Universiteit

4 Leiden
The Netherlands

Modelling and analysis of real-time coordination patterns
Kemper, S.

Citation

Kemper, S. (2011, December 20). Modelling and analysis of real-time coordination
patterns. IPA Dissertation Series. BOXPress BV, 2011-24. Retrieved from
https://hdl.handle.net/1887/18260

Version: Corrected Publisher’s Version

Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/18260

License:

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/18260

Chapter 5

Tool Development and Application
to Case Studies

In the previous Chapters, we have presented the theoretical foundations of a frame-
work for modelling and analysing distributed real-time systems. While it is of course
very important to have a well-grounded and correct theoretical basis to start from,
any formalism can only be used in practice if it comes along with adequate tool sup-
port. Such tool support can in turn be used to show the usability and applicability
of a formalism. In particular, graphical editors offer intuitive and easy access to a
new formalism, even for the unexperienced user. In this Chapter, we present our
work on tool development, which has been done in the context of this thesis.

The rest of this chapter is organised as follows: in Section [5.1] we present the
details of the tool implementation. We start by giving a brief introduction to the
Eatensible Coordination Tools (ECT) in Section [5.1.1} a tool suite that is being
developed in the Foundations of Software Engineering group! (SEN3) at CWI. In
the remainder of Section [5.1], We then present the support for modelling and analysis
of TCA that we have integrated into ECT . In Section[5.2] we use a small example to
explain the most important features of our tool, and show the typical workflow when
using it. Finally, in Section [5.3] we introduce two case studies, present experimental
results when using our tool to model check them, and discuss the advantages of
using our formalism and tool over using other formalisms.

Except for Sections m (which is presented to provide a deep insight into the
functioning of our implementation in the overall context of ECT) and (which
has been presented in [Kem11]), this Chapter describes original work, which has not
been presented elsewhere.

"http://www.cwi.nl/research-groups/Foundations-of-software-engineering

87

http://www.cwi.nl/research-groups/Foundations-of-software-engineering

88 CHAPTER 5. TOOL DEVELOPMENT AND CASE STUDIES

5.1 Implementation

We have implemented our work on TCA and integrated it as part of the Eztensi-
ble Coordination Tools (ECT, [ECT]), building on the Eztensible Automata (EA)
framework. In the next section (Section [5.1.1)), we give a high-level overview of
ECT, and briefly introduce the architecture of the EA framework. In Section [5.1.2]
we present the implementation of the TCA editor plugin. Finally, Section [5.1.3] ex-
plains the implementation of the formula generation from TCA. If not explicitly
mentioned, all implementation is done in Java [GJSBO05].

5.1.1 The Extensible Automata framework in ECT

ECT is an integrated graphical development environment available for the Eclipse
[Ecl] platform. It consists of a set of plugins that support modelling and analysis of
component-based systems. The core of ECT has been developed and implemented in
the context of the PhD thesis of Christian Krause [Krall]. ECT provides extensive
support for systems which are specified in the channel-based coordination language
Reo [Arb04], including a graphical modelling environment (editor), conversion to
and from other models (for example to quantitative intentional automata (QIA) and
(in turn) markov chains [AMM™09], to CA [ABRS04], to mCRL2 [KKdV10l Krall],
from BPMN, UML sequence diagrams and BPEL |[CKA1(]), java code generation,
and animation. In addition, ECT comprises plugins to directly edit most of the
aforementioned models, amongst other for CA, QIA and mCRL2 (for BPMN, an
Eclipse plugin outside ECT already exists [BPM]). Please refer to [Kralll [ECT] for
a complete and detailed description of ECT.

Our implementation of the TCA plugin uses the Eztensible Automata (EA)
framework in ECT. The framework was developed and implemented with the in-
tention to “provide a unified framework for deriving automata-based models for
Reo” [Kralll], but allows to extend existing and define new automata-based models
in general (i.e., detached from Reo). In the remainder of this Section, we give a
brief overview of the EA framework; again, we refer to [Krall] for a complete and
detailed description.

The meta model of the framework comprises the packages cwi.ea.automata (cf.
Figure and cwi.ea.extensions (cf. Figure [5.2)).2 Conceptually, there are two
different types of elements in the EA framework: extensible elements and extensions
(extending elements). The interfaces IExtensible in cwi.ea.automata and IExtension
in cwi.ea.extensions mirror this structure. Every [Extensible owns a number of /Ex-
tensions.

Package cwi.ea.automata contains classes for the basic extensible elements that
make up every automata-based model: Automaton, State,® and Transition. These ex-
tend the abstract base class ExtensibleElement (in package cwi.ea.eztensions), which
implements interface /Extensible.

2Figures and are essentially taken from [Krall]. Equivalent diagrams can also be found
as part of the source code of the ECT tools, publicly available at http://reo.project.cwi.nl/.
30ur notion of location (cf. Chapter D equates to the notion of state in the EA framework.

http://reo.project.cwi.nl/

5.1. IMPLEMENTATION 89
1 [Automaton) 1
@ #usedExtensionlds:String (@
automaton automaton
ExtensibleElement
m cwi.eaq.extensions
0..* | states 1 - . 0% transitions | 0..*
State target incomiﬁg Transition
1 0.*
- ~ source outgoing - 7

Figure 5.1: Package cwi.ea.automata

s . 7
f <interface>>) <interface>>
|Extensible i 0.* |Extension
owner extensions | ~id:EString
- A J L A)
r —! N p o N
ExtensibleElement ExtensionElement

L

[

l

l

g
IntegerExtension

~

' . N N
StringExtension

(StringListExtension

~

#value:int

#value:String

#values: EList<String>

=

= J

-

J

Figure 5.2: Package cwi.ea.extensions

l

e R A
BooleanExtension

#value:boolean

-

90 CHAPTER 5. TOOL DEVELOPMENT AND CASE STUDIES

Extensions are key/value pairs, where the key is a unique ID of type String, and
the value contains the content information of the extension. There are four prede-
fined extension value types in cwi.ea.extensions: StringExtension, StringListExtension,
BooleanExtension and IntegerExtension. These extend the abstract base class Exten-
sionElement, which implements /Extension. New custom types can be easily defined
by extending ExtensionElement or one of its subclasses.

To make clear the difference between plugin and extension: a plugin is an encap-
sulation of behaviour, providing support for a certain feature. For example, the TCA
plugin provides support for modelling and analysing TCA in various ways. A plugin
typically comprises several extensions. Every extension implements one aspect of
the feature, for example, modelling TCA transitions by adding real-time aspects to
transitions. Every extension is enabled for (i.e., applicable to) exactly one of the
extensible elements Automaton, State or Transition.

Every extension has a provider class (extension provider), cf. Figure . An
extension provider has to implement the interface IExtensionProvider, and one of the
interfaces I TextualExtensionProvider (for textual extensions, i.e. labels) or /CustomEx-
tensionProvider (for other types of extensions), all contained in package cwi.ea. The
provider class defines how to handle the extension in the editor, it contains methods
amongst others for parsing, editing and validating (syntax and semantic checks) the
extension, or for providing a default extension. For conciseness of explanation, in
the sequel, we refer to extensions by the name of their provider class, while omitting
the suffix Provider.

(A

< nterface>>
| TextualExtensionProvider

+editExtension(IExtension extension):String

+parseExtension(String value, IExtensible owner):|Extension
(. J

(7

<interface>>
|ExtensionProvider

+validateExtension(lExtension x):ValidationResult
+createDefaultExtension(IExtensible owner):|Extension

-

s A

<interface>>
ICustomExtensionProvider

Figure 5.3: Package cwi.ea

An EA automaton can in principle use any combination of the extensions de-
fined in plugins within the EA framework (see [Krall] for a complete overview of
supported extensions). In the manifest file plugin.xml that accompanies every plu-

5.1. IMPLEMENTATION 91

gin definition in Eclipse, it is possible to define dependencies and mutual exclusion
constraints among extensions (either among extensions of the particular plugin, or
among extensions of the particular plugin and other plugins). Moreover, in the
plugin.xml files of EA plugins, it is possible to define an automaton type, that has
a predefined set of extensions enabled on creation.

5.1.2 The Timed Constraint Automaton Plugin

We have added support for TCA to the EA framework. Since TCA are an ex-
tension of CA, we were able to use the existing extensions for initial locations
(StartStateExtension), port names on automaton level (AutomatonPortNames), ac-
tive ports (TransitionPortNames), and location memory (StateMemoryExtension). To
support the particular features of TCA, we implemented a number of new exten-
sions. All of the new extensions implement interface ITextualExtensionProvider (cf.
Figure , and are simple enough such that we were able to use the predefined ex-
tension value type StringExtension (cf. Figure . All extensions are contained in
package cwi.ea.extensions.clocks. The following overview shows the new extensions,
their format as seen in the editor, and their most important features. The default
value is generated when calling createDefaultExtension() , the syntactic checks are
performed when calling validateExtension (both from [ExtensionProvider).

AutomatonClocks (all clocks defined for a TCA): comma separated list of clock

names. Enabled for Automaton.? Default value "" (empty string, i.e., no
clocks).

Statelnvariant (location invariants): clock constraint formula according to Def-
inition Enabled for State. Default value true. Syntactic check that
formula is well-formed, and that every clock used in the formula is defined in
AutomatonClocks.

TransitionGuard (clock guards on transitions): clock constraint formula according
to Definition 2.1.2] Enabled for Transition. Default value true. Syntactic
check that formula is well-formed, and that every clock used in the formula is
defined in AutomatonClocks.

