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ABSTRACT  
 

Background: Chronic metabolic overload results in lipid accumulation and subsequent 

inflammation in white adipose tissue (WAT), often accompanied by non-alcoholic fatty 

liver disease (NAFLD). In response to metabolic overload, the expression of genes involved 

in lipid metabolism and inflammatory processes is adapted. However, it still remains 

unknown how these adaptations in gene expression in expanding WAT and liver are 

orchestrated and whether they are interrelated. 

Methodoloy/Principal Findings: ApoE*3Leiden mice were fed HFD or chow for different 

periods up to 12 weeks. Gene expression in WAT and liver over time was evaluated by 

micro-array analysis. WAT hypertrophy and inflammation were analyzed histologically. 

Bayesian hierarchical cluster analysis of dynamic WAT gene expression identified groups 

of genes (‘clusters’) with comparable expression pattern over time. HFD evoked an 

immediate response of five clusters of ‘lipid metabolism’ genes in WAT, which did not 

further change thereafter. When the storage capacity of WAT became exceeded (>6 

weeks), inflammatory clusters were induced. Promoter analysis of clustered genes 

resulted in specific key regulators which orchestrate the metabolic and inflammatory 

responses in WAT. Some master regulators played a dual role in control of metabolism 

and inflammation. When WAT inflammation developed (>6 weeks), genes of lipid 

metabolism and inflammation became also affected in corresponding livers. These hepatic 

gene expression changes and, in particular the underlying transcriptional responses, were 

remarkably similar to those detected in WAT. 

Conclusion: In WAT, metabolic overload induced an immediate, stable response on 

clusters of lipid metabolism genes and induced inflammatory genes later in time. Both 

processes were controlled and interlinked by specific transcriptional regulators. When 

WAT inflammation began, the hepatic response to HFD resembled that in WAT. In all, 

WAT and liver respond to metabolic overload by adaptations in expression of gene 

clusters controlling lipid metabolism and inflammatory processes in an orchestrated and 

interrelated manner. 
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INTRODUCTION 
 

The obesity epidemic has become the most important nutritional problem worldwide. The 

increasing prevalence of obesity has been ascribed to excessive and unhealthy eating and 

reduced physical activity [1] and carries with it increased risks for type 2 diabetes (T2DM) 

and non-alcoholic fatty liver disease (NAFLD) [2-4]. Notably, the existence of metabolic 

pathways that allow excess energy to be stored as fat suggests that obesity may 

realistically be viewed as a biological adaptation in times of energy surplus. However, in 

case of prolonged excess energy supply white adipose tissue (WAT) capacity may 

exceeded [5, 6] and the liver may serve as an alternative depot for free fatty acids [7, 8]. 

The resulting metabolic overload of the expanding WAT and subsequently liver is 

accompanied by local metabolic stress and triggers tissue inflammation [9].   

    Several studies in mice have demonstrated that the expression of genes of lipid 

metabolism and inflammation is adjusted in several organs in response to chronic high-fat 

diet (HFD) feeding [10-12]. These studies are often static and focus on a single organ 

which is analyzed at one particular time point, typically at a later stage in the disease 

process when histopathological effects of HFD can be detected (e.g. crown-like structures 

in WAT, inflammatory gut, hepatic steatosis). Accordingly, many gene expression studies 

and sophisticated microarray analyses link late stage histological outcomes to gene 

expression changes of the same (late) time point. However, significant effects on gene 

expression are likely to start early and change over time. Hence, there is limited 

understanding of the early events in expanding WAT and in what way lipid metabolism is 

related to the onset of inflammation during obesity development. Some studies 

investigated the expression changes of individual inflammatory genes and pathways over 

time [13-15], but they did not explore whether groups of genes (‘gene clusters’) change in 

concert and thus do not provide insight into the global adaptations and possible common 

transcriptional regulation of clustered genes. 

    Bayesian hierarchical cluster analysis [16] allows global analysis of dynamic gene 

expression data of thousands of genes simultaneously to find patterns in the data that are 

not predicted by the experimenter’s current knowledge or preconceptions. For instance, 

complex gene expression time series can be analyzed to identify genes with similar 

expression patterns that group into clusters because of common transcriptional regulation. 

Cluster analysis of the expanding WAT requires dynamic high-quality microarray datasets 

with multiple early time points, which are scarce [13]. In the present study we 

investigated two important processes in WAT expansion using cluster analysis: the global 

adjustment of genes of ‘lipid metabolism’ and the induction of ‘inflammatory genes’, and 

their interrelationship. Because transcriptional control mechanisms are instrumental for 

adjustment of lipid metabolism as well as inflammatory gene expression [17], we 

examined whether the genes of the identified clusters share common transcriptional 

regulation, viz. via key master regulators.  

