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Insulin induced signal-transduction pathways

in 3T3-L1 adipocytes. 

One of the main functions of the hormone insulin is in maintaining 

whole-body glucose homeostasis, keeping the plasma glucose levels in a 

narrow range around 5 mM in normal individuals despite periods of 

feeding and fasting [1-3]. Loss of this ability can lead to a wide range of 

disease states such as arteriosclerosis, cardio-vascular diseases, diabetic 

foot, retinopathy, nephropathy and diabetes. Two separate mechanisms 

can lead to loss of metabolic control. First there is loss of the hormone 

insulin due to the destruction or incapacitation of the cell population in 

the Islets of Langerhans. This type of affliction is seen in Type I diabetes 

mellitus and other states of insulinopenia [4-6]. Another mechanism 

leading to poor metabolic control is loss of sensitivity of the main insulin-

responsive target organs such as liver, muscle and adipose tissue to the 

actions of the hormone insulin. This situation is characteristic for the 

metabolic syndrome [7;8]. Initially this loss of insulin sensitivity is met 

by an increased production of insulin by the -cell population until the 

system can no longer provide adequate amounts of insulin, blood glucose 

homeostasis is lost and full-blown type II diabetes mellitus has been 

established [9;10]. In the western world, type II diabetes is rapidly 

reaching epidemic proportions due to excessive caloric intake combined 

with a profound lack of exercise [11-14]. Loss of insulin-sensitivity can 

be caused by a combination of defects occurring in the insulin-induced 

signal-transduction pathway. This is underlined by the complex interplay 

between genetic and environmental factors impinging on, and ultimately 

leading to the onset of type II diabetes [15-18]. Due to this interplay, and 

the fact that the -cell population can go a long way to meet the increased 

demand of insulin in the body, the onset of type II diabetes was 

traditionally at a later age, giving rise to its popular name “sugar of the 

elderly”. It is worthwhile to keep in mind however, that with the present 

day life style the age of onset has decreased sharply making this popular 

name misleading in grasping the severity of the epidemic [19-21].  

The Insulin Receptor

Insulin mediates its cellular functions through binding to its cognate 

receptor, which has been identified over thirty years ago [22]. The central 

role of insulin-signalling and the importance of the Insulin Receptor in 

mediating both mitogenic and metabolic actions of the hormone insulin is 

illustrated by the phenotype of the Insulin Receptor knock-out mice. 

These mice are born at term with only a slight growth retardation (~10%), 

but rapidly develop lethal postnatal diabetes [23-25]. There are several 
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inherited afflictions in humans associated with defects in the Insulin 

Receptor, such as leprechaunism, Rabson-Mendenhall syndrome and type 

A syndrome of insulin resistance [26-29].

The Insulin Receptor (IR) and its closest homologues : the IGF1-receptor 

(IGF-IR) and the Insulin-Related Receptor (IRR) belong to a super family 

of tyrosine kinase receptors involved in mammalian growth, metabolism 

and reproduction [30-32]. Aside from its expression in well-known 

insulin responsive target tissues such as muscle, adipose tissue and liver, 

functional Insulin Receptor signalling has also been found in the -cell

and the brain [23]. Tissue-specific ablation of the Insulin Receptor in 

these tissues illustrates both canonical and non-canonical insulin-target 

tissues can contribute to insulin-resistance [33]. 

In its native state the receptor exists as a tetramer with two membrane 

spanning chains which harbour the intracellular tyrosine kinase domain 

and two extracellular -chains which form the main part of the insulin-

binding domain. The two -chains and the -  chains are cross linked to 

one-another by several disulfide bonds [32]. 

W hen insulin binds into the tunnel formed by the two -chains, the 

relative juxtaposition of the two intracellular -chains alters [34;35]. This 

induces ATP-binding and activation of the intracellular tyrosine kinase 

domain [36-38]. Subsequently the tyrosine kinase domain phosphorylates 

the intracellular chain on several tyrosine-residue clusters. 

Phosphorylation of the kinase regulatory domain (Y
1146

, Y
1150

 and Y
1151

)

further enhances insulin receptor tyrosine kinase activity, whereas 

phosphorylation of the juxtamembrane tyrosine residues (Y
953

, Y
960

 and 

Y
972

) functions as docking sites for a wide range of proteins [39]. The C-

terminal tyrosine-cluster, Y
1316

 and Y
1322

 serve to restrain mitogenic 

signalling of the insulin receptor [40-44]. Indeed, Y
1316

 is not conserved 

between the IR and the more mitogenic IGF-IR. Furthermore, different 

phenotypes of the IR and IGF-IR knock-out mice illustrate the 

predominant involvement of insulin-signalling in metabolic regulation 

and IGF-signalling in cellular growth [24;45-48]. Several intracellular 

signal-transduction pathways emanate from the activated Insulin 

Receptor, these signalling axes will be considered in detail with a focus 

on the insulin-responsive adipocyte.

The Insulin Receptor Substrate proteins

A range of adaptor proteins associate with the activated Insulin Receptor. 

Amongst these are Grb10, isoforms of Shc, p60
dok

, pp120 Ceacam-1, 

Gab-1, APS and the IRS-protein family [49-53]. W hereas Grb10-binding 

inhibits insulin signalling in adipocytes altogether, pp120 Ceacam-1 

binding to Y
1316

only hampers mitogenic signalling [50;54-56].  
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Best described thus far are the IRS proteins, which form bona fide 

signalling platforms in the adipocyte. The different IRS homologues, 

named IRS-1,-2,-3 and –4 are not related by extensive amino-acid 

sequence identity but are similar with respect to their general architecture 

[57-63]. They are composed of an N-terminal PH-domain which binds 

membrane phospholipids and/or mediates protein-protein interactions 

[64-66]. The PH-domain is followed by a PTB domain which interacts 

with the phosphorylated NPEY
960

-motif located in the juxtamembrane 

region of the insulin-receptor -chain [59;67;68]. The C-terminal tail is 

less conserved and contains multiple potential tyrosine phosphorylation 

motifs that can bind to specific SH2-domain containing proteins such as 

the p85 regulatory subunit of PI-3’kinase, Grb-2, SHP-2 , Fyn, Crk, Csk 

and phospholipase C  as well as proline-rich regions capable of 

interacting with SH3- or WW-domain containing proteins such as Nck 

[49;69-72]. The middle of IRS-2 comprises a unique region comprising 

amino-acids 591-786 that interacts specifically with the regulatory loop of 

the insulin receptor tyrosine-kinase [73;74].  

Studies in knock-out mice and cell-lines suggest that the IRS proteins 

serve complementary, rather than redundant roles. Several factors 

contribute to this differential signalling, such as differences in tissue and 

developmental expression, associating proteins, and subcellular 

localisation [70;75-78]. 

Thus, IRS-1 knock-out mice show growth retardation and insulin-

resistance in peripheral tissues, but do not develop overt diabetes [79;80]. 

Conversely IRS-2 knockout mice do develop type II diabetes, primarily 

caused by a failure in compensatory -cell hyperplasia, aside from 

peripheral insulin-resistance [81]. IRS-3 and –4 knockout mice have near 

normal growth and metabolism [82;83].  

