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Appendix A

Proofs

A.1 Correctness of Representation

In this Section, we prove that the formula representation ϕ(S) of a real-time system
S, as presented in Definitions 3.1.1, 3.1.4 and 3.1.9 in Chapter 3, is correct, that
means that ϕ(S) exhibits the same behaviour as S. For this, every model of ϕ(S)k
has to correspond to a run of length k, and vice versa. To prove this, we show that
the diagram in Figure A.1 commutes.

S ϕ(S)k

RunS,k models of ϕ(S)k

ϕ

run model↓rσ

↓σr

Figure A.1: Correctness of Representation

The commutative property expresses that models of ϕ(S)k have a bijective cor-
respondence to runs of the original system S, denoted by the maps ↓rσ and ↓σr :
the run ↓σr (↓rσ (r)) of the model ↓rσ (r) belonging to a run r again is r, and the
model ↓rσ(↓σr(σ)) of a run ↓σr(σ) belonging to a model σ again is σ.

Remark A.1.1 (Notation). In the sequel, we use the notation of representation
variables introduced in Section 3.1.1, and we use the symbol ∼ to refer to any
arithmetic comparison (cf. Definitions 2.1.2 and 2.1.7).

As before, we use SS to refer to the associated LTS of a system S, with
S∈{A,T,N}, and we use RunS,k to refer to the set of all runs of SS up to length k.
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128 APPENDIX A. PROOFS

Further, we use the symbols ϕ(S)k, σ and V(ϕ(S)k) to refer to the k-unfolding of
S, a model of ϕ(S)k, and the set of all models of ϕ(S)k, respectively.

We first show that the formula representation is sound, i.e., that every model
σ∈V(ϕ(S)k) yields a run r∈RunS,k.

Definition A.1.2 (Derived Run). For σ∈V(ϕ(S)k), the derived run rσ is

rσ=〈l0, ν0〉 a1−→〈l1, ν1〉 a2−→ . . . ak−→〈lk, νk〉, if S = A,

rσ=〈l0, δ0, ν0〉 P1,δ̄1,t1−−−−→〈l1, δ1, ν1〉 P2,δ̄2,t2−−−−→ . . . Pk,δ̄k,tk−−−−→〈lk, δk, νk〉, if S = T,

rσ=〈l0, δ0, ν0〉 c1,γ1−−→〈l1, δ1, ν1〉 c2,γ2−−→ . . . ck,γk−−−→〈lk, δkνk〉, if S = N,

(i)

where we have for all 0≤k0≤k, 1≤k1≤k

lk0 = s, iff σ(sk0)=tt, (ii)

νk0(x) = σ(zk0)−σ(xk0) (iii)

ak1 =

{
a, iff σ(αk1)=tt,

t, with t=σ(zk1)−σ(zk1−1), otherwise
(iv)

Pk1 =
⋃

σ(pk1 )=tt

p, (v)

δk0(d) =

{
∆−1(ni), iff σ(Ddk0)=ni 6=n⊥

⊥, otherwise
, d∈D (vi)

δ̄k1(q) =


δ(m)k1−1, iff q=s.m,m∈D
δ(m)k1 , iff q=t.m or q=m,m∈D
∆−1(ni), iff q=p, p∈P , σ(Dpk1)=ni 6=n⊥

⊥, otherwise

(vii)

tk1 = σ(zk1)−σ(zk1−1) (viii)

ck1(p) =


iff σ(pk1)=tt,

? iff σ(pk1)=ff and σ(cpk1)=ff

! iff σ(pk1)=ff and σ(cpk1)=tt

(ix)

γk1 =

{
δ̄k1 , iff σ(zk1)=σ(zk1−1)

tk1 , otherwise
(x)

The derived run for a products, that means for σ∈V(ϕ(S1./S2)k) is defined in the
same way, except for replacing li in (i) by (li,1, li,2), and rewriting (ii) to

lk0,i = s, iff σ(sk0) = tt for s∈Si, i=1, 2, (ii’)

Remark A.1.3 (Derived Run). Note that in (ii), for each k0, there exists exactly
one location s such that σ(sk0)=tt, cf. (3.5), (3.14) and (3.24). Similarly, in (iv),
there exists at most one event a such that σ(αk1)=tt, cf. (3.6).

Since ∆ is injective (cf. Section 3.1.1.3), there exists a di∈Data with ∆(di)=ni,
such that ∆−1(ni) is well-defined in (vii), (vi) and (x).
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Lemma A.1.4 (Soundness). For σ∈V(ϕ(S)k), the derived run rσ is a run of SS

of length k, i.e., rσ∈RunS,k.

Proof. Induction on k.

IA σ|=ϕ(S)0: σ(s̄0)
(3.1),(3.10),(3.20)

= tt for the initial location s̄, thus l0
(ii)
=s̄. For all

clocks x, ν0(x)
(iii)
=σ(z0)−σ(x0)

(3.1),(3.10),(3.20)
= 0, therefore in particular ν0|=I(s̄), and

thus rσ=〈s̄,0〉∈RunS,0 for S=A.

For S6=A, in addition we have σ(Dd0)
(3.10),(3.20)

= n⊥ for d∈D, and σ(Dp0)
(3.10),(3.20)

= n⊥

for p∈P , thus rσ=〈s̄,0,0〉∈RunS,0 for S∈{T,N}.

IH σ|=ϕ(S)k: rσ∈RunS,k for some k≥0.

IS σ|=ϕ(S)k+1: we consider the different systems separately

S = A: rσ=〈l0, ν0〉 a1−→ . . . ak−→〈lk, νk〉
ak+1−−→〈lk+1, νk+1〉, and either for some e∈E

σ|=ϕaction(e)k+1/t, or σ|=ϕdelay(s)k+1/t for some s∈S (cf. (3.7) and (3.29)).

Case σ|=ϕaction(e)k+1/t (∗): let e=(s, a, cc, λ, s′) (cf. (3.2)), then

• lk
IH
=s, lk+1

(ii)
=s′

• ak+1
(iv)
= a

• νk+1=νk[λ]: for all clocks x, we have

λ(x)=id: νk+1(x)
(iii)
=σ(zk+1)−σ(xk+1)

(∗)
=σ(zk)−σ(xk)

(iii),IH
= νk(x)

λ(x)=x′: νk+1(x)
(iii)
=σ(zk+1)−σ(xk+1)

(∗)
=σ(zk+1)−σ(x′k+1)

(iii)
=νk+1(x′)

λ(x)=n: νk+1(x)
(iii)
=σ(zk+1)−σ(xk+1)

(∗)
=σ(zk+1)−(σ(zk+1)−n)=n

• νk|=cc: for cc=x∼n,1 we have cck=(zk−xk)∼n. Because of (∗), we

have σ|=cck, that means (σ(zk)−σ(xk))∼n holds, and since νk(x)
IH,(iii)

=
(σ(zk)−σ(xk)) for all clocks x, we have νk|=cc. The argumentation
for νk+1|=I(s′) is similar

Thus, 〈s, νk〉 a−→〈s′, νk[λ]〉 is gained from e using (2.1)

Case σ|=ϕdelay(s)k+1/t (∗∗): let s∈S (cf. (3.3)), then

• lk
IH
=s, lk+1

(ii)
=s

• ak+1=t, with t
(iv)
= σ(zk+1)−σ(zk)

• νk+1=νk+t: for all clocks x, we have

νk+1(x)
(iv)
=σ(zk+1)−σ(xk+1)

(∗∗)
= σ(zk+1)−σ(xk)=σ(zk+1)−σ(xk)+

σ(zk)−σ(zk)=(σ(zk)−σ(xk))+(σ(zk+1)−σ(zk))
(iii),(iv),IH

= νk(x)+t

• νk+1|=I(s) as above, νk+t
′|=I(s) for all t′≤t because of convexity (cf.

Remark 2.1.6)

Thus, 〈s, νk〉 t−→〈s, νk+t〉 is gained from s using (2.2).

Together, we get rσ∈RunS,k+1 for S=A.