    Metabolic overload of WAT upon HFD feeding is, at a later stage, supposed to be 

accompanied by multiple metabolic and inflammatory effects in the liver [7]. It is 

presently unknown whether the effects on genes of metabolism and inflammation are 

similar to WAT and, if so, whether the same master regulators are involved.  
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    WAT and liver tissues and corresponding dynamic genomics datasets from a 12- week 

HFD feeding experiment [13] in APOE*3Leiden transgenic mice were used. APOE*3Leiden 

mice have a humanized lipoprotein metabolism and develop obesity, insulin resistance 

and NAFLD during HFD feeding [18-20]. Bayesian cluster analysis in conjunction with 

promoter analysis and biochemical measurements showed that adjustment of lipid 

metabolism and onset of inflammation in WAT occurs sequentially and is orchestrated by 

specific master regulators that also control comparable changes in lipid metabolism and 

inflammation in the liver later in time. 

 

 

MATERIALS AND METHODS  

Mouse study and micro-array data 
Tissues and micro-array data from a larger time course study in APOE*3Leiden mice in the 

context of HFD-induced insulin resistance were used [13]. These micro-array datasets 

(liver and WAT) are freely available on ArrayExpress at the following URL 

http://www.ebi.ac.uk/arrayexpress/experiments/E-TABM-1039/. Animal experiments 

were approved by the Institutional Animal Care and Use Committee of The Netherlands 

Organization for Applied Scientific Research (TNO), and were in compliance with European 

Community specifications regarding the use of laboratory animals as reported [13]. 

Briefly, 12 weeks old mice were fed HFD containing (all w/w) 24% fat from beef tallow (of 

which 12% saturated fatty acids), 24% casein and 20% dextrose (diet number 4031.05; 

Hope Farms, Woerden, The Netherlands; metabolizable energy: 19.4 MJ/kg; exact diet 

composition is provided in Table S1) for 12 weeks [13]. Mice were sacrificed at t=0 and 

after 1, 6, 9 and 12 weeks of HFD feeding (n=15/group). Epididymal adipose tissue and 

corresponding livers of a subset of animals (n=8) per time point were used for microarray 

analysis. Our present data are from this subset of animals. A separate control group (n=6) 

was fed chow (sniff® R/M-H; metabolizable energy: 12.8 MJ/kg; Sniff Spezialdiäten GmbH, 

Soest, Germany) for the entire study period and served as a reference for the effect of 

aging. 

 

Histological analysis of tissues  
Paraffin-embedded sections of adipose tissue and liver were used for 

(immuno)histological examination [13]. Liver tissue sections were 5 µm thick and stained 

with hematoxylin phloxine saffron (HPS). Non-alcoholic fatty liver disease was analyzed as 

described [21] and vacuolization (micro- and macrovaculolization) and hepatocellular 

hypertrophy were scored. Sections of epididymal adipose tissue were prepared following 

a similar procedure [22] and stained with HPS for computer-assisted morphological 

assessment of adipocyte size and analysis of macrophage accumulation in crown-like 

structures essentially as reported [20]. CCR2 positive cells were detected using antibody 

(Abcam ab21667, Cambridge, UK). 

 

Microarray data analysis and Bayesian hierarchical clustering   
Quality control analyses and specific protocols for RNA extraction, RNA integrity 

assessment, and microarray data processing were reported previously [13, 23]. Briefly, 
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quality control of microarray data was performed using BioConductor packages including 

simpleaffy and affyplm, through the NuGO pipeline that is available as a Genepattern 

procedure on http://nbx2.nugo.org [24]. Thirty-eight adipose tissue samples passed the 

quality control criteria and raw signal intensities (from CEL files) were normalized using 

the GCRMA algorithm (gc-rma slow). Probesets were remapped and annotated into Entrez 

gene-ids using the custom MBNI CDF-file, version 9.0.1. The final dataset contained the 

expression values of 12492 adipose tissue genes represented by unique Entrez gene-ids 

[25]. Expression data were logtransformed for further analysis of gene expression levels. 

Microarray gene expression data were confirmed by quantitative real-time PCR for a 

selection of genes using established protocols and primer/probe sets [13].  

