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Abstract 

Bone morphogenetic proteins (BMPs) are members of the transforming growth 

factor-β (TGF-β) family that signal via type I and type II serine/threonine kinase 

receptors and intracellular Smad transcription factors. BMPs are multifunctional 

regulators of development and tissue homeostasis and they were initially 

characterized as inducers of bone regeneration. Genetic studies in humans and 

mice showed that perturbations in BMP signaling lead to various diseases, such 

as skeletal diseases, vascular diseases and cancer. Mutations in BMP type II 

receptor and BMP type I receptor/activin receptor-like kinase 1 have been 

linked to pulmonary arterial hypertension and hereditary hemorrhagic 

telangiectasia, respectively. BMPs have also been implicated in promoting 

vascular calcification and tumor angiogenesis. In this review we discuss the role 

of BMP signaling in vascular diseases and the value of BMP signaling as a 

vascular disease marker or a therapeutic target. 

 

Key words: 

BMP signaling, cardiovascular disease, pulmonary arterial hypertension, 
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Introduction 

Bone morphogenetic proteins (BMPs) are members of the transforming growth 

factor-β (TGF-β) family, which also includes TGF-βs, growth and 

differentiation factors (GDFs), anti-müllerian hormone (AMH), activins and 

nodal. BMPs were first identified as potent inducers of ectopic bone formation 

when implanted subcutaneously in rats (1, 2). Subsequent studies demonstrated 

that BMPs, as is the case for other TGF-β family members, are multifunctional 

regulators in development that regulate cell proliferation, differentiation, and 

apoptosis in different tissues (3, 4). BMPs exert their signals via type I and type 

II transmembrane serine/threonine kinase receptors. Inside the cell, Smad 

proteins play an important role in the transduction of the signal from the active 

receptor complex to the nucleus. Interestingly, misregulated BMP signaling has 

been shown to be involved in the pathogenesis of skeletal and (cardio) vascular 

disorders as well as cancer. Despite the recent advances in therapeutic 

interventions, cardiovascular disease remains the largest health problem 

worldwide causing morbidity and mortality. This review will focus on the role 

of BMP signaling in the pathology of vascular diseases and potential clinical 

applications. 

 

BMPs 

Among the 33 members of the TGF-β superfamily, over 20 molecules form the 

BMP subfamily. The BMP subfamily can be further subdivided into several 

subgroups, including BMP-2/4, BMP-5/6/7/8, GDF-5/6/7 and BMP-9/10 (4, 5). 

BMPs are synthesized as large precursor proteins consisting of an amino 

(N)-terminal signal peptide, a prodomain for folding and secretion, and a 

bioactive carboxy (C)-terminal mature peptide. BMP precursor proteins are 

produced in the cytoplasm as dimeric pro-protein complexes, which are cleaved 

by serine endoproteases (e. g. BMP-4 is cleaved by furin, PC6 and PC7 (6)) to 

generate N-terminal and C-terminal fragments, of which the latter is capable of 

binding to its receptor (7). Whereas the secretion of BMPs in a latent inactive 

form is not common (7), TGF-β is secreted as a latent form in which the 

N-terminal remnant, also known as latency associated peptide (LAP), sequesters 

and prevents the bioactive mature part from binding to its receptors. This 

complex is also associated with the latent TGF-β binding proteins (LTBP). Thus, 
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proteolytic cleavage of latent TGF-β by different activators is required for the 

release of the mature, active TGF-β (8). 

    BMP activity is also regulated by several intracellular and extracellular 

modulators. A large number of extracellular soluble antagonists bind BMPs and 

block their interaction with signaling receptors, thus dampening BMP signaling 

(9). These antagonists can be divided into three subgroups based on their 

structure similarity: the CAN (Cerberus/DAN) family, twisted gastrulation, 

chordin and noggin. The CAN family includes gremlin and cerberus, 

differential screening-selected gene aberrative in neuroblastoma (DAN), protein 

related to DAN and cerberus (PRDC), coco, uterine sensitization-associated 

gene-1 (USAG-1) and sclerostin (10). Several additional BMP regulators have 

been identified, such as cross-veinless 2 [CV2, also referred to as BMP 

endothelial cell precursor derived regulator (BMPER)], matrix GLA protein 

(MGP) and neogenin (11-14). MGP is a small, carboxyglutamic acid modified 

protein, which can bind and inhibit BMP-2 and BMP-4 by direct protein 

interaction (12, 15, 16). It is highly expressed in kidneys and lungs, where 

excessive MGP in MGP-transgenic mice altered pulmonary BMP-4 distribution 

and resulted in significant morphological defects in the pulmonary artery tree 

(17). Neogenin was identified as a receptor for netrins and proteins of the 

repulsive guidance molecule (RGM) family. The interaction of netrins-neogenin 

or RGM-neogenin stimulated or repelled neuronal axon guidance depending on 

the developmental context (18, 19). Recent research suggested that neogenin is 

a regulator of BMP signaling during chondrogenesis and skeletal development, 

since there is reduced expression levels of BMP target genes and intracellular 

BMP signaling mediators in chondrocytes from neogenin mutant mice, and the 

neogenin-deficient mice is retarded in digit/limb development and endochondral 

ossification (13). However, others reported that neogenin acts as a repressor of 

BMP signaling and knockdown of neogenin in C2C12 cells leads to increased 

BMP-2-induced phosphorylation of Smad1, Smad5, and Smad8 and osteoblast 

differentiation (14). The expression pattern of BMP antagonists is important for 

embryonic development, as an aberrant expression pattern can lead to defects in 

bone, limb and kidney formation (20). 