In rat or mouse adipocytes, only IRS-1, -2 and –3 are expressed [76]. In 

these cells, IRS-1 is the predominant target of insulin-signalling : IRS-1 

levels are roughly tenfold upregulated during adipogenesis, whereas IRS-

2 is increased only twofold [84]. Second, expression of a ribozyme 

directed against IRS-1 profoundly decreases insulin-stimulated GLUT4 

translocation [85]. And third, this phenotype is reiterated in adipocytes 

obtained from IRS-1 knock-out mice [86].  

As far as IRS-3 is concerned, there is no human orthologue of this protein 

[87]. However, in adipocytes derived from IRS-1 knockout mice, IRS-3 

and not IRS-2, associated with PI-3’kinase after insulin-stimulation 

[88;89]. Thus, in mouse and rat adipocytes there is a redundancy between 

IRS-1 and –3. 

In addition to tyrosine phosphorylation, IRS proteins also undergo 

serine/threonine phosphorylation which provides a negative feedback to 

insulin signalling and serves as an integration point for cross-talk from 
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Fig. 1 Regulation routes of IR signalling 

Signalling routes in 3T3-L1 adipocytes involved in regulation of IR-signalling. 

Activation steps are indicated by arrows, inhibitory steps are indicated by bars, and 

associations are depicted by double arrows. TAPP-1 associates directly with the pip3

breakdown-product pi(3,4)p2 acting as a PTP-1B scaffold. Grey lines represent  

the cortical actin structure (see the next chapter for more information on this 

adipocyte cell-morphological structure). The IRS proteins are shown in more detail, 

represented by a line with the C-terminal tyrosine-residues and the N-terminal PTB- 

and PH-domain indicated. The full name of all protein components can be found in 

the list of abbreviations at the end of this thesis. 

other pathways [1]. The link between FFAs, prolonged insulin-treatment 

or TNF-  and increased IRS serine phosphorylation has been thoroughly 

described [90-93]. For example : disruption of the TNF receptor reduces 

IRS Ser/Thr-phosphorylation and improves insulin sensitivity [94;95]. 

Two main signalling branches emanating from the TNF-receptor are 

involved in mediating this effect (Fig. 1). The first is the activation of I B

kinase- which is also involved in FFA-induced insulin-resistance [90]. 

Consequently, treatment with salicylates or heterozygous disruption of 

IKK-  confers protection against obesity-induced diabetes [96-99]. The 

other branch involves c-Jun N-terminal kinase (JNK)[100;101]. This 

archetypal stress-activated kinase phosphorylates IRS-1 on S
307

 in the 

PTB-domain thereby disrupting IR-IRS-1 association [102;103]. 

With respect to negative feedback-loops, several insulin-induced kinases 

have been implicated, such as ERK-1/-2, PI-3’kinase, PKB, PKC- ,

GSK-3  and mTOR (Fig. 2 and 3)[104-114].

For most the outcome is deleterious for insulin signalling, as they impede 

binding of downstream effectors such as PI-3’kinase or hamper IR-IRS 

association. However, PKB- or mTOR- mediated phosphorylation of S
265

,

S
302

, S
325

 and S
358

 protects mouse IRS-1 from the activity of tyrosine-

phosphatases and thus potentates IRS-function (Fig. 1)[115-117].  

In order to ensure a rapid metabolic response, the IRS proteins have to be 

engaged rapidly and specifically with the activated insulin-receptor. In 

order to achieve this, these soluble proteins are associated with 

filamentous cortical-actin structures running parallel to the plasma 
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membrane. By sliding along these structures the movement of the IRS-

proteins is limited in a two-dimensional space (Fig. 1). As a consequence 

the efficiency of coupling to the activated insulin-receptor is increased 

and concomitantly PI-3’ kinase (a downstream target) is localised to the 

plasma-membrane [118-123]. Indeed, disassembly of the actin network 

using cytochalasin D prevents insulin-induced glucose transport and PI-

3’kinase signalling [124;125]. Furthermore, a GFP-tagged PI(3,4,5)P3-

binding protein predominantly localises at the plasma-membrane in 

adipocytes stimulated with insulin [126;127]. Aside from the above-

mentioned interference with IR-IRS interactions, Ser/Thr phosphorylation 

of the IRS-proteins can also disrupt the cytoskeletal localisation, thereby 

inducing insulin-resistance [128;129].  

Phosphatidyl-Inositol 3’ kinase 
A crucial effector binding to tyrosine phosphorylated IRS is 

Phosphatidyl-Inositol 3’ kinase (PI-3’kinase) (Fig. 2)[130]. This protein 

is a member of a super family of lipid-kinases, which also includes bona 

fide protein kinases such as ATM, ATR and mTOR [131;132]. Actually, 

protein kinase activity has also been reported for PI-3’ kinase, and is 

involved both in autophosphorylation as well as negative feedback 

control of the IRS-proteins [105;106;108;133-135]. 

Three classes of PI-3’ kinases are defined on basis of their primary 

structure and substrate specificity [136-138] : Class I PI-3’kinases 

generate all three types of phosphoinositides and are activated by receptor 

tyrosine kinases and G-protein-coupled receptors. These kinases consist 

of heterodimeric enzymes composed of regulatory and catalytic subunits 

and are further subdivided in two main classes. Subclass Ia includes the 

catalytic p110 , p110  and p110  subunits and are regulated by binding 

to either phospho-tyrosine or to proline-rich domains [139-141]. These 

catalytic subunits consist of a C-terminal catalytic domain, a 

Phosphatidyl-Inositol Kinase (PIK) domain, a N-terminal Ras-binding 

domain and a regulatory-subunit binding domain. Whereas the - and -

isoforms are ubiquitously expressed, expression of the -isoform is 

limited to haematopoietic cells [141]. Subclass Ib only contains the 

regulatory subunit p101 and the catalytic subunit p110 . This subclass 

mediates signalling of GPCR through binding of G [142;143].

Class II PI-3’kinases generate PI(3)P and PI(3,4)P2. This class consists of 

two subclasses (  and which are characterised by a C-terminal C2-

domain [131]. These domains were originally observed in PKC isoforms 

where they mediate phospholipid binding in the presence of Ca
2+

[144]. 
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Fig. 2 PI-3’kinase signalling routes 

Insulin-induced signalling routes in 3T3-L1 adipocytes. Activation steps are indicated 

by arrows, inhibitory steps are indicated by bars, and associations are depicted by 

double arrows. The full name of all protein components can be found in the list of 

abbreviations at the end of this thesis.
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Fig. 3  MAPK signalling routes 

Insulin-induced signalling routes in 3T3-L1 adipocytes. Activation steps are indicated 

by arrows, inhibitory steps are indicated by bars. Dashed lines illustrate MAPK 

signalling-routes that are disconnected during adipogenesis (see also next chapter). 

The full name of all protein components can be found in the list of abbreviations  at 

the end of this thesis.
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Class III PI-3’kinases only generate PI(3)P [145]. Because this is the only 

class present in yeast (Vps34p) it is thought to represent the primordial 

PI-3’ kinase. These enzymes consist of C-terminal catalytic and PIK 

domains and are also sensitive to wortmannin [145;146]. Their regulatory 

subunit contains an N-terminal myristoylation signal, a Ser/Thr kinase 

domain, a series of leucine-rich repeats and a C-terminal WD motif [147]. 

