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Bone morphogenetic proteins (BMPs) play vital roles in development and 

maintenance of adult tissue homeostasis. Due to the extensive biological 

activities they are involved in, disruptions in BMP signaling will lead to marked 

defects or severe pathologies in the body. In this thesis, I focused on the 

disturbed BMP signaling in fibrodysplasia ossificans progressiva (FOP) and 

pulmonary arterial hypertension (PAH). The aim of this thesis is to reveal how 

BMP signaling contributes to the pathology of these diseases, which might 

contribute to the development of effective therapeutic strategies for these 

diseases with unmet clinical need.  

 

6.1 The regulation of the BMP signaling pathway 

BMPs are multi-functional growth factors that are important for determining 

embryonic patterning and tissue morphogenesis (1). Dimeric BMP ligands 

initiate intracellular signaling by binding to BMP type I and type II 

serine/threonine kinase receptors on the cell surface to form a ternary complex. 

In the heteromeric complex, BMP type II receptor activates the type I receptors 

by phosphorylating specific serine and threonine residues in their 

juxtamenbrane glycine-serine-rich (GS) domains (2).  

BMP signaling is extensively regulated at multiple levels, which we have 

described in chapter 1. The most important regulators for my research are the 

12 kDa FK506 binding protein (FKBP12) and endoglin.  

FKBP12 is widely expressed throughout the body and shows a conserved 

structure among different species. It was known to mediate the effects of the 

immunosuppressant drugs FK506 and rapamycin (3, 4). Further research 

showed that FKBP12 also acts as a natural ligand to bind to the GS domain of 

transforming growth factor beta (TGF-β) type I receptors and inhibits the leaky 

activation of TGF-β type I receptors in the absence of TGF-β ligands (5-7). 

Intact TGF-β type II receptor kinase activity is necessary for the release of 

FKBP12 from the type I receptors, since a mutation in the ATP binding site of 

the kinase domain of TGF-β type II receptors prevents the dissociation of 

FKBP12 from the type I receptors (5). 

Interruption of the interaction between FKBP12 and TGF-β type I 

receptors is correlated with human diseases and could be used for drug targeting. 

The weak binding between FKBP12 and R206H mutant activin receptor-like 

kinase (ALK) 2 in FOP patients resulted in the activated response of heterotopic 

ossification progenitor cells to low concentration of BMP ligands, and finally 
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leads to ectopic bone formation in soft tissues with the involvement of other 

inflammatory factors (Figure 1) (8-10). On the other hand, FKBP12 may also be 

a drug target for curing PAH by activating BMP signaling, which we have 

discussed in chapter 4 (Figure 1).  

 

 

Figure 1. Schematic overview of the BMP signaling pathway. 1, FKBP12 binds to 

the GS domain of BMP type I receptors to prevent the signal leakage in the absence of 

BMPs; 2, The FOP mutation R206H in BMP type I receptor ALK2 inhibits the 

interaction between the ALK2 GS domain and FKBP12; 3, In PAH with dysfunctional 

BMPR2, FK506 can activate downstream SMAD signaling by binding to calcineurin in 

the presence of FKBP12, and removing FKBP12 from TGF-β/BMP type I receptor 

ALK1, ALK2 and ALK3. Adapted from the original figure in Chapter 4. 

 

    Co-receptors like endoglin that can interact with TGF-β type I and type II 

receptors add further regulation specificity to the BMP signaling pathway (11). 

Endoglin (CD105) is highly expressed in proliferating endothelial cells (ECs) 

(12). Various disease conditions, including hereditary hemorrhagic 

telangiectasia (HHT), preeclampsia and solid tumors have been associated with 

endoglin. In chapter 5, we have investigated the soluble form of endoglin and 

how it regulates the activity of BMP9. Finally, crosstalk with other signaling 

pathways could add additional layers of complexity to the BMP signaling 

pathway.  

