma U6382 1:2500
Tubulin - Cell Signaling #2148 1:2000
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Supplemental Table 2. qPCR primers

Gene Accession nr. Forward primer Reverse primer

Abcal NM_013454.3 CCCAGAGCAAAAAGCGACTC GGTCATCATCACTTTGGTCCTTG
Abcg5 NM_031884 TGTCCTACAGCGTCAGCAACC GGCCACTCTCGATGTACAAGG
Abcg8 NM_026180 TCCTGTGAGCTGGGCATCCGA CCCGCAGCCTGAGCTCCCTAT
Acaca NM_133360.2 CAGCTGGTGCAGAGGTACCG TCTACTCGCAGGTACTGCCG
Acach NM_133904.2 GCGCCTACTATGAGGCCCAGCA ACAAACTCGGCTGGGGACGC
Acly NM_134037.2 TGTGGACGGCTTCATCGGCG ATGTCATCCCAGGGGTGACG
Acox1 NM_015729 GGGACCCACAAGCCTCTGCCA GTGCCGTCAGGCTTCACCTGG
Apoal NM_009692 TGCGGTCAAAGACAGCGGCA AGATTCAGGTTCAGCTGTTGGCCC
Apob NM_009693 CAGCTGCAAGTGTCCTCGTC sACACAGAGGGCTTTGCCAC
Atpsal NM_007505.2 CCAAGCAGGCTGTCGCTTACCG TCTCCAGCAGGCGGGAGTGT
Cd36 NM_001159558 GCAAAGAACAGCAGCAAAATC CAGTGAAGGCTCAAAGATGG
Cox7al NM_009944.3 AAAACCGTGTGGCAGAGAAG CCAGCCCAAGCAGTATAAGC
Cptla NM_013495 AGGAGACAAGAACCCCAACA AAGGAATGCAGGTCCACATC
Creb1 NM_133828 AGCTGCCACTCAGCCGGGTA TCGCCTGAGGCAGCTTGAACA
Dgat1 NM_010046.2 CTAGTGAGCGTTCCCCTGCG GGGCATCGTAGTTGAGCACG
Dio2 NM_010050 CGCTCCAAGTCCACTCGCGG CGGCCCCATCAGCGGTCTTC
Fabp1 NM_017399.4 GCCACCATGAACTTCTCCGGCA GGTCCTCGGGCAGACCTATTGC
Fasn NM_007988 CACAGGCATCAATGTCAACC TTTGGGAAGTCCTCAGCAAC
Fdft1 NM_010191.2 CCAACTCAATGGGTCTGTTCCT TGGCTTAGCAAAGTCTTCCAACT
Fdps NM_134469.4 ATGGAGATGGGCGAGTTCTTC CCGACCTTTCCCGTCACA

Gpam NM_008149.3 TCATACCCGTGGGCATCTCG AATCCACTCGGACGTAGCCG
Gpihbp1 NM_026730 AGTGGACAGCCAGGGAGTGGC GCTCTCCCCGCTGTGAAGCAC
Hmnger NM_008255 CTTGTGGAATGCCTTGTGATTG AGCCGAAGCAGCACATGAT
Hmges1 NM_145942 .4 GGACTGGAAGCCTTTGGGGACG TGCCAGGACAGAAGCCAGGGA
Hmges2 NM_008256.4 CATCGCAGGAAGTATGCCCG GCTGTTTGGGTAGCAGCTCG

Idi1 NM_145360.2 TGGGAATACCCTTGGAAGAGGTTGA CCCCAGATACCATCAGATTGGGCCT
Lcat NM_008490.2 GGCAAGACCGAATCTGTTGAG ACCAGATTCTGCACCAGTGTGT
Ldlr NM_010700 GCATCAGCTTGGACAAGGTGT GGGAACAGCCACCATTGTTG

Lipe NM_010719 AGCCTCATGGACCCTCTTCT GCCTAGTGCCTTCTGGTCTG

Lyl NM_008509 CAGGGGGTCACCTGGTCGAAGT AGCTGGTCCACGTCTCCGAGT
Lip1 NM_008512 GGAACTCCAGTCGCTGCAAC TAGCACAGGGATGTCCGCTC
Mttp NM_008642 GCCTGTGGCTTTGCCACCCA TCCACCACTGCCTTGAGCTTGC
Ndufb8 NM_026061.2 GAGGCACGGAGAGCCTTCCA GGGAGCATCGGGTAGTCGCC
Nrih3 NM_013839.4 CTGCACGCCTACGTCTCCAT AAGTACGGAGGCTCACCAGCT
Pltp NM_011125.2 GGCCGTCTCAGTGCTAAGTT CGAAGTTGATACCCTCAGGAA
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Supplemental Table 2. qPCR primers (continued)

Gene Accession nr. Forward primer Reverse primer

Ppara NM_011144 CAACCCGCCTTTTGTCATAC CCTCTGCCTCTTTGTCTTCG
Pparg NM_011146 CCTGCGGAAGCCCTTTGGTGA AGCCTGGGCGGTCTCCACTG
Ppargcla NM_008904.2 TGCTAGCGGTTCTCACAGAG AGTGCTAAGACCGCTGCATT
Ppargc1b NM_133249 CTTGCTTTTCCCAGATGAGG CCCTGTCCGTGAGGAACG

Ppargc1b NM_133249 CTTGCTTTTCCCAGATGAGG CCCTGTCCGTGAGGAACG

Prkaal NM_001013367 TGGTGGGAAAAATCCGCCGGG CGGCTTTCCTTTTCGTCCAACCTTC
Prkaa?2 NM_178143 ACCGAGCTATGAAGCAGCTGGGTT CCTCTGCTCCACCACCTCATCATC
Scarb1 NM_016741 TCGCTTCACGGCCCCCGATA ACAGAGGCGCACCAAACCTGC
Sed1 NM_009127.4 GCTCTACACCTGCCTCTTCGGGAT TCCAGAGGCGATGAGCCCCG