    For this study, two sets of genes with either lipid metabolism ontology (n=235) or 

inflammation ontology (n=216) were defined. These genes were differentially expressed 

at one or more time points (q<0.05 ANOVA) and are listed in Table S2. The time course 

expression data of these genes was subjected to Bayesian hierarchical clustering to 

structure the data and identify distinct clusters of genes with comparable expression 

profiles [26].  

 

Gene enrichment analysis 
Changes in gene expression were visualized using GeneSpring GX version 10.0 (Agilent 

Technologies, Santa Clara, CA, USA) and this tool was also used to show the identified 

gene clusters. An enrichment analysis was performed for the gene lists of each cluster 

using the DAVID functional enrichment tool [27]. Default settings for enrichment analysis 

in DAVID were used. The total list of genes was used as input and the most enriched 

functional gene sets (based on Gene Ontology ‘protein domains and pathways’) are 

reported. These functional gene sets contain at least three genes from a particular gene 

cluster and are more enriched in the cluster than in the input data set (% genes in cluster 

≥ 1.3 x % genes in input gene list). 

    To define the transcription factors that are responsible for control of a particular cluster 

of genes, the genes of each cluster were subsequently analyzed in Bibliosphere 

(Genomatix GmbH, Munich, Germany) with respect to a) shared transcription factor 

binding sites in their promoter regions and b) co-citation analysis (level B2, co-citation 

restricted to sentences with a function word). Promoters were defined as 500 bp 

upstream and 100 bp downstream of the Transcription Start Site of the gene transcript. 

Default settings of the software were used to perform an overall analysis of the promoters 

of the genes for common transcription factors. The following criteria were used to define 

the key transcription factors: a) the transcription factor binding sites have to be present in 

at least three genes of a cluster and b) are more frequently found in the genes belonging 

to the cluster of interest than in the total list of input genes (%genes in cluster ≥ 1.3 x % 

genes in input gene list). 

 

Comparison of gene expression changes in adipose tissue and liver  
Liver and white adipose tissue (WAT) were compared with respect to differentially 

expressed genes (DEGs relative to the zero time point) and Venn diagrams were prepared 

to illustrate overlapping genes. A cutoff of FDR P-value < 0.05 was used to define DEGs in 

both tissues.  
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    The upstream regulator analysis function of Ingenuity Pathway Analysis (IPA) software 

and the Ingenuity knowledge base were used to analyze the relationship between 

upstream transcription factors and expression changes of target genes. To test whether a 

particular transcription factor identified in WAT was also involved in the liver, we analyzed 

the hepatic transcriptome for differentially expressed target genes of this transcription 

factor. A P-value P<0.05 indicated that more liver target genes were differentially 

expressed than expected by chance. Ingenuity Pathway Analysis was also used to test 

whether a particular transcription factor is activated (positive Z-score >2) or inhibited 

(negative Z-score <-2) based on the direction of gene expression changes of its target 

genes.  

 

Transcription factor analysis  

Biochemical transcription factor activity was determined in liver homogenates essentially 

as previously described [13, 28], using TransAM® kit Hnf4α (no. 46296, Active Motif 

Europe, Rixensart, Belgium). Briefly, liver homogenates were prepared using the Nuclear 

Extract Kit (no. 40010, Active Motif, Rixensart, Belgium). Equal amounts of protein (10 

μg/well) of the liver homogenates were used to determine the amount of active 

transcription factor. Control tissues of reference mice on chow were used to correct for 

the effect of aging. 

 

 

RESULTS 

HFD feeding of APOE*3Leiden mice results in obesity and onset of white 
adipose tissue inflammation 
APOE*3Leiden mice had an average body weight of 29.2 ± 2.6 g at the start of the 

experiment (t=0). Animals became obese during HFD feeding and gradually gained 8.30 ± 

2.0 g of weight during the experimental period of 12 weeks (Figure 1A) while body weight 

of control mice on chow remained stable (0.23 ± 0.63 g weight gain; not shown). The daily 

energy intake per mouse was comparable between the groups fed HFD (15.0 ± 0.9 

kcal/day) and chow (14.6 ± 3.0 kcal/day). The HFD-evoked increase in body weight was 

accompanied by an increase in WAT mass as exemplified by epididymal fat mass (Figure 

1B). Histological analysis of epididymal WAT revealed a significant increase in adipocyte 

size upon HFD feeding relative to chow-fed controls (4431 ± 140 versus 1665 ± 310 µm
2
; 

