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Appendix A

Proofs

A.1 Correctness of Representation

In this Section, we prove that the formula representation ¢ (&) of a real-time system
G, as presented in Definitions [3.1.1] [3.1.4] and [3.1.9] in Chapter |3| is correct, that
means that ¢(&) exhibits the same behaviour as &. For this, every model of (&),
has to correspond to a run of length k£, and vice versa. To prove this, we show that
the diagram in Figure commutes.

¥

S ©(6)k
run 3 model
Runeg, qdels of p(6)
~
I

Figure A.1: Correctness of Representation

The commutative property expresses that models of ¢(&), have a bijective cor-
respondence to runs of the original system &, denoted by the maps |, and |7:
the run |7 (7 (r)) of the model |} (r) belonging to a run r again is r, and the
model |7 (]%(c)) of a run [7(o) belonging to a model o again is o.

Remark A.1.1 (Notation). In the sequel, we use the notation of representation
variables introduced in Section and we use the symbol ~ to refer to any
arithmetic comparison (cf. Definitions [2.1.2] and [2.1.7)).

As before, we use &g to refer to the associated LTS of a system &, with
Se{2A, T,M¢M}, and we use Rungy, to refer to the set of all runs of G up to length k.
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128 APPENDIX A. PROOFS

Further, we use the symbols ¢(&)x, o and V(p(S)) to refer to the k-unfolding of
S, a model of (&), and the set of all models of (&), respectively.

We first show that the formula representation is sound, i.e., that every model
o€V(p(6)x) yields a run r€ Rungy.

Definition A.1.2 (Derived Run). For c€V(¢(6)y), the derived run r, is

To=(lo, v0) (I, 1) 2 . .- 255 (I, i), it & =2
—=(lo, 0o, Vo) DU (1) 5y, vy ) P2i2tey Bl (1 S ), i & =, (i)
=<l0,50,V0>m><l1,51,1/1>ﬁ> M(%ﬁk%% it & =971,

where we have for all 0<ky<k, 1<k <k

I, = s, iff o(sy,)=tt, (ii)
Vko ('1') = J(Zko)_a(xko) (iii)
o a, iff O'(O(kl):tt, ( )
o = t, with t=0(zy,)—0(zx,_1), otherwise v
Pkl = U p7 (V)
U(Pk1
Dds )— i
Sy () = fo(de) =70 op (vi)
1, othervvlse
d(m)g,—1, iff g=s.m, meD
_ d(m)y,, iff g=t.m or g=m, meD y
5k‘1 <Q) = _ n (VH)
A~ (n%), iff g=p,pEP,o(Dp,, )=n'#n
L, otherwise
try, = 0(2x,)—0(Zx,-1) (viii)
— iff o(py,)=tt,
cr, (p) = § == iff o(px, )=£f and o(cp,, )=1ff (ix)
—1—iff o(px, )=ff and o(cp, )=tt
B Ok, iff 0(2x,)=0(Zx, 1) )
T = tr,, otherwise *

The derived run for a products, that means for o€V (p(G1xG,);) is defined in the
same way, except for replacing l; in (i) by (i1, 2), and rewriting (i) to

liyi = S, iff o(sy,) = tt for s€85;,i=1,2, (1))

Remark A.1.3 (Derived Run) Note that in . for each ko, there exists exactly
one location s such that o(sy,)=tt, cf. - and (3.24)). Similarly, in (iv),
there exists at most one event a such that o (o, ) tt cf. (3.6).

Since A is injective (cf. Section [3.1.1.3)), there exists a d;€Data with A(d;)=n
such that A~ (n?) is well-defined in ([vii)), and ().
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Lemma A.1.4 (Soundness). For c€V(p(&);), the derived run r, is a run of Sg
of length k, i.e., ro,€Rungy.

Proof. Induction on k.

TIA oE=p(6): of )---tt for the initial location s, thus 1025, For all

S
clocks x, vg(x ) o(zo)—0o(x 0)- ED: -0, therefore in particular vy=1(5), and
thus r,=(5, 0) € Runegp for G=2L.

For G#2, in addition we have cr(Ddo)nL for deD, and cr(DpO)nL
for peP, thus r,=(8,0,0)€ Rung, for SGe{%T,MN}.

IH oF=¢(6)k: r,€Rungy for some k>0.

IS o9 (6)y1: we consider the different systems separately

S = A ro=(lo,v0) 2y ... (i, Vi) 5 (ljy1, Vs 1), and either for some e€F

ol tion ()11 1, or o=@ (s) 41 for some s€S (cf. (3.7) and ([3.29)).
Case o=@ " (e)gq1/: (%) let e=(s, a, cc, A, ) (cf. (B3.2))), then

()
o =5, lpp1=5

(iv)
® Qpy1— 0

o v 1=1;[\]: for all clocks z, we have
Aw)=id: viea(2) Do (zx14) =0 (1) 20 () =0 () v (2)
Alz)=a": Vk+1($)U(Zk+1)—0(xk+1)20(zk+1) (Xk+1)’/k:+1( )
A(z)=n: Vk+1($)U(Zk+1)—0(xk+1)g0(zk+1)—( (Zxt1)—n)=n

o u=ce: for cce=x~n,' we have cc,=(z,—x)~n. Because of (x), we
have of=ccy, that means (o(zx)—0(xx))~n holds, and since l/k(x)IH
(0(zx)—0o(xx)) for all clocks x, we have vgl=cc. The argumentation
for vp11=1(s') is similar

Thus, (s, vk) 2 (s, k[\]) is gained from e using ([2.1])

Case o=@ ()41 (%) let s€S (cf. (3.3)), then

IH (ii)
[ lkZS, lk_HQS

o ay1=t, with t=0(zyx11)—0(2x)

o v 1=1+t: for all clocks x, we have
Vk+1<95)U(Zk+1)—U(Xk+1)(g)0(zk+1)—0(xk) (Zk+1)—0(xk)+
0 (2i)— 0 (22) =(0(22) ~0 (3) )+ (0 (2 1)~ (2:) T B M () 8

e vi1=1(s) as above, v +t'=1(s) for all ¢’ <t because of convexity (cf.
Remark

Thus, (s, v (s, vp+t) is gained from s using (2.2)).
Together, we get r,€Rung j+1 for G=2L.

