

Universiteit
Leiden
The Netherlands

Modelling and analysis of real-time coordination patterns

Kemper, S.

Citation

Kemper, S. (2011, December 20). *Modelling and analysis of real-time coordination patterns*. IPA Dissertation Series. BOXPress BV, 2011-24. Retrieved from <https://hdl.handle.net/1887/18260>

Version: Corrected Publisher's Version

License: [Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden](#)

Downloaded from: <https://hdl.handle.net/1887/18260>

Note: To cite this publication please use the final published version (if applicable).

Curriculum Vitae

1979 Born on 20 July in Bremerhaven, Germany

1992-1999 High School (Gymnasium), Nordenham, Germany

1999-2006 Diplom (equivalent to master's degree) in Computer Science, Carl-von-Ossietzky Universität, Oldenburg, Germany

Major in Theoretical Computer Science

Thesis title: *SAT-based Verification for Abstraction Refinement*

2006-2011 PhD student at Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands, supervised by Prof. Dr. Frank S. de Boer

2011- Scientific Staff Member, Carl-von-Ossietzky Universität Oldenburg, Germany

Index

- $\mathcal{V}(\cdot)$ (set of all models), 58
 ν (valuation), 9
 $\nu|_X$ (restriction to clock set), 9
 t^{act} (actual arrival time), 109
 t^{opt} (optimal arrival time), 109
 Time (time domain), 7
 $\bullet\alpha$ (domain of the abstraction), 71
 $Atoms(\cdot)$ (set of atoms), 57
 \mathfrak{A} (timed automaton), 12
 \mathfrak{N} (timed network automaton), 30
 \mathfrak{T} (timed constraint automaton), 20
 $Conts(\cdot)$ (set of atoms and variables), 57
 \oplus (function overriding), 82
 \mathbf{n}^\perp (representation of \perp), 45
 \perp (no data), 10
 $\bullet\alpha|.$ (candidate set for refinement), 83
 $dc|_Q$ (reduced data constraint), 36
 $\mathcal{D}|_{dc}$ (data variables used in dc), 10
 $\mathcal{P}|_{dc}$ (ports used in dc), 10
 $Vars(\cdot)$ (set of variables), 57
 \setminus_{dc} (removal of data constraint literals), 140
- ABP, *see* alternating bit protocol
abstraction, 67
 by merging omission, 68
 domain, 71
abstraction by merging omission, 68
abstraction refinement, 67, 68
action transition, 33
active port, 10
alternating bit protocol, 104
- anchored jitter, 109
associated labelled transition system, 13
- BDD, *see* binary decision diagram
binary decision diagram, 57
- BMC, *see* bounded model checking
bounded model checking, 3, 43, 57
 completeness, 59
- CASM, *see* constraint automata with state memory
- CEGAR, *see* counterexample-guided abstraction refinement
- clause, 61
- clock, 8
 timeshift, 9
 update, 9
 valuation, 9
- clock constraint, 8
 convex, 9, 69
 diagonal, 18
 inter-step, 49
- CNF (conjunctive normal form), 61
- colouring, 29
- colours, 29
- completeness of bounded model checking, 59
- completeness threshold, 59
- concretisation, 74
- configuration
 timed automaton, 13
 timed constraint automaton, 22
 timed network automaton, 32

- conjunctive normal form, 61
 conservative approximation, 67
 constraint automata with state memory, 41
 convexity, 9, 69
 counterexample
 concretisation, 74
 spurious, 3
 counterexample guided abstraction refinement, 81
 craig interpolant, *see* interpolant

 data assignment, 10
 restriction, 10
 data constraint, 10
 reduced, 36
 data content variable, 46
 data domain, 10
 data fullness variable, 46
 delayed action transition, 33
 derived interpretation, 132
 derived run, 128
 diagonal clock constraint, 18
 diameter, 59
 domain of the abstraction, 71

 EA, *see* extensible automata framework
 Eclipse, 88
 ECT (Extensible Coordination Tools), 88
 environmental constraints, 28
 extensible automata framework, 88
 extension (in ECT), 90

 false negative, 67
 false positive, 67
 flip rule, 35
 formula representation, 44
 n^\perp , 45
 clock constraints, 44, 62
 clocks, 44, 62
 data constraints, 46
 data values, 45
 data variables, 46
 events/ports, 46
 internal port, 56
 localisation, 44

 locations, 45, 63
 soundness, 129
 timed automaton, 47
 timed automaton product, 48
 timed constraint automaton, 49
 timed constraint automaton product, 52
 timed network automaton, 53
 timed network automaton composition, 56

 hiding
 on timed constraint automata, 26

 inactive port, 10
 inconsistent formulas, 75
 inter-step clock constraint, 49
 internal port, 33
 interpolant, 76
 prefix, 76
 suffix, 76
 interpretation, 57

 jitter, 109
 anchored, 109
 non-anchored, 109
 joint broadcast synchronisation, 15

 k -step reachability, 59
 k -unfolding, 58

 labelled transition system, 13
 lip-synchronisation protocol, 108
 literal, 61
 localisation, 44
 loop-free run, 60
 LSP, *see* lip-synchronisation protocol
 LTS, *see* labelled transition system

 memory cell, 19
 MO, *see* abstraction by merging omission
 model, 58
 model checking, 43
 modularity, 2

 negation normal form (NNF), 68
 NNF, *see* negation normal form
 non-anchored jitter, 109