P<0.005) demonstrating adipocyte hypertrophy during fat accumulation and obesity 

development (Figure 1C/1D). In HFD fed mice, immune cells accumulated in WAT at 12 

weeks and first crown-like structures were observed (Figure 1C/1E) pointing to an onset 

of WAT inflammation. Immunochemical analysis demonstrated that accumulating cells in 

HFD-treated mice were Ccr2-positive (Figure 1E) while Ccr2-positive cells were hardly 

found in age-matched chow control mice. Together, these data demonstrate that 12 

weeks of HFD feeding in ApoE*3Leiden mice resulted in metabolic changes (lipid storage 

and hypertrophy) as well as onset of WAT inflammation.  
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Figure 1: HFD feeding leads to obesity and onset of adipose tissue inflammation. APOE*3Leiden transgenic 

mice were fed a HFD for 12 weeks and sacrificed at the time points indicated. The average body weight at the 

start (t=0) of HFD feeding was 29.2 g. A, Body weight gain over time. B, Mass of the epididymal adipose tissue 

depot during obesity development. Data are presented as mean ± SEM. C, Histological analysis of adipose tissue 

at start (t=0) and after 12 weeks of HFD or chow feeding (reference for the effect of aging). D, HFD feeding 

results in adipocyte hypertrophy. Computer-assisted quantification of average adipocytes size (P<0.05). E, 

Marked accumulation of CCR2 positive cells (arrows) in the HFD fed group. 
 
 
Identification of genes with a similar time profile during HFD feeding 
To gain insight into the global effects of HFD feeding on metabolism and inflammation in 

WAT, two sets of genes (i.e. 235 genes with ‘lipid metabolism ontology’ and 216 genes 

with ‘inflammation ontology’ as defined in Table S2 and Methods) were subjected to 

Bayesian hierarchical clustering analysis. In this analysis, the individual genes were  

A 

E D 

C 

B 
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grouped into gene clusters based on a concerted dynamical expression over time. Genes 

with a comparable expression pattern across time grouped into specific clusters: Six 

clusters of lipid metabolism genes (Figure 2) and four clusters of inflammatory genes 

(Figure 3) were defined. Each cluster showed a distinct and specific time profile suggesting 

that genes within a cluster share common transcriptional regulation.  

    Overall, HFD feeding had an early effect on the genes of lipid metabolism and most 

gene expression changes already occurred within the first week. The majority of the genes 

of ‘lipid metabolism’ clustered in cluster B and C (165 out of 235). After a slight 

adjustment in gene expression in week 1, these genes hardly changed over time (Figure 

2). The expression changes were somewhat more pronounced in other lipid gene clusters 

(A, D, E and F), but the main effect also occurred in the first week. It is striking that most 

‘lipid metabolism’ genes are rapidly adjusted in the first week and do not adapt to any 

further extent at the later time points, even when WAT hypertrophy and inflammation are 

developing. Table 1 shows that the genes of clusters with somewhat more dynamic 

expression patterns can be assigned to specific biological processes (gene enrichment 

analysis). For instance, the genes of cluster A were associated with sphingolipid and 

ceramide metabolism.  

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Cluster analysis of genes of lipid metabolism. Bayesian cluster analysis of genes with ‘lipid metabolism’ 

gene ontology resulted in 6 clusters (A, B, C, D, E, and F) with distinct time profiles. Individual gene expression 

profiles are shown as dotted lines. The bold line represents the cluster average. 
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Figure 3: Cluster analysis of inflammatory genes. Bayesian cluster analysis of genes with ‘inflammation’ gene 

ontology resulted in 4 clusters A, B, C and D with distinct time profiles. Individual gene expression profiles are 

shown as dotted lines. The bold line represents the cluster average. 

 

 

    In contrast to the genes involved in lipid metabolism, the mRNA expression level of 

inflammatory genes increased markedly after week 6 (inflammation clusters C and D in 

Figure 3). This suggests that factors encoded by these genes may reflect or contribute to 

the observed onset of WAT inflammation. Indeed, among the upregulated genes were the 

complement factors C1qa, C1qb, C1qc, C3a receptor-1 and C5a receptor-1, the cytokines 

Cxcl1/KC, Ccl5/Rantes, Ccl6, Ccl7/Mcp3 and Ccl9/Mrp2, the inflammation markers 

orosomucoid-1, orosomucoid-3, granzyme A and neutrophil cytosolic factor 1 

(Nrf1/p47/phox), the macrophage-associated markers CD11b/Mac1, CD11c, 

CD18/integrin beta-2, the inflammasome component ASC and the chemokine CXC motive 

receptor-2 (Ccr2), which is consistent with the observed accumulation of Ccr2-positive 

cells. Gene enrichment analysis confirmed that these genes belong to processes that 

promote WAT inflammation such as leukocyte mediated immune response, cytokine 

activity, complement activation, acute inflammatory response, and cell adhesion (Table 

