
Modelling and analysis of real-time coordination patterns
Kemper, S.

Citation
Kemper, S. (2011, December 20). Modelling and analysis of real-time coordination
patterns. IPA Dissertation Series. BOXPress BV, 2011-24. Retrieved from
https://hdl.handle.net/1887/18260
 
Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/18260
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/18260


Chapter 6

Conclusions

Component connectors that implement real-time coordination patterns are an es-
sential ingredient of component-based software engineering. They are needed to
connect, coordinate and orchestrate the distributed components of large real-time
systems, and in this way guarantee correct and safe behaviour of the entire system.
Adaptation (and extension) of such systems to different needs is facilitated by the
encapsulated modular nature of the component connectors, which allows to replace
a coordination pattern by another, unnoticed by the other parts of the system. In
this thesis, we have established a formal framework for exhaustive modelling and
analysis of real-time coordination patterns, with a focus on the formal model of
Timed Constraint Automata (TCA) with Data.

In Chapter 2, we have started with the formal definition of the system models,
intended to be used to model the real-time coordination patterns. Each of the mod-
els is suited to model certain classes of real-time coordination patterns, depending
on whether the pattern takes into account data, true concurrency of actions or envi-
ronmental constraints. We present the models with increasing complexity and mod-
elling power based on these features: Timed Automata (TA) [AD94, Alu99] are well-
known (and well-studied), but lack the ability to handle data and true concurrency.
As a consequence, we have extended the formal model of TCA [ABdBR07, Kem11]
(handling true concurrency) with memory cells to handle data. To incorporate en-
vironmental constraints (for example, whether the environment in which a system
operates is ready to communicate), we have finally introduced the formal model of
Timed Network Automata (TNA) with memory cells and data (which allow for true
concurrency as well) as an extension of the model presented in [Kem10]. The intu-
itive visual representation of each of the models (corresponding to a certain extend
to mental models of such systems) allows to quickly and easily sketch and develop
systems with the formalism.

In Chapter 3, we define a representation in propositional logic with linear ratio-
nal arithmetic for each of the system models from Chapter 2. We try to keep the
representation as general as possible, by using only those variable types and oper-

123



124 CHAPTER 6. CONCLUSIONS

ations that are compulsory to faithfully represent the underlying formal model. In
this way, the representation can serve as an intermediate format and can be trans-
lated into the input language of many common SMT-solvers, which in turn can be
used to analyse the underlying system. We have discussed how to apply the tech-
nique of Bounded Model Checking to the formula representation, and have presented
correctness and completeness results.

A major challenge in component-based software engineering is the fact that the
systems to be analysed are getting bigger and more complex, while correctness and
safety still need to be guaranteed. In Chapter 4, we have presented an approach
to (partially) solve this problem: we have defined an abstraction function that can
be used to reduce the size of the system representation. The abstraction function
works on the formula representation from Chapter 3, and removes parts that are
considered irrelevant to the verification of a particular property. We have shown
how to undo part of the abstraction in case it has turned out to be too coarse, based
on information obtained from so-called spurious counterexamples (counterexamples
to the property under test that only exist in the abstract system). We have provided
correctness results proving the abstract system to be an over-approximation of the
original system.

Theoretical results can only be beneficial if they can be used and applied in prac-
tice. In Chapter 5, we have presented in detail the available tool support for the
theoretical framework developed in the preceding Chapters (as of now, the imple-
mentation only supports the formal model of TCA). Our implementation of the TCA
plugin is part of the Extensible Coordination Tools [ECT], an integrated graphical
development environment for the Eclipse [Ecl] platform that supports modelling and
analysis of component-based systems. We have provided detailed information about
the implementation structure of both our plugin and the ECT in general, and we
have sketched the typical workflow when using the tool. In this way, Chapter 5 can
be seen as a “getting started” tutorial for users, and at the same time as a reference
manual for developers. In the end of the Chapter, we have presented two case studies
(including experimental results), to show how TCA can be used to model protocol
coordination in a concise and understandable way, and we have discussed the ben-
efits of using TCA, for the case studies in particular and for real-time coordination
patterns in general.

6.1 Future Directions

In parts of this thesis, some questions have remained unaddressed. For other parts,
we see obvious directions for future research and extensions of the work. We now
give an overview of the most important points.

In Section 5.3.3, we have discussed the disadvantages of TA when it comes to
concurrent execution of actions, and the advantages of TCA regarding this aspect.
However, there are situations where a notion similar to committed locations in TA
(remember that a committed location in a TA must be left immediately, without
delay or interleaving of other actions, cf. Footnote 14 on Page 120) could be benefi-
cial also for TCA: suppose a committed location in a TA, with n ingoing transitions



6.1. FUTURE DIRECTIONS 125

and m outgoing transitions, all with disjoint transition labels. To model the same
behaviour with a TCA, we would need n∗m transitions (while the TA only has n+m
transitions and one location). We consider it interesting to investigate how a no-
tion similar to committed locations can be defined for TCA, and whether there is a
noticeable improvement on performance when it comes to verification.