'Here and in the remainder of the proof, we only show the basic cases for simple clock con-
straints (without clock differences) and simple data constraints (without addition/subtraction),
but the results directly carry over to constraints involving arithmetic operations, and to Boolean
combinations of these.
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P10k 4 1tkt1

S = Tt r,=(ly, So,v0) 2011y Pk’gk’tk\ﬂk?fsk,Vk>—><lk+1,5k+1,l/k+1>,

inm’sible( )

visible (o) e)rt1/e for some ecE (cf.

and either o €)kt1/t OF O

B10) and (B.20)).
Case o=@ e ()11 (T) let e=(s, P, dc, cc, A, s') (cf. (3.11))), then

° lk S, lk+1—5 tk—i—l U(Zk—i-l) (zk>

o v 1=vp+tr1[A]: for all clocks z, we have

Aw)=id: vy (2) Do (i) =0 (x041) L0 (2s 1) =0 ()=

0(zyy1)—0(xx)+0(2)—0(zx)=

(0/(z) =0 (x1))+ (0 (Zr1) =0 (2) B i (1) 41
A@)=2"s v (1) B0 (241) 0 (%) F0 (241)—0 (%) =

0(2Zk11) =0 (Xiey 1) +0(2) —0(25) =

(0/(21) =0 (K1) + (0 (Zrr 1)~ (22) = E v () g
A(z)=n: Vk+1($)U(Zk+1)—U(Xk+1)20(Zk+1)—(U(Zk+1)—n):”

o Upttriif=ce: for cc=x~n, we have ccy=(zx—xx)~n. Because of
(1), we have of=ccy, that means (o(zx)—o(xx))~n holds, and since
vi(@) e 0(2) —0 (1) 40 (2011) 0 (26)=0 (2s1)—0 (%) for
all clocks x, we have vp+tx.1|=ce.

L Pk+1 Ug(pm):m pr

e 6, 1dc: let de=(D~D’), ~ €{=,<} (cf. Section [3.1.1.5)). For the

constituents of dc, we have
for peP|uct or1(p) DA (0}) "L, if o(Dpy ,,)=d;
for s.meD|4.: 5k+1(s.m)A_1(ni)deéAdi if o(Dmy)=d;
< 1y gndefA
for t meD|ge: i1 (t.m)=A""(n') ="d; if o(Dnyy4)=d;
< 1 iydef A
for meD|4.: Opr1(m)=A"1(n') ="d; if o(Dnygy4)=d;
Because of (T), we have of=dcy4, thus for all possible instantiations
of D and D’ with Dp,_;, Dmy, Dmg,y or elements of Data (cf. Sec-

tion [3.1.1.5)), we have &4, =dc

e pp1(m)=L if mg#(s'): because of (1), in particular o}=(Dmy,;=n"')
(cf. (3.11), and thus 5k+1(m)J_ for all meg+#(s')

Thus, <s,(5k,yk)M(s’,ékﬂ,uk—i—tkﬂ [A]) is gained from e using ([3.11]).
Case o= stle(e), 1y (1): let e=(s, 0, de, ce, A, 8') (cf. (8.12)), then

o [ =s, lk+1s tk+1a(zk+1)—a(zk)

o Uy =Upttri1 [N, vnttepifEce, Opyi(m)=L if mg#(s"), and 0y 1j=dc
as before

o Pk+1U (Prt1)= @)@

o 0p11(p )L for all peP, because (pk+1) ﬁ and U(Dpkﬂ)m L for
all peP

Thus, (s, 0, 1/@%(5’, Ok+1, Vk+tr+1[A]) is gained from e using (3.11)
in case t;,1>0, and using (3.12)) in case t;+1=0.
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Together, we get r,€Rung 1 for 6=%.

S = Nt 7, = (lo, do, o) 22 .. T (I, Oy, vg) T (T, Okt V1), and
either o= ™™ (€)1 or o=@ (e)y1) for some e€E (cf. (3.20))
and (B29))

Case ol=@“™™(€)ky1/ (x): let e=(s,c, dc, ce, A, s") (cf. (3.21))), then

1’
o =5, lpp1=5

o v 1=\, e, v EI(S'): equivalent to the respective cases for
&= above

e Jpi1(m)=L if mg#(s'): equivalent to the respective case for G=T
above

e 0;41=dc: equivalent to the respective case for &=TF above

o Opr1(p)=L iff cpy1(p)A— because of (x), in particular o=(pe), 4

for all peP. If oF=—pxy1, then either a:(p)—!— or @(p)—?—, and

o (Dpyy;) B2 0t

Thus, (s, Ok, y@%(s, Ok+1, Vk[A]) is gained from e using ([2.15)).
Case o=@ (e)y 410 (3): let e=(s,c, dc, cc,id, s) (cf. (3:22))), then

® lk S, lk—i—l_ !

.(**)
® Vit1 = trt1

o U 1=+t 1: equivalent to the respective case for G=2l above
o vil=ce, vp11=I(s): equivalent to the respective cases for 6= above,
v+t E=ce and v+t =1(s) for all #/<tpy, because of convexity (cf.

Remark [2.1.6])

e )i=dc: equivalent to the respective case above, with d; instead of
041

Thus, (s, 6, V) 2% (5 6y, vp+tg1) is gained from e using (2.16)).
Together, we get r,€ Rung 41 for G=N.

Finally, we get r,€Rungy41 for all systems Ge{A, T, N}, and we define the map
17V (¢(6)r)— Runey, such that for every interpretation c€V(p(S)y), we have that
19(0)=r,€Rungy is the derived run. O

Proposition A.1.5 (Derived Run, Product). For €V (p(&1<G3)), the de-
rived run r, is a run of Gg 4z, of length £, ie., 1, € RUNG saa, k-

Proof (Idea). The proof is along the same lines as the proof of Lemma . In
IS, we first show that for i=1, 2, reducing a transition of the product &;<S, (of the
form ((lg.1,k2), k) 25 ((lks1.1,s les1 2Vk+1) for &=, for example) to the constituents
of &; yields a transition e; in &;. We then argue that all possible combinations of
e; and ey correspond to a valid execution in the product automaton (cf. Definitions

2.2.8 [2.3.9) and [2.4.14)). In end, we get 7, € Rune,mes k- O




132 APPENDIX A. PROOFS

We now show that the formula representation is complete, i.e, for every run
r€Rungy, we can find a model c€V(p(6)y).

