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Abstract 

Background
Myostatin is a potent muscle growth inhibitor that belongs to the Transforming Growth 

Factor-β (TGF-β) family. Mutations leading to non functional myostatin have been associated 

with hypermuscularity in several organisms. By contrast, Duchenne muscular dystrophy (DMD) 

is characterized by a loss of muscle fibers and impaired regeneration. In this study, we aim to 

knockdown myostatin by means of exon skipping, a technique which has been successfully 

applied to reframe the genetic defect of dystrophin gene in DMD patients.

Methods
We targeted myostatin exon 2 using antisense oligonucleotides (AON) in healthy and DMD-

derived myotubes cultures. We assessed the exon skipping level, transcriptional expression of 

myostatin and its target genes, and combined myostatin and several dystrophin AONs. These 

AONs were also applied in the mdx mice models via intramuscular injections.  

Results
Myostatin AON induced exon 2 skipping in cell cultures and to a lower extent in the mdx mice. It 

was accompanied by decrease in myostatin mRNA and enhanced MYOG and MYF5 expression. 

Furthermore, combination of myostatin and dystrophin AONs induced simultaneous skipping 

of both genes. 

Conclusions
We conclude that two AONs can be used to target two different genes, MSTN and DMD, in a 

straightforward manner. Targeting multiple ligands of TGF-beta family will be more promising 

as adjuvant therapies for DMD. 
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Myostatin and dystrophin exon skipping

Background
Duchenne muscular dystrophy (DMD) is an X-linked recessive neuromuscular disorder, which 

is caused by dystrophin deficiency in muscle fibers. DMD fibers are more sensitive to muscle 

damage, leading to degeneration and replacement of muscle fibers by fat and connective 

tissue (fibrosis). Monaco et al found that frame shift mutations in the DMD gene will lead to 

a truncated and non-functional form of dystrophin (Monaco et al., 1988), which become the 

primary cause of the disease. However, mutations which maintain the DMD open reading frame 

result in shorter dystrophin proteins that retain the essential actin binding-, cysteine rich- and 

carboxy terminal domains, and thus are partly functional (Monaco et al., 1988). Patients with 

such mutations develop the less severe Becker muscular dystrophy. This reading frame rule 

holds true for ~91% of DMD cases (Aartsma-Rus et al., 2006) and has inspired the development 

of the exon skipping strategy, which employs antisense oligonucleotides (AONs). These small 

synthetic RNA molecules are complimentary to exonic or splice site sequences, thereby upon 

hybridization are able to modulate exon inclusion by the splicing machinery (recently reviewed 

in (Manzur and Muntoni, 2009;Trollet et al., 2009;van Ommen et al., 2008)). 

Comprehensive studies done by our group and others have provided the proof of principle of 

the therapeutic feasibility of the AON to reframe dystrophin transcripts and restore dystrophin 

synthesis, both in vitro(Aartsma-Rus et al., 2002;Aartsma-Rus et al., 2003a;Aartsma-Rus et 

al., 2004) and in vivo using the mdx and hDMD mice(Bremmer-Bout et al., 2004;Heemskerk 

et al., 2009;Mann et al., 2002). Subsequent clinical trials have shown that two different AON 

chemistries, either 2’-O-methyl phosphorothioate (2’OMePS) (van Deutekom et al., 2007) or 

phosphorodiamidate morpholino oligomer (PMO)(Kinali et al., 2009) targeting DMD exon 51 

can restore local dystrophin synthesis in DMD patients with no to minimum side effect.

However, other major facets of DMD pathology which include severe muscle wasting, 

fibrosis and flawed musle regeneration may reduce the efficacy of the DMD exon skipping 

therapy. In addition, as DMD patients suffer from muscle degeneration from their early life, 

myoblasts undergo extensive division in an attempt to regenerate, which eventually leads to 

exhaustion of the muscle regenerative potential (Blau et al., 1985;Hawke and Garry, 2001;Yoshida 

et al., 1998). Therefore, several additional therapies have been considered to overcome these 

problems, in which myostatin inhibition has received considerable interest.

