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2.1  A short history of post-transfusion and maternal RBC alloimmunization 

Alloimmunization to RBC antigens, a consequence of blood transfusion or pregnancy, was 

recognized following the discovery of the Rhesus (now Rh) blood group system in 1939 by 

Philip Levine and Rufus Stetson. They reported a case of a woman who delivered a stillborn 

infant and suffered a severe haemolytic transfusion reaction (HTR) following transfusion with 

apparently ABO compatible blood from her husband. Her serum was found to contain an 

alloagglutinin (reacting at 37C) which agglutinated RBCs of her husband and those of 85% of 

blood donors. Levine and Stetson showed that this new antigen, which they did not name, was 

independent of the then known blood groups ABO, MN and P.  They postulated that the cause of 

this case of haemolytic disease of the newborn (HDN) was a maternal antibody entering the fetal 

circulation leading to fetal RBC destruction (Levine & Stetson, 1939). In 1940, Landsteiner and 

Wiener made an antibody by injecting Rhesus monkey RBCs into rabbits and guinea pigs 

(Landsteiner & Wiener, 1941). The resulting antiserum (anti-Rh) agglutinated not only Rhesus 

monkey RBCs but also those of 85% Caucasians. This specificity appeared identical to that of 

antibodies in the sera of patients who suffered HTRs after receiving ABO-identical blood 

(Wiener & Peters, 1940).  In 1941, Levine and co-workers reported that the antibody responsible 

for HDN had the same specificity as the anti-Rh produced by Landsteiner and Wiener, later 

shown to be anti-LW. Levine and Stetson were indeed describing anti-D although they identified 

it as anti-Rh in these earliest publications. In 1945, Coombs, Mourant and Race described the use 

of antihuman globulin (later known as the “Coombs’ test”) to identify “incomplete” antibodies. 

A year later, they used this test to detect Rh antibodies on RBCs of babies suffering from HDN 

(Coombs et al., 1946). Thereafter, the versatility of the Coombs’ test in immunohaematology for 

the detection of post-transfusion and maternal RBC alloantibodies became evident. 

 

2.2  Human blood group diversity and function  

Human blood groups are unique, inherited polymorphic structures located on mostly non-

polymorphic proteins, glycoproteins, and glycolipids on the extracellular surface of RBCs. Blood 

groups are detected by a specific alloantibody, implying that the antigens are immunogenic for 

individuals lacking the blood group. Currently, 33 blood group systems, which include a total of 

about 339 antigens, have been established by the International Society of Blood Transfusion 

(ISBT Committee on Terminology for Red Cell Surface Antigens, Cancun 2012). In addition, 
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antigens not yet fulfilling the requirements for classification into a system have been gathered 

into collections or series of high- and low-frequency antigens (Daniels et al., 2009). In blood 

group nomenclature, antigens encoded by the same gene, or cluster of two or more closely linked 

homologous genes with virtually no recombination events occurring among them, are assigned to 

the same blood group system.  

Each blood group system is genetically discrete from other blood group systems and 

accommodates from 1-50 antigens. The two most important blood group systems from the point 

of view of clinical transfusion medicine are ABO and Rh. Rh and MNS are the most complex 

systems, with 61 and 46 antigens respectively. Most blood group polymorphisms are the result of 

single nucleotide polymorphisms (SNPs) encoding amino acid substitutions in an extracellular 

domain of an RBC surface protein. All blood group systems represent a single gene, apart from 

Rh, Xg and Chido/Rodgers, which have two closely linked genes, and MNS with three genes. In 

null phenotypes, the whole protein is absent from the membrane usually as a result of a gene 

deletion or an inactivating mutation. Genes that encode all the blood group systems present on 

RBCs have been identified (Storry & Olsson, 2004; Storry et al., 2011).  

The development of DNA sequencing techniques, and then the polymerase chain reaction (PCR) 

has paved the way for the rapid molecular characterization of the genes encoding blood group 

antigens (Beiboer et al., 2005). As the molecular basis of many blood group antigens has been 

determined (Reid & Lomas-Francis, 2004), it is now feasible to predict the blood group antigen 

profile of an individual by testing the DNA. Such molecular analyses can be used to overcome 

the limitations of haemagglutination in clinical transfusion practice e.g. typing of multiply 

transfused patients, determination of paternal RHD zygosity, fetal genotyping from amniocytes 

or maternal plasma to determine the risk for HDFN, typing of RBCs with a positive direct 

antiglobulin test (DAT), detection of altered D antigens (weak D or partial D) and screening 

donor units for antigens (Doa, Dob, Jsa, Kpa, Coa, Yta, etc.) for which there are no commercial 

reagents (Legler et al., 2001; Reid, 2003; Harper et al., 2004).   

The RBC membrane protein structures bearing blood group antigens exhibit diverse functional 

heterogeneity. The following functions have been attributed to blood group antigens. Some are 

membrane transporters e.g. band 3 (the Diego antigen) provides an anion channel for HCO3
- and 

Cl- ions; the Kidd glycoprotein is a urea transporter; the Colton glycoprotein, aquaporin 1, is a 

water channel; and RhAG is probably a gas channel. The Lutheran, LW, and Indian (CD44) 

 

glycoproteins are adhesion molecules while the Duffy glycoprotein is a chemokine receptor. The 

Cromer and Knops antigens are markers for decay accelerating factor (CD55) and complement 

receptor 1(CD35) respectively (Catron & Colin, 2001; Telen, 2005). 