1Here and in the remainder of the proof, we only show the basic cases for simple clock con-
straints (without clock differences) and simple data constraints (without addition/subtraction),
but the results directly carry over to constraints involving arithmetic operations, and to Boolean
combinations of these.
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S = T: rσ=〈l0, δ0,ν0〉 P1,δ̄1,t1−−−−→ . . . Pk,δ̄k,tk−−−−→〈lk, δk, νk〉
Pk+1,δ̄k+1,tk+1−−−−−−−−→〈lk+1, δk+1,νk+1〉,

and either σ|=ϕvisible(e)k+1/t or σ|=ϕinvisible(e)k+1/t for some e∈E (cf.
(3.16) and (3.29)).

Case σ|=ϕvisible(e)k+1/t (†): let e=(s, P, dc, cc, λ, s′) (cf. (3.11)), then

• lk
IH
=s, lk+1

(ii)
=s′, tk+1

(viii)
= σ(zk+1)−σ(zk)

• νk+1=νk+tk+1[λ]: for all clocks x, we have

λ(x)=id: νk+1(x)
(iii)
=σ(zk+1)−σ(xk+1)

(†)
=σ(zk+1)−σ(xk)=

σ(zk+1)−σ(xk)+σ(zk)−σ(zk)=

(σ(zk)−σ(xk))+(σ(zk+1)−σ(zk)
(iii),(viii),IH

= νk(x)+tk+1

λ(x)=x′: νk+1(x)
(iii)
=σ(zk+1)−σ(xk+1)

†
=σ(zk+1)−σ(x′k+1)=

σ(zk+1)−σ(x′k+1)+σ(zk)−σ(zk)=

(σ(zk)−σ(x′k+1))+(σ(zk+1)−σ(zk))
(iii),(viii),IH

= νk+1(x′)+tk+1

λ(x)=n: νk+1(x)
(iii)
=σ(zk+1)−σ(xk+1)

(†)
=σ(zk+1)−(σ(zk+1)−n)=n

• νk+tk+1|=cc: for cc=x∼n, we have cck=(zk−xk)∼n. Because of
(†), we have σ|=cck, that means (σ(zk)−σ(xk))∼n holds, and since

νk(x)+tk+1
IH,(iii),(viii)

= σ(zk)−σ(xk)+σ(zk+1)−σ(zk)=σ(zk+1)−σ(xk) for
all clocks x, we have νk+tk+1|=cc.

• Pk+1
(v)
=
⋃
σ(pk 1)=tt p

(†)
=P

• δ̄k+1|=dc: let dc=(D'D′), ' ∈{=,6} (cf. Section 3.1.1.5). For the
constituents of dc, we have

for p∈P|dc: δ̄k+1(p)
(vii)
= ∆−1(ni)

def .∆
= di if σ(Dpk+1)=di

for s.m∈D|dc: δ̄k+1(s.m)
(vii)
= ∆−1(ni)

def .∆
= di if σ(Dmk)=di

for t.m∈D|dc: δ̄k+1(t.m)
(vii)
= ∆−1(ni)

def .∆
= di if σ(Dmk+1)=di

for m∈D|dc: δ̄k+1(m)
(vii)
= ∆−1(ni)

def .∆
= di if σ(Dmk+1)=di

Because of (†), we have σ|=dck+1, thus for all possible instantiations
of D and D′ with Dpk+1, Dmk, Dmk+1 or elements of Data (cf. Sec-
tion 3.1.1.5), we have δ̄k+1|=dc

• δk+1(m)=⊥ if m 6∈#(s′): because of (†), in particular σ|=(Dmt 1=n⊥)

(cf. (3.11)), and thus δk+1(m)
(vi)
=⊥ for all m 6∈#(s′)

Thus, 〈s,δk,νk〉
P,δ̄k+1,tk+1−−−−−−→〈s′,δk+1,νk+tk+1[λ]〉 is gained from e using (3.11).

Case σ|=ϕinvisible(e)k+1/t (‡): let e=(s, ∅, dc, cc, λ, s′) (cf. (3.12)), then

• lk
IH
=s, lk+1

(ii)
=s′, tk+1

(viii)
= σ(zk+1)−σ(zk),

• νk+1=νk+tk+1[λ], νk+tk+1|=cc, δk+1(m)=⊥ if m6∈#(s′), and δ̄k+1|=dc
as before

• Pk+1
(v)
=
⋃
σ(pk+1)=tt p

(‡)
=∅

• δk+1(p)
(vii)
=⊥ for all p∈P , because σ(pk+1)

(‡)
=ff, and σ(Dpk+1)

(‡)
=n⊥ for

all p∈P

Thus, 〈s, δk, νk〉
∅,δ̄k+1,tk+1−−−−−−→〈s′, δk+1, νk+tk+1[λ]〉 is gained from e using (3.11)

in case tk+1>0, and using (3.12) in case tk+1=0.
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Together, we get rσ∈RunS,k+1 for S=T.

S = N: rσ = 〈l0, δ0, ν0〉 c1,γ1−−→ . . . ck,γk−−−→〈lk, δk, νk〉
ck+1,γk+1−−−−−→〈lk+1, δk+1, νk+1〉, and

either σ|=ϕcommu(e)k+1/t or σ|=ϕdelay(e)k+1/t for some e∈E (cf. (3.26)
and (3.29))

Case σ|=ϕcommu(e)k+1/t (?): let e=(s, c, dc, cc, λ, s′) (cf. (3.21)), then

• lk
IH
=s, lk+1

(ii)
=s′

• νk+1=νk[λ], νk|=cc, νk+1|=I(s′): equivalent to the respective cases for
S=A above

• δk+1(m)=⊥ if m6∈#(s′): equivalent to the respective case for S=T
above

• γk+1
(x),(?)
= δ̄k+1

• δ̄k+1|=dc: equivalent to the respective case for S=T above

• δ̄k+1(p)=⊥ iff ck+1(p)6= : because of (?), in particular σ|=〈pc〉k+1

for all p∈P . If σ|=¬pk+1, then either c(p)
(ix)
= ! or c(p)

(ix)
= ? , and

σ(Dpk+1)
(3.25),(?)

= n⊥

Thus, 〈s, δk, νk〉
ck+1,δ̄k+1−−−−−→〈s, δk+1, νk[λ]〉 is gained from e using (2.15).

Case σ|=ϕdelay(e)k+1/t (??): let e=(s, c, dc, cc, id, s) (cf. (3.22)), then

• lk
IH
=s, lk+1

(ii)
=s′

• γk+1
(x),(??)

= tk+1

• νk+1=νk+tk+1: equivalent to the respective case for S=A above

• νk|=cc, νk+1|=I(s): equivalent to the respective cases for S=A above,
νk+t

′|=cc and νk+t
′|=I(s) for all t′≤tk+1 because of convexity (cf.

Remark 2.1.6)

• δk|=dc: equivalent to the respective case above, with δk instead of
δ̄k+1

Thus, 〈s, δk, νk〉
ck+1,tk+1−−−−−→〈s, δk, νk+tk+1〉 is gained from e using (2.16).

Together, we get rσ∈RunS,k+1 for S=N.

Finally, we get rσ∈RunS,k+1 for all systems S∈{A,T,N}, and we define the map
↓σr :V(ϕ(S)k)→RunS,k such that for every interpretation σ∈V(ϕ(S)k), we have that
↓σr(σ)=rσ∈RunS,k is the derived run.

Proposition A.1.5 (Derived Run, Product). For σ∈V(ϕ(S1./S2)k), the de-
rived run rσ is a run of ST1./T2 of length k, i.e., rσ∈RunS1./S2,k.

Proof (Idea). The proof is along the same lines as the proof of Lemma A.1.4. In
IS, we first show that for i=1, 2, reducing a transition of the product S1./S2 (of the
form 〈(lk,1, lk,2), νk〉 ak−→〈(lk+1,1, lk+1,2νk+1〉 for S=A, for example) to the constituents
of Si yields a transition ei in Si. We then argue that all possible combinations of
e1 and e2 correspond to a valid execution in the product automaton (cf. Definitions
2.2.8, 2.3.9 and 2.4.14). In end, we get rσ∈RunS1./S2,k.
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We now show that the formula representation is complete, i.e, for every run
r∈RunS,k, we can find a model σ∈V(ϕ(S)k).

