
Modelling and analysis of real-time coordination patterns
Kemper, S.

Citation
Kemper, S. (2011, December 20). Modelling and analysis of real-time coordination
patterns. IPA Dissertation Series. BOXPress BV, 2011-24. Retrieved from
https://hdl.handle.net/1887/18260

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/18260

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/18260

Chapter 3

SAT-based Verification

Model checking [CGP99, BK08] is the problem of automatically verifying (prov-
ing or disproving) whether a system conforms to its specification, given as a set of
properties/constraints. Model checking usually consists of enumerating all reachable
configurations of the system, and then checking whether the properties hold in these.
Yet, the infinite state-space of real-time systems leads to severe limitations in scal-
ability, even in very well-established model checkers like Uppaal [upp]. Especially
for the verification of safety properties of real-time systems [CBRZ01, BCC+03],
Bounded Model Checking (BMC, [BCCZ99]) has turned out to be amongst the
most promising approaches. Safety properties declare what should not happen—or
equivalently, what should always happen—and are typically expressed as reachabil-
ity properties. Safety properties can be disproved with a finite counterexample, i.e.,
a finite run, where the last configuration contains a contradiction to the property.
The principle of BMC for safety properties is to examine prefix fragments of the
transition system, and successively increase the exploration bound until it reaches
(a computable indicator of) the diameter of the system—in which case the system
has been proven safe—or an unsafe run has been discovered [ACKS02].

In this chapter, for each of the system models defined in the previous chapter
(i.e., TA, TCA, TNA), we present an encoding in propositional logic, plus linear
arithmetic on the rational numbers, which is tailored towards BMC. A satisfiability
check on the resulting formula (SAT solving) using SMT solvers1 like FOCI [FOC]
or MathSAT [mat], is then used to find possible runs of the system.

The main idea is that for any system model S, with S∈{A,T,N} (cf. Defini-
tions 2.2.1, 2.3.1 and 2.4.2), we define a formula ϕ(S). This formula encodes the
transition characteristics of S, that means, the possibilities to evolve to the next
step t+1, based on the configuration in the current step t. For BMC, we unfold

1Satisfiability Modulo Theory (SMT) problems combine propositional satisfiability with an
underlying theory, for example the theory of linear arithmetic over the real numbers. Atoms in an
SMT problem can consist of propositional variables or theory atoms, and are combined with the
Boolean connectives.

43

44 CHAPTER 3. SAT-BASED VERIFICATION

the formula ϕ(S) k times, i.e., we instantiate the “abstract” indices t and t+1 for
all steps 1 up to bound k, which yields a variant ϕ(S)k. Intuitively, a satisfying
interpretation of the formula ϕ(S)k corresponds to a run of the associated LTS SS,
i.e., to one possible behaviour for the first k steps. Consequently, the set of all pos-
sible valuations of ϕ(S)k corresponds to the complete possible behaviour of S for
the first k steps.

The rest of this Chapter is organised as follows: in Section 3.1, we define the
formula representation. As in the previous Chapter, we start with a general part
(Section 3.1.1), and then discuss in detail the formula representation of the different
system models and their products (Sections 3.1.2 to 3.1.4). In Section 3.2, we present
the unfolding for BMC, and discuss some issues related to BMC. We discuss other
possibilities for encoding, and motivate our design decisions in Section 3.3, and
conclude the Chapter in Section 3.4.

3.1 Formula Representation

The possible behaviour (i.e., which transition can be taken) of a real-time system S
depends on the current system configuration (location, clock valuation, data vari-
ables, events, ports, memory cells) and changes over time. This time-dependent
behaviour needs to be reflected by the formula ϕ(S)k. Therefore, we “parametrise”
the variables representing the constituents of S by the step t they are evaluated in.
This is called localisation: the localisation ψt of a formula ψ is obtained by adding
index t to all variable symbols occurring in ψ. Thus, if ψ is of vocabulary x, s, p,
then ψt is of vocabulary xt, st, pt.

In the next section, we present the representation for constituents common to
more than one real-time system: clocks, locations, events, ports, and data vari-
ables/memory cells. In Sections 3.1.2, 3.1.3 and 3.1.4, we introduce the specific
transition characteristics of TA, TCA and TNA, respectively.

3.1.1 Preliminaries

We now show how to represent constituents common to more than one real-time
system.

3.1.1.1 Clocks, Clock Constraints

Let X be the set of clocks in S. For the representation of clocks, we first introduce a
fresh clock z, called absolute time reference, which is not used in any clock constraint
and which is never updated, thus, the value of z increases constantly. This clock is
used to measure the absolute amount of time that has passed since the beginning
of computation: for any step t, the rational variable zt (called representation of z)
represents the value of z in step t, i.e., the absolute amount of time which has passed
from the beginning of computation up to step t. For every clock x∈X , the rational
variable xt (clock reference (of clock x)) is used to compute the value of clock x in step
t, which is given by the difference zt−xt. Thus, for clock constraints cc=x∼n and

3.1. FORMULA REPRESENTATION 45

cc′=x−y∼n (cf. Definition 2.1.2), the formulas cct=zt−xt∼n and cc′t=yt−xt∼n,2

(called representation of cc and cc ′, respectively) evaluate to true iff cc and cc′ hold
in step t. The representation of other clock constraints is straightforward, by using
conjunctions of the above constraints.

The underlying idea of clock references is that the variable xt will keep its value
as long as clock x is not updated in S. When clock x is updated, there are two
possibilities (cf. Definition 2.1.5): either x is updated to a natural number n∈N, or
x is updated to the value of another clock x′. In the former case, the value of xt is
set to zt−n, in the latter case, it is set to the value of x′t. In both cases, the dif-
ference zt−xt yields the correct value of x. This temporal difference representation
significantly improves the SAT solving performance, due to the decreased number
of arithmetic operations, see Section 3.3 for a more detailed discussion.

We illustrate the idea describe above in Figure 3.1. Above the line representing
the value of z, we denote the updates, as found on transitions of S. Below the time
line (x-axis), we denote the formulas which are used to set xt to the correct value.

time

value
z

xx′

n
x=0

x=n

x=x′

xt=zt xt=zt−n xt=x′t

Figure 3.1: Representation of Clock Values, Concept

By definition of the allowed updates for a clock x, the value of xt is always
smaller than the value of zt. The value of xt can become negative in case of an
update λ(x)=n, with n>zt (or, obviously, in case x is updated to the value of
another clock x′ where x′t is already negative).

3.1.1.2 Locations

Let S be the set of locations of S. We use a linear Boolean encoding for locations:
for every location s∈S, the Boolean variable st (called representation of s) represents
whether S is in location s in step t. Please refer to Section 3.3 for a discussion of
other possible encodings.

3.1.1.3 Data Values

To represent the (possibly infinite, countable) set of data values Data for TCA and
TNA, we use an injective mapping ∆:Data→Z, which maps each element di∈Data,

2Actually, the formula is ((zt−xt)−(zt−yt))∼n, but this simplifies to yt−xt∼n.

46 CHAPTER 3. SAT-BASED VERIFICATION

di 6=⊥, to an integer number ni (called representation of di). If a total order 6
exists on Data (cf. Definition 2.1.7), we require ∆ to preserve this total order, i.e.,
for all di, dj∈Data such that di 6=dj, if di 6 dj, then ∆(di)=ni<nj=∆(dj). For the
representation of ⊥ , we introduce an integer constant, denoted by n⊥, without
assigning a specific value to it; see Remark 3.1.5 for further explanations. For
explanatory purposes, we treat n⊥ similarly to ni, i.e., as if it was an element of Z.

3.1.1.4 Events, Ports, Data Variables

To represent the set of events Σ of a TA A, we use a linear Boolean encoding: for
every event a∈Σ, the Boolean variable αt (called representation of a) represents
whether A executes a transition in step t that is labelled with a. Please refer to
Section 3.3 for a discussion on other possible encodings of events.

The basic idea for ports (in TCA or TNA) is the same as for events: for every port
p∈P , the Boolean variable pt (called port activity variable of p) represents whether
port p is active in step t. In addition, to encode which data value is transmitted
over an active port, for every port p∈P , we introduce an integer variable Dpt (called
port data variable), which represents the data value pending on p in step t. If p is
inactive in step t, Dpt evaluates n⊥; see Remark 3.1.5 for further explanations.