Myostatin or Growth and Differentiation Factor-8 (GDF-8), an evolutionary conserved 

TGF-β family member that is expressed predominantly in skeletal muscle, is a potent muscle 

growth inhibitor. Natural mutations or targeted knockdown in the MSTN genes, which lead to 

non-functional proteins are associated with hypermuscularity in several organisms such as mice, 

cattles, dog, horse, sheep and human (Clop et al., 2006;McPherron et al., 1997;McPherron and 

Lee, 1997;Schuelke et al., 2004;Shelton and Engvall, 2007). Myostatin signaling requires binding 

to the Activin type IIB receptor (AcvRIIb) and Activin receptor-like kinase 4/5 (ALK4/5) receptor 

complex and subsequent phosphorylation of downstream Smad2 and Smad3 (Rebbapragada 

et al., 2003), which further influences myogenesis through transcriptional regulation of cell 

cycle and myogenic regulatory factors (Langley et al., 2002;McFarlane et al., 2008;Rios et al., 

2001;Taylor et al., 2001;Thomas et al., 2000). Several strategies to block myostatin such as 

neutralizing antibodies (Bogdanovich et al., 2002;Krivickas et al., 2009;Wagner et al., 2008), 

overexpression of its inhibitory propeptide (Bogdanovich et al., 2005;Matsakas et al., 2009;Qiao 
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et al., 2008;Zhao et al., 2009), or administration of soluble AcvRIIB (Lee et al., 2005) induced 

increases in muscle mass and force and reduced fibrosis in the mdx mice (Li et al., 2008). 

A recent study by Dumonceaux et al (Dumonceaux et al., 2010) targeted the myostatin 

receptor AcvRIIb using shRNA and coupled it with a modified U7 small nuclear RNA to restore 

dystrophin in single adeno-associated vectors (AAV). This study showed that combination 

therapy has an added value in improving muscle physiology. However, as recently reviewed by 

Tang et al (Tang et al., 2010), one major limitation of AAV-based gene therapy approach is the 

immune response against the vector and/or transgene. 

In this study we chose to use 2’OMePS AON to target MSTN exon 2 and disrupt its translational 

reading frame in order to knockdown its expression level. As it harbors the same chemistry 

modification as the PRO051 DMD AON currently in trial, we hypothesized that the administration 

of the two AONs as a cocktail would be achievable and may thus yield a combination treatment 

by simultaneously correcting the Dmd transcript and downregulating the Mstn transcript. In 

addition, as recently reviewed in (Le et al., 2009), the 2’OMePS modification enhances the stability 

and increases the in vivo half-life compared to the previously studied butanol-tagged antisense 

(Liu et al., 2008) or siRNA-mediated RNA interference approaches targeting myostatin (Magee et 

al., 2006). We evaluated its feasibility to induce exon skipping and downregulate MSTN expression 

in myotubes cultures and DMD mouse models. Furthermore, we combined it with several DMD 

AONs to look into the possibility of skipping two genes simultaneously (Figure 1). 

Methods

Antisense oligonucleotides 
AON with phosphorothioate backbones and 2’-O-methyl ribose modifications used in this 

study were synthesized and high-pressure liquid chromatography purified by Eurogentec, 

Belgium. The sequences are listed in Table 1. 

Cell culture
Human primary myoblasts obtained from a healthy donor (KM109) (Aartsma-Rus et al., 

2003b), immortalized myoblast cell line (7304-1) generated by expressing telomerase (hTERT) 

and cyclin-dependent kinase 4 (Zhu et al., 2007) , and DMD patient derived myoblasts with a 

deletion in exon 51-55 (DL589.2) (Aartsma-Rus et al., 2003a) were used in this study. All of the 

cells mentioned above were seeded on thin layer collagen (1:30, PureCol, Inamed Biomaterials, 

Fremont). The primary cells were grown in Nut.Mix F-10 (HAM) supplemented with GlutaMax-I, 

20% Fetal Bovine Serum (FBS) and 1% Penicillin/Streptomycin (Gibco-BRL) at 37 0C, 5% CO
2
. 

