
Modelling and analysis of real-time coordination patterns
Kemper, S.

Citation
Kemper, S. (2011, December 20). Modelling and analysis of real-time coordination
patterns. IPA Dissertation Series. BOXPress BV, 2011-24. Retrieved from
https://hdl.handle.net/1887/18260

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/18260

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/18260

Chapter 2

System Models

When designing real-time systems, one—if not the—major design decision is the
choice of time domain. In [AD94], the authors phrased this problem as finding the
answer to the question “What is the nature of time?”.

Reasoning on a discrete time scale allows time values in the domain of natural
numbers N, that means events can happen at equidistant points in time, or multiples
thereof. Reasoning on a continuous (or dense) time scale allows time values in the
domain of real numbers R≥0, that means events can happen at any positive (to
express that time “starts at 0” and does not “run backwards”) real-valued point
in time. While discrete time is very close to physical hardware implementation of
real-time systems (for example, a discrete time step can be taken with every trailing
edge), continuous time is a more realistic approach, in that events do not always
happen at integer-valued times, even if the base value for “one time unit” is small.

To use a discrete time scale, the occurrence times of events would either have to
be restricted to integer values, or be approximated with the “closest” integer value.
The former is unrealistic, the latter comprises a serious information loss with respect
to sequential order and (a)synchrony of events. Therefore, in this thesis, we choose
continuous time as the time domain Time of real-time systems, that means,

Time = R≥0.

In the remainder of this chapter, we introduce the state-based system models that
we use to model real-time systems. We begin by introducing some general notions
of real-time systems in Section 2.1. In subsequent Sections, we introduce Timed
Automata (TA, Section 2.2), Timed Constraint Automata (TCA, Section 2.3), and
Timed Network Automata (TNA, Section 2.4). We conclude each Section with a
discussion about the advantages and disadvantages of the respective system model.
We conclude the Chapter in Section 2.5 with a clear identification of the parts that
represent original work in this thesis, and parts that are based on previous results.

7

8 CHAPTER 2. SYSTEM MODELS

2.1 Preliminaries

In this section, we introduce some general notions and concepts for modelling real-
time systems.

Notation 2.1.1 (Operator Precedence). To reduce the number of parenthesis,
we establish the following precedence rules. Among logical operators, ¬ has a higher
precedence than {∧,∨}, which have a higher precedence than {→,↔}. Among
arithmetical operators, - (unary minus) has a higher precedence than {+,−} (binary
minus), which have a higher precedence than {<,≤,=,≥, >}.

For operators with the same precedence, we may still have to add parenthesis,
for example, we need to make clear whether a∧b∨c means (a∧b)∨c or a∧(b∨c). We
do not need to define precedence rules between arithmetical and logical operators
though, since it is clear from the context which variables or constants the operators
bind to. For example, for integer variables x1, x2, x3, x4, it is clear that x1=x2∧x3≥x4

means (x1=x2)∧(x3≥x4).

2.1.1 Time

As explained above, we work with a dense time domain Time=R≥0. To measure the
passage of time, each model of a real-time systems is equipped with a finite set of
real-valued clocks X . All clocks evolve with the same slope 1 (they all “run with
the same speed”), i.e., after d time units have passed, the value of each clock has
advanced by d. Components of the system may be associated with clock constraints,
which restrict the behaviour of the system. The syntax of clock constraints is defined
as follows

Definition 2.1.2 (Clock Constraint). Let X be a finite set of real-valued vari-
ables, called clocks. Clock constraints cc∈CC(X) over X are defined as follows:

cc ::= true | x∼c | x−y∼c | cc1 ∧ cc2,

with x, y∈X , c∈Z, and ∼ ∈{<,≤,=,≥, >}

We write X|cc⊆X to denote the set of clocks that occur in a clock constraint cc.

Remark 2.1.3 (Time Domain in Clock Constraints). Though clocks are real-
valued, we need to restrict the domain of constants in clock constraints, in order
to obtain/preserve decidability results (cf. [AD94]). For example, with real-valued
constants, reachability would become undecidable.

To preserve decidability results, it would be enough to restrict the domain to
Q (rational numbers) though. Yet, for simplicity, we further restrict it to integer
numbers. This does not reduce expressiveness (with respect to rational numbers):
if clock constraints involve rational constants, we can multiply all constants by the
least common multiple of their denominators to obtain clock constraints with integer
constants only.

2.1. PRELIMINARIES 9

The validity (“semantics”) of clock constraints is evaluated under a certain val-
uation of the clock variables.

Definition 2.1.4 (Clock Valuation). Let X be a finite set of clocks, X⊆X , x∈X
and t∈Time. A clock valuation ν∈V(X) over X is a mapping ν:X→Time, assigning
to each clock x∈X an element from the time domain Time, its current value. The
restriction ν|X of ν from X to X is a valuation that agrees with ν on clocks x∈X,
and is undefined otherwise, that means ν|X(x)=ν(x) iff x∈X, and ν|X(x)=undefined
otherwise.

We may write V if X is clear from the context.

We use |= for the standard satisfaction relation on clock constraints. For example,
ν|=(x∼c) iff ν(x)∼c, ∼∈{<,≤,=,≥, >}.

To model the semantics of real-time systems, we need the following operations
on valuations.

Definition 2.1.5 (Timeshift, Update). Let X be a finite set of clocks, x, y∈X ,
t∈Time and ν∈V(X).

The timeshift operation ν+t (or simply timeshift) increases (with respect to ν)
the values of all clocks simultaneously by the same amount of time t, that means,
(ν+t)(x)=ν(x)+t for all x∈X .

An update map λ∈Λ(X) over X [AM04] is a mapping λ:X→(X∪N). The update
operation ν[λ] (or simply update) modifies the values of clocks under valuation ν, by
either setting them to the value of another clock or to a natural number, according
to the update map λ (λ is the identity for clocks not meant to be modified). That
is, ν[λ](x)=ν(y) iff λ(x)=y,1 and ν[λ](x)=n iff λ(x)=n∈N.

We do not allow negation on clock constraints (cf. [Alu99, AM04]), which results
in clock constraints being convex.

Remark 2.1.6 (Convexity of Clock Constraints). Clock constraints defined ac-
cording to Definition 2.1.2 are convex under timeshift and update (Definition 2.1.5),
for any clock valuation ν∈V(X) (Definition 2.1.4).

Intuitively, convexity of clock constraints means that if the value of a clock
satisfies the same clock constraint under two different valuations, then it also satisfies
the clock constraint for all valuations “in between”. Formally: for a clock constraint
cc and two valuations ν and ν ′ over clock x∈X |cc, such that ν(x)<ν ′(x), if ν|=cc
and ν ′|=cc, then ν ′′|=cc for all ν ′′ with ν(x)<ν ′′(x)<ν ′(x).

Convexity of clock constraints is an important property used for efficient repre-
sentation (and verification) of real-time systems in Chapter 3.

Note that we do not impose any semantic constraints on clock constraints. For
example, they may “overlap” on a clock, like (x≤4)∧(x≥3). Yet, due to convexity,
this simply reduces the number of satisfying valuations.

1In case of an update λ(x)=y, λ(y)=n, the equation ν[λ](x)=ν(y) ensures that x is assigned
the value of y before y is updated.

10 CHAPTER 2. SYSTEM MODELS

2.1.2 Data

Communication in real-time systems may involve exchange of data values. We as-
sume a global (possibly infinite but) countable data domain Data, with a special
element ⊥∈Data representing “no data”, which we use in Chapter 3 to explicitly
represent absence of data. Real-time systems use a finite set of ports P , through
which they exchange data values with the environment. Further, they can make
use of a finite set of data variables D. The intended idea is that ports are used to
exchange data values with the environment, while data variables are used to store
and exchange data values within the real-time system.

To restrict the admissible data values to be exchanged, components of real-time
systems may be associated with data constraints. These restrict the behaviour of
the system, by reasoning about the data values exchanged through ports, or stored
in data variables. The syntax of data constraints is defined as follows.

Definition 2.1.7 (Data Constraint). Let P be a finite, nonempty set of ports,
D a finite, nonempty set of data variables, Data a data domain. Data constraints
dc∈DC(P∪D) over P and D are defined as

dc ::= true | d=d′ | dc1∧dc2 | ¬dc, with d,d′∈P∪D∪Data

If there exists a total order 6 on Data\⊥, we also allow data constraints of the form

dc ::= d6d′, with d,d′∈P∪D∪Data\⊥

If on top of 6 there exists an operation + (addition) on Data\⊥,2 we also allow data
constraints of the form

dc ::= D∼D′, with ∼ ∈{=,6}, and

D ::= d | D1+D2 | (D1−D2), with d,d′∈P∪D∪Data\⊥

We write D|dc⊆D to denote the set of data variables that occur in a data con-
straint dc. Equivalently, P|dc⊆P denotes the set of ports that occur in dc, and
Data|dc⊆Data denotes the set of data values that occur in dc.

We may write DC(P ,D) instead of DC(P∪D), and we use DC(P) as a shorthand
for DC(P , ∅), equivalently we use DC(D) as a shorthand for DC(∅,D).

Other data constraints, like for example p∈A (for some set A⊆Data), dc1∨dc2,
or dc1→dc2, are defined as abbreviations (“syntactic sugar”) in the standard way.

The validity (“semantics”) of data constraints is evaluated under a certain data
assignment. Data assignments describe the data values which are pending at ports,
or stored in data variables.

2Formally, + is required to be an operation such that (Data\⊥,+) is an abelian group, i.e.
a group which satisfies the abelian group axioms (1) closure, (2) associativity, (3) existence of
identity element, (4) existence of inverse element, and (5) commutativity. As usual, the operation
“−” (negation) is a shorthand for addition of the inverse.

2.2. TIMED AUTOMATA 11

Definition 2.1.8 (Data Assignment). Let P and D be as in Definition 2.1.7, and
Data a data domain. A data assignment δ∈DA(P∪D) over P and D is a mapping
δ:(P∪D)→Data, assigning to each port p∈P the data value which is currently pend-
ing at p, and to each data variable d∈D the data value which is currently contained
in d.

If δ(p)=⊥ (“no dataflow through p”), p is called inactive. Otherwise, p is called
active. If δ(d)=⊥, d is called empty.

The restriction δ|A of δ from (P∪D) to any subset A⊆P∪D is a data assignment
that agrees with δ on elements a∈A, and is undefined otherwise.

We may write DA(P ,D) instead of DA(P∪D), and we use DA(P) as a shorthand
for DA(P , ∅), equivalently we use DA(D) as a shorthand for DA(∅,D).

Definition 2.1.7 allows for trivial data constraints involving only data constants
(i.e., elements from Data), for example d1=d2, with d1, d2∈Data. Since the validity
of such data constraints does not depend on a specific data assignment δ, they can
be evaluated statically (to either true or false

def
=¬true). Therefore, we assume

that every data constraint involves at least one port or one data variable. We use |=
for the standard satisfaction relation of data assignments on data constraints. For
example, δ|=(p=q) iff δ(p)=δ(q), and δ|=(p6q) iff δ(p)6δ(q).

Remark 2.1.9 (Use of ⊥ in Data Constraints). Notice that we only allow the
special value ⊥ in simple data constraints of the form (d=d′). The idea is that a
data constraint (p=⊥), with p∈P , represents a “check” whether port p is inactive.
Equivalently, a data constraint (d=⊥), with d∈D, represents a check whether data
variable d is empty.

We do not allow ⊥ to be used in combination with 6, since it is not clear how to
define the result of such a comparison. One possible solution would be to define ⊥ as
supremum or infimum of Data; yet, the constraints involving ⊥ could be simplified
to true or false in this case. Apart from that, many countably infinite sets have
neither a supremum nor an infimum (take for example Z), and actually we do not
consider a comparisons of the form (d6⊥), with d∈Data, useful at all.