Definition A.1.6 (Derived Interpretation). For r€ Rungy, the derived inter-
pretation o, over (the variables in) ¢(&)y, is (we use the notation of (f))

or(s,) = tt, iff s=ly, (xi)
0, if kg=0

0r(2xy—1)+t, if &= and a,=t

0 (Zxrg—1)+1ky, if (6=F) or (6=M and ~x,=tx,)
0(Zx,—1), otherwise

0r(Xxy) = 04(Ziy ) —Vio () (xiii)

(£, if ko=0

(xii)

UT<Zk0) =

=

(o) = tt, iff ap,=a (xiv)
| ff, otherwise
( £f, if ky=0
0, (Px,) = 9 tt, if (p€Py, and 6=%) or (¢, (p)=— and &G=N) (xv)
| ff, otherwise
(nt, if ky=0
or(Dpy,) = § A0k, (p)), if (pEPx, and G=F) or (c4, (p)=— and &=MN)  (xvi)

| n", otherwise

(nt, if k=0
0,(Ddy,) = § A(dg,(d)), if de#(lx,) (xvii)
| A(0k(d)), otherwise
ff, if 0,(Ddy,)=n"
r d o) — .
or(deo) {tt7 otherwise (xviti)

tt, if (ko=0) or (ck,(p)==1-)
Ur(CPko) = ff, if Cho (p):—?— (XiX)

unspecified, otherwise

for all 0<ky<k. The derived interpretation for a run of the product, that means for
r€ Rung,me, k, 1s defined in the same way, except for rewriting (ixi|) to

or(sg,) = tt, iff s=ly,; for s€S;,i=1,2 (i)

Lemma A.1.7 (Completeness). For r€ Runey, the derived interpretation o, is a
model of the k-unfolding of &, that means o, =p(S)y.

Proof. Induction on k.

TA r=(ly,vy) respectively r=(ly, do, vo) (cf. again). We have ar(éo)tt for the

(z0) 20,

initial location §=ly, and o, (s¢) = £f otherwise. For clocks, we have o,
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and 0,(x0) =0, (2zo)—1vo(2)=0 for all other clocks z. For I(5)=xz~c2 we have

I(8),=z0o—x%o~n. Because vy=I(5) (cf. Definitions [2.2.4] [2.3.5 and [2.4.6]), in
particular 0=vg(z)~n, therefore o,(xo)~n holds, and thus o, =I(5),.

We have JT(po)ff, JT(DpO)nL, and or(cpo)tt for all ports p, and for all

data variables d we have UT(Ddo)nL and Ur(do)ff.

Thus, o, ™ (&) (cf. (3.1), (3.10) and (3.20)), and therefore o, Fp(&)o.

IH reRunsy: 0.=p(6)y, for some £>0.

IS reRungy+1: we again consider the different systems separately

S = Az r=(lo,vo) 2y ... D (ly, v) F 5 (lgs1, V1) ERung11, and either the
last step (I, vk) 225 Ik 11, Vks1) 1S an action transition resulting from
execution of a transition e=(s, a, cc, A, s'), or it is a delay transition
in location s.

In case of an action transition, we have [p=s, [y, 1=5", ax,1=a for some
aedl, and v, 1=1,. Then

. JT(Sk+1)tt for s=l;,1, and ff otherwise

¢ Ur(zk+1)<7r(zk)

A(z):éi,O_T(Zk)_l/k<x)zo'r(xk>

i Ur(Xk+1)Ur(zk+1)—’/k+1($): /\<$):=x/0-r<zk+1)_yk+l($,)UT(XI{-H)
A(z)=n
= Ur(zk+1)—n

o 0,.(0i1) Dt for a=ayy1, and ff otherwise
e For cc=x~n, we have ccy=(zy—xy)~n. Because vi=(z~n) (Defini-
tion [2.2.4]), we have O'T(Zk)—O'T(Xk)IH)n, thus o,}=ccy. The argu-

mentation for o,}=I(s’)x+4 is similar.

From the above, we get o, =™ (e)i 1/ (B-2) (s0 o= (W)ys1yn
)7 Ur):@locatwn(m)kqtl/t " and Ur):SOmutez(Ql)kJrl/t ‘)

In case of a delay transition, we have ly=s=lj 1, ap;1=t for some t€Time,
and vgy1=vip+t. Then

° ar(skﬂ)tt for s=l;,1, and ff otherwise

° O’T<Zk+1>o-r<2k)+t

o 0 (21) 20, (Zrs) vt (2) Do () H— (v () +1)=
0y (z2) ~vi(2) Do, ()

° ar(ockﬂ)ff for all acX

e 0,.FI(8)xs1: similar to the argumentation for o,.[=cc, above

From the above, we get o= (e)y, 1/ B3) (s0 o™ (A)s
BA). o> (@), B3), and o, ™ (A)epro B,
Together, we get 0,F=p(&)gy1 for G=2

2Here and in the remainder of the proof, again we only show the basic cases for simple clock

constraints (without clock differences) and simple data constraints (without addition/subtraction).
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e Py,81,t Ppy,dp.t Pit1:0k41:te+1
S = T r={(ly, 0o, Vo) Uy L BT (L Oy Vg) L (1, Ot Vit 1)

€Runsj11, and the last step (lk,ék,yk)M(lkH,(SkH,ka} re-

sults from following either a visible transition (2.7)) or an invisible transi-
tion transition (2.7)), (2.8)).

In case of a visible transition e=(s, P, dc, cc, A, s'), we have lp=s, ly11=5,
Py 1=P, and v 1=+t 1, with t5,1>0. Then

0r(Skt1), O'T(Xk+1)1 equivalent to the respective cases for G=2 above

® 0, Zk+1) = Ur(zk)+tk+1

°
Q

+(DPys 1 )EA(ékH) for pe P, nt otherwise

o 0, (Ddis 1) A (Gpir () if dE#E(s"), A(Spsr(d)) otherwise

° ar(dkﬂ)mﬁ if 0,(Ddy11)=n", tt otherwise

e For I(s)=(z~n), we have I (s)k 1A:(zk+1—xk)~n. Since vg+tE=I(s)
for all 0<t<t;., (Deﬁnition , in particular vg(x)+tg1 = (x~n);
50 0p(Zir1)—0p (%) = (Ur(zk)+tk+1) (o7 (zi) =V () =1k (@) +tisa,
which means that o, (zx41)—0,(xx)~n holds. Therefore o, =I(s),, 4,
The argumentation for o,.=ccy 1, is similar, and the argumentation
for o,}=1(s’),,, is equivalent to the respective case for &= above

e For de=(D~D’), ~e{=, <} (cf. Definition[2.1.7/and Section[3.1.1.5)),

we have dcy1=(D~D’), where D and D’ are either port data variables
Dp,,, or data content Variables Ddy, Ddyy4 (cf. Section . Be-
cause 041 =dc (Definition [2.3.5)), in particular 6(D) and §(D’) such
that 5( )~6(D’) holds. Therefore 0,(D)~0,(D’') holds as well ((xvi),
(cviil)),? and thus o, Fdcg .

