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Chapter 2
A Scenario for Subtype Discovery
by Cluster Analysis

In this chapter, we present our subtyping scenario. First, we discuss data process-
ing issues when preparing the data before analysis. Next, we motivate our choice
for a particular clustering method. Then, to select for a number of subtypes or
a model, we describe a computational approach that repeats data modeling. Fi-
nally, we report on methods to characterize, compare and evaluate the most likely
subtypes.

2.1 Introduction

To identify homogeneous subtypes of complex diseases like Osteoarthritis (OA)
and Parkinson’s disease (PD) and to subtype chemical databases, we developed
a scenario mimicking a cluster analysis process: from data preparation to clus-
ter evaluation, see Figure 2.1 for an illustration of our scenario. It implements
various data preparation techniques to facilitate the analysis given different data
processing. It also features a computational approach that repeats data modeling
in order to select for a number of subtypes or a type of model. Additionally,
it defines a selection of methods to characterize, compare and evaluate the top
ranking models.

The outline of the rest of the chapter is as follows. First, we describe data
preparation issues with methods to answer them, as well as the clustering method.
Second, we report methods to characterize, compare and evaluate cluster results.
Illustrations of our scenario throughout this chapter are from medical research on
OA and PD.
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Figure 2.1: Workflow of a subtype discovery analysis.

2.2 Data preparation and clustering

We aim to identify homogeneous and reliable subtypes. Hence, cluster results
should be reproducible and the clusters should characterize true underlying pat-
terns, not the incidental ones. We discuss in this section the removal of the time
dimension in the OA and PD datasets, the reliability and validity of cluster results
and give a brief overview of model based clustering.

2.2.1 Data preparation

As data preparation can influence largely the result of data analysis, our scenario
implements various methods to transform and process data, e.g. computing the
z-scores of variables to obtain scale-invariant quantities, normalizing according
to the Euclidean norm (L2), the Manhattan distance (L1), the maximum and
centering with respect to the empirical mean, the median or the minimum.

As in the overal severity of OA and PD, respectively age or disease duration
(thereafter, the time) are known to play a major role, we may want to remove their
dimension in the data because we do not want to model clusters only characterized



2.2. Data preparation and clustering 23

!" #$% &

'()*+
'()%*
'(),%
'()-,
'()&-
'()"&

.()%*

.(),%

.()-,

.()&-

.()"&

'()*+
'()%*
'(),%
'()-,
'()&-
'()"&

# " & -

!"#$%&'(')"*$+,%&-+ !.#$/'0-$"123+/-1$+,%&-+

(/01234562734567893:;<=>3:?@?>*=36ABC729392CBA7

.()%*

.(),%

.()-,

.()&-

.()"&

*3:&D=

,3:-E=

%3:--=

&3:DD=

"3:%"=

-3:"D-=

*3:"+=

%3:*,=

,3:D%=

-3:+-=

&3:,#=

"3:",-=

Figure 2.2: For OA, we show results of two cluster analyses on the spine facets factor
with a VEV model having six mixtures (the VEV model will be explained in section
2.2.3). In (a), the modeling is on the original ROA scores, i.e. between [0, 4] and in (b),
on the time adjusted scores, i.e. z-scores. This illustrates how the time influences the
cluster results. The arrangement of the variables mimicks the disposition of the cervical
and lumbar vertebrae, from top to bottom.

by them. In Figure 2.2, we report a visualization of two cluster analyses on OA
data: we conducted the clustering on the original scores and on the time adjusted
scores; it shows how much the time influences the modeling. So, to remove the
time dimension for the data, we first perform regression on the time for each
variable and next, we conduct cluster analyses on the residual variance.

If we denote by α and β the estimated intercept and coefficient vectors of
the regression, by the matrix X the data where xij refers to measurement j of
observation i, then the regression is given by

xij(ti) = αj + βjg(ti) + εij , (2.1)

εij = xij(ti) − αj − βjg(ti). (2.2)

The εij refer to the residual variation and g(t) ∈
{
log(t),

√
t, t, t2, exp(t)

}
(the

time effect is not necessarily linear). Additionally, residuals εij should distribute
normally around zero for each variable j, as illustrated in Figure 2.3.