 

2.3  Pathophysiology of the post-transfusion alloimmune response  

2.3.1  Blood transfusions may lead to either alloimmunization or tolerance induction 

RBC transfusion for anaemia is both the oldest and the most widely employed transplantation 

procedure. Multiple allogeneic blood transfusions introduce a multitude of foreign antigens and 

living cells into the recipient that persist for a variable period of time. These can affect the 

immune response in two opposite ways, leading to either alloimmunization or to tolerance 

induction. Alloimmunization is reflected by the development of alloantibodies against RBC 

antigens (Lostumbo et al., 1966), HLA antigens (Perkins et al., 1966) and other cellularly 

expressed or soluble antigens; and by T cell activation leading to CD8 positive cytotoxic T cells.  

T cell receptors specific for alloantigens develop in utero. Intrauterine transfusion of allogeneic 

blood before the 14th week of gestation may result in tolerance and (transient) establishment of 

low dose chimerism (Hayward et al., 1998). The full capacity to produce immune antibodies 

develops slowly after birth. Although anti-HLA antibodies have been reported after non-

leucocyte depleted whole blood transfusion (Bedford-Russel et al., 1993), the immunization rate 

in preterm infants is very low to negligible due to functionally immature B cells (Marshall-

Clarke, 2000). 

The induction of tolerance is suggested by the enhanced graft survival in transfused versus non-

transfused solid organ recipients (Opelz & Terasaki, 1978). Also, recipients of allogeneic blood 

transfusions have been reported to be at a greater risk of post-operative infections referred to as 

transfusion-related immunomodulation (TRIM). Moreover, allogeneic blood transfusions have 

been shown to lead to suppressive effects in immunologic function in recipients ex vivo i.e. a 

decrease in the CD4:CD8 ratio of circulating T cells, reduced natural killer cell function, 

defective antigen presentation, suppression of lymphocyte blastogenesis, and reduction in 

delayed type hypersensitivity (Blajchman & Bordin, 1994). In general, contaminating leucocytes 

are thought to play a pivotal role in the above immunomodulatory effects of blood transfusions; 

with leucocyte depletion preventing both HLA alloimmunization and tolerance induction 

(Merryman, 1989).  
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 2.3.2  Pathways for immune recognition of alloantigens 

Two recipient T cell recognition mechanisms have been shown to be critical for the initiation of 

alloimmunity. The direct pathway occurs when recipient T helper (Th) cells directly interact with 

major histocompatibility complex (MHC) class II molecules on donor antigen presenting cells 

(APCs). The T cell activation by this direct pathway is only exerted by allogeneic class II 

bearing cells, such as in fetomaternal transfusion and by leukocyte-containing blood products. 

Approximately 100 times more T cells can be activated by the direct pathway as compared to the 

indirect pathway, which reflects the normal immune response. Indirect recognition occurs when 

foreign (allogeneic donor) molecules are processed by recipient APCs and presented to self Th 

cells. Within the context of indirect allorecognition, T cells recognize protein antigens that are 

degraded or processed within APCs to peptides which combined with MHC molecules are 

transported to the cell surface and bound within the antigen-binding grooves of either MHC class 

I or class II molecules (Sayegh et al., 1994). The spectrum of antigen processing ranges from the 

simple unfolding of conformational determinants to the proteolytic exposure of primary structure 

by pH-dependent enzymes (e.g. cathepsins). Generally, APCs process exogenously derived 

proteins via endosomal compartments that shunt the processed peptides to intracellular 

compartments rich in MHC class II molecules. This pathway is necessary for the activation of 

CD4+ Th cells to provide helper factors for B cell activation and eventual IgG antibody 

production. Endogenous proteins (e.g. self-proteins or when infected with virally derived 

proteins), are generally processed by large-molecular-weight proteosomes within the cell cytosol 

and are subsequently transported to the luminal surface of the endoplasmic reticulum for loading 

onto MHC class I molecules and  foreign molecules can be recognized by CD8+ (cytotoxic) T 

cells. For both direct and indirect pathways, the loaded MHC molecules are expressed on the 

surface of the APC and are available for presentation to circulating T cells (Watts, 1997). 

However, after T cell recognition a second signal provided by costimulatory molecules is needed 

to activate the Th cells. 

2.3.3  Role of costimulatory molecules 

As depicted above, both antibody production and cytotoxic T cell development depend on the 

stimulation of the recipient antigen-specific CD4+ (helper) T cells. The key requirements for 

CD4 stimulation are the simultaneous expression of at least two different signals (Schwartz, 

1989). The first signal, occupancy of the clonotypic T-cell receptor (TCR), is provided by MHC-

 

peptide on the APCs. TCR binding leads to a cascade of events culminating in IL-2 expression 

but not IL-2 secretion (Mueller et al., 1989). A second, costimulatory signal is required for the 

expression of the IL-2 gene with consequent secretion of IL-2 and cell proliferation (Mincheff & 

Merryman, 1990). On APC, the B7-1 protein, delivers a costimulatory signal through binding 

with the CD28 (positive) and CTLA-4 (negative) T-cell receptors, which regulate IL-2 secretion. 