 

BMP receptors 

Like other members of the TGF-β family, BMPs bind to two types of 

serine-threonine kinase receptors, known as type I and type II receptors (21, 22). 



CHAPTER 1 

12 

Both receptors share a similar structure and are comprised of a short 

extracellular domain, a single transmembrane domain and an intracellular 

domain with serine-threonine kinase activity. The affinity of BMPs for type I 

receptors is higher than for type II receptors and its affinity is increased by the 

formation of a heterotetrameric receptor complex (23). The type II receptor 

kinase is constitutively active in the absence of ligand. BMP type II receptor 

(BMPR2) has a long C-terminal tail rich in serine and threonine residues (23). 

Besides BMPR2, BMPs can signal also via the activin type II receptors 

ACVR2A, and ACVR2B (4, 24), which are expressed in various tissues. 

Whereas BMPR2 is a specific receptor for BMPs, ACVR2A and ACVR2B also 

can be used by activins, myostatin and nodal. Based on the structural similarity, 

BMP type I receptors can be divided into two subgroups: activin receptor-like 

kinase 3 (ALK3, or BMPR-IA) and ALK6 (BMPR-IB) group, and the ALK1 

and ALK2 group. While ALK2 and ALK3/6 are widely expressed in various 

cell types, ALK1 has a more selective expression pattern being mainly restricted 

to endothelial cells and few other cell types. 
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Fig. 1. Schematic overview of the BMP signaling pathway. BMPs interaction with 

surface receptors induces heteromeric complex formation between specific type II and 

type I receptors. This activity is regulated by extracellular regulators and type III 

receptors/Co-receptors. After being activated by type II receptors, the type I receptors 

phosphorylate Smad1/5/8 (R-Smads) to propagate the signal into the cell. Smad1/5/8 

form heteromeric complexes with Smad4 (Co-Smad) and translocate to the nucleus 

where, by interacting with other transcription factors, they regulate target gene 

expression (canonical Smad signaling pathway). I-Smads (Smad6/7) inhibit receptor 

activation of R-Smads. Besides Smad-depend signaling, non-Smad pathways are 

involved. Activated MAPKs can regulate R-Smad activation by a direct 

phosphorylation or through their downstream effectors molecules. Activated MAPKs 

can translocate to the nucleus to phosphorylate a number of transcription factors (TF), 

such as serum response factor (SRF), ternary complex factor (TCF) family members, 

activator protein 1 (AP1) complexes and activating transcription factor 2 (ATF2), 

thereby changing target gene transcription. 

 

    A number of BMP co-receptors have been identified. These co-receptors 

modulate the interactions between BMP ligands and receptors. There are two 

co-receptors, endoglin and betaglycan, which play important roles in vascular 

development and disease, although they lack a signaling domain (25). Endoglin 

and betaglycan can potentiate BMP signaling (26, 27). BMPs can also bind to 

the decoy receptor BMP and activin membrane-bound inhibitor (BAMBI). 

BAMBI resembles the type I receptors but lacks an active kinase domain and 

consequently sequesters ligands from the active receptors and inhibits BMP 

signaling (28). Family members of RGM, RGMa, RGMb (DRAGON) and 

RGMc, were shown to be implicated in BMP signaling (29-31). DRAGON was 

the first RGM family member identified as a BMP co-receptor (30). Cell 

surface GPI-anchored DRAGON directly binds to BMPs enhancing BMP 

signaling, but not TGF-β. Moreover, this effect can be reduced by noggin (30). 

Interestingly, DRAGON interacted directly with all BMP type I receptors as 

well as BMPR2, ActRII and ActRIIB (30). Furthermore a soluble form of 

DRAGON fused to Fc (DRAGON-Fc) inhibited BMP signaling in vitro (30, 32). 

It is possible that RGM proteins modulate the ability of cells responding to a 

low concentration of BMP ligands by altering the sensitivity of BMPR2 to BMP 

ligands. However, the precise mechanism by which RGM proteins regulate 

different physiological processes is still not known (33). 
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Smad and non-Smad signaling pathways 

After BMP ligand-induced heteromeric complex formation, the type II receptor 

kinase phosphorylates the type I receptor. Subsequently, the activated type I 

receptor initiates intracellular signaling by activating the Smad proteins. Smads 

can be divided into three groups: receptor-regulated Smads (R-Smads), 

inhibitory Smads (I-Smads), and a common mediator Smad (i.e. Smad4) (21). 

Upon type I receptor-mediated phosphorylation/activation of R-Smads, they 

form heteromeric complexes with Smad4. These heteromeric R-Smad/Smad4 

complexes translocate into the nucleus, where they regulate target gene 

expression by directly binding to Smad-binding elements (SBE), or indirectly 

through interactions with DNA-binding transcription factors, and by associating 

with co-activators/co-repressors and histone-modifying factors (34). Inhibitory 

Smads (I-Smad6 and 7) antagonize BMP and TGF-β receptor-initiated Smad 

signaling by mediating the degradation of receptors and R-Smads. Smad7 

inhibits all TGF-β family members, while Smad6 is more selective towards 

BMP family members. Smad ubiquitin ligases Smurf1 and Smurf2 are recruited 

by I-Smads to promote the proteasomal degradation of receptors and Smads 

(35-37).     