The 7304-1 cells were cultured in Skeletal Muscle Cell Basal Medium supplemented with 15% 

FBS, 5 μg hEGF, 0.5 μg hFGF, 25 mg Fetuin, 5 mg Insulin and 200 μg Dexamethasone (PromoCell 

GmbH, Germany). 80-90% confluent culture was induced to differentiate into myotubes in 

DMEM supplemented with 2% FBS, 1% P/S, 2% Glutamax and 1% glucose (Gibco-BRL), except 

the 7304-1 in which 2% of Horse Serum was added instead of FBS. 
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Figure 1. Schematic overview of myostatin and dystrophin exon skipping. The myostatin gene (MSTN) 
consists of three exons, whereas the protein consists of three domains: signaling (sig.), propeptide and 
mature domains. The position of each exon relative to each domain is denoted by broken lines (A). 
Antisense oligonucleotides (AON) targeting exon 2 will hybridize and hide the exon from the splicing 
machinery, resulting in skipping exon 2 upon mRNA splicing. The removal of exon 2 will disrupt the open 
reading frame (ORF; *) and the protein will lack part of the propeptide and the entire mature domain (B). 
Dystrophin gene (DMD) consists of 79 exons, whereas the proteins consist of actin binding-, central rod, 
cysteine rich- and C-terminal domains (C). One of the examples of DMD is deletion in exon 48-50 which 
disrupted the reading frame and introduces premature stop codon (*). Due to this mutation, part of the 
central rod and the entire Cys-rich and C-terminal domains are missing (D). In the therapy (currently in 
clinical trials), AON is directed towards exon 51. With the similar principle, exon 51 will be skipped upon 
mRNA splicing which in turn restores the ORF. This internally-deleted DMD will be translated as dystrophin 
with shorter central rod domain. However, since the essential C-terminal domain is retained, the protein 
is partially functional (E). 

Table 1. Antisense oligonucleotides used in this study

AON Targeting Sequences (5’-3’)
AON1 Myostatin exon 2 guuugaugagucucaggauu
AON2 Myostatin exon 2 gccaaauaccagugccu
AON3 Myostatin exon 2 agccaauuuugcaacacugu
h8AON3 Human dystrophin exon 8 guacauuaagauggacuuc
h44AON1 Human dystrophin exon 44 cgccgccauuucucaacag
h51AON1 Human dystrophin exon 51 ucaaggaagauggcauuucu
h54AON1 Human dystrophin exon 54 uacauuugucugccacugg
M23D (+02-18) Mouse dystrophin exon 23 ggccaaaccucggcuuaccu
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AON transfections
Myotubes were transfected with different dilutions of AON in 0.15 M NaCl using 2.5 μl 

polyethylenimine (ExGen 500, MBI Fermentas) per μg of AON for 3 hours. 

Animals and AON injections
All experiments were performed with 5-6 weeks old mdx mice under the approval of the Animal 

Experimental Committee (DEC07195) of the LUMC. In the single injection experiments, the AONs 

were administered into the gastrocnemius muscle at the dose of 40 μg per injection in 50 μl 

physiological salt. Control DMD AON (M23D) was injected in the contralateral muscle. After 4 

days, the mice (n=2) were sacrificed and muscles were isolated, snap frozen and sectioned at three 

different positions (proximal, medial and distal relative to the tendon) for total RNA isolation.

In the consecutive injections experiments, cocktails of MSTN or control AONs with M23 

DMD AON were injected at the dose of 40+40 μg per injection into the gastrocnemius muscle. 

Four consecutive injections were performed with a 48 hours resting time between the second 

and third injection. The mice (n=6) were sacrificed at 6 hours, 1 and 2 days after the last injection. 

The muscles were isolated, snap frozen and sectioned. Pool of sections from different area of 

the muscles was collected for RNA isolation.

