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2
The LaAlO3/SrTiO3 interface

LaAlO3 and SrTiO3 are cubic perovskites and wide band gap insulators which differ
in one aspect: SrTiO3 is a non-polar material, where each layer stacked along a
principal axis of the cube is change-neutral. LaAlO3 is polar, with layers having
alternating charges of ±e per unit cell. In 2004, Ohtomo and Wang made the
remarkable discovery of a two dimensional electron gas (2-DEG) forming at the
interface. Such a conducting layer has potential for applications, but despite much
reseurch, many details of its formation are still unclear. This chapter describes the
basic understanding of the LaAlO3/SrTiO3 interface.
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2.1 Transition-metal oxides
Transition metal oxides (TMO’s) show many exciting phenomena compared to sim-
ple covalent semiconductors. Strong Coulomb repulsion between the 3d electrons
of the TM ion, parametrized by U , tend to localize them on the atoms, leading to
an insulating state. The energy gap to the conducting states is roughly determined
by U − 2zt, where t is the site-to-site transfer integral of the d-electrons, and z
is the number of nearest neighbors. If t << U , as is often the case, this leads to
the so-called Mott-insulating state. Such an insulator is very different from cova-
lent semiconductors such as Si, and GaAs, where the four hybridized sp3 electrons
form shared pairs with four nearest neighbor atoms. The electrons localize between
the atoms, as a result of the competition between electron-nucleus attraction and
electron-electron repulsion. The Mott state is charge-ordered, but the subtle in-
terplay between charge, spin, and lattice structure also leads to spin and orbital
order. Figure 2.1a and b show the doping phase diagrams of La1-xSrxMnO3 and
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Figure 2.1: Phase diagram of (a) La1-xSrxMnO3, based on data from Ref.1–3. PM, PI, FM,
AFM, FI, and CI denote, paramagnetic metal, paramagnetic insulator, ferromagnetic metal, anti-
ferromagnetic metal, ferromagnetic insulator, and spin-canted insulator states, respectively. (b)
La2-xSrxCuO4, based on data from Ref.4.

La2-xSrxCuO4, respectively. In (La,Sr)MnO3 the Sr2+ ion dopes holes into the
MnO2 complex, leading to a mix of Mn3+ and Mn4+ valencies. The latter results
in a hole in the d-band and (at low temperatures) a change from an antiferro-
magnetic canted insulator (CI in Fig. 2.1a) to a ferromagnetic metal (FM). This
state becomes paramagnetic insulating at higher temperatures, resulting in the
well-known colossal magnetoresistance effect. In (La,Sr2)CuO4 the doping leads
to even more dramatic effects. Doping holes into the CuO2 complexes now yields
high-temperature superconductivity.
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2.1. Transition-metal oxides

The effective masses of charge carriers in TMOs are an order of magnitude
higher than in semiconductors, which is partly due to the strong coupling with the
lattice and the reorientation possibilities for the oxygen octahedra. Together with
high carrier concentrations this leads to short screening lengths for electric fields,
in the order of 1 to 100 nm.

Figure 2.2: Unit cells of the perovskite structure with the ABO3 chemical formula. Here A is in
green (corner), B in blue (center) and O in red (cube faces). Furthermore, the AO plane is shown
in green and the BO2 plane in blue.

A much studied structure of TMOs is the cubic perovskite structure (Fig. 2.2).
The chemical structure is ABO3. Here the A is an alkaline earth metal or a rare
earth metal and the B is a transition metal or a metalloid. Under pressure and tem-
perature the structure can change from cubic to orthorhombic, tetragonal, rhombo-
hedral or monoclinic. Along the (001) direction the structure can be seen as, built
up from AO and BO2 planes, indicated with blue and green planes in figure 2.2.