    Besides canonical BMP receptor/Smad signaling, activated BMP receptors 

can initiate non-Smad signaling pathways. MAP kinases (ERK, JNK and p38 

MAPK), phosphoinositide (PI) 3 kinase/Akt and protein kinase C (PKC) 

signaling pathways, and Rho-GTPases can also be activated by BMPs and 

TGF-βs in various cells (38). These non-Smad pathways are also important in 

creating diversity and fine-tuning of signals generated by the TGF-β family 

ligands (39, 40). Smad-independent pathways can also be involved in the 

pathogenesis of vascular diseases, such as in pulmonary arterial hypertension 

(PAH), which will be discussed later.  

 

BMP signaling during vessel development 

The establishment of the vascular system is an important event during 

embryonic development. Neovascularization involves two mechanisms: first the 

de novo formation of vessels termed vasculogenesis, and second, the sprouting 

and growth of new vessels from pre-existing ones, known as angiogenesis (41). 

Angiogenesis is a crucial process, which occurs primarily during embryonic 

development, and it is almost absent during adulthood besides wound healing, 
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inflammation and the female reproductive cycle. In healthy tissues, blood 

vessels are formed by a combination of several mechanisms, such as sprouting 

angiogenesis, bone-marrow derived and/or vascular-wall-resident endothelial 

progenitor cells (EPCs) differentiation, and vessel splitting (41). Main players 

in the process of angiogenesis are the endothelial cells (ECs) as well as smooth 

muscle cells (SMCs) and pericytes. EC proliferation, migration and tube 

formation are critical in the process of angiogenesis. Sprouting angiogenesis 

involves the selection of a leading migrating tip EC that invades the 

surrounding tissue by extending numerous filopodia. VEGF/VEGFR2 signaling 

triggers single EC to switch into a tip cell phenotype; these cells thereby express 

Delta-like 4 (Dll4), a Notch ligand, which instructs neighbor ECs to become 

so-called stalk cells (42). Stalk cells trail behind the tip cells proliferate and 

form tubes; stalk cell proliferation ensures elongation of sprouting vessel (43, 

44). Ultimately ECs stop proliferating, acquire a quiescent phenotype and 

become phalanx ECs. Finally, the new formed vessel is stabilized by deposition 

of basement membrane and recruitment of pericytes/SMCs (45). Interestingly, it 

has been reported that besides ECs, tumor cells can also contribute to 

angiogenesis. It has been suggested that cancer cells with stem cell features can 

dedifferentiate and acquire an EC-like phenotype. These cells can incorporate in 

the blood vessels and contribute to angiogenesis (41, 46).  

    The role of BMP signaling in vascular development has been illustrated by 

studies in knockout animal models (47). Table 1 (see below and references 

therein) shows a list of mouse knockout models for BMP signaling components, 

including ligands, receptors and Smads. Genetic deletion or misexpression of 

different components of BMP signaling leads to embryonic death due to 

cardiovascular malformations and defects in vascular remodeling. Moreover, 

proper BMP signaling in both ECs and mural/SMCs has been shown to be 

required for appropriate vasculogenesis and angiogenesis. Interestingly, deletion 

of the BMP target genes Id1 and Id3 in mice leads to impaired angiogenesis 

both in brain and tumor xenografts (48).  

    It has been reported that BMP-2, -4, -6 and -7 induce angiogenesis, EC 

proliferation and migration (49, 50). Capillary tube formation is increased upon 

activation of the BMP signaling pathway by overexpression of BMPs or Id1 (51, 

52). In contrast, BMP-9 inhibits basic fibroblast growth factor 

(bFGF)-stimulated proliferation and migration of bovine aortic endothelial cells 

(BAECs) and blocks VEGF-induced angiogenesis [36]. BMP-9 has also been 
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reported to inhibit the migration and growth of human dermal microvascular 

ECs [37]. Although (high dose) BMP-9 seems to have inhibitory effects on ECs, 

another report demonstrated that (low dose) BMP-9 induces proliferation of 

various types of ECs in vitro and promoted angiogenesis in matrigel plug assays 

and human pancreatic cancer xenografts in vivo (53). It is likely that BMP-9 has 

disparate effects on ECs depending on the cellular context and concentration of 

BMP-9. The effects of BMPs on ECs can be regulated by various BMP 

antagonists and modulators as well. For example, BMPER is an extracellular 

matrix protein expressed by ECs, which was shown to modulate BMP-4 activity 

in a concentration-dependent manner, and to exert proangiogenic effects in 

vascular ECs (54). Interestingly, MGP gene deletion in mice leads to 

misregulated BMP signaling and as a result in arteriovenous malformation 

(AVMs) in lungs and kidneys (55). Thus, selective BMP family members can 

stimulate and/or inhibit angiogenesis. Besides, BMP-induced signaling in ECs 

response can switch from stimulation to inhibition when co-stimulated with 

other signals, e. g. Notch (56). As mentioned earlier, Notch was shown to have 

an important role in stalk cell determination. Recently, Moya et al. reported that 

endothelium-specific inactivation of Smad1/Smad5 in mouse embryos 

decreased Notch signaling and increased numbers of tip cells. In HUVECs 

downregulation of Smad1/5 reduced the expression of Notch target genes Hes1 

and Hey1, and other stalk cell specific transcripts (57), In addition, Larrivée et 

al. showed that ALK1-dependent SMAD signaling collaborated with Notch 

signal to induce expression of HEY1 and HEY2 in stalk cells, which would 

limit the response of stalk cells to VEGF and thus reduce endothelial tip cell 

formation and sprouting (58). 

