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Abstract
Multiple Osteochondromas is an autosomal dominant disorder characterised by the presence
of multiple osteochondromas and a variety of orthopaedic deformities. Two genes causative
of Multiple Osteochondromas, Exostosin-1 (EXT1) and Exostosin-2 (EXT2), have been
identified, which act as tumour suppressor genes. Osteochondroma can progress towards its
malignant counterpart, secondary peripheral chondrosarcoma and therefore adequate follow-
up of Multiple Osteochondromas patients is important in order to detect malignant
transformation early.

This review summarizes the considerable recent basic scientific and clinical
understanding resulting in a multistep genetic model for peripheral cartilaginous
tumourigenesis. This enabled us to suggest guidelines for clinical management of Multiple
Osteochondromas patients. When a patient is suspected to have Multiple Osteochondromas,
the radiologic documentation, histology and patient history have to be carefully reviewed,
preferably by experts and if indicated for Multiple Osteochondromas, peripheral blood of the
patient can be screened for germ line mutations in either EXT1 or EXT2. After the Multiple
Osteochondromas diagnosis is established and all tumours are identified, a regular follow-up
including plain radiographs and base-line bone scan are recommended.

Keywords: bone neoplasm, multiple osteochondromas, genetics, clinical management,
chondrosarcoma, exostosis



31

Review: Multiple Osteochondromas

Introduction
Osteochondroma is the most common benign bone tumour, which can occur sporadic (solitary)
or multiple, usually in the context of the hereditary syndrome, Multiple Osteochondromas
(MO) 1,2. Considerable understanding obtained through research on the genetic, pathological
and radiologic background of these tumours has provided insights into the tumorigenesis of
Multiple Osteochondromas resulting in the optimisation of clinical management, including
radiologic and mutational screening.

Incidence
Osteochondromas represent about 50% of all surgically treated primary benign bone tumours1.
Approximately 15% of the osteochondroma patients have multiple lesions 1,3 of which 62%
have a positive family history 4.

The incidence for Multiple Osteochondromas has been estimated at 1:50,000 in the
general population 5, with a higher prevalence in males (male: female ratio of 1.5:1) 4,6,
which is partly due to incomplete penetrance in females 4.

Osteochondroma
Osteochondroma (osteocartilaginous exostosis), according to the 2002 WHO definition, is a
cartilage capped benign bony neoplasm on the outer surface of bones preformed by
endochondral ossification 7-9. They develop and increase in size in the first decade of life and
cease to grow at skeletal maturation or shortly thereafter. The most common site of
involvement is the metaphyseal region of the long bones of the limbs, like the distal femur,
upper humerus, upper tibia and fibula 1,8. However, osteochondromas also occur in flat
bones, in particular the ilium and scapula. An important differential diagnostic feature as
compared to e.g. metachondromatosis or parosteal and periosteal osteosarcoma, is the
extension of the medullar cavity into the lesion and the continuity of the cortex with the
underlying bone. The perichondrium, the outer layer of osteochondroma, is continuous with
the periosteum of the underlying bone.

Many osteochondromas are cauliflower shaped and can be divided on macroscopical

grounds to often long slender pendunculated osteochondromas and flat sessile ones (figure
2.1A-C).

In the cartilage cap the chondrocytes are arranged in a similar fashion as in the
epiphyseal growth plate. As a typical benign tumour the chondrocytes have small single
nuclei. Binucleated chondrocytes may be seen during active growth.
The stalk may fracture, which may result in reactive fibroblastic proliferation and new bone
formation, erroneously leading to interpretation as formation of secondary sarcoma formation.
Attached to the perichondrium a secondary bursa may develop and simulating growth of the
underlying tumour. This bursa is lined by synovium and may show inflammatory changes 3.