2). Some of the genes encode for inflammatory factors that can be secreted into plasma 

and may promote inflammation in other tissues. 
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Prediction of transcription factors that control the WAT response to HFD 
feeding 
To identify transcription factors that can orchestrate the observed changes in gene 

expression profiles in WAT, we analyzed the promoter regions of clustered genes to 

identify putative common (shared) transcriptional regulators (last column of Tables 1 and 

2). Transcriptional binding sites for Jun, Sp1, Stat1, Nfĸb and Pparγ were frequently 

identified in the promoter regions of the ‘lipid metabolism’ genes in cluster A, i.e. the 

genes that are related to sphingolipid and ceramide metabolism. Srebf1, Srebf2, Pparγ 

and Hnf4α were identified as common regulators of the ‘lipid metabolism genes’ of cluster 

F. Transcriptional master regulators of the inflammatory genes in cluster D are Pparγ, 

Sfpi1, Stat6 (cluster C), and Sp1, Fos, Vdr, Esr1, Creb1, Gata1, Smad2 (Table 2).  

 

 

Table 1: Genes of lipid metabolism with dynamic changes over time. Only the genes of cluster A, D, E and F 

show dynamic changes in expression during the study period. The pattern of the expression changes is described 

in the second column. Gene clusters are associated with specific biological processes (obtained by gene 

enrichment analysis) and clustered genes share common transcriptional regulators. These common transcription 

factors were predicted by promoter analysis and are listed in the last column. 

 
Cluster Pattern of time profile Enrichment analysis of biological processes TF 

Cluster A: 20 genes slight decrease in week 1; Sphingolipid metabolic process Jun 

 slight increase > week 9 Ceramide metabolic process Sp1 

   Stat1 

   Nfĸb1  

   Pparγ        

Cluster D: 29 genes slight increase in week 1 Steroid biosynthetic process Pparα       

  Cholesterol biosynthetic process Nfĸb1 

  Cholesterol metabolic process Pparγ       

  Isoprenoid metabolic process  

  Oxidoreductase activity  

Cluster E: 11 genes Continuous decrease Steroid metabolic process Esr1          

  Hormone metabolic process Stat5β 

  Reproduction  

  Oxidoreductase activity  

Cluster F: 10 genes pronounced increase in Cholesterol absorption Srebf2 

 week 1, then slight increase Cholesterol metabolic process Nr1h2 

  PPAR signaling pathway Pparγ 

  Lipid binding Srebf1 

  Lipid transport Hnf4α 

  Lipoprotein metabolic process Sp1 

  Glucose metabolic process Nr1h3 

   Nr5a1 
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Table 2: Inflammatory genes with dynamic changes over time. The genes of cluster C and D are characterized 

by dynamic changes in expression during HFD feeding. The pattern of the expression changes is described in the 

second column. Gene clusters are associated with specific biological processes (obtained by gene enrichment 

analysis) and clustered genes share common transcriptional regulators.  Common transcription factors (TF) 

predicted by promoter analysis are provided in the last column. 

 
Cluster Description Enriched processes TF  

Cluster C: 34 genes slight decrease in first  Inflammatory response; Pparγ 

 week; pronounced  Leukocyte mediated immune  Sfpi1 

 increase >week 8   response; Stat6 

  Cytokine activity; Pax5 

  Extracellular region; Etv6 

  B cell mediated immunity; Pparα 

  Complement activation  

Cluster D: 25 genes slight increases early  Inflammatory response; Sp1 

 in time; pronounced  Acute inflammatory response; Fos 

 increase >week 6 Extracellular space; Creb1 

  Cytokine activity; Myc 

  T cell proliferation; Vdr 

  Cell adhesion Rarα 

   Esr1 

   Ar 

   Gata1 

   Smad2 

    Of note, some transcription factors like Pparγ, Esr1 and Sp1 have a dual role and 

regulate the expression of genes involved in lipid metabolism and inflammatory genes 

indicating that these transcription factors operate at the interface of metabolism and 

inflammation which are thus molecularly interlinked at the level of transcription.   

