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The analysis and mining of patterns of gene expression provides a crucial approach in 

discovering knowledge such as finding genetic networks that underpin the embryonic 

development. In this chapter we describe the extension of the Gene Expression 

Management System (GEMS) to a framework for data mining and results analysis. As a 

proof of principle, the GEMS has been equipped with data mining applications suitable 

for spatio-temporal tracking, thereby generating additional opportunities for data mining 

and analysis. The analysis of the genetic networks uses spatial, temporal and functional 

annotations of the patterns of gene expression data stored in GEMS. Combining mining 

with the available capabilities of GEMS can significantly influence and enhance current 

data processing and functional analysis strategies. 
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Data mining techniques are used to identify patterns intrinsic in data, and thereby among 

other things, support hypothesis generation. It is recognized that the application of data 

mining techniques involves many tasks supported by a heterogeneous suite of tools. 

Additionally, interpretation of data mining results requires many decisions taken by 

experts that must be familiar with data mining techniques and at the same time have 

sufficient background knowledge on the area under study. These requirements are 

however, not common to all end-users. Therefore, we propose an embedded framework 

for both data mining application and results interpretation. In this chapter we present our 

approach that focuses on embedding mining algorithms on the GEMS framework. The 

GEMS has been extended to serve as an effective environment of knowledge discovery 

and interpretation. In the same framework, data mining could be applied and a primary 

analysis of the discovered rules could also be performed using the patterns annotations, 

images and links to external resources. We believe that such framework will facilitate 

data interpretation and analysis.  

Gene expression profiles on the level of the transcripts, as well as on the level of the 

proteins can be a valuable tool to understand gene function. A lot of available methods 

for gene-expression data-analysis are based on clustering algorithms. These algorithms 

tend to focus on data with the same expression mode while the transcriptional relation 

between genes is not addressed. Our attempt to find new patterns in the data was 

accomplished with association rules. Unlike clustering techniques, this method reveals 

mutual interaction among genes. In this manner, biologically relevant associations 

between different genes can be revealed.  

In this chapter we discuss our proof of concept methodology that we adopted to facilitate 

analysis of mining results using association-rule mining technique to discover elements 

with correlated frequently within our gene expression dataset.  
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Market Basket Analysis (Agrawal et al, 1993) is a typical and widely-used example of 

association rule mining. In bio-molecular life sciences research studies, association rules 

are typically applied to gene expression results obtained from microarray experiments. 

The first step in microarrays mining procedures is to find association rules between 

patterns of gene expression. The second step is to find a biological interpretation of the 

discovered associated patterns. This step is the most delicate and time consuming phase 

to analyze the discovered rules since the results have to be accurately placed into context 

with existing biological knowledge, such as scientific literature or sequence data. In our 

case, we work, on accurate 3D patterns of gene expression that were annotated with 

standardized and structured metadata during data storage into the GEMS database. The 

way in which this information is organized makes the interpretation of mining results 

easier.    
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Association rules discovery is a mining method that has been extensively used in many 

applications to discover associations among subsets of items from large transaction 

databases (Agrawal, 1993 et al; Liu, 1998).  

Definition:  

1. Given a set of items I = {i1, i2, i3, …, in} and a set of transactions D = {T1, T2, …, 

Tm}, each transaction T in D is a subset of items in I. 

2. Given a set of items (for short itemset) X⊆ I, the support of X is defined by: 

  Support(X) = freq (X)/|D|, which means that the support is equal to the proportion  

            of transactions that contain X to all transactions |D|. 

3. An association rule has the following implication form:  
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a. X � Y where X, Y⊆ I and X ∩ Y = ∅ . The itemsets X and Y are called 

antecedent (Left-Hand-Side or LHS) and consequent (Right-Hand-Side or 

RHS) of the rule. 

4. Each rule is associated with its confidence and support: 

Confidence (X � Y) = freq (X ∪Y)/freq (X), support (X � Y) = support (X ∪ Y) 

where support (X ∪Y) = freq (X ∪ Y)/|D|.   

Given a set of transactions (the database), mining for association rules  is to discover all 

association rules that have support and confidence greater than the user specified 

minimum support and minimum confidence. In general, an association mining algorithm 

works in two steps. First all itemsets that satisfy the minimum support are generated. 

Second, generation of association rules that satisfy the minimum confidence using the 

large itemsets. An itemset is simply a set of items and a large itemset is an itemset that 

has transaction support higher than the minimum.  