2.2.2 The reliability and validity of a cluster result

In our data mining scenario for subtype discovery by cluster analysis, hierar-
chical clustering [Sne73] or k-means [Has01] did not match our expectations in
terms of reliability and validity (see discussion below). Instead, we selected model
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Figure 2.3: These four figures illustrate the original and the time-adjusted data distri-
butions of variables DIP5 L and beck, which respectively pertain to OA and PD analyses.
Such histograms are obtained when plotting a dataset class (cdata) of the R Subtype-
Discovery package. To be valid, the residuals εij of the regression on the time should
distribute normally around zero for each variable j.

based clustering that relies on the EM-algorithm (Expectation Maximization) for
parameter estimation [Fra99; Fra02b; Fra03; Fra06]. In the following two para-
graphs, we discuss the reliability and validity of the k-means, the hierarchical and
the model based clustering.

k-means and hierarchical clustering First, in terms of reliability, the cluster results
should be consistent when we repeat the analysis. For example, when we repeat
the k-means, solutions may differ because of the different starting values. Second,
both the hierarchical clustering and the k-means clustering depend on distance
measures which do not necessarily mimic the data distribution of the clusters;
however, to be valid, the clusters should be understandable which is not evident
when they are defined in terms of distances, especially for non-euclidean ones.
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Figure 2.4: On the left, we show a simple modeling with three mixtures in two dimen-
sions which are defined by their center µk and their geometry Σk with k = 1, 2, 3. On
the right, we illustrate two mixtures on a single dimension. Membership of the gray is
most likely. Membership of the black is less likely.

In fact, the clusters should also be distinguishable, which becomes an issue as
the modeling takes place in higher dimensions because the distance-based algo-
rithms are sensitive to the curse of dimensionality [Bey99]. And finally, another
aspect that hampers especially the hierarchical clustering, concerns the numerous
parameters that can only be set subjectively. The book [Sne73] gives a detailed
description of all the possible parameters.

Model based clustering To be fair, reliability issues also exist for clustering by
mixture of Gaussians because it relies on the EM-algorithm. To estimate model
parameters, EM optimizes iteratively the model likelihood and as a matter of fact,
different starting values for EM may lead to different cluster results. Therefore, an
important issue concerns the sensibility to different starting values of the mixture
modeling. In this regard, Fraley and Raftery decided to initiate systematically
their EM-algorithm by a model based hierarchical clustering [Fra99]. This choice
ensures the reproducibility of the cluster results because two repeats of the mixture
modeling will initiate EM equally.

Concerning the validity issue, mixture modeling not only reports the estimated
center of each mixture but also it estimates the covariance structure. Therefore,
it also yields estimates of the cluster membership certainty. Further, as shown
in [Ban93] and as illustrated with an example in Figure 2.4, the framework relies
on the concept of reparameterization of the covariance matrix which enables to
select and adapt the level of complexity of the covariance by controlling its geom-
etry. Hence, the analysis offers a range of models that involve varying number of
parameters to estimate. For instance, a particular model may set an equal data
distribution for all mixtures, while another may discard the estimations of the
covariates in the model.
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2.2.3 Clustering by a mixture of Gaussians

In this subsection, as in [Fra99; Fra02b; Fra03; Fra06], we describe clustering by
mixture modeling.

First, the likelihood function of a mixture of Gaussians is defined by

LMIX(θ, τ |x) =
N∏

i=1

G∑

k=1

τkφk(xi|µk, Σk), (2.3)

where xi is the ith of N observations, G is the number of components and τk

the probability that an observation belongs to the kth component (hence τk ≥ 0
and ΣG

k=1τk = 1). Then, the likelihood of an observation xi to belong to the kth

component is given by

φk(xi|µk, Σk) =
exp{− 1

2 (xi − µk)T Σ−1
k (xi − µk)}

√
det(2πΣk)

. (2.4)

The reparameterization proceeds by eigenvalue decomposition of the covariance
matrix Σk

Σk = DkΛkDT
k . (2.5)

This decomposition depends on the diagonal matrix Λk of the eigenvalues and
on the eigenvector matrix Dk which determines the orientation of the principal
components. The matrix Λk can be decomposed further into

Λk = λkAk (2.6)

with Ak the geometrical shape and λk the largest eigenvalue.
In their framework, Fraley and Raftery control the structure of Σk using con-

straints on the three parameters λk, Ak and Dk. The constraints are expressed in
letters {I, E, V } which stand for identical, equal and variable respectively.