A similar argumentation holds for the use of ⊥ in combination with +.

2.2 Timed Automata

In this section, we present the first and most basic system model for modelling
real-time systems: Timed Automata.

Timed Automata (TA) were introduced in the seminal paper of Alur and Dill
in 1994 [AD94], and have been studied intensively since. TA are finite automata,
extended with real-valued clock variables, that can measure the passing of time.
Their behaviour consists of a sequence of events (or actions) happening over time.
Conceptually, this is represented by an infinite sequence of events, which is paired
with an infinite sequence of time instants, with the intended meaning that a specific
events takes place at the specific time.

12 CHAPTER 2. SYSTEM MODELS

To model this behaviour, TA comprise two kinds of events: visible (external)
and invisible (internal) events. The former are used for synchronisation with other
automata, while the latter are used for internal activities of a single automaton,
independent from others.

The underlying idea is that transitions (location changes) are instantaneous, time
may only elapse while the automaton remains in one of its locations. The firing of
transitions, and the dwell time in locations, are restricted by constraints on the
clocks—called clock guards and clock invariants, respectively—which the current
clock values have to satisfy. That means, a TA is only allowed to fire a transition
if the associated clock guard is satisfied, and is only allowed to stay in a location
as long as the associated clock invariant is satisfied. In addition, transitions may
update the values of (a subset of the) clocks to a natural number or to the value of
another clock [AM04].

In the literature, many slightly different variants of TA can be found. Our defi-
nitions are essentially based on [AD94]. Please refer to Section 2.2.4 for a discussion
of other variants.

2.2.1 Syntax of Timed Automata

Each transition of a TA is labelled with a distinct event, which captures “what
is being performed” when the transition is fired. In this work, we distinguish be-
tween two types of events: visible (external) and invisible (internal) actions, cf.
[BK08, KP07, AM04]. The former are used to synchronise with other automata
when considering systems of TA, while the latter are used for internal steps of a
single automaton, independent from other automata. Since internal actions can be
regarded as “being of no further interest” [BK08], they are commonly denoted by
the single distinguished action symbol τ . We denote the set of visible events of a
TA by Σv, and the set of all events (visible and invisible) by Σ, i.e., Σ=Σv∪̇τ . For
a discussion of other possibilities to define the set of admissible events, please refer
to Section 2.2.3.

Recalling Definitions 2.1.2, 2.1.4 and 2.1.5, we define the syntax of TA as follows.

Definition 2.2.1 (Timed Automaton). A TA is a tuple A=(S, s0,Σ,X , I, E),
with S a finite set of locations, s0∈S the initial location, Σ a finite set of visible
events, X a finite set of real-valued clocks, I:S→CC(X) a function assigning a clock
constraint (location invariant) to every location, and E⊆(S×Σ×CC(X)×Λ(X)×S)
the finite set of transitions.

The idea of transitions of TA is as follows: an element e=(s, a, cc, λ, s′)∈E de-
scribes a transition from the source location s to the target location s′ on occurrence
(“execution”) of action a. The firing of the transition is restricted by the (clock)
guard cc, and updates clocks according to the update map λ. For every such tran-
sition, we require cc to be satisfiable. If a∈Σv, we call e an external (or visible)
transition, otherwise (i.e., if a=τ), e is called internal (or invisible).

2.2. TIMED AUTOMATA 13

Example 2.2.2 (Timed Automaton). Two examples for TA are given in Figures
2.1 and 2.2. The TA in Figure 2.1 models an “intelligent light switch”: it consists
of three locations off , light and bright , representing the corresponding states of the
light, and a clock x. In the initial location (marked by the incoming arrow), the
light is off. If the switch is pressed (modelled by action press), the light turns on
(location light), and the clock x is reset to measure the temporal difference to the
next press action. If the switch is pressed again before the value of x reaches 3
(modelled by the guard x≤3), the light becomes bright, otherwise (i.e., if the value
of x is greater than 3, modelled by the guard x>3), it switches off again.

The automaton in Figure 2.2 shows a “user” of the light switch. The automaton
consists of a single location and a clock y. The location has an invariant y≤4, which
forces the automaton to leave the location after having delayed there for at most 4
time units. Together with the guard y≥2 and the update y:=0 on the transition,
this models a user which executes the press action every 2 to 4 time units.

off light bright
press
x:=0

press
x≤3

press , x>3

press

Figure 2.1: Intelligent Light Controller

user
y≤4

press

y≥2, y:=0

Figure 2.2: User pressing
the Light Switch

In the graphical representation of TA, we use assignment rather than functional
notation for the updates, and we omit guards and invariants equal to true as well
as identity updates of the form λ(x)=x.

Notation 2.2.3 (TA). If not stated otherwise, we shall assume the constituents of
a TA A to be denoted as A=(S, s0,Σ,X , I, E), and of a TA Ai to be denoted as
Ai=(Si, s0,i,Σi,Xi, Ii, Ei), for i∈N.

By CC(X)|A, we denote the set of clock constraints (over clock set X) that occur
in a TA A (invariants or guards).

2.2.2 Semantics of Timed Automata

As mentioned above, the idea of TA is that transitions are instantaneous, time only
elapses while the automaton remains in one of its locations. The semantics of a TA
A is defined as the set of runs of the associated labelled transition system (LTS) SA,
cf. for example [BK08].

Definition 2.2.4 (Associated Labelled Transition System). Let A be a TA.
The associated LTS SA is a tuple SA=(Q, q0,→), with Q⊆(S×V(X)) the set of
configurations, such that ν|=I(s) for every (s, ν)∈Q, q0=〈s0,0〉 the initial configura-
tion, with 0(x)=0 for all x∈X , and the transition relation → ⊆(Q×(Time∪Σ)×Q)
is given in (2.1) and (2.2).

14 CHAPTER 2. SYSTEM MODELS

(s, a, cc, λ, s′)∈E,
ν|=cc, ν[λ]|=I(s′)

〈s, ν〉 a−→〈s′, ν[λ]〉
(2.1)

s∈S, t∈Time, t>0,

∀t′, t≥t′≥0 : ν+t′|=I(s)

〈s, ν〉 t−→〈s, ν+t〉
(2.2)

A run of SA (starting in configuration q) is an infinite sequence of transitions
q0

a0−→q1
a1−→ . . ., with ai∈(Σ∪Time) for all i>0. A run is called initial if it starts in the

initial configuration q0, it is called loop-free if all configurations are different.

Rule (2.1) describes an action transition (with action a) of SA, based on a
transition e∈E of A. The valuation ν of the source configuration 〈s, ν〉 needs to
satisfy (“enable”) the clock guard cc, and the updated valuation ν[λ] after the
execution of the transition needs to satisfy the invariant of location s′ (otherwise,
the automaton could not enter location s′). On execution of the transition, the
values of the clocks of A are updated according to the update map λ. Rule (2.2)
describes a delay transition (in location s) of SA: the invariant I(s) of the location
needs to be satisfied at all times (for all t′), and the clock values of all clocks increase
by the same amount of time t.

Definition 2.2.5 (Semantics of Timed Automata). Let A be a TA, SA the
associated LTS as defined in Definition 2.2.4. The trace semantics of A is given by
the set RunA of initial runs of SA. With RunA,k, we denote the set of finite prefixes
of elements of RunA of (at most) length k.

Note that we do not require clock guards of outgoing transitions of a location to
be complete, i.e., cover every possible valuation. This may lead to so-called timelocks
[Tri99]: consider a location with invariant x≤3 and a single outgoing transition with
clock guard x≤2. The location cannot be left once ν(x)>2, and as soon as ν(x)=3,
from a theoretical point of view, time is not allowed to progress anymore, since the
automaton is neither allowed stay in the location nor allowed to leave it. However,
using the above definitions, such behaviour is excluded from the semantics.

Example 2.2.6 (Run of a Timed Automaton). In (2.3), we show a run of the
intelligent light switch from Figure 2.1 of length 10.

〈off , x=0〉 2−→〈off , x=2〉 press−−→〈light , x=0〉 2.5−→〈light , x=2.5〉 press−−→
〈bright , x=2.5〉 1−→〈bright , x=3.5〉 press−−→〈off , x=3.5〉 press−−→
〈light , x=0〉 6−→〈light , x=6〉 3−→〈light , x=9〉 press−−→〈off , x=9〉 (2.3)

Convexity of clock constraints (cf. Remark 2.1.6) gives rise to the following
property for sequences of delay transitions, cf. [Alu99].

Remark 2.2.7 (Time-Additivity). For two consecutive delay transitions in a run,
time-additivity holds. That means, for a TA A and associated LTS SA=(Q, q0,→),
with configurations q1, q2, q3∈Q, and t1, t2∈Time, if q1

t1−→q2∈ → and q2
t2−→q3∈ →, then

also q1
t1+t2−−−→q3∈ →.

2.2. TIMED AUTOMATA 15

2.2.3 Systems of Timed Automata

In this section, we present a product construction for TA which is compositional,
and therefore allows to build complex and/or distributed systems by first designing
the individual components separately, and then combining them with the product
operation.

The intended idea of a system of TA is that the automata work in parallel, while
synchronising via transitions labelled with the same event. In this work, we assume
TA to perform joint broadcast synchronisation on visible events (cf. [Alu99]). That
means, if some visible event a occurs, every automaton Ai in the system, with a∈Σi

(“knowing about a”) must execute a transition labelled with a, while an automaton
Ai with a6∈Σi performs a zero-delay step (“nothing”). If, instead, event τ occurs,
automata may decide to either execute a transition labelled with τ or do a zero-
delay step. Delay steps with delay t>0 have to be executed synchronously by all
automata. The product automaton for two TA A1 and A2 is defined as follows.

Definition 2.2.8 (Product of TA). Let A1, A2 be TA, with X1∩X2=S1∩S2=∅ (can
be achieved by renaming the constituents in one of the TA). The product of A1 and
A2 is a new TA A1./A2=(S, s0,Σ,X , I, E), with S=S1×S2, s0=(s0,1, s0,2), Σ=Σ1∪Σ2,
X=X1∪X2, I:S1×S2→CC(X) such that for s=(s1, s2)∈S, I(s)=I(s1)∧I(s2), and E
is defined in (2.4) and (2.5), and the symmetric rule of the latter.

(s1, a, cc1, λ1, s
′
1)∈E1,

(s2, a, cc2, λ2, s
′
2)∈E2,

((s1, s2), a, cc1∧cc2, λ1◦λ2, (s′1, s
′
2))

(2.4)

(s1, a, cc1, λ1, s
′
1)∈E1,

(a6∈Σ2) or (a=τ), s2∈S2

((s1, s2), a, cc1, λ1, (s′1, s2))
(2.5)

Rule (2.4) describes synchronisation, that means the automata execute a tran-
sition labelled with the same event (note that this can be a visible event as well as
the internal action τ) in parallel. The resulting transition in the product involves a
location change in both underlying TA, the transition is guarded by the combined
guard cc1∧cc2, and clocks are updated according to the combined update maps
λ1◦λ2. Note that since X1∩X2=∅, we have λ1◦λ2=λ2◦λ1, see also Proposition 2.2.9.
Rule (2.5) describes the execution of a local transition (visible or invisible) in one of
the TA, while the other automaton remains in its current location.

Proposition 2.2.9 (Product of TA). The product of TA is commutative and
associative, up to isomorphy of location names.

Proof.

1. Commutativity follows from the commutativity of ∧ on clock constraints, and
the commutativity of ◦ (function composition) on update maps over disjoint
clock sets.

2. Associativity follows from the associativity of ∧ on clock constraints, and the
associativity of ◦ on update maps over disjoint clock sets.

