
Modelling and analysis of real-time coordination patterns
Kemper, S.

Citation
Kemper, S. (2011, December 20). Modelling and analysis of real-time coordination
patterns. IPA Dissertation Series. BOXPress BV, 2011-24. Retrieved from
https://hdl.handle.net/1887/18260

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/18260

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/18260

Chapter 4

Abstraction Refinement

Abstraction refinement [CGJ+03, HJMM04] is a promising direction of research to
overcome the challenges of the state explosion problem and infinite state model
checking, while preserving correctness of verification results. The general abstrac-
tion refinement paradigm [CGJ+03] consists of three steps: (1) generate the initial
abstraction, (2) model check the abstract system, and, if required, (3) refine the
abstraction, and repeat.

The general idea of abstraction is to reduce the system complexity, by removing
information which is considered irrelevant for the verification of a particular property,
and therefore can be safely removed from the system. The obvious problem is
how to determine which information is relevant: if the abstraction is too fine—
i.e., removes too little information—verification still suffers from the state explosion
problem. If, on the other hand, the abstraction is too coarse—i.e., removes too much
information—verification suffers from too much information loss,1 and the results
are likely to be wrong. Consequently, abstraction techniques are distinguished based
on how they deal with the information loss [CGJ+03].

Over-approximation techniques (also called conservative techniques), for example
predicate abstraction [GS97], enrich the system behaviour by releasing constraints,
such that correctness of the abstract system implies correctness of the concrete
system. Over-approximation techniques admit false negatives (also called spuri-
ous counterexamples), i.e., a system behaviour which violates the property in the
abstract system, but is not reproducible on the original (concrete) system. Under-
approximation techniques, on the other hand, constrain the system behaviour by
removing irrelevant parts, such that a property violation in the abstract system im-
plies a property violation in the concrete system. Under-approximation techniques
admit false positives, i.e., a system behaviour which satisfies the property in the
abstract system, but violates it in the concrete system. In this work, we deal with

1By definition, abstraction always means information loss. Yet, with respect to the property
to be verified, some information is irrelevant, and can be safely removed.

67

68 CHAPTER 4. ABSTRACTION REFINEMENT

over-approximation techniques. For a more detailed description of abstraction tech-
niques, see for example [CGP99, CGJ+03].

In the context of abstraction, the general idea of refinement can be described
as “undo part of the abstraction”. If a counterexample to the property under test
has been detected in the abstract system (using over-approximation techniques, for
under-approximation, the reasoning is different), it needs to be checked whether the
counterexample comprises a violation of the property, or whether it is spurious. In
the former case, the counterexample to the property is reproducible in the original
system, which means the property does not hold in the original system. In the latter
case, the counterexample is not reproducible in the original system, which means the
spurious counterexample is due to wrong (too coarse) abstraction, and the abstract
system needs to be refined. The refinement ideally takes into account the reason
why the counterexample has been feasible in the abstract system, in order to prevent
this erroneous behaviour in further verification steps.

The remainder of this Chapter is organised as follows: in Section 4.1, we de-
scribe our uniform abstraction methodology abstraction by merging omission. The
methodology is flexible to operate on different system types, since it is defined based
on syntactical categories of variables, and takes the constituents of the system under
consideration that are to be abstracted as parameters. In Section 4.2, we explain
how to translate a counterexample (to the property under test) obtained from the
abstract system back into the concrete system. Section 4.3 gives a brief overview
of Craig interpolation [Cra57], discusses the expressiveness of the generated inter-
polants, and how they can be used to derive information about the cause of a spurious
counterexample. In the end, we show how to syntactically reorder the input problem
(without changing the semantics) to increase the expressiveness of the interpolants.
In Section 4.4, we show how to refine the abstraction in case it has turned out to be
too coarse, and discuss heuristics on the application of different refinement options.
We conclude the Chapter in Section 4.5.

4.1 Abstraction by Merging Omission

In this section, we present a simple and fast, but nevertheless powerful, uniform ab-
straction technique specifically tailored to work on logical formulas: abstraction by
merging omission (MO) [KP07, Kem11]. By removing constraints which are consid-
ered irrelevant to a particular (safety) property, MO yields an over-approximation.

The basic idea of MO is to reduce the system complexity of a real-time system
S, S∈{A,T} (i.e., S is a TA or a TCA, for discussion of abstraction of TNA,
please refer to Section 6.1), by decreasing the number of symbols in the formula
representation ϕ(S), while retaining as much information as possible about the
transition characteristics (the abstract formula is weaker than ϕ(S), though). MO
is defined for formulas in negation normal form (NNF),2 to which ϕ(S) can be easily

2A formula is defined to be in NNF if negation only appears in front of literals, and {¬,∨,∧} are
the only allowed Boolean connectives. In propositional logic, every formula can be transformed into
an equivalent formula in NNF, by (1) replacing implications and equivalences by their definitions
(i.e., using only {¬,∨,∧}), (2) using De Morgan’s laws to push negation inside, and (3) eliminating
double negations.

4.1. ABSTRACTION BY MERGING OMISSION 69

transformed. MO uniformly works on the different syntactical categories contained
in ϕ(S): it merges Boolean variables, by mapping them to the same image according
to a map of merging γ, and it removes rational variables and arithmetic constraints
according to a set of omission O.

The intended idea of the set of omission O is to contain constraints and param-
eters whose removal from ϕ(S) enriches the behaviour of the represented system
S, i.e., whose removal enlarges the set of valuations satisfying the formula repre-
sentation ϕ(S) of S. For example, removing a clock constraint from a transition
enriches the behaviour, in that the transition is enabled more often. Note that this
is only true for convex clock constraints, because with logical conjunction ∧ as the
only logical connective (cf. Definition 2.1.2), removing any of the conjuncts removes
a subconstraint, and thus enlarges the set of satisfying valuations.

The intended idea of the map of merging γ is to contain mappings for variables
whose mergence in ϕ(S) enriches the behaviour of S. For example, merging two
locations enriches the behaviour, in that the combined location allows for additional
runs containing in- and outgoing transitions of different underlying locations.

We allow merging for propositional variables only, and omission for rational vari-
ables and arithmetic constraints. We first introduce some notation.

Notation 4.1.1 (Variable Sets (cf. Section 3.1.1)). For any real-time system
S, let S and X be the sets of variables representing locations and clocks, respectively.
For a TA A, let Σ be the set of variables representing events. For a TCA T, let PA,
PDA, DF and DCO be the sets of variables representing port activity variables, port
data variables, data fullness variables and data content variables, respectively. All
variable sets are understood to be without indices.