- operator precedence, 8
 over-approximation, 67
 plugin (in ECT), 90
 port, 10
 - active, 10
 - in TCA, 19
 - in TNA, 29
 - inactive, 10
 - internal, 33
 port activity variable, 46, 53
 port colour variable, 53
 port data variable, 46, 53
 predicate abstraction, 67
 prefix (interpolant), 76
 QIA, *see* quantitative intentional automata
 quantitative intentional automata, 88
 reachability, 59
 recurrence diameter, 60
 reduced data constraint, 36
 refinement, 68, 81
Reo, 125
 - conversion from, 88
 - conversion to, 88
 run
 - loop-free, 13, 22, 32, 60
 - timed automaton, 13
 - timed constraint automaton, 22
 - timed network automaton, 32
 - witness, 75
 SAT solving, 43, 61
 satisfiability modulo theory, 43
 satisfiable, 58
 scalability, 2
 skew, 109
SMC, *see* symbolic model checking
SMT, *see* satisfiability modulo theory
 spurious counterexample, 3, 67, 74
 suffix (interpolant), 76
 symbolic model checking, 57
 synchronisation
 - binary, 17
 - joint broadcast, 15
 - timed automaton, 15
 TA, *see* timed automaton
TCA, *see* timed constraint automaton
 time, 7
 - continuous, 7
 - discrete, 7
 time domain, 7
 timed automaton, 2, 11, 12
 - configuration, 13
 - external transition, 12
 - internal transition, 12
 - run, 13
 - synchronisation, 15
 - trace semantics, 14
 timed constraint automaton, 2, 18, 20
 - configuration, 22
 - formula representation, 49
 - hiding, 26
 - invisible transition, 20
 - run, 22
 - trace semantics, 23
 - visible transition, 20
 timed network automaton, 2, 29
 - action transition, 33
 - configuration, 32
 - delayed action transition, 33
 - run, 32
 timeshift, 9
TNA, *see* timed network automaton, 30
 trace semantics
 - timed automaton, 14
 - timed constraint automaton, 23
 under-approximation, 67
 unfolding depth, 58
 update, 9
 update map, 9
 valuation, 9
 - restriction, 9
 witness run, 75

Bibliography

- [ABdBR04] Farhad Arbab, Christel Baier, Frank S. de Boer, and J.J.M.M. Rutten. Models and temporal logics for timed component connectors. In *SEFM*, pages 198–207. IEEE Computer Society, 2004. 41
- [ABdBR07] Farhad Arbab, Christel Baier, Frank S. de Boer, and J.J.M.M. Rutten. Models and temporal logical specifications for timed component connectors. *Software and System Modeling*, 6(1):59–82, 2007. 3, 4, 18, 27, 41, 65, 104, 123, 125
- [ABRS04] Farhad Arbab, Christel Baier, J.J.M.M. Rutten, and M. Sirjani. Modeling component connectors in $\mathcal{R}\mathbf{eo}$ by constraint automata (extended abstract). *Electr. Notes Theor. Comput. Sci.*, 97:25–46, 2004. 4, 18, 27, 88
- [ABSS96] Ahmet F. Ates, Murat Bilgic, Senro Saito, and Behçet Sarikaya. Using timed csp for specification verification and simulation of multimedia synchronization. *IEEE Journal on Selected Areas in Communications*, 14(1):126–137, 1996. 108
- [ACKS02] G. Audemard, A. Cimatti, A. Kornilowicz, and R. Sebastiani. Bounded model checking for timed systems. In D. Peled and M.Y. Vardi, editors, *FORTE*, volume 2529 of *LNCS*, pages 243–259. Springer, November 2002. 43, 59, 62
- [AD94] Rajeev Alur and David L. Dill. A theory of timed automata. *Theoretical Computer Science*, 126(2):183–235, 1994. 3, 4, 7, 8, 11, 12, 16, 18, 41, 123
- [Alu99] Rajeev Alur. Timed automata. In N. Halbwachs and D. Peled, editors, *CAV*, volume 1633 of *LNCS*, pages 8–22. Springer, 1999. 3, 4, 9, 14, 15, 16, 18, 41, 123
- [AM04] Rajeev Alur and P. Madhusudan. Decision problems for timed automata: A survey. In Bernardo and Corradini [BC04], pages 1–24. 9, 12, 17, 18

- [AMM⁺09] Farhad Arbab, Sun Meng, Young-Joo Moon, Marta Z. Kwiatkowska, and Hongyang Qu. Reo2mc: a tool chain for performance analysis of coordination models. In Hans van Vliet and Valérie Issarny, editors, *ESEC/SIGSOFT FSE*, pages 287–288. ACM, 2009. 88
- [ANT] Antlr parser generator. release 3.3.
<http://www.antlr.org>. 92, 97
- [Arb98] Farhad Arbab. What do you mean, coordination? In *Bulletin of the Dutch Association for Theoretical Computer Science (NVTI)*, pages 11–22, 1998. 2
- [Arb04] Farhad Arbab. *Reo*: a channel-based coordination model for component composition. *Mathematical Structures in Comp. Sci.*, 14(3):329–366, 2004. 18, 34, 88
- [BBC94] Howard Bowman, Lynne Blair, Gordon S. Blair, and Amanda G. Chetwynd. A formal description technique supporting expression of quality of service and media synchronisation. In David Hutchison, André A. S. Danthine, Helmut Leopold, and Geoff Coulson, editors, *COST 237 Workshop*, volume 882 of *Lecture Notes in Computer Science*, pages 145–167. Springer, 1994. 108
- [BBC97] G.S. Blair, L. Blair, H. Bowman, and A. Chetwynd. *Formal Specification of Distributed Multimedia Systems*. University College London Press, September 1997. 108
- [BBKK09] Christel Baier, Tobias Blechmann, Joachim Klein, and Sascha Klüppelholz. A uniform framework for modeling and verifying components and connectors. In J. Field and V.T. Vasconcelos, editors, *COORDINATION*, volume 5521 of *LNCS*, pages 247–267. Springer, 2009. 125
- [BC04] Marco Bernardo and Flavio Corradini, editors. *Formal Methods for the Design of Real-Time Systems, International School on Formal Methods for the Design of Computer, Communication and Software Systems, SFM-RT 2004, Bertinoro, Italy, September 13-18, 2004, Revised Lectures*, volume 3185 of *Lecture Notes in Computer Science*. Springer, 2004. 159, 161
- [BCC⁺03] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yunshan Zhu. Bounded model checking. *Advances in Computers*, 58:118–149, 2003. 3, 43, 57
- [BCCZ99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Symbolic Model Checking without BDDs. In R. Cleaveland, editor, *TACAS*, volume 1579 of *LNCS*, pages 193–207, London, UK, 1999. Springer. 43, 57, 60

