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An introduction to 3T3-L1 adipocytes. 

The adipocyte is a remarkable cell type in several aspects. For years the 

adipocyte has been viewed as a rather passive cell, simply a deposit site 

of excess energy in the form of lipids [1;2]. However, work with tissue-

specific knock-out mice, the complex phenotype of patients with altered 

adipocyte function and the description of a range of proteins secreted by 

these cells, have established the adipocyte as a major regulator of whole 

body energy-homeostasis, influencing metabolic settings in key organs 

such as muscle, liver and brain [3-5]. Furthermore, the tight connection 

between adipocyte-mediated vascular remodelling and several types of 

cancer also identify adipose tissue as an important endocrine organ [6-8]. 

Aside from its endocrine role, the adipocyte serves to protect other organs 

from the deleterious effects of excessive intracellular triglyceride storage 

[9-11]. Thus, although adipose tissue accounts for only ~10% of whole 

body glucose uptake, an adipose tissue specific GLUT4 knock-out mouse 

displays glucose intolerance caused by a secondary insulin-resistance in 

muscle- and liver-cells [12].  

Main effectors in this cross-talk are the “adipokines” TNF adiponectin

and leptin [13-15]. Increases in levels of TNF asseen in the obese 

stateare associatedwith a deleterious impact on insulin-sensitivity in 

adipocytes, muscle and liver (Fig. 1). Conversely, adiponectin has a 

positive effect on insulin-sensitivity by stimulating fatty acid oxidation 

through the activation of AMPK and PPAR [16-19]. The central role of 

adiponectin is illustrated by the adipocyte-specific insulin-receptor 

knock-out mouse. Although these adipocytes are no longer capable of 

insulin-induced glucose uptake, blood glucose levels are normal, due to 

an elevation in levels of adiponectin in these mice [20;21].  

Another adipokine, acting in conjunction with adiponectin is the satiety 

hormone, leptin. This hormone regulates food intake through its effects 

on the hypothalamus [22], and mediates metabolic effects on peripheral 

tissues [23;24]. Adipocyte selective reduction of leptin receptors has 

profound effects on the regulation of metabolic genes, characterising an 

autoendocrine-loop in these cells [25]. Other functions of leptin involve 

regulation of AMPK, leading to fatty acid oxidation [26-28], the 

lipogenic transcription factor SREBP-1c [26] and PGC-1 , a powerful 

inducer of mitochondrial biogenesis (Fig. 1)[29;30]. The involvement of 

adipokines in metabolic homeostasis is further illustrated by the 

occurrence of insulin resistance associated with lipodystrophy. 



66

Fig. 1 A schematic overview of a 3T3-L1 adipocyte : cellular organelles, main 

vesicle pathways and adipokine signalling. 

A fully mature adipocyte is an endocrine cell involved in regulating whole body lipid 

and glucose homeostasis through the secretion of both stimulatory (adiponectin, 

leptin) and inhibitory (TNF- , glucocorticoids (GC) and Free Fatty Acids) 

adipokines. Aside from regulating metabolic settings in target tissues the adipocyte is 

also tightly involved in adipogenesis through TNF- resistin, IGF-1 and GC-

signalling. Autocrine factors derived from the pre-adipocyte involved in regulating 

differentiation are MCSF, TGF-  and W nt10b. 

Characteristic cell-components of the fully mature adipocyte are the caveolae and the 

lipid droplets, which are derived from the Endoplasmic Reticulum (ER). The Low 

Density Microsomal fraction (LDM) consists of several vesicular components 

involved in cellular trafficking. Main trafficking routes contributing to the LDM are 

endocytotic : 1. recycling of GLUT4 from the plasma-membrane, 2. clathrin-coated 

pits involved in recycling of receptors, and exocytotic : A. translocation of insulin-

responsive GLUT4 Storage Vesicles (GSV) towards the plasma membrane, B. direct 

endosomal shuttling of GLUT4 containing vesicles (either from Golgi stacks or from 

the endosomal Tubulo-Vesicular Sorting (TVS) compartment), C. shuttling of GLUT4 

containing vesicles towards the TVS and translocation of synthesised adipokines from 

either the ER or Golgi. 
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In mice models of lipodystrophy, injections with adiponectin and leptin 

ameliorate insulin-resistance  accompanied by clearance of triglycerides 

in muscle and liver [26;31;32]. 

The 3T3-L1 adipogenic cell-line was established thirty years ago when 

Green and Meuth noted a high tendency in clones of Swiss 3T3 

fibroblasts to undergo spontaneous adipogenic conversion [33-35]. 