We lift the notations from Section 2.1 in the straightforward way to reason about
representation variables rather than constituents of real-time systems. In particular:

• by CC(X) and X|cc, we denote the set of clock constraints over clock variables
in X, and the set of clock variables that occur in a clock constraint cc∈CC(X),
respectively (cf. Definition 2.1.2)

• by DC(PDA,DCO), PDA|dc and DCO|dc, we denote the set of data constraints over
port data variables in PDA and data content variables in DCO, the set of port data
variables that occur in a data constraint dc∈DC(PDA,DCO), and the set of data
content variables that occur in a data constraint dc∈DC(PDA,DCO), respectively
(cf. Definition 2.1.7)

• by CC(X)|S, we denote the set of clock constraints over clock variables in X that
occur in the formula representation of a real-time system S; by DC(PDA,DCO)|S,
we denote the set of data constraints over port data variables in PDA and data
content variables in DCO that occur in the formula representation of S (cf.
Notations 2.2.3 and 2.3.4).

The exact nature of the map of merging γ and the set of omission O (i.e., to
which system parts are γ and O applicable) depends on the the underlying system
S. We now define these for TA and TCA separately.

70 CHAPTER 4. ABSTRACTION REFINEMENT

Definition 4.1.2 (Map of Merging, Set of Omission for TA). Let A be a TA,
with formula representation ϕ(A), and variable sets as introduced in Notation 4.1.1,
let PA=(S∪Σ).

The map of merging γA of A is a total map γA:PA→(PA∪P′A), with P′A some fresh
set of propositional variables, and γA(p)=γA(p′) only if (p, p′∈S) or (p, p′∈Σ). The set
of omission OA of A is OA⊆X∪CC(X), where CC(X) only contains atomic formulas
(i.e., which do not contain the logical operator ∧, cf. Definition 2.1.2).

The map of merging γA merges locations or actions, it is the identity for ele-
ments not intended to be merged. The additional constraint “only if (p, p′∈S) or
(p, p′∈Σ)” ensures that γ only maps variables to the same image if they are of the
same conceptual type (a location cannot be not merged with an action). The set
of omission OA allows to remove clocks or single clock constraints. In the former
case, the intended idea is to completely remove x from ϕ(A) (i.e., every occurrence
of x). For this reason, all clock constraints cc reasoning about x, that means with
x∈X|cc, need to be removed as well (even if cc itself is not contained in OA). The
abstraction function (Definition 4.1.5) automatically takes care of this.

Definition 4.1.3 (Map of Merging, Set of Omission for TCA). Let T be a
TCA, with formula representation ϕ(T), and variable sets as introduced in Nota-
tion 4.1.1, let PT=(S∪PA∪DF).

The map of merging γT of T is a total map γT:PT→(PT∪P′T), with P′T some fresh
set of propositional variables, and γT(p)=γT(p′) only if (p, p′∈S), or (p, p′∈PA), or
(p, p′∈DF). The set of omission OT of T is OT⊆X∪CC(X)∪DC(PDA,DCO), where CC(X)
and DC(PDA,DCO) do not contain compound formulas (i.e., do not contain logical
operators ∧ and ¬, cf. Definitions 2.1.2 and 2.1.7). In addition, if for some data
constraint dc∈DC(PDA,DCO)|T, there exists Dp∈PDA|dc with γ(p) 6=id , or Dd∈DCO|dc with
γ(d) 6=id (where p and Dp are port activity and port data variable of the same port
p, and d and Dd are data fullness and data content variable of the same data variable
d, cf. Section 3.1.1.4), we require dc∈OT.

The map of merging γT allows to merge locations, ports (actually port activity
variables) or memory cells (actually data fullness variables), again it is the identity
for elements not intended to be merged, and can only merge variables of the same
conceptual type. The set of omission OT allows to remove clocks and single clock
constraints as before, and in addition allows to remove single data constraints. As for
TA, the abstraction function (Definition 4.1.5) automatically takes care of removing
all clock constraints cc with x∈X|cc for a clock x∈OT, even if cc6∈OT.

For ports intended to be merged, i.e., with γ(p)6=id , the automatic removal of
data constraints by the abstraction function does not work in the same way as
it does for clocks. The reason is that for a clock x and a clock constraint cc,
a simple syntactic check x∈X|cc is sufficient to determine whether cc needs to be
removed or not (see above). For ports, on the other hand, the set PT contains port
activity variables, while data constraints contain port data variables. Therefore, we
need to explicitly add all data constraints to OT that reason about ports intended
to be merged. This is done by the last condition in Definition 4.1.3. The same

4.1. ABSTRACTION BY MERGING OMISSION 71

argumentation holds for data fullness and data content variables.

Note that it is indeed necessary to completely remove data constraints that rea-
son about ports and memory cells intended to be merged. The naive approach
of replacing port data respectively data content variables in a data constraint by
their image under γT does not work, and may result in unsatisfiable data con-
straints. As an example, suppose a transition with port set {p, q} and data con-
straint ((p=1)∧(q=2)), and suppose γT(p)=γT(q)=r. Straightforward syntactic re-
placement of port data variables would yield a transition with port set {r} and
data constraint ((r=1)∧(r=2)). While the original (unabstracted) data constraint
is satisfiable, the abstract data constraint is not; such abstraction would not yield
an over-approximation.

Notation 4.1.4 (Abstraction). Since MO works uniformly on the different syn-
tactical categories, in the sequel, we omit indices A respectively T, and write γ, O,
P and P′ only.

We use the term domain of the abstraction, denoted by •α,3 to refer to the set
of parameters intended to be abstracted. That is, the domain of the abstraction
consists of all elements in O, and of those elements in P where γ is not the identity,
that means which are mapped to an element in P′. Formally, •α = O∪γ−1(P′). Note
that •α contains both (single) variables and (arithmetic) constraints.

We can now define the abstraction function.

Definition 4.1.5 (Abstraction by Merging Omission). Let S be a real-time
system, with ϕ(S) in NNF, and γ, O, P and P′ defined in Definitions 4.1.2 respec-
tively 4.1.3.

The abstraction of ϕ(S) (by merging omission) with respect to O and γ, denoted
as αO,γ(ϕ(S)), is defined in (4.4). We may write α(ϕ(S)) if O and γ are clear form
the context.

MO uniformly captures abstraction on all syntactic categories contained in ϕ(S):
variables and constraints (cf. Section 3.2.1 for the definition of Conts(·)) not meant
to be abstracted (i.e., which are not contained in the domain of the abstraction
•α) are kept unchanged (4.1a). The map γ is applied to all positive propositional
variables (4.1b). For negative propositional variables p (i.e., which occur as ¬p in
ϕ(S)) meant to be abstracted, we distinguish two cases: if there exists a positive
propositional variable p′ in the same conjunction as p,4 and with the same image
under γ (i.e., p and p′ are to be merged), we replace p with its positive image
under γ (4.1c). The idea is that positive propositional variables are used to describe
the “behaviour”—source and target of a transition, for example—while negative
propositional variables are used to ensure consistency—mutual location exclusion,

3This notation anticipates Definition 4.1.5, where we use the symbol α to denote the abstraction
function.