RNA Isolation, RT-PCR and Quantitative PCR analysis
Cell lysates were prepared using lysis buffer provided in the NucleoSpin RNA II kit (Macherey-

Nagel, Germany) and RNA was isolated using the same kit according to manufacturer’s 

instructions. Sectioned muscles were initially lysed using the same buffer and crushed with 

MagNA Lyser Green beads in the MagNA Lyser instrument (Roche Diagnostics, Germany) at 

7000 oscillation speed for 2x20 seconds. RNA was isolated using the same procedure. The 

RNA quantity and integrity were measured using RNA 6000 Nanochip in the Agilent 2100 

bioanalyzer (Agilent Technologies). cDNA was synthesized from 500 ng of RNA using RevertAid 

H Minus M-MuLV Reverse Transcriptase (MBI Fermentas) with 40 ng of random hexamer 

primer, according to the manufacturer’s instructions. 10X diluted cDNA was then amplified 

by PCR using primers listed in Table 2. Myostatin amplifications were performed at 940C 

(30s), 560C (30s), 720C (60s) for 30 cycles. Dystrophin PCRs were performed in two rounds. 

The first PCR was performed by 20 cycles of 940C (40s), 600C (40s), 720C (80s). 1.5 μl of these 

reactions were then reamplified in nested PCRs by 32 cycles of 940C (40s), 600C (40s), 720C 

(60s). Quantitative PCRs were carried out in a 384-wells plate with 2 μl of 10X diluted cDNA, 1 

μl of 1pmol/μl forward primers, 1 μl of 1pmol/μl reverse primers and 6 μl of  iQTM SYBR® Green 

Supermix (Bio-Rad) in LightCycler 480 (Roche Diagnostics, Germany). Each measurement was 

performed in triplicates. Expressions of the genes of interest were normalized to housekeeping 

gene GAPDH and analyzed using ΔΔCt method with Gene Expression Analysis for iCycler iQ® 

Real-Time PCR Detection System software developed by Bio-Rad. The expression values of 3-4 

biological experiments were averaged. For the statistical analysis, the expressions in MSTN 

AON-transfected samples were compared to 500 nM control AON transfected samples in 

Student’s t-test. P-values <0.05 were considered significant. 
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Results

Myostatin AON induces exon 2 skip  in vitro 
Based on previously described guidelines (Aartsma-Rus et al., 2009), we designed three 

AONs targeting different regions in MSTN exon 2 gene and used previously designed AONs 

targeting DMD exons as controls (Table 1). All AONs consisted of 2’-O-methyl RNA and had a 

phosphorothioate backbone in order to resist endonucleases and RNaseH degradation. We 

evaluated their efficiency using immortalized human myoblasts (7304-1) as well as primary 

myoblasts from a healthy individual (KM109) and a DMD patient with a deletion in exon 

51-55 (DL589.2). We used differentiated myotube cultures because the expression levels of 

myostatin and dystrophin were found to be higher in the differentiation than in proliferation 

stage (data not shown). 

To examine the feasibility to induce myostatin exon 2 skipping, different concentrations 

of each AON were transfected into the myotube cultures using the cationic polymer 

polyethylenimine (PEI).  More than 80% of the cells showed specific nuclear uptake upon 

transfection with 5’-fluorescein (FAM)-labeled control AON (Figure 2A). RT-PCR performed 

two days post transfection (Figure 2B) and subsequent sequencing analysis (Figure 2C) showed 

the exclusion of exon 2 from the myostatin transcript in the myostatin AON-transfected cells, 

resulting in a premature stop codon formation. This internally truncated fragment was not 

observed in any of the non-transfected and control AON-transfected myotubes. One myostatin 

AON, namely AON1, gave the most consistent and highest skipping efficiency [Additional file 1]. 

Thus we further used the AON1 (addressed as myostatin AON from now on) and confirmed its 

exon skipping ability in human and to a lower extent in mouse cells models, using its perfect 

complementary to the human and mouse MSTN sequences (Figure 2B and not shown). 