Definition A.1.6 (Derived Interpretation). For r∈RunS,k, the derived inter-
pretation σr over (the variables in) ϕ(S)k is (we use the notation of (i))

σr(sk0) = tt, iff s=lk0 (xi)

σr(zk0) =


0, if k0=0

σr(zk0−1)+t, if S=A and ak0=t

σr(zk0−1)+tk0 , if (S=T) or (S=N and γk0=tk0)

σr(zk0−1), otherwise

(xii)

σr(xk0) = σr(zk0)−νk0(x) (xiii)

σr(αk0) =


ff, if k0=0

tt, iff ak0=a

ff, otherwise

(xiv)

σr(pk0) =


ff, if k0=0

tt, if (p∈Pk0 and S=T) or (ck0(p)= and S=N)

ff, otherwise

(xv)

σr(Dpk0) =


n⊥, if k0=0

∆(δ̄k0(p)), if (p∈Pk0 and S=T) or (ck0(p)= and S=N)

n⊥, otherwise

(xvi)

σr(Ddk0) =


n⊥, if k0=0

∆(δk0(d)), if d∈#(lk0)

∆(δ̄k0(d)), otherwise

(xvii)

σr(dk0) =

{
ff, if σr(Ddk0)=n⊥

tt, otherwise
(xviii)

σr(cpk0) =


tt, if (k0=0) or (ck0(p)= ! )

ff, if ck0(p)= ?

unspecified, otherwise

(xix)

for all 0≤k0≤k. The derived interpretation for a run of the product, that means for
r∈RunS1./S2,k, is defined in the same way, except for rewriting (xi) to

σr(sk0) = tt, iff s=lk0,i for s∈Si, i=1, 2 (xi’)

Lemma A.1.7 (Completeness). For r∈RunS,k, the derived interpretation σr is a
model of the k-unfolding of S, that means σr|=ϕ(S)k.

Proof. Induction on k.

IA r=〈l0, ν0〉 respectively r=〈l0, δ0, ν0〉 (cf. (i) again). We have σr(s̄0)
(xi)
=tt for the

initial location s̄=l0, and σr(s0)
(xi)
=ff otherwise. For clocks, we have σr(z0)

(xii)
= 0,
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and σr(x0)
(xiii)
= σr(z0)−ν0(x)=0 for all other clocks x. For I(s̄)=x∼c,2 we have

I(s̄)0=z0−x0∼n. Because ν0|=I(s̄) (cf. Definitions 2.2.4, 2.3.5 and 2.4.6), in
particular 0=ν0(x)∼n, therefore σr(x0)∼n holds, and thus σr|=I(s̄)0.

We have σr(p0)
(xv)
= ff, σr(Dp0)

(xvi)
= n⊥, and σr(cp0)

(xix)
= tt for all ports p, and for all

data variables d we have σr(Dd0)
(xvii)
= n⊥ and σr(d0)

(xviii)
= ff.

Thus, σr|=ϕinit(S) (cf. (3.1), (3.10) and (3.20)), and therefore σr|=ϕ(S)0.

IH r∈RunS,k: σr|=ϕ(S)k, for some k≥0.

IS r∈RunS,k+1: we again consider the different systems separately

S = A: r=〈l0, ν0〉 a1−→ . . . ak−→〈lk, νk〉
ak+1−−→〈lk+1, νk+1〉∈RunA,k+1, and either the

last step 〈lk, νk〉
ak+1−−→〈lk+1, νk+1〉 is an action transition (2.1) resulting from

execution of a transition e=(s, a, cc, λ, s′), or it is a delay transition (2.2)
in location s.

In case of an action transition, we have lk=s, lk+1=s′, ak+1=a for some
a∈Σ, and νk+1=νk. Then

• σr(sk+1)
(xi)
=tt for s=lk+1, and ff otherwise

• σr(zk+1)
(xii)
= σr(zk)

• σr(xk+1)
(xiii)
= σr(zk+1)−νk+1(x)=


λ(x)=id,(xii)

= σr(zk)−νk(x)=σr(xk)

λ(x)=x′
= σr(zk+1)−νk+1(x′)

(xiii)
= σr(x

′
k+1)

λ(x)=n
= σr(zk+1)−n

• σr(αk+1)
(xiv)
= tt for a=ak+1, and ff otherwise

• For cc=x∼n, we have cck=(zk−xk)∼n. Because νk|=(x∼n) (Defini-

tion 2.2.4), we have σr(zk)−σr(xk)
(xiii),(IH)∼ n, thus σr|=cck. The argu-

mentation for σr|=I(s′)k+1 is similar.

From the above, we get σr|=ϕaction(e)k+1/t (3.2) (so σr|=ϕtrans(A)k+1/t

(3.4)), σr|=ϕlocation(A)k+1/t (3.5), and σr|=ϕmutex(A)k+1/t (3.6).

In case of a delay transition, we have lk=s=lk+1, ak+1=t for some t∈Time,
and νk+1=νk+t. Then

• σr(sk+1)
(xi)
=tt for s=lk+1, and ff otherwise

• σr(zk+1)
(xii)
= σr(zk)+t

• σr(xk+1)
(xiii)
= σr(zk+1)−νk+1(x)

(xii)
= σr(zk)+t−(νk(x)+t)=

σr(zk)−νk(x)
(xiii)
= σr(xk)

• σr(αk+1)
(xiv)
= ff for all a∈Σ

• σr|=I(s)k+1: similar to the argumentation for σr|=cck above

From the above, we get σr|=ϕdelay(e)k+1/t (3.3) (so σr|=ϕtrans(A)k+1/t

(3.4)), σr|=ϕlocation(A)k+1/t (3.5), and σr|=ϕmutex(A)k+1/t (3.6).

Together, we get σr|=ϕ(S)k+1 for S=A

2Here and in the remainder of the proof, again we only show the basic cases for simple clock
constraints (without clock differences) and simple data constraints (without addition/subtraction).
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S = T: r=〈l0, δ0, ν0〉 P1,δ̄1,t1−−−−→ . . . Pk,δ̄k,tk−−−−→〈lk, δk, νk〉
Pk+1,δ̄k+1,tk+1−−−−−−−−→〈lk+1, δk+1, νk+1〉

∈RunT,k+1, and the last step 〈lk, δk, νk〉
Pk+1,δ̄k+1,tk+1−−−−−−−−→〈lk+1, δk+1, νk+1〉 re-

sults from following either a visible transition (2.7) or an invisible transi-
tion transition (2.7), (2.8).

In case of a visible transition e=(s, P, dc, cc, λ, s′), we have lk=s, lk+1=s′,
Pk+1=P , and νk+1=νk+tk+1, with tk+1>0. Then

• σr(sk+1), σr(xk+1): equivalent to the respective cases for S=A above

• σr(zk+1)
(xii)
= σr(zk)+tk+1

• σr(pk+1)
(xv)
= tt for p∈P , ff otherwise

• σr(Dpk+1)
(xvi)
= ∆(δ̄k+1) for p∈P , n⊥ otherwise

• σr(Ddk+1)
(xvii)
= ∆(δk+1(d)) if d∈#(s′), ∆(δ̄k+1(d)) otherwise

• σr(dk+1)
(xviii)
= ff if σr(Ddk+1)=n⊥, tt otherwise

• For I(s)=(x∼n), we have I(s)k+1∆=(zk+1−xk)∼n. Since νk+t|=I(s)
for all 0≤t≤tk+1 (Definition 2.3.5), in particular νk(x)+tk+1|=(x∼n);

so σr(zk+1)−σr(xk)
IH,(xiii)

= (σr(zk)+tk+1)−(σr(zk)−νk(x))=νk(x)+tk+1,
which means that σr(zk+1)−σr(xk)∼n holds. Therefore σr|=I(s)k+1∆.
The argumentation for σr|=cck+1∆ is similar, and the argumentation
for σr|=I(s′)k 1 is equivalent to the respective case for S=A above

• For dc=(D'D′), '∈{=,6} (cf. Definition 2.1.7 and Section 3.1.1.5),
we have dck+1=(D'D′), where D and D′ are either port data variables
Dpk+1 or data content variables Ddk, Ddk+1 (cf. Section 3.1.1.5). Be-
cause δ̄k+1|=dc (Definition 2.3.5), in particular δ̄(D) and δ̄(D′) such
that δ̄(D)'δ̄(D′) holds. Therefore, σr(D)'σr(D′) holds as well ((xvi),
(xvii)),3 and thus σr|=dck+1.
The case where D∈Data and/or D′∈Data, that means where D or D′

are data element representations ni, is a simplification of the above.