Lack or impairment of this second signal has been shown to lead to T cell unresponsiveness or 

anergy (Nossal, 1989). In the case of allogeneic transfusions, the alloantigens on donor class II 

bearing APCs will be recognized by recipient T cells through the direct pathway (Pouteil-Noble 

et al., 1991). The imunogenicity of those alloantigens will then be determined by the ability of 

the donor APCs to present the costimulatory signals to the recipient T cells. After 2 weeks’ 

storage in vitro at 2 - 6C, APCs lose costimulatory molecules (Mincheff & Merryman 1990). 

Besides leukocytes, unmodified RBCs often contain large numbers of platelets which are rich in 

both cell surface and soluble CD40L (Henn et al., 1998). This costimulatory molecule activates 

B cells and is critical for IgM-to-IgG class switching (Grewal & Flavell, 1996). WBC reduction 

removes class II bearing donor APCs (e.g. dendritic cells, B-cells, and monocytes) and reduces 

HLA immunization in particular in case of platelet transfusions, provided that the residual white 

cell count is less than 1 – 5 x 106 per unit (Claas et al., 1981, Sirchia et al., 1986; van Marwijk et 

al., 1991; Oksanen et al., 1991; Saarinen et al., 1993; Blumberg et al., 2003). However, WBC 

removal has no demonstrable effect on the formation of RBC alloantibodies (Schonewille et al., 

2005), indicating that these are mainly elicited through the indirect antigen presentation pathway.   

2.3.4  Type 1 and type 2 immune responses 

Immunologic responses can become polarized to favour cells and cytokines of Type 1 (Th1) or 

Type 2 (Th2) responses (Mosmann & Sad, 1996). Type 1 responses involve cytokines such as γ-

interferon (IFN-γ), IL-12, and IL-2, enhancing cellular immune responses such as delayed type 

hypersensitivity. Type 2 responses involve cytokines such as IL-4, IL-5 and IL-10 and enhance 

humoral immune responses, particularly those involving specific IgG subclasses, as well as IgA 

and IgE (Romagnani, 1996). Allogeneic leukocyte-containing blood transfusions have been 

shown to elicit immune deviation favouring Type 2 responses and downregulation of Type 1 

responses (Kirkley et al., 1995). This immunological mechanism could account for the 

unfavourable associations of allogeneic transfusions with the development of alloantibodies to 

RBCs, WBCs, platelets, and plasma proteins; presumed increased tumour recurrence; and post-
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operative bacterial infection, and favourable associations with reduced spontaneous abortions 

and increased tolerance of solid organ allografts (Blumberg & Heal, 1996).  

2.4  Nature of RBC alloantibodies 

Alloantibodies against RBC antigens may be “naturally occurring” or “immune” in nature. 

Naturally occurring antibodies are most often IgM class, reacting at a temperature optimum 

below 37C, but may be partly IgG and are found in individuals who have never been transfused 

with RBCs or who have not been pregnant with a fetus carrying the relevant RBC antigen. 

Natural antibodies are not present at birth, but arise early in life presumably due to cross-

reactivity with ingested antigens. Immune antibodies are most often IgG but may be IgM or a 

mixture of IgG and IgM; they may sometimes have an IgA component. An antibody is 

considered to be clinically significant if examples with that specificity are known to have caused 

HTRs, HDFN or unacceptably short survival of the transfused RBCs (Walker, 1993). RhD is by 

far the most immunogenic antigen followed by K and c. Development of alloantibodies may 

compromise the care of chronically transfused patients since the deleterious effects of RBC 

alloimmunization, including delayed HTRs and HDFN, are increased (Moise, 1993). Antibodies 

may appear as early as 7 - 10 days after transfusion in primary immunization and within 2 - 7 

days in a secondary response. The optimal screening times for the detection of post-transfusion 

RBC alloimmunization are not known and depend on the nature of the antigen, dose and 

recipient immunocompetence, although testing after 2 - 4 weeks and 3 - 6 months have been 

suggested. Schonewille et al. (2006) reported that anti-Jka and anti-Jkb were predominant 

antibodies found in patients tested within one month, whereas anti-K and anti-Fya were most 

encountered after more than 3 months following blood transfusion. 

Antibodies against HLA class I may cause confusion in RBC immunohaematologic testing.   

HLA class I antigens are widely distributed and, in general, can be detected on all nucleated 

cells.  In peripheral blood, platelets and RBCs (which lack nuclei in their mature forms) can also 

express HLA class I antigens (Rosenfield et al., 1967), sometimes referred to as Bg (Bennet-

Goodspeed) antigens on RBCs. The numbers of molecules expressed per platelet have been 

estimated to be in the range of 14,000 to 82,000 (Kao et al., 1986), being far fewer on RBCs, 

with a range of 40 to 550 per cell (Giles et al., 1990). In contrast, the number of HLA class I 

molecules on T lymphocytes is about 100,000 per cell and on B lymphocytes, there are about 

 