4In the same conjunction means enclosed by the same pair of parenthesis (note that some
parenthesis can be omitted though, cf. Notation 2.1.1). For example, in (p∧p′∧p′′)∨p′′′, p, p′ and
p′′ are in the same conjunction, but p′′′ is not.

72 CHAPTER 4. ABSTRACTION REFINEMENT

α′(L) =



L Conts(L)∩ •α=∅ (4.1a)

γ(L) Conts(L)∩ •α 6=∅, L=p∈P (4.1b)

γ(L) Conts(L)∩ •α 6=∅, L=¬p, p∈P,
∃p′∈P in the same conjunction as p : γ(p)=γ(p′)

(4.1c)

¬γ(L) Conts(L)∩ •α 6=∅, L=¬p, p∈P,
¬∃p′∈P in the same conjunction as p : γ(p)=γ(p′),

∃¬p′′, p′′∈P, in the same conjunction as p : γ(p)=γ(p′′)

(4.1d)

true otherwise (4.1e)

α′(F ∧G) = α′(F)∧α′(G) (4.2a)

α′(F ∨G) = α′(F)∨α′(G) (4.2b)

γα(P) =
∧

p∈γ(P)\P

(
((

∧
p′∈γ-1(p)

¬p′)∨ p)∧(
∨

p′∈γ-1(p)

p′ ∨¬p)
)

(4.3)

α(ϕ(S)) = α′(ϕ(S))∧ γα (4.4)

Here, F and G are formulas in NNF, and L is a literal.

Figure 4.1: Abstraction by merging omission

for example. Therefore, if such p′ exists, we can dismiss the literal ¬p, since p and
p′ are mapped to the same image under γ, and we do not need the consistency
constraint (for consistency between p and p′) anymore. Note that replacing ¬p by
true is possible as well, but this would yield a much coarser abstraction. If no such
p′ exists, but instead there exists a negative propositional variable p′′ with the same
image under γ (4.1d), then we replace p and p′′ by their negative image under γ.
Again, replacing ¬p and ¬p′ by true is possible but would yield a much coarser
abstraction. In all other cases, α′ maps the literal to true (4.1e). In particular, this
last case handles arithmetic constraints (both positive and negative) meant to be
abstracted. Remember that arithmetic constraints not meant to be abstracted are
handled in (4.1a) already.

In this way, α′ performs a quick variant of existential abstraction [CGJ+03],
while exploiting the syntactic categories and structural relationships of elemens in
our formula representation.

In order to guarantee that MO yields an over-approximation, we need to keep
track of the relation between symbols in P and their abstract counterparts in P′. For
this reason, we add the constraint γα (4.3) to the abstract formula (note that (4.3)
is in NNF, and is equivalent to

∧
p∈γ(P)\P

(
(
∨
p′∈γ-1(p) p

′)↔ p
)
).

As mentioned above after Definitions 4.1.2 and 4.1.3, the abstraction function
automatically removes clock constraints cc over clocks x∈•α (i.e., with x∈X|cc), even
if cc6∈•α. The reason is that the only applicable rule in (4.1) for literal cc is (4.1e).
Rule (4.1a) is not applicable, since the intersection Conts(cc)∩•α is not empty,
and all other rules only handle propositional variables. Therefore, constraint cc is

4.1. ABSTRACTION BY MERGING OMISSION 73

replaced by true by (4.1e).

In contrast, for ports intended to be abstracted (and equivalently for mem-
ory cells), the situation is different: a data constraint dc over port p contains the
port data variable Dp∈PDA (cf. Section 3.1.1), while the domain of the abstraction
•α contains the port activity variable p∈PA. As a consequence, the intersection
Conts(dc)∩•α in (4.1a) would be empty. To correctly abstract from the data con-
straint, we explicitly add dc to •α (cf. Definition 4.1.3), such that the intersection
is not empty anymore.

Notation 4.1.6 (Abstraction). Without confusion, in the sequel we use the sym-
bol α only, and omit the symbol α′. For example, for a literal L, we write α(L)
instead of α′(L).

We get the following results.

Lemma 4.1.7 (Abstraction by Weakening). Abstraction by merging omission,
as defined in Definition 4.1.5, yields an over-approximation, that means α(F) is
weaker than F in the sense that the implication F→α(F) is valid (true in all models).

Proof. The proof can be found in Section A.2 in the Appendix, on Page 138.

Theorem 4.1.8 (Correctness of Abstraction). Abstraction by merging omis-
sion, as defined in Definition 4.1.5, yields a correct over-approximation on sets of
runs.

Proof. The proof can be found in Section A.2 in the Appendix, on Page 146.

So far, we have assumed the variables to be without indices. Lifting α to the
presence of localisations is straightforward: γ and O are understood oblivious to in-
dices in the NNF of ϕ(S), such that indices directly carry over to ϕ(S)k unchanged.
Defining different abstractions for different steps is possible using the same definition
of α, but we consider it to be less useful. Note that α is homomorphic with respect
to {∧,∨}, which proves the equality of α(ϕ(S)k) and α(ϕ(S))k (except for speed of
computing the abstraction, where α(ϕ(S))k is superior).

Example 4.1.9 (Abstraction). Consider again the formula representation ϕ(A)
of the intelligent light switch, as shown in Table 3.3 in Example 3.1.2. According
to Definition 4.1.2, we have P=(S∪Σ)={off, light, bright, press, τ}. For merg-
ing locations light and bright into one location on, we define O=∅, P′={on},
γ(light)=γ(bright)=on, and γ(p)=id for p∈P\{light, bright}.

The abstraction by merging omission of ϕ(A) with respect to γ and O, α(ϕ(A)),
is shown in Table 4.2.

Note that we have simplified the formulas, by removing redundant parts. For
example, after applying the abstraction function α, the first entry in Table 4.2

74 CHAPTER 4. ABSTRACTION REFINEMENT

α(ϕinit(A)) = off0∧¬on0∧¬press0∧¬τ0∧(z0=0)∧(x0=0)

α(ϕaction(e1)) = offt∧presst 1∧(zt=zt 1)∧(xt 1=zt 1)∧ont 1

α(ϕaction(e2)) = ont∧presst 1∧(zt=zt 1)∧(zt−xt>3)∧(xt 1=xt)∧offt 1

α(ϕaction(e3)) = ont∧presst 1∧(zt=zt 1)∧(zt−xt≤3)∧(xt 1=xt)∧ont 1

α(ϕaction(e4)) = ont∧presst 1∧(zt=zt 1)∧(xt 1=xt)∧offt 1

α(ϕdelay(off)) = offt∧¬presst 1∧¬τt 1∧(zt≤zt 1)∧(xt=xt 1)∧offt 1

α(ϕdelay(light)) = ont∧¬presst 1∧¬τt 1∧(zt≤zt 1)∧(xt=xt 1)∧ont 1

= α(ϕdelay(bright))