 

6.6 Developing FOP therapies by targeting ALK2 

FOP is caused by a heterozygous mutation in the ALK2 gene. Most patients 

have the same mutation (c.617G>A; R206H) that is located in the GS domain of 
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ALK2 (13). Other mutations have been identified both in the GS domain and in 

the kinase domain of ALK2 with various phenotypes (Figure 2) (10). The 

clinical features of FOP include malformation of the great toes and progressive 

heterotopic ossification (HO) in the soft tissues. HO begins in childhood and 

can be triggered by traumas or occurs without warning (14). Researchers have 

made great progress on illustrating the molecular mechanisms of FOP since the 

identification the FOP mutant gene in 2006. However, the underlying 

mechanisms involved in the HO in FOP are still not clearly clarified, and to date 

there is no cure or even treatment for HO in FOP. 

 

 

Figure 2: Schematic overview of the ALK2 structural protein domains and the 

FOP mutations in the GS and kinase domains. Signal peptide (Sig), Ligand binding 

domain (LBD), Transmembrane domain (TM), GS domain (GS), and kinase domain 

(KD). 

 

6.2.1 FOP disease models 

It is not easy to obtain tissues from FOP patients, because physical and surgical 

injuries can induce new traumas and trigger HO. Previous research in FOP 

animal models have helped us to understand the role of BMP signaling in the 

pathology of FOP. For instance, Yu et al. showed that blocking mutant ALK2 

by an ALK2 kinase small molecule inhibitor might be a useful treatment, as 

revealed from experiments in a FOP mouse model expressing constitutively 

active ALK2 (15). Chakkalakal et al. showed the first direct evidence that the 

ALK2 R206H mutation is the cause of FOP using a chimeric mouse knock-in 

model (16). The work on animal models might also provide novel research and 

treatment targets for FOP. Recently, a FOP conditional knock-in mouse model 

was introduced by Hatsell et al.(17). This mouse model recreated FOP disease 

phenotypes by exhibiting HO progressively in various locations of the body. 
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Importantly, in this FOP mouse model the novel finding that activin A signals 

through mutant R206H ALK2 to induce FOP was verified. Blocking activin A 

activity with antibodies prevented the HO phenotype in this FOP mouse model, 

which indicates that activin A is a potential therapeutic target in FOP (17).  

Validation in human samples of disease phenotypes and molecular 

mechanisms found in animal models will facilitate us to better understand the 

pathology of human diseases. Previously, researchers obtained FOP patients‘ 

samples in the form of lymphoblastoid cell lines or connective tissue of the 

discarded milk teeth of FOP children (13, 18). Due to the rarity feature of this 

disease and limited accessibility of patient‘s tissues, we have focused on 

modeling FOP disease using human induced pluripotent stem cells (hiPSCs). 

This can provide an alternative human research model that complements the in 

vivo studies of FOP mouse models. hiPSCs can provide a large amount of cells 

for research, and, more importantly, hiPSCs have the potential to differentiate 

into various cell linages that can mimic the disease phenotypes in the 

pathological cells. There are several publications on the establishment of 

hiPSCs from FOP patients and their subsequent differentiation into 

chondrocytes and osteoblasts (19, 20). Our research on this topic is described in 

chapter 2. 

Our FOP hiPSC disease model needs to be improved on many aspects 

before applying it in high-throughput drug development. One crucial issue of 

the application of hiPSCs is to choose proper controls. Previous publications 

have shown that there are variations in different hiPSC clones and these 

variations (resulting from (epi) genetic changes) may arise during 

reprogramming and culturing (21-25). We found that the small-molecule ALK2 

kinase inhibitor LDN-212854 could rescue the excessive osteoblast 

differentiation of FOP hiPSC-pericytes (chapter 2). However, we also observed 

clone variations between FOP or wild-type hiPSCs derived from different 

donors. The further application of hiPSCs may need to use multiple control 

hiPSC lines from different donors or gene-edited hiPSCs from the same genetic 

background (19). 