The prototype example to illustrate association rules uses the domain of the supermarket 

(Agrawal et al, 1993). Here a transaction is someone buying several items at the same 

time. An itemset would then be something as {cheese, beer} and an association rule is as 

follow:  cheese � beer [support = 10%, confidence = 80%]. This rule says that 10% of 

customers buy cheese and beer together and those that buy cheese also buy beer 80% of 

the time.   

There are many efficient algorithms to find association rules, major issue remains to find 

the right algorithm to meet our needs. We began our gene expression mining studies with 

the APRIORI algorithm. We took this algorithm since it is the basic algorithm for 

association-rule mining. APRIORI was extensively studied and successfully applied in 

many problem domains (Agrawal et al., 1993, 1994).  It depends on a very basic 

property, i.e. for an itemset to be frequent; each of its subset must also be a frequent 

itemset. The algorithm starts with a single item in the set and then runs iteratively with 

each frequent itemset detected in the previous level increases by one. This algorithm has 
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many advantages like the capability to find frequent patterns, accuracy and controlled 

candidate generation. However, it has some limitations. Normally different genes have 

different temporal expression. Some genes are expressed more frequent and earlier in 

time then others. Thus considering only the occurrence count of each item (gene) may not 

lead to a fair measurement. Therefore we moved to the Progressive Partition Miner 

algorithm (PPM) (Lee et al, 2001) that we apply on our set of data. The idea of PPM 

algorithm is to first partition a dataset and then progressively accumulates the occurrence 

count of each itemset based on the intrinsic partitioning characteristics. The PPM 

algorithm employs a filtering threshold in each partition to early prune those 

cumulatively infrequent itemsets.  

Implementation 

We defined and implemented the resources required for the interactive rule mining 

framework using a platform/language with java as our technology support. (1) We build a 

java application (cf. Figure 1) that can be executed in two different ways: as an 

autonomous java agent and through the user interface. Users are able to execute the PPM 

mining algorithm by sending a HTTP request.  (2) The application processes submitted 

requests and queries the GEMS PostgreSQL database to generate a dataset. The query 

result is pre-processed to a multi-line text file where each line is considered as a 

transaction. A transaction is a developmental stage and the items are the expressed genes 

at this stage.  The application runs first to find the frequent 2-genesets in the data. (3) 

From the frequent 2-genesets the association rules are mined and presented to the user. 

We provide a graphical user interface to start the mining procedure and to explore the 

generated rules for data interpretation and analysis.  
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Figure 1: The process flow of the web-application to mine expression patterns. 
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Our case study concerns spatio-temporal patterns of gene expression in zebrafish. 

Patterns are the result of fluorescent in situ hybridization (FISH) experiments and 

visualized with the Confocal Laser Scanner Microscopy (CLSM). This methodology of 

patterns generation enables a precise spatial localization of genes expression. This spatial 

localization enhances extremely functional analysis of genes function. The patterns are 

subsequently annotated and stored in the GEMS database (cf. chapter 4). We initially 

analyze the GEMS database using patterns spatio-temporal information. Subsequently, 
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we use the annotations of the patterns supported with the 3D images to post-process the 

rules that we obtained. 

In addition to GEMS data, we used other datasets to first validate and explore the PPM 

algorithm. We validated the Java application of the PPM algorithm before its integration 

within the GEMS framework. For this validation, we used the same dataset as presented 

in (Lee et al, 2001) to get the same mining results. Subsequently, we explored this 

association-rule technique and we apply it on ZFIN gene expression data (http://zfin.org). 

We imported ZFIN data in a local database that we query to generate a dataset.  
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ZFIN is a large and rich resource of gene expression data. In ZFIN dataset, we found a 

large amount of rules. To limit the analysis to a small number, we selected these with 

[support >40, confidence >80] (cf. Table 1). Additionally, for data analysis we limited 

expression information to these realized under the same experimental conditions (mRNA 

in situ hybridization) and obtained between “prim 15” en “long pec” (stages of 

development) and (cf. Table 2). 

Rule number  ANTECEDENT CONSEQUENT 

1 Btg2 Tbx20 

2 Hoxa3a Tbx20 

3 Hoxa3a Ccnb1 

Table 1: An example extracted from the ZFIN result set using the PPM algorithm (support > 40% 

and confidence > 80%). 