α(ϕtrans(A)) = α(ϕaction(e1))∨α(ϕaction(e2))∨α(ϕaction(e3))∨α(ϕaction(e4))∨
α(ϕdelay(off))∨α(ϕdelay(light))

α(ϕlocation(A)) = (offt 1∧¬ont 1)∨(ont 1∧¬offt 1)

α(ϕmutex(A)) = (presst 1∧¬τt 1)∨(τt 1∧¬presst 1)∨(¬presst 1∧¬τt 1)

γα(P) = ((¬lightt∧¬brightt)∨ont)∧(lightt∨brightt∨¬ont)
α(ϕ(A)) = α(ϕinit(A))∧α(ϕtrans)∧α(ϕlocation(A))∧α(ϕmutex(A))∧γα(P)

Table 4.2: Abstraction by Merging Omission: Example

contains conjunct ¬on0 twice, resulting from applying γ to ¬bright0 and ¬light0
in the original formula (cf. Table 3.3).

4.2 Concretisation

In the previous Section, we have defined abstraction by merging omission on the
formula representation ϕ(S) of a real-time system S. We have explained how to
obtain the abstract formula α(ϕ(S)) from ϕ(S), by removing parameters that are
considered irrelevant for the verification of a particular safety property.

The general problem with abstraction is that typically, it is not clear up front
what is the set of relevant parameters that need to be kept in order to preserve
correctness of verification results. It can therefore happen that one or more param-
eters from this set of relevant parameters are removed by the abstraction. If this
happens, we get false negatives : a false negative is a “proof” that the property is
violated in the abstract system, while in the original (concrete) system it is not (cf.
the explanations at the beginning of this Chapter).

Thus, if a counterexample to the property under test has been found in the
abstract system, we need to check whether this counterexample is real (i.e., corre-
sponds to a true violation of the property, also in the original system) or spurious
(i.e., is due to wrong abstraction, and the abstraction needs to be refined). To
this end, the abstract counterexample is translated back into the original system,
to determine whether it is reproducible there. This is called concretisation. In our
context, concretisation works as follows.

4.3. INTERPOLATION 75

First recall that to check whether a property expressed by formula φ holds in the
abstract system α(ϕ(S)), we check the conjunction α(ϕ(S))k∧¬φ for satisfiability
(cf. Section 3.2.3). If the formula is satisfiable, this indicates that the property does
not hold in the abstract system, and every model σ of α(ϕ(S))k∧¬φ corresponds to
a run of the abstract system which violates the property.

Next, observe that every model σ of α(ϕ(S))k∧¬φ is a total assignment to the
variables in Vars(α(ϕ(S))k∧¬φ), but only a partial assignment to the variables in
Vars(ϕ(S)k∧¬φ), that means some variables in ϕ(S)k are left unconstrained by σ.
This reflects the fact that one run in the abstract system can correspond to a set of
runs in the original system.

Concretisation now consists in trying to extend the model σ of α(ϕ(S))k∧¬φ to
a model of ϕ(S)k∧¬φ, that agrees with σ on variables in Vars(α(ϕ(S))k∧¬φ). This
is done by interpreting σ as a conjunction of variable assignments:

ρσ =
∧

v∈Vars(α(ϕ(S))k∧¬φ)
σ(v)=v

(v=v), (4.5)

and trying to find a model for the conjunction ϕ(S)k∧¬φ∧ρσ. We call ρσ the witness
run (for φ). As the witness run is highly restrictive (it singles out only one abstract
path), the abstract counterexample guides the search through the concrete system
with a very narrow focus and is highly efficient. If such a model for ϕ(S)k∧¬φ∧ρσ
exists, that means, if the witness run is concretisable, we have found a run in the
original system that violates the property. If no such model exists, i.e, ϕ(S)k∧¬φ∧ρσ
is unsatisfiable, the counterexample is spurious, and the abstraction needs to be
refined.

Remark 4.2.1 (Concretisation). Since σ|=(α(ϕ(S))k∧¬φ) (i.e., σ is a model of
α(ϕ(S))k∧¬φ), in particular σ|=¬φ. By construction of ρσ, we have |=ρσ→¬φ.
For every valuation σ′, we thus have σ′|=ϕ(S)k∧¬φ∧ρσ iff σ′|=ϕ(S)k∧ρσ. For this
reason, we can safely remove the conjunct ¬φ from the formula ϕ(S)k∧¬φ∧ρσ during
concretisation, and check the satisfiability of ϕ(S)k∧ρσ only, without affecting the
results. We will use this fact for interpolation.

In the next Section, we describe how to use Craig interpolants to derive infor-
mation about which parameters need to be refined.

4.3 Interpolation

In this section, we introduce Craig interpolants (Section 4.3.1), and discuss their
expressive power in the context of SAT-based verification (Section 4.3.2). We do not
show how to derive/compute interpolants, since powerful tools exist for this task.
The interested reader is referred to [McM03, McM05b], for example.

4.3.1 Craig Interpolants

Craig interpolants have been defined in [Cra57]. They are defined for pairs of incon-
sistent formulas (i.e., formulas which are unsatisfiable together), and provide a way

76 CHAPTER 4. ABSTRACTION REFINEMENT

of capturing the reason of inconsistency.

Definition 4.3.1 (Craig Interpolant). Let (F1, F2) be a pair of inconsistent for-
mulas, i.e., with |= ¬(F1∧F2). A Craig interpolant for F1 and F2 (or simply inter-
polant) is a formula G such that

|= F1 → G, (4.6)

|= G→ ¬F2,
5 and (4.7)

Vars(G) ⊆ Vars(F1)∩Vars(F2). (4.8)

Here, Vars(ϕ) denotes the set of variables in a formula ϕ. F1 is called prefix of
G, and F2 is called suffix of G.

For a pair of inconsistent formulas, an interpolant always exists [Cra57], and can
be derived from a resolution proof of inconsistency of F1 and F2 in time linear in the
size of the proof [Pud97, McM03, McM05b]. Originally [Cra57], interpolants were
defined for purely propositional formulas, but it has been shown that they can be
derived in the same way for formulas with linear (in)equalities over rational numbers,
see [McM04] for details. Interpolants are not unique: for a pair of inconsistent
formulas, typically many formulas exist which fulfil the conditions in Definition 4.3.1.
Furthermore, resolution proofs are not unique either, that means the same pair
of formulas can have different resolution proofs of inconsistency, depending on for
example to which subformulas the resolution rule is applied first.