TransitionUpdate (clock updates on transitions): comma separated list of clock
assignments according to Definition 2.1.5]° Enabled for Transition. Default
value "" (i.e., all clocks keep their value). Syntactic check that no clock is
assigned more than once, and that every clock used in an assignment is defined
in AutomatonClocks.

TCADataConstraints (data guards on transitions): data constraint formula ac-
cording to Definition [2.1.7, Enabled for Transition. Default value true. Syn-
tactic check that every port used in the data constraint is defined in Transi-

4See above, every extension is enabled for exactly one of Automaton, State, Transition.
®More concretely, write x=n for an update A(x)=n, and x=y for an update A\(z)=y. Clocks
not mentioned are assumed to keep their value.

92 CHAPTER 5. TOOL DEVELOPMENT AND CASE STUDIES

tionPortNames, and every memory cell used in the data constraint is defined
in StateMemoryExtension of either source or target location of the transition.

Despite the fact that a data constraint extension for CA already existed (Con-
straintExtension), we had to provide the new extension TCADataConstraints for data
guards in TCA. The reason is that both types of data constraints provide distinct
features, which are not supported by the other data constraint type. For example,
CA data constraints allow to reason about functions on the data values, which is
not supported in TCA. On the other hand, CA data constraints require that every
memory cell used by the target location of the transition is initialised in the data
constraint, while for TCA, we do not impose this restriction (cf. Remark [2.3.2)).

In the plugin.xml file, we defined a number of constraints on (in)admissible and
required combinations of extensions, as shown in Table [5.4, We also defined a new
automaton type Timed Constraint Automaton. When a new automaton of this type
is created in the editor, it has the aforementioned extensions (except of course for
ConstraintExtension) enabled.

Extension Requires Extension | Mutually exclusive with
TransitionGuard AutomatonClocks,
TransitionUpdate
TransitionUpdate AutomatonClocks,
TransitionGuard
Statelnvariant AutomatonClocks
TCADataConstraints ConstraintExtension (CA
data constraints)

Table 5.4: Dependencies between extensions in the TCA plugin

The syntactic checks described above are executed in methods parseExtension |
editExtension and validateExtension (cf. Figure [p.3). For these checks, the new
extensions use the helper classes TCAClocksParser and TCADataParser, contained
in package cwi.ea.extensions.clocks.parsers. These parsers are generated from the
grammar files TCAClocks.g and TCAData.g using the parser generator ANTLR
[ANT].

5.1.3 From TCA to Formulas

We have implemented the translation of TCA to propositional formulas with linear
arithmetic, as presented in Section [3.1.3 in ECT. In this section, we describe the
implementation of our TCA formula generation.

ECT provides support for code generation (into an arbitrary target language)
in package cwi.codegen, cf. Figure A new code generator is defined by imple-
menting the interface /CodeGenerator (or extending one of its abstract subclasses).
Interface IGenModel encapsulates the data needed for code generation, that means,
the properties (content information) of the underlying model that influence the
generated code. It offers methods to manipulate these properties. Properties are

5.1. IMPLEMENTATION 93

<interface>
[CodeGenerator

(A bstractCodeGenera tor\

+generateCode(IGenModel genModel)
- / +initGenModel(IGenModel genModel)
% +validateGenModel(IGenModel genModel):IStatus

J

' 7
JavaCodeGenerator

content | 1
Linterface>
_ . IGenModel
GenericGenModel PROJECT_LOCATION:String
ffffffffffff PROJECT_NAME:String
+getProperty(String key):String
+setProperty(String key, String value)

Figure 5.5: Package cwi.codegen

key /value pairs of type String, new properties can be easily defined by calling set-
Property(key,value) on an (until then) undefined key. IGenModel defines the two
properties PROJECT_LOCATION and PROJECT_Name which every code genera-
tor should support.

The sources for the TCA formula generation extension are located in package
cwi. ea.extensions. clocks.codegen, cf. Figure 5.0, Interface SMTFormulaTemplate can
be seen as the main class of the extension. It defines a generic template for in-
termediate representation of TCA, and serves as a superclass for template classes
that generate formulas for different back-ends. Currently, there exists only one class
that implements SMTFormula Template in package cwi.ea.extensions.clocks.codegen,
MathSATFormulaTemplate. This class is used to generate input files for the M ATH-
SAT [maf] tool.®

For each of the constituents o of the formula representation (cf. Table
on Page , SMTFormulaTemplate defines a method signature buildX to generate
the corresponding formula: buildInit() for ™ (3.10), buildTrans() for ¢ ([3.13)),
buildLocation() for et ([3.14)), and buildMutex() for ¢™¥** (3.15)). The boolean
parameter unfold in the latter three is used to determine whether to generate the
step-abstract variant of the formula, that means with indices t and t+1, or the
unfolded variant (cf. Section [3.2.2)). In the former case, the return value should be a
singleton list, in the latter case, the list should contain one entry for every unfolding
depth, sorted in ascending order. The boolean parameter product in buildTrans()
determines whether to generate delay transitions for products of TCA, cf. (3.17).
Subclasses of SMTFormula Template will have to implement these methods such that
they generate formulas in the appropriate input format for the intended back-end
solver, while following the constraints explained above.

5For MATHSAT version 4.2.17.

94 CHAPTER 5. TOOL DEVELOPMENT AND CASE STUDIES

SMTFormulaGenerator

' 7
AbstractCodeGenerator
(in cwi.codegen)

+generateCode(IGenModel genModel) —>
+initGenModel(IGenModel genModel)
+validateGenModel(IGenModel genModel):IStatus S /

content.| 1..*

< interface>
SMTFormulaTemplate

+buildInit():String

+build Trans(boolean unfold, boolean product):EList<String>
+buildLocation(boolean unfold):EList<String>

+buildMutex(boolean unfold):EList<String>

+toString():String

k+ toProductString(EList<SMTFormula Template> templates):String)

A

MathSATFormulaTemplate

—Automaton automaton
—int unfoldingDepth

—int upperBound

—String reachableStateName

+MathSATFormulaTemplate(Automaton auto, String state, int depth, int upB)

Figure 5.6: Package cwi.ea.extensions.clocks.codegen

The formula representation (in String format) for a single SMTFormula Template
object is obtained by calling method toString() . Method toProductString() is used
to generate the product representation for a list of templates. Subclasses of SMT-
FormulaTemplate will typically implement these methods such that they call the
buildX methods (passing the runtime value of unfold to the latter three), add addi-
tional information for the intended back-end solver as needed, and possibly sort the
formulas in a specific way (cf. Section [4.2)). Any implementation of the toProduct-
String() method should be robust enough to produce the same result, independently
of whether the object on which it is called (this) is contained in the list or not.

The constructor of MathSATFormulaTemplate is used to initialise the private
fields with the appropriate values. It can be used for both finite and infinite data
domains: for finite data domains, a lower bound of 0 is assumed by default. If the
fourth parameter, upB (“upper bound”), is 0 as well, the data domain is assumed to
be infinite. Otherwise, upB is required to have a value >1, which then determines
the upper bound of the data domain (cf. also Remark on finite data domains).

5.1. IMPLEMENTATION 95

Parameter state can be used to specify the name of a location to be checked for k-step
reachability, cf. Section [3.2.3} it is stored in field reachableStateName. The imple-
mentation of toString() respectively toProductString() generates the corresponding
formulas. If parameter state is the empty string, no such property is generated.

Invocation of the formula generation from the editor (cf. Section creates an
instance of class SMTFormulaGenerator, which is a subclass of AbstractCodeGenerator
from cwi.codegen, cf. Figure SMTFormulaGenerator implements the methods
from ICodeGenerator (cf. Figure as follows. Method initGenModel() initialises
the properties of the genModel required for formula generation: unfolding depth,
data domain, location of the resulting output file, the set of automata to translate
to formulas (this is a subset of all automata contained in the currently open file),
and the target language (currently, only MATHSAT format is supported). These
settings are determined from user input to the formula generation wizard pages, cf.
Figures [5.13] [5.14] and [5.15|

Method validateGenModel() checks that the genModel initialised in this way satis-
fies a number of additional (with respect to the constraints described in Section|5.1.2)
syntactic and semantic requirements. This is needed for the resulting formulas to
be well-defined: formula generation can be invoked for any EA automaton, but the
results are well-defined only for TCA. The constraints include for example unique-
ness of names, appropriate choice of finite data domain with respect to data values
used in data constraints, or appropriate choice of enabled extensions (according to
Section [5.1.2)).

Method generateCode() starts the actual formula generation. It creates an SMT-
FormulaTemplate instance for each TCA selected for formula generation. The target
language property determines the runtime type of these objects, that means which
subclass of SMTFormula Template to use. Actual parameters of the constructor of the
appropriate runtime class are determined from the properties of the genModel. gen-
erateCode() then calls either toString() or toProductString(), depending on whether
one or more TCA were selected for formula generation, and writes the resulting string
to a file, using the corresponding property of genModel to determine the location.