From the above, we get σr|=ϕvisible(e)k+1/t (3.11) (so σr|=ϕtrans(T)k+1/t

(3.16), σr|=ϕlocation(T)k+1/t (3.14), and σr|=ϕmutex(T)k+1/t (3.15).

In case of an invisible transition e=(s,∅,dc,cc,λ,s′), we have lk=s, lk+1=s′,
Pk+1=∅, and νk+1=νk+tk+1, with tk+1≥0. Then

• σr(sk+1), σr(zk+1), σr(xk+1) as above

• σr(pk+1)
(xv)
= ff for all p∈P

• σr(Ddk+1), σr(dk+1), σr|=I(s)k+1∆, σr|=cck+1∆, σr|=I(s′)k 1 σr|=dck+1:
as above

From the above, we get σr|=ϕinvisible(e)k+1/t (3.12) (so σr|=ϕtrans(T)k+1/t

(3.16), σr|=ϕlocation(T)k+1/t (3.14), and σr|=ϕmutex(T)k+1/t (3.15).

Together, we get σr|=ϕ(S)k+1 for S=T

S = N: r=〈l0, δ0, ν0〉 c1,γ1−−→ . . . ck,γk−−−→〈lk, δk, νk〉
ck+1,γk+1−−−−−→〈lk+1, δk+1, νk+1〉, where

r∈RunN,k+1, and either the last step 〈lk, δk, νk〉
ck+1,γk+1−−−−−→〈lk+1, δk+1, νk+1〉

3Note that (Definition 2.3.5) δ(d) and δ̄(d) coincide in case d∈#(s) for any location s.
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is an action transition (2.15) resulting from executing a communication,
or it is a delayed action transition (2.16) resulting from executing a delay.

In case of a communication e=(s, c, dc, cc, λ, s′), we have lk=s, lk+1=s′,
and γk+1=δ̄k+1. Then

• σr(sk+1), σr(xk+1), σr(zk+1), σr(dk+1): equivalent to the respective
cases for S=T above

• σr(pk+1)
(xv)
= tt if ck+1(p)= , ff otherwise

• σr(cpk+1)
(xix)
= tt if ck+1(p)= ! , σr(cpk+1)=ff if ck+1(p)= ? , unspec-

ified otherwise

• σr(Dpk+1)
(xvi)
= ∆(δ̄k+1(p)) if ck+1(p)= , n⊥ otherwise

• σr(Ddk+1), σr(dk+1), σr|=cck, σr|=dck+1, σr|=I(s′)k+1: equivalent to
the respective cases for S=T above

From the above, we get σr|=ϕcommu(e)k+1/t (3.21) (so σr|=ϕtrans(N)k+1/t

(3.26)), σr|=ϕlocation(N)k+1/t (3.24), and σr|=ϕmutex(N)k+1 (3.25).

The case of a delay e=(s, c, dc, cc, id, s) is essentially equivalent to the
case of a communication, and needs not be considered separately. For
a delay, we get σr|=ϕdelay(e)k+1/t (3.22) (so σr|=ϕtrans(N)k+1/t (3.26)),
σr|=ϕlocation(N)k+1/t (3.24), and σr|=ϕmutex(N)k+1 (3.25).

Together, we get σr|=ϕ(S)k+1 for S=N

Finally, we get σr|=ϕ(S)k+1 for all systems S∈{A,T,N}, and we define the map
↓rσ:RunS,k→V(ϕ(S)k) such that for every run r∈RunS,k, ↓rσ(r)=σr∈V(ϕ(S)k) is the
derived interpretation.

Proposition A.1.8 (Derived Interpretation, Product). For r∈RunS1./S2,k, the
derived interpretation σr is a model of ϕ(S1./S2)k, i.e. σ∈V(ϕ(S1./S2)k).

Proof (Idea). The proof is along the same lines as the proof of Lemma A.1.7: in
IS, we show that for i=1, 2, the derived interpretation σr for a run r∈RunS1./S2,k+1,
reduced to the variables of ϕ(Si)k, is a model of ϕ(Si)k.

Using the above, the proof of Theorem 3.2.4 (found on Page 61) is straightfor-
ward:

Proof of Theorem 3.2.4. This follows directly from Lemma A.1.4 and Lemma
A.1.7.

Theorem A.1.9 (Soundness, Completeness). The formula representation ϕ(S)
of a real-time system S, as defined in Definitions 3.1.1, 3.1.4 and 3.1.9, is correct,
that means ϕ(S) exhibits the same behaviour as S.

Proof. This follows directly from Lemma A.1.4 and Lemma A.1.7.
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A.2 Correctness of Abstraction

In this Section, we prove that the abstraction function α, as presented in Section 4.1,
yields a correct over-approximation. To yield an over-approximation, every finite run
of the concrete system S (represented by a model of ϕ(S)k, see Theorem A.1.9) has
to be reproducible in the abstract case.4 This is captured in Lemma 4.1.7. Here,
we prove an even stronger correctness result, which in particular emphasises the
structural relationships between concrete and abstract formula. We show that the
diagram in Figure A.2 commutes, which allows us to conclude the existence of a
homomorphism hR between concrete and abstract set of runs.

RunS,k V(ϕ(S)k) V(ϕ(S̃)k) RunS̃,k

S ϕ(S)k ϕ(S̃)k S̃

i ii iii

ϕ α ϕ

run model model run↓rσ

↓σr

⊆

↓σr

↓rσhR

Figure A.2: Strong Correctness of Abstraction

The idea of the proof is as follows: since α works locally, it retains the formula
structure of ϕ(S) if S=A (cf. (3.7)), and it retains the formula structure of ϕ(S)

up to data constraints if S=T (cf. (3.16)).5 Therefore, there exists some system S̃

of the same representation ϕ(S̃)k = α(ϕ(S)k) (up to logical equivalence and data
constraints). With this, subdiagrams (i) and (iii) in Figure A.2 commute according
to Theorem A.1.9. Moreover, subdiagram (ii) in Figure A.2 commutes according

to Lemma 4.1.7 (since every model of ϕ(S̃)k is a model of α(ϕ(S)k)), such that the
whole diagram commutes.

Notation A.2.1 (Notation of Systems). If not stated otherwise, we shall assume
the constituents of a TA A to be denoted as A=(S, s0,Σ,X , I, E), and of a TCA T as
T=(S, s0,P ,X , I,D,#, E). We use the general notion S, with S∈{A,T}, whenever
possible, and if applicable, we may refer to common constituents (i.e., S, s0, X , I,

E) without explicitly mentioning A or T. For a system with identifier S̃, we add
the symbol ˜ to all constituents, equivalently, for a system with identifier Si, we
add index i to all constituents.

We use the notation of representation variables introduced in Section 3.1.1.

4Note that unlike in Section A.1, where we had S∈{A,T,N}, here we only have S∈{A,T}, cf.
Section 4.1.

5To guarantee that α yields an over-approximation, we may retain only those data constraints
that reason about ports not merged by γ, cf. Definition 4.1.3 and the explanations thereafter.
Therefore, we cannot expect that the formula structure of data constraints is preserved.
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Definition A.2.2 (Homomorphism of Runs). Let A, Ã be TA, T, T̃ be TCA,

both with X⊇X̃ and |S|≥|S̃|. Let |Σ|≥|Σ̃|, |P|≥|P̃|, and |D|≥|D̃|. Let SA, ST,
SÃ and ST̃ be the associated transition systems, and let RunA, RunT, RunÃ and

RunT̃ be the sets of runs. Let γS:S→S̃, γΣ:Σ→Σ̃, γP :P→P̃ and γD:D→D̃ be total,
surjective mappings.