λk refers to the relative size or the scale of the kth mixture which may be
equal for all mixtures (E) or vary (V).

Ak specifies the geometrical shape which may limit the mixtures to spher-
ical shapes (I), to equally elongated shapes for all mixtures (E), or to
varying ones (V).

Dk characterizes the principal orientations of the covariance which may
simply coordinate along the axes (I) and therefore neglect estimation
of the covariates; but when considering covariates, we may select an
equal orientation for all mixtures (E) or a different one (V).

Hence, a constraint is expressed by three letters, one for each parameter. For
example, the constraint VVI refers to a model where a diagonal covariance matrix
will be estimated for each cluster; therefore, no covariate is estimated.
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EM-algorithm For a given number of mixtures and a covariance model, the EM-
algorithm is used to estimate the model parameters [Dem77]. It alternates iter-
atively between a step of Expectation to estimate for each observation its cluster
membership likelihood, and a step of Maximization to identify the parameters
that maximize the model likelihood. The iterative process stops as likelihood
improvements become small.

An important concern for the EM algorithm is the dependency on the starting
point. As mentioned before, Fraley and Raftery propose to systematically initial-
ize EM with a model based hierarchical clustering. Though, a common strategy
is to start EM from several random points and then to study the sensibility of
the cluster results to these changes. We selected this second strategy for our data
mining scenario.

2.3 Model selection
The larger the number of parameters, the more likely it is that our model may
overfit the data which restricts its generality and comprehensiveness. In this
section, we discuss a score that we use as a guidance to compare models involv-
ing different numbers of parameters and an approach to conduct a valid model
selection.

2.3.1 A score to compare models
For model selection, Kass and Raftery [Kas95] prefer the Bayesian Information
Criterion (BIC) to the Akaike Information Criterion (AIC) because it approxi-
mates the Bayes Factor. Therefore, our analyses also rely on the guidance pro-
vided by the BIC. It is defined by

BIC = −2 logLMIX + log (N × #params) , (2.7)

with LMIX the Gaussian-mixture model likelihood, N the number of observations
and #params the number of parameters of the model.

2.3.2 Valid model selection
In our data mining scenario, we found it inappropriate to conduct model selection
on the basis of a single BIC value because it left several questions unanswered.
We give some of them:

1. What is the statistical significance of BIC scores differences that are less
than 5%?

2. If EM was initialized from different starting values, how reliable would the
cluster results be?
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3. Did the EM-algorithm end in a local or a global likelihood maximum?

For this reason, we decided to further validate our choice for a particular model
by repeating the data modeling process for different starting values; our approach
proceeds as follows:

1. Set an integer that fixes the starting point of the random number generator.

2. Draw from a uniform distribution a matrix of cluster membership probabil-
ities.

3. Proceed to a maximization step (M-step) to identify the parameters of the
most likely model.

4. Start EM-algorithm from its expectation step (E-step).

This way, by repeating EM initialization from many different starting points, we
can select the most likely model and consider it as the optimal one.

Then, to conduct a valid model selection, we aggregate the BIC scores in a
number of ways. In first place, we report the average rank of the model (re-
spectively the average rank of the number of clusters) when a particular number
of clusters (resp. a model-type) is chosen. These rankings may enable to select
for a particular type of model and a number of clusters. We also report tables
that characterize statistically the BIC scores in terms of the empirical mean,
the standard deviation and different quantile statistics. Finally, two more tables
present the starting values and the BIC scores of the most likely models for each
combination.