For data variables, we use a similar set of variables, though with a slightly dif-
ferent meaning: for every data variable d∈D, we introduce a Boolean variable dt,
and an integer variable Ddt. The variable dt (called data fullness variable) is used to
indicate whether d is full in step t. As for ports, the variable Ddt (called data content
variable) represents which data value (according to mapping ∆) is contained in d in
step t, in case d is not empty, Ddt evaluates to n⊥ if d is empty in step t.

Though the encoding using two variables per port/data variable might seem
unnecessary, we need this for efficient abstraction. Please refer to Section 4.1 for
more details.

3.1.1.5 Data Constraints

For a data constraint dc=(D'D′), ' ∈{=,6} (cf. Definition 2.1.7), the formula dct
(the representation of dc) evaluates to true iff dc holds in step t. The constraint dct
is defined by replacing ports and data values occurring in dc with their corresponding
representations; i.e., replace p∈P|dc by Dpt, and di∈Data|dc by ∆(di)=ni. For data
variables d∈D|dc, we need to take into account whether they are used by the source or
the target location of the transition to which dc belongs (i.e., whether they occur as
s.d or as t.d in dc, cf. Remarks 2.3.2 and 2.4.3), or only in dc itself. In the latter two
cases, we replace d∈D by Ddt, in the first case, we replace d by Ddt 1. This corresponds
to the fact that d can be used by the source location only before the execution of
the transition, i.e., at step t−1. The representation of other data constraints is
straightforward, using conjunctions and negations of the aforementioned.

3.1.2 Timed Automata

The representation of the transition relation of TA has to model both action and
delay transitions, cf. Section 2.2. It constrains the possible valuations of variables

3.1. FORMULA REPRESENTATION 47

representing the automaton configuration at subsequent step t+1 depending on
those at t. Recalling the representation of clocks, locations and events from the
previous section, the representation of TA is defined as follows.

Definition 3.1.1 (TA Representation). Let A be a TA, with initial location s̄,3

let e=(s, a, cc, λ, s′) be a transition in A. The formula representation of the transition
relation of A, denoted ϕ(A), is defined in (3.7) of Table 3.2.

ϕinit(A) = s̄0∧
∧

s∈S,s6=s̄
¬s0∧I(s̄)0∧

∧
a∈Σ

¬α0∧(z0=0)∧
∧
x∈X

(x0=0) (3.1)

ϕaction(e) = st∧αt 1∧cct∧(zt=zt 1)∧
∧

λ(x)=id

(xt 1=xt)∧∧
λ(x)=x′

(xt 1=x′t 1)∧
∧

λ(x)=n

(xt 1=zt 1−n)∧s′t 1∧I(s′)t 1

(3.2)

ϕdelay(s) = st∧
∧
a∈Σ

¬αt 1∧(zt≤zt 1)∧
∧
x∈X

(xt=xt 1)∧st 1∧I(s)t 1 (3.3)

ϕtrans(A) =
∨
e∈E

ϕaction(e)∨
∨
s∈S
ϕdelay(s) (3.4)

ϕlocation(A) =
∨
s∈S

(st 1∧
∧

s′∈S,s′ 6=s
¬s′t 1) (3.5)

ϕmutex(A) =
∨
a∈Σ

(αt 1∧
∧

a′∈Σ,a′ 6=a

¬α′t 1)∨
∧
a∈Σ

(¬αt 1) (3.6)

ϕ(A) = ϕinit(A)∧ϕtrans(A)∧ϕlocation(A)∧ϕmutex(A) (3.7)

Table 3.2: Transition Relation Representation of TA

The idea of these formulas is as follows: the TA starts in its initial location
(3.1), the invariant of which has to hold (by I(s)t, we denote the localisation of the
invariant I(s) of some location s, cf. Section 3.1), no action is enabled, and all clocks
start with value 0. Before executing an action transition e=(s, a, cc, λ, s′)∈E of step
t+1 in (3.2), the automaton is in location s (at step t), and the transition guard
cct is satisfied. On occurrence of event αt 1, the transition fires. The value of the
absolute time reference does not change (action transitions are instantaneous), other
clocks are updated according to their value under update map λ (they either keep
their value, are set to zt−n if λ(x)=n, cf. Section 3.1.1.1, or get the value of another
clock reference x′t). After the execution (at step t+1), the automaton is in location
s′, the invariant of which has to hold. For a delay transition (3.3), the automaton
remains in location s, the value of the absolute time reference increases, all clock
references keep their value (there is no update, cf. (2.2)), no event a∈Σ must occur,
and the invariant has to hold after the time delay. Due to convexity, the invariant of
the target location in both action and delay transitions only needs to be checked at
the end of the transition/delay (that means at step t+1), as it inductively holds at

3To avoid confusion with localisation indices, we denote the initial location as s̄ rather than
s0, so its representation is s̄0 rather than the odd-locking (s0)0).

48 CHAPTER 3. SAT-BASED VERIFICATION

the beginning (3.1). The disjunction of these formulas expresses (nondeterministic)
transition choice (3.4). In any step, the current location and event are unique
(mutual exclusion of location (3.5) and event variables (3.6)), to prevent ϕ(A) from
following multiple transitions simultaneously.

Example 3.1.2 (TA Representation). Consider again the intelligent light switch
presented in Figure 2.1 (Example 2.2.2). Let A be the name of the automaton, let
e1, e2, e3, e4 refer to the transitions from off to light, light to off, light to bright, and
bright to off, respectively. The representation of A is shown in Table 3.3. We omit
constraints equal to true, like for example clock guards or empty conjunctions.

ϕinit(A) = off0∧¬light0∧¬bright0∧¬press0∧¬τ0∧(z0=0)∧(x0=0)

ϕaction(e1) = offt∧presst 1∧(zt=zt 1)∧(xt 1=zt 1)∧lightt 1

ϕaction(e2) = lightt∧presst 1∧(zt=zt 1)∧(zt−xt>3)∧(xt 1=xt)∧offt 1

ϕaction(e3) = lightt∧presst 1∧(zt=zt 1)∧(zt−xt≤3)∧(xt 1=xt)∧brightt 1

ϕaction(e4) = brightt∧presst 1∧(zt=zt 1)∧(xt 1=xt)∧offt 1

ϕdelay(off) = offt∧¬presst 1∧¬τt 1∧(zt≤zt 1)∧(xt=xt 1)∧offt 1

ϕdelay(light) = lightt∧¬presst 1∧¬τt 1∧(zt≤zt 1)∧(xt=xt 1)∧lightt 1

ϕdelay(bright) = brightt∧¬presst 1∧¬τt 1∧(zt≤zt 1)∧(xt=xt 1)∧brightt 1

ϕtrans(A) = ϕaction(e1)∨ϕaction(e2)∨ϕaction(e3)∨ϕaction(e4)∨
ϕdelay(off)∨ϕdelay(bright)∨ϕdelay(light)

ϕlocation(A) = (offt 1∧¬lightt 1∧¬brightt 1)∨
(lightt 1∧¬offt 1∧¬brightt 1)∨
(brightt 1∧¬offt 1∧¬lightt 1)

ϕmutex(A) = (presst 1∧¬τt 1)∨(τt 1∧¬presst 1)∨(¬presst 1∧¬τt 1)

ϕ(A) = ϕinit(A)∧ϕtrans∧ϕlocation(A)∧ϕmutex(A)

Table 3.3: Transition Relation Representation of TA: Example

The product of TA, as defined in Definition 2.2.8, in the worst case is expo-
nential in the size of the underlying TA. We now present a representation of the
product which is linear in the size of the underlying TA. The basic idea is to re-
tain the representations of the individual automata, and define the product as their
juxtaposition.

Definition 3.1.3 (TA Product Representation). Let A1 and A2 be TA, with
X1∩X2=∅ and S1∩S2=∅, let ϕ(A1) and ϕ(A2) be the respective representations, as
defined in Definition 3.1.1, with (3.3) replaced by (3.3’). The formula representation
ϕ(A1./A2) of the product A1./A2 is defined in (3.9).

