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ABSTRACT

Electroconvulsive therapy (ECT) has shown apparent efficacy in treatment of patients with
depression and other mental illnesses who do not respond to psychotropic medications
or need urgent control of their symptoms. Pharmacogenetics contributes to an individual’s
sensitivity and response to a variety of drugs. Clinical insights into pharmacogenetics of
ECT and adjunctive medications not only improves its safety and efficacy in the indicated
patients, but can also lead to the identification of novel treatments in psychiatric disorders
through understanding of potential molecular and biological mechanisms involved. In this
review, we explore the indications of pharmacogenetics role in safety and efficacy of ECT

and present the evidence for its role in patients with psychiatric disorders undergoing ECT.
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INTRODUCTION

Due to its apparent effectiveness, electroconvulsive therapy (ECT) was commonly used for
depressive disorders prior to invention of antidepressants in the 1950s. At the beginning,
unmodified ECT was agonizing and unsafe, leading to, among others, bone fracture or spine
injury. However, the advent of anesthetics and muscle relaxants along with newer apparatus
evolved the “modified ECT to achieve maximum benefits while minimizing the procedural
side effects related to the applied medication (anesthesia), electrical current or the induced
seizure. ECT is currently administered with individually adjusted electrical currents under
surveillance of anesthesiologists who apply anesthetics and muscle relaxants in appropriate

medical setting. '

In spite of all the technical advances that have improved the relative risk of ECT, many
crucial issues remain unresolved. For example, it is difficult to determine a priori whether
ECT will be associated with an “adequate” therapeutically effective seizure in each patient.
2 Genetic variations contribute to the variation of an individual’s response to different class
of medications or treatment procedures via multiple components. This interface between
our genetic variations and response to therapeutic interventions, i.e. pharmacogenetics,
determines the individual response to a specific treatment and affects both patient’s safety

and efficacy of response to ECT.

Historically, the role of pharmacogenetics in ECT was primarily related to the safety of ECT
application and was explored by Kalow. Observation of prolonged apnea after succinylcholine
administration in some individuals paved the way to the preliminary clinical insights into
pharmacogenetics. In 1956, Kalow discovered that an alteration in plasma cholinesterase
level caused induction of longer duration of paralysis by application of succinylcholine to
ECT patients. This change resulted in extension of duration of succinylcholine action from the
few minutes to over an hour in the affected individuals. 4 Kalow implied the discovery of the
presence of genetic effects on drug response. 5 ¢

These studies advanced further research related to pharmacogenetics such that in 1960s
the process of drug acetylation was discovered and the fact that slow acetylators (poor
metabolizers) are more prone to side effects related to drug metabolism. ® Furthermore, by
application of anesthetics during procedural treatments including ECT, the awareness of
developing side effects such as acute porphyric event due to thiopentone as well as the
observed association of the malignant hyperthermia with succinylcholine, drew the attentions
in the how genetics might influence in the applied pharmacology. ”
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ECT is the most effective acute treatment for mood disorders, especially treatment-resistant
Major Depressive Disorder (MDD), and has proven efficacy in other non-depressed
psychiatric disorders such as schizophrenia. &' Several studies have explored the impact
of genetics in the neurobiological mechanisms involved in ECT. These studies have also
aimed to improve the efficacy of ECT by predicting the genotype-phenotype distinction of
patients undergoing ECT. 2 ™28 To our knowledge, no comprehensive literature review has
been published on this ground. Hence, in this review, we will provide an evidence-based
approach to the role of pharmacogenetics on safety (drugs used during ECT) and efficacy
of ECT (potential genes and neurobiological mechanisms), and present evidence of its
importance in patients with psychiatric disorders who undergo ECT (figure 1).

METHOD

Using a structured approach to identify the source of materials for the review, a systematic
search was conducted for relevant peer-reviewed articles in PubMed and the Google
Scholar search engine, using the keywords ‘ECT anesthesia genetics’, ‘ECT safety genetics’,
‘ECT efficacy genetics’, ‘ECT and genetics’, ‘treatment resistant psychotic disorders ECT
genetics’, ‘depressive disorders ECT genetics’, ‘psychotic disorders ECT genetics’, ‘ECT
neurotransmitter genes’, ‘genetics and ECT response’ and ‘adjunctive therapy in ECT and
genetics’. References of the relevant articles or editorials were also considered for potential
bibliographic related references to avoid any missing publication. All searches were limited
to research published in English. Due to paucity of articles on this subject, there was no
restriction on time of publication. The identified papers were predominantly related to
depression disorders. For the efficacy of ECT and main focus of this review, we included
all preclinical and human studies that might explain a direct role of a gene in the efficacy
of ECT or suggest a genetic effect through neurobiological mechanisms. Accordingly, 34
publications were identified in investigating the pharmacogenetics in efficacy of ECT; only 19
articles showed direct investigation on role of pharmacogentics in ECT. The ECT associated
gene signatures were analyzed using MetaCore™ platform for investigation of their potential

interactions and common biological network pathways in human brain.
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PHARMACOGENETICS AND SAFETY OF ECT