 

6.2.2 Strategies and challenges in the development of FOP therapies based   

on the BMP signaling pathway 
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The identification of ALK2 mutation in FOP patients provides a specific 

druggable target for this disease. The first approach to inhibit HO progression in 

FOP was to block the activity of the mutant ALK2 receptors (14). Based on this 

principle, the small-molecule inhibitor of BMP type I receptor LDN-193189 

was used to inhibit ALK2 mediated SMAD1/5 phosphorylation and to reduce 

ectopic ossification in the FOP mouse model expressing constitutively active 

ALK2
Q207D

 and concomitant inflammation (15). Thereafter other 

small-molecule BMP type I receptor kinase inhibitors have been discovered, 

including LDN-212854, DMH1 and K02288 (26-28). 

    Targeting the overactive ALK2 by anti-sense oligonucleotides (AONs) or 

siRNAs that suppress (mutant) ALK2 expression is the other possible strategy 

for the treatment and prevention of HO in FOP patients (29-31). Previous 

researches showed that the allele specific siRNA technique can be used to target 

the disease-causing ALK2 (30, 31). The siRNAs were applied in the patient‘ 

cells to restore BMP activity and osteogenic differentiation (30, 31). In chapter 

3, we used the AON-mediated exon skipping technique to target mouse 

wild-type Alk2 to prevent the increased BMP signaling in FOP. AON-mediated 

exon skipping has been reported to reframe the mutated dystrophin mRNA and 

restore protein synthesis of dystrophin protein in skeletal muscle of Duchenne 

muscular dystrophy patients (32, 33). Systemic delivery of AONs is less 

challenging than of siRNAs. However, the application of the AON technique in 

FOP is still in the preliminary stage. We have attempted to specifically target 

the ALK2 R206H allele with human ALK2 AONs, but so far this has not been 

successful. The other problem, targeting HO progenitor cells by ALK2 AON, 

also needs to be solved. 

Recently work indicated that TGF-β type II receptors need to cooperate 

with the mutated ALK2 in FOP. BMP type II receptor (BMPR2) and activin 

receptor type IIb (ActR2B) are involved in the activation of BMP signaling by 

mutant ALK2 (R206H, G325A) (34, 35). Thus, BMPR2 could be another novel 

therapeutic target for FOP drug development, for instance development of 

AONs and siRNAs targeting BMPR2. 

    As already indicated above, a critical issue for developing effective 

therapies for FOP is to identify the target cells for the treatment. However, the 

obtained results on the identification of the HO progenitor cells are still 

inconclusive. Earlier linage tracing experiments in mouse models suggested that 

Tie2-expressing cells contribute to HO lesions (36). Research conducted by 
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Medici et al. showed that TIE2 and the endothelial marker von Willebrand 

factor (vWF) are co-expressed in FOP patient lesions, and a HO mouse model 

supported the endothelial original of HO in FOP (37). However, Wosczyna et al. 

reported that Tie2
+ 

multipotent mesenchymal cells are a predominant source of 

progenitors, but not the Tie2
+ 

ECs (38). As Tie2 is not a specific cell linage 

marker and at least expressed in ECs, hematopoietic stem cells and pericyte 

precursors, it is possible that other cell lineages may also contribute to HO in 

FOP. Other cells like circulating osteogenic precursors, skeletal myoblasts and 

vascular smooth muscle cells (SMCs) were also found in FOP lesions, and may 

contribute to HO in FOP as well (36, 39, 40). 

    Besides the activating mutations in the ALK2 gene, HO induction also 

correlates with soft tissue injury and resultant inflammation in tissue 

microenvironments (41). Anti-inflammatory glucocorticoid drugs have been 

applied for the management of early flare-ups in limited cases (42). In addition, 

anti-inflammatory and anti-angiogenic drugs like cyclo-oxygenase-2 (cox-2) 

inhibitors and non-steroidal anti-inflammatory drugs (NSAIDs) have been 

applied in clinical treatments (43). As already described above, a recent 

publication by Hatsell et al. indicates the involvement of activin A in HO in a 

FOP conditional knock-in mouse model (17). Activin A regulates both the 

innate and adaptive immune responses in response to injury and inflammation 

(44). Activin A might thus link the activated SMAD signaling and 

inflammatory flare-ups in FOP lesions, and bring a new drug target to cure FOP 

(17). It should be noted that the experimental work on FOP described in chapter 

2 and 3 was performed before the publication of the paper by Hatsell et al.(17). 