Table 2. Primers used in this study

Primers Sequences Used for
Mstn Ex1F GGAAACAGCTCCTAACATCAG Myostatin exon 2 skip PCR
Mstn Ex3R CTGAGCAGTAATTGGCCTTATATC
Mstn Ex1F1 GATGACGATTATCACGCTAC Myostatin QPCR
Mstn Ex2R1 GCACAAACACTGTTGTAGGA
Myog Fw GCCAGACTATCCCCTTCCTC Myogenin QPCR
Myog Rev AGGGATGCCCTCTCCTCTAA
Myf5 Fw CCACCTCCAACTGCTCTGAT Myf5 QPCR
Myf5 Rev GCAATCCAAGCTGGATAAGG
Gapdh Fw CAATGACCCCTTCATTGACC Gapdh QPCR
Gapdh Rev GACAAGCTTCCCGTTCTCAG
DMD Ex6F CTGGCTTTGAATGCTCTCATC DMD exon 8 skip PCR
DMD Ex11R GCTGTCAAATCCATCATGTACC
DMD Ex42F GTGATGACTGAAGACATGCC DMD Exon 44 skip PCR
DMD Ex45R TCTGTCTGACAGCTGTTTGC
DMD Ex53F TTCAGAATCAGTGGGATGAAG DMD Exon 54 skip PCR
DMD Ex56R CGTCTTTGTAACAGGACTGC
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Figure 2. Myostatin exon 2 skip in several myotubes cultures. Human primary control (KM109) and DMD 
patient derived- (DL589.2) myoblasts were differentiated for 7 days before transfection with MSTN AON. 
Immortalized control (7304.1) myoblasts were differentiated for 2-3 days. A non-targeting, fluorescently-
labeled AONs were transfected as control. Fluorescent nuclei were observed three hours post-transfection 
(A). RNA was isolated 2 days post-transfection. cDNA was synthesized using random hexamer (N6) 
primers and subjected for PCR using primers in exon 1 and 3 (B). Note the inverse dose-dependent skips in 
KM109 samples. Skip fragment was confirmed by sequencing analysis (C). Quantitative real-time PCR was 
performed using primers in MSTN exon 1 and 2, thereby depicting the expression of remaining full length 
or non-skipped transcript (D). Data are means ± SD from 3 to 4 independent experiments. Expression 
was normalized with GAPDH. Statistical analysis was performed using Student’s t-test, using the 500 nM 
control AON-transfected samples as reference. *P<0.05.,
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AON-mediated exon skipping decreased myostatin transcript 
expression level and increased expression of myogenic 
regulatory factors
Next, we determined the expression level of MSTN transcript upon exon skipping by quantitative 

real time PCR. We used primers in exon 1 and exon 2, thereby detecting only the non-skipped 

products. As shown in Figure 2D, the levels of full length MSTN transcript decreased significantly 

in the myostatin AON-transfected samples, with slight variations in the knockdown levels 

between different cells. Notably, these decreases were achieved in an inverse dose-dependent 

manner, meaning that the most pronounced knockdown was achieved with 100nM AON, which 

was the lowest concentration of myostatin AON tested. This effect was seen especially in the 

KM109 cells. In addition, the control AON induced less pronounced but still significant decreases 

of the full-length MSTN levels in some cells (7304-1 and DL589.2) (Figure 2D), which might be 

due to the transfection. Therefore, the expression levels in myostatin AON-transfected samples 

were compared with those in the control AON-transfected samples.

As outlined in Figure 1B, myostatin skipping results in premature stop codon in exon 3 and thus 

non-functional myostatin protein. Several studies have described that myogenic cells respond 

to myostatin by down-regulating the expression of key transcriptional regulators of muscle 

development such as Pax3, Pax7, p21, MyoD, Myf5 and Myog (Amthor et al., 2006;Langley et al., 

2002;McCroskery et al., 2003;McFarlane et al., 2008;Rios et al., 2001;Taylor et al., 2001;Thomas 

et al., 2000), explaining its inhibitory effects in differentiation. Therefore, inhibition of myostatin 

should lead to an increased expression of these myogenic regulators and thus can be used as 

a functional readout of the myostatin knockdown. Correspondingly, knockdown of myostatin 
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in differentiated myotubes cultures resulted in a consistent upregulation of MYF5 and MYOG 

expression (Figure 3A and B). The fold increase varied between 3-12 fold and dependent on the 

myoblast cultures used, which may reflect the different myogenic differentiation potential of 

the different myoblast cultures.