. Anesthesia adverse events

Abnormalities in butyrylcholinesterase

ECT is a short procedure and demands anesthetics with rapid onset and short duration of
action. These qualities have made succinylcholine as the neuromuscular blocking agent
(NMBA) of choice for ECT . The enzyme butyrylcholinesterase (BCHE) hydrolyzes ester
bonds in succinylcholine. The enzyme is composed of 4 identical subunits of 574 amino
acids, each containing an active catalytic site. The BCHE1 gene is located on four exons of
chromosome 3g26.1-3g26.2 (online Mendelian inheritance in Man; OMIM 177400). The gene
encodes a 602 amino acid protein including a 28 amino acid leader peptide. Genetic variation
in the BCHE1 gene leads to variant enzyme forms, which affect the substrate behavior,
resulting in reduced or absence of the enzyme BCHE activity. BCHE deficiency results in a
prolonged effect of the ultra-short acting depolarizing muscle relaxant succinylcholine due
to markedly decrease in plasma cholinesterase activity '“. The variants of BCHE included
wild type (U), atypical (A, dibucaine resistant), fluoride resistant (F), silent (S) and Kalow
(K). Besides the normal variant (U), A and K variants are more frequent (A20G and G1615A)
S 1t is noted that the patients with homozygosis or carriers with compound heterozygosity
remain asymptomatic in the absence of exposure exogenous choline ester-compound such

as succinylcholine.

In Australian population, out of 65 patients referred for prolonged post-succinlycholine apnea,
85% of the subjects showed one of mutated variants of BCHE gene including dibucaine
(Dib; D70G), Sil-1 (G115FS), Flu-1 (T243M), Flu-2 (G390V), and K-variant (A539T), with 74%
being dibucaine homozygote or heterozygote, 6% rare genotypes, 3% heterozygous fluoride
allele, and 13% undetermined . The Danish Cholinesterase Research Unit (DCRU), in a 20-
year longitudinal study, found abnormal response to succinylcholine in 61.1% of the 1,247
patients who were visited in the center. Of these 1,247 patients, 28.5% had normal genotype
and 46.5% were genotypically aberrant. While the recovery time of neuromuscular function in
patients with one aberrant allele was 15-30 min following a single dose of succinylcholine 1.0-
1.5mgkg™, it took 35-45 min for patients with heterozygousity of abnormal allele in two genes
to recover. Homozygousity in abnormal allele in atypical gene lengthened the recovery
time to 90-180 min. Patients with genotypes of AK and AH experienced slightly (20 min) or
markedly longer duration of action (90 min) of succinylcholine, respectively. '” Accordingly,
there are several case reports of succinylcholine induced prolonged apnea in patients
receiving ECT. " '®20 |n a longitudinal study, Mollerup et al. determined the BCHE activity and
the BCHE genotype of 13 patients who were visited in the DCRU after ECT. 2' The authors
measured and compared the duration of apnea with normal subjects and found BCHE gene
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mutations, the K-variant being the most frequent. The duration of succinylcholine action and
consequently duration of apnea were prolonged (5-15 min) in 11 patients compared with
controls (3-5.3 min). Consequently, they recommended neuromuscular monitoring during
the first ECT.

Malignant hyperthermia

Malignant hyperthermia (MH) is a hypermetabolic response to succinylcholine and potent
volatile anesthetic gases such as halothane, isoflurane, sevoflurane and desflurane.
Succinylcholine, the main applied muscle relaxant in ECT, is a far more powerful trigger of
MH than the volatile agents. ?>?* Experimental studies indicate that the mechanism underlying
MH is an uncontrolled release of intracellular calcium from skeletal muscle sarcoplasmic
reticulum (SR). MH is inherited primarily in an autosomal dominant fashion in humans, which
might result in the MH prevalence of up to 1: 3000 due to the causal genetic mutation. A more
complex inheritance pattern might also be observed in the affected individuals. %

Approximately 50% of MH related genetic variants have been found in the RYR7 gene on
chromosome 19, a calcium channel located in the sarcoplasmic reticulum. Most cases
(70%) carry one of 30 RYR1 mutations. Linkage studies have implicated five other regions,
with variants identified in calcium channels CACNA2D1 and CACNA1S. While these
regions account for genetic variants in less than 2% of cases, the causal genetic variant in
approximately 30% of patients remains unknown. 2627 Genetic tests may offer a non-invasive
diagnostic method with lower morbidity than in vitro muscle contracture tests as the current
functional gold standard for MH diagnosis; however, genetic testing is unreliable because
the spectrum of contributing loci and alleles is not yet fully understood.