An interpolant G for an inconsistent pair of formulas (F1, F2) captures the reason
of inconsistency as follows: G is always an over-approximation of the prefix F1 (4.6),
that means every model of F1 is also a model of G. In this way, G captures the facts
that can be derived from the prefix, that means the maximal set of facts that holds
for every valuation of the prefix. Moreover, G is also an under-approximation of the
negated suffix ¬F2 (4.7), that means every model of G is also a model of ¬F2. In
this way, G captures facts that are inconsistent with F2, that means the minimal
set of facts that can never be extended to a satisfying valuation of the suffix. Since
the interpolant contains only common symbols of prefix and suffix (4.8), it captures
the cause of inconsistency, in that the constraints expressed by the interpolant are
sufficient to show the inconsistency of prefix and suffix.

Interpolants are defined for pairs of formulas. If we have a single unsatisfiable
formula F that is a conjunction of two subformulas, i.e., F=F1∧F2, we can split F
around this top-level conjunction, and derive an interpolant for the resulting pair
(F1, F2). If F is a conjunction of more than two subformulas, i.e., F=F1∧ . . .∧Fn,
for n>2, we can interpret F as a sequence of formulas F1, . . . , Fn, and derive an
interpolant for every possible nonempty bisection (i.e., both subsequences contain at
least one formula each) of the sequence. This corresponds to deriving an interpolant
for every possible split around a top-level conjunction of F . In this way, we get a
sequence of n−1 interpolants G1, . . . , Gn−1, such that Gi is an interpolant for the
pair (F1∧ . . .∧Fi, Fi+1∧ . . .∧Fn), i∈{1, . . . , n−1}. In [McM05a], the author showed

5The notion |= ¬(G∧F2) is also commonly found in the literature, but in this context, we
consider our (equivalent) notion |= G→ ¬F2 more comprehensible.

4.3. INTERPOLATION 77

that if the sequence of interpolants G1, . . . , Gn−1 is derived from the same refutation
proof for the inconsistency of F1, . . . , Fn, then

|= (Gi∧Fi+1)→ Gi+1 (4.9)

holds for every i∈{1, . . . , n−1}.
There exist a number of tools that support interpolant generation for SMT for-

mulas, like for example CSIsat [BZM08, csi], FOCI [FOC] or MathSAT [mat]. The
former only supports interpolant generation for a pair of formulas. The latter two
support the approach just described: when called on a sequence of n inconsistent
formulas, they generate a sequence of n−1 interpolants with the property (4.9).

4.3.2 Expressiveness of Interpolants

In this section, we discuss what kind of information about the cause of unsatisfiability
can be derived from interpolants, and we show how the sequential order of formulas
can influence the generated interpolants.

For a pair of inconsistent formulas (F1, F2), we can derive a single interpolant G.
Without further taking into account the concrete structure of prefix F1 and suffix
F2, we can derive the following information about the inconsistency of F1 and F2

from G:

• G=true: we do not get any information about the prefix, since F1 → true

(4.6) holds for every F1. We know that the suffix by itself is inconsistent, since
true→ ¬F2 (4.7) only evaluates to true if F2 evaluates to false

• G=false: we know that the prefix by itself is inconsistent, since F1 → false

(4.6) only evaluates to true if F1 evaluates to false. We do not get any
information about the suffix, since false→ F2 (4.7) holds for every F2.

• G=F for some formula F , F 6=true, F 6=false: we do not get any information
about prefix or suffix alone, but we know that the conjunction is unsatisfiable.
As explained above, the constraints expressed by F are sufficient to prove the
inconsistency of F1 and F2.

Obviously, changing the sequential order of F1 and F2— that means deriving
an interpolant G′ for the pair (F2, F1)—does not yield additional information about
the cause of unsatisfiability. In particular, observe that if G is an interpolant for
(F1, F2), then it follows directly from Definition 4.3.1 that ¬G is an interpolant for
(F2, F1). However, when deriving a sequence of n−1 interpolants from a sequence of
n formulas, the sequential order of the formulas has a considerable influence on the
generated interpolants, and thus on their expressiveness, as the following example
shows.

Example 4.3.2 (Sequential Formula Order and Expressiveness of Inter-
polants). Consider two sequential orders for a set of inconsistent formulas:

(a↔b), (a↔c), (b↔e), (e↔f), (c↔d), (a↔¬b), and (4.10)

(c↔d), (a↔c), (a↔b), (a↔¬b), (b↔e), (e↔f). (4.11)

78 CHAPTER 4. ABSTRACTION REFINEMENT

The inconsistency is solely caused by the two formulas (a↔b) and (a↔¬b). If we
apply the SMT solver MathSAT to each of the two sequences, we get the interpolant
sequences shown in Table 4.3 (for (4.10) on the left, for (4.11) on the right).6

formulas interpolants formulas interpolants
(a↔b) (c↔d)

(a↔b) true

(a↔c) (a↔c)
(a↔b)∧(a↔c) true

(b↔e) (a↔b)
(a↔b)∧(a↔c)∧(b↔e) (a↔b)

(e↔f) (a↔¬b)
(a↔b) false

(c↔d) (b↔e)
(a↔b) false

(a↔¬b) (e↔f)

Table 4.3: Interpolant sequences for different formula orders

Notice that the interpolants derived for sequence (4.11) (on the right side of
Table 4.3) are much simpler than the interpolants derived for (4.10). In particular,
there is only one interpolant 6∈{true, false} on the right side. This is due to the
fact that the formulas in the sequence (4.11) are arranged in such a way that the
number of common variables of prefix and suffix is minimised. As a result, the
cause of unsatisfiability becomes clear immediately from the interpolants derived for
(4.11): the third interpolant (a↔b) (the only interpolant 6∈{true, false}) precisely
describes the constraints that cause the inconsistency.

The interpolants derived for sequence (4.10) (on the left side of Table 4.3), on the
other hand, are more complex,7 because the number of common variables of prefix
and suffix is larger. As a result, the cause of unsatisfiability is not immediately clear
(though the repeated occurrence of interpolant (a↔b) gives an indication already,
but this is in general not the case for larger formula sequences and larger numbers
of common variables).

The example has shown that reducing the number of common variables of prefix
and suffix helps to obtain more expressive interpolants: in the best case, a number
of interpolants simplify to true or false, which allows to reduce the sequence of for-
mulas to an inconsistent subsequence. Moreover, less common variables of prefix and
suffix—and thus less variables that can be contained in the interpolant—yield less
complex invariants, which in turn capture the reason of inconsistency more precisely.
To illustrate this last statement, consider the third interpolant (a↔b)∧(a↔c)∧(b↔e)

6Read the Table as follows: for each interpolant, the prefix of the interpolant consists of
all formulas above it, and the suffix consists of all formulas below it. For example, for the
second interpolant on the left, (a↔b)∧(a↔c), the prefix is (a↔b)∧(a↔c), and the suffix is
(b↔e)∧(e↔f)∧(c↔d)∧(a↔¬b).

7More complex in the sense that they involve more variables, and have more satisfying inter-
pretations.