260,000 molecules per cell (Everett et al., 1987; Mollison et al., 1997). In view of the low 

number of HLA class I molecules on most RBCs, there has been speculation whether they are 

integral membrane components or they are acquired on the membrane by adsorption from 

plasma, which contains both membrane-shed and secreted forms (Krangel, 1987). It has been 

reported that RBCs do not synthesise HLA per se, but HLA class I molecules are produced by 

their nucleated precursor cells (Rivera & Scornick, 1986). Three principal antigens – Bga, Bgb 

and Bgc – have been defined and correlated with HLA class I antigens B7, B17 and A28 

respectively (Morton et al., 1969). Unwanted positive results in cross-matching due to HLA are 

common because antibodies to HLA-A28 and HLA-B7 are frequently present in sera and anti-

Bga has been found in more than 10% of multiply transfused patients and can be the cause of 

HTRs (Nordhagen & Aas, 1978; Panzer et al., 1987; Mollison et al., 1997).  

2.5  Pre-transfusion compatibility testing  

The goal of pre-transfusion compatibility testing is to provide the patient with a beneficial and 

safe transfusion (Shulman et al., 2001; Lieb & Aldridge, 2005). The transfused blood 

components should have acceptable survival in vivo. Pre-transfusion testing, including the 

antiglobulin phase, is very important because adverse effects of accelerated RBC destruction can 

be severe. Even recipient's RBCs, albeit less frequently, sometimes undergo accelerated 

destruction (bystander or autoantibody mediated). Most HTRs result from errors in patient or 

sample identity; and in some cases blood group alloantibodies to private antigens are not 

detected by standard serological techniques using RBC panels. When testing samples from 

antenatal patients and patients transfused within the last 3 months, a fresh sample is obtained for 

compatibility testing if more than 3 days have elapsed since the original sample was collected. If 

performed properly, pre-transfusion testing will ensure that a patient is issued the designated 

blood components, it will verify that the blood is ABO compatible and will detect the most 

clinically significant unexpected antibodies. 

2.6  Prevalence of post-transfusion RBC alloimmunization 

2.6.1  RBC alloimmunization in sickle cell disease patients 

In heavily transfused SCD subjects, the RBC alloimmunization rate may approach 30% (Orlina 

et al., 1978). Acute or delayed HTRs may occur if an alloimmunized patient is exposed to the 

same foreign antigen during subsequent transfusion. In the Cooperative Study of Sickle Cell 

 

195050-bw-Natukunda.indd   22 23-4-13   14:10



22 Chapter 2 23Review on RBC alloimmunization

operative bacterial infection, and favourable associations with reduced spontaneous abortions 
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Disease, Rosse et al. (1990) reported an overall rate of RBC alloimmunization of 18.6% in 1,814 

multiply transfused SCD patients. They identified a positive linear correlation between the 

number of SCD patients sensitized and the number of RBC exposures. Seventeen percent of the 

alloimmunized patients demonstrated four or more antibodies with a predominance of anti-C, 

anti-E and anti-K. In the same study, children less than 10 years old had a lower rate of 

alloimmunization than those in older age groups. In SCD, nulliparous women are more likely to 

become sensitized to RBC antigens than multiparous females (Reisner et al., 1987). The 

suggested mechanisms underlying the increased incidence of alloimmunization in SCD patients 

include an altered immune response, increased frequency of certain HLA antigens, or lack of 

phenotypic compatibility between donor and recipient (Ambruso et al., 1987; Cox et al., 1988). 

Alarif et al. (1986) found a significant association between RBC alloimmunization and HLA-

B35 among SCD patients. Caccese et al. (1987) demonstrated an increased functional activity in 

monocytes from patients with SCD reflecting an ongoing inflammatory state, when compared 

with monocytes derived from normal individuals. 

When the distribution of antigens is different in the donor and recipient populations, greater 

alloimmunization may be expected. In a retrospective study, Vichinsky et al. (1990) found that 

racial and ethnic blood group antigen profiles between donor and recipient groups contribute to 

RBC alloimmunization in SCD. The frequencies of Duffy and Rh blood group system antigens 

are known to be distinctly different in Blacks and Caucasians. Despite the fact that 68% of 

Blacks lack the Fya and Fyb and 99.9% of Caucasians have one or both antigens (Daniels, 2002), 

very few of the Fy(a-b-) Blacks form Duffy antibodies no matter how often they are transfused 

with Fy(a+) and/or Fy(b+) blood. This is because individuals of the Fy(a-b-) phenotype do not 

recognize the Duffy antigen as ‘foreign’ due to the presence of the Duffy glycoprotein on their 

tissue cells (Issitt & Anstee, 1998). In Brazil, where less heterogeneity between the donor and 

recipient groups exists, RBC alloimmunization rates in SCD are still substantial, suggesting that 

other mechanisms may be operative (Moriera et al., 1996).  

Following alloimmunization, antibodies to the Rh and Kell system antigens are most often 

detected, followed by antibodies to antigens of the Duffy and Kidd systems, while transfusion-

induced antibodies to other RBC antigens are rarely found (Schroeder, 1999). To prevent the 

occurrence of alloimmunization, Davies et al. (1986) recommended extended RBC phenotyping 

of all SCD patients at the beginning of their transfusion therapy. This helps in deciding what 

 

blood should be transfused and also aids in the identification of any antibodies that might 

develop. Thereafter, blood for transfusion should be matched for at least C, E and K antigens 

(Murphy, 2001). The stroke prevention trial (Vichinsky et al., 2001) demonstrated that when 

SCD patients were given WBC-reduced RBCs that were matched for C, E and K antigens, the 

alloimmunization rate dropped from 3% to 0.5% per unit and HTRs dropped by 90%. 