The reported incidence of MH during ECT has been less than other procedures requiring
general anesthesia. It seems more likely that other factors may be responsible for this
observation. Gornert indicated that MH is triggered in proportion to the total dose of triggering
agents. ® Thus, even if MH is triggered by succinylcholine during ECT, the absence of
continued administration of succinylcholine may abort its more fulminant expression. Indeed,
the anesthetics used in ECT are almost always ultra-short or short acting barbiturates such
as methohexital or propofol. Absence of the use of volatile anesthetics in ECT also may
explain the lack of induction of MH. As was previously stated potent volatile anesthetics that
are commonly employed in general anesthesia are also strongly linked to precipitation of
MH. 2°
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Neuroleptic malignant syndrome

NMS is a serious and potentially fatal side effect of antipsychotics, consisting of fever,
muscle rigidity, delirium and autonomic dysfunction. Underlying mechanism of this side
effect is still unknown and debated. So far some risk factors have been identified, with
clinical observations and recent pharmacogenetic research suggesting, though with
inconsistent findings, correlation between genetic mechanisms and predisposition to NMS. %
Polymorphisms of CYP2D6 enzyme through which most psychotropic drugs are metabolized
and TaqglA DRD2, a target for antipsychotic drugs, has been reported to act as the link
between pharmacogenetic factors and the potential development of NMS. % In spite of
these genetic links, ECT has been reported to be useful for refractory NMS or improving
NMS symptoms. ' % Further investigation in an appropriately designed study is warranted
to investigate the treatment role of ECT in NMS and identify the subset of patients with NMS

who might benefit from this procedure.

II. Potential neurobiological mechanisms in cognitive side effects of ECT

There are some animal and human preliminary evidences on the role of neurotransmitters/
biological alterations with the adverse cognitive effect of ECT. 334 The investigated systematic
alterations include cholinergic, endogenous opioid, glucocorticoid and glutaminergic
systems, which were mostly conducted in animal models. 3% Among these, the effects of
glutaminergic and glucocorticoid compounds have been investigated in human studies. In
an ECT trial of 10 subjects, using ketamine as anesthetics resulted in less impairment of
short-term memory than applying etomidate . The result is suggestive that the ECT-induced
cognitive disruption might be mediated by glutamate at N-methyl-d-aspartate receptors.
Neylan et al. ¥, in a two-week ECT-trial of 16 subjects, showed that elevated basal level

cortisol was associated with greater degree of ECT-induced cognitive impairment.

Palmio et al., in two separate studies, investigated the acute effect of ECT on the perturbations
in the amino acid transmitters and the brain biomarkers in blood with potential role in neuronal
activity and neuronal injury. In TRD-MDD patients who underwent a single ECT session, they
showed significant changes in the serum levels of glutamate, aspartate, gamma-aminobutyric
acid (GABA), S-100b protein (S-100b), tryptophan, and some other amino acids in 24 hours.
%940 However, it is important that future studies are designed to better distinguish changes
in the levels of these biomarkers related to both ECT side effects on brain and therapeutic

response.
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Pharmacogenetics and the efficacy of ECT
The effect of adjunctive psychotropic drugs on ECT outcome

The current remission rates after ECT appear to have declined. &' In a meta-analysis to
investigate the effect of previous pharmacotherapy failure on the efficacy of ECT, the overall
remission rate was reported to be 48.0% (281 of 585) and 64.9% (242 of 373) for patients
with and without previous pharmacotherapy failure, respectively. Additionally, patients who
received previous pharmacotherapy but failed to respond to the treatment, showed reduced
efficacy of ECT. # ECT has shown higher efficacy in conjunction with antidepressants and
antipsychotics. ** Accordingly, the understanding of pharmacogenetics of the adjunctive
drug therapy and more comprehensively pharmacogenomics of such treatments has the
potential to improve therapeutic outcomes of ECT and individualized drug therapy, while
avoiding toxic effects and treatment failure. Genetic predictors of antipsychotics have been
widely studied #, but fewer evidences are available how these factors might influence their
role in the outcome ECT.

Some studies provide evidence that the application of the N-methyl-D-aspartate (NMDA)
receptor antagonist ketamine (0.5 mg/kg) could provide rapid and longer antidepressant
effects after ECT. 5% These studies have suggested the involvement of synaptic plasticity
and neurotrophic signaling in the mechanism of action of ketamine. The observation of
mammalian target of rapamycin (mTOR) and Brain-Derived Neurotrophic Factor (BDNF)
pathway activation by NMDA receptor antagonism has proposed the observed link for the
antidepressant action of ketamine through the interaction between plasticity-related signally
pathway. ®'

Using ketamine (0.5 mg/kg) been promising in depressive patients prior to ECT. %25 Some
evidences that ketamine might reduce the effect of ECT on memory has drawn more attentions
to application of ketamine for ECT. ¥ The optimal adjunctive dose range of ketamine, its
safety and effective duration of action should be further investigated.

The association between carrier status for the long allele of serotonin transporter gene with
a better response to serotonin selective reuptake inhibitors (SSRIs) has been of interest.
Solute carrier family 6 (neurotransmitter transporter, serotonin), member 4 (SLC6A4)
encodes the serotonin transporter and is located on location 17g11.1-g12. Rasmussen et al.
retrospectively studied whether the polymorphism of the serotonin transporter gene (5-HTT)
was associated with differential treatment response in 83 ECT patients treated for depressive
disorder. 2 No significant association was found between serotonin transporter gene allelic
status with several characteristics of ECT treatment, such as seizure length or threshold,

number of treatments in a series, and depression scale ratings.
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Potential pharmacogenomics (neurobiological mechanisms) in the efficacy of
ECT

I. Brain Alterations in Acute and chronic ECT response

As was previously stated, for many non-responsive patients to psychotropic drugs, ECT is
an efficient rapid intervention. However, the neurobiological mechanisms for the efficacy of
ECT remain unknown.