16 CHAPTER 2. SYSTEM MODELS

Example 2.2.10 (Product of TA). An example for the product construction can
be found in Figure 2.3. The automaton shows the product TA for the intelligent
light switch and user, as presented in Example 2.2.2.

off , user
y≤4

light , user
y≤4

bright , user
y≤4

press , y≥2,

x:=0, y:=0

press , x≤3,

y≥2, y:=0

press , x>3,y≥2, y:=0

press , y≥2, y:=0

Figure 2.3: Product of Light Switch and User

The semantics of a system of two TA A1 and A2 (with X1∩X2=∅ and S1∩S2=∅,
as required in Definition 2.2.8) is defined as the semantics (Definition 2.2.5) of the
corresponding product automaton A1./A2 (Definition 2.2.8), i.e., the set of runs of
the associated LTS SA1./A2 (Definition 2.2.4). In (2.6), we show a run of the product
automaton from Figure 2.3 of length 9.

〈(off , user), x=0
y=0 〉 2−→〈(off , user), x=2

y=2 〉 press−−→〈(light , user), x=0
y=0 〉 2.5−→

〈(light , user), x=2.5
y=2.5 〉 press−−→〈(bright , user), x=2.5

y=0 〉 1−→
〈(bright , user), x=3.5

y=1 〉 press−−→〈(off , user), x=3.5
y=0 〉 press−−→〈(light , user), x=0

y=0 〉 4−→
〈(light , user), x=4

y=4 〉 press−−→〈(off , user), x=4
y=0 〉 (2.6)

Remark 2.2.11 (Size of the Product). The product automaton is exponential
in the size of the underlying TA in the worst case. Therefore, for model check-
ing/verification, we provide a technique to avoid the explicit construction of the
exponential cross product in Section 3.1.2.

2.2.4 Discussion

TA were introduced a long time ago, and are by now well-studied. As a result,
TA have been extended and adapted in many ways and for many purposes, like for
example Timed Automata with Deadlines [BS00, GS05], Task Automata [FKPY07],
or Probabilistic Timed Automata [Bea03, KNSS02]. Yet, even for the “basic” ver-
sion of TA, slightly different variants of how to define them can be found in the
literature, each of which has advantages and disadvantages. We now discuss the
major distinctions, and motivate our design decisions.

2.2.4.1 Internal Actions

The original work [AD94, Alu99] did not consider internal actions, but only consid-
ered visible actions in the set of admissible events. As a consequence, every transition
of a TA could synchronise with a transition in another TA, if a transition labelled

2.2. TIMED AUTOMATA 17

with the same event was enabled. In this work, in addition to visible events, we also
allow for invisible internal actions. We consider this more realistic: typically, the
behaviour of a real-time system not only depends on the environment (modelled by
synchronisation via visible actions), but also on internal state changes, which cannot
be influenced by other TA in any way. Consider for example a deadline expiration,
after which the behaviour of the system changes.

It has been shown in [AM04] that internal actions add to the expressive power of
TA, i.e., a TA with internal actions is more expressive than a TA without internal
actions. As an example, consider the TA in Figure 2.4. The automaton consists of
a single location s , a clock x, and can synchronise with other automata via action
a. The automaton requires all actions to occur at integer times, and no two actions
occur at the same time: both transitions become enabled exactly one time unit after
the system started, modelled by the guard x=1. At this time, the invariant x≤1
forces the automaton to leave location s , by performing either of the transitions. If
no synchronisation via action a (left transition) is possible, the automaton executes
the internal action τ (right transition). Both transitions reset clock x to zero, such
that the automaton can reenter location s after the execution of the transition.

s
x≤1

a,x=1,x:=0 τ ,x=1,x:=0

Figure 2.4: Use of Invisible Transitions

This behaviour cannot be modelled with a TA which does not allow for τ -
transitions (cf. [AM04]): if the largest constant occurring in guards and invariants
was c,3 the TA could not distinguish between occurrences of action a which happen
at times c+1 and c+1.1 (after the start of the computation).

2.2.4.2 Synchronisation

Within systems of TA, we assume joint broadcast synchronisation (cf. Section 2.2.3),
that means, on occurrence of a visible event a, all TA “knowing about” a have to
synchronise on this event. In particular, there is no restriction on how many au-
tomata can participate in a single synchronisation, the number is determined only
by the fact whether a is contained in the event set of an automaton. Another pos-
sibility of defining synchronisation (which is closer to the approach taken in process
algebras) is to assume the synchronisation to be binary : under this assumption, ex-
actly two automata synchronise, i.e., execute a transition labelled with some event
a in parallel. If more than two automata are ready to synchronise on a, the choice
which pair—i.e., which two automata—executes the synchronisation transitions is
made nondeterministically.

The expressiveness of these two ways of modelling synchronisation is the same.
We have chosen for joint broadcast synchronisation, since we consider this closer

3Such largest constant always exists, since both the set of locations as well as the set of
transitions of TA are finite, cf. Definition 2.2.1

18 CHAPTER 2. SYSTEM MODELS

to the nature of component-based systems. The ideas of modelling each approach
with the respective other can roughly be sketched as follows: using TA with joint
broadcast synchronisation to model binary synchronisation is straightforward, by
using each action in exactly two automata only. Using TA with binary synchroni-
sation to model joint broadcast synchronisation uses the fact that transitions are
instantaneous, therefore, multiple transitions (all labelled with the same action) can
take place at the same time instant.

2.2.4.3 Input- and Output Actions

A special case of binary synchronisation is the distinction between input and out-
put actions. While we consider two types of actions (visible/external and invisi-
ble/internal), some authors prefer to further divide the set of visible actions into
input and output actions, cf. for example [BDL04]. Usually, input and output
actions are used to distinguish between actions that are controlled by the TA, and
actions that are controlled by the environment. Since we do not make this distinction
here, we regard two types of actions (external and internal) to be sufficient.

2.2.4.4 Clock Constraints and Updates

In the original work presented in [AD94, Alu99], so-called diagonal clock constraints
of the form x−y∼c (i.e., involving clock differences, cf. Definition 2.1.2) were not
allowed. However, it has been shown by Alur and Madhusudan [AM04] that adding
these constraints does not add to the expressive power of TA. Therefore, we allow
diagonal clock constraints, since they may be used for more concise modelling.

Moreover, [AD94, Alu99] only allowed transitions to reset a (sub)set of clocks to
zero. It has been shown in [AM04] that this restriction can be relaxed in favour of
more general update maps, without adding to the expressiveness. We follow their
approach and use the update maps presented in [AM04], cf. Definition 2.1.5.

In contrast to [AD94], but following [Alu99], we do not allow negation in clock
constraints, cf. Definition 2.1.2. This is done to obtain convex clock constraints
(cf. Remark 2.1.6), which are used for efficient representation in Chapter 3. Yet,
non-convex clock constraints can be simulated by splitting locations (for non-convex
invariants) and transitions (for non-convex guards).

These considerations on clock constraints and update maps directly carry over
to TCA (Section 2.3) and TNA (Section 2.4).

2.3 Timed Constraint Automata

In this section, we define the second system model for modelling real-time systems:
Timed Constraint Automata (TCA). TCA [ABdBR07, Kem11] arise from combin-
ing the concepts of constraint automata [ABRS04] (CA) and timed automata (TA,
Section 2.2). CA were originally defined as a semantical model for the channel-based
coordination language Reo [Arb04], and consequently, TCA were intended to serve
as a semantical model of a timed variant of Reo. Yet, TCA offer a powerful co-
ordination mechanism for channel-based coordination languages in general. They

2.3. TIMED CONSTRAINT AUTOMATA 19

are specially tailored for implementing coordinating connectors in networks where
timed components communicate by exchanging data through multiple channels. The
behaviour of the network is given by synchronisation between channel ends (ports).

For this, TCA allow for two types of transitions: internal (invisible) location
changes caused by some timing constraints, and external (visible) transitions repre-
senting data flow at some of the ports. Transitions in TCA are labelled with sets
of actions (ports). The underlying general idea is that all actions which happen at
the same time (i.e., atomically) collapse into a single transition. As a consequence,
a positive amount of time elapses before every visible transitions.

The major conceptual difference to TA and other action-based coordination mod-
els, like e.g. finite state machines, or timed I/O automata [KLSV03a, KLSV03b],
is thus the “non-instantaneous” handling of transitions. While in TA, every tran-
sition can be fired immediately (provided that the guard is satisfied), TCA require
a positive delay before every visible transition. Moreover, TA permit only a single
action per transition, such that synchrony—and concurrent execution in the parallel
composition—of different actions is reduced to arbitrary interleavings plus nonde-
terminism. This is unintuitive, since it imposes a sequential order on actions which
conceptually happen at the same time. Moreover, from a technical point of view,
the presence of all possible interleavings amplifies the state explosion problem. TCA
permit true concurrency, as they directly model truly atomic synchronous commu-
nication through different ports.

2.3.1 Syntax of Timed Constraint Automata

The syntactic concepts for handling real-time (i.e., clocks, guards, invariants), as
defined in the previous section, directly carry over from TA to TCA. For handling
data values, each TCA is equipped with a finite set of ports, through which it ex-
changes data values with other TCA. Transition of TCA are labelled with a subset
of these ports, with the intended meaning that data flows through these ports (the
ports are active) when the transition is fired. Transitions can be labelled with a
data constraint (cf. Definition 2.1.7), restricting the admissible data values flowing
through the active ports. In addition, the coordination pattern implemented by a
TCA may depend on data values which have been exchanged before (i.e., through
ports that were active in previous steps). To keep track of this, we extend the basic
definition of TCA, presented in [Kem11], with location memory, cf. also [PSHA09]:
each TCA is equipped with a finite set of data variables, which can be used by loca-
tions to store data values, cf. Section 2.1.2. We call these data variables associated
to locations memory cells.4

The underlying idea is that memory cells enable the current location to store
data values. The same memory cell can be used by both source and target location
of the same transition, in this case, its contents carry over unchanged, unless they
are updated by the transition. The contents of memory cells which are used by the
source locations but not by the target location are discarded, i.e., unused memory

4In the remainder of this Section, we may use the terms memory cell and data variable inter-
changeably.

20 CHAPTER 2. SYSTEM MODELS

cells are empty by definition. Consequently, data constraints on transitions may
only refer to memory cells used by the source or target location.

Recalling Definitions 2.1.2, 2.1.4, 2.1.5, 2.1.7 and 2.1.8, TCA are defined as fol-
lows.

Definition 2.3.1 (Timed Constraint Automaton). A TCA over data domain
Data is a tuple T=(S, s0,P ,X , I,D,#, E), with S a finite set of locations, s0∈S the
initial location, P a finite set of ports, X a finite set of clocks, I:S→CC(X) a function
assigning a clock constraint (location invariant) to every location, D a finite set of
data variables, called memory cells, #:S→2D a function assigning to each location
the set of memory cells it may use, and E⊆(S×2P×DC(P ,D)×CC(X)×Λ(X)×S)
the finite set of transitions.

For every element e=(s, P, dc, cc, λ, s′)∈E, we require that the data guard dc
only reasons about active ports, and only about memory cells of the source location
s and the target location s′, i.e., dc∈DC(P,#(s)∪#(s′)). We require both dc and cc
(clock guard) to be satisfiable. If P=∅, transition e is called invisible, otherwise, it
is called visible.