The case where DeData and/or D’€Data, that means where D or D’
are data element representations n', is a simplification of the above.

From the above, we get o, =@ ®(e); 1, (s0 0, =" (T ) g gt
BT, o0 ()10 G-I, and o™ (D)0 (19

In case of an invisible transition e=(s,0,dc, cc,\,s"), we have l;,=s, [ 1=5,
P,1=0, and v 1=vp+ty, 1, with ;,1>0. Then

(

° ar(pkﬂ) "t for peP, ff otherwise
(
(

® 0.(Skt1), 0r(Zkr1), 0r(Xkr1) as above
0 (Pt )Eﬁ for all peP
(

® O, de+1) UT(dk+1); O'r):I(S)k+1A, O-r):cck—‘,—lA; O-T’):I(S/)k*l UT):de_H:
as above

From the above, we get ar)zgpmmible(e)kﬂ/t (3-12) (so o, =" ™™ (T)pt1,

BI0), 0vb ™t (D) 10 (BTA), and o, =™ (D10 (BI5).
Together, we get 0,=¢0(6)g4; for 6G=F

S = MN: r=(lo, do, o) Ly ... L (I, O, vg) SN (D1, Oyt Vis1), Where

r€Rungy1, and either the last step (I, 0k, V) 50 (1 vy, Ok, Vier1)

3Note that (Definition [2.3.5) 6(d) and §(d) coincide in case de#(s) for any location s.
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is an action transition resulting from executing a communication,
or it is a delayed action transition resulting from executing a delay.
In case of a communication e=(s,c, dc, ce, A, '), we have ly=s, [y 1=5,
and Y11=0,1. Then

e 0.(skt1), 0p(Xkr1), 0r(Zxi1), 0-(drs1): equivalent to the respective
cases for 6=% above

° Ur(Pk+1)tt if cyq(p)=—, £f otherwise

. ar(cpkﬂ)tt if Cpi1(p)=—"=, 0,(CPyys)=1Ff if Cty1(p)==7=, unspec-
ified otherwise

o UT(Dpk+1)A(5k+1(p>> if cpy1(p)=—, n* otherwise

i UT(de+1)7 Ur(dk+1)7 Ur):CCk, Ur):dckﬂa Ur):I(S,)kH: equivalent to
the respective cases for G=% above

From the above, we get 0, =@ (€)ry1/ (3-21) (so o=@ (M) ket
B2)), o™i (M) 10 B2, and o= (W), (B.25).

The case of a delay e=(s,c, dc, cc,id, s) is essentially equivalent to the
case of a communication, and needs not be considered separately. For

a delay, we get o= (€)1 [3:22) (so o =0 ™ (M) r1 s (B-26)),
O.T):(plocatwn<m)k+l/t " and O.r):(pmutez(m)kJrl "
Together, we get 0, =p(6)kyq for =N

Finally, we get 0,Fp(S)k41 for all systems Ge{, T, N}, and we define the map
I Runer—V(p(6)y) such that for every run r€ Rungy, {5(r)=0,€V(¢(6)y) is the

g
derived interpretation. O

Proposition A.1.8 (Derived Interpretation, Product). For re Rung, e, x, the
derived interpretation o, is a model of p(G1x1Gs)y, i.e. cEV(P(G1x1Gs)y).

Proof (Idea). The proof is along the same lines as the proof of Lemma [A.1.7} in
IS, we show that for =1, 2, the derived interpretation o, for a run r€ Rune,we, k+1,

reduced to the variables of ¢(&;), is a model of p(S;)y. O

Using the above, the proof of Theorem (found on Page is straightfor-

ward:

Proof of Theorem [3.2.4] This follows directly from Lemma and Lemma
AT1T O

Theorem A.1.9 (Soundness, Completeness). The formula representation p(S)
of a real-time system &, as defined in Definitions [3.1.1] [3.1.4] and |3.1.9] is correct,
that means ¢(&) exhibits the same behaviour as &.

Proof. This follows directly from Lemma and Lemma O
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A.2 Correctness of Abstraction

In this Section, we prove that the abstraction function «, as presented in Section [4.1]
yields a correct over-approximation. To yield an over-approximation, every finite run
of the concrete system & (represented by a model of (&), see Theore has
to be reproducible in the abstract case.* This is captured in Lemma 4.1.7, Here,
we prove an even stronger correctness result, which in particular emphasises the
structural relationships between concrete and abstract formula. We show that the
diagram in Figure commutes, which allows us to conclude the existence of a
homomorphism hgr between concrete and abstract set of runs.

1

4 Q ~ 2 ~
G ©(S)r 0(6) S
run 1o model model 7 run
Rungp, V(p(G)r) — V(p(S)y) Rung,
\_/ \/
1 h 1o

Figure A.2: Strong Correctness of Abstraction

The idea of the proof is as follows: since o works locally, it retains the formula
structure of ¢(&) if =2 (cf. (3.7)), and it retains the formula structure of ¢(S)
up to data constraints if &=T (cf. (3.16)).> Therefore, there exists some system S
of the same representation (&), = a(p(&)x) (up to logical equivalence and data
constraints). With this, subdiagrams (i) and (4i7) in Figure commute according
to Theorem Moreover, subdiagram (ii) in Figure commutes according
to Lemma nce every model of ¢(&);, is a model of a(p(&))), such that the
whole diagram commutes.

Notation A.2.1 (Notation of Systems). If not stated otherwise, we shall assume
the constituents of a TA 2 to be denoted as A=(S, s, 2, X, I, E), and of a TCA T as
T=(5,50,P,X,1,D,#, E). We use the general notion &, with S€{2, T}, whenever
possible, and if applicable, we may refer to common constituents (i.e., S, so, X, I,
E) without explicitly mentioning 2 or ¥. For a system with identifier é, we add
the symbol ~ to all constituents, equivalently, for a system with identifier &;, we
add index 7 to all constituents.
We use the notation of representation variables introduced in Section |3.1.1]

4Note that unlike in Section where we had {2, T, N}, here we only have Ge{A, T}, cf.
Section

5To guarantee that o yields an over-approximation, we may retain only those data constraints
that reason about ports not merged by -, cf. Definition [4.1.3] and the explanations thereafter.
Therefore, we cannot expect that the formula structure of data constraints is preserved.
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Definition A.2.2 (Homomorphism of Runs). Let 2, 2 be TA, T, T be TCA,
both with XDX and |S|>|S]. Let |S|>|], |P|>|P|, and |D|>|D|. Let &y, &s,
S5 and Gz be the associated transition systems, and let Rung, Runs, Rung and
Runz be the sets of runs. Let ’YSIS—>§, ’yE:E—>i, 'ypz73—>7’5 and fygD—)ﬁ be total,
surjective mappings.