3.1. FORMULA REPRESENTATION 49

ϕdelay(s) = st∧
∧

a∈Σv

¬αt 1∧(zt≤zt 1)∧
∧
x∈X

(xt=xt 1)∧st 1∧I(s)t 1 (3.3’)

ϕmutex(A1./A2) =
∨

a∈Σ1\Σ2

(αt 1∧
∧

a′∈Σ2\Σ1

¬α′t 1)∨
∨

a∈Σ2\Σ1

(αt 1∧
∧

a′∈Σ1\Σ2

¬α′t 1) (3.8)

ϕ(A1./A2) = ϕ(A1)∧ϕ(A2)∧ϕmutex(A1./A2) (3.9)

The product representation (3.9) faithfully models the intended behaviour of the
product of TA, as defined in Definition 2.2.8: to ensure that the event occurring
in step t is unique within the system, we add the constraint on mutual exclusion
between events that are local to one of the TA (3.8), shared events are already dealt
with in (3.6).

3.1.3 Timed Constraint Automata

The main ideas of the representation of the transition relation of TCA are similar
to the representation of TA, as defined in the previous section. In particular, the
modelling of locations and clocks is identical. Yet, the representation needs to take
care of the special behaviour of TCA, namely, that every visible transition is pre-
ceded by a positive time delay, whereas invisible transitions may be instantaneous.
Conceptually, on execution of a transition, the delay is represented by evolving from
step t to step t+1, while the (instantaneous) location change takes place at t+1.

To correctly represent these delayed transitions (cf. (2.7)) in the associated
LTS ST (cf. Definition 2.3.5), we need a second type of clock constraints. Clock
constraints in (2.7) are evaluated under two different valuations: the invariant I(s′)
of the target location s′ is evaluated under (ν+t)[λ], that means after the time
delay (+t) and after the execution (λ) of the transition. In contrast, the invariant
I(s) of the source location s and the clock guard cc of the transition are evaluated
under (ν+t), that means after the passage of time, but before the execution of
the transition. To access the clock values at this particular point in time “in the
middle” of the execution step, we define the inter-step representation cct∆ of a
clock constraint cc . For cc = (x∼n), the inter-step representation is given by
cct∆ = zt 1−xt∼n. Note that for a clock constraint cc′ = (x−y∼n), the inter-step
representation is equivalent to the representation of cc′ as defined in Section 3.1.1.1,
since this representation does not contain the absolute time reference z anymore,
and delaying does not change the difference of x and y.

We are now ready to define the formula representation of TCA.

Definition 3.1.4 (TCA Representation). Let T be a TCA, with initial location s̄
(as before, we denote the initial location as s̄ rather than s0), let e=(s, P, dc, cc, λ, s′)
and e′=(s, ∅, dc, cc, λ, s′) be a visible and invisible transition in T, respectively. The
formula representation of the transition relation of T, denoted ϕ(T),4 is defined
in (3.16) in Table 3.4.

4Without confusion, we use the same formula identifiers for all real-time systems. For example,
we use ϕinit to denote the initial constraints for TA (3.1), TCA (3.10), and (in the next section)
TNA (3.20).

50 CHAPTER 3. SAT-BASED VERIFICATION

ϕinit(T) = s̄0∧
∧

s∈S,s6=s̄
¬s0∧I(s̄)0∧

∧
p∈P

(¬p0∧(Dp0=n⊥))∧∧
d∈D

(¬d0∧(Dd0=n⊥))∧(z0=0)∧
∧
x∈X

(x0=0)

(3.10)

ϕvisible(e) = st∧I(s)t∆∧
∧
p∈P

pt 1∧
∧
p 6∈P
¬pt 1∧

∧
d 6∈#(s′)

¬dt 1∧dct 1∧

cct∆∧(zt<zt 1)∧
∧

λ(x)=id

(xt 1=xt)∧
∧

λ(x)=x′
(xt 1=x′t 1)∧∧

λ(x)=n

(xt 1=zt 1−n)∧s′t 1∧I(s′)t 1

(3.11)

ϕinvisible(e′) = st∧I(s)t∆∧
∧
p∈P
¬pt 1∧

∧
d 6∈#(s′)

¬dt 1∧dct 1∧cct∆∧

(zt≤zt 1)∧
∧

λ(x)=id

(xt 1=xt)∧
∧

λ(x)=x′
(xt 1=x′t 1)∧∧

λ(x)=n

(xt 1=zt 1−n)∧s′t 1∧I(s′)t 1

(3.12)

ϕtrans(T) =
∨

e∈E,P 6=∅
ϕvisible(e)∨

∨
e′∈E,P=∅

ϕinvisible(e′) (3.13)

ϕlocation(T) =
∨
s∈S

(st 1∧
∧

s′∈S,s′ 6=s
¬s′t 1) (3.14)

ϕmutex(T) =
∧
p∈P

(¬pt 1 ∨¬(Dpt 1=n⊥))∧(pt 1 ∨(Dpt 1=n⊥))∧∧
d∈D

(¬dt 1 ∨¬(Ddt 1=n⊥))∧(dt 1 ∨(Ddt 1=n⊥))

(3.15)

ϕ(T) = ϕinit(T)∧ϕtrans(T)∧ϕlocation(T)∧ϕmutex(T) (3.16)

Table 3.4: Transition Relation Representation of TCA

The automaton starts in its initial location s̄ (3.10) in step 0, the invariant of
which has to be satisfied, data must not flow through any port, all memory cells are
empty, and all clocks are set to zero. Before executing a visible transition (3.11) in
step t, T is in location s. After the elapse of a positive amount of time (zt 1<zt),
after which the invariant I(s)t∆ of s and the clock guard cct∆ of the transition
hold, T switches to location s′, the invariant of which has to hold. All clocks are
updated according to their value under λ, data flows through all ports p contained
in the port set P , while the other ports are inactive, and the data constraint dct is
satisfied. Memory cells which are not used by the target location s′ are empty after
execution of the transition, i.e. they get the value ⊥. As for TA (cf. explanations
after Definition 3.1.1), convexity allows to check the invariant at the end of the time
delay only, as it inductively holds at the beginning (3.10). The execution of an
invisible transition (3.12) is similar, except that the amount of time elapsed may
be zero, and data must not flow through any port. The disjunction of all visible
and invisible transitions expresses nondeterministic transition choice (3.13). In any
step, the current location is unique (3.14), the special value “no data” may only be
pending at inactive ports, and may only be “contained” in a memory cell if that

3.1. FORMULA REPRESENTATION 51

memory cells is indicated to be empty (3.15).

Remark 3.1.5 (Representation of ⊥). As explained in Section 3.1.1, we leave the
value of n⊥ initially unspecified. During Bounded Model Checking (see Section 3.2
for details), if a satisfying assignment for ϕ(T) exists, the solver will find and assign
to ⊥ a integer value such that the constraints in Table 3.4 are satisfied.

The actual value which is assigned to ⊥ is not important. By construction,
the constraints in Table 3.4 ensure that the value is different from all ni used in
the constraints, i.e., from (the representation of) all data values pending at any
active port or contained in any memory cell. Since we allow ⊥ to be used in data
constraints only in combination with equality (but not with 6, cf. Definition 2.1.7),
this uniqueness ensures that a data constraint (Dpt=⊥) is satisfied iff port p is
inactive in step t, and a data constraint (Ddt=⊥) is satisfied iff memory cell d is
empty in step t.

For finite data domains, we can make the following improvement to ϕ(T).

Remark 3.1.6 (Finite Data Domain). For finite domains, i.e., with |Data\⊥|=k
for some k∈N, we require that ∆ maps the elements of Data to subsequent integer
numbers, with smallest element ∆(⊥)=−1, such that ∆(Data)={−1, 0, . . ., k−1}⊂Z.
Further, we add the constraint

∧
p∈P

(Dpt 1≤k−1)∧(Dpt 1≥−1)∧
∧
d∈D

(Ddt 1≤k−1)∧(Ddt 1≥−1)

to ϕmutex (3.15). This speeds up verification, since the number of possible valuations
for ports and memory cells is decreased.

Example 3.1.7 (TCA Representation). Consider again the 1-bounded FIFO
buffer presented in Figure 2.5. Let T be the name of the automaton, let e1, e2, e3

refer to the transitions from empty to full, full to empty (visible), and full to empty
(invisible), respectively. The representation of T is shown in Table 3.5. Again, we
omit constraints equal to true.