There is growing evidence that alloimmunization may lead to the production of autoantibodies 

and vice versa (Aygun et al., 2002). Castellino et al., (1999) reported the frequency of 

autoantibody formation as approximately 7.6% in a review of a large series of multiply 

transfused children with SCD. They also reported a strong association between autoantibody 

formation and the presence of RBC alloantibodies. The etiology behind the formation of these 

autoantibodies is poorly understood and not much information exists to suggest ways in which to 

lower the incidence of autoantibody formation. However, Ahrens et al., (2007) found that blood 

transfusion appears to play a role in the majority of cases of autoantibodies associated with RBC 

alloimmunization. Clinically, it is important to recognize that post-transfusion haemolysis in 

which both autologous and transfused RBCs are destroyed may occur in patients with SCD.  

2.6.2  RBC alloimmunization in other multiply transfused patients 

In a retrospective study undertaken by Blumberg et al. (1983) on patients with disorders that 

often require multiple transfusions, the rate of alloimmunization (i.e. the proportion of patients 

with new antibodies) to RBC antigens was 11% in the aplastic anaemia, and 16% in the chronic 

myeloid leukaemia (CML) disease groups. In the same study, other groups of multitransfused 

patients had similar rates of alloantibody formation e.g. patients with renal failure (14%) and 

those with gastrointestinal bleeding (11%). Patients receiving chemotherapy for CML did not 

seem to be suppressed in terms of their ability to produce blood group alloantibodies when the D 

antigen was respected in the selection of the donor units.  In contrast, none of the 99 patients 

with chronic lymphocytic leukemia (CLL) followed up for over a 10-year period produced blood 

group antibodies. Lymphoid leukemia patients are generally characterized by a lack of 

immunologic response and alloimmunization to RBC antigens following multiple transfusions, 

in this setting, is uncommon (Han et al., 1981; Fluit et al., 1990). There is often 

hypogammaglobulinaemia in lymphoid leukemia, which may be attributed to impaired 

functionality of B cells that are unable to upregulate HLA class II and costimulatory molecules 

 

195050-bw-Natukunda.indd   24 23-4-13   14:10



24 Chapter 2 25Review on RBC alloimmunization
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recognize the Duffy antigen as ‘foreign’ due to the presence of the Duffy glycoprotein on their 
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Following alloimmunization, antibodies to the Rh and Kell system antigens are most often 

detected, followed by antibodies to antigens of the Duffy and Kidd systems, while transfusion-

induced antibodies to other RBC antigens are rarely found (Schroeder, 1999). To prevent the 

occurrence of alloimmunization, Davies et al. (1986) recommended extended RBC phenotyping 

of all SCD patients at the beginning of their transfusion therapy. This helps in deciding what 

 

blood should be transfused and also aids in the identification of any antibodies that might 
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and vice versa (Aygun et al., 2002). Castellino et al., (1999) reported the frequency of 
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transfused children with SCD. They also reported a strong association between autoantibody 
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lower the incidence of autoantibody formation. However, Ahrens et al., (2007) found that blood 
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alloimmunization. Clinically, it is important to recognize that post-transfusion haemolysis in 
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antigen was respected in the selection of the donor units.  In contrast, none of the 99 patients 
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(Marshall-Clark, 2000) as is also observed in multiply transfused infants during the first few 

months of life (Ludvigsen et al., 1987; Strauss et al., 1999). Similarly absence of 

alloimmunization has been reported in some RhD negative AIDS patients receiving RhD positive 

RBC transfusions (Boctor et al., 2003). This may be attributable to the decrease in CD4+ T 

lymphocytes in AIDS. However, the hypergammaglobulinaemia associated with a positive DAT 

(Levine & Liebman, 1995) and the persistent immune activation (Eggena et al., 2005) in the 

course of HIV infection may explain the post-transfusion alloimmunization that is occasionally 

reported. Seyfried and Walewska (1990) found that the highest rate of immune response to RBC 

antigens occurred in multitransfused patients (defined as 3 or more blood transfusions) with 

autoimmune haemolytic anaemia (28%), liver cirrhosis (31.5%) and the myelodysplastic 

syndromes (40.9%). In a retrospective study, Fluit et al. (1990) found that 22 out of 186 (11.8%) 

multitransfused patients with haematological disorders developed antibodies over a 3-month 

period, after receiving at least six RBC transfusions. Anti-E and anti-K were the antibodies most 

frequently found; they were detected in 12 and 15 patients respectively. In patients with 

transfusion-dependent thalassaemia, the rate of allo-immunization to RBC antigens was found to 

range from 5 to 37%, with a lower prevalence in children starting transfusions before an age of 

two years (Spanos et al., 1990; Coles et al., 1981; Wang et al., 2006). A female preponderance 

of RBC alloimmunization upon transfusions is controversial (Raki 1999; Blumberg et al. 1984; 

Redman et al. 1996). In a recent review of literature, Verduin et al (2012) observed a higher 

RBC alloimmunization rate in transfused females with SCD only and not in other diseases that 

require multiple blood transfusions. 