Multiple Osteochondromas
Multiple Osteochondromas (hereditary multiple exostoses, diaphyseal aclasis) is characterised
by the presence of multiple osteochondromas 2,4,6,10,11 the number of which can vary significantly
between and within families. Most Multiple Osteochondromas patients also suffer from a
variety of orthopaedic deformities like shortening of the ulna with secondary bowing of the
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radius (39-60%; figure 2.1D), inequality of the limbs (10-50%), varus or valgus angulation
of the knee (8-33%), deformity of the ankle (2-54%) and disproportionately short sta-
ture2,4-6,12. It has been a matter of debate whether these deformities are a result of skeletal
dysplasia or a result of local effects on the adjacent growth plate caused by developing
osteochondromas.

No well-documented association between Multiple Osteochondromas and other non-
bone related disorders has been described so far.

Figure 2.1. Specimen radiographs and histology. A pendunculated
osteochondroma shown in a macroscopic whole mount section (A) and
specimen radiograph (B); (C) Whole mount section of a sessile
osteochondroma. Note the presence of a small cartilage cap in both
osteochondromas (<0.5 cm); (D) Radiograph of the forearm of a
Multiple Osteochondromas patient. Several osteochondromas can be
seen at the ends of the ulna and radius. Note that the ulna is shortened,
which caused subsequent bowing of the radius; (E) and (F) Gross
specimen and whole mount section of secondary peripheral
chondrosarcoma. The cartilage cap is thicker than 2 cm and in the
whole mount section the lobules are clearly visible.

Malignant transformation
Malignant transformation of osteochondroma is estimated to be less than 1% in patients
with solitary lesions and 0.5-3% in patients with Multiple Osteochondromas 2,7. In 94% of
the cases with malignant progression a secondary peripheral chondrosarcoma has developed
within the cartilage cap of an osteochondroma 13 (figure 2.1E-F). Secondary peripheral
chondrosarcoma is a hyaline cartilage producing tumour and constitutes approximately 15%
of all chondrosarcomas 1,14, which is the third most frequent malignant bone tumour after
myeloma and osteosarcoma 15. Increasing pain, functional disability and/or a growing mass,
specifically after maturation of the skeleton, may indicate malignant transformation.
Radiological features show irregular mineralisation and increased thickness (over 2 cm) of
the cartilage cap of an osteochondroma. The cap shows lobules of hyaline cartilage that are



33

Review: Multiple Osteochondromas

separated by bands of fibrous tissue 15. With (dynamic) contrast enhanced magnetic resonance
(MR) imaging this can be seen as septal enhancement whereas osteochondromas only display
peripheral enhancement. High-grade peripheral chondrosarcomas are characterised by
inhomogeneous and homogeneous enhancement patterns on gadolinium-enhanced MR
images16,17.

The histological grading of chondrosarcoma is based on nuclear size and chromasia
and cellularity 18 and is the most important predictor of clinical behaviour and thus prognosis
of patients with chondrosarcomas 15. Chondrosarcomas secondary to osteochondromas are
usually low-grade tumours resulting in a reasonably fair prognosis for these patients 15.

In the remaining 6% of the cases with malignant progression tumours arise in the
bony stalk of the osteochondroma, including osteosarcomas and spindle cell sarcomas 19-22.

Genetics
Multiple Osteochondromas is an autosomal dominant disorder for which two genes have
been isolated, Exostosin-1 (EXT1; OMIM 133700) located at 8q24 and Exostosin-2 (EXT2;
OMIM 133701) located at 11p11-p12 23-25. 44-66% of the Multiple Osteochondromas families
show linkage at the EXT1 region 26,27, compared to 27% for EXT2 27. Germ line mutations of
EXT1 and EXT2 have been described in Multiple Osteochondromas patients from
Caucasian23,25,28-31 and Asian populations 32-34.