4.3. INTERPOLATION 79

derived for (4.10) (left side of Table 4.3), and the third interpolant (a↔b) derived for
(4.11) (right side of Table 4.3). While the latter precisely describes the constraints
causing the inconsistency of (4.11) (as explained above), the former contains the
superfluous conjuncts (a↔c) and (b↔e).

Note that the argumentation for interpolants true and false about the unsat-
isfiability of prefix and suffix directly carries over from pairs of formulas. That is,
the suffix of an interpolant true (which is now a set of formulas) is inconsistent by
itself, and so is the prefix of an interpolant false. For example, for the second inter-
polant true on the right side of Table 4.3, the suffix (a↔b)∧(a↔¬b)∧(b↔e)∧(e↔f)
is inconsistent by itself. We will come back to this fact in the next section.

4.3.3 Sequential Formula Order for ϕ(S)

We now present a sequential formula order for the subformulas of ϕ(S) that takes
into account the considerations from the previous Section.

Remember that we need to refine the abstraction if the witness run ρσ represents
a spurious counterexample, that means if the conjunction α(ϕ(S))k∧¬φ (of abstract
system and property) is satisfiable, but the conjunction ϕ(S)k∧ρσ (of original system
and witness run) is not, cf. Section 4.2 and in particular Remark 4.2.1. To find the
parameters that were wrongly abstracted, we derive a sequence of interpolants for
ϕ(S)k∧ρσ, and from these determine the ill-abstracted parameters. To increase the
expressiveness of the interpolants, we take into account the results from the previous
section, by syntactically reordering the subformulas of ϕ(S)k∧ρσ (without changing
the semantics), such that the number of common variables is minimised. Intuitively,
the resulting sequence results from “interleaving” elements from ϕ(S)k and ρσ, based
on their unfolding depth. In detail, we construct the sequence as follows.

First, we split ϕ(S)k around top-level conjunctions, based on the partition in
(3.29), and reconjunct elements where all variables have the same unfolding depth,
resulting in the following set

{ϕinit(S), ϕtrans(S)(0), ϕ
location(S)(1)∧ϕmutex(S)(1), . . .

. . . , ϕtrans(S)(k−1), ϕ
location(S)(k)∧ϕmutex(S)(k)}

(4.12)

Next, we do the same for the witness run: we split ρσ around the conjunctions
(cf. (4.5)), and reconjunct elements (variable assignments) with the same unfolding
depth, which yields the set

{
∧

v0∈Vars(ρσ)
σ(v0)=v

(v0=v), . . . ,
∧

vk∈Vars(ρσ)
σ(vk)=v

(vk=v)} (4.13)

Finally, we join the two sets, conjunct elements with the same unfolding depth,
and stratify (i.e., sort by unfolding depth) the formulas. The result is the following

80 CHAPTER 4. ABSTRACTION REFINEMENT

sequence of formulas

ϕinit(S)∧
∧

v0∈Vars(ρσ)
σ(v0)=v

(v0=v),

ϕtrans(S)(0),

ϕlocation(S)(1)∧ϕmutex(S)(1)∧
∧

v1∈Vars(ρσ)
σ(v1)=v

(v1=v),

ϕtrans(S)(1), . . . ,

ϕtrans(S)(k−1),

ϕlocation(S)(k)∧ϕmutex(S)(k)∧
∧

vk∈Vars(ρσ)
σ(vk)=v

(vk=v)

(4.14)

In the sequel, without confusion we may use ϕ(S)k∧ρσ to refer to the “reordered”
variant (4.14). For example, by “the sequence of interpolants derived for ϕ(S)k∧ρσ”
(in Section 4.4, for example), we actually mean to the sequence of interpolants
derived for (4.14).

Reordering the subformulas of ϕ(S)k∧ρσ in this way has two major advantages.
The first advantage is that we have minimised the number of common as much as
possible: elements of the sequence alternately contain variables of one respectively
two unfolding depths,8 and due to the stratification, every two subsequent elements
of the sequence share variables of exactly one unfolding depth. In this way, every
interpolant derived for any bisection of the sequence into prefix and suffix can con-
tain variables of (at most, cf. interpolants true and false) one unfolding depth.
Minimising the number of common variables has the advantages illustrated in the
previous Section.

The second advantage is that prefixes and suffixes of any interpolant directly
correspond to prefixes and suffixes of the witness run: for any interpolant Gi, with
1≤i≤2k,9 a model of the prefix of Gi directly corresponds to a prefix of length
b i

2
c of the run through S represented by the witness run ρσ. Again, this is due

to the fact that we stratified the formulas in (4.14). If Gi=false, we can thus
conclude that the prefix of length b i

2
c of the witness run, which is represented by

those elements of (4.13) with unfolding depth smaller or equal to b i−1
2
c, is not

concretisable. Equivalently, if Gi=true, we can conclude that the suffix of length
d2k−i

2
e of the witness run, which is represented by those elements of (4.13) with

unfolding depth greater or equal to d i
2
e, is not concretisable.

Remark 4.3.3. To illustrate the bounds in the above explanations (for example,
to illustrate that the prefix of interpolant Gi indeed corresponds to a prefix of the
witness run of length b i

2
c), consider the following example. For unfolding depth

8In (4.14), odd-numbered elements contain variables of one unfolding depth. For example,
the first element ϕinit(S)∧

∧
v0∈Vars(ρσ),σ(v0)=v

(v0=v) contains variables of unfolding depth 0 only.
Even-numbered elements contain variables of two unfolding depths. For example, the second
element ϕtrans(S)(0) contains variables of unfolding depths 0 and 1.

9Observe that for unfolding depth k, the sequence (4.14) has 2k+1 elements, which allows to
derive a sequence G1, . . . , G2k of 2k interpolants.

4.4. REFINEMENT 81

3, the sequence (4.14) has 2∗3+1 = 7 elements, for which we can derive 2∗3 = 6
interpolants G1, . . . , G6:

ϕinit(S)∧
∧

v0∈Vars(ρσ),σ(v0)=v
(v0=v)

G1

ϕtrans(S)(0)

G2

ϕlocation(S)(1)∧ϕmutex(S)(1)∧
∧

v1∈Vars(ρσ),σ(v1)=v
(v1=v)

G3

ϕtrans(S)(1)

G4

ϕlocation(S)(2)∧ϕmutex(S)(2)∧
∧

v2∈Vars(ρσ),σ(v2)=v
(v2=v)

G5

ϕtrans(S)(2)

G6

ϕlocation(S)(3)∧ϕmutex(S)(3)∧
∧

v3∈Vars(ρσ),σ(v3)=v
(v3=v)

Consider the case i=3: the prefix of interpolant G3 consists of three formulas,
which correspond to a run of length b3

2
c = 1, and this run is represented by the

variable valuations (i.e., the elements of (4.13)) with unfolding depths smaller or
equal to b3−1

2
c = 1. The suffix of G3 consists of four formulas, which correspond

to a run of length d6−3
2
e = 2, and this run is represented by the variable valuations

with unfolding depths greater or equal to d3
2
e = 2.