The idea of invisible transitions is that they do not represent observable data flow:
the port set P is empty, so no ports are active. The data constraint dc of an invisible
transition may thus only reason about memory cells, i.e., dc∈DC(∅,#(s)∪#(s′)).
In this way, invisible transitions only serve for internal synchronisation purposes, for
example by changing to another location, or updating clocks. Visible transitions,
on the other hand, correspond to observable behaviour: on location change from s
to s′, data flows through all ports in the port set P . After the TCA has delayed
in location s for a positive amount of time,5 during which the invariant I(s) of s
needs to be satisfied, it executes the transition and moves to location s′, provided
that the data values pending at the active ports (in P) and contained in memory
cells of the source location s satisfy the data guard dc, and the clock values satisfy
the clock guard cc and the invariant I(s′) of the target location s′. The firing of the
transition, i.e., the location change from s to s′, is considered to be instantaneous.
On execution of the transition, all clocks are updated according to the update map λ.
These informally described timing constraints will be made explicit in the definition
of semantics (Definition 2.3.6).

Remark 2.3.2 (Use of Memory Cells). We do not impose any restrictions on
the set of memory cells used by locations. In particular, the same memory cell m
may be used by both source and target location of a transition. This may lead to
an ambiguous data constraint dc in case dc reasons about m. Yet, such behaviour
is necessary for example when it comes to product definition (cf. Definition 2.3.9).
To avoid ambiguities, we indicate in the data constraint to which location a memory
cell m belongs, i.e., whether the occurrence of m refers to its value before or after the
execution of the transition. We add to m the prefix “s.” if it refers to the value used

5As explained in the beginning of the section, the general idea of TCA is that all data flow
actions which happen at the same time atomically collapse to a single transition, therefor, every
such transition is preceded by a positive time delay.

2.3. TIMED CONSTRAINT AUTOMATA 21

by the source location, and the prefix “t.” if it refers to the value used by the target
location. For example, instead of (m=d1)∧(m=d2) (which would obviously evaluate
to false), we write (s.m=d1)∧(t.m=d2). Any data assignment δ will consider s.m
and t.m to be different elements.

Our definition allows to leave the value of a memory cell m used by the target
location unspecified, i.e., neither does the source location use m, nor does m occur
in the data constraint. In this case, we assume m to take a random value.

While unused memory cells are empty be definition (cf. the intuition at the be-
ginning of this section, and also Definition 2.3.5), we may explicitly require memory
cells used by the current location to be empty as well, using data constraints of the
form (m=⊥) (cf. Definition 2.1.7).

Example 2.3.3 (Timed Constraint Automaton). An example for a TCA is
given in Figure 2.5. It models a FIFO buffer with capacity 1 and expiration: the
buffer consists of two locations empty and full , uses clock x to measure the time
until the data expires, and two ports p and q for exchanging data values. The full
location has an associated memory cell m, which is denoted [m] in the graphical
representation. In the initial location, the buffer is empty. On receiving a data
value through port p, the TCA moves to location full , updates (resets) clock x to
0, and stores the data value in the location memory of full , indicated by the data
guard p=t .m. Since we do not impose any further data constraints, this means that
any value can be received through p. If data flow through port q is possible before
3 time units have elapsed (clock guard x<3), the TCA sends the data item from the
memory cell through port q, and moves to back to the initial location. If data flow
through q is not possible, at time 3, the invariant of location full forces the TCA to
leave that location, and execute the invisible transition back to the initial location.
No data is transmitted, which models “loosing” the stored data item.

empty
full
x≤3
[m]

{p}, p=t.m, x:=0

{q}, q=s.m, x<3

x=3

Figure 2.5: 1-bounded FIFO Buffer with Expiration

Notation 2.3.4 (TCA). If not stated otherwise, we shall assume the constituents
of a TCA T to be denoted as T=(S, s0,P ,X , I,D,#, E), and of a TCA Ti to be
denoted as Ti=(Si, s0,i,Pi,Xi, Ii,Di,#i, Ei), for i∈N. We lift # to reason about sets
of locations, and we may omit curly braces: #(s, s′)

def
= #(s)∪#(s′).

By CC(X)|T, we denote the set of clock constraints (over clock set X) that occur
in a TCA T (invariants or guards). Equivalently, by DC(P ,D)|T, we denote the set
of data constraints over port set P and memory cells D that occur in a TCA T.

22 CHAPTER 2. SYSTEM MODELS

As for TA, in the graphical notation of TCA, we use assignment rather than
functional notation for updates, and we omit guards and invariants equal to true,
as well as identity updates. We denote a set of memory cells {m1, . . . ,mn} associated
to a location as a bracketed list [m1, . . . ,mn].

2.3.2 Semantics of Timed Constraint Automata

TCA model true concurrency, by allowing sets of ports on each transition. As a
consequence, a positive amount of time has to elapse before every visible transition
(while invisible transitions may be instantaneous). The underlying idea is that all
actions which happen at the same time are truly atomic and thus collapse to a single
transition. The semantics of a TCA T is defined as the set of runs of the associated
labelled transition system (LTS) ST.

Definition 2.3.5 (Associated LTS). Let T be a TCA. The associated LTS ST is
a tuple ST=(Q, q0,→), with Q⊆(S×DA(D)×V(X)) the set of configurations, where
for every (s, δ, ν)∈Q, δ∈DA(D), with δ(m)=⊥ if m6∈#(s), and ν|=I(s). The initial
configuration is q0=〈s0,0,0〉, with 0(x)=0 for all x∈X and 0(m)=⊥ for all m∈#(s0).
The transition relation→ ⊆(Q×2P×DA(P ,D)×Time×Q) is given in (2.7) and (2.8).

(s, P, dc, cc, λ, s′)∈E
t>0, t≥t′≥0 : ν+t′|=I(s), ν+t|=cc, (ν+t)[λ]|=I(s′)

δ̄∈DA(P ,D) : δ̄|=dc

δ̄(s.m)=

{
δ(m), if m∈#(s)

⊥, otherwise

δ̄(t.m)=δ(m) if m∈#(s),m∈#(s′), t.m6∈D|dc
δ̄(m)=⊥ if m∈D\#(s, s′),

δ̄(p)=⊥ iff p∈P\P,
δ′(m)=δ̄(t.m) for all m∈#(s′)

〈s, δ, ν〉 P,δ̄,t−−→〈s′, δ′, ν+t[λ]〉
(2.7)

(s, ∅, dc, cc, λ, s′)∈E
ν|=cc, ν[λ]|=I(s′)

δ̄∈DA(P ,D) : δ̄|=dc

δ̄(s.m)=

{
δ(m), if m∈#(s)

⊥, otherwise

δ̄(t.m)=δ(m) if m∈#(s),m∈#(s′), t.m6∈D|dc
δ̄(m)=⊥ if m∈D\#(s, s′),

δ̄(p)=⊥ iff p∈P ,
δ′(m)=δ̄(t.m) for all m∈#(s′)

〈s, δ, ν〉 ∅,δ̄,0−−→〈s′, δ′, ν[λ]〉
(2.8)

2.3. TIMED CONSTRAINT AUTOMATA 23

A run of ST (starting in configuration q) is a sequence of transitions q P,δ,t−−→q1
P ′,δ′,t′−−−→ . . .

which is either time divergent (i.e. infinite, and t+t′+ . . .=∞) or finite and ends
in a terminal configuration 〈s, δ, ν〉 (i.e. without outgoing transitions, allowing for
infinite passage of time: ∀t>0:ν+t|=I(s)). A run is called initial if it starts in the
initial configuration q0, it is called loop-free if all configurations are different.

Rule (2.7) captures the constraints described after Definition 2.3.1, for both
visible and invisible transitions: before the transition can be fired, a positive amount
of time (t>0) has to elapse, during which the invariant I(s) needs to be satisfied
at all times.6 At time t, the transition is fired, and updates all clocks according to
the update map λ, provided that the clock guard cc is satisfied before the resetting
of clocks, and the invariant of the target location is satisfied (after the time delay
and) after the resetting of clocks (all second row). The data values have to satisfy
the data guard (third row), the values of memory cells before the execution of the
transition remain unchanged if used by the source location s, otherwise, they are
empty (fourth row). The values of memory cells which are used in both source and
target location carry over to s′ if they are not modified in the data constraint (fifth
row). Note that if a memory cell is not used in the target location, its value t.m
after the execution of the transition is unspecified, cf. also Remark 2.3.2. All other
memory cells are empty (sixth row), data is only pending at active ports (seventh
row), and the data assignment on the transition determines the data values of the
memory cells of the target location (eighth row).

Rule (2.8) captures the fact that invisible transitions may be instantaneous; it
can be seen as a simplification of (2.7) for P=∅ and t=0. Note that data may not
be pending at any port (seventh row), yet data constraints of invisible transitions
may still reason about memory cells of the involved locations, for example to copy
values from one memory cell to another, or to model data loss.

As mentioned in Remark 2.3.2, memory cells which are used by the target loca-
tion, but are neither used by the source location nor occur in the data constraint,
can take a random value. As can be seen from the fifth rows in (2.7) and (2.8),
we do not impose any constraints on the values (t.m) of these memory cells, which
indeed allows δ̄ to assign a random (up to the fact that δ̄|=dc has to hold) value to
them.

Definition 2.3.6 (Semantics of Timed Constraint Automata). Let T be a
TCA, ST the associated LTS as defined in Definition 2.3.5. The trace semantics of
T is given by the set RunT of initial runs of ST. With RunT,k, we denote the set of
finite prefixes of elements of RunT of (at most) length k.

Note that as for TA, we do not require clock guards to be complete, nor do we
require this for data guards, cf. Page 14.

Example 2.3.7 (Run of a Timed Constraint Automaton). In (2.9), we show
a run of the 1-bounded FIFO buffer from Figure 2.5 of length 4.

6Due to convexity, these constraints can be relaxed in the representation, since it is enough to
check the invariant at the beginning and at the end of the time delay.

24 CHAPTER 2. SYSTEM MODELS

〈empty ,⊥, x=0〉
{p}, p=2

t.m=2
,4

−−−−−−−→〈full ,m=2, x=0〉
{q}, q=2

s.m=2
,2.5

−−−−−−−−→

〈empty ,⊥, x=2.5〉
{p}, p=5

t.m=5
,10

−−−−−−−→〈full ,m=5, x=0〉 ∅,⊥,3−−→
〈empty ,⊥, x=3〉 (2.9)

Here, we omit data assignments on transitions which evaluate to ⊥, and we abuse
the single symbol ⊥ to denote the data assignment assigning ⊥ to all elements.

Remark 2.3.8 (Maximal Progress). The semantics of TCA, as defined above,
requires maximal progress with respect to active ports : on execution of a (visible)
transition, data is pending on all active ports, and on none of the non-active ports,
ensured by the constraints δ̄(p)=⊥ iff p∈P\P in (2.7) and δ̄(p)=⊥ iff p∈P in (2.8).

For example, if data is pending at ports p and q, and two transitions with port
sets {p} and {p, q}, respectively, are ready to fire, then only the latter transition is
enabled.

2.3.3 Systems of Timed Constraint Automata

In this section, we present a compositional product construction for TCA, which
allows to easily build complex connectors by composing simpler ones. We also
present a hiding operation on ports, which allows to hide ports on which two (or
more) TCA synchronise from the environment. The idea is that the ports become
“internal” to the new (composed) connector.

The idea of TCA synchronisation is as follows: within a system of TCA, two
automata synchronise (communicate, exchange data values) if the port sets of the
involved transitions coincide on common ports. Invisible transitions, and local visible
transitions (i.e., transitions involving ports known to only one automaton) can be
executed independently of other automata. This gives rise to the following definition.