We now present a linear representation of products of TCA, which avoids the
worst case exponential blow-up of the product definition in Definition 2.3.9. As for
TA, the basic idea is to define the representation of the product as the conjunction
of the individual representations. We require variables representing common ports
to have the same name in both representations, such that constraints involving these
ports are automatically satisfied simultaneously in both representations.

To correctly model transitions described by (2.11) in Definition 2.3.9, we first
need to introduce explicit delay transitions: as explained after Definition 2.3.9, in
case the transition described by (2.11) is preceded by a time delay, the other automa-
ton actually performs a delay transition. The representation of a delay transition
ϕdelay(s) in location s is defined in (3.17).

52 CHAPTER 3. SAT-BASED VERIFICATION

ϕinit(T) = empty0∧¬full0∧¬p0∧(Dp0=n⊥)∧¬q0∧(Dq0=⊥)∧
¬m0∧(Dm0=n⊥)∧(z0=0)∧(x0=0)

ϕvisible(e1) = emptyt∧pt 1∧¬qt 1∧(Dpt 1=mt 1)∧(zt<zt 1)∧
(xt 1=zt 1)∧fullt 1∧(zt 1−xt 1≤3)

ϕvisible(e2) = fullt∧qt 1∧¬pt 1∧(Dmt 1=n⊥)∧(Dqt 1=mt)∧(zt 1−xt<3)∧
(zt<zt 1)∧(xt 1=xt)∧(zt 1−xt≤3)∧emptyt 1

ϕinvisible(e3) = fullt∧(zt 1−xt≤3)∧¬pt 1∧¬qt 1∧(Dmt 1=n⊥)∧(zt 1−xt=3)∧
(zt≤zt 1)∧(xt 1=xt)∧emptyt 1

ϕtrans(T) = ϕvisible(e1)∨ϕvisible(e2)∨ϕinvisible(e3)

ϕlocation(T) = (emptyt 1∧¬fullt 1)∨(fullt 1∧¬emptyt 1)

ϕmutex(T) = (¬pt 1 ∨¬(Dpt 1=n⊥))∧(pt 1 ∨(Dpt 1=n⊥))∧
(¬qt 1 ∨¬(Dqt 1=n⊥))∧(qt 1 ∨(Dqt 1=n⊥))∧
(¬mt 1 ∨¬(Dmt 1=n⊥))∧(mt 1 ∨(Dmt 1=n⊥))

ϕ(T) = ϕinit(T)∧ϕtrans(T)∧ϕlocation(T)∧ϕmutex(T)

Table 3.5: Transition Relation Representation of TCA: Example

ϕdelay(s) = st∧
∧
p∈P
¬pt 1∧

∧
d∈D

(Ddt 1=Ddt)∧
∧
x∈X

(xt 1=xt)∧(zt≤zt 1)∧

I(s)t∆∧st 1∧I(s)t 1

(3.17)

Note that these delay transitions are in accordance with Definition 2.3.1, since they
correspond to the representation of invisible transitions (cf. (3.12)) of the form
(s, ∅,

∧
d∈D(s.d=t.d), true, id, s). Therefore, in particular, (3.17) permits zero-delays.

Definition 3.1.8 (TCA Product Representation). Let T1, T2 be TCA, with
X1∩X2=∅ and S1∩S2=∅, let ϕ(T1) and ϕ(T2) be the respective representations, as
defined in Definition 3.1.4, with (3.13) replaced by (3.13’) for i=1, 2. The formula
representation ϕ(T1./T2) of the product T1./T2 is defined in (3.18).

ϕtrans(Ti) =
∨

e∈Ei,P 6=∅
ϕvisible(e)∨

∨
e′∈Ei,P=∅

ϕinvisible(e′)∨
∨
s∈Si

ϕdelay(s) (3.13’)

ϕ(T1./T2) = ϕ(T1)∧ϕ(T2)∧
∧
s∈S1

ϕdelay(s)∧
∧
s∈S2

ϕdelay(s) (3.18)

The product representation (3.18) faithfully models the intended behaviour, as
defined in Definition 2.3.9, but is still linear in the size of the underlying TCA. Note
that the existence of such a linear product is not immediately clear, but in fact is a
result of our design decision of explicitly mentioning all ports—active and inactive—
on each transition (cf. (3.11), (3.12) and (3.17)). This decision—though seeming

3.1. FORMULA REPRESENTATION 53

unnecessary at first glance—together with the assumption that common ports have
the same name in both TCA, ensures that transitions in different TCA may only be
executed in parallel (i.e., synchronise) if they fulfil the conditions described in Defi-
nition 2.3.9. In this way, we do not need to list all possible synchronisations (which
are allowed by (2.10) and (2.11)) explicitly, and in this way avoid the exponential
blow-up.

The hiding operation (cf. Definition 2.3.12) removes all information about a set
of ports O from a TCA T. Hiding a set of ports O in the formula representation
ϕ(T) amounts to existential quantification over the corresponding variables, i.e.,
port activity and data variables of the ports in O. For a TCA T, with formula
representation ϕ(T), and a port set O⊆P , the formula representation ϕ(T\O) of
automaton T\O corresponds to

∃ Oϕ(T), (3.19)

with O=
⋃
p∈O{pt, Dpt}

In Definition 2.3.12, an additional clock is introduced to ensure correct timed be-
haviour of invisible transitions in T\O which originate from visible transitions in T.
Here, we do not need to introduce an additional clock: the formula representation of
a visible transition explicitly requires a positive amount of time to elapse ((zt 1<zt),
cf. (3.11)). Since O does not contain clock variables, this constraint remains un-
changed even in case the transition becomes invisible, and therefore, correct timed
behaviour, as required by Definition 2.3.12, is guaranteed.

3.1.4 Timed Network Automata

The representation of TNA follows the same ideas as the representations of TA and
TCA. For clocks, clock constraints, locations, memory cells (data variables) and data
constraints, we use the concepts introduced in Section 3.1.1. Yet, for ports of TNA,
we need to extend the encoding with an additional variable, to be able to identify—in
case of no dataflow—where the reason to delay comes from (cf. Section 2.4.1).

As defined in Section 3.1.1.4, for every port p∈P , we have a Boolean variable
pt (port activity variable), with the intended meaning that pt evaluates to true iff
data flows through port p in step t, and an integer variable Dpt (port data variable),
which represents the data value pending at p in step t. In addition, the Boolean
variable cpt (called port colour variable) denotes where the reason for delay comes
from in case pt evaluates to false. For a given colouring c, the representation of p
under c in step t, denoted 〈pc〉t, is given by ¬pt∧¬cpt iff c(p)= ? , by ¬pt∧cpt iff

c(p)= ! , and by pt∧(cpt∨¬cpt) iff c(p)= . In the latter case, the representation
simplifies to t.

The representation of a TNA N is now given as follows.

Definition 3.1.9 (TNA Representation). Let N be a TNA, with initial location s̄
(as before, we denote the initial location as s̄ rather than s0), f=(s, c, dc, cc, λ, s′)∈E
a communication, and d=(s, c, dc, cc, id, s)∈E a delay. The formula representation
of the transition relation of N, denoted ϕ(N), is defined in (3.26) in Table 3.6.

54 CHAPTER 3. SAT-BASED VERIFICATION

ϕinit(N) = s̄0∧
∧

s∈S,s6=s̄
¬s0∧I(s̄)0∧

∧
p∈P

(¬p0∧(Dp0=n⊥)∧cp0)∧∧
d∈D

(¬d0∧(Dd0=n⊥))∧(z0=0)∧
∧
x∈X

(x0=0)

(3.20)

ϕcommu(f) = st∧
∧
p∈P
〈pc〉t 1∧

∧
d6∈#(s′)

¬dt 1∧dct 1∧cct∧(zt 1=zt)∧∧
λ(x)=id

(xt 1=xt)∧
∧

λ(x)=x′
(xt 1=x′t 1)∧∧

λ(x)=n

(xt 1=zt 1−n)∧s′t 1∧I(s′)t 1

(3.21)

ϕdelay(d) = st∧
∧
p∈P
〈pc〉t 1∧

∧
d∈D

(Ddt 1=Ddt)∧dct 1∧cct∧(zt 1≥zt)∧∧
x∈X

(xt 1=xt)∧cct 1∧st 1∧I(s)t 1

(3.22)

ϕtrans(N) =
∨

f comm.