A function hg:Rung— Rung is called a homomorphism of runs (between Rungy
and Rung ) iff for each run

7ﬁ:<l07 V0>a—1><l17 V1>a—2><l27 I/2>€Run917

there exists a run h(r)=r,

7=(lo, %) 2y (I, 1) 2 (Io, 72) . .. € Rung,
with 'yg(li):E, vi=v;| 5, and yx(7;)=7; for all i>0.
A function hg:Runs— Runz is called a homomorphism of runs (between Runs
and Runz) iff for each run

7”=<10, o, Vo>m><ll, 01, V1>M><12, 2, V2>€Run%

there exists a run h(r)=r,

7=(lo, 0, 70) 2L (17 8y, 1) 225220 (1, 6y, 03) € Runz,

with s(l) =, Zi=vi|z. 1p(P)=F;, 8:(F)=n only if &(p)=n for some peyp'(p),
6;(d)=n only if &;(d)=n for some deyz'(d), and &;(d)=n only if §;(d)=n for some
devpt(d), for all i>0.

For the sets of finite runs Rungy, Runsg, Runik and Runz,, hgr is defined

analogously.

Intuitively speaking, an abstraction is correct if the semantics of the abstract
system is not reduced with respect to the semantics of the concrete system. That
means, every behaviour that is possible in the concrete system has to be possible
in the abstract system as well. Since we have defined the semantics of a real-time
system & via sets of runs (Definitions [2.2.4{and [2.3.5]), an abstraction of & is correct
if for all systems & and é, such that & is obtained from & by abstraction, there
exists a homomorphism of runs hg:Rune— Rung, as defined in definition . To
prove the existence of hr, we show that Figure is a commuting diagram.

The general proof idea is shown in Figure[A.3} let & be a real-time system, with
k-unfolding ¢(&)g. The abstraction function a preserves the structure of (&),
that means the abstraction a(p(&);) of ¢(&); is the k-unfolding ¢(&); of some
system S. Though the abstraction function « is defined on formulas rather than on
systems, the system & can be “derived” from the formula representation a(p(S)y)

(Proposition [A.2.7). For 7"~€Run67k and 7€ Rung,,, such that hp(r)=r, there exists

an interpretation c€V(p(&)y), such that 7 is the derived run r, of o.
In other words, the commutative property can be summarised as follows: the
possible behaviour of the abstract system &, given by the set of runs Rung,, is
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P o ~
C] 0(6)r o(6)k
runJ lmodel 19
Rune,k V(@) Rung,

—

Figure A.3: Abstraction by Omission: Basic proof idea

obtained from the possible behaviour of the original system Rungjy and the homo-

morphism of runs hg (lower path in Figure . Rung,, is also obtained from the

k-unfolding ¢ (&) of &, the abstraction function «, the set of models of a(p(&)y),

and the set of derived runs for these interpretations (upper path in Figure .
We can already state that

Proposition A.2.3 (Commuting Subdiagrams). The subdiagrams (i) and (4i7)
in Figure are a commuting diagram each.

Proof. This follows directly from Theorem |[A.1.9| O

The subdiagram (iii) in Figure is a commuting diagram when considered
separately. Yet, with respect to the overall context of Figure[A.2] the fact that MO
is not defined on systems & but on formulas has to be taken into account. However,
Proposition 7| below will show the existence of such an abstract system S.

We first show that the abstract formula a(p(&)) is weaker than the concrete

formula ¢(&) (cf. Lemma on Page [73).

Proof of Lemma [{.1.7. Let L be a literal. The proof is done inductively on the
structure of the formula F:

TA: We need to consider the different cases in (4.1

o If F=L, Conts(L)N*a=0, then a(F)=?L. (L — L) holds trivially.

o If F=L, Conts(L)N*a#0, L=peP, then o F)*="y(p). By definition of ~,
~v(p)=¢q for some g€P’. By definition of v, (4.3)), (p — ¢) holds.
e For all other literals L, a(L)true. (L — true) holds trivially.

o [ E=on it P and 7<p):7(Pl):q (basic case of ), then
a(F) a(ﬂp)/\oé(p/>q/\ (.1

q) holds.
o If F=-pA—p”, with p,p”"€P and ~v(p)=7(p")=¢q (basic case of (4.1d)),

then a(F)FLER o (—p)pa(~p") ELEP—gr—g = —¢. By definition of
Ya, ((mpA=p") = —¢) holds.

g=q. By definition of ~,, ((-pAp")—

IH: For formulas Fy and F», (F; — «(F))) and (F» — a(F3)) holds.
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IS: e If F=FAF, then o(F)Z2a(F)Aa(R). (FAF) — (a(F)Aa(F)))
holds by ITH and propositional logic.

o If F=F\VF,, then a(F)Z2a(F)Va(F). (FVE) — (a(F)Va(F)))
holds by IH and propositional logic.

o If F=Fi\,, then oz(F)oz(Fl) AYa- ((FiAYa) = (a(F1)A7,)) holds by
IH and propositional logic.

]

We want to show that MO preserves the formula representation. Since MO is
defined for formulas in NNF (cf. Definition |4.1.5)), we first show that transformation
to NNF preserves the formula representation.

Remark A.2.4 (NNF preserves the Formula Representation). Let & be a
real-time system, with formula representation ¢(&) and k-unfolding ¢(&)g. The
transformation to NNF of p(&) and (&) preserves the formula structure, that
means, NNF(¢(S)) is a formula of the form (3.7)) respectively (3.16]), and similarly,
NNF(p(6)y) is a formula of the form (3.29).

Proof. For 6=2, the formulas ¢(2A) and ¢(2A); are in NNF already, so nothing
needs to be shown.