2.4 Characterizing, comparing and evaluating cluster results

Because cluster models may take different spatial-shapes, we need methods to
report their characteristics and to compare them. Further, when analysing data
from the medical domain, we consider as important to evaluate the clinical rel-
evance of the subtypes by some additional characteristics. Therefore, in this
section, we present our techniques to address these different aspects.

2.4.1 Visualizing subtypes

To check the effect of changing the settings (the type of cluster model and the
number of clusters), we need visualization tools to see the characteristics of the
cluster results. Being influenced by Tukey [Tuk77] and Tufte [Tuf83; Tuf90] for
scientific data visualization and by Brewer’s suggestions for color selection in
geography [Bre94], we selected three visual-aids to address this issue: heatmaps
[Eis98], parallel coordinates plots [Ins85] and dendrograms [Sne73].
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Heatmaps In the analysis of micro array data, heatmaps are often used to display
and cluster data. However, as heatmaps depend on hierarchical clustering, there
are many parameters that need to be set rather subjectively. Besides, as we
do calculations with distance measures, the variables should be scale-free and
comparable; this may be awkward when variables are not scale-homogeneous. On
top of that, as variables are correlated, the distances will mostly reveal patterns
in the principal component dimensions of the data.

For the OA data, we can illustrate this by considering a large joint factor
that consists of hips and knees and another one that consists of the spine joints.
Simply because there are only four variables in the first factor and about 20 in the
second, the spine has a larger ”contribution” than the large joints in the distance.
So, simple distances lack sensitivity to manifest changes in the small principal
component dimensions. We limit the use of heatmaps to report statistical patterns
of the clusters, e.g. the mean, the median or quantiles.

Next, as hip left and right pertain to the hips in OA or as both urinary and
cardiovascular problems reflect autonomic symptoms in PD, we can often group
variables into main factors. Indeed, we may expect the variables to correlate in
each factor; yet, standard heatmaps do not exploit the grouping of the variables,
this makes the comprehesion of the cluster results more difficult.

Parallel coordinate plots In parallel coordinates plots, we can make use of this
grouping information in factors to order the variables appropriately. For each
cluster, we use a different color and, as Figure 2.2 illustrates OA data, we char-
acterize each center (µk) by lines connecting the different variables (the parallel
axis). In this Figure, we notice the particular ordering for the cervical and the
lumbar spinal joints that reflects the natural ordering of these joints from top to
bottom. An interesting additional property of this type of plots is that besides
each cluster center (the mean pattern), we can also report quantile-statistics us-
ing connected lines of a different shape (e.g. the 2.5% and 97.5% patterns of a
cluster).

Dendrograms Finally, in spite of the many disadvantages of hierarchical cluster-
ing, we find it a useful addition to the heatmaps and parallel coordinates because
dendrograms can illustrate the similarity between the center patterns or between
the variables. In fact, a dendrogram on the cluster centers can help to order the
clusters by similarity, whereas a dendrogram on the variables can provide a rudi-
mentary factor analysis. Therefore, both kinds of dendrograms are included and
provide additional understanding.

2.4.2 Statistical characterization and comparison of subtypes

First, using the log of the odds, we report the main statistical characteristics of
the clusters. Second, to cross-compare the cluster results, we rely on regular
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association tables from which we estimate the usual χ2 statistics. Next, we use
further the χ2 statistics to calculate a single measure in terms of the Cramer’s V
coefficient of nominal association. Finally, as a way to assess the reproducibility
of cluster results, we estimate the generalization of the cluster result by training
common machine learning algorithms on the clustered data.

Statistical characterization For each application domain, we group variables by
main factor such as the main joint sites in OA (the spine facets, the spine lum-
bars, the hips, the knees, the distal and the proximal interphalengeal joints),
the impairment domain in PD (the cognitive, the motricity and the autonomic
disorders) and the class of molecular descriptors in drug discovery. Then, to char-
acterize statistically the cluster results, we compute the odd of the cluster data
distribution as compared to the one of the dataset; the data distribution is the
sum of the scores in each group of variables (the factors).