This class of PI-3’kinases plays an important role in vesicular trafficking, 

endocytosis and osmoregulation [148]. Several recent manuscripts 

indicate a major role for PI(3)P in insulin-induced GLUT4 translocation 

[149;150].

The regulatory subunits of Class Ia PI-3’kinases form a complex protein 

family consisting of five regulatory subunits derived from three genes. 

Different, but highly related genes encode p85  and p85 [134;151].

Both contain two C-terminal SH2-domains followed by N-terminal SH3 

and BCR-homology domains flanked by proline-rich regions. Alternative 

splicing or differential transcriptional initiation of p85 yields as53/p55

and p50 [152-154]. A third gene encodes p55
pik

/p55 [155]. Studies 

with knock-out mice show that p85  and its splice variants are 

responsible for 75% of the insulin induced PI-3’kinase activity [156;157]. 

In insulin-signalling, PI-3’ kinase is activated by the association of the 

SH2-domains of p85-regulatory subunit with tyrosine-phosphorylated 

pYMXM and pYXXM motifs in the IRS-proteins [158;159]. The 

association between p85 and IRS and between p85 and p110 enhances the 

catalytic activity of p110 [134;158;160] Active PI-3’ kinase subsequently 

phosphorylates inositol lipids at the D3 position of the inositol ring to 

generate the 3’-phosphoinositides PI(3)P, PI(3,4)P2 and PI(3,4,5)P3

[161;162]. Several observations illustrate the importance of PI-3’ kinase 

in insulin-signalling. First, the fungal metabolite wortmannin irreversibly 

inhibits the catalytic subunit of Class I PI-3’kinases at low nanomolar 

concentrations by Schiff base formation with a lysine in the kinase 

domain [163-166]. The structurally unrelated LY294002, a 

pharmaceutical compound, is also inhibitory but reversibly and at 

micromolar concentrations [167;168]. Application of these compounds 

potently inhibits insulin-induced GLUT4 translocation and glucose 

uptake [169-172]. Second, microinjection or ectopic expression of a 

dominant-negative p85 incapable of associating with phosphotyrosine 

residues completely blocks insulin-induced GLUT4 translocation 

[173;174]. Intriguingly though, a mouse lacking p85 , the p85 isoform 

alone or heterozygous knock-out of all p85 -isoforms shows improved 

insulin-sensitivity [156;175;176]. This is due to the stoichometry of the 

regulatory p85-subunit versus the catalytic p110-subunit (Fig. 4).  
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Fig. 4  Modulatory effects of p85 subunit stoichometry on PI-3’kinase activity.

The C-terminal phosphorylated tyrosine-residues of the IRS-proteins are represented 

by the pY’s on a line. The 85kDa regulatory(p85)- and 110kDa catalytic(p110) are 

depicted either in their monomeric form or as a complex. Functional PI-3’kinase 

signalling is depicted as an arrow. When the arrow is crossed out, no PI-3’kinase 

signalling occurs.

The former is expressed at higher levels than the latter. Consequentially, 

in a wild-type cell part of the available phosphotyrosine residues will be 

occupied by non-active p85-subunits, whereas in a heterozygous knock-

out these non-functional p85-subunits will be replaced by functional PI-3’ 

kinase instead [156;157].  

Although PI-3’ kinase activity is essential for insulin-induced GLUT4 

translocation, it has long been appreciated that in itself this not enough. 

For example, the insulin, IGF-1 and IL-4 receptor and integrin all activate 

PI-3’ kinase through the IRS-proteins. However, only insulin induces 

GLUT4 vesicle translocation in the adipocyte [70;177;178]. Furthermore, 

several stimuli, amongst which osmotic shock and guanosine 5’-O-3-

thiophosphate (GTP S) stimulate GLUT4 translocation and glucose 

uptake in adipocytes without concomitant PI-3’kinase activation [179-

181]. A further illustration is provided by the application of cell-

permeable PI(3,4,5)P3-analogues. Thus, treatment of 3T3-L1 adipocytes 

with these analogues does not induce GLUT4 translocation. Yet, this 

compound restores GLUT4 translocation when applied to insulin-

stimulated cells treated wortmannin to inhibit PI-3’kinase, demonstrating 

its functionality and illustrating the requirement for additional insulin-

derived signals [182]. 
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Downstream of PI-3’kinase.
Pleckstrin homology domains are structurally conserved modules of ~100 

amino-acids that were first recognised in pleckstrin, a major 

phosphorylation substrate for PKC in platelets. Interestingly, the basic 

structure of PH-domains exhibits structural similarity to PTB-domains, a 

domain binding to phosphorylated tyrosine. PH-domains primarily bind 

to inositol lipids and their head groups although there are also examples 

of protein-protein interactions [183;184]. Several downstream effectors of 

PI-3’kinase signalling possesses PH-domains which selectively bind to 

3’phosphorylated inositides. Three main classes of PH-domain containing 

signalling molecules acting downstream of PI-3’kinase have been 

described: the AGC-family of Ser/Thr protein kinases [185], the TEC-

family of tyrosine kinases [186] and the Rho-family of GTPases (Fig. 

2)[187].  

The AGC-kinase family is a large family of Ser/Thr kinases archetyped 

by PKA, PKC and cGMP-dependent protein kinase. A major 

breakthrough in the PI-3’kinase dependent regulation of AGC-kinase 

members was the characterisation of 3’Phosphoinositide Dependent 

protein Kinase 1 (PDK1), capable of phosphorylating PKB on T
308

 in the 

presence of PI(3,4,5)P3 (Fig. 2)[188-190]. PDKI posses a PH-domain 

capable of high-affinity binding to PI(3,4,5)P3 [191], and possibly also 

with PI (4,5)P2, localising this “master regulatory kinase” to the plasma 

membrane under basal conditions [188;192]. Aside from PKB, PDK1 can 

also phosphorylate several other AGC-kinase members on the activation 

loop Ser/Thr leading to full activation, such as S
244

 of PDK1 itself (in 

trans)[193] T
229

 of p70S6 kinase [194;195], T
197

 of cAMP-depend protein 

kinase [196] and T
410

 (/T
403

) of PKC-  [197].  

PKB (also known as Akt) was originally identified as the oncogenic 

product transduced by the acute transforming retrovirus (Akt-8) isolated 

from an AKR-mouse thyoma [198]. In 1991 three independent research 

teams identified mammalian genes corresponding to PKB [199-201]. This 

important component of PI-3’ kinase signalling provides a direct link 

between insulin-induced PI-3’kinase activity and a plethora of insulin 

actions such as glucose transport, glycogen and protein synthesis, gene 

expression and maintenance of cell viability (Fig. 2)[202-205].  

The PKB family is conserved from Dictyostelium to man, but is not 

present in Saccharomyces cerevisiae or Schizosaccharomyces pombe

suggesting PKB may have evolved coincidentally with the evolution of 

multicellular eukaryotic species. 

PKBs are composed of : a C-terminal hydrophobic motif (HM)[206;207]. 