Though immortalised 3T3-L1 cells are not transformed as is evidenced by 

their contact-inhibition (Fig. 2). At this stage cellular changes in the 

postmitotic adipoblasts are readily apparent with the cell flattening out, 

the nucleoli becoming visible (see Fig. 2B) and at a molecular level, the 

upregulation of the growth-arrest associated gene 2 [36]. Overriding 

contact-inhibition results in a fully transformed phenotype and loss of the 

ability to differentiate [37]. When fully arrested, cells are challenged with 

a potent adipogenic cocktail consisting of insulin, IBMX and 

dexamethasone (Table I)[38;39]. Whereby the phosphodiesterase–

inhibitor IBMX can be replaced by PPAR  agonists [40]. At this stage a 

number of crucial events take place : The medium becomes viscoelastic 

due to the excretion of highly crosslinked hyaluronic acid and the 

induction of metalloproteinases indicating an important outside-in 

signalling contribution [41-44]. The cells round up without losing the 

filipoda-connections with which they are linked to one-another (Fig. 2C 

and D). At this stage profound cell-morphological differences between 

lots of FCS become readily apparent, initiating the discrepancy in 

adipocytes differentiated under different batches of FCS (see Fig. 3A). 

Subsequently the cells undergo 2-4 rounds of clonal expansion and arrest 

in G1, whereas many other cells simply round up and enter apoptosis. 

Components of the p53-signalling pathway : Mdm-2, p21 and its family 

member p27 are tightly regulated at this stage [45-48]. The pocket-

proteins, pRb, p130 and p107 are involved in regulating adipogenesis too 

: After a distinct switch to p107 during the clonal expansion stage the re-

emergence of p130 as the main E2F-binding protein marks the final 

commitment of the cell to enter the G0 state (see Fig. 4)[49-52]. 

Remarkably, when these contact-inhibited cells are passaged into a new 

culture p130 will not re-emerge again which prevents 3T3-L1 cells from 

entering the differentiation programme a second time. The pRb protein 

meanwhile, regulates C/EBP  activity and drives differentiation towards 

white over brown adipose tissue [53-56]. Important components of the 

mitogenic response are the MAPK family members. Illustrating this in 

PC12-cells, studies of MAPK activation in response to either EGF or 

NGF demonstrated that the determination between mitogenesis or 

differentiation is highly dependent on the kinetics of MAPK signalling 

[57;58]. 
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Fig. 2 Nomarski-photographs of differentiating adipocytes.  

Panel A. growing 3T3-L1 fibroblasts, B. fibroblasts, flattened out at the growth 

arrested stage, C. and D. pre-adipocytes in Diff. I with the extended filipodic 

connections and their cytoplasmic components shrunk to barely more than the 

nucleus. E. early in Diff. II, flattened out cells and the start of lipid droplet formation. 

F. and G. maturation of the lipid droplets. H. fully mature 3T3-L1 adipocytes. Size (in 

micrometer) is indicated by a white bar in the photographs. 



69

Fig. 3 Analysis of insulin-induced glucose uptake.

Panel A. 3T3-L1 adipocytes differentiated using several batches of Foetal Calf Serum 

(FCS) demonstrating profound differences in basal levels of glucose uptake (white 

bars) and insulin-stimulated glucose uptake (black bars). Lot A and F, and lot D and E 

were obtained from the same supplier. Panel B. Development of insulin-

responsiveness during adipogenesis. 3T3-L1 fibroblasts (confluent stage) have a slight 

response to insulin. The increase in the Dif. I response is mediated by a stress-induced 

increase in GLUT1 synthesis. During Diff. II the insulin responsive GLUT4 and 

associated vesicular compartments generate a profound increase in insulin-induced 

glucose uptake capacity, though at this stage the differentiating adipocytes are insulin-

resistant as can be seen in the maturation stage. After completion of the maturation 

stage, the now fully mature adipocyte has overcome its initial insulin-resistance and 

downmodulated GLUT1-mediated glucose uptake leading to the profound response in 

insulin-induced glucose uptake over characteristically low basal levels observed. 
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During the initial stages of adipogenesis the induction of MAPK family 

members ERK-1/2 leads to the induction of PPAR  and C/EBP [59-63]

However, after this initial stage ERK signalling is terminated. Prolonged 

activation, such as induced by EGF-signalling, inhibits adipocyte 

differentiation through the inhibition of crucial adipogenic transcription 

factors (Fig. 4)[64-66]. Meanwhile p38 MAPK induces activation of 

C/EBP [67-69], though similar to ERK-1/2, prolonged activation 

inhibits adipogenesis through the activity of CHOP [70-72].  