5.1.4 Abstraction Refinement

Abstraction and refinement of TCA is not directly part of the ECT, in that it is
not implemented as a plugin or extension within the graphical ECT interface. In-
stead, it is implemented as a standalone program, which performs abstraction and
refinement on a file obtained from the ECT plugin (as explained in the preceding
Section[5.1.3)), and calls the preferred (corresponding) SMT solver for the verification
part. The reason is that many SMT solvers already offer a graphical user interface
(MATHSAT does not, though). If needed, abstraction and refinement can be in-
tegrated into ECT on a command line basis, similar to the integration of mCRL2
(cf. [Krall]), but we consider this less useful. The sources are found in package
cwi.ea.extensions. clocks.absref , cf. Figure [5.7]

The interface TCAAbstractor serves as a base class for all implementations of
abstraction functions working on TCA, independent of a specific target language.
It defines method signatures that need to be supported by all such abstractors.

96 CHAPTER 5. TOOL DEVELOPMENT AND CASE STUDIES

1l TCAFile)
#Set<String> clockNames
content #Set<String> portNames
#Set<String> memcellNames
(<interface=>) #Set<String> stateNames
TCAAbstractor #int unfDepth
+addClockName(String name)
‘+getMergings():Set<Set<String>> +addPortName(String name)
+getOmissions() Set<String> +addMemcellName(String name)
+addMerging(Set<String> params):boolean +addStateName(String name)
+addOmission(String param):boolean +setDepth(int d)
+performAbstraction() +getClockNames():Set<String>
\—{—getResu/t(): TCAFile || +getPortNames():Set<String>
A +getMemcellNames():Set<String>
! +getStateNames():Set<String>
i +getDepth():int
l Lt toString():String)
(MathSATTCAAbstractor) .

—MathSATTCAFile file
—Set<Set<String>> mergings
—Set<String> omissions
—MathSATTCAFile result
+MathSATTCAAbstractor(String file)

+MathSATTCAAbstractor(String file,
Set<String> omit, Set<Set<String>> merge)

- J

. (MathSATTCAFile

content +MathSATTCAFile(String file)

Figure 5.7: Package cwi.ea.extensions.clocks.absref

5.2. WORKFLOW 97

Implementing class MathSATTCAAbstractor is tailored to work on files containing
formulas in MATHSAT format. In particular, MathSATTCAAbstractor implements
the performAbstraction() method, by essentially implementing abstraction function
a presented in Figure in Section [4.1]

The abstract container class TCAFile encapsulates the intermediate represen-
tation of TCA in the process of abstraction, independent of a specific target lan-
guage. It is used for both intermediate and final results.” Though TCAFile is ab-
stract, it provides implementations for all methods except toString() , since this
is the only method that depends on the target language, all other operations are
performed on the internal/intermediate representation. Class MathSATTCAFile ex-
tends TCAFile, by implementing toString() such that the resulting String is in proper
MATHSAT format. Parser class MathSATFormatParser (not shown in Figure
is used by MathSATTCAAbstractor to parse a text file in MATHSAT format and
generate a MathSATTCAFile object from it. The text file can be obtained either
from ECT, as explained in Section [5.1.3)), or be generated by the toString() method
of MathSATTCAFile itself. Class MathSATFormatParser is generated from grammar
file MathSATFormat . g using the parser generator ANTLR [ANT].

Finally, class TCAMain uses the aforementioned classes to provide a little (com-
mand-line based) application to perform interactive abstraction refinement. Es-
sentially, the application implements the three steps of the abstraction refinement
paradigm (cf. the beginning of Chapter []), looping through steps two and three.
Figure[5.8 shows a conceptual overview of the application, where grey boxes indicate
calls to external tools. The implementation is completely interactive, that means
the user has to choose the initial abstraction (the application shows the list of ab-
stractable parameters, though) as well as a refinement option and parameter to be
refined (the application shows a list of potentially responsible parameters as well as
the current counterexample, though). The type of the input file, and thus the SM'T
solver to be called, are determined from the input file ending. At the moment, only
MATHSAT is supported (file ending .msat or .mathsat), but it is easy to extend
TCAMain to support other file types and solvers.

Notice that the abstraction refinement loop in Figure has two exit points:
either the conjunction of property and abstract system is unsatisfiable, in this case,
the property holds for k steps (cf. Section ; or the conjunction of original
system, property and witness run is satisfiable, in this case, a counterexample to the
property has been found.

5.2 Workflow

In this Section, we describe the typical workflow when working with the TCA plugin,
using the FIFO buffers with expiration from Examples[2.3.3|and [2.3.10, The Section

"It would have been possible to extend interface SMTFormulaTemplate from package
cwi.ea.extensions. clocks.codegen (cf. Figure in such a way that it can be used for interme-
diate results of abstraction as well. Yet, this would have prevented us from providing method
implementations in abstract class TCAFile. Moreover, we prefer to keep the approach modular and
flexible, by maintaining two intermediate formats (SMTFormulaTemplate for code generation, and
TCAFile for abstraction).

98 CHAPTER 5. TOOL DEVELOPMENT AND CASE STUDIES

——abstract Je———[refine_|

‘ solve abstract ‘% concretise | —— | solve original

l unsatisfiable satisfiable l
property satisfied for k steps property not satisfied

Figure 5.8: Implementation of Abstraction Refinement Loop, Conceptual Overview

can also be seen as a little “Getting started” tutorial to the TCA plugin. We assume
that ECT and in particular the EA framework is installed already.® For instructions
how to install the plugins, please refer to the ECT website http://reo.project.
cwi.nll

5.2.1 Editing

The first step is to draw the TCA. From the Eclipse workbench, create a new General
Project (File — New — Project — General — Project) with name Workflow. In the
project, create a new EA automaton file (File — New — Other, scroll down to the
Reo wizard and choose Automaton), and name it Workflow.ea. From the palette
that appears on the right, choose Automaton and left-click on the empty canvas
to create a new EA automaton. A menu appears that allows to choose one of the
predefined automaton types. If none of the types is chosen, the new automaton has
no extensions enabled. Choose Timed Constraint Automaton and give it the name
Buffer. A rectangle, indicating the drawing area for the new automaton, appears
on the canvas, cf. Figure[5.9]

The upper part of the drawing area contains general information: the name of
the automaton, and information from extensions which are applicable on automa-
ton level. The two symbols below the name indicate that extensions Automaton-
PortNames (%) and AutomatonClocks (@) are already enabled for this TCA (these
extensions were enabled automatically when automaton type Timed Constraint Au-
tomaton was chosen). The StateMemoryExtension is not enabled by default. To en-
able it, right-click on the automaton, choose Fxtensions from the context menu, and
check State Memory. Since StateMemoryExtension is not applicable to Automaton,
there is no visible change. Add two ports p and q and a clock x to the automaton:
click on the % respectively @ label until a text field shows up, then enter the text
P,q respectively x.

Next, we add locations. From the palette on the right, choose State, and click
inside the (lower part of the) rectangle to add a location. Give it the name empty.
The ingoing arrow indicates that StartStateExtension is enabled for this automaton

8 All descriptions and images in this section are based on version 3.2.0 of ECT, and version
3.2.9 of the EA framework.

http://reo.project.cwi.nl
http://reo.project.cwi.nl

5.2. WORKFLOW 99

-] Resource - Workflow/Workflow.ea - Eclipse PIaEform =E
File Edit Diagram MNavigate Search Project Run Window Help
[y Projec 22 = 0 [& Workflow.ea 52 =08
- G - -] 2 palette I
b = ABP ERas
> 1= LipSync B Ewirey [Automaton
o=
b = Workflow ‘Eﬁ} O state
—Transition
&l m DA I Bl
110M of 144M [0% s ¥ B3 [

Figure 5.9: Workbench Overview

(again, this extension was enabled automatically when automaton type Timed Con-
straint Automaton was chosen), by default, the first location that is created is set to
be the initial location. The initial location can be changed from the context menu
of locations. Add a second location with the name full. The symbols next to the
locations show that StateMemoryExtension (@) and Statelnvariant (If) are enabled.
Add a memory cell m to full, and set the invariant of full to x<=3.

To add a transition from empty to full, choose Transition from the palette, click
on empty, and drag the other end of the transition to full. For every (enabled)
extension which is applicable to Transition, the new transition has a corresponding
label. The four labels are @7 for TransitionGuard, @' for TransitionUpdate, © for
TCADataConstraint, and - for TransitionPortNames. Set the labels pursuant to Fig-
ure (2.5} add two transitions from full to empty, and set the labels accordingly. Note
that memory cell references (s.m and t.m) in the data guards have to be prefixed
with an additional $ in the editor. This is due to liberal naming conventions in ECT
which allow dots . to appear in names. The final TCA should look similar to the
one shown in Figure m (in order not to clutter up the picture, we have removed
empty transition labels).

Repeat the above steps, and create a second instance of the buffer in the same
file Workflow.ea. Name it Buffer2, with locations empty2 and full2, memory cell
m2 (in full?2), clock x2 and ports q and r (cf. Figure [2.6). Make sure to use q on
the transition from empty2 to full2. The resulting TCA should look similar to the
one shown in Figure [5.11

Throughout the editing process, every modification is checked for syntactic cor-
rectness, according to the syntactic requirements explained in Section [5.1.2] If a
syntactic error is detected, the label of the extension (for example @! or) in which
the error occurred is replaced by the error marker @. A tooltip appears on mouseover
which gives information about the error, and in this way helps to resolve it. As an
example, while composing the Buffer automaton, we could try to use port p on a

100

CHAPTER 5. TOOL DEVELOPMENT AND CASE STUDIES

|4 Buffer |4 Buffer2
“ pat e A{art
@Dix @D x2

“ (p} E p=$tm (Dlx=0

“ {q} mg=$tm2 D!x2=0

e[l o [m]

7 (=3}
\’@ Q7 full

o] @ [m2]

®
empty2 @
2] true 7] (x2<=3)

=} wr=$sm2 (D7Pix2<3)

[true Tl (x<=3)

“ {q} @g=$sm (D7 (x<3)

Figure 5.10: First Buffer Figure 5.11: Second Buffer

transition before declaring it on automaton level. Figure shows the resulting
error marker and tooltip. To resolve the error, we need to do two things: first, add

|4] Buffer
A

(O

o EHIme O o
//1Uﬁknownportnames:p@

[x] true I (xe=3)

Figure 5.12: Indication of Errors

p on automaton level (i.e., in the field with label % field just below the name). After
that, the error marker remains active, because the editor only checks the extension
that has just been edited (AutomatonPortNames in this case). Therefore, we need to
edit the TransitionPortNames extension again (simply click on the error marker until
the text field appears, and confirm). The TransitionPortNames extension is checked
again, and since p is now declared on automaton level, the error marker disappears.