For 6=%, the only parts of ¢(%) and ¢(T); which are not yet in NNF are the
representations of data constraints. It is easy to see that for a data constraint
dce DC(P,D), with representation dc€ DC(Pp,,D), the transformation NNF(dc) to
NNF is a well-formed data constraint according to Definition 2.1.7] too, that means
NNF(dc)eDC(Ppy,D). O

Next, we show that MO preserves the structure of data and clock constraints.

Lemma A.2.5 (MO preserves Data and Clock Constraints). Let P be a set
of ports, D a set of data variables, and X" a set of clocks. Let de€ DC'(P,D) be a data
constraint (cf. Definition [2.1.7), cc€CC(X) a clock constraint (cf. Definition [2.1.2)).
Let dce DC(Ppy,Deg) be the representation of dec, and cceCC(X) the representations
of cc (cf. Section . The abstraction function a preserves the structure of data
and clock constraints, that means a(dc) and a(cc) are also valid representations of
data and clock constraints.

Proof. By definition, a changes only literals. Since dc and cc do not contain
propositional variables, neither of (4.1b)), (4.1c) or (4.1d) is applicable. Therefore,
« preserves the logical structure,® and literals are either kept unchanged or
mapped to true (4.1¢). Thus, a(dc)€DC(Pp,Deg), and a(cc)eCC(X). O

6The logical structure of a formula is the order of its literals and the logical operators A, V
and —. For example, for a formula F' = (pV —q) A —=(r A—=(xz = 5)), with p,q,r € P being atomic
propositions and = € V being a variable, the logical structure is F' = (I3 V l2) A =(I3 Aly) (for literals
1;). Note that an occurrence of — is part of the logical structure only if it is not part of a literal.
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Remark A.2.6 (Lifting of MO). For argumentation purposes, we lift « in the
straightforward way to reason about constituents of systems rather than formulas.
For example, for a clock & with representation x, we may write z€Q instead of x€Q.

Similarly, we lift « to reason about sets rather than single variables. For example,
for the set of locations S and the set of clocks X', we may write a(S) and a(X) to
denote the set of locations respectively clocks in the abstract system, that means
a(S)={s"|s€S,v(s)=5s}, and a(X)={z |2¢0}=X\O. By a(\), we denote the
update map A, reduced to the clocks of the abstract system. That is, a(A)=A|a(x)-

We are now ready to show that MO preserves the formula representation of TA,
and preserves the formula representation of TCA up to data constraints.

Proposition A.2.7 (MO preserves the Formula Representation). Let 20 =
(S,50,2,X,1,E) be a TA, T=(5, 50, P, X,1,D,#, FE) a TCA, with formula repre-
sentations ¢(2A), ¢(T), and k-unfoldings ¢(A)y, ¢(T), in NNF (cf. Remark [A.2.4)).
Let a be an abstraction function, with v and O as in Definition [4.1.5]

The abstraction by merging omission preserves the formula representation and
k-unfolding of 2, and it preserves the formula representation and k-unfolding of T up
to data constraints. That means, there exists a TA 2, with formula representation

©(2() and k-unfolding ¢(2A);, such that

p(A) = a(p(8)), and )
p(@), = a(p(A)),

and there exists a TCA ¥, with formula representation ¢(¥) and k-unfolding ¢(%)y,
such that

(T ae = a(0(T))\ e, and
(D) \de = A(D(T)e) \des

where \ 4 is a function that replaces all literals of the form (D~D’) or —(D~D’), with
~ e{=,<}, and D, I either port data variables Dp,, data content variables Dds, or
data element representations n* (cf. Definition and Section |3.1.1.5)), and teN,

in a formula by true.

Proof of (xx)). (for the proof of (xxi), please refer to Page [143).
Let A'=(5", s(, X', X', I', E') be a TA, with S'=a(S), sp=a(so), X'=a(2), X'=a(X),
I'(s)=a(I(s)) for all s€S’, and E'={(a(s), a(a),a(cc),a(N),a(s)) | (s,a,cc, N, s') €
E}. Let o(2=') and (), be the formula representation and k-unfolding of 2('.
Observe that we have

S'=a(S)={s|seS, a(s)=id}U{s'|s€S, a(s)=s"}, and (*)

Y=a(X)={a|aeX, a(a)=id}U{d'|aeX, a(a)=a"} (**)

We first show that ¢(")=a(¢(2A)). By Definitions [3.1.1 and [4.1.5] we have
a(¢(m)) — a(gpimt(ﬂ) /\Qotmns(go A (plocation(le) A gOmUter(Q[))
— a((pmzt(m)) /\a((ptrans(gl)) /\a((plocatwn(%)) /\a((pmutex(m))
QO(QU) — (szt<gll) A g01?7"ans(9[1) A (plocation(gl/) /\(Pmutex(gll)

(xxi)
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Consider the corresponding parts in a(p(2)) and p(2’) separately

1. Initial constraints ¢™™:

a(@™ (W) = a8 A N s AI(E) A A (mo) A(Zo=0) A A\ (x0=0))

SES,s#S aex zeX
=a(So) A N\ a(mso) Aa(I(8)y) A A al(moo)) A
SES,s#S aey
a((zo=0)) A A a((x0=0))
zeX
=a(Bo)A A msoA A msoAa(I(E)) A A (ae) A
SES,s#S, SES,s#£S, acx,
o(s)=id a(s)=s'#a(s) a(a):id
A (o) A(zo=0) A A (x%=0)
aey, zeX\O
a(a)=d
PR =80 A TSoAL(E ) A A (mo0) A(Zo=0) A A (%0=0)
S€S’ 545 aex’ zeX!

By definition of 2', we have «(8,)=8), and a(I(8),)=I(§),. Because of (),
(™), and the fact that X'=X\0O, we finally get

a(p™(A) = " (W)

2. Transition relation ! "s:

A" (2) = a( Vg () v g (s))

= V. ale (@) v V a(g(s))
SOtTaTLS(m/) — Q/EIO‘(SOMMO”( ))\/ Xg/ ( delay( ))

Consider an action transition e=(s, a, cc, \, s')EE:

a(@“mo”(e)) = a(ss A Xy AcCe AN(Ze=Ze1) A N\ (Xea=%¢) A
Az)=id

/\ (Xt*lletd) A /\ (Xt*lzztd_n) AN S/ml A I(S/)td)