ϕcommu(f)∨
∨

d delay

ϕdelay(d) (3.23)

ϕlocation(N) =
∨
s∈S

(st 1∧
∧

s′∈S,s′ 6=s
¬s′t 1) (3.24)

ϕmutex(N) =
∧
p∈P

(¬pt 1∨¬(Dpt 1=n⊥))∧(pt 1∨(Dpt 1=n⊥))∧∧
d∈D

(¬dt 1∨¬(Ddt 1=n⊥))∧(dt 1∨(Ddt 1=n⊥))

(3.25)

ϕ(N) = ϕinit(N)∧ϕtrans(N)∧ϕlocation(N)∧ϕmutex(N) (3.26)

Table 3.6: Transition Relation Representation of TNA

The TNA starts in its initial location, the invariant of which holds, all ports are
inactive, all memory cells are empty, and all clocks are set to zero (3.20).5 The
representation of a communication (3.21) ensures that the TNA is in location s
before firing, and the clock guard cc holds. On execution of the transition, data
flows according to colouring c, the data values satisfy the data guard dc, all clocks
are updated according to their value under λ, while the value of the absolute time
reference z does not change, and memory cells not used by the target location loose
their contents. After firing, the TNA is in location s′, the invariant of which holds.
The representation of a delay (3.22) is similar, except that the value of the absolute
time reference increases, while all other clocks keep their value, and all memory cells
keep their values as well. In addition, clock guard cc still needs to be satisfied after
the time delay. Again, convexity of clock constraints allows us to check the invariant
at the end of the time delay only, as it inductively holds at the beginning (3.20). The
disjunction of these formulas expresses (nondeterministic) transition choice (3.23).
In any step, the current location is unique (3.24), the special value “no data” may
only be pending at inactive ports, and may only be “contained” in a memory cell if

5Note that it is not necessary to specify initial values for the port colour variables cp0, since
the constraint ¬p0 is sufficient to express inactivity of port p. Yet, adding a valuation reduces the
number of unspecified variables, and in this way speeds up verification.

3.1. FORMULA REPRESENTATION 55

that memory cells is indicated to be empty (3.25).
The results of Remark 3.1.5 (representation of ⊥) and Remark 3.1.6 (represen-

tation of finite data domains) directly carry over from TCA to TNA.

Example 3.1.10 (TNA Representation). Consider again the 1-bounded FIFO
buffer presented in Figure 2.8. Let N be the name of the TNA, let f1, f2, f3 refer
to the communications from empty to full , full to empty (with clock guard x<3),
and from full to empty (with clock guard x=3), respectively, and let d1, d2 refer
to the delays in empty and full , respectively. The representation of N is shown in
Table 3.7. We omit constraints equal to true.

ϕinit(N) = empty0∧¬full0∧¬r0∧(Dr0=n⊥)∧cr0∧¬w0∧(Dw0=n⊥)∧cw0∧
(¬m0∧(Dm0=n⊥))∧(z0=0)∧(x0=0)

ϕcommu(f1) = emptyt∧rt 1∧(¬wt 1∧cwt 1)∧(Drt 1=Dmt 1)∧(zt 1=zt)∧
(xt 1=zt 1)∧fullt 1∧(zt 1−xt 1≤3)

ϕcommu(f2) = fullt∧(¬rt 1∧crt 1)∧wt 1∧¬mt 1∧(Dwt 1=Dmt)∧
(zt−xt<3)∧(zt 1=zt)∧(xt 1=xt)∧emptyt 1

ϕcommu(f3) = fullt∧(¬rt 1∧crt 1)∧(¬wt 1∧cwt 1)∧¬mt 1∧(zt−xt=3)∧
(zt 1=zt)∧(xt 1=xt)∧emptyt 1

ϕdelay(d1) = emptyt∧(¬rt 1∧¬crt 1)∧(¬wt 1∧cwt 1)∧(Dmt 1=Dmt)∧
(zt 1≥zt)∧(xt 1=xt)∧emptyt 1

ϕdelay(d2) = fullt∧(¬rt 1∧crt 1)∧(¬wt 1∧¬cwt 1)∧(Dmt 1=Dmt)∧(zt−xt≤3)∧
(zt 1≥zt)∧(xt 1=xt)∧(zt 1−xt 1≤3)∧fullt 1∧(zt 1−xt 1≤3)

ϕtrans(N) = ϕcommu(f1)∨ϕcommu(f2)∨ϕcommu(f3)∨ϕdelay(d1)∨ϕdelay(d2)

ϕlocation(N) = (emptyt 1∧¬fullt 1)∨(fullt 1∧¬emptyt 1)

ϕmutex(N) = (¬rt 1∨¬(Drt 1=n⊥))∧(rt 1∨(Drt 1=n⊥))∧
(¬wt 1∨¬(Dwt 1=n⊥))∧(wt 1∨(Dwt 1=n⊥))∧
(¬mt 1∨¬(Dmt 1=n⊥))∧(mt 1∨(Dmt 1=n⊥))∧

ϕ(N) = ϕinit(N)∧ϕtrans(N)∧ϕlocation(N)∧ϕmutex(N)

Table 3.7: Transition Relation Representation of TNA: Example

Though the flip rule (Remark 2.4.11) reduces the size of TNA, the size of a
composed TNA is still exponential in the worst case. We now present a linear size
representation of the composition of TNA. The basic idea is similar to the product
definition of TA and TCA (cf. Definitions 3.1.3 and 3.1.8): we do not explicitly
compute the composition, but instead retain the representations of the single TNA,
and define the representation of the composition via conjunction. Unfortunately,6

6Actually, we do not consider this a disadvantage, since we gain a composition that is linear.

56 CHAPTER 3. SAT-BASED VERIFICATION

this does not allow us to explicitly remove the ports contained in a merge set from the
representation, and replace them by the same data variable (cf. Definition 2.4.13).
Instead, we need to add additional constraints to ensure that (1) the representation
of the composition correctly models the dataflow behaviour of the resulting internal
port (cf. Definition 2.4.9), and that (2) all ports in the merge set agree on the same
data value (cf. Definition 2.4.13 and preceding explanations).

Definition 3.1.11 (Internal Port Representation). Let Q be a merge set,
Qr⊆Q and Qw⊆Q the subsets of read respectively write ports in Q. For p∈Q,
let pt, Dpt and cpt be the port activity, port data and port colour variable, respec-
tively, let d be a fresh data variable (i.e., not yet used elsewhere), with data fullness
variable dt and data content variable Ddt. The representation ϕint port(Q) of internal
port p≺Q is given in (3.27).

ϕvalid col1(Q) =
∨

w∈Qw
wt 1→

(∧
r∈Qr

rt 1∧
∧

w,w′∈Qw,w 6=w′
¬(wt 1∧w′t 1)

)
ϕvalid col2(Q) =

∨
r∈Qr

rt 1→
∨

w∈Qw
wt 1

ϕvalid col3(Q) =
∧
p∈Q
¬pt 1→

(∧
w∈Qw

cwt 1∨
∨
r∈Qr

crt 1

)
ϕdata flow(Q) =

∧
p∈Q
¬pt 1∨(Dpt 1=Ddt 1)

ϕint port(Q) = ϕvalid col1(Q)∧ϕvalid col2(Q)∧ϕvalid col3(Q)∧ϕdata flow(Q) (3.27)

The first three constraints directly correspond to the three conditions in Defi-
nition 2.4.9. For example, ϕvalid col3(Q) describes the constraints in condition 3 in
Definition 2.4.9: if there is no flow at all (

∧
p∈Q¬pt), then either all write ports

provide a reason for delay (
∧
w∈Qwcwt), or at least one read port provides a rea-

son for delay (
∨
r∈Qrcrt). These three constraints thus capture whether data flows

through p≺Q. The fourth constraint ϕdata flow(Q)—the conjuncts should be read as
pt→(Dpt=Ddt)—expresses the fact that all active ports in the merge set (if pt holds,
p is active, cf. the beginning of Section 3.1.4) agree on the same data value, we use
the data variable d as a placeholder for any possible data value. This constraint
thus captures which data flows through p≺Q.

Using this, the representation of TNA composition is defined as follows.