5.2.2 Formula Generation

Formula generation is invoked from the context menu of automata: right-click on
one of the automata, and choose Generate code — SMT Formula Generator to open
the code generation wizard.

The first page of the wizard allows to specify the name and directory of the
resulting file, the unfolding depth, the range of data values, and the target language
(Figure[5.13)). Since currently only the MATHSAT solver back-end is supported, the
only admissible entry in the target language field is msat, which naturally is also
the default. Enter Workflow as Project name, 2FIF0.msat as Qutput file name, and
click Next> at the bottom of the wizard page.

The second page (Figure allows to choose the (combination of) automata
to generate code for (the resulting formulas contain delay transitions, cf. Defini-

5.2. WORKFLOW 101

tion [3.1.8] iff more than one automaton is selected). Select both TCA and click
Next>.

Finally, the third wizard page (Figure allows to select up to one loca-
tion for each automaton that was selected on the previous (second) wizard page,
to check for k-step reachability. Unfold the lists of locations, select locations full
and full2, and click Finish. Note that if locations are selected for a (non-empty)
subset of automata only, then k-step reachability is checked for all possible combi-
nations of the selected locations with any location from the other automata. For
example, if we would select location full only, i.e., not select a location for Buffer2,
reachability would be checked for any of the product locations (full,empty2) and
(full,full2).

(& Generate code [[[=———— Generatecoce. |4
Generate code pu Generate Formulas for One or more Automata
—

Check the details below and press "Next" to continue. / y Generate formulas for a number of automata. D

Project name: Automata:

Unfolding depth (number of steps): 15 Buffer2 (2 states)

Range of Data Values (leave empty for infinite): |0..1

Output file name: 2FIFO.msat

Target Language: msat

Use default location

@) Next> || cancel | Finish @) | < Back H Next > | ‘ Cancel | [Finish |
Figure 5.13: Code Generation Wiz- Figure 5.14: Code Generation Wiz-
ard, First Page ard, Second Page

(= Generafecoce—]
Reachability property L
Choose up to one state per automaton. Reachability is checked D
for the product state.
= [Buffer
[empty
full

~ [] Buffer2
] empty2

@] ‘ < Back ‘ | Cancel ‘ ‘ Finish ‘

Figure 5.15: Code Generation Wiz-
ard, Third Page

After clicking Finish, the resulting file 2FIF0.msat can be found in the Project
FExplorer view to the left of the canvas, it is located in the src subdirectory in the

102 CHAPTER 5. TOOL DEVELOPMENT AND CASE STUDIES

Workflow project, cf. Figure [5.16]

[=] Resolurce - Workflow/Workflow.ea - Eclipse Platform N =E
File Edit Diagram Navigate Search Project Run Window Help

(5 Project 2 = 8| [4 Workflow.ea &2 [Zl 2FIFO.msat =a
8 & = || Palette b
b =ABP k&a
i 5 4] Automaton

P 1= LipSync |4] Buffer |4] Buffer2 g Stat
¥ &= Workflow % {pgt % A{ar} ate

< = sre O x Ox2 — Transition
[I— S .| -

P [A Workflow.ea % {pr O P=SEM Dlx=0 % {q} @ma=$tmz €

@ [m]
oll

full . . /@;:
\ﬁhﬁ—ﬂ [2] true _/

D17 (x=3)

{g} @ g=%$sm ()7 (x<3) “{r} or=$sm2 ¢
&)
[L)
97Mof138M [| 0° s ¥ B8 R

Figure 5.16: Workbench, Project Explorer View

5.2.3 Verification

We now have two options to continue. The first option is to directly call MATH-
SAT on the generated file 2FIF0.msat. In general, MATHSAT is invoked by calling
mathsat [options] input_file from the command line. In our context, the min-
imal set of options includes:®

-solve: tells the solver to solve the formula (other options include for example
transformation to CNF)

-input=msat: specifies the input format (other options are smt or dimacs)

-logic=QF LRA: specifies the logic to be used (Quantifier Free Linear Real Arith-
metic)

Other useful options include for example
-print model: prints one satisfying valuation (model), if it exists

-allsat: prints all satisfying valuations, if they exist (only recommended for small
problems)

-outfile=FILE: redirects the output from stdout to file FILE

9For a complete and detailed overview and explanation of the available options, please refer to
[maf]

5.2. WORKFLOW 103

The output of a call to MATHSAT always starts with some statistical infor-
mation about the input problem and the involved theory solvers. The essential
information can be found at the very end of the output: the last line of the output
of the call mathsat -solve -input=msat -logic=QF_LRA 2FIF0.msat says sat,
which means the set of input formulas is satisfiable, and thus the “error state”
(full,full?2) is reachable.

The second option is to call the abstraction refinement application (cf. Sec-
tion on the generated file 2FIF0.msat: java TCAMain 2FIF0.msat. As ex-
plained in Section [5.1.4] the application first asks the user to create the initial
abstraction. For ports, for example, the application outputs

Choose ports to abstract/merge (type numbers of ports
to be merged, separated by blanks, type ’X’ to end):
1:r

2: p
3: q
and for clocks, it outputs

Choose clocks to abstract/remove (type numbers,
separated by blanks):

Set of clocks is

1: x

2: x2

Type 1 (and confirm) to remove clock x. After this initial abstraction is determined,
the application internally calls MATHSAT on the abstract system. Since the “error
state” (full,full2) was already reachable in the original system, it is of course
reachable in the abstract system as well. The next output of the application is

Spurious counterexample found, abstraction needs to be refined.
Choose refinement option (type number):

1: rule out counterexample trace

2: refine a parameter

Type 2, this gives the output

Choose parameter to refine (type number) :
1: x

Now type 1 to refine clock x. The application refines the abstraction, and calls
MATHSAT again on the resulting system (which is the original system already).
The next (final) output is

Property does not hold.

and the application terminates.

104 CHAPTER 5. TOOL DEVELOPMENT AND CASE STUDIES

5.3 Case Studies

As stated in Chapter[2], TCA are specially tailored to implement coordinating connec-
tors in networks where timed components communicate by exchanging data through
multiple channels. In this way, TCA impose a certain communication pattern on
associated components, that means, they force the components to behave (commu-
nicate) in a certain way. An obvious application area is therefore to use TCA for
modelling time- and data-aware communication protocols.

In this section, we describe two such protocols, present experimental results we
got from modelling and analysing the protocols with our TCA plugin for ECT, and
discuss the benefits of using TCA as underlying formalism for these case studies and
in general.

5.3.1 Alternating Bit Protocol

In this section, we present the alternating bit protocol (ABP). The ABP is a network
protocol, which ensures successful transmission of data elements between a sender
and a receiver over unreliable channels. It is one of the standard benchmarks in the
context of component based systems and process algebra, and has been discussed in
detail for example in [Mil89} [Fok00), [LMS&T7].

Essentially following the description in [Mil89], we design the protocol from four
subcomponents: the Sender, the Receiver, and two unreliable channels Channell and
Channel2 connecting the former two. Each of these components is modelled with a
separate TCA. We assume that the channels may loose, but not corrupt or duplicate,
data at random. Yet, it is very easy to change this behaviour, simply by exchanging
the TCA that model the channels. For an overview of how to model timed channels
with different behaviour, see for example [ABABRO7]. A conceptual overview of
the components is shown in Figure [5.17} Arrows indicate the intended direction of
dataflow, labels indicate the ports through which the components communicate.

Channell

—| Sender Receiver |[——

C
L —

Channel2

ABP

Figure 5.17: ABP Connector, Conceptual Overview

The protocol works as follows: after accepting input (from the environment)
through port I, the Sender starts a timer, and sends the message to the Receiver via
Channell, i.e., it sends the message to Channell through port A, and Channell in
turn sends the message to the Receiver via port C. The Sender attaches a control
bit b to the message, and expects the Receiver to send back the corresponding
control bit b through Channel2 as acknowledgement. After having received the

5.3. CASE STUDIES 105

acknowledgement, the Sender is ready to accept another input from the environment,
which it sends to the Receiver with attached control bit —b (this is where the name
alternating stems from). If the timer of the Sender expires before it receives the
acknowledgement bit b, or if it receives acknowledgement bit —b (which it ignores),
it assumes an error has occurred, resets the timer and resends the message with
bit b.

The Receiver works complementary: it receives a message, together with a con-
trol bit b, from the Sender through Channell. After delivering the message to the
environment through port O, the Receiver sets a timer, and sends bit b as acknowl-
edgement to the Sender through Channel2. Next, it expects a message tagged with
bit —b. If the timer expires, or the next message is tagged with b again (which the
Receiver ignores), the Receiver assumes an error has occurred, resets the timer and
resends the acknowledgement bit b.