4.4 Refinement

If a counterexample to the property under test has been detected in the abstract
system, and this counterexample has turned out to be spurious in the concretisation
step, the abstraction is too coarse and needs to be refined.

Most refinement approaches are based on information obtained from the spurious
counterexample; the most well-known technique is called counterexample-guided ab-
straction refinement (CEGAR) [CGJ+03]. In CEGAR, one spurious abstract coun-
terexample (corresponding to a set of runs in the concrete system, cf. Section 4.2)
is ruled out within every refinement step, that means the abstraction is modified in
such a way that the spurious counterexample is not feasible anymore.

We propose a variant of CEGAR, by defining two possibilities of refining the
abstraction, both based on information obtained from the spurious counterexample.

4.4.1 Ruling Out a Counterexample Trace

The first refinement option is to rule out the spurious counterexample just found.
The spurious counterexample is given by the set of valuations that constitute the
witness run ρσ, cf. (4.5). To ensure that the behaviour expressed by the witness
run is not feasible anymore in future verification steps, we could simply add ¬ρσ as
an additional conjunct to the representation of the abstract system α(ϕ(S))k, and,

82 CHAPTER 4. ABSTRACTION REFINEMENT

instead of checking α(ϕ(S))k∧¬φ (cf. Section 4.2), model check α(ϕ(S))k∧¬ρσ∧¬φ
in the next verification step. This is essentially equivalent to basic CEGAR.

Yet, we can do better, by taking into account information obtained from the
interpolants. Let G1, . . . , Gn be the sequence of interpolants derived for ϕ(S)k∧ρσ,
let Gf , 1≤f≤n, be the first interpolant in the sequence which is equal to false, and
let Gt, 1≤t≤n, be the last interpolant in the sequence which is equal to true (note
that Gt and Gf do not necessarily exist).

If Gf exists, we know (cf. Definition 4.3.1 and Section 4.3.3) that the prefix of
Gf is unconcretisable. Let i be the unfolding depth of variables contained in the in-
terpolant Gf−1, which is the interpolant directly preceding Gf (remember that every
interpolant contains variables of at most one unfolding depth). We reduce the wit-
ness run ρσ of length k to a subset ρσ≤i of length i containing only variable valuations
of variables with unfolding depth i or smaller, and model check α(ϕ(S))k∧¬ρσ≤i∧¬φ
in the next verification step. In this way, in a single refinement step, we not only
rule out one abstract counterexample, as is done in basic CEGAR, but we rule out
a set of abstract counterexamples at once.

If Gt exists, we can use this interpolant in a similar way: let j be the unfolding
depth of variables contained in the interpolant Gt+1, which is the interpolant directly
following Gt. We reduce the witness run ρσ of length k to a subset ρσ≥j+1

of length
k−j+1 containing only variable valuations of variables with unfolding depth j+1 or
larger, and model check α(ϕ(S))k∧¬ρσ≥j+1

∧¬φ in the next verification step.

If neither Gf nor Gt exists, or if Gt=Gf−1 (the latter typically only happens with
small toy examples), this refinement step is not applicable. If both Gf and Gt ex-
ists, and Gt 6=Gf−1, we choose the interpolant that leads to a shorter counterexample
fragment being ruled out, that is, we choose Gf if i<k−j+1 (with i, j as above),
and Gt otherwise. The underlying idea is that a shorter witness run fragment cor-
responds to a larger set of witness runs of the full length k, and thus a larger set of
counterexamples is ruled out at once.

4.4.2 Refining a Previously Abstracted Parameter

The second refinement option is to reduce the domain of the abstraction •α, by
removing a parameter from it (that means, either remove a parameter from O,
or remove a mapping from γ). In this way, the parameter is put back into the
abstract system, such that it is considered again in future verification steps. More
concretely, the current abstraction αO,γ is transformed into a new abstraction α̃Õ,γ̃
with •α̃Õ,γ̃⊂•αO,γ, where either Õ⊂O, or γ̃−1(P′)⊂γ−1(P′). The new abstraction
α̃Õ,γ̃ is computed as follows.

To refine a parameter e∈O (a clock, a clock constraint or a data constraint),
the parameter is simply removed from O, that means Õ=O\e. However, it is only
possible to refine a clock constraint cc over a clock x∈X|cc if x itself is not abstracted,
that means x6∈•α, since otherwise, the new abstraction α̃Õ,γ̃ would produce a system
that contains a clock constraint over an undefined clock. Equivalently, it is only
possible to refine a data constraint dc over over a port p with Dp∈PDA|dc, or over a
memory cell m with Dm∈DCO|dc if p and m themselves are not abstracted, that means
m6∈•α, and p6∈•α.

4.4. REFINEMENT 83

If, instead, a parameter e∈γ−1(P′) (a location, an event, a port or a memory cell)
is to be refined, the mapping {e7→e′}, with e′∈P′, is removed from γ and replaced
by the identity mapping. If e was merged with one other parameter ~e only, that
means there exists exactly one ~e∈P with γ(~e)=γ(e)=e′, then the mapping for ~e

is removed as well: γ̃=γ ⊕ {e7→e, ~e 7→~e}, where ⊕ denotes function overriding.10

Otherwise, that means if |γ−1(γ(e))| > 2, no further changes need to be made to γ:
γ̃=γ ⊕ {e7→e}.

To solve the question which parameters from •α are to be considered for re-
finement, that means to identify the ill-abstracted parameters, we consider the set
Conts(Gf)∩•α

def
= •α|Gf−1

, with Gf−1 as before, of elements which are potentially
responsible for the spurious counterexample. Alternatively, we can consider the set
•α|Gt+1 , with Gt+1 as before. After choosing one of the parameters from any of the
sets, we refine it according to the procedure explained above. In the next verifica-
tion step, the property is checked on the abstract system computed with the new
abstraction function α̃Õ,γ̃, that means model checking is applied to α̃Õ,γ̃(ϕ(S))k∧¬φ.

Note that we could actually take any interpolant for this refinement option, that
means consider any set •α|Gi , with 1≤i≤n, since by definition, every interpolant
captures the reason of inconsistency of its prefix and suffix (cf. Definition 4.3.1 and
Section 4.3.2). However, since Conts(Gf) = Conts(Gt) = ∅, choosing either Gf or
Gt is not reasonable. Choosing any interpolant Gf ′ , with f ′>f (that means, which
occurs in the sequence G1, . . . , Gn at some point after Gf), is not reasonable either:
the prefix of Gf is inconsistent by itself, that means the cause of unsatisfiability is
entirely contained in this prefix. An interpolant Gf ′ , whose prefix contains the prefix
of Gf , can therefore not provide more information about the cause of unsatisfiability.
A similar argumentation holds for interpolants Gt′ , with t′<t, which occur in the
sequence G1, . . . , Gn at some point before Gt. Note that in SMT solver tools like
[csi, FOC, mat], such interpolants Gf ′ and Gt′ are simplified to false respectively
true, even if the solver derived an interpolant 6=false respectively 6=true for the
particular bisection.