 
 
Key regulators predicted in WAT are also involved in altered liver gene 
expression 
The livers of the same mice used for the above WAT analysis were examined histologically 

and using microarrays. Figure 4 shows that HFD feeding but not chow feeding resulted in 

pronounced micro- and macrovacuolization as well as hepatocellular hypertrophy, 

demonstrating onset of NAFLD at 12 weeks. Analysis of hepatic gene expression revealed 

that the genes of lipid metabolism and inflammatory genes were hardly affected until 

week 6 but thereafter (Figure 5A/5B). To evaluate whether this response to HFD feeding 

is related to the effects observed in WAT, we compared the gene expression changes in 

both tissues over time.  

    Until week 6, only a few differentially expressed genes were found in both tissues, but 

the number and percentage of common genes (see intersections of Figure 5A and 5B) 

strongly increased in week 9 and 12, i.e. when WAT becomes overloaded and expression 

of inflammatory genes of cluster C is observed. Together, these data are in line with the 
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concept that WAT serves as a first buffer to cope with metabolic overload and that the 

hepatic response is delayed and resembles that of WAT when the storage capacity of WAT 

is exceeded [5, 6]. At week 12, more than 50% of the liver genes with ‘lipid metabolism’ or 

‘inflammation’ ontology are also affected in WAT. Analysis of all DEGs irrespective of their 

ontology confirms the relationship between both tissues (245 genes in intersection, 484 

liver-specific, 784 WAT-specific in week 12; data not shown). 

    At the level of transcriptional regulators, the response of both tissues was even more 

comparable as demonstrated by Bayesian clustering analysis and, as an alternative 

approach, analysis of target genes. Cluster analysis showed that the gene expression 

changes until week 9 were modest in liver in comparison with WAT (Figure S1). Similar to 

WAT, some clusters showed an immediate response to HFD and gene expression did not 

further change thereafter. Lipid metabolism gene cluster D in the liver had a comparable 

profile to cluster F of WAT and the predicted transcriptional regulators (Pparγ, Nr1h2, 

Srebf2, Hnf4α, Nr1h3) were the same. The predicted transcriptional regulators for the 

inflammatory genes of cluster C in the liver (Ar, Creb1, Esr1, Fos, Myc, Pparγ, Rarα, Sfpi1, 

Stat6) also overlapped with those predicted for inflammatory genes in WAT.  

 

Figure 4: Histological analysis of livers. Hallmarks of non-alcholic fatty liver disease were scored in the livers of 

the mice that were used for WAT analysis. A, Representative photomicrographs of liver cross-sections after 12 

weeks of HFD shows pronounced liver steatosis characterized by micro- and macrovacuolization and 

hepatocellular hypertrophy. B, Quantitative analysis of total vacuolization and hypertrophy. Data are presented 

as mean ± SEM. *P<0.05. 

 

 

    In addition to this, we analyzed the target genes of the master regulators predicted in 

WAT and tested whether they were differentially expressed in the liver. Statistical testing 

A 

B 
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of the effect on target gene expression showed that the transcription factors Hnf4α, Esr1, 

Fos, Myc, Pparα, Pparγ, Srebf1 and Srebf2 affected their target genes significantly (all 

P<0.05), and Creb1 and Jun with borderline significance (P=0.07). Biochemical analysis of 

the transcriptional binding activity of Hnf4α in liver protein homogenates confirmed its 

activation (Figure 5C). Of note, a particular transcription factor may affect a different set 

of genes in WAT and the liver as illustrated in Figure 5D for Srebf2.  

Figure 5: Comparison of gene expression in liver and WAT over time and analysis of transcriptional regulators. 

Venn diagrams of genes with A, ‘lipid metabolism’ gene ontology or B, ‘inflammation’ gene ontology. Time 

course analysis of the genes that were differentially expressed genes at a particular time point. The intersection 

represents the number of ‘overlapping genes’, ie. genes that were affected in both tissues. C, Quantitative 

analysis of the transcriptional activity of HNF4α by TransAM analysis at t=0 and t=12 weeks of HFD feeding 

relative to reference mice on chow to correct for aging. *P<0.05. D, Differentially expressed target genes of 

Srebf2 in WAT and liver. Srebf2 is significantly involved in the control of target genes (P<0.05 for both WAT and 

liver). In both tissues, the calculated Z-score was positive (3.7 for liver and 4.3 for WAT) indicating that Srebf2 is 

activated. Genes colored in red (green) are upregulated (downregulated).   

A 

D C 

B 
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    Overall, the gene expression effects evoked by HFD in WAT and liver become 

increasingly comparable showing similar transcriptional responses in both tissues. This 

indicates that the factors that sense metabolic overload are highly conserved among 

metabolically active tissues. 
 