    A lot of research has focused on ECs due to their role in the formation of 

new vessels. However, research showed that SMCs are also involved in the 

maturation of the new-formed vessels, as well as in vascular diseases. In 

addition to their effects on EC function, BMPs were also shown to play key 

roles in SMC differentiation and function. BMPs have been shown to inhibit the 

proliferation of vascular SMC while enhancing the differentiation of these cells 

(59-61). BMP-2 inhibits the proliferation of cultured rat arterial SMCs in the 

presence of serum and injury-induced intimal hyperplasia in the in vivo rat 

carotid artery balloon injury model by inhibiting SMC proliferation without 

stimulating extracellular matrix synthesis (61). BMP-7 inhibits primary human 

aortic SMC proliferation in serum-stimulated conditions, as well as upon 
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induction with platelet-derived growth factor subunit BB (PDGF-BB) and 

TGF-β1, and maintains the expression of the vascular SMC phenotype. 

Furthermore, anti-inflammatory activities have been attributed to BMP-7 

suggesting that BMP-7 may play an important role in maintaining vascular 

integrity (59, 62). BMP-4, however, is expressed by ECs in response to hypoxia 

and it promotes vascular SMC proliferation (63). It has been demonstrated that 

vascular SMCs isolated from different parts of the pulmonary vasculature have 

different proliferation responses to BMP-4. Whereas the proliferation ability of 

human pulmonary arterial SMCs isolated from proximal pulmonary arteries is 

inhibited by BMP-4, the proliferation of human pulmonary artery SMCs from 

peripheral arteries is increased by BMP-4 (64). In summary, similarly to ECs, 

the effects of BMPs on vascular SMCs depend on the source of cells and the 

culture condition.  

 

BMP signaling pathway in vascular diseases 

The critical role of BMP signaling in vascular function was further corroborated 

by genetic studies in human (65). Genetic analysis revealed that mutations in 

genes of the BMP signaling or genes which affect BMP signaling function lead 

to vascular dysfunction and disease such as hereditary hemorrhagic 

telangiectasia (HHT) and pulmonary arterial hypertension (PAH), vascular 

calcification, and tumor angiogenesis. In addition, disturbance of vascular 

homeostasis due to vascular injury, hypertension or atherosclerosis was shown 

to affect the expression of BMPs, thereby suggesting a role of BMPs in 

abnormal vascular responses (65).  

 

1.1. Pulmonary arterial hypertension 

PAH is a disease characterized by elevated pulmonary artery pressure leading to 

heart failure. Processes underlying PAH include abnormal remodeling of small 

peripheral vessels in the lung, due to aberrant proliferation and migration of 

vascular SMCs, ECs and fibroblasts (66). Two types of PAH have been 

described: sporadic or idiopathic PAH (IPAH) and hereditary or familial PAH 

(FPAH). Heterozygous germ line mutations in BMPR2 are found in more than 

70% of patients with FPAH and 20% of patients with IPAH (67, 68). Mutations 

have been found in various regions of BMPR2, including the ligand-binding 

domain, the kinase domain, or the long cytoplasmic tail. Mice expressing a 
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BMPR2 tail domain mutation in pulmonary SMCs develop vascular lesions 

similar to PAH (69). Non-sense mutations in the C-terminal tail of BMPR2 were 

identified also in some FPAH patients, suggesting that this region might play an 

important role in BMP signaling (67, 68). Heterozygous and homozygous 

BMPR2 deletion specifically in pulmonary ECs and pulmonary SMCs 

mimicked the PAH phenotype (69, 70). Endothelial injury and enhanced 

inflammatory responses may contribute together with BMPR2 heterozygosity to 

the development of PAH (71). Interestingly it was shown that disruption of 

BMPR2 expression in PASMCs leads to reduced BMP-2 and BMP-4 signaling, 

while signaling by BMP-6 and BMP-7 is enhanced (72). It was shown that 

reduced BMP/Smad signaling resulted in activation of the p38 MAPK pathway, 

leading to aberrant PASMC proliferation (64, 73, 74). A recent report suggested 

that lack of endothelial nitric-oxide synthase (eNOS) due to BMPR2 mutations 

in pulmonary artery ECs (PAEC) may contribute to the pathogenesis of PAH. 

BMP-2 and BMP-4 cannot activate eNOS in BMPR2 knockdown cell lines or in 

PAEC from BMPR2 gene mutations patients and inhibition of NOS activity 

inhibited BMP-2 and BMP-4 stimulated PAEC migration (75). 

    Mutations in SMAD8 have also been reported in PAH patients (76). In 

addition, loss of Smad8 function in mice results in abnormal vascular 

remodeling and increased vascular inflammation (77). It was demonstrated that 

SMAD8 mutation leads to vascular cell proliferation in HPAH, due to decreased 

expression of specific micro RNAs (miR) miR-21 and miR-27a in pulmonary 

artery ECs and pulmonary artery SMCs from tissues of PAH patients (78). 

Additionally, overexpression of Smad8 resulted in increased expression of miRs 

and reversed the hyper-proliferative phenotype (78). Interestingly, certain 

HHT2 patients develop PPH-like syndromes, suggesting that ALK1 mutations 

can also be involved in PPH (79, 80). Moreover alk1
+/−

 mice display increased 

pulmonary vascular remodeling which may lead to signs of PAH. This was 

shown to be associated with eNOS-dependent reactive oxygen species (ROS) 

production and it could be averted by anti-oxidant treatment (81). 