This HM-motif provides stability to the catalytic core of AGC-kinases by 

binding to a hydrophobic and phosphate-binding pocket, the so-called 

“PIF-pocket” [208-210]. A central catalytic domain similar to other 
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AGC-kinase family members [211]. And a PI(3,4)P2- and PI(3,4,5)P3-

binding PH-domain at its N-terminus [212;213]. The association with 

these lipids however, does not directly lead to PKB activation in vitro 

[214]. Instead, PKB requires phosphorylation on two regulatory amino-

acids T
308

(in the activation loop of the kinase domain) and S
473

 (in the 

HM-motif) [215;216]. Whereas T
308

 phosphorylation is mediated by 

PDK1, the nature of S
473

 phosphorylation through a putative “PDK2” 

remains enigmatic. Stimulation of  PDK1
-/-

 ES-cells with IGF-1 results in 

a strong S
473

-phosphorylation of PKB, ruling out an involvement of 

PDK1 or autophosphorylation [217]. Another candidate is integrin-linked 

kinase 1, which can phosphorylate S
473

 of PKB [218]. Furthermore 

interference with ILK1 results in loss of S
473

 phosphorylation [219;220]. 

However, ILK is a rather unusual kinase as it lacks several motifs deemed 

crucial in the kinase domain of other protein kinases (such as the Mg
2+

-

binding motif)[221]. Thus, rather than being the long-sought after PDK2, 

ILK may rather be an important scaffold or co-activator of this kinase-

activity (Fig. 2).

PKB kinase exists as three different isoforms, and  Of these PKB-

appears to be the main mediator of insulin signalling towards glucose 

uptake : During adipogenesis the levels of PKB-  increase, whereas the 

levels of PKB- decline [222;223]. Insulin induced activation of PKB-

exceeds PKB-  activation in rat adipocytes [224]. Furthermore, micro-

injection of antibodies or the application of siRNA against PKB-  (but 

not PKB- ) blocks insulin-induced GLUT4 translocation in 3T3-L1 

adipocytes [222;225]. The most striking illustration is derived from the 

generation of isoform-specific knock-out mice. Mice lacking PKB-

demonstrate normal glucose homeostasis, but are small [226;227]. On the 

other hand, mice lacking PKB-  displayed insulin-resistance [227]. And 

indeed, adipocytes derived from these mice display an impaired insulin-

induced GLUT4 translocation, which could be corrected after re-

expression of PKB- , but not PKB- [228] Thus, despite a high degree 

of sequence similarity, PKB-  is predominantly involved in control of 

growth/proliferation, whereas PKB-  regulates cellular metabolism.    

An important mediator of insulin-signalling through PKB has been 

discovered in C. elegans [229-231]. When larvae of these worms are 

grown at high density, they enter the dauer stage, characterised by 

reduced metabolic activity, increased fat content and a doubling of life 

span [232]. Genetic mutants causing a constitutive dauer phenotype have 

been dubbed Daf-alleles (Dauer Arrest Phenotype). Remarkably, these 

include predominant members of the insulin-signalling pathway such as 

Daf-2 (IR/IGF-IR), Age-1 (PI-3’kinase) and the C.elegans orthologs of 

PKB [233-237]. Two mutants capable of suppressing this constitutive 
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phenotype are, Daf-16 and Daf-18 [238;239]. The former an orthologue 

of PTEN (which will be considered later), the second a member of the 

forkhead family of transcription factors (Fig. 2). In mammals, the family 

includes three expressed genes FKHR-L1, FKHR and AFX [240]. These 

genes are involved in transcriptional regulation of genes repressed by 

insulin [241-243]. Under basal conditions these forkheads reside in the 

nucleus and are able to initiate transcription. Following phosphorylation 

by PKB these transcription factors will be excluded from the nucleus and 

be retained in the cytoplasm [230;244]. 

PKB also phosphorylates and thereby activates phosphodiesterase 3B 

[245]. The activated phosphodiesterase hydrolyses cAMP and thereby 

down regulates the activity of PKA thus preventing the phosphorylation 

of perilipin and the activity of hormone-sensitive lipase [136]. 

Insulin-induced glycogen synthesis is catalysed by glycogen synthase. 

The constitutive active GSK-3  phosphorylates and inhibits glycogen 

synthase [246]. Phosphorylation of GSK-3  in turn by PKB generates a 

pseudosubstrate sequence which occupies the substrate-binding cleft of 

GSK-3 [247]. As a consequence, GSK-3 is inactivated thereby lifting 

the inhibition of glycogen synthase (Fig. 2). Important though this PKB 

target may be in most cell types, constitutive active PKB does not induce 

glycogen synthesis in 3T3-L1 adipocytes [248;249]. Surprisingly, this is 

due to the low expression of GSK-3 in 3T3-L1 adipocytes, in contrast to 

3T3-L1 fibroblasts [248;250;251].  

The identification of a protein kinase from rat brain activated by limited 

proteolysis lead to the identification of PKC [252;253]. The PKC-family 

consists of many different isoforms, subdivided in four separate classes 

on the basis of structural homologies and mechanisms of activation. All 

PKCs consist of an N-terminal pseudosubstrate domain, a regulatory 

domain and a C-terminal catalytic domain [254;255]. The 

pseudosubstrate domain is a sequence with the hallmarks of a PKC 

phosphorylation site, but has an alanine at the predicted Ser/Thr-

phosphorylation site [256]. Consequently, this domain interacts with the 

catalytic domain and is responsible for intramolecular suppression of 

activity prior to effector binding. The conventional PKCs II and 

are further regulated by Ca
2+

 and phosphatidylserine-binding to their C2-

domain and can be activated by the neutral lipid DAG or phorbol ester 

(PMA) binding to their C1-domain [257;258]. However, conventional 

PKC activity also depends on PDK1-mediated phosphorylation of the 

activation loop and subsequent autophosphorylation [197;259]. The splice 

variants PKC- I and - II differ only in a short C-terminal region of  ~50 

amino-acids, called the V5 region, which plays a critical role in 

differential subcellular targeting of these isoforms [260-262]. 
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The novel PKCs  and  are also sensitive to PMA, but lack one or 

more of the aspartate-residues required for Ca
2+

-binding in their the 

regulatory C2-domain. Instead, their C2-like domains regulate PKC-

activity through protein-protein interactions with RACKs [263-265]. The 

last two groups are first the atypical PKCs consisting of the isoforms 

(the human orthologue is called ), the recently identified II, and 

second the PKC Related Kinases 1-3 [254;266]. These kinases have only 

a partial, or no C1-domain and only a C2-like domain. The atypical PKCs 

can be activated by PI(3,4,5)P3 whereas PRK bind to activated RhoA 

GTPase [267-271].  

In insulin-signalling conventional and novel PKCs mainly act in a 

negative regulatory role (Fig. 2)[255;272;273]. The role of PKC-  in 

insulin-induced glucose uptake appears slightly more complex, on one 

hand it is involved in bypassing Ras during insulin-induced MAPK 

activation (Fig. 3)[274]. On the other hand PKC- has been implied in 

directly phosphorylating and thereby negatively regulating the insulin-

receptor[275-277]. Indeed, a PKC-  knock-out mouse demonstrates 

lowered blood glucose levels [278].  