- [BDL04] Gerd Behrmann, Alexandre David, and Kim Guldstrand Larsen. A tutorial on uppaal. In Bernardo and Corradini [BC04], pages 200–236. 18
- [Bea03] Danièle Beauquier. On probabilistic timed automata. *Theor. Comput. Sci.*, 292(1):65–84, 2003. 16
- [BFK⁺98] Howard Bowman, Giorgio P. Faconti, Joost-Pieter Katoen, Diego Latella, and Mieke Massink. Automatic verification of a lip-synchronisation protocol using uppaal. *Formal Asp. Comput.*, 10(5–6):550–575, 1998. 108, 109, 110, 116, 120, 121
- [Bie09] Armin Biere. Bounded model checking. In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors, *Handbook of Satisfiability*, volume 185 of *Frontiers in Artificial Intelligence and Applications*, pages 457–481. IOS Press, 2009. 57
- [BK08] Christel Baier and Joost-Pieter Katoen. *Principles of Model Checking*. The MIT Press, 2008. 12, 13, 43
- [BPM] BPMN Eclipse plugin. <http://www.eclipse.org/bpmn/>. 88
- [Bry86] Randal E. Bryant. Graph-based algorithms for boolean function manipulation. *IEEE Trans. Computers*, 35(8):677–691, 1986. 57
- [BS00] Sébastien Bornot and Joseph Sifakis. An algebraic framework for urgency. *Inf. Comput.*, 163(1):172–202, 2000. 16
- [BSAR06] Christel Baier, M. Sirjani, Farhad Arbab, and J.J.M.M. Rutten. Modeling component connectors in *Reo* by constraint automata. *Science of Computer Programming*, 61(2):75–113, 2006. 34
- [BZM08] Dirk Beyer, Damien Zufferey, and Rupak Majumdar. Csisat: Interpolation for la+euf. In Aarti Gupta and Sharad Malik, editors, *CAV*, volume 5123 of *Lecture Notes in Computer Science*, pages 304–308. Springer, 2008. 77
- [CBRZ01] E.M. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking using satisfiability solving. *Formal Methods in System Design*, 19(1):7–34, 2001. 3, 43, 57
- [CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In *POPL*, pages 238–252, 1977. 126
- [CC92] Patrick Cousot and Radhia Cousot. Abstract interpretation frameworks. *J. Log. Comput.*, 2(4):511–547, 1992. 126
- [CCA07] Dave Clarke, David Costa, and Farhad Arbab. Connector colouring I: Synchronisation and context dependency. *Sci. Comput. Program.*, 66(3):205–225, 2007. 4, 28, 29, 34, 35

- [CCK⁺02] Pankaj Chauhan, Edmund M. Clarke, James H. Kukula, Samir Sapra, Helmut Veith, and Dong Wang. Automated Abstraction Refinement for Model Checking Large State Spaces Using SAT Based Conflict Analysis. In Mark Aagaard and John W. O’Leary, editors, *FMCAD*, volume 2517 of *Lecture Notes in Computer Science*, pages 33–51. Springer, 2002. 84, 126
- [CGJ⁺03] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction refinement for symbolic model checking. *Journal of the ACM*, 50(5):752–794, 2003. 3, 67, 68, 72, 81, 84
- [CGKS02] Edmund M. Clarke, Anubhav Gupta, James H. Kukula, and Ofer Strichman. SAT Based Abstraction-Refinement Using ILP and Machine Learning Techniques. In Ed Brinksma and Kim Guldstrand Larsen, editors, *CAV*, volume 2404 of *Lecture Notes in Computer Science*, pages 265–279. Springer, 2002. 126
- [CGP99] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. *Model checking*. MIT Press, Cambridge, MA, USA, 1999. 43, 68
- [CKA10] Behnaz Changizi, Natallia Kokash, and Farhad Arbab. A unified toolset for business process model formalization. Tool Paper, 2010. 7th International Workshop on Formal Engineering approaches to Software Components and Architectures (FESCA). 88
- [Cos10] David Costa. *Formal Models for Component Connectors*. PhD thesis, Vrije Universiteit Amsterdam, 2010. 28
- [CPLA09] Dave Clarke, José Proen  a, Alexander Lazovik, and Farhad Arbab. Deconstructing reo. *Electr. Notes Theor. Comput. Sci.*, 229(2):43–58, 2009. 34
- [Cra57] William Craig. Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory. *Journal of Symbolic Logic*, 22(3):269–285, 1957. 3, 5, 68, 75, 76
- [csi] CSIsat: A Tool for LA+EUF Interpolation.
<http://www.sosy-lab.org/~dbeyer/CSIsat/>. 77, 83
- [Ecl] Eclipse platform. <http://www.eclipse.org>. 88, 124
- [ECT] Extensible Coordination Tools. <http://reo.project.cwi.nl/>. 6, 88, 124
- [EKS06] Javier Esparza, Stefan Kiefer, and Stefan Schwoon. Abstraction refinement with craig interpolation and symbolic pushdown systems. In Holger Hermanns and Jens Palsberg, editors, *TACAS*, volume 3920 of *Lecture Notes in Computer Science*, pages 489–503. Springer, 2006. 125