Dual exon skipping in MSTN  and DMD in control and DMD 
patient derived myotubes
Our ultimate goal was to use AONs to simultaneously reframe the mutation in the DMD gene and 

to downregulate MSTN expression in order to correct the primary genetic defect as well as to 

enhance muscle regeneration. Therefore, we combined the myostatin AON with several DMD 

AONs used in the previous studies (Aartsma-Rus et al., 2002;Aartsma-Rus et al., 2005;Aartsma-

Rus et al., 2003a). We specifically applied DMD AONs covering the hotspot mutated regions in 

DMD gene, namely h8AON3, h44AON1, h51AON1 and h54AON1 (Table 1) in control myotubes 

cultures (primary (KM109) or immortalized myoblasts (7304-1)). Myotubes were transfected 

with either myostatin or DMD AONs or a mix of both. As shown in Figure 4, MSTN exon skip 

was observed in all myostatin AON-transfected samples, regardless of the presence of DMD 

AON. Vice versa, all DMD AON-transfected myotubes showed the exon-specific dystrophin 

skips described before (Aartsma-Rus et al., 2002;Aartsma-Rus et al., 2005;Aartsma-Rus et al., 

2003a), regardless of the presence of MSTN AON. To investigate the possibility that the two 

AONs hybridized to each other rather than to their intended target, we varied the transfection 

conditions by mixing the AON before complexing with PEI, or preparing the AON-PEI 

complexes separately. However, no difference in their efficiency to induce skipping was found. 
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Figure 3. The expression myogenic regulatory factors MYOG and MYF5 upon exon 2 skipping. Cells 
were fused and transfected with different concentrations of AON as described in Figure 2. Total RNA 
was isolated and N6-primed cDNA was subjected to quantitative real-time PCR for MYOG (A) and MYF5 
(B). Data are means ± SD from 3 to 4 independent experiments. Expression was normalized with GAPDH. 
Statistical analysis was performed using Student’s t-test, using the 500 nM control AON-transfected 
samples as reference. *P<0.05
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Figure 4. Dual exon skipping of myostatin and dystrophin in control cells. KM109 (A) and 7304-1 (B) 
myotubes were transfected with 200 nM of myostatin AON and AON targeting different DMD exons, 
namely exon 8, 44 and 54. The AONs were premixed (boxed) before complexing with the transfection 
reagent, or directly complexed (not boxed). RNA was isolated two days post-transfection and analyzed for 
myostatin or dystrophin skips by RT-PCR.
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We observed skipping with the total AON concentration of 200 nM (Figure 4) as well as 100 nM 

(not shown). These results demonstrated the feasibility of simultaneous antisense-mediated 

skipping of exons of two different genes. 

To further assess its therapeutic potential, we performed dual exon skipping in the DL589.2 

cells, which were derived from a DMD patient with an exon 51-55 deletion. Our previous study 

has shown that the reading frame can be corrected by an exon 50 skip upon transfection with 

h50AON1 (Aartsma-Rus et al., 2003a). As shown in Figure 5, combining this AON with the 

myostatin AON showed clear targeted skipping of both DMD and MSTN. 

Myostatin exon skipping in vivo
We subsequently examined the ability of myostatin AON to induce exon skipping in the mdx 

mouse model. Myostatin AON was injected at a dose of 40 µg/injection into the gastrocnemius 

muscle of the mdx mice. DMD AON targeting exon 23 (M23D, previously denoted as M23D(+02-

18)(Mann et al., 2002)) was injected into the contralateral muscle. This AON served as a positive 

control and was shown by many different groups including ours (Heemskerk et al., 2009;Mann 

et al., 2002) to induce efficient and robust exon skipping. The mice were sacrificed at four days 

after injection. We classified different sections of the muscles as the proximal (P), medial (M) 

and distal (D) relative to the tendon and observed heterogenous patterns of Mstn exon 2 skips 

(Figure 6A). The skipping levels in the proximal and medial parts of the muscles were higher 

than in the distal, while Dmd skips appeared to be heterogenous throughout the muscles. 