By performing chondrogenic and osteogenic differentiation of FOP hiPSCs or 

ALK2 AON transfected cells treated with Activin A in the presence or absence 

of activin inhibitors, we might not only validate the role of Activin A in HO but 

also provide a different platform for developing efficient treatments for FOP. 

 

6.3 Restoration of BMPR2 signaling in PAH 

6.3.1 BMPR2 in PAH 

PAH is a chronic and progressive disease characterized by high pulmonary 

artery pressure, which will result in failure of the right heart if left untreated. 

Heterozygous mutations in the BMPR2 gene are detected in most of the patients 

with heritable PAH (~70%) and some patients with idiopathic PAH (~20%) (45, 
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46). The majority of BMPR2 mutations (~70%) result in premature termination 

of the transcript through the process of nonsense-mediated decay (NMD
+
). The 

remaining mutations (NMD
-
) cause disease due to the dominant negative effects 

(45). Mutations in the ALK1 or endoglin genes are also associated with the 

pathology of PAH (47, 48). Besides, reports have described mutations in other 

BMP signaling components, like SMAD1, SMAD5 and SMAD8 in PAH patients 

(49, 50). Conditional heterozygous or homozygous deleted BMPR2 gene in 

mouse pulmonary ECs results in PAH (51), as well as mice expressing 

dominant-negative BMPR2 in vascular SMCs after birth (52).  

New DNA sequencing techniques such as RNA sequencing and 

whole-exome sequencing have helped to identify more PAH related genes. 

Caveolin-1 and potassium channel subfamily K member 3 (KCNK3) were 

identified as the two mutated genes in PAH patients without BMPR2 mutation 

(53, 54), and TopBP1 was identified in idiopathic PAH without BMPR2 

mutation (55). However, these mutations are extremely rare compared to 

BMPR2 mutations (56). 

Although there is a strong correlation between mutations in BMPR2 and 

PAH, the low penetrance of BMPR2 mutations suggests that other genetic and 

environmental factors combine with the disrupted BMP signaling to contribute 

to the development of PAH. For instance, the incidence of PAH is elevated in 

women, and that alterations in estrogen metabolism are associated with the 

increased penetrance in female patients (57). Suppression of BMP signaling by 

estrogen promoted the proliferation of female pulmonary artery smooth muscle 

cells (PASMCs) and predisposed women to PAH (58).  

Loss function of BMPR2 in ECs increases pulmonary EC apoptosis and 

promotes endothelial permeability (59, 60). Hamid et al. illustrated that 

unaffected mutation carriers have higher levels of wild-type BMPR2 transcripts 

than familial PAH patients, indicating that the expression level of wild-type 

BMPR2 might be important in disease pathogenesis of familial PAH patients, 

especially patients with nonsense mediated decay mutations in BMPR2 (61). 

Furthermore, PAH patients without BMPR2 mutations showed lower 

expression levels of BMPR2, for instance PAH patients associated with human 

immunodeficiency virus (HIV) infection (62). By adenoviral transfer of 

BMPR2 into the pulmonary vascular endothelium, Reynolds et al. showed that 

upregulating BMPR2 expression in two established PAH rat models can rescue 

PAH disease phenotypes (63). Thus, these examples demonstrate the critical 
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role of BMPR2 signaling in PAH and BMPR2 might act as a potential regulator 

linking different PAH pathologies. 

 

6.3.2 Strategies and challenges to restore BMPR2 expression 

Current treatments of PAH mainly focus on reversal of pulmonary 

vasoconstriction or decrease of EC and SMC proliferation, through targeting of 

the prostacyclin, endothelin, or nitric oxide pathways (64). However, these 

treatments can relieve disease symptoms and slow down the progression of 

PAH, but cannot prevent the disease. Understanding of the molecular 

mechanism of PAH pathology has enabled us to consider several novel 

treatments by restoring BMPR2 levels. 