The model checker Vereofy (http://www.vereofy.de) provides tools for model
checking (untimed) Constraint Automata (CA). As input, it accepts amongst others
CARML (Constraint Automata Reactive Module Language [BBKK09]), which is a
textual description language for CA. Extending CARML with the notion of time
would yield a textual description language for TCA, which for example could be
used as an exchange format for TCA specifications between different tools.

Untimed CA where originally defined as a semantical model for the channel-based
coordination languageReo. Consequently, TCA were defined to serve as a semantical
model for timed Reo, yet TCA and timed Reo have by now to a certain degree
evolved independently of each other. In particular, timed Reo is still restricted to
the definitions presented in [ABdBR07]: timed behaviour is incorporated in Reo
through special timer channels. These accept any (data) type of input, delay for a
certain amount of time, and then emit a special “timeout” signal. In addition, some
timer channels can be stopped and/or restarted. It is obvious to see that TCA are
more powerful. However, now that syntax and semantics for TCA with data have
been defined formally, it should be straightforwardly possible to establish the link
between TCA and timed Reo. This of course includes extending the implementation
as well: in ECT, timer channels for Reo are already supported, and a translation
from Reo to CA already exists. Similar to this translation, a translation from timed
Reo to TCA can be implemented once the formal basis for this has been established.

The time that is needed for verification may be a bottleneck for very large sys-
tems. For this reason, we consider it worth to investigate how other SAT and SMT
solvers perform on our formula generation. A drawback however is the fact that at
the moment, there exist only very few SMT solvers that can generate interpolants
for unsatisfiable SMT problems. For this reason, it might be worth to decouple
interpolant generation from SMT solving. A tailored (re)implementation of inter-
polant generation would allow to optimise the generation algorithm such that it
always generates the strongest interpolant (the notion of the strongest interpolant
is well-defined, and the strongest interpolant can be computed iteratively, cf. for
example [EKS06]). Another approach to decrease verification times is to investigate
how the formula order of the input problem influences the performance of different
SMT solvers (for example, whether variable valuations of the witness run occur at
the beginning or at the end of the input sequence, or are distributed throughout the
sequence).

We expect the largest potential for future research in the field of abstraction
refinement. A straightforward extension of the work presented in this thesis is
to extend the abstraction function to TNA. Assuming that ports in TNA can be
merged just like ports in TCA, questions that need to be solved before an abstraction
function for TNA can be defined include (1) how to define the colouring of merged
ports, and (2) whether read and write ports can be merged, or (if this should not
be possible) how to avoid this. From a more practical point of view, for most parts

http://www.vereofy.de


126 CHAPTER 6. CONCLUSIONS

of the formula representation we expect the abstraction function for TNA to work
in the same way as it does for TCA. The only exception to this are port colour
variables: the explanations after Definition 4.1.5 (positive propositional variables
are used to describe the behaviour, negative propositional variables are used to
ensure consistency) do not apply to port colour variables, which means they cannot
be handled in the same, uniform way (only based on syntactical categories) as other
variables. A possibility to solve this is to impose additional constraints on the set of
omission and map of merging for TNA, in a similar way as has been done for data
constraints involving merged ports in TCA (cf. Definition 4.1.3).

Apart from extending the abstraction function to other system types (like TNA),
it is also possible to extend it with other concepts of abstraction. By concept, we
mean the way how information is removed from the system. The abstraction function
currently features two concepts: merging and omission. Examples of other concepts
include weakening, and (variants of) abstract interpretation. By weakening, we
mean to replace a constraint by a weaker variant instead of completely removing it.
For example, replace a constraint x<5 by x<10 (note that convexity is required for
this to work for compound constraints). We expect this concept to be applicable
to clock constraints. In abstract interpretation (cf. for example [CC77, CC92]), a
large (possibly infinite) set of concrete values is restricted to a smaller, finite set
of abstract values, using a suitable abstraction function. For example, the set Z of
integer numbers could be abstracted to the set {-1, 0, 1}, by mapping all negative
integers to -1, all positive integers to 1, and 0 to 0. Abstract interpretation resembles
our idea of abstraction by merging, and we expect it to be applicable to the domain
of data values of TCA and TNA.

Finally, a question that has not been addressed in this thesis is how to determine
the initial abstraction automatically, and how to automate the refinement step. We
rely on human experts to provide the initial abstraction and decide which parameter
to refine. As an intermediate step towards automatic abstraction refinement, the
initial abstraction could be determined automatically based on the property to be
verified. A related approach can be found in [CGKS02, CCK+02], where the initial
abstraction leaves the parameters contained in the property in the system, and
removes all other parameters. In [MA03], the initial abstraction is obtained from a
proof of unsatisfiability (in the original system, for some small unfolding depth). We
believe these approaches can be adapted to the work presented in this thesis, but it
should be one of the major goals for future research to aim towards a framework for
fully automatic abstraction refinement.