Most mutations (80%) found in EXT1 and EXT2 (figure 2.2) are either non-sense,
frame shift or splice-site mutations leading to premature terminations of the EXT proteins
(reviewed by Zak et al. 36). Mutations in EXT1 occur in all parts of the gene, while mutations
in EXT2 concentrate towards the N-terminus of the gene, implying that this part of the
protein may have special functions. This seems contradictive, since only the C-terminal
region is highly conserved, implicating some functional importance for this part of the
protein24,25. In the literature, only one somatic mutation in the EXT1 gene has been described
in a sporadic chondrosarcoma 29.

Figure 2.2. Mutation spectrum of the EXT1 and EXT2 genes in MO patients described so far 35.
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Loss of the remaining wild type allele has been demonstrated in hereditary
osteochondromas 31, indicating that the EXT genes act as tumour suppressor genes in Multiple
Osteochondromas. This is consistent with Knudson’s two-hit model for tumour suppressor
genes 37.

Not many genotype-phenotype correlation studies have been described to draw
definitive conclusions 38,39. There seems to be a slightly higher risk of malignant transformation
in patients with an EXT1 mutation as compared to EXT2 39.

The existence of a third EXT gene on chromosome 19p, EXT3 40, has been suggested,
however no gene has been identified, nor has this locus been implicated by other researchers.
Based on their homology with EXT1 and EXT2, three other members of the EXT-family of
genes, the EXT-like genes (EXTL1-3), have been identified 41-43. EXTL1, EXTL2 and EXTL3 are
located at 1p36.1 41, 1p11-p12 42 and 8p12-p22 43, respectively. No linkage with Multiple
Osteochondromas or other bone diseases has been documented for these genes 44.

EXT1
Before linkage to Multiple Osteochondromas, osteochondromas were already known to be
involved in a contiguous gene deletion syndrome, the Langer Gideon syndrome (LGS or
trichorhinophalangeal syndrome type II; OMIM150230) 45, where patients carry a deletion of
8q24 46. Besides multiple osteochondromas the Langer Gideon Syndrome is characterised by
craniofacial dysmorphism and mental retardation 45,46.

In the early nineties Cook et al. found linkage to the 8q24.11-q24.13 region in Multiple
Osteochondromas families 47 and two years later the EXT1 gene was identified by positional
cloning 23.

The EXT1 gene, composed of 11 exons, spans approximately 350kb of genomic DNA
(figure 2.3) 48 with a promoter region that has the characteristics of a house keeping gene 48.
EXT1 mRNA is ubiquitously expressed and has a coding sequence of 2238 bp 23. In mouse
embryos, high mRNA levels of the EXT1 homologue were found in the developing limb
buds49,50. EXT1 homologues have also been identified in Drosophila melanogaster (tout-velu,
Ttv) and Caenorhabditis elegans 51,52.

EXT2
In two large Multiple Osteochondromas pedigrees not linked to 8q24, linkage was found to a
3 cM region located at 11p11-p12, excluding the pericentrometric region 53,54. In 1996, the
EXT2 gene was identified by positional cloning by two groups independently 24,25.

The EXT2 gene contains 16 exons (figure 2.3) and spans approximately 108 kb of
genomic DNA 52. The mRNA consists of approximately 3kb, with a single open reading frame
of 2154 bp in which the C-terminal region shows high similarity with EXT1 24,25. The mRNA
shows alternative splicing in exon 1a and 1b and is ubiquitously expressed 24,25. Homologues
of EXT2 have been found in mouse (chromosome 2) 52,55, Drosophila melanogaster (sister of
tout-velu, sotv) 56 and Caenorhabditis elegans 52.

Like EXT1, EXT2 has been implicated in a contiguous gene deletion syndrome, Potocki-
Shaffer syndrome (DEFECT11; OMIM 601224), where patients carry a deletion of
11p11.2-p12 57,58.  Patients with this syndrome demonstrate multiple osteochondromas,
enlarged parietal foramina (FPP), craniofacial dysostosis and mental retardation 57,58.
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Figure 2.3. Genomic DNA structures of the EXT1 and EXT2 genes.