Definition 2.3.9 (Product of TCA). Let T1, T2 be TCA over Data1 and Data2, re-
spectively, with X1∩X2=∅, D1∩D2=∅, and S1∩S2=∅ (can be achieved by renaming
the constituents in one of the TCA). The product of T1 and T2 is a new TCA
T1./T2=(S, s0,P ,X , I,D,#, E) over data domain Data1∪Data2, with S=S1×S2,
s0=(s0,1,s0,2), P=P1∪P2, X=X1∪X2, I:S→CC(X1,X2), with I(s)=I1(s1)∧I2(s2) for
s=(s1, s2)∈S, D=D1∪D2, #:S→2D, with #((s1, s2))=#1(s1)∪#2(s2), and E is de-
fined in (2.10) and (2.11), and the symmetric rule of the latter.

(s1, P1, dc1, cc1, λ1, s
′
1)∈E1

(s2, P2, dc2, cc2, λ2, s
′
2)∈E2

P1∩P2 = P2∩P1, P1 6=∅, P2 6=∅, dc1∧dc2 6=false

((s1, s2), P1∪P2, dc1∧dc2, cc1∧cc2, λ1◦λ2, (s′1, s
′
2))∈E

(2.10)

(s1, P1, dc1, cc1, λ1, s
′
1)∈E1, P1∩P2 = ∅, s2∈S2

((s1, s2), P1, dc1, cc1, λ1, (s′1, s2))∈E
, (2.11)

2.3. TIMED CONSTRAINT AUTOMATA 25

Rule (2.10) captures the synchronisation of visible transitions: the nonempty
port sets have to coincide on common ports, i.e. data flows through the same set
of shared ports on both transitions. The case where P1∩P2=P2∩P1=∅ (i.e., the set
of shared ports is empty) represents a system step where each automaton performs
a local visible transition (concurrent execution of independent actions). Rule (2.11)
describes the execution of a local transition (visible or invisible) in one automaton,
while the other automaton remains in its current location (is idle). The semantics of
TCA, in particular the fifth and sixth row of (2.7), ensures that the values stored in
memory cells of the idle automaton correctly carry over to the next location. Note
that in case such a local transition is preceded by a time delay, the idle automaton
actually performs a delay transition.

Example 2.3.10 (Product of TCA). An example for the product construction
can be found in Figure 2.7: it shows the product TCA of two instances of the 1-
bounded FIFO buffer (cf. Example 2.3.3), as show in Figures 2.5 and 2.6 (the two
instances are identical except for renaming). The resulting TCA models a FIFO
buffer with capacity 2, where each of the buffer cells has its own expiration timer
(clocks x and x′, respectively). The buffer accepts data through port p, and releases
it through port r. The synchronisation on port q models the step where the data
from the first buffer cell is transferred to the second buffer cell.

For readability, we have abbreviated the location names in Figure 2.7 with e, e′,
f and f ′, for empty , empty ′, full and full ′, respectively.

empty ′
full ′

x′≤3
[m ′]

{q}, q=t.m′, x′:=0

{r}, r=s.m′, x′<3

x=3

Figure 2.6: 1-bounded FIFO Buffer with Expiration, Second Instance

Proposition 2.3.11 (Product of TCA). The product of TCA is commutative and
associative, up to isomorphy of location names.

Proof.

1. Commutativity follows from the commutativity of ∪ on port sets, the commu-
tativity of ◦ on update maps over disjoint clock sets, and the commutativity
of ∧ on data and clock constraints.

2. Associativity follows from the associativity of ∪ on port sets, the associativ-
ity of ◦ on update maps over disjoint clock sets, the associativity of ∧ on
data and clock constraints, and the fact that for Pi⊆Pi, i=1, 2, 3, if we have
P2∩P3=P3∩P2, P1∩(P2∪P3)=P1∩(P2∪P3) and P1∩P2=P2∩P1, then holds
P3∩(P1∪P2)=P3∩(P1∪P2).

26 CHAPTER 2. SYSTEM MODELS

e,e ′
f ,e ′,
x≤3,
[m]

e,f ′,
x′≤3,
[m ′]

f ,f ′,
x≤3∧x′≤3,

[m,m ′]

{p}, p=t.m
x:=0

x=3

{q},
q=s.m∧
q=t.m′,
x<3,
x′:=0

{r}, r=
s.m
′, x ′<

3

x ′=
3

{p}
, p

=t
.m
, x

:=
0

x=
3

{r}, r=s.m′

x′<3

x′=3

Figure 2.7: Product of two 1-bounded FIFO Buffers

It may be required to hide some ports of a TCA from the environment. For
example, in the product construction, the common ports (on which the TCA syn-
chronise) could be considered to become “internal” ports, and thus not be visible
from the outside anymore. Consider for example port q in Example 2.3.10. The
hiding operation removes all information about a set of ports O⊆P from a TCA.
To ensure correct timed behaviour of transitions with port sets P⊆O—namely that
such transitions may only be taken after a positive amount of time—we need to
introduce an additional clock.

Definition 2.3.12 (Hiding in TCA). Let T be a TCA, x 6∈X a fresh clock, and
O⊆P . The hiding of O in T yields a new TCA T\O=(S, s0,P\O,X∪x, I,D,#, E ′),
where E ′ is given in (2.12) and (2.13).

(s, P, dc, cc, λ, s′)∈E, ((P=∅)∨(P\O 6=∅))
(s, P\O, dc\O, cc, λx, s′)∈E

(2.12)

(s, P, dc, cc, λ, s′)∈E, ∅6=P⊆O
(s, ∅, true, cc∧(x>0), λx, s′)∈E ′

(2.13)

Here, dc\O denotes the data constraint which is derived from dc by replacing
all literals dc′, with dc′=(D∼D′) or dc ′=¬(D∼D′), by true iff p∈P|dc′ (cf. Defini-
tion 2.1.7), for all p∈O. The update map λx updates the new clock x to zero, and
agrees with λ on other clocks: λx(x

′)=λ(x′) if x′∈X , and λx(x)=0 otherwise.

2.3. TIMED CONSTRAINT AUTOMATA 27

The basic idea is to obtain transitions of T\O from transitions of T by reducing
the port set (and data constraints) to ports not contained in O (2.12). If the resulting
transition in T\O is invisible, while the underlying transition in T is visible (2.13),
the new clock x is used to ensure correct timed behaviour: since x is updated to zero
on all transitions, the additional constraint (x>0) ensures the elapse of a positive
amount of time before the (now invisible) transition can be taken.

The semantics of a system of two TCA T1 and T2 (with disjoint sets of clocks, lo-
cations and memory cells, as required in Definition 2.3.9) is defined as the semantics
(Definition 2.3.6) of the corresponding product automaton T1./T2 (Definition 2.3.9),
i.e., the set of runs of the associated LTS ST (Definition 2.3.5). In (2.14), we show
a run of the product automaton from Figure 2.7 of length 5.

〈(e, e ′),⊥, x=0
x′=0 〉

{p}, p=3
t.m=3

,4

−−−−−−−→〈(f , e ′),m=3, x=0
x′=4 〉

{q},
q=3
s.m=3
t.m′=3

,2.5

−−−−−−−−→

〈(e, f ′),m′=3, x=2.5
x′=0 〉

{p},

p=5
t.m=5
s.m′=3
t.m′=3

,0.5

−−−−−−−−→

〈(f , f ′), m=5
m′=3 ,

x=0
x′=0.5 〉

∅, s.m=5
t.m=5

,2.5

−−−−−−→
〈(f ,e ′),m=5, x=2.5

x′=3 〉
∅,⊥,0.5−−−→〈(e,e ′),⊥, x=3

x′=3.5 〉 (2.14)

This run correspond to an execution of the buffer as follows: first, after a delay
of 4, it receives data element 3 through port p, and stores it in memory cell m of
target location (f ,e ′). Next, it transfers the data item to memory cell m′ of (e,f ′)
through port q, then receives data item 5 through port p and stores it in the memory
cell m of target location (f ,f ′). The buffer is now completely full. In location (f ,f ′),
the buffer delays for 2.5, which—together with previous delays—increases the value
of clock x′ to 3, such that the buffer takes the invisible transition to location (f ,e ′),
loosing data item 3. After delaying for another 0.5, the value of clock x reaches the
threshold 3 as well, the second data item is lost as well, and the buffer returns to
the initial location (e,e ′).

Remark 2.3.13 (Size of the Product). The result of the product construction
for TCA, as presented in Definition 2.3.9, is exponential in the worst case. For model
checking/verification, we present a linear technique to avoid the explicit construction
of the product automaton in Section 3.1.3.

2.3.4 Discussion

TCA arise from combining the real-time concepts of TA, as presented in Section 2.2,
with the coordination concepts of constraint automata (CA) [ABRS04]. We further
extend the basic definition from [ABdBR07, Kem11] with location memory, which
allows to reason about and base the coordination pattern on data values which have
been exchanged prior to the current step.

In this way, TCA are specially tailored for implementing coordinating connec-
tors in networks where timed components communicate by exchanging data values
through multiple channels. The behaviour of the network is given by synchronisation

28 CHAPTER 2. SYSTEM MODELS

between channel ends (ports). While the functionality of channels is often limited
to synchrony and (FIFO) buffering, TCA allow connectors with arbitrary behaviour.
These connectors provide exogenous coordination, by imposing a certain communi-
cation pattern—for example reordering or delays—on associated components. TCA
are compositional, which allows to easily build complex connectors out of simpler
ones.

One of the major advantages of TCA (which is also one of the major distinc-
tions to TA) is the fact that they provide true concurrency. Most action-based
(coordination) models, like e.g. finite state machines, timed I/O automata, but also
TA, permit only a single action per transition. As a consequence, synchrony, and
concurrent execution of actions in the parallel composition, is reduced to arbitrary
interleavings plus nondeterminism. Especially for timed systems involving exchange
of data values—aside from being unintuitive—this does not correctly capture the
nature of distributed systems, since it imposes a sequential order on actions which
conceptually happen at the same time. Furthermore, the sequential order might
influence the availability of data items, depending on the execution order of tran-
sitions. What is more, from a technical point of view, the presence of all possible
interleavings amplifies the state explosion problem. In contrast, TCA allow sets of
actions on each transition, which permits true concurrency, as this directly models
(truly atomic) synchronous communication through different ports.

Under true concurrency, all actions which happen at the same time (atomically)
collapse into a single transition. As a consequence, a positive amount of time has
to elapse before every visible transition (i.e., transitions involving visible data flow).
This allows for a more “concise” semantics compared to TA: transitions in the
associated LTS SA of a TA A correspond to either the execution of a transition of
A, or to a system delay,7 cf. Definition 2.2.4. In contrast, every transition in the
associated LTS ST of a TCA T corresponds to the execution of a transition in T,
possibly preceded by a time delay, cf. Definition 2.3.5. Thus, on average, runs of
ST are shorter than runs of SA while containing the same number of visible events,
i.e., providing the same “information content”.

2.4 Timed Network Automata

In this section, we define the third system model: Timed Network Automata (TNA).
TNA [Kem10] can be seen as an extension of TCA with environmental constraints
(see for example [CCA07, Cos10]). Such constraints are imposed on the TNA by
the surrounding network (hence the name), and capture information about whether
the environment is ready to communicate. Thus, presence and absence of dataflow
in the connector (which is modelled by the TNA) no longer depend on the internal
state of the automaton only, but also take into account whether the environment is
ready to communicate. Thereby, the behaviour of the environment is represented
through constraints on the transitions of the TNA, i.e., there is no need to specify
the environment explicitly. In this way, TNA provide a modular framework for
compositional construction of a real-time generalisation of dataflow networks.

7Remember that subsequent delays can be combined into a single transition, cf. Remark 2.2.7)

2.4. TIMED NETWORK AUTOMATA 29

The underlying idea of TNA is that absence of dataflow needs a reason. For
example, a simple empty buffer (without any constraints on the input) should always
be ready to accept data, communication can only be delayed if the reason comes
from the outside the connector (if the environment does not provide a data item,
i.e., is not ready to communicate). To capture where the reason for delaying the
communication comes from, TNA distinguish between input ports and output ports.