Of the atypical PKCs, 3T3-L1 adipocytes only express the -isoform 

[279] The involvement of atypical PKCs downstream of PI-3' kinase is 

thoroughly characterised, such as by overexpression of either wild-type or 

dominant negative mutants, microinjection of PKC-  antibodies or the 

application of pseudosubstrate peptides [267;279-283]. Most notable are 

the inhibition of atypical PKC by ASIP/PAR3 overexpression, which 

inhibits insulin-induced GLUT4 translocation and, loss of insulin-induced 

GLUT4 translocation in adipocytes derived from PKC-  knock-out mice 

(Fig. 2)[284;285].

The TEC-family of tyrosine kinases are predominantly expressed in 

haematopoietic cells, with the notable exception of Etk [205]. Structurally 

they contain a C-terminal kinase domain and N-terminal SH2- and SH3 

domains. Unlike the distantly related Src-kinase family, the TEC-family 

lacks a membrane-targeting myristoylation signal and an inhibitory Csk-

targeted tyrosine-phosphorylation site. With the exception of Itk, all 

members contain an N-terminal PH-domain which binds PI(3,4,5)P3 with 

high affinity in vitro [286]. And indeed PI-3’kinase activity is essential 

for TEC-kinase activation [287;288]. Once activated TEC-kinases can 

phosphorylate and activate PLC . The activity of PLC is further 

enhanced by direct association with PI(3,4,5)P3 through it PH- and SH2-

domains [289-291]. Active PLC subsequently hydrolyzes the relatively 

common phospholipid PI(4,5)P2 to generate diacylglycerol and inositol 

1,4,5-trisphosphate and hence mediates intracellular calcium release and 

c/nPKC activation [292]. This mechanistic cross talk between PI-
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3’kinase- and PLC -signalling presents a straightforward hypothesis for 

the regulation of cPKC-activity in insulin signalling [293]. 

Guanine-nucleotide exchange factors convert small GTPases from the 

inactive GDP-bound form to the active GTP-bound form. Importantly, 

3’phosphoinositide-binding PH-domains have been observed in all GEFs 

specific for the Rho family of GTPases (which includes Rho, Rac, Cdc42 

and TC10)[294;295]. Strikingly, these GTPases have been implicated in 

regulation of the actin cytoskeleton and in vesicular trafficking, cell-

morphological processes known to be intimately linked to insulin-induced 

glucose uptake (Fig. 2). In rat adipocytes Rho induces the activity of PC-

PLD via PI-3’kinase signalling, leading to another potential mechanism 

for insulin induced activation of DAG-regulated PKCs [296-301].  

The CAP-Cbl axis of insulin signalling.
A recent breakthrough has been made by the identification of insulin-

induced Cbl-tyrosine phosphorylation in 3T3-L1 adipocytes (Fig. 

5)[302]. Once phosphorylated, Cbl functions as a scaffold, associating 

with the adapter protein Crk II, the tyrosine-kinase Fyn [302] and the 

adapter protein CAP [303]. CAP consists of an N-terminal Sorbin 

Homology domain followed by three SH3 domains at the C-terminus, 

with constitutive Cbl-association mediated by the most C-terminal SH-3 

domain [303;304]. Upon insulin stimulation, the CAP-Cbl complex 

transiently associates with the Insulin Receptor mediated by the adapter 

protein APS [305]. APS is a member of the Lnk family of adapter 

proteins that is highly expressed in insulin-responsive tissues such as fat, 

skeletal muscle and heart [306]. Upon receptor activation APS-dimers 

engage two phosphotyrosines in the activation loop of the Insulin 

Receptor (Y
1158

 and Y
1162

) through their SH2-domains [307]. Subsequent 

tyrosine phosphorylation APS on Y
618

 induces a binding site for the 

Tyrosine Kinase Binding-domain of Cbl [305].

The Cbl-family are the cellular homologues of the transforming v-Cbl 

oncogene [308;309]. This family of scaffolds comprises of c-Cbl, Cbl-b 

and Cbl-c [310]. Apart from their N-terminal TKB domain, Cbl consists 

of a RING finger domain, multiple proline-rich stretches, several 

potential tyrosine phosphorylation sites and a conserved ubiquitin-

associated domain. APS facilitated tyrosine phosphorylation of Cbl (on 

Y
371

, Y
700

 and Y
774

) by the Insulin Receptor induces the APS-CAP-Cbl 

complex to translocate to the caveolae (Fig. 5)[305;311;312]. This 

translocation is mediated through the association of the SoHo-domain of 

CAP with the caveolar residential protein flotillin [304;313].  
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Fig. 5  Cbl signalling routes 

Insulin-induced signalling routes in 3T3-L1 adipocytes. Activation steps are indicated 

by arrows. After activation of the APS-CAP-Cbl complex by the insulin receptor the 

whole complex moves to the caveolum (see the next chapter for more information on 

this adipocyte cell-morphological structure). The full name of all protein components 

can be found in the list of abbreviations  at the end of this thesis. 

In the caveolae, Cbl-associated CrkII binds C3G, which functions as an 

exchange factor for the caveolar residential small G-protein TC10 [314]. 

Both isoforms of TC10 (  and ) are activated in response to insulin, 

however, only ectopic overexpression of TC10  disrupts cortical actin 

and inhibits insulin-induced GLUT4 translocation [315]. Active GTP-

bound TC10 can bind a number of potential effectors, including mixed 

lineage kinase 2, myotonic dystrophy related Cdc42 kinase, p21 activated 

protein kinases, the Borg-family of interacting proteins, the mammalian 

partition defective homologue Par6, the microtubule-interacting protein 

CIP4, the N-WASP isoform of the Wiskott-Aldrich syndrome Protein and 

Exo70 of the Exocyst complex [316-321]. Concomitantly TC10 also 

mediates extensive cortical actin depolymerisation and increased 

perinuclear actin polymerisation (Fig. 5)[322].  

Remarkably however, an APS knock-out mouse displays increased 

insulin sensitivity [323]. And, APS knock-out does not affect insulin 

induced GLUT4 translocation in adipocytes derived from these mice 

[323]. It seems likely other Lnk-family members (such as SH2-B) are 

capable of mediating these responses in an APS-null background [324]. 
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MAPK-signalling
This pathway is largely under control of RasGTP formation in response 

to insulin [325-328]. All MAPK pathways include central three-tiered 

signalling modules in which MAPKs are activated by concomitant Tyr 

and Thr phosphorylation. This dual phosphorylation is mediated by a 

family of dual specificity kinases referred to as MAPK/Extracellular

signal regulated Kinases (MEK) which are themselves subject to 

regulatory Ser/Thr phosphorylation (Fig. 3)[329;330]. Though MAPKs 

are proline-directed Ser/Thr kinases, all substrates also contain specific 

MAPK docking-sites, conferring specificity on the signalling capacity of 

the different MAPK subfamilies [331-335]. Furthermore, scaffold 

proteins bind and select specific MAPK components, conferring an 

additional layer of signalling specificity on the MAPK-pathways [53].   

The p38 MAPKs were originally identified as cellular stress-induced 

protein kinases [336;337], although p38 MAPK is also activated by some 

hormones and growth factors [338]. p38 MAPKs are activated by dual 

phosphorylation on their activation loop, T
180

and Y
182

 in a TGY 

tripeptide motif [339]. At least four isoforms, p38 , p38 , p38  and 

p38 , and two splice variants, p38 /Mxi2 and p38 2 have been 

described [340-349]. The p38 MAPK isoforms differ in expression, 

substrate preference and sensitivity to SB203580 (with only the - and 

the -isoforms affected by this pharmacological inhibitor)[340;350-352]. 