We assume an arbitrary but fixed, finite set of messages Msg. The data do-
main is Data=MsgUMsgx{0,1}U{0,1}. The three subsets of Data correspond to
messages sent from the environment to the Sender, and from the Receiver to the
environment (Msg), messages tagged with control bits sent from the Sender to the
Receiver (Msgx{0,1}), and acknowledgement bits sent from the Receiver to the
Sender ({0,1}).

The TCA for the Sender, the Receiver and the two channels are shown in Fig-
ures [5.18] [5.19] and [5.20] Since ports can only transmit a single data item, we
model ports A (between Sender and Channell) and C (between Channell and Re-
ceiver) using two ports Aj,Ay and C4,Cy, respectively. This is because for a pair
(m,b)e(Msgx{0,1}), we need to be able to reason about the constituents m and b
separately. For both Sender and Receiver, we assume a timeout of 2 for resending
the message and acknowledgement, respectively. For example, after the Sender has
sent a message and has moved to location wa:t0, it waits for acknowledgement bit 0
before moving to location idlel. If this bit does not arrive before clock x has reached
value 2, the Sender moves back to location send0, where it waits at most one more
time unit before it resends the message.

The TCA modelling the entire protocol component—we call it T ygp—is obtained
by composing the TCA of the four subcomponents (cf. Definition , that means

Tapp = (Sender <1 Receiver >t Channell b Channel2)

5.3.1.1 Verification

While the internal behaviour of the ABP ensures reliable transmission of messages
over unreliable channels, from the outside, it behaves as a perfect buffer of capacity
one (cf. [Mil89]). That is, it accepts and delivers messages from and to the network
(through ports I and O, respectively) alternately, and the order of data elements is
not changed.

The alternation is described by the LTL formula

O((= OIUO)) NO = O(=0Ul))),

106 CHAPTER 5. TOOL DEVELOPMENT AND CASE STUDIES

{Al,A2} {B}, B=1

(Aj=s.in) ﬂ

4 send0 /—\

(t.in=s.in),x=2, 2:=0

{B},B=1 {B}, B=0

(t.in=s. m x—2 z:=0

/\
‘ {I} (I=t.in), ‘
\/

{A17A2}
(A1=s.in)A(A2=1),

(B}, B=0 w=0
Figure 5.18: ABP, Sender
{C1,Ca}, (Co=1)
{D},D:l, y::O {Cl, 02},
/\ (Cr1=t.out)\(C2=0),
y:=0
~_
y=2,y:=0 T
{0}, {0},
(O=s.out) (O=s.out)
{C1, Ca}, y=2,1y:=0
‘ Cl tOUt 02 1 ‘/_\
(D}, D=0, y:=0

{01702} (C2=0)
Figure 5.19: ABP, Receiver

5.3. CASE STUDIES 107

{A1, Ay, C1, Ca}, | {B, D}, l
(A1:C’1)/\(A2:C'2) {Ah AQ} {D}

B=D
Figure 5.20: ABP, Channell (left), Channel2 (right)

which expresses that between any two communications through port I, there is a
communication through port O, and vice versa. We call this property Buffer.

To check for the correct order of data elements, we identify a set of error lo-
cations. First recall that locations in Tagp comprise one location for each of the
four subcomponents, for example, the initial location of Tapp is (idle0, revc0, c1, ¢2).
The error locations are

{(waiti, outi, c1, €2) | inFout,i=0, 1} U{(sendi, outi, c1, ¢2) | in#out, =0, 1}

Each of these locations corresponds to a configuration where the Sender subcom-
ponent has received a data item through port I and stored it in memory cell [in],
but the Receiver subcomponent has stored a different data item in memory cell out
which it is about to send to the environment through port O. Note that the formu-
lation of this property relies on the first property of alternating dataflow through I
and 0. We call the property expressing that none of the error states is reachable
Error.

We have modelled the TCA of the ABP with the ECT plugin. For performance
comparison, and to show that our approach scales very well on reachability prop-
erties, we compare three unfolding depths k€{20,50,100}. We have generated the
corresponding formula representation from within the editor, as described in Sec-
tion 5.2.2, To show the performance improvements gained from abstraction, we have
identified a tailored abstraction function for each of the properties. First observe
that timing information can be considered irrelevant for both properties. Moreover,
observe that Buffer does not rely on exact data values, but only reasons about
activity on ports. For Error, we define an abstraction function a; that removes all
timing information from the system: O;={z,y}, and ~;=id. For Buffer, we define
an even coarser abstraction function as, which in addition removes all information
about the exact data values: Oy={z,y, (I=t.in), (A1=s.in), (t.in=s.in), (C1=t.out),
(O=s.out)}, and yp=id.

Table [5.21] shows our experimental results for the different unfolding depths,
properties and abstractions. Note that since Buffer describes correct alternation
of data flow through ports I and O, we need to check the negation of Buffer. Ab-
straction function ay removes all information about concrete data values, therefore,
the error states are trivially reachable under this abstraction, and we cannot expect
Error to hold. We have marked the corresponding entries with a slanted font and
the additional entry (S) (for “satisfiable”). All other properties are satisfied, which
means that the result of verification is “unsatisfiable”.

The results in Table clearly show that our approach is tailored to reachability
properties, and that on these, it scales very well for large unfolding depths. While

108 CHAPTER 5. TOOL DEVELOPMENT AND CASE STUDIES

k=20 k=50 k=100

—Buffer Error —Buffer Error —Buffer Error
(Tase) 1.050s 1.013s | 52.50s 13.12s 1690s 80.98s
PLLABP K 20.79MB | 18.85MB | 61.59MB | 39.19MB |508.53MB|111.62MB
o1 (o(Tame) 1.704s | 0.799s | 519.9s 7.082s segm. 32.92s
WPLEABP)E | 90 93MB | 19.44MB |215.02MB| 32.76MB | fault | 57.09MB
s (0(Tam)) 1.430s | 0.175s (S)| 458.7s |0.880s (S)| segm. |3.984s (S)
2 ABPJJR 1 19.93MB | 15.99MB |232.60MB |21.215MB| fault | 29.11MB

All experiments have been carried out with MATHSAT, version 4.2.17, on an
Intel Core2 Duo CPU E4500, with 2.20GHz and 2.5GB RAM

Table 5.21: Experimental Results for the ABP

for k=20, the two properties take around the same time and memory consumption,
checking Error is factor 4 faster, with factor 1.5 less memory, than Buffer for k=50,
and almost factor 20 faster, with factor 4 less memory, for k=100. Comparing the
same property on different unfolding depths, time and memory consumption increase
by factors 50 and 3 (k=20 to k=50), and factors 30 and 8 (k=50 to k=100) for
Buffer, while these factors are limited to 13 and 2 (k=20 to k=50) and 6 and 3
(k=50 to k=100) for Error.

As a second result, Table [5.21] shows the improved performance for Error on the
abstract system, resulting in a speed-up of factor 1.2 for k=20, factor 1.8 for k=50,
and almost factor 2.5 for k=100. Memory consumption is almost the same for k=20
and k=50, but reduces to half for k=100. Note that verification is very fast in case
the reachability property Error does not hold (i.e., where the input is satisfiable).
In contrast to this, performance of Buffer on the abstract system decreases, even
leading to a segmentation fault for k=100. Though this might seem surprising at
first glance, the reason is obvious: since Buffer reasons about all possible runs, and
the abstract system permits more runs than the concrete system, checking Buffer
on the abstract system is more expensive. What can be seen though is a slightly
improved performance when comparing the two abstractions.

5.3.2 Lip-Synchronisation Protocol

In this section, we describe a Lip-synchronisation protocol (LSP). The LSP was first
described in the synchronous language Esterel [SHH92]. Later, specifications were
presented amongst others using timed LOTOS [Reg93], LOTOS/QTL [BBBC94,
BBBCI7], timed CSP [ABSS96], timed automata [BFK™98, [KLP10], and the Du-
ration Calculus [MLWZ01].

The problem of lip-synchronisation is the following: a presentation device (for
example a media player) receives input from two media sources: a Sound Stream
and a Video Stream, and should display the two streams synchronously. Yet, small

5.3. CASE STUDIES 109

delays are not human-perceivable, therefore, synchrony needs not be perfect, but
certain deviations of the actual presentation times from the optimal presentation
times are acceptable. The LSP is used to ensure this degree of synchrony. For this,
it has to take into account three major points:

Firstly, the frequencies of the two streams may be different, i.e., there is no
(at least not necessarily) one-to-one correspondence between frames of the two
streams.!?

Secondly, the streams may experience a phenomenon called jitter. In an ideal
scenario, frames are received from the streams with a constant frequency. Yet,
the actual arrival times of frames may deviate from these optimal arrival times, for
example due to transmission delays. These deviations from the optimal presentation
time on the same stream are called jitter. Intuitively, the user perceives jitter in case
the sound (equivalently video) presentation does not run “smoothly”, for example
because some parts are skipped or presented too fast.

From [BEK™9S8|, we adopt the notions of anchored and non-anchored jitter:
anchored jitter describes deviations that only depend on the current frame. That
means, each frame arrives within a certain interval around its own optimal arrival
time. Non-anchored jitter, on the other hand, describes deviations that depend on
the previous frame. That means, each frame arrives within a certain interval after
the previous frame.