 
DISCUSSION  

 

The effect of metabolic overload on WAT and liver was analyzed in a mouse model that 

responds to HFD feeding with WAT expansion, metabolic stress, inflammation and 

development of NAFLD. Using Bayesian hierarchical clustering we showed that the 

expression of genes of lipid metabolism is rapidly adjusted upon HFD feeding (already 

within one week). Cluster analysis revealed that these genes hardly change in expression 

later in time, despite the observed pronounced WAT expansion and the onset of 

inflammation from week 6 onward. By contrast, many inflammatory genes strongly 

increase in their expression at >6 weeks (e.g. inflammatory clusters C and D), and these 

genes also encode for inflammatory factors that can be secreted into the circulation. This 

inflammatory response is observed when adipocytes become hypertrophic suggesting 

that adipose tissue expandability becomes inadequate and the storage capacity of WAT 

reaches its limit [5, 6]. Promoter analysis defined a rather small set of about 25 

transcriptional master regulators including Pparγ, Hnf4α, Sp1, Jun/Fos, Esr1, Srebf2, 

Nr1h2, Sfpi1, Fos, Smad2, Sp1, Gata1 that orchestrate the adaptation of lipid metabolism 

and induce inflammation. Some of the identified transcription factors (Pparγ, Esr1, 

Jun/Fos) control the adjustment of lipid metabolism-related and inflammatory genes 

supporting the view that metabolism and inflammation are molecularly interlinked in WAT 

[29].  

    Notably in liver, only a small number of genes of lipid metabolism and inflammation are 

affected up to week 6. Thereafter, when WAT has become inflamed, a marked increase in 

the number of differentially expressed genes involved in hepatic lipid metabolism and 

inflammation was observed. Comparison of liver and WAT revealed a remarkable overlap 

in gene expression and transcriptional regulation at >6 weeks. Together this shows that 

HFD feeding results in rapid adaption of WAT lipid metabolism which is not further 

adjusted during fat storage. When WAT inflammation begins, the gene expression and 

transcriptional responses of WAT and liver start to resemble each other. This indicates 

that the fundamental principles of how metabolically active organs cope with HFD 

overload are conserved. 

    We found that Pparγ [30], Srebf1 and Srebf2 [31], and Nr1h3/Nr1h2 (also referred to as 

Lxrα/Lxrβ [32, 33] may explain the observed gene expression changes. Indeed, these 

transcription factors are well-established regulators of lipid metabolism and their 

identification confirms the validity of the approach applied. The ‘lipid metabolism’ genes 

with the largest changes grouped in lipid gene cluster F. Genes in this cluster are not only 

involved in lipid metabolism but also in lipid absorption and glucose metabolism and could 

reflect a reprogramming of WAT from early time points onward to cope with HFD 

overload. Potential transcription factors regulating this reprogramming include Srebf1, 

Srebf2, Pparγ, Lxrα, Lxrβ and Hnf4α. In a previous study, we indeed identified 
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transcription factor HNF4α as a regulator of energy metabolism in human adipose tissue 

[34], and activation of LXRα and LXRβ has been shown to affect lipid and glucose 

metabolism as well as the inflammatory state simultaneously [28, 35]. 

    We also identified several transcription factors typically associated with inflammation 

(Jun, Stat1, Stat5β) in the promoter elements of genes associated with general 

sphingolipid metabolism and, more specifically, ceramide metabolism. This finding 

supports the notion that molecular links exist between lipid metabolism and inflammatory 

signaling cascades and that these processes are interlinked and hence, may influence each 

other [23, 29, 36]. Boini and coworkers have shown that HFD-treated mice have increased 

levels of ceramide in WAT and in plasma [37, 38]. In another study, the ceramide 

concentrations in human WAT were positively correlated with the inflammatory state of 

the tissue, independent of obesity [39].  

    The inflammatory/immune response genes of the inflammatory gene clusters C and D 

showed a pronounced increase in expression from week 6 onward. One of the genes 

encodes for Ccl5/Rantes which promotes macrophage recruitment in adipose tissue [40]. 