EXT function
The gene products of human EXT1 and EXT2 are endoplasmic reticulum localised type II
transmembrane glycoproteins. In vivo they form a stable hetero-oligomeric complex that
accumulates in the Golgi apparatus, where it is involved in heparan sulphate proteoglycan
(HSPG) biosynthesis (reviewed by Esko et al. 59; figure 2.4). The EXT1/EXT2 complex catalyses
the elongation of the HS chain 60,62-64, which is subsequently deacetylated, sulphated and
epimerised resulting in a large spectrum of structural heterogenic HS chains. The sulphation
pattern of HS chains is critical for binding specific proteins 59. Several growth factors have
conserved patterns of basic amino acids for binding to HSPGs, which is crucial for proper
signalling 68,69.

Heparan Sulphate Proteoglycans (HSPG)

HSPGs are large multifunctional macromolecules, involved in several growth signalling
pathways, anchorage to the extracellular matrix and sequestering of growth factors (reviewed
by Knudson 70) Four HSPG families have been identified: syndecan, glypican, perlecan and
CD44 isoforms.

The syndecan family consists of four members, encoding type I transmembrane
polypeptides involved in the anchorage of cells to the extracellular matrix and binding of
growth factors 71. In mouse and chick, syndecan-2 and -3 have shown to be involved in
signalling pathways in proliferating chondrocytes 72-75.

The six glypican family members encode proteins attached to the cell membrane with
a glycosylphosphatidylinositol (GPI)-anchor. They predominantly function as co-receptors 71.
Expression of several glypicans has been found in the perichondrium, the developing limb
and mesenchymal tissues of the developing mouse embryo 76.

The largest HSPG, perlecan, is the most common proteoglycan of the basement
membrane. It is expressed in hyaline cartilage and in all zones of the rat growth plate during
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endochondral ossification 77. Perlecan, syndecan and glypican are reported to be involved in
Fibroblast growth factor (FGF)-signalling 70,71.

The fourth HSPG family is specific isoforms of the type I transmembrane glycoproteins
CD44. The CD44 gene consists of 20 exons of which 10 (so-called variable exons) can be
alternatively spliced (reviewed by Ponta et al. 78). CD44 isoforms containing variable exon 3
(v3) have been shown to bind growth factors through HS side chains, thereby regulating cell
growth and motility 79.

In Drosophila, the EXT1 homologue ttv (tout-velu), also involved in HS synthesis, is
required for the diffusion of Hedgehog (Hh), an important segment polarity protein (homologue
of mammalian Indian Hedgehog (IHH)) 51. Remarkably, in ttv mutants only the IHH signalling
is affected, while other HSPG-dependent pathways, like FGF and WNT signalling, are not.
This indicates a specificity in the regulation of the distribution of extracellular signals by
HSPGs in Drosophila 80,81.

Figure 2.4. The mode of action of the EXT-proteins in heparan sulphate biosynthesis. After a tetrasaccharide
linker is synthesised on conserved serine residues of the core protein, EXTL2 and/or EXTL3 initiate the
polymerisation of the heparan sulphate chain by the addition of N-acetylglucosamine 60,61. The EXT1/EXT2
complex subsequently catalyses further elongation of the heparan sulphate chain by adding alternating
units of N-acetylglucosamine and glucuronic acid 60,62-64. Subsequent deacetylation and sulphation of most
N-acetylglucosamines, epimerisation of the glucoronic into iduronic acid and further sulphation result in a
large spectrum of structural heterogenic heparan sulphate chains 59,65. Adapted from Couchman et al. 66