In this thesis I will focus on the 2-dimensional electron gas between the TMOs
SrTiO3 and LaAlO3. Strictly speaking, SrTiO3 is a TMO, but not a Mott-insulator,
the Ti4+ has an empty d-shell. However, doping can fill the Ti d-shell in the SrTiO3,
showing TMO physics. Moreover, LaAlO3 is not strictly a TMO, since Al is not a
transition metal, but structure and physics is close to the one of the TMOs and it
is in general seen as part of the group. SrTiO3 and LaAlO3 are both perovskites
and insulators with bandgaps of 3.2 eV5 and 5.6 eV6 respectively. Their lattice
constants (STO: 3.905 Å7, LAO: 3.789 Å8) have only a small mismatch of 3 %,
resulting in epitaxial growth when stacking the two materials. Both materials are
widely used as substrates, and are easily commercially available as single crystals.
As-received crystals have a mixed terminated surface with both areas with AO and
BO2 planes. For SrTiO3 the termination can chemically be changed to TiO2

9,10,
whereas the SrO termination can only be made reliably by growing a monolayer of
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SrO on a TiO2 terminated surface. For LaAlO3 the termination is more complex
and it will be discussed in chapter 4.

2.2 The LaAlO3/SrTiO3 Interface
At the interface of LaAlO3 and SrTiO3 a conducting interface is found. This is
a different interface than in covalent semiconductors. Where for instance at the

Figure 2.3: Comparison between the 2-DEG at the GaAs/AlxGa1−xAs interface (top) and the
2-DEL at the LaAlO3/SrTiO3 interface (bottom). Taken from Ref.11.

interface of the covalent semiconductors GaAs/AlxGa1−xAs the mobile carriers
move into two-dimensional subbands within the quantum well generated by band
bending, at the LaAlO3/SrTiO3 interface multiple quantum wells are found given
by the ionic potentials of the TiO6 octahedra (see fig. 2.3). The electrons are subject
to the correlations of the Ti 3d bands and form an two dimensional electron liquid
(2-DEL) rather than a gas12. This electron liquid is strongly confined, which is very
advantageous for screening and switching applications as well as for miniaturization
of devices. For historic reasons we will often still use 2-DEG instead of 2-DEL.

The interface can actually be made in two different configurations. First, when
the SrTiO3 is TiO2 terminated, growing epitaxial LaAlO3 results in a TiO2/LaO
interface, which can become conducting. Second, when the terminating layer is
SrO the interface will be SrO/AlO2. This interface turns out to be insulating13,14.
For the conducting interface, Thiel et al.15 found that the surface only becomes
conducting when the LaAlO3 layer consists of four or more unit cells. One and two
unit cells result in a fully insulating interface, while a three-unit-cell interface can
be made conducting by gating.

8



2
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Figure 2.4: Illustration of the polar catastrophe model in the LaAlO3/SrTiO3 hetero-structure.
The stacking sequence of LaAlO3 and SrTiO3 layers is shown with their oxidation levels and final
net charge per layer. In the diagrams ρ is the net charge per layer, E the resulting electric field
and V the potential buildup. a and b illustrate the potential buildup for a n-type (TiO2/LaO) and
p-type (SrO/AlO2) interface respectively, leading to a diverging potential. In c half an electron
charge is transferred from the surface to the interface to avoid the divergence. For the p-type
interface, one would expect the electron is transferred from the interface to the surface. However,
an energetically more favorable structural reconstruction16 appears. Image from Ref.14.

To understand this remarkable effect of a 2-dimensional electron gas between
two insulators, the role of the SrTiO3 and LaAlO3 layers are now further discussed.
These building blocks can be described as stacked AO and BO2 layers as stated ear-
lier. Writing down these layers and their charges we find for the SrTiO3, Sr2+O2−

and Ti4+O4−
2 , both having zero net charge. In contrast, for LaAlO3 the layers

are La3+O2− and Al3+O4−
2 , respectively positive and negatively charged. This is

illustrated in figure 2.4. The charged layers in the LaAlO3 can be seen as parallel
plate capacitors with a charge ρ, resulting in an electric field E between them,
which results in a potential buildup V . Starting from a neutral SrTiO3 layer the
potential builds up without bound, as the thickness of LaAlO3 grows (Fig. 2.4a),
which is not physically possible. This can be solved by an electronic or structural
reconstruction. In the case of an electronic reconstruction, half an electron is trans-
ferred from the LaAlO3 surface towards the interface (Fig. 2.4c), resulting in half a
free electron per unit cell at the interface creating half the charge at the interface.
This is the so called polar catastrophe13,14 model. This potential buildup fits rea-
sonably well with the transition from insulating to conducting interface at three to
four unit cells. Only for four unit cells and more the potential buildup is strong
enough for the electron transfer to take place.