The last point the LSP has to consider is that the two streams can “drift apart”:
each frame has an optimal position on the respective other stream. The term skew
describes deviations from this optimal position on the other stream. Intuitively, the
user perceives skew in case the sound and video presentation “do not agree”, that
means if a sound (for example the sound of breaking pottery) is audible significantly
before or after the corresponding action (for example a falling mug) is visible.

Summing up, the LSP has to ensure that the two streams are interleaved in
the right way, and that the presentation of frames does not violate the acceptable
bounds on jitter and skew.

Notation 5.3.1 (Arrival Times of Frames). In the sequel, we use t7** to refer to
the optimal arrival time of the i-th frame (sound or video), and ¢ to refer to the
actual arrival time of the ¢-th frame.

In line with previous specifications ([SHH92 [Reg93, BEK™98]), we design the
protocol as follows. A sound frame should be displayed every 30 milliseconds (ms), no
jitter is allowed on the Sound Stream, i.e., t%=t?" and t3°'=(t2" +30) for all frames.
A video frame should ideally be displayed every 40ms, but we allow non-anchored
jitter of £5ms: (¢7—5)<(t9% 440)<(t945). That means, to ensure that a human
perceives the media presentation as synchronous, it is sufficient to display each video
frame within the interval [35ms,45ms] after the previous frame. The video presen-
tation may precede the sound presentation by 15ms (skew), and may lag behind by
150ms. The fact that jitter is not allowed on the Sound Stream actually allows us to

10As pointed out in [BFKT9S|, if there was a one-to-one correspondence, the obvious solution
to achieve synchrony would be to multiplex the streams for transmission, and demultiplex them at
the presentation device.

110 CHAPTER 5. TOOL DEVELOPMENT AND CASE STUDIES

interpret skew as anchored jitter on the Video Stream: (t¢¢—15)<t*<(t%'+150).
We restrict the models of the streams to the arrival times of frames received from
the streams. Similarly, we do not model the presentation device, but assume that
frames are presented when the corresponding signal (from the LSP) occurs. Further,
we assume that the presentation of a video frame can be delayed for an arbitrary
amount of time if the frame arrives too early.

We model the protocol with five TCA: Sound Manager, Video Manager, Skew
Observer, Jitter Observer, and Initialiser. The design of the TCA is inspired by
the timed automata in [BEKT98]. Yet, due to the extended modelling power of
TCA, we obtain a more concise model (cf. also Section , in particular for the
Skew Observer, which we model using a single counter (rather than using multiple
clocks in [BFK™T98]). A conceptual overview of the protocol components is shown in
Figure [5.22 We omit the Initialiser, since its only purpose is to start the protocol
components in the right order. The presentation device is added to Figure for
illustration only, it is not part of the protocol. As for the ABP (Figure, arrows
indicate the intended direction of communication, labels indicate the ports through
which the TCA communicate.

Sound Stream ' Presentation Device 3 Video Stream
SR SP/ \VP VR
N v
Sound Manager Video Manager
Sk VP J VP
Skew Observer Jitter Observer
LSP

Figure 5.22: LSP: Conceptual Overview

Since the TCA of the LSP (and their interaction) are more complex than the TCA
of the ABP, we now describe each TCA in detail. In the end, the TCA modelling the

protocol component—we call that TCA Tygp—is obtained by composing the TCA
of the five subcomponents (cf. Definition [2.3.9)), that means

Trsp = (Initialiser > SoundManager 1 VideoManager (5.1)
> SkewObserver > JitterObserver) (5.2)

5.3.2.1 Sound Manager

The conditions on presentation of sound are very strict: a sound frame should be
presented every 30ms, and no jitter is allowed on the Sound Stream. The task of

5.3. CASE STUDIES 111

{SR, SP}, (rs=30), (z5:=0)

ﬁ‘ {15}, (5:=0) @ (5). (5230 @

Figure 5.23: LSP, Sound Manager

the Sound Manager (Figure is to ensure this behaviour. It uses a clock zg
to measure the time distance between two subsequent sound frames. After being
initialised by the Initialiser (cf. Section through port IS on presentation of
the first sound frame, the Sound Manager starts its cyclic behaviour, waiting for a
sound frame to be ready (signalled through port SR) every 30ms, and sending to
the presentation device the order to present the sound frame (through port SP) at
the same moment. If the signal that a sound frame is ready arrives late, the Sound
Manager moves to its error location skE.

For explanatory purposes, in the sequel we use the terms “presentation of a sound
frame” and “communication through port SP” interchangeably.

5.3.2.2 Video Manager

{VP, VR, Sk, J}, (Sk=O0K)A(J=0K)

{VR, Sk}, (Sk=error)
vy ‘

{VR, J}, (J=error)

(Sk=0OK)A(J=0K) (J=wait))

{VR, Sk, J},
{vp,Sk,J}, < (Sk=wait)V

{J}, (J=error)

v

{Sk}, (Sk=error)

Figure 5.24: LSP, Video Manager

The Video Manager (Figure ensures that the timing of video presentation
conforms to the bounds described above. Yet, the Video Manager does not control
the timing itself, but for this consults the two “helper” components Jitter Observer
(cf. Section[5.3.2.3)) and Skew Observer (cf. Section[5.3.2.4)). In particular, the Video
Manager does not use any clocks. The Video Manager is initialised by the Initialiser
(cf. Section through port IV when the first video frame is presented. In

112 CHAPTER 5. TOOL DEVELOPMENT AND CASE STUDIES

location aVR, it awaits a signal VR from the Video Stream, indicating that the
next video frame is ready. When receiving this signal, the Video Manager checks
the timing conditions with the Skew Observer through port Sk, and with the Jitter
Observer through port J. If both return OK (loop in aVR), the next video frame
can be presented immediately, which is signalled to the presentation device through
port VP. If either of the observers returns wait, video presentation is too early and
needs to be delayed. In this case, the Video Manager moves to location aVP, and
waits until both observers return OK. If at any point, either of the observers returns
error, the Video Manager moves to its error location vmkFE.

For explanatory purposes, in the sequel we use the terms “presentation of a video
frame” and “communication through port VP” interchangeably.

5.3.2.3 Jitter Observer

(VP, J}, (J=0K), (z7>35)A(1; <45), (7:=0)

[
ﬁ'gD

{J}7
(

(JY,(J=0K), (27 >35)A(z;<45)

(J=error),
$J>45)

{J}, (J=wait), (z;<35)

Figure 5.25: LSP, Jitter Observer

The Jitter Observer (Figure checks that non-anchored jitter on video pre-
sentation remains within the acceptable bounds, that means, that every video frame
is presented within an interval of [35ms,45ms| after the previous frame. It uses
clock z; to measure the time distance between two subsequent frames. When the
Jitter Observer is initialised by the Initialiser (cf. Section through port 1J
on presentation of the first video frame, it resets its clock to zero, and moves to
location j1. The Video Manager can now request the current status of jitter—i.e,
whether presenting a video frame at the current point in time would conform to the
bounds—by communicating with the Jitter Observer through port J. Depending
on the value of z;, the Jitter Observer returns either wait (lower left loop in j1),
OK (lower right loop and upper loop in j1) or error (transition from jI to jE).
If the Video Manager communicates through both ports J and VP, it request the
status of jitter and simultaneously sends the order to present a video frame, which
is only possible if presentation is acceptable. In this case, the Jitter Observer resets
its clock z; to start the timer for the next frame.

Note that by construction, the Jitter Observer can only enter its error location
JE if the Video Manager enters its error location vmFE at the same time.

5.3. CASE STUDIES 113

(VP, Sk},
(t.cnt=s.cnt)A {Sk},

(Sk=0K) (s.cnt=0)A

(z51,=40), (t.cnt=s.cnt)A
(z5x:=0) (Sk=wait),
(

(t.cnt=s.cnt—1), 5<25)

(25, =40), (z55:=0)

{5k},
. {ISk}, (t. cnt 0), (s.cnt<-4) A(Sk=error)
TSk = G Q x5k>30
{VP, Sk}, {VP, Sk},
(s.cnt=0)A (-3<s.cent<-1)A
(t.cnt:&s’szntg}();\ (VP Sk} (t.cnt=s.cnt+1)A
=) PR (Sk=0K)
(zs>25) (s.cnt<-4)A
(t.cnt=s.cnt+1)A
(Sk=0K),
(25K <30)

Figure 5.26: LSP, Skew Observer

5.3.2.4 Skew Observer

The task of the Skew Observer (Figure is to measure the skew (i.e., non-
anchored jitter, see above) on video presentation. For this, the Skew Observer uses
a clock zg, and a memory cell cnt. Clock zg, is used to determine the optimal
presentation time " for video frames. The counter cnt is used to calculate—
together with zg;—the exact amount of skew at any given point in time. The Skew
Observer is initialised by the Initialiser (cf. Section through port ISk on
presentation of the first sound frame. When this communication occurs, the Skew
Observer resets g, to zero, sets cnt to zero, and moves to location sk1.