Indeed, the gene expression levels of CD11b/Mac1, a marker expressed on macrophages 

and neutrophils, were also increased showing a similar time pattern. Of note, the 

expression of another inflammatory gene, Cxcl1/KC, intensified also from week 6 

onwards. This coincides with the development of insulin resistance in WAT of 

APOE*3Leiden mice under the experimental conditions employed herein [13]. Cxcl1/KC 

stimulates the infiltration of neutrophils into WAT [41] and represents the mouse ortholog 

of human interleukin-8, but the exact role of this factor in the pathogenesis of insulin 

resistance remains to be established. The observation that neutrophil cytosolic factor 1 

(Nrf1/p47/phox) expression levels also increase suggests that (infiltrating) neutrophils 

may have a role early in the disease process. Of note, also the expression levels of 

granzyme A, a protease present in granules of cytotoxic T-cells and NK cells, increased 

strongly from week 6 onwards. Because immune cells accumulate in WAT during HFD 

feeding, it is thus likely that changes in inflammatory gene expression may, at least partly, 

be a reflection of the changes in cellular composition of the tissue. Interestingly, we also 

found a gradual increase in expression of the inflammasome adaptor ASC. ASC is 

necessary for assembly of inflammasome complexes, which activates the inflammatory 

cytokines IL1 and IL18 from their propeptides in response to saturated fatty acid overload, 

thereby linking lipid metabolism and inflammation and promoting the development of 

insulin resistance in T2DM [42]. Promoter analyses of clustered inflammatory genes 

revealed that a large number of these genes share Fos, Smad2, Stat6 and Pparα as 

transcriptional regulators, which is in accordance with their established roles in 

inflammatory signaling cascades [43-46].  

    In several clusters, the transcriptional regulators Pparγ, Sp1, estrogen receptor 1 (Esr1) 

and Jun/Fos were identified as central underlying transcriptional regulators that may 

explain the gene expression changes of both lipid metabolism genes and inflammation-

related genes. In accordance with their suggested overarching role, Pparγ, Sp1 and Esr1 

are indeed involved in cell differentiation, cell cycle and growth and immune response 

processes [23, 30, 47, 48]: Pparγ is implicated in adipogenesis and insulin signaling of 

adipocytes as well as in the control of the inflammatory state of infiltrating 

monocytes/macrophages [49]. Esr1 forms complexes with DNA-bound Sp1 to regulate the 
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transcription of low density lipoprotein receptor (LDLR) [50], retinoic acid receptor-alpha 

(Rarα) [51] and c-Fos [52]. Another transcription factor that may constitute a link between 

lipid metabolism and inflammation is c-Jun as established previously for WAT and liver 

[23, 36, 53].    

    A limitation of the present study is that the transcriptional regulator prediction method 

predicts the binding of the transcription factors only from the existence of the binding 

motifs in the regulatory elements of genes, i.e. it employs available knowledge about the 

regulation of these genes. Although the results of this bioinformatical approach are 

certainly indicative, the involvement of many of these transcription factors has not been 

experimentally proven under the experimental conditions employed and there is a recent 

recognition that only a small portion of the putative motif may actually be occupied by the 

transcription factors based on recent ChIP-seq studies. 

    Because WAT and liver tissue have evolved from common ancestral structures 

(mesoderm) it has been proposed that they may share similar functional units to control 

key metabolic and immune processes [29, 54]. Indeed, our results show that the factors 

important for regulation of gene expression in WAT were also affected in liver, suggesting 

a considerable consistency between both responses to HFD-induced metabolic overload. 

Some of the master regulators identified in WAT in the present study (Jun, Fos, Rarα, 

Pparα, Stat1, Stat5, Sp1) were also reported to control liver lipid metabolism and/or the 

inflammatory responses of the liver in experimental diet-induced cardiovascular disease 

[23]. A tight relationship between WAT dysfunction and the pathogenesis of NAFLD has 

been reported recently [55], suggesting comparable control of inflammatory gene 

expression in metabolically active organs [29]. This interrelationship could possibly be 

exploited in the future to monitor the condition of the liver via biopsies taken from WAT 

because they are more accessible. Our findings correspond with the view that the control 

mechanisms of metabolic and inflammatory homeostasis in WAT and liver share 

similarities and that a distortion of the mechanisms that control metabolic adaptation 

may also affect the inflammatory tone of a tissue [9, 29].  

    Collectively, this study demonstrates that high fat feeding evokes an immediate, stable 

response of lipid metabolism genes. Later in time, when the storage capacity of WAT 

becomes limited, inflammatory genes are induced in WAT (>6 weeks). When WAT began, 

genes of lipid metabolism and inflammation also became affected in corresponding livers. 

The hepatic response to HFD, in particular the underlying transcriptional responses, were 

remarkably similar to those detected in WAT. In all, WAT and liver respond to metabolic 

overload by adaptations in expression of (clusters of) genes controlling lipid metabolism 

and inflammatory processes in an orchestrated and interrelated manner. 
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