Strategy 1: 

One strategy is to increase BMPR2 expression on the mRNA or protein 

levels. As mentioned above, the majority of BMPR2 mutations (around 70%) 

result in the premature termination of translation of the BMPR2 transcripts (45), 

the approach to promote the read-through of premature stop codons in BMPR2 

could be beneficial for these patients. Drake et al. showed that ataluren 

normalizes full-length BMP2 protein expression level by permitting ribosomal 

read-through of premature stop codons (65). In addition, ataluren also corrected 

BMP-regulated miRNA processing and restored the hyperproliferative 

phenotype of pulmonary artery endothelial cells (PAECs) and PASMCs (65).  

NMD
-
 mutations may lead to the restoration of BMPR2 proteins in the 

endoplasmic reticulum and Golgi and fail to reach the cell surface. Chemical 

chaperones can help with the correct folding of BMPR2 protein and enhances 

the trafficking of BMPR2 to the cell surface (66). Thirdly, Durrington et al. 

demonstrated that BMPR2 is degraded through lysosomes and that the 

endogenous mammalian E3 ligase Itch may be involved in this process (67). 

The antimalarial drug chloroquine has been reported to promote cell surface 

expression of BMPR2 by blocking lysosomal degradation (68, 69).  

A recent publication indicated that BMP9 restores BMPR2 signaling in 

part by upregulating BMPR2 expression. Long et al. reported that BMP9 could 

prevent EC apoptosis and enhance monolayer integrity in vitro. Furthermore, 

BMP9 reversed the development of PAH in heterozygous knock-in mice 

expressing a mutant human BMPR2 gene and two other experimental PAH 

models (60). 
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Strategy 2: 

Another option is using reagents that activate BMPR2 downstream signaling by 

activating either BMP type I receptors or SMAD signaling. An example of this 

using the compound FK506 has been described in chapter 4. By performing 

high throughput screening of US food and drug administration (FDA) approved 

drugs and bioactive compounds in BMP reporter cell lines, we identified FK506 

(tacrolimus) as the best BMP activator. FK506 activates BMP signaling via a 

dual mechanism. Firstly, it acts as a calcineurin inhibitor. Calcineurin is a 

calcium-dependent serine-threonine phosphatase which activates nuclear factor 

of activated T cells (NFAT) dependent transcription by dephosphorylating 

NFATs (70). Bonnet et al. demonstrated that NFAT activation is associated 

with human and experimental PAH, and inhibition of NFAT with 

calcineurin/NFAT inhibitor Cyclosporine A reverses monocrotaline induced 

PAH in rats (71). Besides, calcineurin was shown to antagonize the intensity of 

BMP signaling by directly dephosphorylating receptor-regulated SMADs 

(R-SMAD) during neural differentiation of human and mouse embryonic stem 

cells (ESCs) (72). In chapter 4, we showed that low dose of FK506 mildly 

inhibits NFAT activity and its downstream target Interleukin (IL)-2. Thus, 

inhibition of calcineurin in PAH patients could help to relief inflammatory 

responses and probably activates BMP downstream signaling by counteracting 

R-Smad dephosphorylation. The other mechanism by which FK506 can activate 

BMP signaling is by interacting with FKBP12 to prevent the binding of 

FKBP12 to the BMP type I receptors ALK1, ALK2 and ALK3, resulting in 

enhanced phosphorylation of these type I receptors and activation of 

downstream signaling (Figure 1).  

A clinical trial on the effects of low-dose FK506 reported therapeutic 

benefit for three cases of end-stage PAH (73). FK506 is a potent 

immunosuppressive drug being widely used in solid organ transplantations (74). 