A function hR:RunA→RunÃ is called a homomorphism of runs (between RunA

and RunÃ) iff for each run

r=〈l0, ν0〉 a1−→〈l1, ν1〉 a2−→〈l2, ν2〉∈RunA,

there exists a run h(r)=r̃,

r̃=〈l̃0, ν̃0〉 ã1−→〈l̃1, ν̃1〉 ã2−→〈l̃2, ν̃2〉 . . .∈RunÃ,

with γS(li)=l̃i, ν̃i=νi|X̃ , and γΣ(γi)=γ̃i for all i≥0.
A function hR:RunT→RunT̃ is called a homomorphism of runs (between RunT

and RunT̃) iff for each run

r=〈l0, δ0, ν0〉 P1,δ̄1,t1−−−−→〈l1, δ1, ν1〉 P2,δ̄2,t2−−−−→〈l2, δ2, ν2〉∈RunT,

there exists a run h(r)=r̃,

r̃=〈l̃0, δ̃0, ν̃0〉 P̃1,
˜̄δ1,t̃1−−−−→〈l̃1, δ̃1, ν̃1〉 P̃2,

˜̄δ2,t̃2−−−−→〈l̃2, δ̃2, ν̃2〉∈RunT̃,

with γS(li)=l̃i, ν̃i=νi|X̃ , γP (Pi)=P̃i,
˜̄δi(p̃)=n only if δi(p)=n for some p∈γ−1

P (p̃),

δ̃i(d̃)=n only if δi(d)=n for some d∈γ−1
D (d̃), and ˜̄δi(d̃)=n only if δ̄i(d)=n for some

d∈γ−1
D (d̃), for all i≥0.
For the sets of finite runs RunA,k, RunT,k, RunÃ,k and RunT̃,k, hR is defined

analogously.

Intuitively speaking, an abstraction is correct if the semantics of the abstract
system is not reduced with respect to the semantics of the concrete system. That
means, every behaviour that is possible in the concrete system has to be possible
in the abstract system as well. Since we have defined the semantics of a real-time
system S via sets of runs (Definitions 2.2.4 and 2.3.5), an abstraction of S is correct

if for all systems S and S̃, such that S̃ is obtained from S by abstraction, there
exists a homomorphism of runs hR:RunS→RunS̃, as defined in definition A.2.2. To
prove the existence of hR, we show that Figure A.2 is a commuting diagram.

The general proof idea is shown in Figure A.3: let S be a real-time system, with
k-unfolding ϕ(S)k. The abstraction function α preserves the structure of ϕ(S)k,

that means the abstraction α(ϕ(S)k) of ϕ(S)k is the k-unfolding ϕ(S̃)k of some

system S̃. Though the abstraction function α is defined on formulas rather than on
systems, the system S̃ can be “derived” from the formula representation α(ϕ(S)k)
(Proposition A.2.7). For r∈RunS,k and r̃∈RunS̃,k, such that hR(r)=r̃, there exists

an interpretation σ∈V(ϕ(S̃)k), such that r̃ is the derived run rσ of σ.
In other words, the commutative property can be summarised as follows: the

possible behaviour of the abstract system S̃, given by the set of runs RunS̃,k, is
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RunS,k V(ϕ(S)k) V(ϕ(S̃)k) RunS̃,k

S ϕ(S)k ϕ(S̃)k S̃
ϕ α ϕ

run model model run↓rσ

↓σr

⊆
↓σr

↓rσhR

Figure A.3: Abstraction by Omission: Basic proof idea

obtained from the possible behaviour of the original system RunS,k and the homo-
morphism of runs hR (lower path in Figure A.3). RunS̃,k is also obtained from the
k-unfolding ϕ(S)k of S, the abstraction function α, the set of models of α(ϕ(S)k),
and the set of derived runs for these interpretations (upper path in Figure A.3).

We can already state that

Proposition A.2.3 (Commuting Subdiagrams). The subdiagrams (i) and (iii)
in Figure A.2 are a commuting diagram each.

Proof. This follows directly from Theorem A.1.9.

The subdiagram (iii) in Figure A.2 is a commuting diagram when considered
separately. Yet, with respect to the overall context of Figure A.2, the fact that MO
is not defined on systems S but on formulas has to be taken into account. However,
Proposition A.2.7 below will show the existence of such an abstract system S̃.

We first show that the abstract formula α(ϕ(S)) is weaker than the concrete
formula ϕ(S) (cf. Lemma 4.1.7 on Page 73).

Proof of Lemma 4.1.7. Let L be a literal. The proof is done inductively on the
structure of the formula F :

IA: We need to consider the different cases in (4.1)

• If F=L, Conts(L)∩•α=∅, then α(F )
(4.1a)
= L. (L→ L) holds trivially.

• If F=L, Conts(L)∩•α 6=∅, L=p∈P, then α(F )
(4.1b)
= γ(p). By definition of γ,

γ(p)=q for some q∈P′. By definition of γα (4.3), (p→ q) holds.

• For all other literals L, α(L)
(4.1e)
= true. (L→ true) holds trivially.

• If F=¬p∧p′, with p, p′∈P and γ(p)=γ(p′)=q (basic case of (4.1c)), then

α(F )
(4.1c),(4.2a)

= α(¬p)∧α(p′)
(4.1c),(4.1b)

= q∧q=q. By definition of γα, ((¬p∧p′)→
q) holds.

• If F=¬p∧¬p′′, with p, p′′∈P and γ(p)=γ(p′′)=q (basic case of (4.1d)),

then α(F )
(4.1d),(4.2a)

= α(¬p)∧α(¬p′′)(4.1d),(4.1b)
= ¬q∧¬q = ¬q. By definition of

γα, ((¬p∧¬p′′)→ ¬q) holds.

IH: For formulas F1 and F2, (F1 → α(F1)) and (F2 → α(F2)) holds.
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IS: • If F=F1∧F2, then α(F )
(4.2a)
= α(F1)∧α(F2). ((F1∧F2) → (α(F1)∧α(F2)))

holds by IH and propositional logic.

• If F=F1∨F2, then α(F )
(4.2b)
= α(F1)∨α(F2). ((F1∨F2) → (α(F1)∨α(F2)))

holds by IH and propositional logic.

• If F=F1∧γα, then α(F )
(4.4)
= α(F1)∧ γα. ((F1∧γα)→ (α(F1)∧γα)) holds by

IH and propositional logic.

We want to show that MO preserves the formula representation. Since MO is
defined for formulas in NNF (cf. Definition 4.1.5), we first show that transformation
to NNF preserves the formula representation.

Remark A.2.4 (NNF preserves the Formula Representation). Let S be a
real-time system, with formula representation ϕ(S) and k-unfolding ϕ(S)k. The
transformation to NNF of ϕ(S) and ϕ(S)k preserves the formula structure, that
means, NNF (ϕ(S)) is a formula of the form (3.7) respectively (3.16), and similarly,
NNF (ϕ(S)k) is a formula of the form (3.29).

Proof. For S=A, the formulas ϕ(A) and ϕ(A)k are in NNF already, so nothing
needs to be shown.

For S=T, the only parts of ϕ(T) and ϕ(T)k which are not yet in NNF are the
representations of data constraints. It is easy to see that for a data constraint
dc∈DC(P ,D), with representation dc∈DC(PDA,D), the transformation NNF (dc) to
NNF is a well-formed data constraint according to Definition 2.1.7, too, that means
NNF (dc)∈DC(PDA,D).

Next, we show that MO preserves the structure of data and clock constraints.