Definition 3.1.12 (TNA Composition Representation). Let N be a set of
disjoint TNA, Q a set of disjoint merge sets over ports of TNA in N . The formula
representation ϕ(N ./Q) of the composed TNA N ./Q is defined as

ϕ(N ./Q) =
∧

N∈N
ϕ(N)∧

∧
Q′∈Q

ϕint portQ′ (3.28)

To accommodate the fact that a port cannot be merged more than once (cf.
beginning of Section 2.4.3), which now can be translated to “cannot be contained
in more than one merge set”, we hide the ports in a merge set, using existential
quantification: the reduction of ϕ(N ./Q) to the external interface (i.e., the set of

3.2. BOUNDED MODEL CHECKING 57

ports, cf. Definition 2.4.2) is defined as

∃
⋃
Q′∈Q
Q′(ϕ(N ./Q))

In this way, ports that are contained in any merge set in Q cannot be merged
again when composing N ./Q with another TNA.

3.2 Bounded Model Checking

In this section, we briefly recall the concepts of Bounded Model Checking (BMC),
and show how they can be applied to the representations of real-time systems defined
in Section 3.1.

Bounded Model Checking (BMC) [BCC+03, BCCZ99, CBRZ01] has evolved from
Symbolic Model Checking (SMC) [McM93], and can be seen as a subcategory of
it. SMC techniques represent the system symbolically, and typically rely on binary
decision diagrams (BDDs) [Bry86]. These BDD representations can handle hundreds
of variables, but often blow up in space. In addition, the efficiency highly depends
on the variable ordering in the BDD, yet, the problem of finding an efficient order
is NP-hard, that means, there exists no efficient way of determining an efficient
ordering a priori.

BMC was introduced “in an attempt to replace BDDs with SAT in SMC” [Bie09].
The key idea is to represent the system and the property to be checked symbolically
(using propositional formulas), examine prefix fragments of the transition system for
whether the property holds, and successively increase the exploration bound until it
reaches (a computable indicator of) the diameter of the system—in which case the
results are guaranteed to be complete, and the property holds—or an unsafe run
violating the property has been discovered.

Although BMC is complete in theory once the diameter of the system is reached,
it is often impractical to increase the exploration bound that far (see Section 3.2.4
for a more detailed discussion). Therefore, BMC techniques focus on falsification of
(temporal) properties. Such properties can be disproved with a finite counterexam-
ple, i.e., a finite run, where at least one of the configurations contains a contradiction
to the property. Reachability properties are well-suited to express safety properties
of the form “a certain behaviour should not happen”, where the erroneous behaviour
is defined by the possibility to reach a certain error location.

We first introduce some notations in Section 3.2.1, and then formalise these
notions in Sections 3.2.2 and 3.2.3.

3.2.1 Notations

In the remainder of this section, we use S to refer to any of the system models defined
in Chapter 2: S∈{A,T,N}, cf. Definitions 2.2.1, 2.3.1 and 2.4.2. We use ϕ(S) to
refer to the corresponding formula representation of S: ϕ(S)∈{ϕ(A), ϕ(T), ϕ(N)},
for both simple (Definitions 3.1.1, 3.1.4 and 3.1.9) and composed (Definitions 3.1.3,
3.1.8 and 3.1.12) systems.

58 CHAPTER 3. SAT-BASED VERIFICATION

For a formula ϕ(S), we use Vars(ϕ(S)) to denote the set of variables of ϕ(S),
we write Vars(ϕ(S))|B, Vars(ϕ(S))|N and Vars(ϕ(S))|Q to denote the subsets
of Vars(ϕ(S)) of propositional, integer and rational variables, respectively. We
use Atoms(ϕ(S)) to denote the set of propositional atoms of ϕ(S), and write
Conts(ϕ(S)) (“contents”) as an abbreviation for Atoms(ϕ(S))∪Vars(ϕ(S)).

An interpretation σ of (the variables in) ϕ(S) is a mapping σ:Vars(ϕ(S)) →
(B∪N∪Q), assigning to each variable v∈Vars(ϕ(S)) a value from the appropriate
range (i.e., σ(v)∈B iff v∈Vars(ϕ(S))|B, σ(v)∈N iff v∈Vars(ϕ(S))|N, and σ(v)∈Q
iff v∈Vars(ϕ(S))|Q).

Interpretation σ is called model of ϕ(S), denoted σ|=ϕ(S), if it satisfies ϕ(S),
i.e., ϕ(S) evaluates to true under valuation σ. ϕ(S) is called satisfiable if at least
one model of ϕ(S) exists. We denote the set of all models of ϕ(S) by V(ϕ(S)). If
ϕ(S) evaluates to true under all valuations, then ϕ(S) is called tautology, denoted
|=ϕ(S).

We lift the above notations in the straightforward way from ϕ(S) to all types of
formulas.

3.2.2 Unfolding for BMC

The formula representation ϕ(S) of a real-time system S, as defined in the Sec-
tion 3.1, describes the transition characteristics of S in terms of “abstract” steps
t and t+1. In order to describe the reachability problem of BMC for k steps, the
formula representation ϕ(S) is unfolded, i.e., instantiated for all steps 1 up to bound
k. The resulting formula ϕ(S)k is called k-unfolding.

Definition 3.2.1 (k-unfolding). Let S be a real-time system, with formula rep-
resentation ϕ(S), let k∈N, k≥1 (called unfolding depth). The k-unfolding ϕ(S)k of
ϕ(S) is defined as

ϕ(S)k = ϕinit(S)∧
∧

0≤j≤k−1

(ϕtrans(S)j/t∧ϕlocation(S)j/t∧ϕmutex(S)j/t), (3.29)

where ψj/t denotes a variant of formula ψ with index t replaced by j.

Intuitively, a model σ of ϕ(S)k corresponds to a run of SS of length k, i.e., to
one possible behaviour of S for the first k steps. Consequently, the set V(ϕ(S)k) of
all models of ϕ(S)k describes all possible behaviours of S for the first k steps.

Notation 3.2.2 (Unfolding). For j∈N, j≥0, we write ϕtrans(S)(j) to denote the
transition constraints from step j to step j+1, that is, ϕtrans(S)(j)=ϕ

trans(S)j/t.
Equivalently, we write ϕlocation(S)(j) respectively ϕmutex(S)(j) to denote the mu-
tual exclusion constraints on locations respectively events or ports in step j, that
is, ϕlocation(S)(j)=ϕ

location(S)(j−1)/t, and ϕmutex(S)(j)=ϕ
mutex(S)(j−1)/t. Intuitively,

for a formula ψ(j), j denotes the (smallest) index which appears on variables in ψ.

3.2. BOUNDED MODEL CHECKING 59

3.2.3 BMC of Properties

BMC is best suited for checking safety properties of the form “a certain behaviour
should not happen”, expressed through reachability of error locations. If an error
location s is (not) reachable within k steps, s is called (not) k-step reachable. The
safety property φ saying s is not k-step reachable is expressed by the formula

φ =
∧

0≤i≤k
¬si, (3.30)

where s is the representation of s. To express that s is not reachable after exactly
k-steps (for example because we already know that s is not (k−1)-step reachable)
we simply choose φ = ¬sk.

Checking whether a system S is safe with respect to s amounts to conjoining the
k-unfolding (3.29) with the negated property ¬φ (as explained above, BMC focusses
on falsification of properties):

ϕ(S)k∧
∨

0≤i≤k
si. (3.31)

In this way, a model of (3.31) corresponds to a run of S that contains error location
s, that means to a system behaviour violating the property φ. In this case, S is
unsafe with respect to s, that means, the property φ does not hold in the system
S. If no such model exists, i.e., the formula (3.31) is unsatisfiable, S is safe with
respect to s within bound k, but nothing can be said about safety within bounds
>k.

Lifting (3.30) to reason about configurations or even execution sequences is
straightforward. For example, the property “if the location in the current step
is s, then the location in the next step will be s′” can be represented as

(s0∧s′1)∨(s1∧s′2)∨ . . . (sk 1∧s′k). (3.32)

Other properties can be represented using the encoding in [ACKS02], where the
authors have defined a translation from LTL to propositional formulas for BMC.
For example, (3.32) corresponds to the LTL property s→© s′. We skip the details
of the encoding, as they are beyond the scope of this thesis. In general, the only
restriction we impose on formulas φ used as properties is that they may only reason
about variables contained in ϕ(S)k, i.e., we require Vars(φ)⊆Vars(ϕ(S)k).