Of these isoforms, insulin induces the activation of p38  and p38

MAPK in 3T3-L1 adipocytes and L6-myotubes, but not in 3T3-L1 

fibroblasts or L6-myoblasts [353;354]. Interestingly, SB203580 reduced 

insulin-induced glucose uptake in 3T3-L1 adipocytes and L6 muscle cells 

without affecting GLUT4 translocation towards the plasma-membrane 

[355]. Furthermore, expression of an inducible dominant-negative p38 

MAPK mutant similarly affected glucose uptake without interfering with 

GLUT4 translocation [356]. Thus p38 MAPK activation by insulin alters 

the relative speed of glucose transport (Fig. 3).  

Apart from its contribution in insulin-induced glucose uptake, prolonged 

p38 MAPK signalling impedes insulin-signalling pathways through the 

phosphorylation of IRS-1 and a down regulation of GLUT4 levels (Fig. 

3)[357-360]. Indeed, in adipocytes and skeletal muscle of type II diabetic 

patients a loss of insulin-induced p38 MAPK phosphorylation with a 

concomitant increase in basal p38 MAPK phosphorylation has been 

reported [361;362]. Thus aberrant p38 MAPK signalling might contribute 

to the pathogenesis of insulin resistance.  

Downstream of p38 MAPK, MAPKAP-K2 is a member of a small family 

of Ser/Thr kinases consisting of an N-terminal regulatory domain and a 

C-terminal catalytic domain [363]. MAPKAP-K2 is phosphorylated and 
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activated by p38  and p38  (but not by p38  or p38 )[337;364;365]. 

Along with another p38 MAPK substrate kinase, PRAK [366], 

MAPKAP-K2 phosphorylates the small heat shock protein HSP-27 (Fig. 

3). Phosphorylation coincides with relocalisation of HSP-27 to the actin 

cytoskeleton were it affects the organisation of F-actin [367-369].  

Directly upstream of p38 MAPK are the dual-specificity MAPK kinases 

MKK3 and MKK6, with a possible involvement of auto-phosphorylation 

as well [370-372]. However, it is unclear if MKK-3/6 phosphorylation is 

involved in insulin induced p38 MAPK activation in adipocytes 

(Indicated with a question mark in Fig. 3).  

Alternatively, the PAK family of Ser/Thr kinases are structural and 

functional mammalian orthologs of S. cerevisiae Ste20p [373]. PAKs 

plays a critical role in mediating cytoskeletal organisation and regulation. 

Indeed, PAK-1 has been shown to translocate into cortical actin structures 

after stimulation with insulin [374]. PAK1 binds and is activated by 

Rac1-3 [375-377], Cdc42 [375] and TC10 [316]. Via their N-terminal 

PxxP motifs PAKs can also interact with SH3-domain containing adaptor 

proteins enabling recruitment to tyrosine kinases [378-381].  

Furthermore, both PKB and PDK1 have been implicated as upstream 

regulatory kinases [382-384]. Several reports indicate that PAKs (in 

analogy to their yeast orthologue) can activate p38 MAPK [385-388].    

Aside from its metabolic effects, insulin also stimulates the MAP kinases 

ERK-1, -2 through MEK-1 and –2 [329]. In adipocytes, introduction of 

IRS-1 antisense RNA, antibodies to IRS-1 or a point mutation in the Grb-

2 binding site on IRS-1 attenuate the effect of insulin on ERK-signalling 

and concomitant DNA-synthesis (Fig. 3)[389-391]. Insulin-stimulation 

induces the association of Grb-2 with IRS-1. In turn the adaptor protein 

Grb-2 recruits the Son-of-sevenless exchange protein for the activation of 

Ras inducing the conversion of Ras from a GDP-bound to an active GTP-

bound form [392;393]. Aside from IRS, Grb2 also binds to 

phosphorylated Y
317

 of Shc, suggesting that this insulin receptor substrate 

is also involved in mediating mitogenic signalling (Fig. 3)[394]. In many 

continuous cell culture systems Shc is believed to be the major Grb2/Sos 

activator during insulin stimulation [389;395]. Conversely however, in 

skeletal muscle IRS-1 is the predominant Grb-2 binding protein, whereas 

Grb-2 binds poorly to Shc in this background. Thus IRS-1 knockout mice 

display an 80% reduction in insulin-stimulated Ras activation [396]. 

Indeed, Shc phosphorylation is disconnected from insulin-signalling 

during 3T3-L1 adipogenesis [397;398]. And in subcellular fractionation-

assays of adipocytes insulin-stimulated phosphorylation of Shc occurs 

exclusively in the plasma-membrane, whereas mSOS was only observed 

in the IRS-1 containing LDM-fraction [119].  
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Once activated, the “conventional” pathway dictates Ras functions as a 

molecular switch stimulating a stepwise activation of Raf, MEK and 

ERK. Activated ERK can then translocate to the nucleus, where it 

catalyses the phosphorylation of transcription and translation factors such 

as SAP, PHAS-I  and Elk initiating a cellular programme that leads to 

cellular proliferation or differentiation [399-404].  

However, terminally differentiated 3T3-L1 adipocytes present a twist to 

this tale, once more illustrating how the wiring of signalling pathways can 

be tuned cell-type specific to suit its own unique requirements in a given 

cellular environment. In 3T3-L1 adipocytes, insulin-induced activation of  

ERK-1/-2 is disconnected from the insulin-induced Ras-Raf pathway 

(Fig. 3)[405-410]. The insulin-induced ERK-phosphorylation is mediated 

through PKC-signalling bypassing the Ras-Raf axis of signalling 

[274;411]. Concomitantly, PKB has been shown to inhibit Raf protein 

kinase through S
259

 phosphorylation and subsequent 14-3-3 association 

[412]. This inhibition of Raf by PKB does not operate in undifferentiated 

myoblast precursor cells, but does when these cells are differentiated into 

skeletal-muscle myotubes [413]. (see also Rao for a review on similar 

differences in MAPK-signalling between primary cells and established 

continuous cell lines [414]). The precise reason for this differential 

signalling is unclear. At any rate, it has been unambiguously 

demonstrated that this mitogenic-signalling cascade does not play a role 

in mediating the metabolic effects of insulin [415-423].  

Phosphatases and insulin-induced signalling pathways 

As in every signalling system, an elaborate mechanism of phosphatases 

exists to ensure rapid termination of the insulin-induced signalling 

cascade and to keep the signalling pathways silent in the absence of 

insulin. Consequently, aberrant regulation of phosphatases results in an 

inability for the insulin-signalling pathway to activate glucose uptake. 

Aside from their role in “resetting” the system back to the basal state 

when the insulin-stimulus has ended, some phosphatases apparently play 

a positive stimulatory role in insulin-signalling. Most notable are the 

Ser/Thr phosphatase PP1 and the tyrosine phosphatase SHP2 (Fig. 2 and 

3). The activation of Ras requires the tyrosine phosphatase SHP-2, 

through its interaction with IRS-1/-2 [424-426]. Although the precise 

mechanism is poorly understood, ectopic overexpression of inactive SHP-

2 mutants attenuates insulin-induced Ras activation [425;427]. Several 

studies have revealed PTPs that are active against the autophosphorylated 

insulin receptor, including the receptor-like CD45, leukocyte antigen-

related PTP (LAR) and the cytosolic PTP-1B (Fig. 1)[428-433]. 