In practice, one might refer to the log of the odds as the cross-product because
we calculate it from tables similar to Table 2.1. We express the log of the odds
of a cluster k on a factor l as

logoddskl = log
A × D

B × C
. (2.8)

Table 2.1: For each sum score l, we consider a middle value δl such as the dataset
mean or median. For cells A and B, we use it to count how many observations i in the
cluster Sk have a sum score above and below its value. For cells C and D, we proceed to
a similar count but on the rest of the observations i ∈ {S − Sk}.

xi < δl xi ≥ δl

i ∈ Sk A B
i ∈ {S − Sk} C D

Statistical comparison of cluster results In order to compare cluster results, we re-
port association tables that describe the joint distribution between the two cluster
affectations of the observations (nominal variables). If the table has many empty
cells, then the two cluster results are highly related. However, if the joint distribu-
tion over all cells is even, then the two cluster results are unrelated (independent).

Further, to summarize the association tables, we calculate the Cramer’s V.
Similarly to Pearson’s correlation coefficient, the Cramer’s V takes values in [0, 1];
one stands for completely correlated variables and zero for stochastically inde-
pendent ones. The measure is symmetric and it is based on the χ2 statistics of
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nominal association. Therefore, the more unequal the marginals, the more V will
be less than one. Alternatively, the measure can be regarded as a percentage of
the maximum possible variation between two variables. It is defined by

V =
√

χ2

n × m
, (2.9)

where n is the sample size and m = min(rows, columns) − 1.
In our table-charts, we will embed in the top left the joint distribution and in

the lowest row the Cramer’s V coefficient.

Estimating the cluster result reproducibility When performing unsupervised cluster
analysis, it is important to know whether the cluster result generalizes, for instance
to the total patient population in the case of medical research. Therefore, we chose
to assess the cluster result learnability by training machine learning algorithms
like the naive Bayes, the linear Support Vector Machines or, as a baseline, the
one nearest neighbor classifier.

To evaluate these algorithms, we use the average classifier accuracy estimated
by training ten times the classifiers on datasets splitted randomly into training
(70%) and test set (30%). To split the data, we chose to preserve in every training
and test set the cluster proportions from the original sample.

Stratifying the samples enables to reduce the variability of the accuracy esti-
mates which is coherent with the practice in machine learning because we primar-
ily aim to compare algorithms. However, in medical research, we might prefer to
include the variability inherent to the cluster proportions in the estimation of the
accuracy.

2.4.3 Statistical evaluation of subtypes

When conducting a subtype discovery analysis, a key concern is the evaluation
of the clusters. For that purpose, we implemented a simple mechanism to add
study-specific evaluation procedures of the clusters.

In OA for instance, as the study involves sibling pairs, we defined two sta-
tistical tests that assess the level of familial aggregation in each subtype and its
significance. Our first test relies on a risk ratio which we refer to as the λsibs,
whereas the second test makes use of a χ2-test of goodness of fit.

In drug discovery, χ2 cell-statistics between the human-defined classification
and the one identified by the subtyping are reported; we search for χ2 cell-statistics
showing a large marginal.

The λsibs risk ratio in OA research First of all, we characterize each individual as
proband or sibling depending on whether this individual was the first sibling
involved in the study or not.
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Then, this test quantifies the risk increases of the second sibling given the
characteristics of the proband. For instance, a λsibs = 1 means that the risk does
not increase and that the cluster membership of the proband does not influence
the one of his sibling. On the other hand, if λsibs = 2, then the risk increase is
two-fold. Finally, a λsibs is significant when the lower bound of the 95% confidence
interval is above 1. In the following, we describe formally the λsibs and we derive
its confidence interval analytically by the delta method.