For the selected rules we extracted the spatial information of the expression domain of 

each gene. From ZFIN framework we get the structure names. However, ZFIN does not 

provide a description of the expression domains at different levels of granularity for an 

exhaustive coverage of the expression areas. Therefore, to complete the description of the 
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expression domains we used the Developmental Anatomy Ontology of Zebrafish (cf. 

chapter 2) to derive additional spatial and functional description of the anatomical 

structures where the expression is observed (cf. Table 2).  

Expression information 
Gene symbol 

Organ Structure Functional System 

Brain Hindbrain, Tegmentum Central nervous system 
Btg2 

Neuroblast Neuron Nervous System 

Eye 
Retina, Retinal ganglion 

Cell layer,  
Visual system  

Heart Heart Cardiovascular system 

Brain Hindbrain, Tegmentum Central Nervous System 

Tbx20 

Neuroblast Neuron Nervous system 

Eye Eye, Optic tectum, Retina Visual system 

Anatomical cluster Proliferative region - 

Pectoral fin Pectoral fin musculature Skeletal system 
Ccnb1 

Gill 
Pharyngeal arch 3-7 

skeleton 
Respiratory System 

Brain Hindbrain, Rhombomere Central nervous system 

Gill 
Pharyngeal arch 3-7 

skeleton 
Respiratory System Hoxa3a 

Spinal cord Spinal cord Nervous system 

Table 2: This table shows expression information of genes of the selected rules. 

In (cf. Table 2) we observed that an overlap exists between genes part of each rule. This 

result merits to be investigated. In this proof of principle study, we stopped at this point. 

In our case we used ZFIN dataset to validate and explore the PPM algorithm. Still, this 

result leads us to further apply the PPM algorithm on GEMS data. We integrated the 
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PPM algorithm within the GEMS framework so that users can run this mining algorithm 

on the fly.  

Rule number  ANTECEDENT CONSEQUENT 

1 myoD hoxb13a 

2 myoD LysC 

3 Fgf8 Shh 

4 hoxa9a Shh 

5 sox9b Shh 

Table 3: An example extracted from the result set using the PPM algorithm (support >= 30% and 

confidence >= 75%) on the GEMS dataset.  

The patterns of gene expression are annotated with spatial variables with multi-level 

hierarchy. These variables could be exploited to select a dataset with common features 

and apply on this dataset the mining algorithm. For the rules presented here (cf. Table 3), 

we first generated a dataset by querying the GEMS database for patterns with a common 

spatial location, i.e. body and tail. Second we apply the PPM algorithm. We post-

processed rules that were generated by using their annotation, i.e. temporal, functional 

and a spatial classification at organ and structure levels. We considered a pattern to be 

interesting when both its antecedent and consequent have a common spatial expression 

domain. 

Developmental stages 24-120 hpf 36-120 hpf 18-96 hpf 10-24 hpf 
Genes fgf8 

hoxa9a 

shh 

myoD 

sox9a 

LysC hoxb13a 

Table 4: This table shows the temporal relationship between genes of the selected patterns. 

Our experiments on the GEMS data are typically inductive. They are not applied to prove 

or disprove pre-existing hypotheses. Form the rules that were generated, we tried to 
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identify spatio-temporal patterns embedded within one enclosed framework and thereby 

support hypothesis generation. To investigate the selected rules, we first explore the 

temporal characteristic of both antecedents and consequents (cf. Table 4). In rules 1 and 

2, the antecedent myoD is expressed in early and late zebrafish development. Both 

consequents, i.e. LysC and hoxb13a are also expressed at early stages of development. 

For rules 3, 4 and 5 both antecedents and consequents have a similar temporal exhibition, 

i.e. at early and late zebrafish development.  Second, we look at the spatial information of 

the expression domain of each rule. Here we explored the spatial information at different 

levels of granularity. We started our exploration at organ level and we finalize our 

exploration by looking at the anatomical structure at a finer level of granularity (cf. Table 

5). Since patterns of gene expression in GEMS are also annotated with functional system 

information of the expression domain we used this information in our investigation. In 

the example below, we recognized that antecedents and consequents of rules 3, 4 and 5 

have strong relationships. These relationships are seen at different levels of abstraction 

from body region to organ to structure to functional system. These data indicate that these 

genes might be strongly correlated in the morphogenesis of the posterior body in 

zebrafish. 