While some of the therapeutic response to ECT is shortly observed after treatment, similar
to psychotropic drugs, efficacy of ECT increases by repeating treatment. This fact has
made neurotransmitters and metabolic enzymes of greater interest for investigation of ECT
response. ECT affects wide range of brain areas, 5 % which the potential therapeutic
effects on these regions may be through structural, and/or biochemical changes.

Several neurotransmitters have been investigated involvement in association with psychotic
disorders. Yatham et al. % suggested the role of serotonin (5-hydroxytryptamine, 5-HT)
dysfunction. Using positron emission tomography (PET) study in patients with bipolar
disorders, they showed antidepressants down regulate 5-HT, receptors in several cortical
regions. In a follow-up study in patients who treated with ECT due to refractory response
to antidepressants, they showed similar effect by ECT in down-regulation of brain
5-HT, receptors in the limbic and prefrontal cortical brain areas. °” Similarly in another study
by Lanzenberger et al., PET scan showed substantial reduction of 5-HT1A receptor-binding
potential (BPND) almost across the entire cortex after one ECT, particularly in amygdala and
anterior cingulate cortex. % However in another study, after several ECT, BPND did not
show consistent result with the former study. °

Dopamine neurotransmitter has also been of interest in understanding the refractoriness of
response to treatment in depressive disorder. Saijo et al. scanned seven MDD patients’ brain
after 6-7 ECTs using PET to examine the effect treatment on Dopamine D, receptors. They
found significant increase in D, receptors of anterior cingulate of patients who received ECT.
% Although these studies shows regulatory role of serotonergic and dopaminergic pathways
in biological mechanisms involved in response to ECT, it is yet to be discovered how ECT
cause this alterations.

A few studies on depressive disorders have explored the hypothesis of altered connectivity
within the white matter (WM) microstructures between the frontal and limbic areas, % such
that WM abnormalities relate to depression severity and TRD. 87 Accordingly, Lyden et al.
demonstrated ECT effect on structural plasticity within dorsal fronto-limbic pathways and
plasticity of WM relation to therapeutic response in depression. ¢ It is unknown if there is

any genetic predisposition to these structural alteration, and future investigation is hence
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warranted.

II. Potential genes involved in ECT response and the related biological pathways

In 1998, Fochtmann et al. showed that both hippocampal A1i-receptor, and cortical and
striatal NMDA-receptor bindings are associated with the quality of seizure (i.e. duration).
°Their study suggested that induced ECT-neurobiological mechanisms potentially related to
some genes, might contribute to the desired therapeutic effect of ECT.

While genetic pathway alterations by ECT and their association with clinical parameters
could provide pivotal information, few studies have examined the genetic approaches to
neurobiology of ECT and the impact of pharmacogenomics on treatment response in ECT
(Table 1). 87 These studies have shown that chronic molecular effects induced by ECT are
more likely to reveal the mechanisms of its therapeutic effects.

A. Gene expression signatures

Studies have suggested that the therapeutic effects of ECT might be due to mechanisms
involving several amino acid transmitter changes in brain through overexpression of
their regulatory genes. Altar et al. investigated the effects of single versus repeated
electroconvulsive seizure (ECS) exposure on gene transcription, in an animal model, to identify
genes and potential biochemical pathways that are associated with the efficacy of chronic
ECT. 5 Almost one hundred and twenty hippocampal and frontal genes were differentially
expressed within distinct pathways (particularly BDNF-MAP kinase) in response to acute
and chronic ECS. Of those, only nineteen genes showed similar expression in response to
acute or chronic ECS. Brain-Derived Neurotrophic Factor (BDNF), cyclooxygenase (COX)-2,
neuronal activity-regulated pentraxin (Narp), and TGFB-inducible early growth response had
co-directional changes in both brain regions. They suggested that the genes that increase
only with chronic ECS are more likely to be associated with efficacy of ECT, including those
of the BDNF-TRKB-MAP kinase pathway, arachidonic acid pathway, vascular endothelial
growth factor (VEGF), thyrotropin-releasing hormone (TRH), neuropeptide Y (NPY), and

regulators of neurogenesis. %

To address the therapeutic efficacy of ECS, Newton and colleagues examined the expression
of neutrophins and related signaling pathways in the hippocampus of rats in response to ECS
using a custom growth factor microarray chip. They reported the regulation of several genes
that are involved in growth factor and angiogenic-endothelial signaling, including neuritin,
stem cell factor, VEGF, (VGF), COX-2, and tissue inhibitor of matrix metalloproteinase-1 (TIMP-
1). ® Some of these, as well as other identified growth factors, including VEGF, fibroblast
growth factor, and BNDF, have effects on brain neurogenesis and cell proliferation. They also
examined gene expression in the choroid plexus and found several enriched growth factors
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in this vascular tissue, which were affected by ECS. Among the identified genes, TIMP-1 and
COX-2 were highly expressed in both acute and chronic ECS. The authors suggested that
the simultaneous augmented growth factor signaling with angiogenic process could have an
important role in the mechanism underlying the therapeutic effect of ECT.