 

 

 

 



Introduction 

19 

Table 1. Deregulated BMP signaling leads to (cardio) vascular abnormalities  

 

Gene 

 

Animal model Human disease References 

 

Bmp-2 KO: Embryonic lethal with defect in cardiac 

development; 

Het: Susceptible to hypoxic pulmonary hypertension 
associated with reduced endothelial nitric oxide 

synthase (eNOS) expression 

unknown (82, 83) 

Bmp-4  Het : Less severe hypoxic pulmonary hypertension and 

vascular smooth muscle cell proliferation, impaired 
vascular remodeling 

unknown (63) 

Bmpr2 Het: Pulmonary hypertension PAH (69, 70, 84, 85) 

Alk1 KO: Embryonic lethal (E10.5), severe vascular 
abnormalities; Het: Models HHT type 2; EC 

conditional KO: Severe vascular malformations 

mimicking all pathologic features of HHT. 

HHT (86-89) 

Alk3 Mesoderm conditional KO: Embryonic lethal (E10.5- 
E11.5), hemorrhage, impaired vessel remodeling; 

SMC (embryo): Embryonic lethal (E11) due to vascular 

and pericardial hemorrhage, impaired vascular 
remodeling; 

SMC (adult): Impaired vascular remodeling 

unknown (90-92) 

Endoglin KO: Embryonic lethal (E10.5) due to impaired mature 
vessel formation;  

Conditional mutation: AVM 

HHT (93, 94) 

Smad1 KO: Embryonic lethal (E9.5) due to defects in allantois 

formation; with impaired embryonic circulation system 

unknown (95) 

Smad4 EC conditional KO: Embryonic lethal (E10.5) due to 

cardiovascular defects 

HHT (with or 

without JP) 

(96-98) 

Smad5 KO: Embryonic lethal (E9.5-E11.5) due to cardiac and 
angiogenesis defects 

unknown (99, 100) 

Smad6 KO: Cardiovascular defects, vascular calcification, 

hypertension 

CVM (101, 102)  

Smad7 KO: Embryonic lethal due to cardiovascular defects  unknown (103) 

Smad8 Smad8 mutation mice: Defective pulmonary vascular 

remodeling 

PAH (77) 

Abbreviations: KO, knockout; het, heterozygous; JP, juvenile polyposis; CVM, 

congenital cardiovascular malformation. 
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1.2. Hereditary hemorrhagic telangiectasia 

Mutations in the ALK1 gene have been reported in some PAH patients (79). 

ALK1 mediates both TGF-β and BMP-9 signaling in ECs. Interestingly, 

mutations in ALK1 lead to another vascular disease related to deregulated BMP 

signaling, HHT. HHT is an autosomal dominant disease and is associated with 

telangiectases in skin and mucosa, frequent epistaxis, and the presence of 

AVMs in the lung, liver or brain (104). HHT type 1 (HHT1) results from 

pathogenic mutations in ENG that lead to haploinsufficiency of endoglin (105), 

while HHT type 2 (HHT2) is caused by loss of function or dominant negative 

mutations in ALK1 (106, 107). Interestingly mice heterozygous for acvrl1 

(alk1), tβr1 (alk5), tβr2 and eng develop vascular abnormalities highly 

reminiscent of those described in patients with HHT (25, 50). Several studies 

have provided evidence that haploinsufficiency of the HHT genes both in ECs 

and SMCs leads to abnormal EC proliferation and SMC recruitment. As a result, 

vascular abnormalities and fragile leaky vessels occur, together with the 

generation of telangiectasias and AVMs (108, 109). In addition, disrupted 

Notch signaling has been reported to correlate with AVMs (110), and ChIP-seq 

analyses on human umbilical vein ECs (HUVECs) and pulmonary arterial 

SMCs pretreated with BMPs have demonstrated JAG1 as a direct target of 

Smad1/5 (111). Another report showed that human polymorphic variants of 

tyrosine-protein phosphatase non-receptor type 14 (PTPN14) influences the 

severity of pulmonary arteriovenous malformation acting via ALK1 and 

EphrinB2, which suggested that PTPN14 may also be involve in the 

pathogenesis of HHT (112).  

 

1.3. Atherosclerosis and vascular calcification 

Atherosclerosis is a chronic arterial wall disease that is characterized by chronic 

inflammation and the accumulation of atheromatous lesions in the inner layer of 

arteries. BMPs have been implicated in atherosclerosis progression by 

regulating endothelial inflammation and cell differentiation. BMP-2 and -4 have 

been shown to induce proinflammatory effects in the ECs (113, 114). Besides, 

inhibiting BMP signaling pathway by MGP resulted in reduced atherosclerotic 

lesions formation in apolipoprotein (Apo) E knockout mice, while enhanced 

BMP activity led to increased atherosclerotic lesions formation in Apo E 

knockout mice (113, 115). Atherosclerosis is the most common cause of aortic 
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aneurysms, a vascular disease which attributes to misregulation of TGF-β 

signaling (116, 117). However, Jones et al. showed that in 2-week post thoracic 

aortic aneurysms induction mice, the expression level of BMP signal 

components and BMP regulators were elevated in mRNA level, indicating that 

activation of BMP signaling may also be involved in the pathogenesis of aortic 

aneurysms (118). 