Another key transcription factor in adipogenesis is CREB [73], which is 

crucial in preventing apoptosis through its inhibition of several pro-

apoptotic genes such as ICE and by stimulating PKB expression [74]. 

Subsequently, the downregulation of pre-adipocyte factor-1 and the 

induction of C/EBP and –  induces the upregulation of PPAR  and 

C/EBP  (Fig. 4)[40;75-79]. These latter two regulate the late-stage genes 

in adipogenesis, such as GLUT4, aP2 and adiponectin. Simultaneously 

the characteristic insulin-responsive microsomal-vesicular GLUT4 

storage compartment is formed (Fig. 3B)[80]. To be precise, C/EBP  is 

not required for the generation of an “adipocyte” as such, but is crucial 

for conferring proper insulin-responsiveness on the cell. Thus in a 

C/EBP  knock-out mouse adipocytes are incapable of lipid accumulation 

[81-85]. On the other hand, an adipose-specific PPAR  knock-out mice 

displays adipocyte hypocellularity and loss of leptin and adiponectin [86-

88]. The insulin present in the cocktail induces the activation of PI-3’ 

kinase through the IGF I Receptor [89-91], regulating the FKHR-

transcription factors, C/EBP  and SREBP1 (Fig. 4)[92-95]. The lipid- 

and cholesterol-metabolism genes regulated by SREBP1 mediate the 

synthesis of endogenous ligands for PPAR [96;97], illustrating autocrine 

signalling loops involved in adipogenesis (Fig. 1). Potent adipogenesis 

stimulating factors are Macrophage Colony-Stimulating Factor (MCSF), 

Insulin-like Growth Factor-1 (IGF-I) and Glucocorticoids (GC)[98-101]. 

The latter are not generated by the adipocyte as such. Rather, both 

primary pre-adipocytes and fully mature adipocytes express 11 -

hydroxysteroid dehydrogenase 1, which catalyses the conversion of 

inactive corticosterone to active cortisol (a glucocorticoid)[102-104]. 

Conversely, the aforementioned TNF , resistin, Transforming Growth 

Factor-  (TGF ) and Wnt10b-signalling maintains adipocytes in an 

undifferentiated form [105-109]. Matter of factly, the Wnt-signalling 

components -catenin and GSK-3  are extensively downregulated during 

the first days of differentiation [75;110;111]. 

With the onset of C/EBP  and PPAR  the pre-adipocyte matures as is 

visible by the formation of lipid droplets in the perinuclear region (see 
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Fig. 2F and 3B). These droplets are derived from the endoplasmic 

reticulum and covered by the adipocyte-specific perilipins (Fig. 

1)[112;113]. PKA-mediated perilipin phosphorylation induces a 

conformational change of the perilipins allowing access to Hormone 

Sensitive Lipase and induces translocation of HSL towards the lipid-

droplet [114-116]. PKA is acutely stimulated by lipolytic-hormones 

explaining the large cellular effects of these hormones on adipocytes 

[117;118]. Conversely, insulin inhibits lipolysis by activating 

phosphodiesterase-3, which leads to a loss of PKA activity [119]. 

Furthermore, insulin also induces the formation of an inhibitory complex 

between HSL and lipotransin [120]. Consequently, the presence of insulin 

in the Diff. II medium allows the lipid droplets to coalesce and expand 

until only a small number of large droplets is left, taking up roughly 70% 

of the cell-volume (Fig. 2G and H). Recent analysis of the protein profile 

found associated with these lipid droplets suggests that it is an important 

signalling compartment [121]. This is illustrated by the observation that 

when perilipins are ablated in knock-out mice, the mice become resistant 

to diet-induced obesity. Microarray analysis of these mice demonstrates a 

coordinated upregulation of genes involved in beta-oxidation, the Krebs 

cycle and the electron transport chain concomitant with a downregulation 

of genes involved in lipogenesis [122]. During adipogenesis cellular 

levels of mitochondria also increase, accompanied by qualitative changes 

in the mitochondrial composition (Fig. 1)[123;124].  In contrast to many 

continuous cell-lines, the 3T3-L1 adipocyte employs oxidative 

phosphorylation as a source of ATP [125]. Intriguingly, in response to 

insulin adipocytes also activate fatty acid oxidation in the mitochondria, 

even though the net effect of insulin is lipogenesis. Though this ‘futile 

cycle’ may seem a waste of energy, this cycle generates body heat and 

intermediates needed for the synthesis of other biochemical compounds 

[126].