Lemma A.2.5 (MO preserves Data and Clock Constraints). Let P be a set
of ports, D a set of data variables, and X a set of clocks. Let dc∈DC(P ,D) be a data
constraint (cf. Definition 2.1.7), cc∈CC(X ) a clock constraint (cf. Definition 2.1.2).
Let dc∈DC(PDA,DCO) be the representation of dc, and cc∈CC(X) the representations
of cc (cf. Section 3.1.1). The abstraction function α preserves the structure of data
and clock constraints, that means α(dc) and α(cc) are also valid representations of
data and clock constraints.

Proof. By definition, α changes only literals. Since dc and cc do not contain
propositional variables, neither of (4.1b), (4.1c) or (4.1d) is applicable. Therefore,
α preserves the logical structure,6 and literals are either kept unchanged (4.1a) or
mapped to true (4.1e). Thus, α(dc)∈DC(PDA,DCO), and α(cc)∈CC(X).

6The logical structure of a formula is the order of its literals and the logical operators ∧, ∨
and ¬. For example, for a formula F = (p∨¬q)∧¬(r∧¬(x = 5)), with p, q, r ∈ P being atomic
propositions and x ∈ V being a variable, the logical structure is F = (l1 ∨ l2)∧¬(l3 ∧ l4) (for literals
li). Note that an occurrence of ¬ is part of the logical structure only if it is not part of a literal.
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Remark A.2.6 (Lifting of MO). For argumentation purposes, we lift α in the
straightforward way to reason about constituents of systems rather than formulas.
For example, for a clock x with representation x, we may write x∈O instead of x∈O.

Similarly, we lift α to reason about sets rather than single variables. For example,
for the set of locations S and the set of clocks X , we may write α(S) and α(X ) to
denote the set of locations respectively clocks in the abstract system, that means
α(S)={s′ | s∈S, γ(s)=s′}, and α(X )={x | x 6∈O}=X\O. By α(λ), we denote the
update map λ, reduced to the clocks of the abstract system. That is, α(λ)=λ|α(X ).

We are now ready to show that MO preserves the formula representation of TA,
and preserves the formula representation of TCA up to data constraints.

Proposition A.2.7 (MO preserves the Formula Representation). Let A =
(S, s0,Σ,X , I, E) be a TA, T=(S, s0,P ,X , I,D,#, E) a TCA, with formula repre-
sentations ϕ(A), ϕ(T), and k-unfoldings ϕ(A)k, ϕ(T)k in NNF (cf. Remark A.2.4).
Let α be an abstraction function, with γ and O as in Definition 4.1.5.

The abstraction by merging omission preserves the formula representation and
k-unfolding of A, and it preserves the formula representation and k-unfolding of T up
to data constraints. That means, there exists a TA Ã, with formula representation
ϕ(Ã) and k-unfolding ϕ(Ã)k, such that

ϕ(Ã) = α(ϕ(S)), and

ϕ(Ã)k = α(ϕ(A)k),
(xx)

and there exists a TCA T, with formula representation ϕ(T̃) and k-unfolding ϕ(T̃)k,
such that

ϕ(T̃)\dc = α(ϕ(T))\dc, and

ϕ(T̃)k\dc = α(ϕ(T )k)\dc,
(xxi)

where \dc is a function that replaces all literals of the form (D'D′) or ¬(D'D′), with
' ∈{=,6}, and D, D′ either port data variables Dpt, data content variables Ddt, or
data element representations ni (cf. Definition 2.1.7 and Section 3.1.1.5), and t∈N,
in a formula by true.

Proof of (xx). (for the proof of (xxi), please refer to Page 143).
Let A′=(S ′, s′0,Σ

′,X ′, I ′, E ′) be a TA, with S ′=α(S), s′0=α(s0), Σ′=α(Σ), X ′=α(X ),
I ′(s)=α(I(s)) for all s∈S ′, and E ′={(α(s), α(a), α(cc), α(λ), α(s′)) | (s, a, cc, λ, s′) ∈
E}. Let ϕ(A′) and ϕ(A′)k be the formula representation and k-unfolding of A′.
Observe that we have

S ′=α(S)={s|s∈S, α(s)=id}∪{s′|s∈S, α(s)=s′}, and (*)

Σ′=α(Σ)={a|a∈Σ, α(a)=id}∪{a′|a∈Σ, α(a)=a′} (**)

We first show that ϕ(A′)=α(ϕ(A)). By Definitions 3.1.1 and 4.1.5, we have

α(ϕ(A)) = α(ϕinit(A)∧ϕtrans(A)∧ϕlocation(A)∧ϕmutex(A))

= α(ϕinit(A))∧α(ϕtrans(A))∧α(ϕlocation(A))∧α(ϕmutex(A))

ϕ(A′) = ϕinit(A′)∧ϕtrans(A′)∧ϕlocation(A′)∧ϕmutex(A′)
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Consider the corresponding parts in α(ϕ(A)) and ϕ(A′) separately

1. Initial constraints ϕinit:

α(ϕinit(A)) = α
(
s̄0 ∧

∧
s∈S,s6=s̄

¬s0 ∧ I(s̄)0 ∧
∧
a∈Σ

(¬α0)∧(z0=0)∧
∧
x∈X

(x0=0)
)

= α(s̄0)∧
∧

s∈S,s6=s̄
α(¬s0)∧α(I(s̄)0)∧

∧
a∈Σ

α((¬α0))∧

α((z0=0))∧
∧
x∈X

α((x0=0))

= α(s̄0)∧
∧

s∈S,s6=s̄,
α(s)=id

¬s0 ∧
∧

s∈S,s6=s̄,
α(s)=s′ 6=α(s̄)

¬s′0 ∧α(I(s̄)0)∧
∧

a∈Σ,
α(a)=id

(¬a0)∧

∧
a∈Σ,

α(a)=a′

(¬α′0)∧(z0=0)∧
∧

x∈X\O
(x0=0)

ϕinit(A′) = s̄′0 ∧
∧

s∈S′,s 6=s̄′
¬s0 ∧ I(s̄′)0 ∧

∧
a∈Σ′

(¬α0)∧(z0=0)∧
∧
x∈X ′

(x0=0)

By definition of A′, we have α(s̄0)=s̄′0, and α(I(s̄)0)=I(s̄′)0. Because of (*),
(**), and the fact that X ′=X\O, we finally get

α(ϕinit(A)) = ϕinit(A′)

2. Transition relation ϕtrans:

α(ϕtrans(A)) = α(
∨
e∈E

ϕaction(e)∨
∨
s∈S

ϕdelay(s))

=
∨
e∈E

α(ϕaction(e))∨
∨
s∈S

α(ϕdelay(s))

ϕtrans(A′) =
∨
e∈E′

α(ϕaction(e))∨
∨
s∈S′

α(ϕdelay(s))

Consider an action transition e=(s, a, cc, λ, s′)∈E:

α(ϕaction(e)) = α(st ∧αt 1 ∧ cct ∧(zt=zt 1)∧
∧

λ(x)=id

(xt 1=xt)∧∧
λ(x)=x′

(xt 1=x′t 1)∧
∧

λ(x)=n

(xt 1=zt 1−n)∧ s′t 1 ∧ I(s′)t 1)

= α(st)∧α(αt)∧α(cct)∧α(zt=zt 1)∧
∧

λ(x)=id

α(xt 1=xt)∧∧
λ(x)=x′

α(xt 1=x′t 1)∧
∧

λ(x)=n

α(xt 1=zt 1−n)∧α(s′t 1)∧ I(s′)t 1

= α(st)∧α(αt 1)∧α(cct)∧(zt=zt 1)∧
∧

λ(x)=id,
x∈X\O

(xt 1=xt)∧

∧
λ(x)=x′,
x,x′∈X\O

(xt 1=x′t 1)∧
∧

λ(x)=n,
x∈X\O

(xt 1=zt 1−n)∧α(s′t 1)∧ I(s′)t 1

and its counterpart e′=(α(s), α(a), α(cc), α(λ), α(s′))∈E ′:
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ϕaction(e′) = α(st)∧α(αt 1)∧α(cct)∧(zt=zt 1)∧
∧

α(λ)(x)=id

(xt 1=xt)∧∧
α(λ)(x)=x′

(xt 1=x′t 1)∧
∧

α(λ)(x)=n

(xt 1=zt 1−n)∧α(s′t 1)∧α(I(s′)t)