- [FKPY07] Elena Fersman, Pavel Krcál, Paul Pettersson, and Wang Yi. Task automata: Schedulability, decidability and undecidability. *Inf. Comput.*, 205(8):1149–1172, 2007. 16
- [FOC] FOCI: an interpolating prover.
<http://www.kenmcmil.com/foci.html>. 43, 77, 83
- [Fok00] Wan Fokkink. *Introduction to Process Algebra*. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2000. 104, 120
- [GJSB05] James Gosling, Bill Joy, Guy L. Steele, and Gilad Bracha. *The Java Language Specification*. The Java Series. Addison-Wesley, Massachusetts, third edition, 2005. 88
- [GN07] Eugene Goldberg and Yakov Novikov. BerkMin: A fast and robust sat-solver. *Discrete Applied Mathematics*, 155(12):1549–1561, 2007. 62
- [GS97] Susanne Graf and Hassen Saïdi. Construction of abstract state graphs with pvs. In Orna Grumberg, editor, *CAV*, volume 1254 of *Lecture Notes in Computer Science*, pages 72–83. Springer, 1997. 67
- [GS05] Gregor Gößler and Joseph Sifakis. Composition for component-based modeling. *Sci. Comput. Program.*, 55(1-3):161–183, 2005. 16
- [Häh93] R. Hähnle. Short CNF in finitely-valued logics. In H.J. Komorowski and Z.W. Ras, editors, *ISMIS*, volume 689 of *LNCS*, pages 49–58. Springer, 1993. 62
- [HJMM04] T.A. Henzinger, R. Jhala, R. Majumdar, and Kenneth L. McMillan. Abstractions from proofs. In N.D. Jones and X. Leroy, editors, *POPL*, pages 232–244. ACM, 2004. 3, 67
- [Kem09] Stephanie Kemper. SAT-based verification for timed component connectors. *Electr. Notes Theor. Comput. Sci.*, 255:103–118, 2009. 65, 85, 163
- [Kem10] Stephanie Kemper. Compositional construction of real-time dataflow networks. In Dave Clarke and Gul A. Agha, editors, *COORDINATION*, volume 6116 of *Lecture Notes in Computer Science*, pages 92–106. Springer, 2010. 3, 4, 5, 28, 40, 41, 65, 123
- [Kem11] Stephanie Kemper. SAT-based Verification for Timed Component Connectors. *Science of Computer Programming*, 2011. This is an extended version [Kem09]. 3, 4, 5, 6, 18, 19, 27, 65, 68, 85, 87, 123
- [KKdV10] Natallia Kokash, Christian Krause, and Erik P. de Vink. Data-aware design and verification of service compositions with reo and mcrl2. In Sung Y. Shin, Sascha Ossowski, Michael Schumacher, Mathew J. Palakal, and Chih-Cheng Hung, editors, *SAC*, pages 2406–2413. ACM, 2010. 88

- [KLP10] Piotr Kordy, Rom Langerak, and Jan Willem Polderman. Re-verification of a lip synchronization protocol using robust reachability. *CoRR*, abs/1003.0431, 2010. 108
- [KLSV03a] Dilsun Kirli Kaynar, Nancy A. Lynch, Roberto Segala, and Frits W. Vaandrager. The theory of timed I/O automata. Technical Report MIT-LCS-TR-917, MIT Laboratory for Computer Science, 2003. 19
- [KLSV03b] Dilsun Kirli Kaynar, Nancy A. Lynch, Roberto Segala, and Frits W. Vaandrager. Timed I/O automata: A mathematical framework for modeling and analyzing real-time systems. In *RTSS*, pages 166–177. IEEE Computer Society, 2003. 19
- [KNSS02] Marta Z. Kwiatkowska, Gethin Norman, Roberto Segala, and Jeremy Sproston. Automatic verification of real-time systems with discrete probability distributions. *Theor. Comput. Sci.*, 282(1):101–150, 2002. 16
- [KP07] Stephanie Kemper and A. Platzer. SAT-based abstraction refinement for real-time systems. *Electr. Notes Theor. Comput. Sci.*, 182:107–122, 2007. 5, 12, 65, 68, 85
- [Kra11] Christian Krause. *Reconfigurable Component Connectors*. PhD thesis, Leiden Institute of Advanced Computer Science (LIACS), 2011. 88, 90, 95
- [LM87] Kim Guldstrand Larsen and Robin Milner. Verifying a protocol using relativized bisimulation. In Thomas Ottmann, editor, *ICALP*, volume 267 of *Lecture Notes in Computer Science*, pages 126–135. Springer, 1987. 104
- [MA03] Kenneth L. McMillan and Nina Amla. Automatic abstraction without counterexamples. In Hubert Garavel and John Hatcliff, editors, *TACAS*, volume 2619 of *Lecture Notes in Computer Science*, pages 2–17. Springer, 2003. 126
- [mat] The MATHSAT 4 SMT solver. <http://mathsat4.disi.unitn.it>. 43, 77, 83, 93, 102
- [McM93] Kenneth L. McMillan. *Symbolic Model Checking*. PhD thesis, Carnegie Mellon University, Pittsburgh, USA, Norwell, MA, USA, 1993. 57
- [McM03] Kenneth L. McMillan. Interpolation and SAT-based model checking. In Warren A. Hunt and Fabio Somenzi, editors, *CAV*, volume 2725 of *LNCS*, pages 1–13. Springer, 2003. 75, 76
- [McM04] Kenneth L. McMillan. An interpolating theorem prover. In K. Jensen and A. Podelski, editors, *TACAS*, volume 2988 of *LNCS*, pages 16–30. Springer, 2004. 76

- [McM05a] Kenneth L. McMillan. Applications of craig interpolants in model checking. In Nicolas Halbwachs and Lenore D. Zuck, editors, *TACAS*, volume 3440 of *Lecture Notes in Computer Science*, pages 1–12. Springer, 2005. 76
- [McM05b] Kenneth L. McMillan. An interpolating theorem prover. *Theor. Comput. Sci.*, 345(1):101–121, 2005. 75, 76
- [Mil82] Robin Milner. *A Calculus of Communicating Systems*. Springer-Verlag, 1982. 120
- [Mil89] R. Milner. *Communication and concurrency*. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1989. 104, 105, 120
- [MLWZ01] Huadong Ma, Liang Li, Jianzhong Wang, and Naijun Zhan. Automatic synthesis of the dc specifications of lip synchronisation protocol. In *APSEC*, pages 371–. IEEE Computer Society, 2001. 108
- [MMZ⁺01] M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an efficient SAT solver. In *DAC*, pages 530–535. ACM, 2001. 62
- [PBG05] Mukul R. Prasad, Armin Biere, and Aarti Gupta. A survey of recent advances in SAT-based formal verification. *STTT*, 7(2):156–173, 2005. 62
- [PSHA09] Bahman Pourvatan, Marjan Sirjani, Hossein Hojjat, and Farhad Arbab. Automated analysis of *Reo* circuits using symbolic execution. *Electr. Notes Theor. Comput. Sci.*, 255:137–158, 2009. 4, 19, 41
- [Pud97] Pavel Pudlák. Lower bounds for resolution and cutting plane proofs and monotone computations. *Journal of Symbolic Logic*, 62(3):981–998, 1997. 76
- [Reg93] Tim Regan. Multimedia in temporal LOTOS: A lip-synchronization algorithm. In André A. S. Danthine, Guy Leduc, and Pierre Wolper, editors, *PSTV*, volume C-16 of *IFIP Transactions*, pages 127–142. North-Holland, 1993. 108, 109
- [SHH92] Jean-Bernard Stefani, Laurent Hazard, and François Horn. Computational model for distributed multimedia applications based on a synchronous programming language. *Computer Communications*, 15(2):114–128, 1992. 108, 109
- [Tri99] Stavros Tripakis. Verifying progress in timed systems. In Joost-Pieter Katoen, editor, *ARTS*, volume 1601 of *Lecture Notes in Computer Science*, pages 299–314. Springer, 1999. 14
- [upp] UPPAAL: modeling, simulation and verification of real-time system. <http://www.uppaal.com/>. 43, 120