Our previous study in dystrophin exon skipping had indicated that higher skipping 

efficiencies could be obtained by multiple injections of the AON. In order to increase the 

efficiency of the myostatin AON and to answer whether dual skipping can be achieved in vivo, 

we injected cocktails of M23D DMD AON with myostatin or control AONs once a day for four 

times, with a 48 hours resting time between the second and third injections. RT-PCR analysis 

80



Myostatin and dystrophin exon skipping

49 5650 57
49  56  57

1 2 3

1 3

DMD

MSTN

DMD AON50
MSTN AON

-       +      -       +      +      +     +
+      -       +      -       +      +     +

400      100        400 200 100   nM

100 bp

Figure 5. Dual exon skipping of myostatin and dystrophin in DL589.2 DMD patient cells. DL589.2 
myotubes were transfected with 200 nM of myostatin AON and h50AON1 DMD AON. RNA was isolated 
two days post-transfection and analyzed for myostatin and dystrophin skips by RT-PCR. 

was performed from RNA isolated from proximal, medial and distal parts of the muscle (Figure 

6B). 6 hours after the last injection, we already observed weak myostatin skip in one of the two 

injected muscles. At the later time points, the skipping levels modestly increased, suggesting 

a trend of accumulations of skipping over time. Conversely, the Dmd skips showed relatively 

more stable and more importantly higher skipping levels. 

Discussion
DMD patients suffer from progressive muscle wasting due to the absence of functional 

dystrophin protein. The AON-mediated exon skipping therapy has been shown to successfully 

reframe the mutated DMD gene and restore local dystrophin synthesis in DMD patients (Kinali 

et al., 2009;van Deutekom et al., 2007). This approach is currently viewed as one of the most 

promising therapeutic approaches for DMD. However, it targets dystrophin transcripts, which 

are produced only in muscle and not in adipose and fibrotic tissues, thus does not specifically 

aim to enhance muscle regeneration or reduce fibrosis levels. To address both the underlying 

genetic defect and the loss of muscle, we here explored the possibility of using AONs to inhibit 

myostatin expression and AONs to reframe dystrophin transcripts simultaneously. 

Our results show that the second exon of the MSTN gene can be skipped in multiple 

myotube cultures, either derived from healthy individuals, DMD patient or mouse. The removal 

of exon 2 disrupts the open reading frame and introduces premature stop codon. We observed 
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Figure 6. Administration of myostatin AON in mdx mice. Single dose of 40 μg MSTN AON was injected 
into the gastrocnemius muscles of mdx mice. Control M23 DMD AON were injected in the contralateral 
muscles. The animals were sacrificed 4 days after injection. RNA was isolated from three different parts of 
the muscles relative to the tendon: proximal (P), medial (M) and distal (E). RT-PCR analysis was performed to 
detect dystrophin (upper) or myostatin (lower) skips (A). Four times consecutive injections were performed 
with cocktails of AON containing 40 μg of m23 DMD AON and 40 μg of either myostatin or control AON 
into the gastrocnemius muscles of mdx mice. Injections were varied between contralateral muscles. The 
mice were sacrificed at 6hours, 1 day and 2 days after the last injection. RNA was isolated from multiple areas 
within the muscles and analyzed for dystrophin (upper) or myostatin (lower) skips by RT-PCR (B).
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downregulation of myostatin transcript levels up to 50-80%, depending on the type of cells 

tested. One can expect the truncated transcripts to be degraded via nonsense mediated decay, 

thus not being translated into proteins. Nonetheless, we observed a clear skip product in the 

RT-PCR analysis, suggesting that the transcript might be fairly stable. However, the premature 

stop codon introduced will result in truncated myostatin protein that lacks ~25% of the 

propeptide and the entire mature domains, which will abrogate its downstream signaling. 