The general idea of cnt can be roughly described as keeping track of the “over-
flow” of video frame presentations in case the presentation lags behind by more
than one period (of 40ms). In detail, this works as follows: every 40ms (measured
by zg), that means every time a video frame should be presented, the value of cnt
is decreased by one (upper left loop in location sk1), and every time a video frame
is presented, it is increased by one (lower three loops in location sk1). In this way,
a negative value of cnt indicates that t9*>t%" for the last (i-th) video frame, i.c.,
video lags behind its ideal position; equivalently, a positive value of cnt indicates
that 19t <t?" for the last (i-th) video frame, i.e., video is ahead of its ideal position.
The exact values of clock zg, and memory cell ¢nt are used to determine how much
the presentation is ahead of/behind its ideal position. To explain how this works,
we look at the following three situations: on presentation of a video frame, cnt is
(1) incremented to 1, (2) incremented to zero, and (3) incremented to a value <O0.

When ¢nt is incremented to 1 on presentation of the i-th video frame at time
e video is ahead of its ideal position (since ¢nt>0). This ideal position is at time

114 CHAPTER 5. TOOL DEVELOPMENT AND CASE STUDIES

tr ' which is the next point in time when zg; reaches 40.!* The amount of time by

which video is ahead of its ideal position at time ¢ is thus given by the difference
between the current value of zg, and 40. Therefore, if a video frame is about to be
presented when cnt=0 (i.e., ent would be set to 1) and zg <25, the presentation
of the video frame would be more than 15ms (40—25) early, and thus needs to be
delayed (upper right loop in location sk1). As soon as xg,>25, the presentation
time is within the acceptable bounds, and the video frame can be presented (lower
left loop in location sk1). An example for this is depicted in Figure , showing
a situation where each video frame is presented as early as possible: if the fourth
video frame would be presented after 140ms, it would be 20ms too early, so the
presentation needs to be delayed for at least Hms.

sopt 40 80 120 160
1: T T T T
" 0 0 0
cn 1 1 1
skew 5 10 15 20
tact % % % %
¢ 35 70 105 140

Figure 5.27: Video Presentation ahead: Example

When ¢nt is incremented to zero on presentation of the i-th video frame at time
et video lags behind its ideal position (since cnt was -1 just before, see above),
and the amount by which it lags behind is given by the difference (t2¢—t"), which
is equal to the value of zg; at time ¢¢<.12

Finally, when cnt is incremented to a value <0 on presentation of the ¢-th video
frame at time 2, video lags behind its ideal position by more than one period (i.e,
more than 40ms). Figure shows an illustration of this: if each video frame is
presented as late as possible, after 405ms, cnt is incremented to -1, and video is 45ms
(more than one period) late by that time. In general, if ¢nt is incremented to -k,
video lags behind its ideal position by k*40+zg,. As an example, consider Figure[5.28
again: at time 405, the last time xg, was reset was at time 400, that means bms
before, and video presentation lags behind by k+40 + zg.=45ms. The lower loop
in location sk1 thus represents the last possible time where it is still acceptable to
present a video frame: on execution of the transition, ¢nt is incremented to -3, that
means video lags behind by -3%40 + xg,, and since the clock guard only permits
values x4, <30, video lags behind by at most 150ms. In case cnt would be set to -3,
and xg,>30 on presentation of a video frame, an out-of-synchronisation error has
occurred (transition from location sk1 to skE).

The remaining loops in location sk1 represent the case where video lags behind,
but within the acceptable bounds (lower right loop), and the case where a video

'Note that this is indeed #** (and not tr * with j< i), since otherwise ¢nt would have been
set to a value >1.

2Note that the last time zg; was reset was indeed 7" (and not tr " with j>i), since otherwise
cnt would have been set to a value <0.

5.3. CASE STUDIES 115

frame is presented at an optimal presentation time (upper middle loop), that means
t?d:t]o-p " Note that apart from i=j, i<j is possible as well in case video presentation
lags behind, but ¢>7 is not possible due to the bound of 15ms acceptable for video
presentation being ahead (cf. Figure again).

sopt 200 240 280 320 360 400
Z- T T T T T T
. -1 -1 -1 -1 . -2
°r 0 0 0 0] 1
skew | -+ 20 25 30 35 40 45
toet i % i ; % %
! 180 225 270 315 360 405

Figure 5.28: Video Presentation behind: Example

Note that by construction, the Skew Observer can only enter its error location
skE if the Video Manager enters its error location vmFE at the same time.

5.3.2.5 Initialiser

{fVR,fVP,IV,1J},
(z:<150)

&

(2;>150) {fSR, fSP, IS, ISk}, (z::=0)

{fSR, fVR, fSP, fVP, IS, IV ISk, 1]}

‘

(2;>15) {fVR, fVP, IV, 1]}, (z;:=0)

{fSR, fSP, IS, ISk},

(&

Figure 5.29: LSP, Initialiser

The task of the Initialiser (Figure is to start the other protocol components
in the right order on occurrence of the first frame(s), and to check for initial out-of-
synchronisation errors. From its initial location i), there are three options: either a
sound frame is ready first (signalled through port fSR), in this case, the Initialiser
sends to the presentation device the order to present the first sound frame (port

116 CHAPTER 5. TOOL DEVELOPMENT AND CASE STUDIES

fSP), starts the Sound Manager (port IS) and the Skew Observer (port ISk) and
a timer z;, and moves to location sf1. If the first video frame is ready (signalled
through fVR) before the timer reaches 150 (maximum allowed time for video lagging
behind), it sends to the presentation device the order to present the first video frame
(port fVP), and starts the Video Manager (/) and the Jitter Observer (port 1.J).
If x; reaches 150 and no video frame is ready (initial out-of-synchronisation error),
the Initialiser moves to its error location ¢F. In case a video frame arrives first, the
behaviour is (mostly) symmetric: the Initialiser moves to location vfI, starts the
Video Manager and the Jitter Observer, and waits for the first sound frame to be
ready. The timeout in this case is 15, which is the maximum amount of time by
which the video presentation may precede the sound presentation. The third option
from the initial location is the case where both frames (video and sound) arrive at
the same time. In this case, all communication (presentation of frames, initialisation
of other components) takes place at the same time, and no further check for initial
out-of-synchronisation errors is required.

5.3.2.6 Verification

We consider the behaviour of the LSP in different environments, i.e., with different
streams. As explained above, the LSP is designed in such a way that no jitter is
allowed on the Sound Stream. Consequently, every Sound Stream that allows jitter
would immediately cause an out-of-synchronisation error. We therefore only consider
a model of an ideal Sound Stream, as shown in Figure [5.30l Every 30ms, the Sound
Stream emits a signal that a sound frame is ready, through port fSR for the first
sound frame, and through port SR for all subsequent frames. The extra port for the
first sound frame is introduced to ease proper initialisation of the protocol (cf. the
Initialiser in Section |5.3.2.5)).

For the Video Stream, we consider two different variants, cf. [BFKT98|. Fig-
ure [5.31| shows a Video Stream with non-anchored jitter of bms, i.e., every video
frame is ready at least 35ms and at most 45ms after the previous frame. As a sec-
ond variant, Figure shows a Video Stream with anchored jitter of dHms, i.e.,
every video frame is send not earlier than 5ms before its ideal presentation time,
and not later than dms after its ideal presentation time. As for the Sound Stream,
the signal indicating that the first video frame is ready is sent through port fVR, for
all subsequent frames, it is sent through port VR. The TCA modelling the entire
system (including the environment) is obtained by composing the TCA Tpgp (cf.
Page with the TCA of the Sound Stream (Figure and the TCA of the
Video Stream with Anchored Jitter or Non-Anchored Jitter (Figure [5.31]).
For brevity of explanation, we may identify the system by the type of jitter of the
included Video Stream, for example, we may refer to the fact that “a property holds
in the system including the Video Stream with Anchored Jitter” by simply saying
“the property holds in the system with anchored jitter” or “the property holds under
anchored jitter”.

To identify out-of-synchronisation errors, we check for reachability of the error
locations sFE in the Sound Manager, jE in the Jitter Observer, and skE in the
Skew Observer component. Note that instead of the latter two, we could also check

5.3. CASE STUDIES 117

SR
{fSR} TSS:= {$SS}_30)7
l‘sgiIO)

Figure 5.30: LSP, Sound Stream

{VR}
{/VR}, (zvs:= 35§xvg§45),
(zyg:=0)

Figure 5.31: LSP, Video Stream, Non-Anchored Jitter

{VR} (xvg 40) (wvs —0)

xvg 40 Tys: 0)

‘ e ‘

Figure 5.32: LSP, Video Stream, Anchored Jitter

{VR}

whether the error location vmFE in the Video Manager component is reachable, since
vmkE is only reachable if either jE or skE is reachable at the same time, cf. Sections
[6.3.2.3land [5.3.2.4L However, the results would be less meaningful in that case, since
we would not be able to identify the exact reason of the error.

For the verification, we further assume that the streams start at the same time,
that means the first frames on the two streams are ready at the same time. This
is implemented by restricting the runs of the system to those where the Initialiser
takes the transition from its initial location i0 to location sv (cf. Section [5.3.2.5)).
Without this assumption, there can be an arbitrary delay between the first frames
on the two streams, and initial out-of-synchronisation errors are trivially possible.

We have modelled the TCA of the LSP with the ECT plugin. As for the ABP
(cf. Section, we compare three unfolding depths k€{20, 50, 100}. Table [5.33
shows the experimental results for the different unfolding depths, error locations
and Video Streams (anchored or non-anchored jitter).!® Again, slanted entries (to-
gether with the entry (IS)) indicate that the input problem is satisfiable. The LSP is
modelled in a very concise way already, therefore, we do not provide an abstraction
function. In particular, there exists no obvious abstraction function (and probably
there exists no non-empty abstraction function at all) that would preserve the results

BNote that for k=100, we have added information to the input problem that was obtained
from the case k=50, namely that locations sF and skE are not reachable within 50 steps, and that
location jE is not reachable within 50 steps under non-anchored jitter. Without this assumption,
verification would take much longer for k=100, for example more than 10 hours to detect that
location skFE is not reachable under anchored jitter.