2.4.1 Syntax of Timed Network Automata

The (externally visible) behaviour of a TNA is given by the possible dataflow through
its (externally visible) ports, which not only depends on the TNA itself, but also on
the environment it occurs in. In particular, there needs to be a reason for the absence
of dataflow, from either the TNA or the environment; if both are ready to commu-
nicate, dataflow cannot be delayed. Consequently, we define the environmental
constraints over the ports of a TNA. Essentially following the three-colouring idea
presented in [CCA07], we define three different states of ports—called colours8—
which not only capture presence and absence of dataflow, but in case of no dataflow
also describe where the reason for delaying the communication comes from.

Definition 2.4.1 (Colours, Colourings). Let P be a finite set of ports, Q⊆P ,
and p∈P . A colouring c∈C(P) over P is a mapping c:P→Clr , assigning to each
port p∈P a colour from the set of colours Clr={ , ! , ? }. We denote the
colouring of a port p (i.e., the colour assigned to that port) by p: , p: ! and
p: ? , respectively. Port p is called active (under colouring c) iff c(p)= , and
inactive (under colouring c) otherwise.

The restriction c|Q of colouring c from P to Q is a colouring that agrees with
c on ports in Q, and is undefined otherwise, i.e., c|Q:Q→Clr , c|Q(p)=c(p), p∈Q.

We may write colourings in either orientation (i.e., p: or :p), and we may
omit the port name p if it is clear from the context. Further, we may write C if P
is clear from the context.

The intended idea of the colourings of a port p is to denote dataflow through p
(p:) and delay on p, with the underlying TNA to which the port belongs either
providing (p: !) or getting (p: ?) a reason for the delay on its port p. Intuitively,
p: ? means that the TNA cannot actively delay dataflow through p, instead, delay
requires a reason from the outside. On the other hand, p: ! denotes that the TNA
itself delays the communication, for example because no data is available to be
transmitted.

A TNA consists of the externally visible ports, plus the internal behaviour. We
specify this internal behaviour by means of finite automata, which are equipped
with real-valued clocks. As for TA (cf. Section 2.2), we assume location changes
to be instantaneous, time may only elapse while the automaton remains in one of

8We here adopt the term colour and related notions, as introduced in [CCA07], to avoid
confusion with other uses of the word state.

30 CHAPTER 2. SYSTEM MODELS

its locations.9 The delays may depend on environmental constraints. Therefore, we
specify the admissible delays as explicit transitions of the automaton modelling the
internal behaviour of the TNA.

Similar to TCA, TNA are equipped with a finite set of data variables Data.
These can be used by locations, to store data values for use in subsequent steps.
In addition, data constraints on transitions may reason about data variables which
are not used by source or target location of the transition (this was not allowed
for TCA, cf. Definition 2.3.1). This feature is primarily used for conciseness of the
definition of TNA composition, but also to retain information when hiding ports
from the environment (cf. Definitions 2.4.13 and 2.4.14).

Recalling Definitions 2.1.2, 2.1.4, 2.1.5, 2.1.7 and 2.1.8, we define TNA as follows.

Definition 2.4.2 (Timed Network Automaton). A TNA N over data domain
Data is a tuple N=(S, s0,P ,X , I,D,#, E), with S a finite set of locations, s0∈S
the initial location, P=Pr∪̇Pw a finite set of ports, with Pr and Pw disjoint sets
of read respectively write ports, X a finite set of real-valued clocks, I:S→CC(X)
a function assigning a clock constraint (location invariant) to every location, D a
finite set of data variables, #:S→2D a function assigning to each location the set
of data variables it may use, and E⊆(S×C(P)×DC(P ,D)×CC(X)×Λ(X)×S) the
finite transition relation. The set P of ports is also called the external interface of
N.

An element e=(s, c, dc, cc, λ, s′)∈E describes a transition from source location s
to target location s′, with dataflow/delay according to colouring c, enabled under
data guard dc and clock guard cc, and updating all clocks according to the update
map λ. For every such transition, we require that dc only reasons about active
ports, i.e., dc∈DC(Q,D), with Q={p∈P | c(p)= }. We require both dc and cc
to be satisfiable. Transition e is called delay iff s′=s, λ=id (identity mapping), and
c(p) 6= for all p∈P , and communication otherwise. Two TNA are called disjoint if
the respective constituents (i.e., locations, ports, clocks, data variables) are disjoint.

A communication (s, c, dc, cc, λ, s′) describes the conditions for a location change
from s to s′, while a delay (s, c, dc, cc, id , s) describes the conditions under which N
may delay in location s—namely, as long as guard cc is satisfied, and a reason for
delay exists which satisfies colouring c. Note that the data constraint dc on delays
may not involve ports (since no dataflow is allowed), but only data variables (the
duration of the delay or whether the delay is possible at all may still depend on the
contents of the memory cells).

Remark 2.4.3 (Use of Data Variables). As for TCA, we not impose any re-
strictions on the set of data variables used by locations, cf. Remark 2.3.2. This
may lead to the same ambiguities as described in the Remark, if for a transition
(s, c, dc, cc, λ, s′), both locations use the same data variable d, and d occurs in dc.
We use the same conventions as introduced for TCA (cf. Remark 2.3.2 again):

9Yet, it is straightforward to model duration of data flow in a TCA like style, for example by
adding a fresh clock and appropriate clock guards >0 on transitions, which forces the automaton
to delay in every location.

2.4. TIMED NETWORK AUTOMATA 31

we prefix the occurrence of a data variable d in dc by “s.” if it belongs to the
source location, and by “t.” if it belongs to the target location. That means,
instead of (d=d1)∧(d=d2) (which would obviously evaluate to false), we write
(s.d=d1)∧(t.d=d2), and any data assignment δ will consider s.d and t.d to be dif-
ferent elements. A data variable without prefix is used in the data constraint only
and does not correspond to a memory cell of source or target location.

As for TCA before, unconstrained memory cells of the target location can take
random values, and we may explicitly require data variables to be empty.

Example 2.4.4. An example for a TNA can be found in Figure 2.8. We model again
the 1-bounded FIFO buffer with expiration from Example 2.3.3, but now in addition
take into account environmental constraints. To model dataflow and environmental
constraints, the TNA has a read port r, through which it receives the data item,
a write port w, through which it releases the data item to the environment again,
and uses a data variable m, to model the memory cell in location full . We denote
communications by solid lines, and delays by dashed lines.

empty
full
x≤3
[m]

r: , ! :w, r=t.m, x:=0

r: ! , :w,w=s.m, x<3

r: ! , ! :w, x=3r: ? ,
! :w

r: ! ,
? :w,
x≤3

Figure 2.8: 1-bounded FIFO Buffer with Expiration and Environmental Constraints

The general idea of the TNA in Figure 2.8 is identical to the TCA presented
in Figure 2.5. The three communications correspond almost directly to the three
transitions in the TCA. On each communication, the inactive port always provides
(and never requires) a reason to delay. On the upper communication (from empty
to full), for example, this is due to the fact that the buffer is empty, so no data can
flow out of it (through w), so the TNA itself provides a reason to delay on write
port w. The reason can be read as “no data available”. The explanation for the
lower transition is similar. On the middle transition, both ports provide a reason
to delay: port r cannot be active, since the buffer is full and no (more) data can
be accepted through r. The fact that port w is inactive models the loss of the data
item: once the deadline of 3 time units is reached, the data item is lost and cannot
be sent through w anymore.

To handle environmental constraints, we add two delays, one for each location.
The delay in location empty models the fact that no data item can be written to the
environment (since there is no data, i.e., the buffer is empty), therefore, w provides
a reason to delay. Since the TNA itself is ready to accept data through r, the read
port requires a reason for delay. Stated differently: if the buffer is empty, it is
always ready to accept data. The explanation for the delay in full is symmetrical,
the additional clock constraint x≤3 is used to enforce the expiration threshold of 3
time units.

32 CHAPTER 2. SYSTEM MODELS

Notation 2.4.5 (TNA). If not state otherwise, we shall assume the constituents
of a TNA N to be denoted as N=(S, s0,P ,X , I,D,#, E), with port set P=Pr∪Pw,
and of a TNA Ni to be denoted as Ni=(Si, s0,i,Pi,Xi, Ii,D,#i, Ei), with port set
Pi=Pri ∪Pwi , for i∈N. We lift # to reason about sets of locations, and we may omit
curly braces: #(s, s′)=#(s)∪#(s′).

By CC(X)|N, we denote the set of clock constraints (over clock set X) that occur
in a TNA N (invariants or guards). Equivalently, by DC(P ,D)|N, we denote the set
of data constraints over port set P and data variables D that occur in a TNA N.

In the graphical representation of TNA, we use (as before) assignment rather
than functional notation for updates, and we omit guards equal to true as well as
identity updates. We denote a set of memory cells {m1, . . . ,mn} associated to a
location as a bracketed list [m1, . . . ,mn].

2.4.2 Semantics of Timed Network Automata

The semantics of a TNA is given by the set of runs of the associated LTS SN.

Definition 2.4.6 (Associated LTS). Let N be a TNA. The associated LTS SN is
a tuple SN=(Q, q0,→), with Q⊆(S×DA(D)×V(X)) the set of configurations, such
that for every (s, δ, ν)∈Q, δ∈DA(D), with δ(m)=⊥ if m 6∈#(s), and ν|=I(s). The
initial configuration is q0=〈s0,0,0〉, with 0(x)=0 for all x∈X and 0(m)=⊥ for all
m∈#(s0), and the transition relation→ ⊆(Q×C×(DA(P ,D)∪Time)×Q) is given by

(s, c, dc, cc, λ, s′)∈E,
ν|=cc, ν[λ]|=I(s′)

δ̄∈DA(P ,D) : δ̄|=dc

δ̄(s.m)=

{
δ(m), if m∈#(s)

⊥, otherwise

δ̄(t.m)=δ(m) if m∈#(s),m∈#(s′), t.m6∈D|dc
δ̄(d)=⊥ if d∈D\(D|dc∪#(s, s′))

δ̄(p)=⊥ iff c(p) 6=
δ′(m)=δ̄(t.m) for all m∈#(s′)

〈s, δ, ν〉 c,δ̄−→〈s′, δ′, ν[λ]〉
(2.15)

(s, c, dc, cc, id , s)∈E,
t>0, t≥t′≥0 : ν+t′|=cc, ν+t′|=I(s),

δ|=dc

〈s, δ, ν〉 c,t−→〈s, δ, ν+t〉
(2.16)

A run of SN (starting in configuration q0) is a sequence of transitions q0
γ0−→q1

γ1−→ . . .,
with γi∈(C×DA(P ,D))∪(C×Time). A run is called initial if it starts in the initial
configuration q0, it is called loop-free if all configurations are different.

2.4. TIMED NETWORK AUTOMATA 33

Transitions of SN directly correspond to the two types of transitions of TNA, cf.
Definition 2.4.2: an action transition (2.15) describes the firing of an instantaneous
communication in N, with dataflow according to colouring c. The clock guard cc
is satisfied before the execution of the transition, and the invariant of the target
location is satisfied after the execution, i.e., after updating the clocks (second row).
The data assignment satisfies the data guard dc (third row). As for TCA (cf. (2.7)),
the values of memory cells before the execution of the transition remain unchanged
if used by the source location s, otherwise, they are empty (fourth row). The values
of memory cells which are used in both source and target location carry over to s′

if they are not modified in the data constraint, if a memory cell is not used in the
target location, its value after the execution of the transition is unspecified (fifth
row). Data variables which are not used in source or target location, nor in the
data constraint, are empty (sixth row), and data may only be pending at active
ports (sixth row). Data variables used by the target location s′ obtain their values
according to the data assignment on the transition. A delayed action transition
(2.16) describes the firing of a delay of N: if a reason for delay exists that satisfies
colouring c, the TNA can delay for a positive amount of time t, during which the
invariant I(s) and the clock guard cc need to be satisfied at all points (second row),10

and the data guard dc has to be satisfied. Since by definition, all ports are inactive
(i.e., have a colouring 6=) during the execution of a delay, the data values stored in
data variables do not change (new data values can only be received through active
ports), i.e., the data assignment δ is identical in both configurations, it can only
reason about memory cells that are used by s.