Take two siblings s1 and s2 with s1 being the proband. A proband is the
first affected family member who calls for medical attention. We consider the
probability of a sibling to belong to a group Sk as P (si ∈ Sk) with i ∈ {1, 2}, or
for short P (si). Then, the conditional probability that the second sibling is in Sk

given that the first sibling is also in Sk is referred to as P (s2|s1). Therefore, the
λsibs is expressed by

λsibs(Sk) =
P (s2|s1)
P (s2)

=
P (s1, s2)

P (s1)P (s2)
=

P (s1, s2)
P (s)2

. (2.10)

where P (s1) = P (s2) = P (s) if the population is considered to be infinite. Next,
we derive a confidence interval by the delta method using

λsibs =
α̂

β̂
(2.11)

where α̂ = P (s1, s2), β̂ = P (s) (the hat denotes quantities estimated from the
data). Then, the variances and covariance of α̂, β̂ have the form

σ2
α =

α̂(1 − α̂)
ni

, (2.12)

σ2
β =

β̂(1 − β̂)
N

, (2.13)

cov(α̂, β̂) =
α̂(1 − β̂)

N
, (2.14)

with ni the sibship size and N the number of observations. The first order Taylor
approximation of f(α, β) in (α̂, β̂) is expressed by

f(α, β) = f(α̂, β̂) +
∑

δ=α,β

(δ − δ̂)
∂f(α̂, β̂)

∂δ
+ R1. (2.15)

If we move the zeroth derivative to the left and we raise everything to the square,
then we obtain

(
f(α, β) − f(α̂, β̂)

)2
=

(
(α − α̂)

∂f(α̂, β̂)
∂α

+ (β − β̂)
∂f(α̂, β̂)

∂β

)2

. (2.16)

Provided that ∂f(α̂, β̂)/∂α = 1/β̂2 and ∂f(α̂, β̂)/β = −2α̂/β̂3, we obtain
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(
f(α, β) − f(α̂, β̂)

)2
= (α − α̂)2

(
1

β̂2

)2

+(β − β̂)2
(

−2α̂
β̂3

)2

+2(α − α̂)
(

1
β̂2

) (
−2α̂
β̂3

)
.

(2.17)

Finally, taking the expectation, the variance is expressed by

σ2
λ =

1
β̂4

(
σ2

α − 4cov(α̂, β̂)
α̂

β̂
+ 4σ2

β
α̂2

β̂

)
, (2.18)

or equivalently

σ2
λ =

1
β̂4

(
σ2

α − 4cov(α̂, β̂)β̂λ + 4σ2
βλ

)
. (2.19)

A χ2-test of goodness of fit for OA research We also implemented a simple χ2 test
of goodness of fit to assess the level of familial aggregation in each cluster k.

This test counts the pairs of siblings in each group and compares them to the
ones expected when cluster membership would be random. If we first define N
as the number of individuals and if we let S be a random draw of size |S|, then
the probability that an individual i belongs to S is

P (i ∈ S) =
|S|
N

. (2.20)

Next, if we consider a second individual j which is independent of i, then the
probability that both i and j belong to S is expressed by

P (i, j ∈ S) = P (i ∈ S)P (j ∈ S) =
(
|S|
N

)2

. (2.21)

Further, if we denote by E(i, j ∈ S) the expected number of sibling pairs under
random cluster membership which relies on the total number of pairs (N/2), then

E(i, j ∈ S) = P (i, j ∈ S)2
N

2
. (2.22)

Finally, the Grand Total of the χ2 test is

GrandTotal =
G∑

k=1

(O(i, j ∈ Sk) − E(i, j ∈ Sk))2

E(i, j ∈ Sk)
=

G∑

k=1

χ2
k, (2.23)

where k indices over the different clusters and χ2
k refers to the separate χ2 statistics

of each cluster. The number of degrees of freedom of our test is

df = G − 1 (2.24)

with G the number of clusters.
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Association tables in drug discovery In order to better understand the relationship
between the bioactivity classes, we decided to study the joint distribution between
the subtypes and the bioactivity classes. For this purpose, the joint distribution
between the cluster affectation and the bioactivity class is reported both in terms
of cell-counts and χ2 cell-statistics; we are interested in the cells with high χ2-
statistics.

2.5 Concluding remarks
We presented a data mining scenario that facilitates and enhances the search for
subtypes with application to medical research and drug discovery. This scenario
involves techniques to prepare data, a computational approach repeating data
modeling to select for a number of clusters and a particular model, as well as
other methods to characterize, compare and evaluate the most likely models.
Therefore, our scenario does not solely cluster data but it also produces a set of
results to conduct a subtype discovery analysis: from data preparation to subtype
evaluation.