Titles in the IPA Dissertation Series since 2005

E. Ábrahám. *An Assertional Proof System for Multithreaded Java -Theory and Tool Support- .* Faculty of Mathematics and Natural Sciences, UL. 2005-01

R. Ruimerman. *Modeling and Remodeling in Bone Tissue.* Faculty of Biomedical Engineering, TU/e. 2005-02

C.N. Chong. *Experiments in Rights Control - Expression and Enforcement.* Faculty of Electrical Engineering, Mathematics & Computer Science, UT. 2005-03

H. Gao. *Design and Verification of Lock-free Parallel Algorithms.* Faculty of Mathematics and Computing Sciences, RUG. 2005-04

H.M.A. van Beek. *Specification and Analysis of Internet Applications.* Faculty of Mathematics and Computer Science, TU/e. 2005-05

M.T. Ionita. *Scenario-Based System Architecting - A Systematic Approach to Developing Future-Proof System Architectures.* Faculty of Mathematics and Computing Sciences, TU/e. 2005-06

G. Lenzini. *Integration of Analysis Techniques in Security and Fault-Tolerance.* Faculty of Electrical Engineering, Mathematics & Computer Science, UT. 2005-07

I. Kurtev. *Adaptability of Model Transformations.* Faculty of Electrical Engineering, Mathematics & Computer Science, UT. 2005-08

T. Wolle. *Computational Aspects of Treewidth - Lower Bounds and Network Reliability.* Faculty of Science, UU. 2005-09

O. Tveretina. *Decision Procedures for Equality Logic with Uninterpreted Functions.* Faculty of Mathematics and Computer Science, TU/e. 2005-10

A.M.L. Liekens. *Evolution of Finite Populations in Dynamic Environments.* Faculty of Biomedical Engineering, TU/e. 2005-11

J. Eggermont. *Data Mining using Genetic Programming: Classification and Symbolic Regression.* Faculty of Mathematics and Natural Sciences, UL. 2005-12

B.J. Heeren. *Top Quality Type Error Messages.* Faculty of Science, UU. 2005-13

G.F. Frehse. *Compositional Verification of Hybrid Systems using Simulation Relations.* Faculty of Science, Mathematics and Computer Science, RU. 2005-14

M.R. Mousavi. *Structuring Structural Operational Semantics.* Faculty of Mathematics and Computer Science, TU/e. 2005-15

A. Sokolova. *Coalgebraic Analysis of Probabilistic Systems.* Faculty of Mathematics and Computer Science, TU/e. 2005-16

T. Gelsema. *Effective Models for the Structure of pi-Calculus Processes with Replication.* Faculty of Mathematics and Natural Sciences, UL. 2005-17

P. Zoeteweij. *Composing Constraint Solvers.* Faculty of Natural Sciences, Mathematics, and Computer Science, UvA. 2005-18

J.J. Vinju. *Analysis and Transformation of Source Code by Parsing and Rewriting.* Faculty of Natural Sciences,

Mathematics, and Computer Science,
UvA. 2005-19

M. Valero Espada. *Modal Abstraction and Replication of Processes with Data.* Faculty of Sciences, Division of Mathematics and Computer Science, VUA. 2005-20

A. Dijkstra. *Stepping through Haskell.* Faculty of Science, UU. 2005-21

Y.W. Law. *Key management and link-layer security of wireless sensor networks: energy-efficient attack and defense.* Faculty of Electrical Engineering, Mathematics & Computer Science, UT. 2005-22

E. Dolstra. *The Purely Functional Software Deployment Model.* Faculty of Science, UU. 2006-01

R.J. Corin. *Analysis Models for Security Protocols.* Faculty of Electrical Engineering, Mathematics & Computer Science, UT. 2006-02

P.R.A. Verbaan. *The Computational Complexity of Evolving Systems.* Faculty of Science, UU. 2006-03

K.L. Man and R.R.H. Schiffelers. *Formal Specification and Analysis of Hybrid Systems.* Faculty of Mathematics and Computer Science and Faculty of Mechanical Engineering, TU/e. 2006-04

M. Kyas. *Verifying OCL Specifications of UML Models: Tool Support and Compositionalty.* Faculty of Mathematics and Natural Sciences, UL. 2006-05

M. Hendriks. *Model Checking Timed Automata - Techniques and Applications.* Faculty of Science, Mathematics and Computer Science, RU. 2006-06

J. Ketema. *Böhm-Like Trees for Rewriting.* Faculty of Sciences, VUA. 2006-07

C.-B. Breunesse. *On JML: topics in tool-assisted verification of JML programs.* Faculty of Science, Mathematics and Computer Science, RU. 2006-08

B. Markvoort. *Towards Hybrid Molecular Simulations.* Faculty of Biomedical Engineering, TU/e. 2006-09

S.G.R. Nijssen. *Mining Structured Data.* Faculty of Mathematics and Natural Sciences, UL. 2006-10

G. Russello. *Separation and Adaptation of Concerns in a Shared Data Space.* Faculty of Mathematics and Computer Science, TU/e. 2006-11

L. Cheung. *Reconciling Nondeterministic and Probabilistic Choices.* Faculty of Science, Mathematics and Computer Science, RU. 2006-12

B. Badban. *Verification techniques for Extensions of Equality Logic.* Faculty of Sciences, Division of Mathematics and Computer Science, VUA. 2006-13

A.J. Mooij. *Constructive formal methods and protocol standardization.* Faculty of Mathematics and Computer Science, TU/e. 2006-14