B. Single gene approach. expression or polymorphism based

In this approach a prior knowledge or presuppositions on a gene which directly or in directly
may play a role in neurobiological mechanisms involved in efficacy of ECT response was
used for investigation.

DARPP-32

DARPP-32 protein (dopamine- and cyclic-AMP-regulated phosphoprotein of molecular
weight 32,000) has been of interest due to its phosphorylation regulation by dopamine and
cAMP in nerve, which might mediate some dopamine effects. "¢ DARPP-32 gene down-
regulation has also been implicated in schizopherenic patients. 77 Accordingly, Rosa et al.
showed that DARPP-32 expressions in striatum and hippocampus of rats increased after five
ECSs in 48 hours. However, the effect was fluctuant and transient. 7

COMT and APOE

Catechol-O-methyltransferase (COMT), a major enzyme in dopamine metabolism in the
prefrontal cortex has been of interest in response to efficacy of ECT. Anttila et al. showed
that COMT high-high genotype carriers would be more common in responders to ECT
than other genotype carriers. 72 A finding that suggested the lower dopamine levels in the
prefrontal cortex could be associated with substantially better treatment effects of ECT.
COMT Val158Met, a functional polymorphism of COMT at codon 158 substantially affected
the dopaminergic activity such that the Met allele homozygosity resulted in considerable
reduction of enzymatic activity compared with the Val allele homozygosity. ™

Domschke et al., in further investigation on val158met COMT, proposed that the impact
of the SNP on the efficacy of ECT in depressive patients could be gender-specific. They
also suggested that the val158met carrier might be less pharmacologically responsive to

antidepressant and could benefit from ECT in their earlier stage of mood disorder. ™

DRD2 and mutual effect with COMT

Huuhka et al. investigated the synergistic effect of two polymorphisms of Dopamine 2
receptor gene (DRD2) and COMT, C957T (rs6277) and Val158Met (rs4680) in response
to ECT treatment. The study groups consisted of 118 depressive patients and 383 healthy
controls. '® They showed that had MT Met allele and DRD2 T allele had synergistic effect in
prediction of severity of depression. Furthermore, they found that the patients with TT
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Chapter 5

‘ Potential role of pharmacogenetics in patients indicated for ECT ‘

— T

Safety of procedure ‘ Efficacy of procedure ‘

/ \
|
‘ Anesthesia adverse events ‘ L/ J l

NMDA receptor activation and N
l Chronic molecular effects of ECT

induced pathway

(BDNF ,VEGF, NTRK2, CREB-
activated genes, DARPP32)

CACNA2D1 and CACNA1S, BCHE ‘ Acute molecular effects of ECT

genotype, CYP2D6 and RYR1 (glutamate, aspartate, GABA,

tryptophan production pathways)

Prediction of the genotype-
phenotype distinction of patients
undergoing ECT (CYP2D6 and
CYP2C19, COMT, DRD2, DRD3)

Figure 1. Various implications of pharmacogenetics in safety and efficacy of ECT

genotype of DRD2 C957T SNP and Met/Met genotype of COMT were less likely to reach
remission than those with CC genotype of DRD2 C957T and Val/Val genotype of COMT.
Accordingly, they suggested the combined effect of these polymorphisms might be
associated with response to ECT. ™

APOE and RGS4
Huuhka et al. also examined the apolipoprotein E (APOE) well known for its association
with neurodegenerative diseases as well as RGS4 in prediction of TRD-MDD and found no
association between APOE and RGS4 polymorphism and response to ECT. 8 7! This finding
was, however, not consistent with the only previous study on the association of APOE and
ECT responders. 68

DRD3 (DR3)

To follow up on the role of dopamine D receptor gene in efficacy of ECT and evaluate the
potential impact of dopamine D receptor gene (DRD3) variation on ECT outcome in treatment-
resistant major depression, Dannlowski and colleagues used 10 genetic markers with high
coverage percentage on DRD3 to investigate the association with response to ECT in 104
treatment-resistant MDD white patients. They found significant association of rs3732790,
rs3773679 variants of DRD3 with response to ECT (p=0.02 and 0.03, respectively) and
rs9817063 SNP with remission (p=0.01) after ECT. They suggested that DRD3 gene variation
might affect the efficacy of ECT that might potentially be mediated through neurobiological
pathways of striatal activity. &
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BDNF

BDNF is a member of the nerve growth factor family of neurotrophins. BDNF has been
shown to exert important functions in neuronal survival, proliferation, and synaptic plasticity
in the brain. '® There are several biological evidences to support the role of BDNF as a
central neurotrophic factor in the efficacy of ECT. These evidences have shown the inductive
effects of both single and repeated ECT on BDNF secretion in brain that are reflective of
BDNF changes in serum. % 7* Similarly, BDNF levels are shown to decrease in individuals
with depression and increase following antidepressants; the changes that correlates with the
severity of the disorder. ®8 Accordingly, it has been suggested that BDNF may at least in
part explain both the acute and chronic potent effects of ECT in depressive disorders. 74 &