and Nybakken et al. 67.
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Figure 2.5. Growth plate signalling. EXT1 and EXT2 are expressed in the proliferative and transition
zone82. The HSPGs, expressed in all zones of the growth plate 72-77. (A) In the embryonic growth plate
chondrocytes in the transition zone secrete IHH protein, which diffuses to its receptor Patched (PTCH) in
the lateral perichondrium. Subsequently, via a yet incompletely understood mechanism, increased secretion
of parathyroid hormone-like hormone (PTHLH) is induced at the apical perichondrium, which diffuses to its
receptor (PTHR1) expressed in the late proliferating chondrocytes 83. Terminal differentiation is inhibited by
direct or indirect upregulation of BCL2, prolonging cell survival 84. In this way, PTHLH regulates chondrocyte
differentiation by delaying the progression of chondrocytes towards the hypertrophic zone and allowing
longitudinal bone growth. (B) In the post-natal growth plate the signalling is confined to the growth plate 85.

Growth Signalling

IHH/PTHLH signalling in the growth plate
In the growth plate EXT1 and EXT2 are expressed in the proliferative and transition zone 82

(figure 2.5). The HSPGs, expressed in all zones of the growth plate 72-77, are presumed to be
involved in the diffusion of IHH to its receptor in the perichondrium. During normal embryonic
growth IHH, expressed in the transition zone, is involved in a paracrine feedback loop regulating
proliferation and differentiation of chondrocytes and bony collar formation in the growth
plate (figure 2.5A). In this feedback loop parathyroid hormone-like hormone (PTHLH, PTHrP)
regulates chondrocyte differentiation by delaying progression of chondrocytes towards the
hypertrophic zone, allowing longitudinal bone growth 84. In the rat post-natal growth plate
the feedback loop is confined to the growth plate itself (figure 2.5B), in particular to the
transition zone 85.

Fibroblast Growth Factor (FGF) signalling in the growth plate
The FGF signalling pathway is dependent on HSPGs for the high affinity binding capacity of
the FGF receptor (FGFR), allowing receptor dimerisation and subsequent cell signalling 83,86.
The most potent mitogen for chondrocytes, FGF-2 (basic FGF), inhibits differentiation of
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chondrocytes via stimulation of extracellular matrix synthesis 87,88. In contrast, activation of
FGFR3 in the proliferative zone (figure 2.5), by FGF18 89 inhibits chondrocyte proliferation
via phosphorylation of STAT-1 and subsequent upregulation of p21WAF/CIP1, which can inhibit
the cell cycle 90. FGFR3 activation also leads to repression of IHH signalling 83,86,91.

Histogenesis and secondary sarcoma formation
In the past, many have considered the histogenesis of osteochondroma as a perversion in
the direction of normal bone growth resulting from aberrant epiphyseal development with
displacement of epiphyseal cartilage. However, several research groups have demonstrated
using different techniques that both sporadic and hereditary osteochondromas are true
neoplasms 31,92,93, resulting in a multi-step genetic model for peripheral cartilaginous
tumourigenesis (figure 2.6) 94.

Figure 2.6. Peripheral Cartilaginous Tumourigenesis.

Although some believe that the severity of the angular deformity is correlated with
the number of sessile osteochondromas 38, several studies in mice have shown that
haploinsufficiency of EXT1 or EXT2 causes severe skeletal deformities 95,96. Loss of the
remaining wild type allele of EXT1 in hereditary osteochondromas 31 indicated that inactivation
of both copies of the EXT1-gene in cartilaginous cells of the growth plate is required for
osteochondroma formation, thereby acting as a tumour suppressor gene 31. Two studies
have shown diminished HSPG expression in either osteochondromas or cultured EXT1-/-

cells97,98. This is hypothesised to affect the negative feedback loop by disturbing IHH diffusion
to Patched (PTCH) and by preventing high-affinity binding of FGF to its receptor (figure 2.5).
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Immunohistochemical studies have already shown that molecules involved in the IHH/PTHLH
and FGF signalling (PTHLH, PTHR1, BCL2, FGF2, FGFR1, FGFR3 and p21) are absent in
osteochondromas 99 suggesting that growth signalling is indeed disturbed in osteochondroma.