It has been found that organ transplanted patients treated with FK506 are at high 

risk of renal injury, which might have happened due to the wide expression of 

calcineurin (75, 76). Thus, even though FK506 has shown significant clinical 

benefits, long-term use of this agent when treating PAH needs to be carefully 

monitored for the toxicity issue.  

Besides FK506, we have tested compounds developed by Arcarios BV 

(Netherlands) for their effects on the BMP signaling pathway. For this drug 

screening we used C2C12 cells (a mouse myoblast cell line) stably transfected 
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with a reporter construct containing a BMP-responsive element linked to the 

luciferase gene (BRE-luc). By adding 135 ng/ml BMP9, the concentration 

resulting in 20% of maximal response (EC-20) and distinguishing activators 

requiring the exogenous ligand (Figure 3A), we have identified two agents 

(compound 6 and compound 13) that could potentiate BMP9-induced luciferase 

activity in C2C12 cells (Figure 3B). In addition to BMP9, we have also 

screened Arcarios compounds with other BMP ligands (BMP2, BMP6 and 

BMP7), but none of these compounds activated luciferase activity with these 

other ligands (data not shown). The two co-activators could sustain 

BMP9-induced phospho-SMAD1/5 (pSMAD1/5) activity for about ten hours 

(Figure 3C). In a three days differentiation assay, they also could potentiate the 

BMP9 induced alkaline phosphatase activity (ALP) activity (Figure 3D). The 

above results indicate that compound 6 and 13 selectively activate BMP9 

signaling but not the signaling of other BMPs we have tested. 

BMP9 specifically signals through ALK1 signaling in ECs and ALK2 in 

myoblasts (77, 78), and it can selectively enhance endothelial BMPR2 signaling 

in established PAH animal models (60). Further in vitro and in vivo experiments 

with those co-activators are currently being conducted in our laboratory. As we 

performed the drug screening in a murine myoblast cell line, further validation 

experiments in PAH target cells (ECs and SMCs) are needed. We also need to 

verify the effects of these compounds in PAH patient cells, and finally to test 

them in PAH animal models.  

In summary, none of above treatment strategies is currently approved for 

patients; some of them are tested in clinical trials. Activating BMP signaling as 

therapeutic approach for PAH is challenging due to the complexity of BMP 

signaling. Thus, deeper understanding of the molecular mechanisms and 

regulation of the BMP signaling pathway, and also other signal pathways 

involved in PAH, are urgently needed and would be helpful for the development 

of PAH therapies.  
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Figure 3: Compound 6 and compound 13 are coactivators of BMP signaling. A, 

BRE-luciferase activity assay testing different concentrations of BMP9 in C2C12 cells. 

135 ng/ml BMP9 (EC-20) was applied in later experiments. B, BRE-luciferase activity 

testing compound 6 (10 μM), compound 13 (10 μM) with or without BMP9 (135 ng/ml) 

in C2C12 cells. C, pSMAD1/5 analysis following the treatment with only BMP9 (135 

ng/ml), BMP9 with compound 6 (10 μM), or compound 13 (10 μM) atdifferent time 

points. D, ALP staining of C2C12 cells cultured with BMP9 (135 ng/ml) and/or 

compound 6 or 13 (10 μM) on day 3 of differentiation with 2% FBS. 

 

6.4 Soluble endoglin modifies signaling by BMP 9 

BMP9 is a TGF-β ligand mainly produced by the liver which can circulate in its 

active form (79). The activity of BMPs is modulated by co-receptors and 

soluble antagonists like noggin and other regulators that have been discussed in 

chapter 1. Crossveinless 2 (CV2 or BMPER) is the only known regulator of 

BMP9; its functions as an activator or an inhibitor of BMP signaling rely in part 

on the concentration of CV2 (80, 81). In chapter 5, we have described that the 

role of soluble endoglin (sEng) in regulating BMP9 signaling. 