The neurobiological mechanisms of action in ECT have been proposed to be involvement
in, the induction of BDNF secretion by prolonged increase of both BDNF and TRKB (NTRK2)
mRNA expression in the hippocampus and entorhinal cortex (EC). & However, Taliaz et al.
suggested that while neuroplastic alterations, as expressed by changes in BDNF expression
within different brain regions, might be induced by ECT, the antidepressant-like effect of
ECT in an animal model depends on reduction of the ventral tegmental area (VTA) BDNF
expression but not on the elevation of hippocampal BDNF expression. &

In an animal experiment, Segawa and colleagues tried to explain the role BDNF and pro-BDNF
in acute and chronic ECT treatment. They found that single administration of ECS rapidly
increased hippocampal levels of pro-BDNF along with levels of prohormone convertase 1
(PC1) and tissue-plasminogen activator (t-PA). These two proteases are involved in intra- and
extracellular pro-BDNF processing. & Further ECSs resulted increase hippocampal level of
pro-BDNF as well as mature BDNF level. Taken together, they suggested that while PC1 and
t-PA could both be involved in pro-BDNF processing connected with acute antidepressant
effect of ECT, t-PA might play a dominant role following repeated ECS. ® In their model,
chronic administration of imipramine significantly increased mature BDNF levels, but not
pro-BDNF and protease levels, indicating that the therapeutic mechanism of antidepressants
might differ from that of ECT.

Clinical studies support some of the obtained evidences by pre-clinical studies on BDNF.
The significant increase in serum levels of BDNF has been detected in patients undergoing
chronic ECTs. ™ A possible mechanism for this observation has been proposed to be due to
BDNF gene upregulation mediated by histone H3 and H4 acetylation *°, though in pre-clinical
setting. Viikki and colleagues, in a recent study of 119 depressive patients, investigated
the association between BDNF polymorphism rs11030101 and the efficacy of ECT. Their
study demonstrated that the TA genotype carriers of rs11030101 were less likely to show
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improvement in Montgomery—/f\sberg Depression Rating Scale (MADRS) and benefit from
ECT compared with patients with the TT genotype. °

VEGF, P2RX7 and HTR2A

Viikki et al. also examined the association between the VEGF 2578 C/A polymorphism and
ECT in of 119 patients with TRD who were treated with ECT and 98 depressive patients
treated with SSRIs compared to healthy controls. According to their findings, the CC
genotype of VEGF 2578C/A polymorphism was more common in patients treated with ECT
and SSRI than in healthy controls (831.1%, 25.5% and 18.7% respectively; p=0.056). The
VEGF 2578 C/A polymorphism was associated with treatment resistant depression and CC
genotype was more frequent in patients underwent ECT than in controls (31.1% and 18.7%
respectively; p=0.015). ® In the same study groups, they investigated the rs2230912 and
rs2230912 P2RX7 polymorphisms. Neither of these two P2RX7 SNP was associated with
either remission after SSRI or ECT. * In the same study populations, they investigated the
improvement of depression using MADRS score after ECT in association with rs7997012
and rs6311 HTR2A polymorphisms. None of the SNPs were associated with the change in
MADRS score due to treatment. However, the interaction between the SNPs and gender

explained 14% of the variance in MADRS score change. *

CREB

Fizzled 6 (FZ6) is a seven transmembrane-spanning receptor involved in Wnt signaling. This
signaling pathway is one of the essential mechanisms in cell proliferation, polarity and fate
determination during embryonic development and tissue homeostasis. % The main signaling
pathway is activated by FZ/B-catenin, FZ/Ca*2 and FZ/planar cell polarity signaling pathways
% and inhibited by Dickkopf (Dkk) family members (e.g. Dkk1 which functions as secreted
Wnt antagonists by inhibiting Wnt coreceptors LRP5/6). % Voleti et al. demonstrated that
chronic administration of ECS augments the activity of several hippocampal genes through
the cAMP-response element binding (CREB) such that subsequent effects might lead to the
effectiveness of chronic ECT. FZ6 was also one of CREB-target genes, which was affected
by chronic ECS. In their study, viral vector-mediated inhibition of Fzd6 produced anxiety and
depressive-like effects. * Accordingly, the authors suggested that the activation of CREB
might have regulatory effect on multiple functional pathways such that the therapeutic effect
of ECS is dependent on a particular set of CREB-activated genes. %

ACE

The angiotensin I-converting enzyme gene (ACE) has been suggested as a major gene
affecting affective disorders and their treatment. To compare the effects of the ACE genotype
distributions and treatment response to ECT in MDD patients, Stewart et al. studied 119
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treatment-resistant depressive patients who were referred for ECT. All participants were
genotyped for ACE, and the efficacy of ECT was evaluated using the MADRS. ACE genotype

was not associated ECT efficacy and did not show a different frequency with healthy controls.
100

Discussion and future perspective

Our review demonstrates that the knowledge for safe application of ECT treatment of major
depression and other psychiatric disorders has been improved, at least partly due to the role
of pharmacogenetics in application of anesthetic agents. Some genes such as CACNA2D1
and CACNA1S, BCHE and RYRT1 are associated with safe practice of anesthesia in ECT.
While our review demonstrates that at this point, the knowledge of the mechanisms underlying
the efficacy of ECT has not been thoroughly elucidated, we identified several genes (i.e.
BDNF, COMT, DDR2, DDR3, CREB, VEGF, COX-2, TRKB and NMDA receptor), which their
transcriptions might play important role in treatment response to ECT. It is important to identify
the neural and the molecular pathways related to these that might explain the mediation of
the behavioral changes by ECT and its timely application.