    One key histological and clinical event of atherosclerosis is vascular 

calcification, which is known as the abnormal deposition of calcium phosphate 

salts in blood vessels, myocardium, and cardiac valves. Vascular calcification is 

a tightly regulated process which leads to differentiation of cells such as SMCs 

or pericytes into osteoblast-like cells, and the mineralization of the extracellular 

matrix (119). It is speculated that the course of vascular calcification shares 

many similarities with that of bone mineralization (120). Pericytes, 

mesenchymal stem cells, multipotent cells from the adventitia, resident cells in 

the media or intima and trans-differentiated SMCs, are the possible cells which 

transdifferentiate into osteoblast-like cells in blood vessels (121-124). It has 

been suggested that vascular endothelial cells may contribute to osteogenic 

differentiation (125); ECs can transdifferentiate into mesenchymal stem cells 

through a process termed endothelial to mesenchymal transition (EndoMT) 

(126-128). Interestingly, in fibrodysplasia ossificans progressiva (FOP), a 

disease characterized by overactive osteoblasts and ectopic bone formation and 

linked to a point mutation in BMP type I receptor ALK2 (129), it was shown 

that ECs can acquire a progenitor-like phenotype and differentiate into bone 

forming osteoblastic cells (125).  

    BMPs expression is increased at vascular calcification sites; in addition 

BMPs can trigger the differentiation of multipotential cells into the osteogenic 

lineage. This raises the possibility that BMPs may be involved in the process of 

vascular calcification (130-134). Indeed it was shown that BMPs can direct 

osteogenic programming of vascular mesenchymal progenitors of the pericyte 

lineage (132) and that they can promote expression of osteoblast lineage 

markers such as alkaline phosphatase in cultured vascular SMCs (115, 119, 120, 

135-137). Cheng et al. showed that BMP-2 and the osteoblast homeoprotein 

Msx2 were expressed during the osteogenic process in the aorta of diabetic 

patients. The BMP-2-Msx2 signaling pathway may enhance vascular 

calcification by promoting the differentiation of myofibroblasts into the 

osteogenic lineage (138). In addition BMP-2 enhances the expression of Runx2, 
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a core transcription factor that is known to regulate osteoblast and chondrocyte 

differentiation and promote vascular SMCs calcification by increasing oxidative 

stress and endoplasmic reticulum (ER) stress in human coronary artery SMCs. 

Interestingly, the inhibition of oxidant stress or ER stress reversed this gene 

expression pattern and mineralization process (139). Moreover, recent research 

showed that BMPs are involved in vascular calcification in low-density 

lipoprotein (LDL) receptor-deficient (LDLR-/-) mice. Blockade of BMP type I 

receptor function by using either the small molecule inhibitor LDN-193189 or 

ALK3-Fc in LDLR-/- mice inhibited high-fat diet-induced vascular 

inflammation as well as osteogenic activity and calcification, thus suggesting 

BMP inhibition as a potential treatment for vascular calcification.  

    BMP signaling antagonists have been also implicated in vascular 

calcification. Research suggested that MGP might influence vascular 

calcification by modulating the effect of BMP-2. In C3H10T1/2 cells, MGP 

overexpression inhibited BMP-2 induced osteogenic and chondrogenic 

differentiation, whereas lack of MGP enhanced these differentiation processes 

(140). Notably, it was shown that transgenic expression of MGP in ApoE
−/−

 

mice results in diminished Smad1/5/8 signaling and reduced inflammation, 

lesion formation, and calcification after fat feeding (115). On the other hand 

MGP deficient ApoE
−/−

 mice displayed enhanced Smad1/5/8 signaling and 

extensive medial calcification (115). However, recent research showed that 

MGP can inhibit calcification in a BMP-2 independent manner in intact vessels 

and lack of GlaMGP (carboxylated MGP) was not the reason for medial 

calcification in rat renal failure model (141).  

As mentioned earlier the inhibitory Smad6 interferes specifically with the 

BMP pathway. Interestingly, perturbation of Smad6 expression was found to be 

associated with calcification of the aortic valve. In human aortic valve (AV), 

high levels of BMP antagonists (noggin and CV-2/BMPER) and Smad6 were 

detected in the ventricular endothelium, while low levels of such inhibitors were 

found in the fibrosa endothelium. This uneven distribution was shown to be 

responsible for the side-dependent calcification of human AVs (142). In 

addition, mutations in the Smad6 gene were found to predispose to congenital 

cardiovascular malformation. The capacity of Smad6 to inhibit BMP-induced 

osteogenic differentiation was significantly decreased by a C484F mutation in 

Smad6 (102). Thus, BMPs may be important in the pathology of vascular 

calcification, even though definitive evidence supporting this is still lacking. 
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1.4. Tumor angiogenesis 

Tumor growth beyond 2-3 mm in size makes diffusion insufficient to supply 

tumor cells with oxygen and nutrients and for the removal of the waste products 

(143). Angiogenesis, i.e. the formation of new blood vessels from pre-existing 

ones, is then needed for the tumors to grow. In addition, blood vessels provide 

the main route for metastatic spread (143). Several inhibitors of angiogenesis, 

such as bevacizumab (monoclonal antibody targeting VEGF) and sorafenib and 

sunitinib (tyrosine kinase inhibitors) have been used for the treatment of solid 

tumors (144, 145).  