The tyrosine-phosphatase LAR has often been implied as a key-regulator 

of insulin receptor activity [434] and LAR-deficient mice exhibit 
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profound defects in glucose homeostasis [435]. Similarly, another 

tyrosine-phosphatase PTP-1B also regulates the insulin receptor tyrosine-

kinase. Ablation of PTP-1B in mice presents an insulin-sensitivity 

syndrome, as well as resistance to diet-induced insulin-resistance [436-

438]. Expression and activity of PTP-1B are tightly regulated by G i2-

signalling mediated through the PKA-pathway (Fig. 1). Thus, transgenic 

mice with a targeted expression of the GTPase deficient, constitutively 

active Q
205

L G i2-mutant results in significantly improved insulin 

sensitivity [439]. Conversely Gs (leading to enhanced cAMP and 

consequently PKA activity) negatively regulates insulin signalling, 

possibly through the same pathway [440].  

With respect to the phosphoinositides, at least two groups of lipid 

phosphatases have been described. Members of the first group remove the 

D5 phosphate from the inositol ring [441-443] and carry an N-terminal 

SH2 domain. Members of this group include p150
SHIP

/SIP-130 [444], its 

splice variant SIP-110 which lacks the SH2-domain [445;446], SHIP2 

[447;448] and INPPL1 (Fig. 2)[449;450].

This class of lipid phosphatases removes the 5’phosphate of PI(3,4,5)P3

and as such they form the prime source of PI(3,4)P2 in cells [441]. 

Intriguingly, TAPP-1, an PI(3,4)P2 adapter protein mediates the 

translocation of PTP-L1, a tyrosine-phosphatase, towards the plasma-

membrane (Fig. 1). Consequently, this adapter-phosphatase complex may 

be an important factor in terminating the insulin signal after the 

degradation of PI(3,4,5)P3 to PI(3,4)P2 [451]. Ectopic overexpression of 

either SHIP-1 or SHIP-2 in 3T3-L1 adipocytes results in a loss of insulin 

induced PKB activation suggesting the need for PI(3,4,5)P3 in mediating 

these responses to insulin in vivo [448;452;453].

The second group of lipid phosphatases is represented by PTEN 

[454;455], which targets the D3’-phosphate [456]. The identification of a 

PTEN-mutation in Cowden’s disease [457] as well as its inhibitory 

effects on PKB activation [458;459] illustrate its prime importance as a 

lipid phosphatase antagonising PI-3’kinase signalling (Fig. 2). Ectopic 

expression of PTEN hampers insulin-induced glucose uptake in 3T3-L1 

adipocytes [460;461]. 

In 3T3-L1 adipocytes, overexpression of constitutively active PKB does 

not induce  glycogen synthesis [248]. Rather than PKB/GSK-3  it is the 

insulin-induced activation of a phosphatase (PP1) in 3T3-L1 adipocytes 

(but not in 3T3-L1 fibroblasts) that dephosphorylates and activates 

glycogen synthetase [250]. Though PKB is not involved, PI-3’kinase 

activity is, as the insulin induced activation of PP1 is inhibited by 

wortmannin (Fig. 2)[250]. PP1 is a cytosolic protein phosphatase which is 

compartmentalised in cells by discrete targeting subunits. The 

predominant PPI glycogen targeting subunit in 3T3-L1 adipocytes is PTG 
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[462]. PTG functions as a molecular scaffold, binding not only to 

Glycogen Synthetase, but also to Phosphorylase and Phosphorylase 

kinase. Consequently, aside from activating glycogen synthetase, PPI-

activity concomitantly inhibits glucogenolysis, contributing to the storage 

of glucose in the glycogen particle [463;464]. 

PP2A is a multimeric Ser/Thr phosphatase that has been highly conserved 

during the evolution of eukaryotes. In mammals, the core enzyme is a 

dimer, consisting of a catalytic (PP2AC) and a tightly associated 

regulatory subunit termed PR65 or A subunit. Two distinct isoforms exist 

of both the catalytic and regulatory subunits [465]. A knock-out of 

PP2AC  is not viable, demonstrating that although highly homologues, 

these isoforms play non-redundant roles in vivo [466]. Although the 

presence of this core structure has been observed in vivo prevalent PP2A 

enzymes are heterotrimers through the association with another 

regulatory subunit. These B-subunits form a large family of proteins 

(classified as B, B’, B’’ and B’’’) each consisting of several isoforms, 

resulting in a grand total of about 75 different PP2A enzymes. The B-

subunits demonstrate a very specific subcellular localisation, 

developmental regulation and cell-type specificity thus tightly and 

precisely regulating the activity of PP2A. Aside from association with 

specific B-subunits, PP2a may be further regulated through covalent 

modification. PP2A has mainly been implicated as an important negative 

regulator of AGC-kinases, the ERK-family and PAK [467-469]. Thus, 

osmotic shock directly inhibits insulin-induced PKB activity by activating 

a specific PP2A-like phosphatase (Fig. 2)[470;471]. Furthermore, PP2A 

forms a molecular complex with Shc, thereby negatively regulating the 

Ras/MAP kinase pathway emanating from Shc (Fig. 3)[472].  

Apart from PP2A, another important regulator of the MAPK-family is the 

MKP-family of dual-specificity phosphatases, which are able to 

dephosphorylate MAP kinases on both serine/threonine- and tyrosine-

residues simultaneously. Several layers of regulation confer specificity on 

this family of phosphatases, including differential transcription in 

response to external stimuli and cell-type specific expression patterns 

[473;474]. Furthermore, whereas most MKPs reside in the nucleus, MKP-

3, -4,-7 and (dependent on cellular environment) hVH-5 are cytosolic 

[475-479]. In general there is a good correlation between docking ability 

and the activity of MKPs towards MAPKs [480-486]. Thus, MKP-3 and 

hVH-5 exhibit highly selective binding and subsequent  inactivation of 

either ERK or JNK and p38 MAPK respectively [477;478]. However, 

while PAC-1 inactivates JNK in COS7 cells, it could not act effectively 

on JNK in either NIH3T3 or HeLa cells [487]. Furthermore, in EGF-

treated fibroblasts, MKP-1 provides the main phosphatase activity for 

ERK inactivation. By contrast, in EGF-treated adipocytes, MKP-1 is 
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dispensable and PP2A is the main phosphatase mediating ERK 

inactivation (Fig. 3)[488]. Thus although MKP-1 has been originally 

identified as a ERK-1/2 phosphatase [489], it is the upregulation of this 

dual-specificity phosphatase after dexamethasone-treatment and 

concomitant dephosphorylation of p38 MAPK activity that has spawned 

considerable interest in this protein [490-494]. Another MKP-family 

member recently implicated in the pathogenesis of type II diabetes is 

MKP-4. This dual-specificity phosphatase is localised in the cytoplasm of 

cells and is also capable of dephosphorylating p38 MAPK (Fig. 

3)[476;495]. Intriguingly, MKP-4 is upregulated in adipocytes derived 

from ob/ob and db/db mice [496].   