The effects of interventions with myostatin expression in muscle differentiation were 

assessed by increased expressions of MYF5 and MYOG. Although the expression levels of these 

genes were increased in all samples transfected with MSTN AON, there was no clear correlation 

between the fold decrease of MSTN and the fold increase of MYF5 and MYOG. One explanation 

for this observation could be that a threshold effect of myostatin knockdown on the expression 

of these genes is already attained when the MSTN transcript is slightly downregulated. However, 

the fact that we observed the upregulation of these genes in three to four independent 

experiments using different myoblasts suggests that this effect of myostatin downregulation 

using MSTN AON is valid and reproducible.

Finally, the mix of myostatin and dystrophin AONs showed that skipping two genes is feasible 

without interfering each other. The experimental set up was varied by mixing the AONs before 

complexing with the transfection reagent, or by preparing complex of AON and transfection 

reagent separately before mixing with each other to rule out the possibility that two AONs 

hybridize to each other. There seems to be no difference in the skipping efficiency, regardless 

if both AON were pre-mixed or not. However, we recommend to check the hybridization-

likelihood by verifying the sequences of both AONs using freely available software tools such as 

RNAstructure (Mathews et al., 2007). 

One less encouraging finding was considerably low Mstn skipping level in vivo compared to 

the cultured cells. The M23D dystrophin AON, which was injected as a control in the contralateral 

muscle resulted in higher dystrophin skipping efficiency, confirming that the AON was injected 

properly. Repeated injections only showed modest improvements in the exon skipping level of 

myostatin. We also observed heterogenous skipping patterns throughout the muscles which 

seem to be specific for Mstn and not Dmd. We offer two reasons to explain the low myostatin 

skipping in vivo. First, we noted that the myostatin exon skipping efficiency in mouse cells was 

lower than in human cells in vitro. Thus, there is a possibility of species-dependent differences 

in the efficiency of our myostatin AON, although the AON was designed for both human and 

mouse. Another explanation might be that myostatin is also expressed in muscle satellite cells 

and fibroblasts. In vitro, we indeed saw higher MSTN expression in primary cultures containing 

mix populations of fibroblasts and myoblasts than in immortalized myoblasts. We previously 

demonstrated that the leaky muscle membrane facilitates the AON to enter the muscle fibers, 

where dystrophin is predominantly expressed, thus explaining the high efficiency of dystrophin 

AON. The delivery of the AON to fibrotic area and satellite cells, where myostatin is also 

expressed will presumably be more difficult. Furthermore, a recent study by Kang et al (Kang 

et al., 2010) which also targeted myostatin exon 2 showed efficient exon skipping in vivo using 

octa guanidine morpholino oligomers. The chosen chemistry seems to be the key to facilitate 

the delivery and thereby inducing prominent exon skipping in vivo. Finally, several studies have 

shown that members of the TGF-beta family other than myostatin are responsible in inhibiting 

muscle differentiation (Lee et al., 2005;Lee, 2007;Souza et al., 2008). Therefore, as a future 
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prospective, targeting multiple ligands seems to be a more promising strategy, especially when 

combined with dystrophin restoration. 

Conclusions
In conclusion, our results provide a rationale for the use of two AONs targeting two different 

genes and further extend the versatility of exon skipping-based therapy. The efficiency and 

delivery techniques remain to be improved, especially for further in vivo studies. While the 

correction of genetic defect is essential, combination with other adjuvant therapies which do 

not rely solely on myostatin inhibition, but also other TGF-beta family members regulating 

muscle differentiations might be more beneficial for DMD therapies. 
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Supplementary figure 1. Human primary control (KM109) myoblasts were differentiated for 7 days 
before transfection with 3 different MSTN AONs at 500 and 100 nM concentrations. All AONs were 
designed to target exon 2 of the myostatin gene. The sequences are listed in table 1. RNA was isolated 2 
days post-transfection. cDNA was synthesized using random hexamer (N6) primers and subjected for PCR 
using primers in exon 1 and 3. 

     AON1        AON2         AON3
500      100       500       100      500        100    nM

Human primary myoblasts (KM109)

1 2 3
1 3
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