BMPs have been found misexpressed in gastric, ovarian, prostate, 

pancreatic breast, lung and colon tumors (146-152). BMP-2 and BMP-4 were 

shown to favor angiogenesis by stimulating the secretion of pro-angiogenic 

growth factors, such as VEGF (52, 153). In the case of lung cancer, BMP-2 is 

highly expressed in the majority of patient-derived lung carcinomas (154) and 

recombinant BMP-2 potently increases the size and number of blood vessels in 

tumors formed by A549 cells in nude mice (155). Moreover, either recombinant 

noggin or an anti-BMP-2 antibody could inhibit the activity of BMP-2, resulting 

in a significant reduction in tumor growth (154). Besides BMP-2, other BMPs 

have also been reported to be involved in tumor angiogenesis. Rothhammer et 

al. showed that BMP-2 and BMP-4 are highly expressed in malignant 

melanomas, and they promoted cell invasion and migration of microvascular 

endothelial cells. Moreover, ECs have a reduced tube formation capacity when 

BMPs activities were inhibited (156). BMP antagonist chordin has been 

reported to inhibit in vitro BMP-4 induced tube formation in malignant 

melanoma cells (156).  

ALK1, a type I receptor for TGF-, BMP-9 and BMP-10 have received a 

lot of attention recently as an anti-angiogenesis target. A recent study indicated 

that ALK1 is widely expressed on prostate, skin, thyroid, kidney, ovary, lung, 

pancreas, and liver tumor blood vessels (157, 158). ALK1 is mainly expressed 

in developing arterial endothelial cells and is greatly reduced in adult arteries. 

However, ALK1 expression can be induced during tumor angiogenesis (158, 

159). It has been suggested that ALK1 signaling and function in ECs may 

depend on multiple proangiogenic factors (including VEGF and bFGF), and 

BMP-9-induced (tumor) angiogenesis can be specifically inhibited by an ALK1 

antibody (anti-ALK1) (157). Besides, anti-ALK1 can decrease tumor growth 

and angiogenesis when combined with VEGF receptor inhibitor in 
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human/mouse chimera tumor model (157). Other research described that a 

soluble chimeric protein (ALK1-Fc) which serves as BMP-9 (and -10) ligand 

trap, can inhibit (tumor) angiogenesis by interfering with ALK1 signaling both 

in vitro and in vivo (158, 160). Therefore, targeting ALK1 may effectively 

inhibit tumor angiogenesis and it is therefore a promising therapeutic strategy 

for cancer patients. 

    Endoglin plays a crucial role in EC function. Studies in mice revealed that 

tumor growth and angiogenesis is reduced in endoglin-haploinsufficient mice 

(161). In addition endoglin neutralizing antibodies have been used for vascular 

targeting and it was shown that they can inhibit both endothelial cell 

proliferation and tumor growth in mouse cancer models (25). It is known that a 

soluble form of endoglin (sol Eng) contributes to the pathogenesis of 

preeclampsia (25). Research showed that a fusion protein, which combined the 

endoglin extracellular domain (ECD) and immunoglobulin Fc domain, can 

significantly reduce VEGF induced angiogenesis in vitro and ex vivo (162), 

presumably by specifically binding to pro-angiogenic BMP-9 with a high 

affinity. These results suggest that endoglin-Fc may be used as a potential 

anti-angiogenesis therapeutic agent (163). Since the process of angiogenesis is 

tightly regulated by BMPs, a further understanding of their molecular 

mechanisms will provide opportunities for better diagnosis and development of 

new therapies targeting angiogenesis, tumor growth, and metastatic spread of 

disease. 

 

Conclusions and perspective 

BMP signaling plays a crucial role in cardiovascular homeostasis and disease. 

Genetic studies in mice indicate that components of BMP signaling are involved 

in EC and SMC interactions, EC function and angiogenesis. The knowledge 

regarding the role of BMP signaling in vascular diseases and cancer has mainly 

come from mouse models and clinical investigations. However, definitive 

evidences from functional studies in human tissues are still rare. Genetic mouse 

model studies showed that BMP function might depend on cell type and 

environment, but the availability of human tissues and the limited life span of 

patient-derived somatic cells limit the development of this research area. The 

use of induced pluripotent stem cells (iPSCs) technology could help to 

overcome these limitations (164-166). Generated iPSCs from human skin 

fibroblasts, keratinocytes, adipose stem cells and lymphocytes (167-169), can be 
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differentiated into various cell types (170), including ECs and SMCs (171). It is 

possible to utilize this new technology to generate ECs and SMCs from patients 

with vascular disorders (and from healthy volunteers) in order to investigate the 

pathology of vascular diseases and perhaps transplant cells to cure patients 

(172), or perform screens to identify small chemical compounds to rescue 

disease phenotypes. Of interest, the BMP receptor antagonist dorsomorphin and 

its more selective derivative LDN-193189 have recently been reported to inhibit 

BMP signaling (173, 174). Yu et al. found that dorsomorphin selectively 

inhibited the BMP type I receptors ALK2, ALK3 and ALK6 and blocked 

BMP-mediated SMAD1/5/8 phosphorylation (173). In addition, an optimized 

compound (LDN-193189 or DM-3189) with higher activity and specificity for 

BMP type I receptors has been developed from a structure-activity relationship 

study of dorsomorphin (174). The ongoing development of small molecule 

inhibitors/activators of BMP signaling will offer new opportunities for 

manipulating BMP signaling in therapeutic means. This will benefit future 

therapy of BMP related diseases caused by insufficient BMP signaling, such as 

PAH and overactive BMP signaling, such as tumor angiogenesis and FOP 

(175). 
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Part II: BMP signaling in fibrodysplasia ossificans progressiva 

(FOP) 

During embryonic development there are two mechanisms for creating bone 

tissues: endochondral ossification and intramembranous ossification (176). 