An ideal shock treatment produces two sets of acute and chronic neurobiological responses
thatresultinarapid and sustained treatmentresponse for treatment of psychological disorders.
Accordingly, Altar et al.’s experiment showed that the neurobiological mechanisms during
ECT substantially differ by chronicity. More importantly they showed that a subset of genes
would continue to be similarly expressed in some brain regions by both acute and chronic
ECT. This fact could be suggestive that efficacy of ECT could be due to some common
regulatory pathways modulated by the therapeutic stimulus. Investigating the potential brain
regulatory network pathways among the abstracted genes (BDNF, COMT, DDR2, DDRS3,
CREB, VEGF, COX-2 and TRKB), we identified that all genes or their transmitters are co-
expressed as part of transcriptionally regulatory sub-networks in brain, more prominently in
the frontal lobe (Figure 2 & 3). In these sub-regulatory networks, AP-1 transcription including
CREB demonstrates the most regulatory effects on the network objects. This takes on greater
significance that effectiveness of ECT is more dependent on treatment response to its
chronic application. Consistently, Hope et al. '°" showed AP-1 complex had high expression
by administration of chronic ECT and persisted to be highly expressed by 7 days after the
last ECT. It has been shown that AP-1 modulation affects many cell processes including
cell proliferation, differentiation, transformation, neuronal activity and growth factor signaling.
102,198 More importantly, it has been suggested that AP-1 could act as an environmental
biosensor in mediating the linked cellular biological process. %

There are other factors that might affect the variations in expression levels in brain regions
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Figure 2. The demonstration of regulatory pathways among BDNF, COMT, DDR2, DDR3, CREB TRKB, and NMDA
receptor in human brain. AP-1 complex shows the most regulatory effect on the genes of interest. Green arrows
demonstrate activation and red arrows deactivation.
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Figure 3. The demonstration of regulatory pathways among AP-1 complex, Cox2, and VEGF in human brain.
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and directionality of regional regulatory networks. For example, there is evidence of
variations in activity level of BDNF transcripts in different brain regions ® 1 or other patients’
clinical characteristics such as gender might influence some observed gene polymorphisms
in response to treatment. %

In spite of all the improved knowledge on the safety of ECT and its proved efficacy in
treatment of some psychiatric patients unresponsive to medical therapy, ECT is still a physical
intervention and more cumbersome than medications with higher efficacy. Accordingly, our
understanding the acute and chronic molecular, cellular, and behavioral changes by ECT
will provide a new view to find potential targets for novel psychotropic treatments, particularly
antidepressants, that are highlighted by the findings such as regional gene induction (e.g.
BNDF, Cox-2), increased neurogenesis, electrophysiological reactivity, the role of VEGF in
neurogenesis, % 1% and DARPP-32 expression. ® Some genes and associated pathways
such as BDNF, TRKB-MAP kinase pathway, NPY, VEGF, arachidonic acid pathway, TRH,
VEGF, and neurogenesis regulation pathways, which have shown differential expressions
due to chronic stimulation by ECT, are more probable to have an intermediary role in
benefiting from the long-term effects of ECT. These evidences along with shared regulatory
pathways such as AP-1 and CREB could be useful for further investigation to identify novel
gene targets for treating treatment resistant psychological disease.

Palfreyman et al. suggest illustrating a “disease signature” and “drug signature” of aberrantly
expressed genes from comparison of normal controls and patients. ' In this approach,
the genes associated with disease will be explored. The comparison of the soptted genes
with ECT signature genes could identify a set of targets whose alteration might be a better
predictor of disease and the effect of procedural treatment. Ultimately, such overlapping
genes could be used to identify drug compounds that show similarity in inducing the gene
expressions, which consequently mimic the therapeutic response of ECT. This method has
been applied in animal mode such that % several compounds have been investigated to
identify the one that alter the same eleven genes elevated by ECT or exercise in rat brain.
Of note, exercise has been favorably compared to antidepressant treatment for treatment of
mild to moderate depression. %1% Such compounds could also be used to augment the
induced differentially genes expressions by chronic exposure to ECT or by antipsychotics. %
Further well-designed longitudinal clinical studies are required to increase our knowledge of
the mechanisms underlying the efficacy of ECT.
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Executive summary

Pharmacogenetics and safety of ECT
I. Anesthesia adverse events
Abnormalities in butyrylcholinesterase

BCHE deficiency could result in a prolonged effect of the ultra-short acting depolarizing
succinylcholine, the muscle relaxant of choice ECT, due to markedly decrease in plasma

cholinesterase activity.

Succinylcholine duration of action is prolonged for the patient with heterozygous for the
K-variant allele, the most frequent variant.