This initial analysis has been realized using existing anatomical information extracted 

from the GEMS database. Once, a user selects a pattern of interest, a detailed analysis can 

start. 
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Expression Domain 

Gene 
Body region Organ Structure 

Functional System 

hoxa9a Body Fins Mesenchyme pectoral fin bud Locomotion 

Shh Body Fins Fin Locomotion 

sox9b Body 
Skeleton, 

Muscular and 

Fins 

Mesenchyme pectoral fin bud and 

pectoral fin cartilage 
Locomotion 

fgf8 Body Fins 
Apical ectodermal ridge pectoral 

fin 
Locomotion 

LysC Tail 

Blood, 

haematopoietic 

tissues 

Macrophages Immune system 

hoxb13a Tail Body axis Tail bud Developmental 

myoD Tail 
Skeleton and 

Muscular 
Mesenchyme fin Locomotion 

Table 5: Spatial relationships between genes of the selected patterns. 

The patterns are linked to 3D images (cf. Figure 2). Requests to view 3D patterns of gene 

expression (3D images) are in fact 3D queries submitted to the GEMS database to 

visualize the expression domains in 3D. 3D patterns provide detailed spatio-temporal 

information of the expression domains and allow overlap discovery between genes under 

study (Welten et al, 2009). This 3D detailed information represents an efficient analytical 

approach for functional analysis at image domain. Additionally, each visualized 3D 

pattern is linked to external resources which provide additional dimensions for rules 

analysis.  

The GEMS is a tool for managing and linking spatio-temporal patterns of gene 

expression. Here, we demonstrated that the GEMS functionality can be extended to a tool 
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for mining patterns of gene expression. By this, we hope to create an added value to 

knowledge interpretation of mining results.  

 

Figure 2: An example extracted from the result set of the PPM algorithm (support >=30% and 

confidence >= 75%) on the GEMS dataset. The first tree genes have a common expression in tail 

while the second tree contains rules with genes having a common expression in fin (in the body 

region).  

Antecedent 

Consequent 

Antecedent 

Consequent 
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The results presented in this chapter is a proposed framework to facilitate analysis task of 

mining rules by improving the ability to interpret the discovered rules, evaluate their 

relevance and obtain insight on the discovered knowledge.  We have extended our 

previous work (cf. chapter 4) regarding the general framework where gene expression 

patterns are managed using their temporal and spatial features within an integrative 

context. The extension includes the inclusion of mining techniques to the general 

framework and how to use this framework as a primary platform for mining results 

analysis to judge at an early stage whether a rules is interesting or not. Our experimental 

results are the outcome of using an association rules algorithm (PPM). Results set from 

this algorithm could be analysed and compared with each other. 3D patterns of gene 

expression (3D images) provide an advanced functional analysis of genes and spatial 

overlap discovery (Verbeek et al, 1999) of expression domains between genes under 

study. To facilitate spatial overlap discovery, direct integration of expression domains 

within 3D atlas models (cf. chapter 3) should be realized. This integration will allow a 

more advanced functional analysis in the future. Actually, the GEMS platform enables a 

mapping on other data resources. The patterns in the GEMS database are stored with 

formal and unified metadata. Therefore, the interpretation and integration of the rules 

within a large-scale biological network is permitted. This situation reduces the time 

needed to analyze the results, and prune the irrelevant rules and use interesting ones to 

derive new hypothesis. The preliminary results presented here, also demonstrates how 

generated rules may be supported by visual data representation. The researcher is able to 

immediately and intuitively put the discovered rule into a visual context by available 

gene expression 3D images.  

Spatio-temporal data mining is a promising research area dedicated to the development 

and application of computational techniques for the analysis of spatio-temporal databases 
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(Mennis and Liu, 2005). Such techniques require further investigation. In this study, we 

started with a straightforward algorithm, i.e. PPM. Currently, we are considering other 

mining algorithms able to compare patterns between species and therewith including an 

evolutionary component. Frequent Episode Mining in Developmental Analysis is such an 

algorithm (FEDA, Bathoorn et al); it is based on analyzing sequences of developmental 

characters to find episodes. These episodes are used to determine differences between 

developmental sequences (Bathoorn et al, 2007). An API for FEDA should be realized to 

enable its execution on the fly through the GEMS which has been customized to be used 

as an experience bed for data mining.  
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