Bone undergoes constant remodeling by osteoclasts that degrade and by 

osteoblasts that form bone. This dynamic process is highly regulated by many 

regulators, especially by BMPs. For instance, BMP2 and BMP4 induce bone 
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and cartilage formation by stimulating osteoblast and chondrocyte 

differentiation.  

    The knowledge about this critical role of the BMP signaling pathway in 

bone and cartilage formation was initially mainly obtained from transgenic 

animal models. Overexpression of the negative BMP regulator Noggin in 

transgenic mice resulted in severe defects in cartilaginous components (177). 

Knockout of Bmp2 in chondrocytes showed defects in chondrocyte phenotypes 

(178), while overexpression of Bmp4 in the skeleton leaded to an increase of 

cartilage production and enhanced chondrocyte differentiation in mice (177). In 

addition, BMP receptors regulate bone formation (179). Furthermore, the 

downstream Smad pathway is involved in bone development; for instance, 

osteoblast-specific Smad1 knockout mice showed impaired osteoblast 

proliferation and differentiation (180). In addition, multiple human diseases 

with skeletal defects have been linked to mutations in BMP signaling 

components.  

Clarifying the role that the BMP signaling pathway plays in bone and 

cartilage formation helps us to understand the pathologies of BMP related bone 

diseases. Fibrodysplasia ossificans progressiva (FOP) is a rare disease known 

by its progressive heterotopic ossification (HO) in soft tissues, caused by 

gain-of-function mutations in ALK2 (181). In the first decade of life, most FOP 

patients develop painful and highly inflammatory soft tissue swellings, which 

transform the soft tissues into bone through endochondral ossification processes 

(182, 183). Most FOP patients have an R206H mutation in the GS domain of 

ALK2. The R206H mutation was shown to interferes with the binding of the 

negative regulator FKBP12 to ALK2 and leads to the leakage of BMP signaling 

in the absence of BMP ligands (184). The prevalence of FOP is about 1 in 2 

million. FOP patients appear normal at birth apart from malformation of the 

great toe (182).  

There is currently no cure for FOP. Surgical removal of the ectopic bone 

tissue is risky as the surgical trauma might induce the formation of new 

heterotopic bone. The recurrent mutations in ALK2 may provide a specific 

target to prevent HO in FOP patients. LDN-193189, a BMP type I receptor 

kinase inhibitor, was reported to reduce ectopic ossification in transgenic mice 

carrying an inducible constitutively active ALK2
Q207D

 gene (185). However, 

although LDN-193189 is a potent inhibitor of BMP signaling at higher dosages, 

it inhibits TGF-β signaling as well. The newer ALK2 inhibitor LDN-212854 
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showed selective inhibition towards the ALK2 receptor and had comparable 

inhibitory effects in vivo as LDN-193189 (186). Strategies to block ALK2 

activity by genetic tools, including antisense therapy and RNA interference 

were also reported (187-189). Identification of new therapeutic tools for FOP 

could also be useful for other situations, for instance, it may help to cure of 

nongenetic forms of HO which occur after deep burning or hip arthroplasty.  

 

Part III: Aims and outline of this thesis 

BMP signaling has been implicated in an enormous plethora of biological 

activities during embryonic development and in adult tissue homeostasis. 

Disruption of the BMP signaling pathway has been linked to various human 

diseases. In this thesis, two BMP related genetic diseases, FOP and PAH are 

studied. The main purpose of this thesis is to clarify the (dys)-regulation of 

BMP signaling in the disease context which may help to develop novel 

therapeutic approaches for these diseases. Furthermore, research on rare 

diseases like FOP might provide basic knowledge that can be used for the 

treatment of more common diseases, such as osteoporosis and non-junction 

fractures. 

    The first part of this thesis is predominantly about BMP signaling in FOP. 

A human iPSC model for FOP is introduced in chapter 2. Previous research on 

FOP was mainly conducted in murine cell lines; a human cell system was 

therefore expected to be more suitable for preclinical FOP studies. FOP iPSCs 

could recreate the disease phenotypes by differentiating into FOP bone-forming 

progenitors, ECs and pericytes. The approach to rescue the osteoblast 

differentiation phenotypes in FOP iPSCs derived cells might be used for drug 

development for FOP. 

    This thesis also presents a novel therapeutic approach for FOP. BMP 

receptor ALK2 antisense-oligonucleotide (AON)-mediated exon skipping was 

introduced in ECs and other cell types. The AON targeting the wild-type exon 

of ALK2 was found to downregulate Alk2 expression and represses 

BMP6-induced osteoblast differentiation (chapter 3).  

    The second part of this thesis analyses rescue of the insufficient BMP 

signaling in PAH by the US food and drug administration (FDA) approved drug 

FK506. Combined targeting of the BMP signaling pathway and inhibition of 

local inflammation could improve treatment of PAH. FK506 can induce 
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BMPR2 signaling both by acting as an inhibitor of the phosphatase calcineurin 

and by inhibiting the binding of the BMP signaling inhibitor FKBP12 to the 

BMP receptor. Importantly, FK506 can rescue the dysfunctional EC signaling 

and gene regulation in experimental PAH animal models to prevent and reverse 

PAH (chapter 4). 

    In chapter 5, we demonstrate that soluble endoglin regulates BMP9 

signaling through TGFβR2 and/or BMPR2. This regulation of BMP9 signaling 

by soluble endoglin provides another layer of regulation of TGF-β signaling 

pathway in ECs. It may also alter the inflammatory responses of ECs in 

different cellular contexts.  

Finally, the main findings reported in this thesis are summarized and 

discussed in chapter 6.  
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