At the protein level, re-expression of several of these signalling molecules (FGF2,
FGFR1, p21, PTHLH and BCL2) was found in secondary peripheral chondrosarcoma and the
expression increased with increasing histological grade 99. Upregulation of BCL2 characterised
malignant transformation of osteochondroma towards grade I secondary peripheral
chondrosarcoma 99. Signalling may now occur in an autocrine fashion or in a paracrine one in
which IHH acts on cells in its near vicinity, having to diffuse over only a few cell diameters
and thereby avoiding HSPG-dependent diffusion 99.

The process of malignant transformation is genetically represented by chromosomal
instability 100, probably caused by defects in spindle formation. The LOH found in
osteochondroma was restricted to 8q24 31, whereas in secondary peripheral chondrosarcomas
LOH was found in virtually all loci tested 100. Also a broad range in DNA ploidy including near-
haploidy and non-specific chromosomal alterations were found 100,101. DNA-flow cytometry of
the cartilaginous cap of osteochondromas showed mild aneuploidy 31, whereas more severe
aneuploidy 102-104, including near-haploidy 100, was seen in grade I secondary peripheral
chondrosarcomas.

Further progression towards high-grade secondary peripheral chondrosarcomas is
characterised by polyploidisation, which is thought to be evolved from near-haploid precursor
clones 94, and overexpression of p53 100.

Near-haploidy was not found in osteochondromas 92,93 or in high grade peripheral
chondrosarcomas 100 and can be considered a progression marker towards a low malignant
phenotype 94.

Patient management
Diagnosis
With the identification of EXT1 and EXT2 as the genes causative of Multiple Osteochondromas,
it has become possible to screen patients with multiple lesions for germline mutations in

either EXT gene in a diagnostic setting. However this procedure is time consuming and costly
and therefore it is important to select patients carefully on basis of family history, radiologic
documentation and, if available, review of histology of resected lesions.

The diagnosis of Multiple Osteochondromas is based on the combination of two or
more radiologically documented osteochondromas originating from the juxta-metaphyseal
region of the long bones 2,4, with or without a positive family history. Radiologically, Multiple
Osteochondromas patients have a typical phenotype, easy to recognise by the expert eye.
This can exclude the differential diagnoses of other skeletal disorders like
metachondromatosis105,106, dysplasia epiphysealis hemimelica 107,108 or non-hereditary
syndromes that occur in multiple bones such as enchondromatosis (Ollier’s disease) 107,109.
Given the specific radiologic and histological expertise needed, it is recommended to seek
for expert opinion from a bone tumour specialist or from a national bone tumour registry
consisting of clinicians, radiologists and pathologists, before screening for germline mutations.

If the typical Multiple Osteochondromas radiologic phenotype is present, it is important
to evaluate the patient’s family history to see if other relatives are (possibly) affected. From
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these family members radiologic studies and, if available, histology of resected lesions can
be examined. If there are other affected family members, Multiple Osteochondromas can be
clinically established.

Then subsequent EXT mutation analysis is optional. However it can be useful to screen
for germline mutations in family members presenting a mild or no phenotype and this will
also give insight into the inheritance pattern (penetrance) of the specific mutation. A known
EXT mutation can also be used for prenatal diagnostics. If there is no positive family history,
Multiple Osteochondromas cannot be excluded, since it is possible that the patient is the
founder of a new Multiple Osteochondromas family and these index patients should be screened
for EXT mutations.

Mutation analysis for EXT1 and EXT2 can be performed on peripheral blood of the
patient. This can be established through PCR and subsequent sequencing of all exons of
EXT1 and EXT2 30 and/or two-colour multiplex ligation-dependent probe amplification (MLPA)110.
When a mutation in either gene is found, the Multiple Osteochondromas diagnosis can be
confirmed. If there is no mutation, the diagnosis Multiple Osteochondromas cannot be excluded,
since there is the small possibility that the mutation could not be detected due to technical
limitations. With the currently used methods it is possible to detect point mutations or gross
deletions in 75-88% of the Multiple Osteochondromas patients 110. These methods cannot
detect positional changes, like translocations, inversions, insertions or transpositions. These
changes affect the structure of the gene without changing the sequence or dosage of exons.