As discussed in section 2.3.2, HLA class II antigens present blood group peptides to CD4 T cells. 

Some peptides may be more optimally presented by the antigen-presenting groove formed by 

particular class II molecules. Reviron et al. (2005) and Chu et al. (2009) reported associations of 

anti-Jka alloimmunization with particular HLA-BRB1 alleles and anti-Mia alloimmunization with 

HLA-DRB1*0901 allele respectively, suggesting a role for MHC restriction in some cases of 

RBC antigen presentation (Picard et al., 2009; Hoppe et al., 2009).  

2.7  Haemolytic transfusion reactions 

Haemolytic transfusion reactions are one of the recognized consequences of post-transfusion 

RBC alloimmunization. An acute HTR is defined as the haemolysis of donor RBCs, within 24 

 

hours of transfusion, by preformed alloantibodies in the recipient. Clerical errors (mislabelling of 

blood or misidentification of patients) account for 80% of acute HTRs, confirmed by national 

haemovigilance schemes which have been operational for several years in Europe and North 

America (Goodman et al., 2003; SHOT, 2009). Symptoms and signs of acute HTRs are non-

specific and include fever, chills, rigors, chest/back/abdominal pain, pain at the infusion site, 

nausea, vomiting, dyspnoea, hypotension, haemoglobinuria, oliguria/anuria, and disseminated 

intravascular coagulation (DIC). Most frequently, the offending antibodies are high titer IgM 

anti-A and/or anti-B although complement-fixing IgG antibodies in the recipient may be 

responsible as well. Immune-mediated haemolytic reactions can also rarely occur because of 

RBC antibodies in the plasma of the transfused product, be it in RBCs, fresh frozen plasma 

(FFP) or platelets. Cases of HTRs after transfusion of group O plasma containing products such 

as platelets, with high titer anti-A or anti-B to non-group O patients have been reported (Larsson 

et al., 2000; Lozano & Cid, 2003; Josephson et al., 2004).  

Delayed HTRs are more common but usually less severe than acute haemolysis. Delayed 

reactions occur when a patient previously sensitized by pregnancy or blood transfusion receives 

“incompatible RBCs” because the low titers of circulating alloantibodies (typically against Rh 

and Kidd system antigens) escape detection by pre-transfusion testing. However, there is a rapid 

anamnestic response after transfusion of antigen-positive RBCs, leading to haemolysis. Delayed 

HTR often go unrecognized because they occur several days (usually within 5 - 10 days) after 

transfusion, which often means after hospital discharge. Delayed serologic transfusion reactions 

(DSTRs) are reactions identified serologically but not clinically. Delayed HTRs and DSTRs 

occur in approximately 1 in 1500 transfusions, with DSTRs being detected at rates two to 

fourfold higher than delayed HTRs (Ness et al., 1990; Pineda et al., 1999; Hendrickson & 

Hillyer, 2009). Obtaining a transfusion history and selecting offending antigen-negative RBCs 

for transfusion of patients with a history of clinically significant RBC alloantibodies is critical in 

decreasing the risk of delayed HTRs or DSTRs (Hendrickson & Hillyer, 2009). Patients with 

SCD or other major haemoglobinopathy syndromes who are chronically transfused are at 

greatest risk of alloantibody formation to RBC antigens and consequent HTRs. About 25% of the 

clinically significant RBC alloantibodies become undetectable over time, potentially 

confounding future transfusions and placing the patient at risk of an anamnestic antibody 

production and severe delayed HTRs (Rosse et al., 1990; Schonewille et al., 2000). 
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anti-Jka alloimmunization with particular HLA-BRB1 alleles and anti-Mia alloimmunization with 

HLA-DRB1*0901 allele respectively, suggesting a role for MHC restriction in some cases of 

RBC antigen presentation (Picard et al., 2009; Hoppe et al., 2009).  
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Haemolytic transfusion reactions are one of the recognized consequences of post-transfusion 

RBC alloimmunization. An acute HTR is defined as the haemolysis of donor RBCs, within 24 

 

hours of transfusion, by preformed alloantibodies in the recipient. Clerical errors (mislabelling of 

blood or misidentification of patients) account for 80% of acute HTRs, confirmed by national 

haemovigilance schemes which have been operational for several years in Europe and North 

America (Goodman et al., 2003; SHOT, 2009). Symptoms and signs of acute HTRs are non-

specific and include fever, chills, rigors, chest/back/abdominal pain, pain at the infusion site, 

nausea, vomiting, dyspnoea, hypotension, haemoglobinuria, oliguria/anuria, and disseminated 

intravascular coagulation (DIC). Most frequently, the offending antibodies are high titer IgM 

anti-A and/or anti-B although complement-fixing IgG antibodies in the recipient may be 

responsible as well. Immune-mediated haemolytic reactions can also rarely occur because of 

RBC antibodies in the plasma of the transfused product, be it in RBCs, fresh frozen plasma 

(FFP) or platelets. Cases of HTRs after transfusion of group O plasma containing products such 

as platelets, with high titer anti-A or anti-B to non-group O patients have been reported (Larsson 

et al., 2000; Lozano & Cid, 2003; Josephson et al., 2004).  