3.2.4 Completeness of BMC

BMC is used to inspect runs of a certain length k. If an error location is reachable
within k steps, a counterexample to the safety property has been found. Otherwise,
the exploration bound is increased, and the reachability check is repeated. The
question remains whether there exists a completeness threshold, i.e., some bound k′,
for which we can safely conclude that the error location is not reachable, even when
further increasing the exploration bound.

60 CHAPTER 3. SAT-BASED VERIFICATION

A first candidate is the diameter of the associated LTS SS, reduced to runs
which start in the initial configuration q0.7 This is indeed a completeness threshold:
as soon as the exploration bound k is equal to the diameter, the results of BMC
are complete, since BMC considers all runs of length k, and thus every reachable
configuration will be reached by at least one of the runs. Unfortunately, no efficient
algorithms exist to compute the diameter of a timed system.

Another candidate is the recurrence diameter of the associated LTS SS, cf. also
[BCCZ99]: the recurrence diameter of SS is the length of the longest loop-free run
(cf. Definitions 2.2.4, 2.3.5 and 2.4.6). This is a completeness threshold as well: by
definition, any run with length greater than the recurrence diameter must contain
a loop, and thus cannot contain new configurations which have not been visited
before. Unfortunately, the recurrence diameter can be considerably larger than the
real diameter. Consider for example a fully connected graph with n nodes: while
the diameter is 1 (every node is reachable from every other node), the recurrence
diameter is n−1 (longest loop-free path). Yet, the recurrence diameter is more
practical than the (real) diameter, since the fact that a run is loop-free can easily
be expressed in our framework.

Definition 3.2.3 (Representation of Loop-Free Runs). Let S be a real-time
system, with set of locations S, set of clocks X , and set of data variables D (only for
TCA and TNA). Let ϕ(S)k be the k-unfolding, and σ∈V(ϕ(S)k) a model of ϕ(S)k.
The model σ corresponds to a loop-free run if it satisfies the loop-free condition
ϕlp freek (S), i.e. (in addition to σ|=ϕ(S)k) σ|=ϕlp freek (S), where ϕlp freek (S) is defined
as

ϕlp freek (S) =
∧

0≤i<j≤k

(∨
s∈S
¬(si=sj)∨

∨
x∈X
¬(xi=xj)∨

∨
d∈D
¬(Ddi=Ddj)

)
(3.33)

If S is a TA, we omit the last disjunct.

For a run to be loop-free, all configurations need to be different. Configurations
consist of (cf. Definitions 2.2.4, 2.3.5 and 2.4.6) the current location, the valuation
of the clocks, and (only for TCA and TNA) the valuation of the data variables.
Condition (3.33) expresses that for any two configurations (in steps i and j), at
least one of these constituents is different.

We can use the loop-free condition in two ways: testing whether a model cor-
responds to a loop-free run, and calculating the recurrence diameter. The former
is done by checking whether σ|=ϕlp freek (S) for a model σ∈V(ϕ(S)k). To actually
calculate the recurrence diameter, we inductively check (i.e., for increasing values of
k) whether the formula ϕ(S)k∧ϕlp freek (S) is satisfiable.8 The recurrence diameter

is the smallest k such that ϕ(S)k+1∧ϕlp freek+1 (S) is not satisfiable anymore.

7The diameter of a system—a well-known concept from graph theory—is a natural number,
which corresponds to the longest shortest path between any two states. Here, the diameter is the
longest shortest run from the initial configuration q0 to any other configuration of SS.

8Assuming that the subformula ϕ(S)k, when checked in isolation, is satisfiable for all values of
k, i.e., we can always find a run of length k.

3.3. DISCUSSION 61

3.2.5 Correctness

Theorem 3.2.4 (Correctness). The formula representation ϕ(S) of a real-time
system S is correct, that means ϕ(S) exhibits the same behaviour as S.

The proof of Theorem 3.2.4 can be found in the Appendix, in Section A.1.

3.3 Discussion

In this section, for some of the constituents of real-time systems, we discuss other
possible encodings, and motivate our design decisions.

3.3.1 Occurrence of Actions on Transitions of TA

The transition relation representation of TA models transitions from step t to step
t+1 (cf. (3.2) and (3.3)), with the action α occurring at step t+1. The choice of
whether to model the occurrence of α at step t or t+1 is to a certain extend arbitrary,
since conceptually, the event occurs while taking the transition (that means, in
between steps t and t+1). We believe both ways are intuitive by some means or
other.

We decided to model the occurrence at step t+1 since this is in accordance with
the activity of ports in TCA and TNA, which also occurs at steps t+1. This results
in a uniform handling of all “transition labels”, whether they are actions in TA or
ports in TCA respectively TNA. We benefit from this point in the concretisation of
abstract counterexamples, cf. Section 4.3.3.

3.3.2 Choice of Variable Types

When designing the formula representation for a real-time system, different aspects
and requirements influence the design decisions, the two major ones being univer-
sality and efficiency. Universality in this context means that the resulting formulas
should be platform independent and general enough such that they can be integrated
seamlessly (or with only minor adaptations) into most (standard) frameworks. Ef-
ficiency is understood with respect to speed of verification.

To meet the first requirement, we have reduced the variable types used in the rep-
resentation to rational, integer and Boolean variables. Rational variables are needed
to represent real-time. Though clocks are real-valued (cf. Section 2.1.1), a rational
encoding is sufficient here, since linear arithmetic using only integer constants (as
is used in clock constraints, cf. Definition 2.1.2) is equisatisfiable for rational and
real numbers. Integer variables are used for data variables and data values. We
could have actually used rational variables for these as well, but this would have re-
quired additional constraints to restrict the admissible valuations of such variables,
for example, to preserve the total order, cf. Definition 2.1.7. Boolean variables are
used to represent the remaining constituents. Moreover, we reduce the number of
arithmetic operations to addition, subtraction, equality and comparison.

62 CHAPTER 3. SAT-BASED VERIFICATION

To meet the second requirement, we use Boolean variables whenever possible.
Propositional satisfiability (SAT solving) has been extensively studied in recent years
(see for example [PBG05] for an overview); as a result, existing techniques are by
now well-optimised and efficient, cf. for example [GN07, MMZ+01]. SAT solvers
internally work with formulas in conjunctive normal form (CNF).9 We design our
formulas in CNF whenever possible, to avoid unnecessary transformations in the
SAT solver. Moreover, most of the CNF clauses are binary (two literals) or even
unit (one literal) clauses. With respect to speed of verification, this is very efficient:
the 2-SAT problem (i.e., with binary clauses only) is polynomial, and formulas with
n unit clauses can be solved in O(n). Formulas (3.5), (3.6), (3.14) and (3.24) could
be expressed in CNF with binary clauses as well. Yet, they are not, but are rather
tailored for abstraction already: after abstraction, the formulas in CNF would loose
the information of mutual exclusion, and result in a too coarse (or even wrong)
abstraction. Due to the disjunctive nature of transition choices, (3.4), (3.13) and
(3.23) are not in CNF, but they could easily be transformed to short CNF (see
e.g. [Häh93]) when introducing new symbols.

3.3.3 Temporal Difference Encoding of Clocks

For the representation of clock values, we use an approach similar to the one pre-
sented in [ACKS02]. We introduce a fresh clock z (the absolute time reference), to
measure the absolute amount of time that has passed since the beginning of com-
putation, cf. Section 3.1.1.1. The representation of the value of clock x in step t

is given by the difference zt−xt of the representation variables of z and x, this dif-
ference is also used in the representation of clock constraints. An update of clock x
according to some update map λ is represented by setting xt=zt−n iff λ(x)=n, and
by setting xt=x′t iff λ(x)=x′ for some clock x′. If λ(x)=id , the value of xt carries
over to the next step: xt=xt 1.

This design decision might seem unintuitive at first glance. Yet, the major
advantage of the approach becomes clear when considering the representation of
delays. In our approach, on execution of a delay from step t to step t+1, all clock
variables keep their values, only the value of the absolute time reference changes:∧

x∈X
(xt=xt 1)∧(zt∼zt 1), with ∼ ∈{≤, <} (*)

(cf. (3.3), (3.11), (3.12), (3.17) and (3.22)). In an encoding which does not use
the absolute time reference, on the other hand, all clock variables of step t+1 are
different from those in step t. Furthermore, the representation needs take care of
the fact that all clock variables change by the same amount. The encoding of clock
variables in a delay step might look like∧

x∈X
(xt 1−xt=dt), with dt a rational variable. (**)

Here, dt is a variable representing the amount of time for which the system delays.