Malignant hyperthermia

Approximately 50% of MH related genetic variants have been found in the RYR1 gene
on chromosome 19.

Most cases (70%) harbor one of 30 RYR7 mutations.

CACNA2D1 and CACNA1S variants account for less than 2% of cases and the causal
genetic variant in approximately 30% of patients is unknown.

The reported incidence of MH during ECT has been less than other procedures requiring

general anesthesia.

Neuroleptic malignant syndrome

CYP2D6 polymorphism, the enzyme through which most psychotropic drugs are
metabolized and TaglA DRD2, a target for antipsychotic drugs, has been suggested the
link between pharmacogenetic factors and the potential development of NMS.

In spite of these genetic links, reliable NMS during ECT has been reported.

Il. Potential neurobiological mechanisms in cognitive side effects of ECT

ECT-induced cognitive disruption might be mediated by glutamate at N-methyl-d-

aspartate receptors.

- Using Ketamine as anesthetics during ECT might result in less impairment of short-

term memory

Higher basal level of cortisol might be associated with greater degree of ECT-induced

cognitive impairment.
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e Acute effect of ECT causes perturbations of several amino acid transmitters and the
brain biomarkers in blood with might be associated with neuronal activity or potential
neuronal injury.

Pharmacogenetics and the efficacy of ECT
The effect of adjunctive psychotropic drugs on ECT outcome

e The current remission rates after ECT appear to have declined

- The overall remission rate has been reported to be 48.0% and 64.9% patients with and

without previous pharmacotherapy failure, respectively.

e ECT has shown higher efficacy in conjunction with antidepressants and antipsychotics

e Application of the N-methyl-D-aspartate (NMDA) receptor antagonist ketamine during
ECT might augment rapid and longer antidepressant effect of ECT.

- NMDA receptor antagonism could activate mammalian target of rapamycin (mTOR)
and Brain-Derived Neurotrophic Factor (BDNF) pathways.

Potential pharmacogenomics/neurobiological mechanisms in the efficacy of ECT
I. Brain Alterations in Acute and chronic ECT response
e ECT affects wide range of brain areas.

e Therapeutic effects on brain regions may be through structural, and/or biochemical
changes

e ECT could have similar effect like antidepressants in down-regulation of brain
5-HT, receptors in the limbic and prefrontal cortical brain areas.

e ECT could augment the increase in Dopamine D, receptors in some brain areas in
patients who received ECT.

e ECT might effect on structural plasticity within dorsal fronto-limbic pathways and
plasticity of WM relation to therapeutic response in depression

—

I. Potential genes involved in ECT response and the related biological pathways
. Gene expression signatures

>

e Therapeutic effects of ECT might be due to mechanisms involving several amino acid
transmitter changes in brain through overexpression of their regulatory genes.
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There are some similarities in ECT induced regional alterations, e.g. hippocampus and
frontal lobe

Several genes such as VEGF, VGF, COX-2 and TIMP-1 involved in growth factor and
angiogenic-endothelial signaling could be co-expressed by both acute and chronic
ECT.

B. Single gene approach. expression or polymorphism based

Several individual genes have been investigated in association with ECT efficacy.
ECT could transiently increase DARPP-32 expressions in striatum and hippocampus.

The combined effect of COMT and DRD2 polymorphisms might be associated with
response to ECT. COMT high-high genotype carriers would be more common in
responders to ECT than other genotype carriers.

DR3rs3732790, rs3773679 SNPs are associated with remission after ECT.

Both single and repeated ECTs increase BDNF secretions in mRNA expression, mostly

in the hippocampus and entorhinal cortex.
-The BDNF change in brain is reflective of changes in serum

- PC1 and t-PA could both be involved in BDNF expression processing connected with
acute antidepressant effect of ECT; t-PA might play a dominant role following repeated
ECS

- TA genotype carriers of rs11030101 was shown to be less likely to show improvement
in Montgomery-Asberg Depression Rating Scale (MADRS) and benefit from ECT
compared with patients with the TT genotype

VEGF 2578 CC genotype was observed with more frequent in patients underwent ECT.

CREB might have regulatory effect on multiple functional pathways such that the
therapeutic effect of ECS is dependent on a particular set of CREB-activated genes.

Discussion and future perspective

BDNF, COMT, DDR2, DDR3, CREB, VEGF, COX-2, TRKB and NMDA receptor are genes
that their functions could affect the efficacy of ECT.
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The potential genes involved in efficacy of the ECT or their transmitters are co-expressed
as part of transcriptionally regulatory sub-networks.

In these sub-regulatory networks, AP-1 transcription including CREB could be a major

regulator of the network objects.

AP-1 complex has shown high expression by administration of chronic ECT and persists
to be highly expressed by 7 days after the last ECT.

The shared regulatory pathways such as AP-1 and CREB could be useful for further
investigation to identify novel gene targets for treating treatment resistant psychological
disease.

Investigating ECT signature genes as compared to different drug compounds could
help in identifying medications that might augment the induced differentially gene
expression by ECT.

Further well-designed longitudinal clinical studies are required to increase our knowledge

of the mechanisms underlying the efficacy of ECT
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