Definition 2.4.7 (Semantics of Timed Network Automata). Let N be a TNA,
SN the associated LTS. The trace semantics of N is given by the set RunN of initial
runs (also called executions) of SN. With RunN,k, we denote the set of finite prefixes
of elements of RunN of (at most) length k.

Example 2.4.8 (Execution of a Timed Network Automaton). In (2.17), we
show an execution of the TNA from Example 2.4.4 of length 8. Again (cf. Exam-
ple 2.3.7), we omit data assignments on transitions which evaluate to ⊥, and we
abuse the single symbol ⊥ to denote the empty data assignment, which assigns ⊥ to
all elements. In order not to clutter up the illustration, we further omit port names;
the colourings correspond to port r on top, and port w below.

2.4.3 Systems of Timed Network Automata

In this section, we present a compositional product construction for TNA, which
allows to build complex TNA out or simpler ones. The basic idea of the composition
operator is to join sets of (read and write) ports, which conceptually yields invisible
internal ports. Note that internal ports are theoretical constructs, in that they do
not actually appear in the composed TNA. The notion of internal ports is used for
explanatory purposes, and to reason about the validity of the composition.

10Due to convexity, it is actually enough to check the clock constraints at the beginning and at
the end of the time delay only. We will use this fact in the representation, cf. Section 3.1.4.

34 CHAPTER 2. SYSTEM MODELS

〈empty ,⊥, x=0〉
?
!

,4

−−−−→〈empty ,⊥, x=4〉 !
, r=2
t.m=2

−−−−−−−→〈full ,m=2, x=0〉
!
?

,2.5

−−−−→

〈full ,m=2, x=2.5〉
! , w=2

s.m=2
−−−−−−−→〈empty ,⊥, x=2.5〉

?
!

,10

−−−−→

〈empty ,⊥, x=10〉 !
, r=5
t.m=5

−−−−−−−→〈full ,m=5, x=0〉
!
?

,3

−−−−→

〈full ,m=5, x=3〉
!
!

, w=⊥
s.m=5

−−−−−−−→〈empty ,⊥, x=3〉 (2.17)

The intended behaviour of internal ports is to act as self-contained, stateless
“pumping stations” [BSAR06], merging data from write ports, and replicating data
to read ports. If data flows through an internal port, then it flows through exactly one
underlying write port and through all underlying read ports. Absence of dataflow
is subject to environmental constraints on the involved ports: if there is a reason for
delay (!) on at least one read port (i.e., the TNA contributing the port provides
a reason to delay on that port) or on all write ports, data cannot flow. Stated
differently, a valid colouring of an internal port must not involve the colour ?

only. We do not restrict composition to one-to-one relations (as is done in [Arb04,
CCA07, CPLA09], for example). On the contrary, we do not impose any restrictions
on the number, type (read/write) or origin (same or different TNA) of ports to be
merged; the only condition is that a port cannot be merged more than once. Though
the composition of colourings would be slightly simpler in a one-to-one approach, our
many-to-many composition provides a direct and more intuitive way of specifying
compositions, for example for mergers, replicators or multi-synchronisations.

We now formalise these ideas.

Definition 2.4.9 (Merge Set, Validity of Colouring). Let P be a set of ports,
Q⊆P a subset, Qr⊆Pr and Qw⊆Pw the sets of read respectively write ports in Q,
and c∈C(P) a colouring. If ports in Q are intended to be joined (merged), we call
Q a merge set (over P), the resulting internal port is denoted as p≺Q.

Colouring c is valid over merge set Q (or valid over p≺Q), if it satisfies the
following conditions for all ports w,w′, r∈Q:

1. If ∃w∈Qw:c(w)= , then ∀r∈Qr:c(r)= , and
∀w′∈Qw, w′ 6=w:c(w′)6=

2. If ∃r∈Qr:c(r)= , then ∃w∈Qw:c(w)=

3. If @w∈Q:c(w)= , then ((∀w′∈Qw:c(w′)= !) or (∃r∈Qr:c(r)= !))

Colouring c is valid over a set Q′ of disjoint merge sets Q′={Q1, . . . ,Qn}, n≥1, if
it is valid over each Qi.

Only valid colourings correctly reflect/model the aforementioned behaviour of
internal ports: conditions 1 and 2 in Definition 2.4.9 describe simultaneous dataflow

2.4. TIMED NETWORK AUTOMATA 35

through exactly one write port and all read ports of p≺Q. Condition 3 describes the
propagation of environmental constraints (delays): no dataflow is possible only if
either all write ports or at least one read port in Q provide a reason to delay.

Example 2.4.10 (Validity of Colourings). To illustrate validity of colourings
over internal ports, consider a merge set which contains two write ports w,w′, and
two read ports r, r′. The internal port resulting from this merge set is conceptually
depicted on the left side of the illustration below (note that the ports do not need to
come from different TNA, as suggested in the picture). Some of the valid colourings
of the internal port are given in the middle (the layout of colourings reflects the
layout of the ports on the left), there are 17 valid colourings in total.

w r
w′r′

!

!

? !

? ?

! ?

! ?

? ?

? !

? ?

! ?

The colouring in the lower right, for example, can be read as follows: if read port
r′ provides a reason to delay (!), while the other ports can only delay if they get
a reason (?), then the reason from r′ is enough to delay dataflow through the
internal port.

The colouring on the right side of the illustration is an example for an invalid
colouring. It corresponds to a situation where there is no actual reason for delay:
neither of the read ports can delay the communication, both read ports require a
reason for delay. Write port w′ provides a reason for delay, but write port w requires
a reason, that means, w is actually ready to communicate. Thus, data could flow
through ports w, r and r′, since they are all ready to communicate, so this “no flow”
colouring is not valid.

The flip rule, introduced in [CCA07], is used to reduce the size of composed
TNA, by identifying redundant (with respect to compositionality) colourings.

Remark 2.4.11 (Flip Rule). Let P be a set of ports, p∈P , and c1, c2∈C(P). If c1

and c2 are identical except for c1(p)= ! and c2(p)= ? , then c2 is redundant and
can be removed: the set of colourings with which c2 can compose over p is a strict
subset of the set of colourings with which c1 can compose over p.

Example 2.4.12 (Flip Rule). To illustrate the flip rule, consider the following
simple example.

w w

w w

r

r

r

r

! !

! ?

? !

? ?

36 CHAPTER 2. SYSTEM MODELS

A write port w with colouring w: ! can compose with a read port r under both
possible “no flow” colourings of r (left side). But the colouring w: ? can compose
with the colouring ! :r only (right side), the colouring in the lower right is not
valid, since it corresponds to a situation where both ports delay, without actually
having a reason to delay (cf. also Example 2.4.10). Therefore, the colouring w: ?

is redundant and can be removed.

As explained above, internal ports are theoretical constructs, and do not actu-
ally appear in the composed TNA. In particular, the ports in the merge set are
removed from the composed TNA. Consequently, we would have to remove the data
constraints on these ports as well, since data constraints may only reason about
(active) ports. If we want to ensure that data values are transmitted correctly over
internal ports, we need to preserve the information from data constraints on ports
in the merge set; simply removing such data constraints would not correctly reflect
the intended behaviour.

To illustrate this, consider the following example: a TNA N1 has a data value
stored in a memory cell m, then writes it to the environment through a write port
w. The corresponding transition contains a data constraint of the form s.m=w, to
ensure the value that is written through w is indeed that value that was contained
in m. A second TNA N2 reads a data value from the environment into a memory
cell m′, the corresponding transition contains a data constraint of the form r=t.m′.
Ports w are r are to be merged, i.e., there exists a merge set Q={w, r}. This scenario
is conceptually depicted as

[m] [m ′]
s.m=w r=t.m′

w r

The expected result of merging ports w and r is to create a permanent link, with
the expected behaviour that the data value that arrives in m′ is always identical to
the one that was contained in m. Yet, if we simply remove the two data constraints,
we cannot guarantee this behaviour, since the correlation between m and m′ is
completely lost. So instead, we would like to obtain a data constraint (that is
equivalent to) s.m=t.m′. For this, we define reduced (with respect to a merge set)
data constraints.

Definition 2.4.13 (Reduced Data Constraint). Let P be a set of ports, Q⊆P
a merge set over P , Q′={Q1, . . . ,Qn}, n≥1, a set of disjoint merge sets over P ,
dc∈DC(P) a data constraint, d, d1, . . . , dn∈D distinct data variables not occurring
in dc, i.e., d, d1, . . . , dn 6∈D|dc. The reduced data constraint dc|Q of dc (with respect to
Q) is obtained by replacing every occurrence of a port q∈Q in dc by data variable d.
The reduced data constraint dc|Q′ of dc (with respect to Q′) is obtained by replacing
every occurrence of port qi∈Qi by data variable di.

The reduced data constraint dc|Q removes the occurrence of all ports in the merge
set Q, while preserving the information on admissible data values. By replacing all
occurrences of ports q∈Q by the same data variable d, we ensure that the transmitted

2.4. TIMED NETWORK AUTOMATA 37

data value is the same on all ports contained in the merge set. Note that the
constraints about whether dataflow is possible at all are already covered by valid
colourings (see Definition 2.4.9).

We now have all the necessary concepts for defining the composition of TNA.
The basic idea of TNA composition is along the same lines as the standard cross
product in other automata models: the sets of read and write ports are joined, the
ports in the merge sets are removed from the TNA, and the colourings of the involved
transitions are composed. The composition of colourings (over disjoint port sets)
is defined by standard function composition: for two colourings c1∈P1 and c2∈P2,
with P1∩P2=∅, the composition c1∪c2 is a new colouring c=c1∪c2∈C(P1∪P2), with
c(p)=c1(p) iff p∈P1, and c(p)=c2(p) iff p∈P2, for all ports p∈P1∪P2.

Definition 2.4.14 (TNA Composition). Let N={N1, . . . ,Nk}, k≥1, be a set
of disjoint TNA, Q={Q1, . . . ,Qn}, n≥1, be a set of disjoint merge sets over

⋃
Pi,

i=1, . . . , k. The composition of the Ni over Q , denoted N1./Q/QNk (or simply
N ./Q), is a new TNA N ./Q=(S, s0,P ,X , I,D,#, E), with S=

∏
Si (Cartesian prod-

uct), s0=(s0,1, . . . , s0,k), P=
⋃
Pi\
⋃
Qi, X=

⋃
Xi, I((s1, . . . , sk))=

∧
Ii(si), D=

⋃
Di,

#:S→2D, with #((s1, . . . , sk))=
⋃

#(si), and E is defined in (2.18).

(s1, c1, dc1, cc1, λ1, s
′
1)∈E1, . . . , (sk, ck, dck, cck, λk, s

′
k)∈Ek,

c=(c1∪ . . .∪ck)|P valid over Q
dc=(dc1∧ . . .∧dck)|Q

cc=cc1∧ . . .∧cck, λ=λ1◦ . . . ◦λk
((s1, . . . , sk), c, dc, cc, λ, (s′1, . . . , s

′
k))∈E

(2.18)

We call the Ni the underlying TNA of N ./Q.