Az)=z' Ax)=n
= a(sy) Aa(og) Aalcey) A a(ze=24,1) A /\(/)\ Ada(XM:Xt) A
A azea=Xc) A A a(xei=2ze—n) Aa(s'en) AI(s),,
Az)=z' Az)=n
= a(sy) Na(pg) Na(ccy) A(ze=2ze1) A N\ (Rea=%s) A
gy
A (Fea=Xe) A A (Rea=2ea—n) Aa(s'ea) A I(S/)m
M

and its counterpart e'=(a(s), a(a), a(cc), a(N), a(s’))eE":
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"M () = a(se) Aa(o) Aalccy) A(Ze=zea) A A (Xea=%) A
a(X)(z)=id
/\ (Xt+1:X/t+1> A /\ (Xt+1:Zt+1_n) A a(slt+1) A\ O{(I(S/)t)
a(A)(z)=z' a(A)(z)=n
Because X'=X\0O, we have
a(gpaction(e)) — SDaction<€/)
For a delay transition in s, we have
oz(cpdday(s)) = a(seA A\ @A (2e <z )A N (Re=Xe1)ASeaAI(S), )
agx TEX
= a(sg) AN N\ a(—oe)Aa(ze<ze )N N\ a(xe=%eq)A(St1) A (I(s),,)
aey TeX
= 04<3t) A /\ TRYA /\ (_‘oc/t*l)/\<zt§zt§l)/\
aey, acx,
afa)=id aa)=d’
N (xe=xe1)Ao(se1)Aa(I(s), )
TeX,
xe.e)(\(’)
and for the corresponding delay transition in s’, we have
P (") = a(se)A N "0eiA(Ze<Zea)A A (Xe=%ea1)A(se1) A (I(s), )
ac’ TzeEX’
Because of @, we have
O_/(QOdelay(S)) — gpdelay(sl)
Since there is a one-to-one relation between transitions in £ and E’, and by
definition of V, we finally have
a(gptrans (m)) — (ptrans (Ql/)
3. Mutual exclusion of locations !ocation;

a(@ @A) = a(V (stah A -siy))

seS s'€S,s'#s
= V(a(se)N A a(-si,))
s€S s'€S,s'#£s
- \/ (St /\ /\ _‘S/t /\ /\ _|§t) \/
seS s'eS,s'#s s'eS,s'#s
a(s)=id a(s')=id a(s')=5#s
v (ét A /\ _\S/t /\ /\ _‘ét)
seS s'€S,s'#s s'€S,s'#s
a(s)=3 a(s’)=id a(s)=5#s

(plocation(m/)) _ V (Std/\ /\ _‘S;*l)

ses’ s'eS’ s'#s



A.2. CORRECTNESS OF ABSTRACTION 143

Because of (ED, we have
a<gplocation (Q() ) — gDlocation (Ql,) )

4. Mutual exclusion of events (™ue?:

ale™ (@) = a(V (awah A~ )V A (ne.))

acX a’eX,a’#a acd

= V(a(xe)A A almog )V A al-es)

acx a’eXa’#a acx

= \/ ((Xt/\ /\ _‘O(,/t/\ /\ —|5(t)\/
acy a’eX,a’#a a’eX,a’#a
a(a)=id a(a’)=id a(a’)=da#a
V (&N A A N )V
acy a’eX,a’#a a’eX,a’#a
o(a)=d a(a’)=id a(a’)=aa

A A A (5&e)

aey, acx,
a(a)=id a(a)=a

@A) = Vo (awah N —o )V A (o)

aey’ a’e€X a’'#a aey’
Because of @, we have

o (20) = e (),

From the four cases above, we get
a(p()) = e(A)

The argumentation for

a(p(2)r)=p(A)

is similar.
Thus, the TA 21 satisfies the conditions , and we have shown that MO
preserves the formula representation and k-unfolding of TA. O

Proof of (xxi). Let T = (5,5, P, X', I',D',#,E') be a TCA, with S'=a(S),
so=a(s9), P'=a(P), X'=a(X), I'(s)=a(I(s)) for all s€S’, D'=a(D), #'(s)=c(F#(s))
for all s€S5’, and E'={(a(s),a(P),a(dc), a(cc), a(N), a(s)|(s, P, dec, cc, A, s")EE}.
Let (%) and ('), be the formula representation and k-unfolding of ¥’. Observe
that we have

S'=a(8)={s]s€S, a(s)=id}U{s'|s€S, a(s)=5"}, ()

Y=a(X)={alaeX, a(a)=id}U{d'|a€X, a(a)=a"}, and (1)
D'=a(D)={d|deD, a(d)=id}u{d'|deD, a(d)=d'} (t1)
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We first show that ¢(%')\ae=a(p(T))\ae- By definition of \ 4., and Definitions
and [4.1.5] we have
a(@(g))\dc _ a(api”it(‘f) /\thmnS(S) /\QOlocation<(I) A mute:c( ))\dc
= o™ (D) \ae A (™ (T))\ae A
a(wlocation(g))\dc/\a( mutex( ))\dc
90<z,)\dc _ ()Dim't(z/)\dc A (ptrans (T/)\dc A SOlocatzon(‘z/)\dc A ()Dmuteac (E/)\dc

Consider the corresponding parts in a(¢(%))\q. and ¢(T')\q. separately

1. Initial constraints ¢

(@™ (T))N\ae = a(SoA A =SoAL(E) A A (7po A(Dpp=n)) A

SES,s#£S peEP
dé\D(ﬁdo A(Ddo=n")) A(zo=0) A é\X(xozo))\dC
= a(8)\ee A A a(550)\ae A a(I(8))\ac A A\ (=Po)\ac A
SES,s#£5 peEP
/G\POz((Dpo:nl))\dc/\dé\DOZ(ﬂdo)\dc/\d/e\pOé((Ddoan))\dcA
a((20=0))\ae A é\xa((Xo=0))\dc
=aB)A A msoA A osgAa(I(E)) A A (7o) A
SES,s#£S, SES,s#£S, peEP,
a(s)=id a(s)=s'#a(3) a(p)=id
/}D (=p'6) A d/}) (—do) A d/}) (=d'o) A
alp)—r' old)=id o(d)d
(2o=0)A A (x0=0)
zeX\O
AN =8N A A =soae ATE D\ A A (B0 AR\ A
dé}) (7o A(Ddo=n"))\e A(Zo=0)\ae A é\X (x0=0)\ac
=85 A A —8eAIE)A A (=po) A
s€S! s#5 pEP!
(30 Az=0) A (x0=0)