9A formula is in conjunctive normal form, if it is a conjunction of clauses, where a clause is a
disjunction of literals, and a literal is a propositional atom or its negation.

3.3. DISCUSSION 63

With respect to speed of verification, (*) is more efficient than (**): in the former
case, the values of all but one (namely zt 1) clock variable in step t+1 are prede-
termined by the values in step t. Thus, the satisfiability of the (clock constraint)
formulas of step t+1 depends on one variable only. All conflict clauses which the
solver learns while trying to find a model of the formula reason about zt 1, which
quickly restricts the number of possible valuations of zt 1, and in this way leads to
fewer backtracking steps. In the latter case, the satisfiability is subject to a number
of free variables. Since all variables of step t+1 depend on the values of a different
variable of step tt, each learnt conflict clause can only restrict the possible valuations
of a single variable, which potentially leads to more backtracking steps.

A second advantage of the encoding using the absolute time reference is the fact
that properties of the form “something happens after x time units” can be specified
more easily, by using the difference zj−zi, for some 0≤i<j≤k, i, j∈N.

3.3.4 Linear Boolean Encoding of Finite Sets

After having chosen to represent the set of locations of a real-time system S using
Boolean variables (cf. Section 3.1.1), there are still two options: using a linear
Boolean encoding or a logarithmic Boolean encoding.

Let S={s0, . . . , sn−1} be the set of locations. In the linear encoding which we
use in Section 3.1.1, we introduce one Boolean variable s for each location s, with
the intended meaning that the localisation st is true iff S is in location s in step
t. Since S can only be in one location at the same time, this encoding requires an
additional mutual exclusion constraint, to ensure exactly one of the variables is true
in every step (cf. (3.5), (3.14) and (3.24)).10 This mutual exclusion constraint is
quadratic in the number of locations.

For a logarithmic encoding, we would introduce a vector [s] of j=dlog2(n)e
Boolean variables, encoding a j-digit Boolean value. The intended meaning is that
the localisation [s]t of [s] encodes the value i, denoted by [si]t, iff the system S is in
location si in step t. No additional mutual exclusion constraint is needed. Depend-
ing on the representation of transitions (see below), we might however need an addi-
tional constraint to disallow superfluous valuations of [s], since in case 2dlog2(n)e>n,
the number of possible valuations of [s] exceeds the actual number of locations.11

While the logarithmic encoding is slightly more efficient, due to the decreased
number of variables, we have nevertheless chosen for Boolean encoding. One rea-
son is that the differences in speed of verification are small, the real bottleneck is
generated by rational clock variables. Moreover, abstraction of locations would be
more involved when using a logarithmic encoding, and there is no straightforward
way anymore of defining an abstraction function purely based on the syntactic cat-
egories of variables (cf. Definition 4.1.5).

10Observe that these mutual exclusion constraints could easily be expressed in CNF. Yet, they
are not, but are already tailored for abstraction, cf. Chapter 4. After abstraction, an equiva-
lent formula in CNF would loose the information of mutual exclusion, and result in a too coarse
abstraction.

11For example, for six locations, i.e., |S|=6, [s] consists of dlog2(6)e=3 Boolean variables, with
which we could represent 23=8>6 locations.

64 CHAPTER 3. SAT-BASED VERIFICATION

This argumentation holds in the same way for the set of events of TA, since every
transition in a TA is labelled with a distinct event. In TCA and TNA, however, a
set of ports can be active on each transition, so no mutual exclusion constraint is
needed.

3.3.5 Encoding of Transitions

For the encoding of transitions, there are a number possibilities of how to define the
logical structure of the representation. For explanatory purposes, let e∈E denote
a transition from location s to location s′. Let st and s′t 1 be the representations
of source location s (in step t) and target location s′ (in step t+1), let ϕt denote
the remaining constraints of step t (“preconditions of e”, e.g., the representation
I(s)t of the invariant of s), and let ϕt 1 denote the remaining constraints of step
t+1 (“postconditions of e”). Constraints involving variables of both t and t+1 are
also contained in ϕt 1. The exact structure of ϕt and ϕt 1 is irrelevant here, as we
only use them to explain the conceptual idea of transition representation.

The two main conceptual alternatives one can think of for encoding the transition
relation are ∧

e∈E
(st∧ϕt → s′t 1∧ϕt 1) (or, equivalently, using ←) and (3.34)∨

e∈E
(st∧ϕt ∧ s′t 1∧ϕt 1) (3.35)

Though (3.34) might seem more intuitive (it can be read as “if the preconditions
are fulfilled, move to the next location”), and is in a way closer to CNF (after
rewriting →, note that (3.35) is actually in DNF), our encoding is based (3.35),
cf. Section 3.1. The reason is that (3.34) cannot handle nondeterminism. To
illustrate this, consider the real-time system part in Figure 3.8. If (x ≤ 2), both
clock guards are satisfied, i.e., both transitions are enabled, and the next location is
chosen nondeterministically. The representation (omitting irrelevant constraints) of

s

s′

s′′

x ≤ 2, x := 0

x ≤ 3, y := 0

Figure 3.8: Representation of Transitions, Motivation

the two transitions in Figure 3.8, based on the two alternatives presented above, is
given in (3.36) respectively (3.37).12

12Note that (3.37) does not entirely correspond to the representations defined in Section 3.1,
but is used for illustration purposes only.

3.4. CONCLUSION 65

(st∧(zt−xt≤2)→ s′t∧(xt 1=zt 1)∧(yt 1=yt)∧(zt 1=zt))∧
(st∧(zt−xt≤3)→ s′′t∧(yt 1=zt 1)∧(xt 1=xt)∧(zt 1=zt))

(3.36)

(st∧(zt−xt≤2)∧ s′t∧(xt 1=zt 1)∧(yt 1=yt)∧(zt 1=zt))∨
(st∧(zt−xt≤3)∧ s′′t∧(yt 1=zt 1)∧(xt 1=xt)∧(zt 1=zt))

(3.37)

The obvious problem in (3.36) is the fact that there exists no satisfying valuation
in case x≤2: the left hand side of both implications is satisfied, but due to the mutual
exclusion constraint in locations,13 only one of the right hand sides can be satisfied;
thus, no satisfying valuation exists.

A second problem with a representation according to (3.34) is the fact that logical
implication allows the right hand side to be true, while the left hand side is false.
For the transition relation, this means that it would be possible to find a satisfying
valuation for the next step, even if there is no satisfying valuation for the current
step.

3.4 Conclusion

In this Chapter, we have established the formal basis for extensive model checking
and verification of the real-time systems presented in Chapter 2.

In Section 3.1, we have presented an encoding in propositional logic with linear
rational arithmetic for each of the system models defined in Chapter 2. The repre-
sentation of TA, as defined in Section 3.1.2, has essentially been presented in [KP07].
The representation of TCA, as defined in Section 3.1.3, is an extension of the work
presented in [Kem11] (which in turn in based on [Kem09]). Since in Chapter 2,
we have extended the formal model of TCA from [ABdBR07] (which was also used
in [Kem11]) with memory cells, consequently this extension had to be included in
the representation as well. Equivalently, we have extended the TNA model from
[Kem10] with data values and memory cells in Section 2.4, and have extended the
representation of TNA in Section 3.1.4 accordingly. For both TCA and TNA, we
have sketched the difficulties that arise from memory cells being used in source and
target location of the same transition in Section 3.1.1.5.

We have shown how to apply Bounded Model Checking to the representation
of real-time systems in Section 3.2. The notion of unfolding (Section 3.2.2) and
the concepts for representation of properties (Section 3.2.3) have been presented in
previous work, and have been restated here for clarity and consistency. We have
provided a discussion on completeness of BMC in Section 3.2.4, and a proof of
correctness in Section 3.2.5. The latter in particular takes into account the new
representation features regarding memory cells, data variables and data values.

Finally, in Section 3.3, we have provided an extensive discussion on other pos-
sibilities to represent real-time systems (using different encodings or variable types,
for example), and we have motivated our design decisions.

13This problem would occur in the very same way for logarithmic encoding, since the current
location is unique at any time.