The resulting electrons at the interface will change the Ti4+ to Ti3+. In that
case, we call it a n-type interface. On the other hand if the SrTiO3 surface is SrO
terminated the potential buildup is opposite (Fig. 2.4b) and half an electron has
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to be transferred away from the interface to the LaAlO3 surface (Fig. 2.4d). This
would result in a p-type interface as an electron has to be removed from the O-2p
band. This is energetically more expensive and a structural reconstruction is more
favorable16 resulting in an insulating interface.

Although this model presents a good description of the conducting interface, it
cannot be the full story. In particular core-level X-ray photoemission spectroscopy
(XPS) measurements have not been able to measure the potential buildup17,18.
Furthermore, there is strong evidence for an important role of defects and stoi-
chiometry, which now will be discussed.

2.3 Oxygen vacancies
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Figure 2.5: Sheet resistance as function of temperature of the LaAlO3/SrTiO3 interface depend-
ing on oxygen background pressure during growth as indicated in the figure. Note the minimum
who occurs for pressures above 10−4 mbar. Taken from Ref.19.

The number of oxygen vacancies is mainly influenced by the oxygen background
pressure during growth and is well described by Brinkman et al.19. Figure 2.5 sum-
marizes the salient behavior of the sheet resistance of the interface as function of
temperature for different values of the oxygen background pressure during growth.
At pressures of 1 × 10−6 mbar and lower the amount of oxygen in the SrTiO3

crystal is reduced and bulk conductivity starts to play a role. For pressures above
1 × 10−2 mbar the interface is found the be insulating, while in the intermediate
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2.4. Stoichiometry

regime different types of physics are found at the interface, such as superconduc-
tivity20–22 and magnetism19,23–25. The minimum occurring at pressures above
1 × 10−4 mbar is often connected to the presence of some kind of magnetism.
To stay clearly away from bulk conductivity, but preserve UHV conditions in our
low-energy electron microscope without taking extra precautions, we decided to
use a background pressure of 5 × 10−5 mbar O2 in the experiments involving the
LaAlO3/SrTiO3 interface.

2.4 Stoichiometry
It has been found that also the stoichiometry of the deposited LaAlO3-layer is
of crucial importance for rendering the interface conducting or insulating26–29.
Warusawithana et al.27 using molecular beam epitaxy (MBE), found that the La/Al
ratio has to be smaller than 0.97 to obtain a conducting interface. Breckenfeld
et al.30, using PLD, found that at 2 K the interface sheet resistances using 4 % La-
deficient LaAlO3 is almost ten orders of magnitude lower than the interface sheet
resistance using 5 % La-excess LaAlO3. Also, Dildar et al.26 found that LaAlO3

deposited on SrTiO3 by sputtering in 1 mbar of oxygen showed a La-excess of
7 %, while the interface was insulating. This stoichiometry dependence emphasizes
the importance of defects in the SrTiO3 and LaAlO3 during the formation of the
interface conductance. In particular, it has been pointed out that excess Al can
substitute on the La-sites, while La excess leads to Al2O3-vacancy complexes27,
with significant differences in the way the charge distribution problem can be solved.
However, how this exactly leads to either a conducting or a non-conducting interface
is not yet fully understood.

The stoichiometry issue is the more important since it is strongly influenced
by the growth conditions. Growth of LaAlO3/SrTiO3 interfaces is most frequently
performed by pulsed laser deposition (PLD), the primary work horse for complex
oxide growth. Apart from the fact that PLD is a relative cheap option compared to
MBE, it was long believed that PLD was a technique which would transfer a ma-
terial preserving the stoichiometry. However, also PLD is a complex process where
laser fluence and background pressure play an important role in the stoichiometry
of the film. Here the ablation efficiency of the ions and the scattering processes
between ions and the background gas play an important role31. In these scattering
processes the particle mass is very important, changing the stoichiometry of the
plume. All in all, having some knowledge of the stoichiometry during growth, also
in deposition processes where the elements are not controlled separately as in MBE,
would be quite advantageous. We shall come back to this issue in chapter 6.
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