Delayed HTRs are more common but usually less severe than acute haemolysis. Delayed 

reactions occur when a patient previously sensitized by pregnancy or blood transfusion receives 

“incompatible RBCs” because the low titers of circulating alloantibodies (typically against Rh 

and Kidd system antigens) escape detection by pre-transfusion testing. However, there is a rapid 

anamnestic response after transfusion of antigen-positive RBCs, leading to haemolysis. Delayed 

HTR often go unrecognized because they occur several days (usually within 5 - 10 days) after 

transfusion, which often means after hospital discharge. Delayed serologic transfusion reactions 

(DSTRs) are reactions identified serologically but not clinically. Delayed HTRs and DSTRs 

occur in approximately 1 in 1500 transfusions, with DSTRs being detected at rates two to 

fourfold higher than delayed HTRs (Ness et al., 1990; Pineda et al., 1999; Hendrickson & 

Hillyer, 2009). Obtaining a transfusion history and selecting offending antigen-negative RBCs 

for transfusion of patients with a history of clinically significant RBC alloantibodies is critical in 

decreasing the risk of delayed HTRs or DSTRs (Hendrickson & Hillyer, 2009). Patients with 

SCD or other major haemoglobinopathy syndromes who are chronically transfused are at 

greatest risk of alloantibody formation to RBC antigens and consequent HTRs. About 25% of the 

clinically significant RBC alloantibodies become undetectable over time, potentially 

confounding future transfusions and placing the patient at risk of an anamnestic antibody 

production and severe delayed HTRs (Rosse et al., 1990; Schonewille et al., 2000). 
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Approximately 40% of SCD patients who are alloimmunized have or will experience a delayed 

HTR (Knowles, 2001). Importantly, delayed HTRs can mimic various complications of SCD and 

should be suspected when patients present with appropriate symptoms (e.g. pain, fever, 

accelerated haemolysis) after a recent transfusion (Diamond et al., 1980).  

Another complication of RBC alloimmunization is the hyperhaemolysis syndrome which has a 

reported incidence of 4 - 11% (Aygun et al., 2002; Talano et al., 2003). In patients with SCD, 

clinical findings in the hyperhaemolysis syndrome occur approximately 1 week after the RBC 

transfusion and include the onset of increased haemolysis associated with pain and profound 

anaemia. The haemoglobin level often drops to below pre-transfusion levels. In many reported 

adult cases, the DAT remains negative and no new alloantibody is detected as the cause for these 

transfusion reactions (Talano et al., 2003). Continuation of blood transfusion may be lethal, as 

this can further exacerbate haemolysis (Friedman et al., 1993). It has been suggested that 

transfusion be withheld in severe haemolytic episodes, until hemolysis has faded spontaneously 

or after treatment with corticosteroids, high dose intravenous immunoglobulin or rituximab, a 

monoclonal antibody against B cells. The exact pathophysiologic mechanism of this syndrome is 

not well understood. A bystander haemolytic mechanism and transfusion suppression of 

erythropoiesis have been proposed (Petz et al., 1997; King et al., 1997). There is a broad clinical 

spectrum of autoantibody formation in association with red blood cell transfusions and reactions 

range from asymptomatic serologic detection to severe, life-threatening haemolysis (Sosler et al. 

1989; Zumberg et al., 2001; Garratty (2004). 

2.8  Haemolytic disease of the fetus and newborn  

Haemolytic disease of the newborn was first described in 1609 in a set of twins by a French 

midwife called Louise Bourgeois: the first twin was oedematous and stillborn, and the second 

was deeply jaundiced and subsequently died of what is now called kernicterus (Bowman, 1988). 

Over the centuries, this clinical picture was recognized and reported as two separate conditions. 

Diamond et al. (1932) realized that congenital anaemia, icterus gravis and hydrops, were 

manifestations of the same disease, which they named erythroblastosis fetalis. The identification 

of the cause of the haemolysis had to await the discovery of the Rh system (Landsteiner & 

Wiener, 1940) and the determination soon thereafter that HDFN occurred in an RhD-positive 

 

fetus carried by an RhD-negative woman who had been immunized by the transplacental passage 

of RhD-positive RBCs during a prior pregnancy (Levine et al., 1941).  

Alloimmunization to the D surface antigen is the commonest cause of HDFN, which, before the 

introduction of anti-D immunoprophylaxis affected 1% of all newborns and was responsible for 

the death of one baby in every 2200 births (Kumar & Regan, 2005). By the 1970s, routine 

antenatal care in well-resourced countries included screening of all expectant mothers to select 

Rh-D negative cases and giving preventive treatment with anti-D after birth of a Rh-D positive 

child. This led to a dramatic decrease in the incidence of HDFN, particularly severe cases that 

were responsible for stillbirths and neonatal deaths (Mollison et al., 1997). Despite the 

widespread use of this prophylaxis, a significant number of women still become alloimmunized 

for a variety of reasons, including no administration or insufficient dosage of RhIG in case of 

unrecognized miscarriage, leakage of fetal RBCs into the maternal circulation late in pregnancy, 

large fetomaternal hemorrhage (FMH) or exposure to traumatic deliveries including Caesarean 

sections, manual removal of the placenta, stillbirths and intrauterine deaths, blunt abdominal 

trauma during the third trimester, twin pregnancies (at delivery), external cephalic version, 

chorionic villous sampling, antepartum haemorrhage, ectopic pregnancy and an unexplained 

hydrops fetalis (Sebring & Polesky, 1990; Bowman, 1997). FMH involves smaller amounts: in 