Another cell-morphological feature of adipocytes is the presence of 

caveolae in the plasma-membrane (Fig. 1). According to the lipid-

ordering hypothesis, membranes co-exist in two predominant forms : the 

liquid-disordered state, composed of phospholipids with relatively rapid 

lateral diffusion and the lipid-rafts, which are high in cholesterol- and 

sphingolipid-content resulting in a more rigid and confining environment 

[127;128].
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Fig. 4 Signalling pathways and stages involved in 3T3-L1 adipogenesis. 

Mitotic cell stages involved in clonal expansion are indicated by their respective 

phases (Gap1, Synthesis, Gap2 and Mitosis), with the Restriction point involved in 

growth arrest and switch to the Gap0 differentiation pathway. This stage is under 

control of the pocket proteins p107 and p130, IGF-I signalling (PI-3’kinase and PKB) 

and MAPK-signalling (ERK-1,-2 and p38). Apoptosis-induced cell loss occurs 

throughout the differentiation process, but is indicated in this picture as an alternative 

side-route of the cell-cycle. 

Entry of the G0 marks the entry of the commitment-stage dominated by C/EBP  and 

From this stage onwards, continued MAPK- or GSK-3  signalling at this stage 

inhibits adipogenesis. C/EBP  and induce the main adipogenic transcription 

factors C/EBP  and PPAR  in conjunction with autocrine signalling. C/EBP  and 

PPAR are interlocked in positive autoregulatory loops and mediate transcription of 

adipocyte-specific genes leading to the formation of a fully mature insulin-responsive 

3T3-L1 adipocyte. 
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Caveolae are a specialised lipid raft characterised by the structural protein 

caveolin-1 forming the neck of these invaginations, thereby restricting 

random diffusion of the caveolar constituents [129-131]. At the plasma-

membrane they form 50-100 nm omega-shaped invaginations 

morphologically distinct from clathrin coated pits [132;133]. In 

adipocytes a higher order organisation of the caveolae in “rosetta”-

structures exists, though the precise reason for this clustering of caveolae 

remains unclear [134;135]. The two other members of the caveolin-

family, Cav-2 and –3, also target exclusively to caveolae [136;137]. 

Whereas Cav-1 and –2 are coexpressed [138;139], Cav-3 expression is 

limited to muscle cells [136]. During  adipogenesis, caveolae increase 

dramatically in number concomitant with an increase in caveolin-

expression [140;141]. However, Cav-1 knock-out mice display a mild 

phenotype, such as exercise intolerance and decreased vascular tone, but 

no overt diabetes [142;143]. And treatment of adipocytes with the 

cholesterol chelating compounds nystatin and filipin has no effect on 

insulin-stimulated glucose uptake [144]. Although treatment with the 

more potent agent methyl- -cyclodextrin inhibits IRS-1 activation, a total 

depletion of membrane-cholesterol also affects the organisation of the 

actin-cytoskeleton [145;146]. Yet, a direct interaction between the insulin 

receptor and caveolin is required for stabilisation of the insulin receptor 

[147-149]. And indeed, Cav-1 knock-out mice display a pronounced loss 

of the number of insulin receptors [150]. Furthermore, Cav-1 knock-out 

mice are lean, resistant to diet-induced obesity and display adipocyte 

abnormalities with attenuated serum leptin and adiponectin levels and 

loss of lipid homeostasis [151]. At face value, these mice resemble an 

adipocyte specific insulin-receptor knock-out (FIRKO) mouse [21]. There 

are some substantial differences though, such as a decrease in brown fat 

mass, an increase in plasma leptin and adiponectin and consequently a 

reduction in serum triglyceride levels in FIRKO mice with the opposite 

occurring in Cav-1 null mice. This is due to additional functions of the 

caveolae, such as its involvement in lipid homeostasis and signalling 

[152-154].  

One of the hallmarks of a fully differentiated 3T3-L1 adipocyte is its 

marked insulin-induced glucose uptake, mediated by GLUT4 (Fig. 