    Endoglin is homodimeric transmembrane glycoprotein that functions as a 

co-receptor for TGF-β signaling (82). It is essential for cardiovascular 

development and mutations in endoglin are associated with the vascular disease 

HHT characterized by telangiectasias and arteriovenous malformations (83, 84). 

sEng sheds from the membrane bound endoglin upon proteolytic cleavage by 

matrix metalloproteinase (MMP) 14 at position 586 in carcinoma tissues (85). 
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sEng is associated with preeclampsia, a pregnancy associated vascular disorder 

characterized by hypertension and proteinuria (86). The expression level of 

sEng correlates with disease severity and dramatically falls after delivery (86). 

Rat preeclampsia models with increasing expression of sEng recapitulate the 

elevated mean arterial pressure, vascular damage in the placenta as well as other 

preeclampsia symptoms (86, 87). Besides preeclampsia, the level of sEng in 

plasma might be a marker for diagnosis of the vascular disorder PAH. Malhotra 

et al. found in PAH patients elevated sEng and soluble vascular endothelial 

growth factor receptor (VEGFR) 1, another anti-angiogenic marker (88).  

BMP9 binds to ALK1 and endoglin in ECs and activates downstream 

signaling by phosphorylating SMAD1/5 (77). Recently researches showed that 

sEng directly can bind to BMP9 and sequester its activity (11, 89). However, we 

have shown in chapter 5 that sEng may have dual effects on BMP9 at lower 

concentrations. Membrane bound endoglin can both promote and inhibit 

SMAD1/5 and SMAD2/3 downstream TGF-β signaling, which relies on the 

endoglin expression levels and the receptors (e.g. ALK1 and ALK5) involved in 

certain cellular contexts (90-92). sEng might work as a ligand trap depending on 

the dosage of sEng and TGF-β family receptors as well.  

    Endoglin is a key mediator of BMP9 induced angiogenic signaling (93, 94), 

but the molecular mechanism is still not complete clear. The role of BMP9 in 

angiogenesis largely relies on the dosage and the ECs types targeted. 

Scharpfenecker et al. found that BMP9 inhibits basic fibroblast growth factor 

(bFGF) induced ECs proliferation and migration and blocks vascular 

endothelial growth factor (VEGF) induced angiogenesis in vitro (78). However, 

in another report Suzuki et al. showed that BMP9 promotes angiogenesis in 

matrigel plug assays in vivo and also enhances tumor angiogenesis in a 

pancreatic carcinoma xenograft model (95). sEng specifically binds to BMP9 to 

inhibit VEGF-induced vessel formation in vivo (89), which indicates that sEng 

scavenges BMP9 or BMP10 ligands to disturb the balance for normal 

angiogenesis.   

 

6.5 Concluding remarks 

The studies in this thesis focused on the role of BMP signaling in disease 

contexts and identification of novel strategies for treatment of FOP and PAH 

based on the understanding of disease pathology. Despite the misregulation of 

BMP signaling in FOP (overactive) and PAH (insufficient), local inflammation 
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also plays a critical role in disease progressions. In chapter 2 and 3, a FOP 

hiPSC disease model and a mouse Alk2 AON were introduced. Although we 

found that targeting ALK2 gene is sufficient to block osteoblast differentiation 

in vitro in the studies in chapter 2 and 3, experiments to test the combination 

effects of ALK2 and inflammation inhibitors in our disease model might be 

beneficial for the development of novel treatment strategies. By screening FDA 

proved drug libraries, we have shown in chapter 4 that the chemical compound 

FK506 can activate BMP signaling via a dual mechanism of action, as a 

calcineurin inhibitor and BMP activator. FK506 has been reported to be 

beneficial for end-stage PAH patients (73). The research on PAH indicated that 

the combination of BMP signaling modulators with other modulators, especially 

of local inflammation, would be helpful for the development of efficient 

treatments for PAH and probably FOP. In chapter 5, we have demonstrated 

that sEng regulates BMP9 activity. Revealing the molecular mechanism of the 

interactions of sEng and BMP9 with other TGF-β/SMAD signaling components 

could be relevant for the development of diagnostic tools and treatment of 

human diseases, especially PAH and preeclampsia. 
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