T. Krilavicius. *Hybrid Techniques for Hybrid Systems.* Faculty of Electrical Engineering, Mathematics & Computer Science, UT. 2006-15

M.E. Warnier. *Language Based Security for Java and JML.* Faculty of Science, Mathematics and Computer Science, RU. 2006-16

V. Sundramoorthy. *At Home In Service Discovery.* Faculty of Electrical Engineering, Mathematics & Computer Science, UT. 2006-17

B. Gebremichael. *Expressivity of Timed Automata Models.* Faculty of Science, Mathematics and Computer Science, RU. 2006-18

L.C.M. van Gool. *Formalising Interface Specifications.* Faculty of Mathematics and Computer Science, TU/e. 2006-19

C.J.F. Cremers. *Scyther - Semantics and Verification of Security Protocols.* Faculty of Mathematics and Computer Science, TU/e. 2006-20

J.V. Guillen Scholten. *Mobile Channels for Exogenous Coordination of Distributed Systems: Semantics, Implementation and Composition.* Faculty of Mathematics and Natural Sciences, UL. 2006-21

H.A. de Jong. *Flexible Heterogeneous Software Systems.* Faculty of Natural Sciences, Mathematics, and Computer Science, UvA. 2007-01

N.K. Kavaldjiev. *A run-time reconfigurable Network-on-Chip for streaming DSP applications.* Faculty of Electrical Engineering, Mathematics & Computer Science, UT. 2007-02

M. van Veelen. *Considerations on Modeling for Early Detection of Abnormalities in Locally Autonomous Distributed Systems.* Faculty of Mathematics and Computing Sciences, RUG. 2007-03

T.D. Vu. *Semantics and Applications of Process and Program Algebra.* Faculty of Natural Sciences, Mathematics, and Computer Science, UvA. 2007-04

L. Brandán Briones. *Theories for Model-based Testing: Real-time and Coverage.* Faculty of Electrical Engineering, Mathematics & Computer Science, UT. 2007-05

I. Loeb. *Natural Deduction: Sharing by Presentation.* Faculty of Science, Mathematics and Computer Science, RU. 2007-06

M.W.A. Streppel. *Multifunctional Geometric Data Structures.* Faculty of Mathematics and Computer Science, TU/e. 2007-07

N. Trčka. *Silent Steps in Transition Systems and Markov Chains.* Faculty of Mathematics and Computer Science, TU/e. 2007-08

R. Brinkman. *Searching in encrypted data.* Faculty of Electrical Engineering, Mathematics & Computer Science, UT. 2007-09

A. van Weelden. *Putting types to good use.* Faculty of Science, Mathematics and Computer Science, RU. 2007-10

J.A.R. Noppen. *Imperfect Information in Software Development Processes.* Faculty of Electrical Engineering, Mathematics & Computer Science, UT. 2007-11

R. Boumen. *Integration and Test plans for Complex Manufacturing Systems.* Faculty of Mechanical Engineering, TU/e. 2007-12

A.J. Wijs. *What to do Next?: Analysing and Optimising System Behaviour in Time.* Faculty of Sciences, Division of Mathematics and Computer Science, VUA. 2007-13

C.F.J. Lange. *Assessing and Improving the Quality of Modeling: A Series of Empirical Studies about the UML.* Faculty of Mathematics and Computer Science, TU/e. 2007-14

T. van der Storm. *Component-based Configuration, Integration and Delivery.* Faculty of Natural Sciences, Mathematics, and Computer Science, UvA. 2007-15

B.S. Graaf. *Model-Driven Evolution of Software Architectures.* Faculty

of Electrical Engineering, Mathematics, and Computer Science, TUD. 2007-16

A.H.J. Mathijssen. *Logical Calculi for Reasoning with Binding.* Faculty of Mathematics and Computer Science, TU/e. 2007-17

D. Jarnikov. *QoS framework for Video Streaming in Home Networks.* Faculty of Mathematics and Computer Science, TU/e. 2007-18

M. A. Abam. *New Data Structures and Algorithms for Mobile Data.* Faculty of Mathematics and Computer Science, TU/e. 2007-19

W. Pieters. *La Volonté Machinale: Understanding the Electronic Voting Controversy.* Faculty of Science, Mathematics and Computer Science, RU. 2008-01

A.L. de Groot. *Practical Automaton Proofs in PVS.* Faculty of Science, Mathematics and Computer Science, RU. 2008-02

M. Bruntink. *Renovation of Idiomatic Crosscutting Concerns in Embedded Systems.* Faculty of Electrical Engineering, Mathematics, and Computer Science, TUD. 2008-03

A.M. Marin. *An Integrated System to Manage Crosscutting Concerns in Source Code.* Faculty of Electrical Engineering, Mathematics, and Computer Science, TUD. 2008-04

N.C.W.M. Braspenning. *Model-based Integration and Testing of High-tech Multi-disciplinary Systems.* Faculty of Mechanical Engineering, TU/e. 2008-05

M. Bravenboer. *Exercises in Free Syntax: Syntax Definition, Parsing, and Assimilation of Language Conglomerates.* Faculty of Science, UU. 2008-06

M. Torabi Dashti. *Keeping Fairness Alive: Design and Formal Verification of Optimistic Fair Exchange Protocols.* Faculty of Sciences, Division of Mathematics and Computer Science, VUA. 2008-07

I.S.M. de Jong. *Integration and Test Strategies for Complex Manufacturing Machines.* Faculty of Mechanical Engineering, TU/e. 2008-08

I. Hasuo. *Tracing Anonymity with Coalgebras.* Faculty of Science, Mathematics and Computer Science, RU. 2008-09

L.G.W.A. Cleophas. *Tree Algorithms: Two Taxonomies and a Toolkit.* Faculty of Mathematics and Computer Science, TU/e. 2008-10

I.S. Zapreev. *Model Checking Markov Chains: Techniques and Tools.* Faculty of Electrical Engineering, Mathematics & Computer Science, UT. 2008-11

M. Farshi. *A Theoretical and Experimental Study of Geometric Networks.* Faculty of Mathematics and Computer Science, TU/e. 2008-12

G. Gulesir. *Evolvable Behavior Specifications Using Context-Sensitive Wildcards.* Faculty of Electrical Engineering, Mathematics & Computer Science, UT. 2008-13