The GLUT-transporters 
More than half a century ago Levine et al described insulin-induced 

glucose uptake [497], though at the time this was suggested to be 

mediated by an increase in membrane permeability and/or fluidity. 

Decades thereafter two seminal papers illustrated that glucose uptake 

occurs through the insulin-induced translocation of facilitative glucose 

transporters [498;499]. Currently there are 13 members of this family of 

facilitative glucose transporters, GLUT1-12 and the myo-inositol 

transporter HMIT1, each with different tissue distributions, kinetic 

properties and sugar specificity [500-502]. Best characterised are 

GLUT1-4, forming a subgroup within this family called class I glucose 

transporters. Of these, GLUT1 is ubiquitously expressed and responsible 

for basal levels of glucose uptake in all tissues. The GLUT2 isoform is 

primarily expressed in the beta-cells and in the liver. It has a relatively 

high Km (app) for glucose and serves as part of a glucose sensor in these 

cells and mediates absorption of glucose by intestinal epithelial cells. 

GLUT3 has the highest affinity for glucose and is expressed in neurons 

and during foetal development. The GLUT4 isoform is predominantly 

restricted to adipose and muscle tissue where it is sequestered in 

intracellular vesicular structures. Upon insulin stimulation these vesicles 

translocate and fuse with the plasma-membrane thereby causing an 

increase in the number of available transporters mediating the effects of 

insulin on glucose uptake in these cells.  

Two models have been proposed for the mechanism GLUT4 vesicle 

translocation in response to insulin : a retention model and a 

docking/fusion model [503;504], which do not have to be mutually 

exclusive.  The latter predicts insulin-induced GLUT4 vesicle fusion 

occurs through the specialised docking proteins called SNAREs (Fig. 6).

VAMP-2 is the main v-SNARE (v for vesicle) found in GLUT4 vesicles 

[505;506]. The main t-SNAREs (t for target-membrane) found in 

adipocytes are syntaxin-4 and SNAP-23 [507-510].  
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Fig. 6  v/t-SNARE signalling routes 

Insulin-induced vesicle (v)- and target (t)- SNARE vesicle fusion  routes in 3T3-L1 

adipocytes. A. SNAP-23 and syntaxin-4 are tethered to the plasma-membrane. The 

syntaxin associating protein Munc18c is involved in “priming” the syntaxin and 

allowing coiled-coil formation with SNAP-23. B. The primed complex is stabilised by 

the activities of Munc18c and Synip inhibiting further fusion. Rab4, PKB and PKC-

activities leads to dissociation of these proteins from the t-SNARE complex. These 

activation steps are indicated by arrows. The v-SNARE containing GLUT4 Storage 

Vesicle is tethered to the plasma-membrane by the activity of the Exocyst complex 

under the control of TC10, indicated by double arrows. C. Subsequently the trans-

conformation is formed. D. Zippering up of the v/t-SNARE complexes in a coiled-coil 

complex provides the energy required to induce fusion of the vesicular- 

 and plasma-membranes. In A-C only one complex is shown for clarity, though in the 

cell numerous complexes circumventing the site of fusion are present. In D. this is 

depicted by the presence of coiled-coils on both sites of the membrane “neck”. E. The 

v/t-SNARE complexes dissociate and are recycled. The fully embedded GLUT4  

glucose transporter is now available for the uptake of glucose from the extracellular 

milieu. the full name of all protein components can be found in the list of 

abbreviations at the end of this thesis. 

Insulin-stimulated GLUT4 translocation is dependent upon the interaction 

of VAMP-2 with syntaxin-4 and SNAP-23 at the plasma-membrane 

[510;511]. With SNAP23 mediating the interaction between the former 

two [512]. VAMP2 has been described as a target of both PKB-  and 

PKC- , which could provide a direct link between the PI-3’ kinase 

pathway and vesicle-fusion machinery [513;514]. 

All syntaxins are transmembrane proteins anchored by their C-terminal 

domains and the rest facing the cytoplasm. Several cytosolic but 
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hydrophobic regions, called the SNARE domain, have the potential to 

form coiled-coil -helical structures (Fig. 6)[515;516].  

The SNARE domain of syntaxin mediates its interactions with the 

SNARE domain of other t-SNARES of the SNAP-family, such as 

SNAP23, in turn this complex can associate with a v-SNARE, such as 

VAMP2. Consequently an extremely (heat- and SDS-resistant) stable 

ternary complex formed by a twisted bundle of -helices spanning 

roughly 12 nm is formed [517-519]. In the initial stage of vesicle 

docking, the SNARE complex assumes a partial and reversible assembly 

known as the “trans-conformation” (Fig. 6C). In this case syntaxin is 

slightly less tightly associated with the VAMP and SNARE until a signal 

stimulates the zippering up of the complex bringing the membranes in 

close vicinity and concomitantly providing the free energy needed for 

membrane fusion (Fig. 6D)[520]. 

The retention model predicts that rather than active transport of the 

vesicle, the GLUT4 vesicle exists partly in this pre-docked “trans-

conformational” state with the inhibitory activity of several accessory 

proteins being alleviated by insulin leading to full vesicle fusion (Fig. 

6B). Several insulin-dependent syntaxin-4 binding proteins capable of 

regulating vesicle fusion have been described such as Synip [521] and 

Munc-18c [522-524]. Structural analysis demonstrated that Munc-18 

plays a double-role in regulating syntaxins, on one hand it blocks vesicle 

fusion, presumably through direct steric interference by its association 

with syntaxin. Conversely however, Munc-18c has also been implicated 

in priming syntaxin for subsequent SNAP and VAMP association by 

changing the conformation of syntaxin into a semi-open structure. Munc-

18c, regulated by the Rab GTPases in conjunction with the actin 

cytoskeleton has been shown to specifically modulate insulin-stimulated 

GLUT4 translocation [522;524;525]. Furthermore, O-linked 

glycosylation of Munc-18c has been implicated in glucosamine-induced 

insulin resistance [526]. 

The yeast Exocyst complex consists of eight proteins : Sec3, Sec5, Sec6, 

Sec8, Sec10, Sec15, Exo70 and Exo84, and are involved in the tethering 

or docking of exocytotic vesicles [527]. The Exocyst complex assembles 

at the plasma membrane of adipocytes in response to insulin, through the 

association of Exo70 with the aforementioned TC10 [317]. By tethering 

the GLUT4 vesicle in the vicinity of the t-SNAREs this complex 

regulates GLUT4-vesicle fusion with the plasma-membrane (Fig 

6B)[509]. Importantly, ectopic overexpression of an N-terminal fragment 

of Exo70 blocks GLUT4-vesicle membrane fusion, rather than GLUT4-

vesicle translocation reminiscent of the effect of described APS-mutants 

[305;317].
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In conclusion, the ability to elicit specific biological responses when 

stimulated with a given hormone is a remarkable feat of cells. This 

becomes even more remarkable when realising that many signalling 

pathways employ common components. Over the past years, analysis of 

insulin signalling pathways in cell-types such as adipocytes and muscle 

cells has yielded insight into how the insulin signalling pathways are 

routed and regulated cell-type specifically in time and space. 

Consequentially, an adipocyte is able to respond specifically to the 

presence of insulin with an increase in glucose uptake from the 

extracellular environment in a matter of mere minutes.
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