Sdha NM_023281.1 GGGACAGGTGCTGAAGCATGTGAAT GCAATGCTCAGGGCACAGGCT
Sdhb NM_023374.3 CGACGGTCGGGGTCTCCTTGA CCTGAAACTGCAGGCCGACTC
Sqle NM_009270.3 TCGTTCGTGACGGACCCGGA ACTGTATCTCCAAGGCCCAGCTCC
Srebf1 NM_011480 GGCCGAGATGTGCGAACT TTGTTGATGAGCTGGAGCATGT
Srebf1 NM_011480 CTGGCTGAGGCGGGATGA TACGGGCCACAAGAAGTAGA

Tfam NM_009360 CTTCCTGGGTTCACCCGCAC ATGGGCACTATGGCTCCGTC

Uep1 NM_009463 TCAGGATTGGCCTCTACGAC TGCATTCTGACCTTCACGAC

Vidir NM_013703 TCTTGAGCAGTGTGGCCGTC TTGCAGTCAGGGTCTCCGTC
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Supplemental Table 3. Metformin does not affect expression of genes involved in tissue
differentiation, lipoprotein/FA uptake, TG synthesis, FA oxidation and mitochondrial
functions in brown adipose tissue. Brown adipose tissues were isolated from 4 h-fasted mice treated
with or without metformin for 4 weeks. mRINA expression of the indicated genes were quantified by
RT-PCR relative to CypD gene and expressed as fold difference compared with the control group. Data
are means +/- SEM (n=8).

Fold change

Function Gene Protein Control Metformin
BAT differentiation Prdm16 PRDM16 1.00 £ 0.27 1.14 £0.35
Cidea CIDEA 1.00 £ 0.20 1.09 £ 0.20

Dio2 DIO2 1.00 £ 0.16 1.00 £ 0.20

Essra ESSRa 1.00 £ 0.36 1.03 £0.43

Lipoprotein/FA uptake CD36 CD36 1.00 £ 0.11 0.90 £ 0.12
Ldlr LDLr 1.00 £ 0.20 1.19 £ 0.29

Lip1 LRP1 1.00 = 0.09 1.34 £ 0.34

Vidlr VLDLr 1.00 £ 0.12 0.96 £ 0.11

Gpihbp1 GPIHBP1 1.00 £ 0.05 1.17 £ 0.13

Lpl LPL 1.00 £ 0.16 0.96 £ 0.22

FA/TG synthesis Sed1 SCD1 1.00 £ 0.17 0.94 £ 0.26
Fasn FAS 1.00 £ 0.14 1.25+0.22

Acly ACLY 1.00 £ 0.23 0.94 £0.18

Dgat1 DGAT1 1.00 £ 0.16 1.10 £ 0.13

Pck1 PEPCK 1.00 £ 0.18 1.18 £ 0.26

Gpam GPAT 1.00 £ 0.23 1.03 £ 0.31

FA oxidation Ppara PPARa 1.00 £0.23 1.15+0.25
Pparg PPARYy 1.00 £ 0.06 1.06 £ 0.08

Cptla CPT1la 1.00 £ 0.20 0.98 £ 0.31

Prkaal AMPKal 1.00 £ 0.12 1.11 £ 0.14

Prkaa2 AMPKa2 1.00 £ 0.20 1.09 £ 0.14

Acaca ACC1 1.00 £ 0.19 1.12 £0.19

Acacb ACC2 1.00 £ 0.19 1.25 £0.26

Mitochondria Pparagcla PGCla 1.00 £ 0.25 1.01 £0.21
Tfam Tfam 1.00 £ 0.13 0.96 £ 0.17

Uep1 UCP1 1.00 £ 0.12 1.13 £0.05

Cox7al COX7 1.00 £ 0.11 1.05 + 0.07

Atp5al ATP5A1 1.00 = 0.09 0.99 £ 0.09

Ndufb8 NDUFBS8 1.00 £ 0.13 0.98 £0.13

Sdha SDHA 1.00 £ 0.10 1.06 £ 0.21

Sdhb SDHB 1.00 £ 0.12 0.90 £ 0.10

Ugcrc2 UQCRC2 1.00 £ 0.08 1.04 £ 0.07
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Supplemental Figure 1. Effect of metformin on body weight, food intake and various plasma
parameters. Body weight (A) and mean food intake (B) were measured throughout the study in control
(open bars) and metformin-treated (black bars) mice. Blood samples were collected as described in Figure
1 and plasma glucose (C), insulin (D) and free fatty acids (FFA; E) levels were determined. Values are
means + SEM (n=9/group).
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Supplemental Figure 2. Effect of metformin on hepatic lipid composition and AMPK
signalling. Livers from 4 h-fasted mice were collected after 4 weeks of treatment with (black bars) or
without metformin (control, open bars) and immediately snap-frozen in liquid nitrogen. Hepatic TG, TC
and PL content were measured after lipid extraction (A). The phosphorylation state of Thr172-AMPK
and Ser79-ACC, and AMPKa protein expression were assessed on tissue lysate by Western blot (B),
followed by densitometric quantification (C). Tubulin expression was used as internal housekeeping
protein. Data are means = SEM (n=5-8 per group).
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Supplemental Figure 3. Effect of metformin on postprandial TG response. Overnight-fasted
control (open squares) and metformin-treated (black squares) mice were given an intragastric bolus of
200 wl of olive oil. Blood samples were drawn at 0, 2, 4, and 8 h. TG concentrations were determined in
plasma and corrected for their respective values at time 0.Values are means £ SEM (n=9-10/group).
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