Because X ′=X\O, we have

α(ϕaction(e)) = ϕaction(e′)

For a delay transition in s, we have

α(ϕdelay(s)) = α(st∧
∧
a∈Σ

¬αt 1∧(zt≤zt 1)∧
∧
x∈X

(xt=xt 1)∧st 1∧I(s)t 1)

= α(st)∧
∧
a∈Σ

α(¬αt 1)∧α(zt≤zt 1)∧
∧
x∈X

α(xt=xt 1)∧α(st 1)∧α(I(s)t 1)

= α(st)∧
∧

a∈Σ,
α(a)=id

¬αt 1∧
∧

a∈Σ,
α(a)=a′

(¬α′t 1)∧(zt≤zt 1)∧

∧
x∈X ,
x∈X\O

(xt=xt 1)∧α(st 1)∧α(I(s)t 1)

and for the corresponding delay transition in s′, we have

ϕdelay(s′) = α(st)∧
∧

a∈Σ′
¬αt 1∧(zt≤zt 1)∧

∧
x∈X ′

(xt=xt 1)∧α(st 1)∧α(I(s)t 1)

Because of (**), we have

α(ϕdelay(s)) = ϕdelay(s′)

Since there is a one-to-one relation between transitions in E and E ′, and by
definition of ∨, we finally have

α(ϕtrans(A)) = ϕtrans(A′)

3. Mutual exclusion of locations ϕlocation:

α(ϕlocation(A)) = α(
∨
s∈S

(st 1∧
∧

s′∈S,s′ 6=s
¬s′t 1))

=
∨
s∈S

(α(st 1)∧
∧

s′∈S,s′ 6=s
α(¬s′t 1))

=
∨
s∈S

α(s)=id

(st ∧
∧

s′∈S,s′ 6=s
α(s′)=id

¬s′t ∧
∧

s′∈S,s′ 6=s
α(s′)=s̄ 6=s

¬s̄t)∨

∨
s∈S

α(s)=ŝ

(ŝt ∧
∧

s′∈S,s′ 6=s
α(s′)=id

¬s′t ∧
∧

s′∈S,s′ 6=s
α(s′)=s̄ 6=s

¬s̄t)

ϕlocation(A′)) =
∨
s∈S′

(st 1∧
∧

s′∈S′,s′ 6=s
¬s′t 1)
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Because of (*), we have

α(ϕlocation(A)) = ϕlocation(A′))

4. Mutual exclusion of events ϕmutex:

α(ϕmutex(A)) = α(
∨
a∈Σ

(αt 1∧
∧

a′∈Σ,a′ 6=a

¬α′t 1)∨
∧
a∈Σ

(¬αt 1))

=
∨
a∈Σ

(α(αt 1)∧
∧

a′∈Σ,a′ 6=a

α(¬α′t 1))∨
∧
a∈Σ

α(¬αt 1)

=
∨
a∈Σ

α(a)=id

(αt ∧
∧

a′∈Σ,a′ 6=a
α(a′)=id

¬α′t ∧
∧

a′∈Σ,a′ 6=a
α(a′)=ā6=a

¬ᾱt)∨

∨
a∈Σ
α(a)=â

(α̂t ∧
∧

a′∈Σ,a′ 6=a
α(a′)=id

¬α′t ∧
∧

a′∈Σ,a′ 6=a
α(a′)=ā6=a

¬ᾱt)∨

∧
a∈Σ,

α(a)=id

(¬a)∧
∧

a∈Σ,
α(a)=ā

(¬ᾱt 1)

ϕmutex(A′)) =
∨

a∈Σ′
(αt 1∧

∧
a′∈Σ′,a′ 6=a

¬α′t 1)∨
∧

a∈Σ′
(¬αt 1)

Because of (**), we have

α(ϕmutex(A)) = ϕmutex(A′)),

From the four cases above, we get

α(ϕ(A)) = ϕ(A′)

The argumentation for
α(ϕ(A)k)=ϕ(A′)k

is similar.
Thus, the TA A′ satisfies the conditions (xx), and we have shown that MO

preserves the formula representation and k-unfolding of TA.

Proof of (xxi). Let T′ = (S ′, s′0,P ,X ′, I ′,D′,#′, E ′) be a TCA, with S ′=α(S),
s′0=α(s0),P ′=α(P),X ′=α(X ), I ′(s)=α(I(s)) for all s∈S ′, D′=α(D), #′(s)=α(#(s))
for all s∈S ′, and E ′={(α(s), α(P ), α(dc), α(cc), α(λ), α(s′))|(s, P, dc, cc, λ, s′)∈E}.
Let ϕ(T′) and ϕ(T′)k be the formula representation and k-unfolding of T′. Observe
that we have

S ′=α(S)={s|s∈S, α(s)=id}∪{s′|s∈S, α(s)=s′}, (†)
Σ′=α(Σ)={a|a∈Σ, α(a)=id}∪{a′|a∈Σ, α(a)=a′}, and (‡)
D′=α(D)={d|d∈D, α(d)=id}∪{d′|d∈D, α(d)=d′} (††)
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We first show that ϕ(T′)\dc=α(ϕ(T))\dc. By definition of \dc, and Definitions
3.1.4 and 4.1.5, we have

α(ϕ(T))\dc = α(ϕinit(T)∧ϕtrans(T)∧ϕlocation(T)∧ϕmutex(T))\dc
= α(ϕinit(T))\dc ∧α(ϕtrans(T))\dc ∧

α(ϕlocation(T))\dc ∧α(ϕmutex(T))\dc
ϕ(T′)\dc = ϕinit(T′)\dc ∧ϕtrans(T′)\dc ∧ϕlocation(T′)\dc ∧ϕmutex(T′)\dc

Consider the corresponding parts in α(ϕ(T))\dc and ϕ(T′)\dc separately

1. Initial constraints ϕinit:

α(ϕinit(T))\dc = α
(
s̄0 ∧

∧
s∈S,s6=s̄

¬s0 ∧ I(s̄)0 ∧
∧
p∈P

(¬p0 ∧(Dp0=n⊥))∧∧
d∈D

(¬d0 ∧(Dd0=n⊥))∧(z0=0)∧
∧
x∈X

(x0=0)
)
\dc

= α(s̄0)\dc ∧
∧

s∈S,s6=s̄
α(¬s0)\dc ∧α(I(s̄)0)\dc ∧

∧
p∈P

α(¬p0)\dc ∧∧
p∈P

α((Dp0=n⊥))\dc ∧
∧
d∈D

α(¬d0)\dc ∧
∧
d∈D

α((Dd0=n⊥))\dc ∧

α((z0=0))\dc ∧
∧
x∈X

α((x0=0))\dc

= α(s̄0)∧
∧

s∈S,s6=s̄,
α(s)=id

¬s0 ∧
∧

s∈S,s6=s̄,
α(s)=s′ 6=α(s̄)

¬s′0 ∧α(I(s̄)0)∧
∧
p∈P,

α(p)=id

(¬p0)∧

∧
p∈P,
α(p)=p′

(¬p′0)∧
∧
d∈D,
α(d)=id

(¬d0)∧
∧
d∈D,
α(d)=d′

(¬d′0)∧

(z0=0)∧
∧

x∈X\O
(x0=0)

ϕinit(T′)\dc = s̄′0\dc ∧
∧

s∈S′,s 6=s̄′
¬s0\dc ∧ I(s̄′)0\dc ∧

∧
p∈P ′

(¬p0 ∧(Dp0=n⊥))\dc ∧∧
d∈D′

(¬d0 ∧(Dd0=n⊥))\dc ∧(z0=0)\dc ∧
∧
x∈X ′

(x0=0)\dc

= s̄′0 ∧
∧

s∈S′,s 6=s̄′
¬s0 ∧ I(s̄′)0 ∧

∧
p∈P ′

(¬p0)∧∧
d∈D′

(¬d0)∧(z0=0)∧
∧
x∈X ′

(x0=0)