F.D. Garcia. *Formal and Computational Cryptography: Protocols, Hashes and Commitments.* Faculty of Science, Mathematics and Computer Science, RU. 2008-14

P. E. A. Dürr. *Resource-based Verification for Robust Composition of Aspects.* Faculty of Electrical Engineering, Mathematics & Computer Science, UT. 2008-15

E.M. Bortnik. *Formal Methods in Support of SMC Design.* Faculty of Mechanical Engineering, TU/e. 2008-16

R.H. Mak. *Design and Performance Analysis of Data-Independent Stream Processing Systems.* Faculty of Mathematics and Computer Science, TU/e. 2008-17

M. van der Horst. *Scalable Block Processing Algorithms.* Faculty of Mathematics and Computer Science, TU/e. 2008-18

C.M. Gray. *Algorithms for Fat Objects: Decompositions and Applications.* Faculty of Mathematics and Computer Science, TU/e. 2008-19

J.R. Calamé. *Testing Reactive Systems with Data - Enumerative Methods and Constraint Solving.* Faculty of Electrical Engineering, Mathematics & Computer Science, UT. 2008-20

E. Mumford. *Drawing Graphs for Cartographic Applications.* Faculty of Mathematics and Computer Science, TU/e. 2008-21

E.H. de Graaf. *Mining Semi-structured Data, Theoretical and Experimental Aspects of Pattern Evaluation.* Faculty of Mathematics and Natural Sciences, UL. 2008-22

R. Brijder. *Models of Natural Computation: Gene Assembly and Membrane Systems.* Faculty of Mathematics and Natural Sciences, UL. 2008-23

A. Koprowski. *Termination of Rewriting and Its Certification.* Faculty of Mathematics and Computer Science, TU/e. 2008-24

U. Khadim. *Process Algebras for Hybrid Systems: Comparison and Development.* Faculty of Mathematics and Computer Science, TU/e. 2008-25

J. Markovski. *Real and Stochastic Time in Process Algebras for Performance Evaluation.* Faculty of

Mathematics and Computer Science, TU/e. 2008-26

H. Kastenberg. *Graph-Based Software Specification and Verification.* Faculty of Electrical Engineering, Mathematics & Computer Science, UT. 2008-27

I.R. Buhan. *Cryptographic Keys from Noisy Data Theory and Applications.* Faculty of Electrical Engineering, Mathematics & Computer Science, UT. 2008-28

R.S. Marin-Perianu. *Wireless Sensor Networks in Motion: Clustering Algorithms for Service Discovery and Provisioning.* Faculty of Electrical Engineering, Mathematics & Computer Science, UT. 2008-29

M.H.G. Verhoef. *Modeling and Validating Distributed Embedded Real-Time Control Systems.* Faculty of Science, Mathematics and Computer Science, RU. 2009-01

M. de Mol. *Reasoning about Functional Programs: Sparkle, a proof assistant for Clean.* Faculty of Science, Mathematics and Computer Science, RU. 2009-02

M. Lormans. *Managing Requirements Evolution.* Faculty of Electrical Engineering, Mathematics, and Computer Science, TUD. 2009-03

M.P.W.J. van Osch. *Automated Model-based Testing of Hybrid Systems.* Faculty of Mathematics and Computer Science, TU/e. 2009-04

H. Sozer. *Architecting Fault-Tolerant Software Systems.* Faculty of Electrical Engineering, Mathematics & Computer Science, UT. 2009-05

M.J. van Weerdenburg. *Efficient Rewriting Techniques.* Faculty

of Mathematics and Computer Science,
TU/e. 2009-06

H.H. Hansen. *Coalgebraic Modelling: Applications in Automata Theory and Modal Logic.* Faculty of Sciences, Division of Mathematics and Computer Science, VUA. 2009-07

A. Mesbah. *Analysis and Testing of Ajax-based Single-page Web Applications.* Faculty of Electrical Engineering, Mathematics, and Computer Science, TUD. 2009-08

A.L. Rodriguez Yakushev. *Towards Getting Generic Programming Ready for Prime Time.* Faculty of Science, UU. 2009-9

K.R. Olmos Joffré. *Strategies for Context Sensitive Program Transformation.* Faculty of Science, UU. 2009-10

J.A.G.M. van den Berg. *Reasoning about Java programs in PVS using JML.* Faculty of Science, Mathematics and Computer Science, RU. 2009-11

M.G. Khatib. *MEMS-Based Storage Devices. Integration in Energy-Constrained Mobile Systems.* Faculty of Electrical Engineering, Mathematics & Computer Science, UT. 2009-12

S.G.M. Cornelissen. *Evaluating Dynamic Analysis Techniques for Program Comprehension.* Faculty of Electrical Engineering, Mathematics, and Computer Science, TUD. 2009-13

D. Bolzoni. *Revisiting Anomaly-based Network Intrusion Detection Systems.* Faculty of Electrical Engineering, Mathematics & Computer Science, UT. 2009-14

H.L. Jonker. *Security Matters: Privacy in Voting and Fairness in Digital Exchange.* Faculty of Mathematics and Computer Science, TU/e. 2009-15

M.R. Czenko. *TuLiP - Reshaping Trust Management.* Faculty of Electrical Engineering, Mathematics & Computer Science, UT. 2009-16

T. Chen. *Clocks, Dice and Processes.* Faculty of Sciences, Division of Mathematics and Computer Science, VUA. 2009-17

C. Kaliszyk. *Correctness and Availability: Building Computer Algebra on top of Proof Assistants and making Proof Assistants available over the Web.* Faculty of Science, Mathematics and Computer Science, RU. 2009-18

R.S.S. O'Connor. *Incompleteness & Completeness: Formalizing Logic and Analysis in Type Theory.* Faculty of Science, Mathematics and Computer Science, RU. 2009-19

B. Ploeger. *Improved Verification Methods for Concurrent Systems.* Faculty of Mathematics and Computer Science, TU/e. 2009-20

T. Han. *Diagnosis, Synthesis and Analysis of Probabilistic Models.* Faculty of Electrical Engineering, Mathematics & Computer Science, UT. 2009-21