Follow-up
When the diagnosis of Multiple Osteochondromas is established, patients should have a
regular follow-up to discover potential malignant transformation at an early stage and enable
adequate treatment to be implemented. To our knowledge, the literature does not mention
a specific clinical and/or radiologic consensus about the most proper method for the follow-
up of patients with proven Multiple Osteochondromas. The following pathways for both clinical
and radiologic follow-up can be followed. Localisation of all, relatively larger, osteochondromas
can be established with a base-line bone scan, which shows increased bone activity within

the skeleton at sites of increased bone turnover, like at the sites of osteochondromas, but
also at the epiphysis and apophyses of growing bones. Since secondary peripheral
chondrosarcomas are extremely rare before puberty, this is, therefore, only recommended
for patients who have reached skeletal maturation. Regular follow-up before that time is not
necessary unless the patient presents with clinical complaints. A number of osteochondromas
will demonstrate a normal uptake of the radiopharmacon, demonstrating complete maturation,
while others may still show an increased activity of the radiopharmacon. This finding, at the
base-line, does not immediately and specifically imply malignant transformation, but can
well be explained by, as yet, incomplete maturation of the osteochondroma or just by its
distinct size. Furthermore, base-line plain radiographic examinations of areas that are not
accessible to palpation, like the chest, pelvis and scapula are recommended, because in
these areas of the body late detection of malignant transformation of an osteochondroma
towards peripheral chondrosarcoma is most common.

After these base-line examinations, patients with Multiple Osteochondromas could
routinely be seen, each year or every two years, in the outpatient clinic for clinical and
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radiologic follow-up. It should be emphasised to the patients to come at an earlier time if
changes in their clinical condition occurs, such as pain or growth of a known lesion. It is also
important to realise that no new osteochondromas develop after skeletal maturation.

Radiologic follow-up could consist of both plain radiographs of the pelvis, chest and
scapulae in combination with follow-up bone scans. Changes in the clinical history and findings,
in combination with changes on the plain radiographs or bone scans, should be regarded
with suspicion. As to changes in the uptake of the radiopharmacon on bone scans however,
it should be considered that increase of the uptake does not always indicate malignant
transformation. It can also be the result of trauma or the formation of an overlying bursa or
inflammatory reaction. Nevertheless, these changes warrant further examination through
plain radiographs and dedicated magnetic resonance (MR) imaging, including contrast-
enhanced MR sequences. Also the thickness of the cartilage cap can be monitored with MR
imaging.

Radiologic skeletal surveys, as a means of follow-up, do not seem to be of additional
value. The role of ultrasound, in the follow-up of lesions, is still controversial and needs
further studies.

The entire purpose of adequate follow-up is aimed at the early detection of malignant
transformation, which enables adequate surgical treatment consisting of en-bloc resection
of the lesion and its pseudo-capsule with tumour-free margins, preferably in an oncology
centre with experience in treating bone sarcomas. Inadequate primary surgery of a secondary
peripheral chondrosarcoma will inevitably result in recurrences and can eventually result in

Figure 2.7. Overview of systematic steps to screen and follow-up (suspected) Multiple Osteochondromas
patients.
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death caused by local problems or even metastases.
The process of making a Multiple Osteochondromas diagnosis and patient follow-up

is summarized in a flowchart (figure 2.7).

Conclusion
With all new developments and discoveries in the genetic, pathological and radiologic behaviour
of osteochondromas and secondary peripheral chondrosarcomas, it has become possible to
screen and carefully monitor Multiple Osteochondromas patients and their families. This will
enable us to provide patients with more adequate care and treatment strategies.
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