3% of the women, fetal RBCs are detectable in the maternal circulation during the first trimester 

of pregnancy; in 12% during the second trimester; in 46% during the third trimester; and in 64% 

of the women after delivery, usually in amounts less than 20 ml of fetal blood (Bowman et al., 

1986). It is not uncommon for there to be silent leaks of RBCs from the fetus into the mother 

(with no pain or bleeding), especially in the third trimester. The maternal IgG antibodies traverse 

the placenta to the fetal circulation during gestation and cause RBC destruction with 

complications before birth, or anaemia and hyperbilirubinaemia after birth, or both. In its most 

severe form, HDFN produces hydrops fetalis, which is characterized by total body oedema, 

hepatosplenomegaly and heart failure, and can lead to intrauterine death. HDFN may also follow 

blood transfusion with antigen positive blood that is incompatible with the mother. Virtually all 

alloantibodies reactive by the IAT have been implicated in HDFN in different populations. The 

prevalence of D-negativity varies in different ethnic groups with 15% of Caucasians, 8% of 

Blacks and 1% of Asians being D-negative (Reid & Lomas-Francis, 2004). The D antigen 

accounts for about 50% of cases of maternal alloimmunization; the remainder is mainly due to 
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incompatibility to K, c, C/G, E, and Fya antigens and to low incidence antigens in the Rh, MNS, 

and Diego blood group systems (Heddle et al., 1993). Anti-D formation is more frequent in D 

positive individuals of African descent than in Europeans, which is probably a result of the high 

frequency of aberrant RHD alleles belonging to the three African D clusters i.e. DIVa, weak D 

type 4 and DAU in some African populations (Touinssi et al., 2009).  Also, because the number 

of copies of the D antigen on each RBC is higher in the R2 haplotype (range: 14,000 to 16,000) 

than in the R1 haplotype (range: 9,000 to 14,600), fetuses whose RBCs are R2 have more severe 

anemia than their R1 counterparts (Mollison et al., 1997). Ulm et al. (1999) reported that male 

fetuses were 13 times more likely to develop hydrops than female fetuses, and perinatal mortality 

was 3 times higher in male fetuses. However, this was not confirmed by other inestigators 

(Ramsey & Sherman, 1999). 

From the perspective of prevention an initial step is to estimate fetal risk by establishing paternal 

RHD zygosity. After paternal testing has revealed the possibility of a heterozygous state for 

RHD, fetal testing is indicated. Fetal D antigen determination through noninvasive DNA testing 

from maternal plasma is now routine practice in some countries (Lo et al., 1998; Daniels et al., 

2004). If the maternal race is black, then the presence of a maternal pseudogene or Ccdes gene 

should be considered in the scheme of fetal testing (Faas et al., 1997; Singleton et al., 2000). The 

presence of one of these genes in the fetus can lead to a false positive molecular diagnosis yet the 

fetus would be found to be D-negative by serology after birth, leading to unnecessary fetal 

interventions such as antenatal RhIG administration. Whenever an IAT-reactive antibody is 

detected during pregnancy, a cord blood sample at birth should be tested by DAT and if positive, 

the haemoglobin (Hb) and bilirubin levels monitored to initiate treatment (BCSH Guidelines, 

1996). Monitoring maternal anti-D during pregnancy is very important to predict the severity of 

antenatal HDFN. In most centres, a critical titre for anti-D between 8 and 32 is usually used 

(Moise, 2005; Moise, 2008). Because the titre is not very reliable predicting fetal hemolysis, 

functional assays such as the monocyte monolayer assay (MMA) or antibody-dependent cellular 

cytotoxicity (ADCC) are performed in reference laboratories. Once sensitization has occurred the 

fetus should be monitored by preferentially non-invasive echo-doppler techniques to estimate the 

degree of fetal anemia. The following therapeutic options are open: controlled early delivery or 

intrauterine transfusion of which the latter has the best prognosis but requires a specialized centre 

(Urbaniak & Greiss, 2000; van Kamp et al., 2004).  

 

Interestingly, a fetus that is ABO incompatible with the maternal anti-A/B is less likely to have 

HDFN due to anti-D, presumably due to rapid removal of the ABO-incompatible RBCs by the 

naturally occurring anti-A/B. Although maternal-fetal ABO incompatibility is common, in 

general haemolysis is mild and the clinical course is relatively benign needing only phototherapy 

(Grundbacher, 1980; Drabik-Clary et al., 2006). In cases of ABO incompatibility between the 

mother and the fetus, group O mothers are more likely to become sensitized (Ozolek et al., 

1994).  This process occurs to a much less extent in group A or B neonates who are born to 

heterospecific A or B mothers, because in this situation, the respective anti-A or anti-B 

immunoglobulin is predominantly IgM and therefore unable to cross the placenta (Kaplan et al., 

2009).  
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