118 CHAPTER 5. TOOL DEVELOPMENT AND CASE STUDIES
in Table £.33]
k=20 k=50 k=100
anc. non-anc. anc. non-anc. anc. non-anc.
SE 1.145s 0.584s 13.46s 4.171s 43.15s 20.99s
22.02MB | 21.14MB | 36.77MB | 32.79MB | 69.79MB | 67.22MB
g 12255 (S)| 1153 |3.881s (S)| 2.075s |92.27s (S)| 7375
21.91MB | 21.67MB | 32.98MB | 31.31MB | 79.06MB | 79.90MB
SLE 5.250s 4.401s 9.795s 7.769s 1155s 781.5s (S)
22.66MB | 22.56MB | 35.22MB | 33.26MB [142.44MB | 140.05MB

All experiments have been carried out with MATHSAT, version 4.2.17,
on an Intel Core2 Duo CPU E4500, with 2.20GHz and 2.5GB RAM

Table 5.33: Experimental Results for the LSP

The first row in Table[5.33|shows that the error location sF in the Sound Manager
is unreachable under all unfolding depths and for both types of jitter, that means
sound frames can never arrive late. This is the expected result, since we have
assumed an ideal Sound Stream in Figure [5.30] which does not experience any jitter.

Out-of-synchronisation errors on the Video Stream (jitter) can occur under an-
chored jitter only, as shown in the second row of Table The reason is that under
anchored jitter, the maximal distance of two subsequent video frames is 50ms, which
is bms more than what is allowed by the protocol. The error can occur in case a
video frame arrives as early as possible (namely 5ms before its ideal presentation
time), and the following video frame arrives as late as possible (namely 5ms after
its ideal presentation time). Under non-anchored jitter however, this error is not
possible.

In contrast, out-of-synchronisation error between the two streams (skew) can
occur under non-anchored jitter only. The reason is that only in this case, the pre-
sentation of the video frames can “drift off”, that means deviations from the optimal
presentation time can sum up, while under anchored jitter, this is not possible. Re-
member that we allow the video presentation to lag behind by at most 150ms (cf.
the beginning of Section [5.3.2)). Assuming all video frames arrive as late as possible,
i.e., after 45ms, the first time this error can occur is when the protocol has run for
1395ms: after 1350ms, video presentation lags behind by exactly 150ms, and on
arrival of the next video frame 45ms later, the limit of 150ms is exceeded. Due to
the periodic nature of the Sound Stream and the Video Stream, the protocol needs
more than 80 steps to reach this point, which is why the error occurs under unfolding
depth 100 only.

As for performance, we make the following observations: comparing the verifica-
tion times for reachability of different locations, but with the same unfolding depth
and Video Streams, it can be seen that checking the reachability of sE is mostly
faster than checking the reachability of jE, which in turn is faster than checking

5.3. CASE STUDIES 119

the reachability of skE. The reason lies in the complexity of the TCA, and the for-
mula representation generated for them. The transition relation representation (cf.
(3.13])) of the Sound Manager contains three elements for source location s1 (two el-
ements of type corresponding to the two visible transitions in location s1, and
one element of type for the delay in location s1). For the Jitter Observer, the
transition relation representation contains five elements for source location j1 (four
elements of type (3.11]), and one element of type (3.17))), and for the Skew Observer,
the transition relation representation contains eight elements for source location sk1
(six elements of type , one element of type , and one element of type
(3.17))). In particular, the Skew Observer has an invisible transition, which can be
executed independently of other TCA (subject to the clock guard being satisfied).
Intuitively, this means that the transition relation representation of the Skew Ob-
server is “more nondeterministic” than the transition relation representation of the
Jitter Observer, which in turn is more nondeterministic than the transition relation
representation of the Sound Manager. Thus, when searching for a system run ending
in the respective error location, the MATHSAT solver needs to try more options for
the Jitter Observer than for the Sound Manager, and in turn more options for the
Skew Observer than for the Jitter Observer.

A second observation is the fact that in case the property is satisfied for a certain
unfolding depth (i.e., the error location is unreachable) for both types of Video
Streams, verification of the system with anchored jitter still takes up to factor 3
longer than verification of the system with non-anchored jitter, though the number
of possible executions of a given length in both systems is the same. Again, the
reason lies in the complexity of the TCA and the formula representation of the
transition relation. For the Video Stream with Non-Anchored Jitter, the transition
relation representation contains two elements for source location wvs!, while for the
Video Stream with Anchored Jitter, it contains three element for source location
vs1, and two more for source location vs2.

In contrast to the ABP, where reachable error locations where found comparably
fast even for k=100 (less than four seconds, cf. Table [5.21), it takes MATHSAT
more than 13 minutes to detect that location skE is reachable for k=100 (under
non-anchored jitter). Equivalently, it takes MATHSAT about one and a half minutes
to detect that location jE is reachable for k=100 (under anchored jitter), which is
comparably long given the fact that reachability of location jF is detected in a bit
more than a second for k=20. The reason is that the LSP is considerably more
complex than the ABP. Moreover, even though jE is reachable very quickly (in
actually less than ten steps), MATHSAT still needs to find a valid execution for the
remaining steps when checking the system with £=100.

This last point shows the benefits of starting the verification process with compa-
rably small unfolding depths, and successively increasing the bound (cf. Section.
In case the error location is k-step reachable already for small values of k, there is
no need to consider larger unfolding depths, since this might take disproportionately
longer (in Table , we have added the results for location jF under anchored jitter
for k=50 and k=100 to illustrate exactly this point). If, instead, the error location
is not k-step reachable for small values of &, this information can be used to reduce
verification times in subsequent checks for k’-step reachability (for k'>k).

120 CHAPTER 5. TOOL DEVELOPMENT AND CASE STUDIES

5.3.3 Advantages of using TCA

The case studies presented above have highlighted the advantages of using TCA in
the development process. In general, TCA have—just like other automata-based
models—a rather shallow learning curve, compared to other formal models like for
example process algebra. This is thanks to the intuitive graphic approach, and the
state-transition notion in the drawings that closely corresponds to mental models of
such systems. This allows for an easy entry into the subject even for unexperienced
users, who can quickly design simple models with TCA. One of the main advantages
of TCA over other automata-based models is that they allow for true concurrency,
while combining the notions of time and data. Thus, once the designer gets ac-
customed to the formalism, TCA offer a powerful formalism to design concurrent
distributed systems.

Comparing our TCA-based models of the ABP and the LSP to models of the
protocols found in the literature further illustrates the modelling power of TCA. The
model of the ABP presented in [Mil89] is based on the calculus of communicating
system (CCS) [Mil82]. The model does not use concrete data values, but only works
with the alternating bits. Moreover, the timing for resending of messages is modelled
with a timer that only sends a timeout at “some point” after being activated, but the
model does not use concrete time values. Our approach allows for concrete time and
data values, and therefore provides a more faithful model of the ABP. The process-
algebraic model of the ABP presented in [Fok00] handles different data values, but
does not include time at all. Instead, components are assumed to emit messages
and acknowledgements with bit b periodically until they receive the next message or
acknowledgement with bit —b. Our TCA model provides a more flexible approach,
and can be adapted to different environments (where channels have different delays,
for example), in that it allows to specify different delays for the resending of the
different messages and acknowledgements.

The model of the LSP presented in [BEKT98] is based on TA, and therefore
enjoys the general advantages of automata-based models described above. However,
we observe a number of advantages when using TCA instead of TA to model the LSP.
Remember that TA do not allow for true concurrency, that means only a single event
can be executed in every step. As a consequence, the model in [BFKT98| needs a
large number of so-called committed locations® (large compared to the total number
of locations) to model the synchronous execution of a set of actions. This becomes
particularly evident when considering the initialising component (called “Sync”) in
[BEKT98]: it is less powerful than the Initialiser presented here (cf. Section[5.3.2.5)),
in that it does not check for initial out-of-synchronisation errors, yet the “Sync”
component needs 11 locations to ensure certain actions happen at the same time,
while the Initialiser needs only seven. Even more, the model in [BEK™98] needs two
additional helper components “Video Manager” and “Sound Manager” (not to be
confused with our Sound Manager and Video Manager), whose only purpose is to
ensure that certain (sequences of) events in different automata are executed at the

4The notion of committed location is taken from UPPAAL [upp], which is the solver used for
protocol verification in [BEKT98|. A committed location in a TA must be left immediately after
it has been entered, without delay or interleaving of other (instantaneous) actions.

5.3. CASE STUDIES 121

same time. In contrast, with TCA, we simply put all events that are to be executed
at the same time on a single transition.

To detect a negative delay on the Video Stream (that means, video lagging
behind), [BFK™98] uses a helper component “Sound Clock”. This component models
a “backward running” clock, by decreasing a variable by one every time the value of
its clock has increased by one. As a consequence, the maximal delay of the system
between two subsequent steps is 1, which results in very long execution traces. In our
model, we use a memory cell to keep track of the negative delay. This considerable
increases the “step length” of the system, since we only need to update the memory
cell on optimal presentation times of video frames (i.e, every 40 time units), and on

actual presentation of a video frame (cf. Figure and Section [5.3.2.4)).