R. Li. *Mixed-Integer Evolution Strategies for Parameter Optimization and Their Applications to Medical Image Analysis.* Faculty of Mathematics and Natural Sciences, UL. 2009-22

J.H.P. Kwisthout. *The Computational Complexity of Probabilistic Networks.* Faculty of Science, UU. 2009-23

T.K. Cocx. *Algorithmic Tools for Data-Oriented Law Enforcement.* Faculty of Mathematics and Natural Sciences, UL. 2009-24

A.I. Baars. *Embedded Compilers.* Faculty of Science, UU. 2009-25

M.A.C. Dekker. *Flexible Access Control for Dynamic Collaborative Environments.* Faculty of Electrical Engineering, Mathematics & Computer Science, UT. 2009-26

J.F.J. Laros. *Metrics and Visualisation for Crime Analysis and Genomics.* Faculty of Mathematics and Natural Sciences, UL. 2009-27

C.J. Boogerd. *Focusing Automatic Code Inspections.* Faculty of Electrical Engineering, Mathematics, and Computer Science, TUD. 2010-01

M.R. Neuhäußer. *Model Checking Nondeterministic and Randomly Timed Systems.* Faculty of Electrical Engineering, Mathematics & Computer Science, UT. 2010-02

J. Endrullis. *Termination and Productivity.* Faculty of Sciences, Division of Mathematics and Computer Science, VUA. 2010-03

T. Staijen. *Graph-Based Specification and Verification for Aspect-Oriented Languages.* Faculty of Electrical Engineering, Mathematics & Computer Science, UT. 2010-04

Y. Wang. *Epistemic Modelling and Protocol Dynamics.* Faculty of Science, UvA. 2010-05

J.K. Berendsen. *Abstraction, Prices and Probability in Model Checking Timed Automata.* Faculty of Science, Mathematics and Computer Science, RU. 2010-06

A. Nugroho. *The Effects of UML Modeling on the Quality of Software.* Faculty of Mathematics and Natural Sciences, UL. 2010-07

A. Silva. *Kleene Coalgebra.* Faculty of Science, Mathematics and Computer Science, RU. 2010-08

J.S. de Bruin. *Service-Oriented Discovery of Knowledge - Foundations, Implementations and Applications.* Faculty of Mathematics and Natural Sciences, UL. 2010-09

D. Costa. *Formal Models for Component Connectors.* Faculty of Sciences, Division of Mathematics and Computer Science, VUA. 2010-10

M.M. Jaghooiri. *Time at Your Service: Schedulability Analysis of Real-Time and Distributed Services.* Faculty of Mathematics and Natural Sciences, UL. 2010-11

R. Bakhshi. *Gossiping Models: Formal Analysis of Epidemic Protocols.* Faculty of Sciences, Department of Computer Science, VUA. 2011-01

B.J. Arnoldus. *An Illumination of the Template Enigma: Software Code Generation with Templates.* Faculty of Mathematics and Computer Science, TU/e. 2011-02

E. Zambon. *Towards Optimal IT Availability Planning: Methods and Tools.* Faculty of Electrical Engineering, Mathematics & Computer Science, UT. 2011-03

L. Astefanoaei. *An Executable Theory of Multi-Agent Systems Refinement.* Faculty of Mathematics and Natural Sciences, UL. 2011-04

J. Proença. *Synchronous coordination of distributed components.* Faculty of Mathematics and Natural Sciences, UL. 2011-05

A. Morali. *IT Architecture-Based Confidentiality Risk Assessment in Networks of Organizations.* Faculty of Electrical Engineering, Mathematics & Computer Science, UT. 2011-06

M. van der Bijl. *On changing models in Model-Based Testing.* Faculty of

Electrical Engineering, Mathematics & Computer Science, UT. 2011-07

C. Krause. *Reconfigurable Component Connectors.* Faculty of Mathematics and Natural Sciences, UL. 2011-08

M.E. Andr  s. *Quantitative Analysis of Information Leakage in Probabilistic and Nondeterministic Systems.* Faculty of Science, Mathematics and Computer Science, RU. 2011-09

M. Atif. *Formal Modeling and Verification of Distributed Failure Detectors.* Faculty of Mathematics and Computer Science, TU/e. 2011-10

P.J.A. van Tilburg. *From Computability to Executability – A process-theoretic view on automata theory.* Faculty of Mathematics and Computer Science, TU/e. 2011-11

Z. Protic. *Configuration management for models: Generic methods for model comparison and model co-evolution.* Faculty of Mathematics and Computer Science, TU/e. 2011-12

S. Georgievska. *Probability and Hiding in Concurrent Processes.* Faculty of Mathematics and Computer Science, TU/e. 2011-13

S. Malakuti. *Event Composition Model: Achieving Naturalness in Runtime Enforcement.* Faculty of Electrical Engineering, Mathematics & Computer Science, UT. 2011-14

M. Raffelsieper. *Cell Libraries and Verification.* Faculty of Mathematics and Computer Science, TU/e. 2011-15

C.P. Tsirogiannis. *Analysis of Flow and Visibility on Triangulated Terrains.* Faculty of Mathematics and Computer Science, TU/e. 2011-16

Y.-J. Moon. *Stochastic Models for Quality of Service of Component Connectors.* Faculty of Mathematics and Natural Sciences, UL. 2011-17

R. Middelkoop. *Capturing and Exploiting Abstract Views of States in OO Verification.* Faculty of Mathematics and Computer Science, TU/e. 2011-18

M.F. van Amstel. *Assessing and Improving the Quality of Model Transformations.* Faculty of Mathematics and Computer Science, TU/e. 2011-19

A.N. Tamalet. *Towards Correct Programs in Practice.* Faculty of Science, Mathematics and Computer Science, RU. 2011-20

H.J.S. Basten. *Ambiguity Detection for Programming Language Grammars.* Faculty of Science, UvA. 2011-21

M. Izadi. *Model Checking of Component Connectors.* Faculty of Mathematics and Natural Sciences, UL. 2011-22

L.C.L. Kats. *Building Blocks for Language Workbenches.* Faculty of Electrical Engineering, Mathematics, and Computer Science, TUD. 2011-23

S. Kemper. *Modelling and Analysis of Real-Time Coordination Patterns.* Faculty of Mathematics and Natural Sciences, UL. 2011-24