A transition in the composed TNA results from composing k transitions (called
underlying transitions) from the underlying TNA. If all underlying transitions are
delays, the resulting transition in N ./Q is a delay as well. If at least one of the un-
derlying transitions is a communication, the transition in N ./Q is a communication
as well. In the latter case, the associated TNA of underlying delays (i.e., TNA which
contribute a delay to the composed transition) perform zero-delay steps. As for
TCA (cf. Definition 2.3.9 and explanations thereafter), we have that the semantics
of TNA (in particular the fourth and fifth row of (2.15)) ensures that data values
stored in data variables used by locations correctly carry over to the next location.

Example 2.4.15 (TNA Composition). Consider two instances of the TNA from
Example 2.4.4. The second instance is identical to the TNA in Figure 2.8, except that
we add a prime to all names (locations, ports, data variables, clocks). We compose
the two TNA over the merge set Q={w, r′}, the result is shown in Figure 2.9. As has
been done in Figure 2.7, we abbreviate location names for readability. The resulting
TNA models an expiring FIFO buffer with capacity 2, where each buffer cell has its
own expiration timer.

The explanation of the behaviour of the TNA is essentially equivalent to the ex-
planation in Example 2.3.10. A significant difference is the fact that it is not possible

38 CHAPTER 2. SYSTEM MODELS

e,e ′
f ,f ′

x≤3∧x′≤3
[m,m′]

f ,e ′

x≤3
[m]

e,f ′

x′≤3
[m′]

r:

,
!

:w
′ , r

=
t.m
, x

:=
0

r:
!
,

!
:w
′ , x

=
3

r:
!
,

!
:w
′ ,
d
=
s.
m
∧d

=
t.
m
′ ,
x
<

3,
x
′ :
=

0

r:
,

!
:w
′ ,
r=
t.
m
,
x
′ =

3,
x

:=
0

r:
,

:w
′ ,
r=
t.
m
∧w
′ =
s.
m
′ ,
x
′ <

3,
x

:=
0

r:
?
,

!
:w ′, x ′=

3

r:
?
,

:w ′, w ′=
s.m ′, x ′<

3 r:

,
?

:w
′ , r

=
t.m
, x
′ ≤3
, x

:=
0

r:
!
,

?
:w
′ , x

=
3,
x
′ ≤3

r:
!
,

!
:w ′, x≤

3∧x ′=
3

r:
!
,

:w ′, w ′=
s.m ′, x≤

3∧x ′<
3

r: ! , :w′, w′=s.m′, x=3∧x′<3

r: ! , ! :w′, x=3∧x′=3

r: ? ,
! :w′

r: ? , ? :w′, x′≤3

r: ! ,
? :w′,

x≤3∧x′≤3

Figure 2.9: TNA Composition: Example

to delay in location (f ,e ′) (while this was possible in the TCA in Example 2.3.10).
After entering this location, the only possible transitions are the communications
to locations (e,e ′) and (e,f ′). The first transition is taken if x=3, i.e., the timer of
the first buffer cell has expired. The second transition corresponds to an “internal”
transition, where the data item is transmitted from the first to the second buffer
cell. This transition shows that the composed TNA is indeed a FIFO buffer: data
items may not remain in the first buffer cell if the second buffer cell is empty, but
are pushed towards the “end” as far as possible.

Also note that on the transition from (e,f ′) to (f ,f ′), the value of m′ is uncon-
strained. Since the underlying transition in the second (primed) TNA is a delay, the
semantics ensures that the value carries over to (f ,f ′) unchanged.

2.4. TIMED NETWORK AUTOMATA 39

Proposition 2.4.16 (TNA Composition). The composition of TNA over disjoint
merge sets is commutative and—after applying the flip rule to remove redundant
colourings—associative, up to isomorphy of location names.

Proof.

1. Commutativity follows from the commutativity of ∪ on port sets, clock sets
and data variable sets, the commutativity of ∧ on clock and data constraints,
the commutativity of ∪ on colourings over disjoint ports sets, and the commu-
tativity of ◦ on update maps over disjoint clock sets.

2. Associativity follows from the associativity of ∪ on port sets, clock sets and
data variable sets, the associativity of ∧ on clock and data constraints, the
associativity of ∪ on colourings over disjoint port sets, the associativity of
◦ on update maps over disjoint clock sets, and the fact that for disjoint Pi,
i=1, 2, 3,, and disjoint Qj, j=1, 2, 3, with Qj⊆

⋃
Pi, we have

(((P1∪P2) \ (Q1∪Q2))∪P3)\Q3=(((P2∪P3) \ (Q2∪Q3))∪P1)\Q1

The semantics of a composed TNA N ./Q (Definition 2.4.14) is defined in the
same way as for simple TNA (Definition 2.4.7), i.e., by executions of the associated
LTS (Definition 2.4.6).

In (2.19), we show a run of the composed TNA from Figure 2.9 of length 7.
Again, we omit data assignments on transitions which evaluate to ⊥, and we abuse
the single symbol ⊥ to denote the empty data assignment. Further, we omit port
names, the colourings correspond to port r on top and port w′ below.

〈(e,e ′),⊥, x=0
x′=0 〉

?
!

,4

−−−−→〈(e,e ′),⊥, x=4
x′=4 〉 !

, r=3
t.m=3

−−−−−−−→〈(f ,e ′),m=3, x=0
x′=4 〉

!
!

,
t.m=3
s.m′=3
d=3−−−−−−−−→〈(e,f ′),m′=3, x=0

x′=0 〉
?
?

,0.5

−−−−→〈(e,f ′),m′=3, x=0.5
x′=0.5 〉

?
,

r=5
t.m=5
s.m′=3
t.m′=3−−−−−−−−→〈(f ,f ′), m=5

m′=3 ,
x=0
x′=0.5 〉

!
?

,2.5

−−−−→〈(f ,f ′), m=5
m′=3 ,

x=2.5
x′=3 〉

!
!

, s.m=5
t.m=5

−−−−−−−→〈(f ,e ′),m=5, x=2.5
x′=3 〉

!
!

,
t.m=5
s.m′=5
d=5−−−−−−−−→〈(e,f),m′=5, x=2.5

x′=0 〉

?
?

,3

−−−−→〈(e,f),m′=5, x=5.5
x′=3 〉

?
!

,⊥

−−−−→〈(e,e ′),⊥, x=5.5
x′=3 〉 (2.19)

The run describes almost the same behaviour as the TCA run presented in (2.14).
In particular, the time values on transitions, that means the lengths of delays, are
identical wherever possible. Yet, as mentioned in Example 2.4.15, the significant
difference is that it is not possible to delay in location (f ,e ′): whenever the TNA
enters that location, it (in this example) immediately transfers the data item from
the first to the second buffer cell, thereby moving to location (e,f ′).

40 CHAPTER 2. SYSTEM MODELS

Remark 2.4.17 (Size of the Composition). The size of a TNA, i.e., the number
of locations and transitions, can be exponential (in the number of locations and tran-
sitions of the underlying TNA) in the worst case. For model checking/verification,
we present a linear technique to avoid the explicit construction of the composed
TNA in Section 3.1.4.

2.4.4 Discussion

In this Section, we have described a powerful framework for compositional construc-
tion of and coordination in real-time dataflow networks, which takes into account
environmental constraints from outside the network. The approach is suitable to
model both the “algorithmic” behaviour of components and connectors (for example
the internal implementation of the coordination pattern), and the inter-component
coordination behaviour. In this way, whole networks can easily be described with
our formalism.

The development of TNA in [Kem10] was—amongst others—motivated by the
fact that in TCA, it is not possible to enforce a transition to be taken as soon as
dataflow through some port is possible. For example, consider again the FIFO buffer
in Figure 2.5: the TCA is not required to take the transition from location empty
to full as soon as data is available through p, instead, it can delay for an arbitrary
amount of time. In contrast, in the corresponding TNA in Figure 2.8, when data is
available through r , the TNA can no longer delay in location empty . Yet, we could
still permit to delay for an arbitrary amount of time in Figure 2.8, by changing the
colouring r: ? to r: ! on the delay in location empty .

In this thesis, we have further extended the basic definition of TNA from [Kem10]
in two ways, by introducing data guards and data variables (together with a domain
Data of admissible data values). Data guards on transitions allow to model coordi-
nation patterns which depend on concrete data values, rather than only on presence
and absence of dataflow (which was the case in [Kem10]). The benefits of introducing
data variables are twofold: as for TCA, using data variables in locations (“location
memory”) allows the coordination pattern to reason about data values which were
exchanged prior to the current step. Secondly, in the composition of TNA, using
data variables and data guards allows us to preserve the information about the data
values which are exchanged through internal ports (cf. Definitions 2.4.13 and 2.4.14,
and explanations before that).

With TNA, we have defined a powerful yet simple framework for defining and
describing the behaviour of connectors and whole networks. Our liberal notion
allows to encode many common (coordination) models, like for example TA and
TCA, in our framework.11 On the other hand, the state-based approach makes our
framework easy to understand (and thus, use), and facilitates the introduction of
new, user-defined coordination patterns.

11The basic idea for TCA is to restrict the use of data variables to locations, and to use the

no-flow colour ! only. For TA, the basic idea is to not allow data variables or data guards at
all, and permit only one port per transition. We skip the technical details.

2.5. CONCLUSION 41

2.5 Conclusion

In this Chapter, we have presented general concepts for handling time and data in
real-time systems, and we have presented three formal models for specification of
real-time systems and real-time coordination patterns.

The formal model of Timed Automata, presented in Section 2.2, has first been
introduced in [AD94] (and later in [Alu99]), and—as has been outlined in Sec-
tion 2.2.4—has been studied, modified and extended intensively since that time.
The Definitions and results in Section 2.2 have not been developed by us, but are
entirely based on previous work on this field, which we have made clear by providing
pointers to corresponding fundamental literature all throughout the Section. The
nonetheless in-depth character of Section 2.2 is owed to the facts that there exist so
many variants of TA (with sometimes only minor differences) that it is impossible
to use the notion of the Timed Automaton without further explanations, and that
the time-related notions (guards, invariants, update maps) directly carry over to
TCA and TNA. Section 2.2 thus serves the purpose to make clear which notions and
concepts of TA we use in this thesis, and to establish the concepts for handling of
real-time. Moreover, it serves as the formal basis for the formula representation and
SAT-based verification of TA introduced in the next Chapter.

We have presented the second formal model, Timed Constraint Automata, in
Section 2.3. The first formal definition of syntax and semantics of TCA can be found
in [ABdBR04] (and its extended version [ABdBR07]), though the authors do not
handle memory cells. In [PSHA09], memory cells are added to constraint automata,
resulting in the formal model of CASM (Constraint Automata with Memory Cells),
but as the name suggests, CASM do not include time. While the underlying idea
of handling data and memory cells in CASM is similar to the approach presented
here, the semantics of CASM is not defined formally, which leaves a number of open
questions. For example, it is unclear whether a memory cell used by the target
location of a CASM transition has to be initialised in the data guard of ingoing
transitions, or what happens in case it is not initialised (is the value undefined,
empty, random). From [PSHA09], we have adopted the notion of prefixing memory
cells with “s.” and “t.” on transitions (cf. Remark 2.3.2), but to the best of our
knowledge, this is the first work on combining TCA with memory cells, and defining
a formal semantics.

Finally, in Section 2.4, we have presented our third and most powerful (with
respect to expressiveness of the three models) formal model: Timed Network Au-
tomata. As explained in Section 2.4.4, we have originally developed TNA as an
enhancement of TCA, to be able to specify constraints under which it is admissible
to delay (further). In this work, we have improved the TNA model from [Kem10], by
adding data guards and data values, with the advantages discussed in Section 2.4.4.