By definition of ¥, we have a(50) = §;, and a(I(§),) = I(8'),. Because of
(7)), and , and the fact that X’=X\O, we finally get

a(@™ (D) \ae = " (T)\ae

2. Transition relation @' "

o (@tmns (T) ) \dc — Oé( \/ QOviSible (6) Vi v QOmviSible (6) ) \dc

e€ E e visible e€ E einvisible

— \/ a( mszble( ))\dc \/ a(gpmvmble(e))\dc

ec€E e visible ec e invisible
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(ptrans (gl) \dc — v gOvzls"ible (6) \dc V; V (pinvisible (6) \dc

ecE' evisible e€E’ e invisible
Consider a visible transition e=(s, P, dc, cc, A, §') € E:

Oé( mszble( ))\dc — (St/\I<S)tA/\ /\ Pt /\ P /\ =d¢,1 AdCe A

peP pgP dg#(s")
cceaN(ze<ze, )N N (Rea=x)A A (Xtdlet*l)/\
Ax)=id Az)=a'
A (szzm—n)/\S,tn/\I(S,)m)\dc
Az)=n
= a(st)AOé(I(s>tA)/\ /\ Pt A /\ P/t,1 A /\ Pt.1 A
peEP, pEP, pEP,
a(p)=id a(p)=p a(p)=id
A PeaA A (Fde) A A (2da) A
péP, dg#(s'), dg#(s"),
a(p)=p'¢a(P) a(d)=id a(d)=d’
alccp) AN(ze<zea) A N (Re1=%) A
Az)=id,
zeX\O
A Fea=x'ei) A A (Xt*lzzm—n)/\a(sltd)/\I(S/)m
Az)=2', A(z)=n,
r,:i’éX\O TeX\O

and its counterpart ¢'=(a(s), a(P), a(dc), a(cc),a(N), a(s'))EE":

P\ = alsNana(T el A peatich A (Pt

(_‘dt+1)\dc/\a(dctd)\dc/\a(CCtA>\dc/\a(Zt <Zt,1) \de/\
dg#(a(s"))

(
{\ (Xtdzxt)\dc/\ /\ (Xt*llet*i)\dc/\

a(A)(z)=id a(A)(z)=a’

A (ea=2Zea=n)\aeA(8 et \acA(T(8") 1) \ae

(z)=n

= a(se)Aa(I(s))AN A PeaA A (FPea)A
pEa(P) pga(P)

(=g ) Aa(ceon) A (2 <Zg,1)A

de#(a(s'))
/\ (Xt& =Xt ) A /\ (XtA :X/td ) A
a(A)(z)=id a(A)(z)=z'
/\ (Xt+1:zt§1_n)/\a(sltﬁl)/\a(]:(sl)t*l)
a(A)(z)=n

Because of and , and the fact that X’=X\0O, we have

a (ngiSible (6) ) \dc — gOvisible (el) \dc
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Equivalently, we can show for an invisible transition e=(s, (), true, cc, \, s’) and
its counterpart ¢'=(a(s), ), true, a(cc), a(N), a(s’)) that

a (gpinm‘sible (6) \dc — (pinvisible (6/) \dc

Since there is a one-to-one relation between transitions in £ and E’, and by
definition of V, we finally have

a(@" (D) \de = ¢ (T)\ae

3. Mutual exclusion of locations ('°@!": hecause \ 4. does not change ™% (g’)
or a(p™ (), equivalently to the case for TA above, we have

a((plocation (‘I) ) \dc — wlocation (Il) \dc

4. Data consistency constraints ¢"“¢*: trivially,

(@™ (T)))\de = true = " (T)\q

From the four cases above, we get

a(p(T)N\de = ¢(T)\de

With a similar argumentation, we get

(@(T)i)\ae=2(T )i \de

Thus, the TCA T’ satisfies the conditions , and we have shown that MO
preserves the formula representation and k-unfolding of TCA, up to data constraints.

]

Proposition A.2.8 (Commuting Subdiagram). The subdiagram (ii) of Fig-
ure is a partially commuting diagram.”

Proof. This follows directly from Proposition [A.2.7] O

We now have all the results to give the proof of Theorem [4.1.§

Proof of Theorem [{.1.8. For the abstraction by omission to be correct, every
finite run in the original system & has to be reproducible in the abstract system &.
We show this by defining a homomorphism hg between original and abstract sets of
runs Rungy, and Runévk, such that Figure commutes.

"Here, “partially commuting” means that every model 0€V(¢(%)}) is also a model of V(go(‘z)k)7
but not necessarily vice versa.
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Let & be a real-time system, with formula representation (%) and k-unfolding
©(6), let V(o(6)k) be the set of models of ¢(&)y, let Rungy be the set of finite
runs of length k of &.

Let o be an abstraction function, with v and O as in Definition bl let S be
the abstract system that results from applying a to the formula representatlon 0(6)
and the k-unfolding ¢(S)y, that means o(S)=a(p(6)) and (&)= (p(&)), cf.
Proposition [A.2.7], let V(¢(S),) be the set of models of ¢(S )y, and Rung, the set of
finite runs of length k of &. Let £&:V(p(S)r)=V(0(S)k) be a mapping assigning to

each interpretation o€V (p(S);) the interpretation 7€V (p(&);), which is obtained
S), 8

from restricting o to the variables in p(S)y.

We define a homomorphism hg (cf. Definition as

hR:RunG,k%Runék
hr(r) =17(E{5(r))

(cf. Lemmas |A.1.4] and |A 1.7). That means, a run r5 € Rung,, is obtained from
a run TERunGk by mapping r to the derived interpretation |” (r)=0,€V(0(S);)
(Definition [A.1.6)), reducing it to the interpretation E(r(r)=ceV(¢ (&);) over the
variables in gp(é)k, and mapping it to the derived run |7 (§(I5 (r)))=r5 € Rung,
(Definition [A.1.2).

We define vg:5— S, with vg(s)=5 iff v(s)=5 5,7, s Y3, with s (a)=a iff y(a)=4,
vp:p—p, with vp(p)=p iff v(p)=p, and vp:d—d, with vp(d)=d iff v(d)=d. With this,
hg is a homomorphism as defined in Definition [A.2.2] Together with the results
of Proposition [A.2.3] Proposition [A.2.7, and Proposition [A.2.8] Figure is a
commuting diagram, that means every run of the original system & is reproducible
in the abstract system &, and therefore the abstraction by omission is correct. [

9Remember that we lifted o to constituents of TCA, cf. Remark

85 is well-defined, as by definition of a: Vars(a(¢(&)y))C Vars(p(%);), cf. Proposition
oo