3B)[80;155]. In unstimulated cells GLUT4 is mainly localised in several 

intracellular vesicular compartments distinct from those employed by 

adipokines, demonstrating adipocytes maintain several insulin-responsive 

membrane compartments [156-159]. Among the intracellular structures 

harbouring GLUT4 are : a tubulo-vesicular endosomal recycling 

compartment [160-163], AP1/clathrin coated vesicles budding from either 

the TGN or endosomes, AP2 coated vesicles budding from the plasma-

membrane, and a distinct population of GLUT4 Storage Vesicles (GSV) 
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harbouring a preponderance of GLUT4 and excluding general endosomal 

markers (Fig. 1)[161;164-167]. Of these LDM-vesicles (as they are 

collectively known) especially the GSV translocate rapidly towards the 

plasma-membrane in a PI-3’kinase dependent manner. However, 

endosomal ablation also causes a partial block of insulin-stimulated 

GLUT4 translocation, illustrating an direct involvement of the endosomal 

compartment as well [164;165;168]. This endosomal pathway is involved 

in GLUT4 translocation induced by cellular stress, exercise and GTP S

[168-170].  

With respect to the cytoskeleton in support of these structures, during 

adipogenesis the fibroblastic “stress-like” F-actin filaments disappear and 

are replaced by a cortical F-actin structure accompanied by a 

rearrangement of the cytoskeleton structures involved in GLUT4 

translocation [171-176]. Furthermore, a novel type of actin filament, the 

so-called cav-actin (caveolae associated F-actin) originates in the cell, 

associated with the aforementioned rosetta-structures [177]. Recent data 

show either actin stabilising, or actin disrupting pharmacological agents 

severely inhibit insulin-induced glucose uptake suggesting the 

cytoskeleton is actively involved in regulating GLUT4 translocation, 

rather than acting passively as a barrier or a molecular railroad [178-187].  

In conclusion, the process of 3T3-L1 adipogenesis highlights the complex 

molecular rearrangements implemented in a terminally differentiating 

cell. The re-routing of MAPK-signalling pathways, closing down of Wnt-

signalling and enabling CAP-signalling occurs in intimate association 

with cell-morphological alterations such as the formation of caveolae, the 

cortical actin structure and insulin-responsive GLUT4 storage vesicles. In 

the fully differentiated adipocyte, a complex signalling interplay exists 

between these cellular structures embedding the insulin-signalling 

pathway and the secreted adipokines. 
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Table I  Experimentel set-up of 3T3-L1 adipogenesis 

day medium comments 

1 normal Normal adipocyte-culturing medium consists of DMEM with 10% FCS. 

The FCS serum deployed throughout the procedure must have been tested 

for its adipogenic potential (see also Fig. 3A). 

Routinely cells are set up 1:20, though as high as 1:100 can be maintained. 

4 normal Usually cells are now roughly 70% confluent and have to be passaged into a 

new culture to prevent contact-inhibition. Up till passage 8 can be used, 

thereafter the cells rapidly lose adipogenic potential through the consequent 

“selection” of the fastest growing (transformed) cells with each passage. 

7 normal  

10 normal Usually the cells are now fully confluent and growth arrested (Fig. 2B). The 

cells are left in their contact-inhibited state for at least two days. 

12 Diff. I Differentiation I medium consists of 1.6 M insulin, 0.5 mM IBMX, 0.25 

M dexamethasone and 10% FCS. The following day cells show their 

characteristically “stressed” appearance as depicted in Fig. 2C and D. 

15 Diff. II Differentiation II medium consists of 1.6 M insulin and 10% FCS. 

Addition of this medium should be applied with care as the stressed cells are 

but loosely attached at this stage. The following day cells show their 

“relaxed” appearance as depicted in Fig. 2E. 

18 Diff. II A second treatment with insulin. At these stages the medium becomes 

highly viscous and acidified, making it sometimes prudent to refresh the 

medium an additional time in between. Cells are as depicted in Fig. 2F, by 

eye the plate looks clustered-opaque due to the presence of lipid droplets in 

the cells. 

21 normal The cells need time to recover from their initial insulin-resistance, as can be 

observed in Fig. 3B. 

23 normal Due to the fact that adipocytes are metabolically more active, leading to 

medium acidification, and excrete (amongst others) TNF , the medium has 

to be replenished more regularly than in their fibroblastic stage. 

25 normal  

27 normal At this moment the cells are fully mature (see Fig. 2G and H) and highly 

insulin-responsive (see Fig. 3B). Roughly 95% of the cells will have been 

converted into mature, lipid laden adipocytes. 

30 normal  

33 end 

culture 

From the start adipocytes are lost due to apoptosis and cell death. As the 

adipocytes are terminally differentiated, lost cells are not replenished. Non-

converted (fibroblastic) cells however keep on dividing and will occupy any 

open place available. Furthermore, at this stage adipocytes are rapidly 

becoming insulin-resistance as a consequence of their secreted adipokines. 
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