Let F1, . . . , Fn+1 be the sequence of formulas in α(ϕ(S))k∧¬φ for which the in-
terpolants G1, . . . , Gn are derived. The reason why we choose Gf−1 to determine
candidates for refinement is the following: we know that the prefix of Gf (the set
of formulas F1, . . . , Ff) is unsatisfiable, but the prefix of Gf−1 (the set of formulas
F1, . . . , Ff−1) is not. Thus, the addition of “suffix” Ff to the prefix F1, . . . , Ff−1

causes the whole sequence F1, . . . , Ff to be unsatisfiable, and interpolant Gf de-
scribes the cause of this unsatisfiability (cf. also (4.9)). The argumentation for
choosing Gt+1 is similar.

4.4.3 Refinement Heuristics

For conciseness of explanation, we refer to the refinement option presented in Sec-
tion 4.4.1 as the first (refinement) option, and to the refinement option presented in

10The mapping for ~e could actually remain in γ, since a single mapping {~e 7→e′}, with
|γ−1(γ(~e))| = 1, corresponds to pure syntactic replacement of ~e by e′, and therefore does not
change the satisfiability of the result. Yet, ~e is a parameter in the original system ϕ(S), while e′

is not, therefore, we prefer to remove e′.

84 CHAPTER 4. ABSTRACTION REFINEMENT

Section 4.4.2 as the second (refinement) option.

The problem with the second refinement option is which parameter to choose
from •α|Gf−1

(respectively from •α|Gt+1) for refinement: since interpolants are not
unique, typically not all parameters in the set are responsible for the present spurious
counterexample, and some of the parameters might not be ill-abstracted at all. As
an example, consider again the interpolants in the left column of Table 4.3: the
second and the third interpolant contain parameters b and c, respectively b, c and
e, which are completely irrelevant to the cause of inconsistency of the formulas in
(4.10). Additionally, it is in general not clear under which conditions to apply either
the first or the second refinement option. Thus, the remaining difficulty is to define
heuristics describing the application of the two refinement options. Finding adequate
heuristics is a problem common to almost all refinement approaches, cf. for example
[CGJ+03, CCK+02].

While the first refinement option is quick and easy to apply, in that the ap-
plication is straightforward once a counterexample has been found, it cannot yield
results as long as essential parameters are inadequately abstracted. Application of
the second option is not so straightforward and in addition involves more computa-
tional effort (recomputing the abstraction), but this option is indispensable to add
ill-abstracted parameters back into the system. However, if the second option is ap-
plied too frequently, the abstract system quickly collapses to the original system. It
is thus necessary to define heuristics that strike a suitable balance between options
one and two.

The best solution to solving this problem is to leave the decision (which option
and—for option two—which parameter to choose) to the human experts. The rea-
soning is that system developers who have designed and improved the system in a
number of iterations in the development process have a deep insight into the func-
tioning of the system, and, when presented with a counterexample and/or a set of
potentially responsible parameters, these experts will be able to deduce information
about the quality/applicability of the different refinement options.

To support the developers in reaching a decision, and as a first step towards
automatic abstraction refinement, we propose the following heuristic, which in par-
ticular uses both refinement options one and two. We first rule a fixed number of
counterexamples (for example k

2
), using option one, and in every iteration record the

set •α|Gf−1
(respectively •α|Gt+1) of parameters that are potentially responsible. Let

•α|Gif−1
denote the set obtained in the i-th iteration. After this, we inspect the multi-

set •α|G1
f−1
∪•α|G2

f−1
∪ . . .∪•α|Gnf−1

, and determine the parameter(s) with the highest

multiplicity. If there exists a single such parameter, we refine it with refinement
option two. Otherwise, if there are two or more parameters with the same (highest)
multiplicity, we can either randomly choose a parameter among these, or continue
applying option one until one parameter in the multiset has a higher multiplicity
than the others.

The idea of this heuristic is as follows: as explained above, applying refinement
option one is quick and easy, moreover, it will never result in an abstraction that is
too fine (in contrast, when refining a parameter with option two that is irrelevant to
the property, the abstraction becomes unnecessarily fine). We can therefore apply
option one a number of times, without loosing efficiency. By taking into account

4.5. CONCLUSION 85

the set of potentially responsible parameters •α|Gf−1
obtained from (many) different

iterations, we increase the probability of choosing a parameter that is indeed ill-
abstracted, since ill-abstracted parameters will occur more frequently.

4.5 Conclusion

In this Chapter, we have presented a general framework for abstraction and re-
finement of TA and TCA that are represented in propositional logic with linear
arithmetic.

In Section 4.1, we have defined our uniform abstraction function. It is essentially
equivalent to the abstraction function presented in [Kem11] (which in turn is an
improved variant of the abstraction functions presented in [KP07, Kem09]). The
major difference between the abstraction function presented here and the one in
[KP07, Kem09] is the fact that we do not in general map negative propositional
variables to true. Such an abstraction function would effectively remove the mutual
exclusion constraint for locations (cf. (3.5), (3.14) and (3.24)) and TA events (3.6),
as well as part of the consistency constraint on data values in TCA and TNA ((3.15)
and (3.25)). Instead, we take into account the special characteristics of our formula
representation, and the syntactic context of the propositional variable (4.1c), (4.1d),
and in this way retain more information. See Section A.2 for further details.

In addition, while the abstraction functions presented in previous work were
tailored to one system type each, we have shown in Section 4.1 that the abstraction
function presented here uniformly handles both TA and TCA. We have provided
correctness results, which in particular take into account the new representation
features of memory cells and data values. In Section 4.2, we have restated in more
detail the concept of concretisation, which has been briefly sketched in previous work
[KP07, Kem11].

Section 4.3 deals with Craig interpolation. After a brief introduction to Craig
interpolants, presented mainly for completeness, we have provided an extensive dis-
cussion on expressiveness of interpolants, and the type of information that can be
derived from (a sequence of) interpolants. We use these results in Section 4.3.3 to
reorder the formulas in the representation of TA and TCA such that the information
derived from interpolants is maximised.

Finally, in Section 4.4, we have discussed two refinement options in detail. While
these options were sketched in previous work already ([KP07, Kem11]), we here
provide a detailed discussion of how and when to apply each of the options, and
discuss advantages and disadvantages. Section 4.4.3 discusses refinement heuristics
based on the two refinement options. Apart from automatic abstraction refinement,
these heuristics can also be used to support user decisions on which refinement option
to choose.