By definition of T′, we have α(s̄0) = s̄′0, and α(I(s̄)0) = I(s̄′)0. Because of
(†), (‡) and (††), and the fact that X ′=X\O, we finally get

α(ϕinit(T))\dc = ϕinit(T′)\dc

2. Transition relation ϕtrans:

α(ϕtrans(T))\dc = α(
∨

e∈E,e visible

ϕvisible(e)∨
∨

e∈E,e invisible

ϕinvisible(e))\dc

=
∨

e∈E,e visible

α(ϕvisible(e))\dc ∨
∨

e∈E,e invisible

α(ϕinvisible(e))\dc
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ϕtrans(T′)\dc =
∨

e∈E′,e visible

ϕvisible(e)\dc ∨
∨

e∈E′,e invisible

ϕinvisible(e)\dc

Consider a visible transition e=(s, P, dc, cc, λ, s′) ∈ E:

α(ϕvisible(e))\dc = α(st∧I(s)t∆∧
∧
p∈P

pt 1∧
∧
p 6∈P
¬pt 1∧

∧
d6∈#(s′)

¬dt 1∧dct 1∧

cct∆∧(zt<zt 1)∧
∧

λ(x)=id

(xt 1=xt)∧
∧

λ(x)=x′
(xt 1=x′t 1)∧∧

λ(x)=n

(xt 1=zt 1−n)∧s′t 1∧I(s′)t 1)\dc

= α(st)∧α(I(s)t∆)∧
∧
p∈P,

α(p)=id

pt 1 ∧
∧
p∈P,

α(p)=p′

p′t 1 ∧
∧
p 6∈P,

α(p)=id

¬pt 1 ∧

∧
p 6∈P,

α(p)=p′ 6∈α(P )

¬p′t 1 ∧
∧

d6∈#(s′),
α(d)=id

(¬dt 1)∧
∧

d6∈#(s′),
α(d)=d′

(¬d′t 1)∧

α(cct∆)∧(zt<zt 1)∧
∧

λ(x)=id,
x∈X\O

(xt 1=xt)∧

∧
λ(x)=x′,
x,x′∈X\O

(xt 1=x′t 1)∧
∧

λ(x)=n,
x∈X\O

(xt 1=zt 1−n)∧α(s′t 1)∧ I(s′)t 1

and its counterpart e′=(α(s), α(P ), α(dc), α(cc), α(λ), α(s′))∈E ′:

ϕvisible(e′)\dc = α(st)\dc∧α(I(s)t∆)\dc∧
∧

p∈α(P )

pt 1\dc∧
∧

p 6∈α(P )

(¬pt 1)\dc∧∧
d 6∈#(α(s′))

(¬dt 1)\dc∧α(dct 1)\dc∧α(cct∆)\dc∧α(zt<zt 1)\dc∧∧
α(λ)(x)=id

(xt 1=xt)\dc∧
∧

α(λ)(x)=x′
(xt 1=x′t 1)\dc∧∧

α(λ)(x)=n

(xt 1=zt 1−n)\dc∧α(s′t 1)\dc∧α(I(s′)t 1)\dc

= α(st)∧α(I(s)t∆)∧
∧

p∈α(P )

pt 1∧
∧

p6∈α(P )

(¬pt 1)∧∧
d 6∈#(α(s′))

(¬dt 1)∧α(cct∆)∧(zt<zt 1)∧∧
α(λ)(x)=id

(xt 1=xt)∧
∧

α(λ)(x)=x′
(xt 1=x′t 1)∧∧

α(λ)(x)=n

(xt 1=zt 1−n)∧α(s′t 1)∧α(I(s′)t 1)

Because of (‡) and (††), and the fact that X ′=X\O, we have

α(ϕvisible(e))\dc = ϕvisible(e′)\dc
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Equivalently, we can show for an invisible transition e=(s, ∅, true, cc, λ, s′) and
its counterpart e′=(α(s), ∅, true, α(cc), α(λ), α(s′)) that

α(ϕinvisible(e)\dc = ϕinvisible(e′)\dc

Since there is a one-to-one relation between transitions in E and E ′, and by
definition of ∨, we finally have

α(ϕtrans(T))\dc = ϕtrans(T′)\dc

3. Mutual exclusion of locations ϕlocation: because \dc does not change ϕmutex(T′)
or α(ϕmutex(T)), equivalently to the case for TA above, we have

α(ϕlocation(T))\dc = ϕlocation(T′)\dc

4. Data consistency constraints ϕmutex: trivially,

α(ϕmutex(T)))\dc = true = ϕmutex(T′)\dc

From the four cases above, we get

α(ϕ(T))\dc = ϕ(T′)\dc

With a similar argumentation, we get

α(ϕ(T)k)\dc=ϕ(T′)k\dc

Thus, the TCA T′ satisfies the conditions (xxi), and we have shown that MO
preserves the formula representation and k-unfolding of TCA, up to data constraints.

Proposition A.2.8 (Commuting Subdiagram). The subdiagram (ii) of Fig-
ure A.2 is a partially commuting diagram.7

Proof. This follows directly from Proposition A.2.7.

We now have all the results to give the proof of Theorem 4.1.8.

Proof of Theorem 4.1.8. For the abstraction by omission to be correct, every
finite run in the original system S has to be reproducible in the abstract system S̃.
We show this by defining a homomorphism hR between original and abstract sets of
runs RunS,k and RunS̃,k, such that Figure A.2 commutes.

7Here, “partially commuting” means that every model σ∈V(ϕ(T)k) is also a model of V(ϕ(T̃)k),
but not necessarily vice versa.
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Let S be a real-time system, with formula representation ϕ(T) and k-unfolding
ϕ(S)k, let V(ϕ(S)k) be the set of models of ϕ(S)k, let RunS,k be the set of finite
runs of length k of S.

Let α be an abstraction function, with γ and O as in Definition 4.1.5, let S̃ be
the abstract system that results from applying α to the formula representation ϕ(S)

and the k-unfolding ϕ(S)k, that means ϕ(S̃)=α(ϕ(S)) and ϕ(S̃)k=α(ϕ(S)k), cf.

Proposition A.2.7, let V(ϕ(S̃)k) be the set of models of ϕ(S̃)k, and RunS̃,k the set of

finite runs of length k of S̃. Let ξ:V(ϕ(S)k)→V(ϕ(S̃)k) be a mapping assigning to

each interpretation σ∈V(ϕ(S)k) the interpretation σ̃∈V(ϕ(S̃)k), which is obtained

from restricting σ to the variables in ϕ(S̃)k.
8

We define a homomorphism hR (cf. Definition A.2.2) as

hR:RunS,k→RunS̃,k

hR(r) =↓σr(ξ(↓rσ(r)))

(cf. Lemmas A.1.4 and A.1.7). That means, a run rσ̃ ∈RunS̃,k is obtained from
a run r∈RunS,k by mapping r to the derived interpretation ↓rσ (r)=σr∈V(ϕ(S)k)

(Definition A.1.6), reducing it to the interpretation ξ(↓rσ(r))=σ̃∈V(ϕ(S̃)k) over the

variables in ϕ(S̃)k, and mapping it to the derived run ↓σr (ξ(↓rσ (r)))=rσ̃ ∈RunS̃,k

(Definition A.1.2).

We define γS:S→S̃, with γS(s)=s̃ iff γ(s)=s̃,9, γΣ:Σ→Σ̃, with γΣ(a)=ã iff γ(a)=ã,

γP :p→p̃, with γP (p)=p̃ iff γ(p)=p̃, and γD:d→d̃, with γD(d)=d̃ iff γ(d)=d̃. With this,
hR is a homomorphism as defined in Definition A.2.2. Together with the results
of Proposition A.2.3, Proposition A.2.7, and Proposition A.2.8, Figure A.2 is a
commuting diagram, that means every run of the original system S is reproducible
in the abstract system S̃, and therefore the abstraction by omission is correct.

8σ̃ is well-defined, as by definition of α: Vars(α(ϕ(S)k))⊆Vars(ϕ(T)k), cf. Proposition A.2.7.
9Remember that we lifted α to constituents of TCA, cf. Remark A.2.6.




