
Elasticity and plasticity : foams near jamming
Siemens, A.O.N.

Citation
Siemens, A. O. N. (2013, September 12). Elasticity and plasticity : foams near jamming.
Casimir PhD Series. Retrieved from https://hdl.handle.net/1887/21709
 
Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/21709
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/21709


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/21709 holds various files of this Leiden University 
dissertation. 
 
Author: Siemens, Alexander Oltmann Nicolaas 
Title: Elasticity and plasticity : foams near jamming 
Issue Date: 2013-09-12 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/21709
https://openaccess.leidenuniv.nl/handle/1887/1�


Chapter 2

Introduction

Many everyday materials such as sand, toothpaste, mayonnaise and shaving
foam exhibit an intriguing mix of liquid-like and solid-like behaviors, some
familiar, some surprising but often poorly understood. These materials
all have in common a consistency of disordered collections of macroscopic
constituent particles: sand is a dense packing of solid grains (Fig. 2.1 a)),
toothpaste is a dense packing of (colloidal) particles in fluid (Fig. 2.1 b)),
mayonnaise is an emulsion consisting of a dense packing of (oil) droplets
in an immiscible fluid (Fig. 2.1 c)), and shaving foam is a dense packing of
gas bubbles in fluid (Fig. 2.1 d)).

Dense is the keyword here – these materials obtain finite rigidity once
their constituent particles are brought into contact. Nevertheless, all these
materials can be made to flow by the application of relatively small stresses
– in fact their utility often stems from precisely this combination of liquid-
like and solid-like behavior. By varying thermodynamic (temperature or
density) and mechanical (applied stress) variables, one can bring about
a transition from a freely flowing to a jammed state in these and many
other disordered media. For instance an increase in density causes colloidal
suspensions to turn glassy. Similarly, flowing foams can be made static
by decreasing the applied stress to below the yield stress. In 1998, Liu
and Nagel presented a novel way of organizing the physics underlying these
phenomena through a jamming diagram (Fig. 2.1e)), and proposed to probe
various transitions to rigidity [1].

This Chapter aims at giving a basic introduction to our current under-
standing of the following two questions: What is the nature of the jammed
state? And what is the nature of the jamming transition? We will illus-
trate the main features of these systems by idealized pictures illustrating
our current understanding rather than “real” experimental and numerical
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CHAPTER 2. INTRODUCTION

data. For a more elaborate introduction, the reader is referred to two more
detailed review papers and references therein [11, 12].

Figure 2.1 – (a-d) Examples of everyday disordered media in a jammed state. a)
Granular media. b) Toothpaste. c) Mayonnaise. d) Shaving foam. e) Jamming
diagram as proposed by Liu, Nagel and coworkers [1, 13]. The diagram illustrates
that many disordered materials are in a jammed state at low temperature, low load
and large density, but can yield and become unjammed when these parameters are
varied. In this Chapter we will focus on the zero temperature, zero load axis. For
frictionless soft spheres, there is a well-defined jamming transition indicated by
point “J” on the inverse density axis, which exhibits similarities to an (unusual)
critical phase transition.

We will deal only with zero temperature packings of frictionless soft
spheres that interact through purely repulsive contact forces. “Soft” in
this case means that the individual particles can be deformed under relevant
loads – deformations are key. We review the geometrical and mechanical
properties of these systems as a function of the distance to jamming.
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CHAPTER 2. INTRODUCTION

Figure 2.2 – The interaction potential V for pairs of interacting soft frictionless
spheres is a simple function of the particles overlap, δ, only.

2.1 Jamming in a Simple Model

Over the last decade, tremendous progress has been made in our under-
standing of what might be considered the “Ising model” for jamming: static
packings of soft, frictionless spheres that act through purely repulsive con-
tact forces. The beauty of such systems is that they allow for a precise study
of a jamming transition. In this section we introduce this model, discuss
some aspects of its jamming transition and discuss its main parameters.

2.1.1 Model

The most studied and best understood model for jamming consists of soft
spherical particles that only interact when in contact, with the interaction
forces set by the amount of virtual overlap (similar to deformations for
real particles or bubbles) between two particles in contact. Moreover, the
contact forces are purely repulsive. No frictional forces, and no attraction
is included.

Denoting the undeformed radii of particles in contact as Ri and Rj and
the center-to-center distance as rij , it is convenient to define a dimensionless
overlap parameter δij as

δij := 1− rij
Ri +Rj

, (2.1)
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so that particles are in contact only if δij ≥ 0. Since we only will study static
properties here, there is no need for specifying a dissipative mechanism.

Power law interaction potentials take on the form (see Fig. 2):

Vij = δαij δij ≥ 0 ,

Vij = 0 δij ≤ 0 . (2.2)

For harmonic interactions, α = 2, while Hertzian interactions (the non-
linear contact laws for elastic spheres in 3D) correspond to α = 5/2. By
varying the exponent α the nature and robustness of various scaling laws
can be probed.

Figure 2.3 – Top: examples of repulsive soft particles below, at and above the
jamming transition. The jamming point for frictionless soft spheres is referred to
as point J. The packing density φ controls the transition here, and the jamming
transition occurs at the critical value φc. The distance to jamming is given by the
excess density ∆φ. Bottom: when the particles have simple harmonic interactions
(when they overlap), the pressure grows linearly with excess density.

2.1.2 The Jamming Point

What is the jamming transition for this simple system? The main features
are illustrated in Fig. 2.3. As the packing density of the particles, φ, is
increased, the jamming transition occurs when essentially all particles start
to touch but still are at zero pressure – this is called point J. Here φc, the
critical packing fraction, is the point at which the particles start touching.
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The distance to the jamming point can be measured as ∆φ = φ − φc, see
Fig. 2.3 [13].

An alternative measure of the distance to jamming is the pressure in the
system. If the particles are not in contact, the contact forces between the
particles are zero, and so is the pressure. Once particles start to overlap,
contact forces arise, and the pressure becomes non-zero, see Fig. 2.3. In
fact, one can show that the pressure and the contact forces scale similarly
– P ∼ 〈f〉, where brackets denote the average over the system. For the
simple interactions used here, and in the absence of gravity, there cannot
be a finite force in part of the system, while other parts of the system are
at zero pressure. Hence, for finite pressure, the vast majority of particles
experience finite contact forces (typically a few percent of the particles are
rattlers, particles that have only zero contact forces).

Once the pressure is non-zero, the system is jammed. With this we
mean that, first, the system has finite elastic moduli, so that applying
infinitesimally small forces to the system leads to a proportional and re-
versible deformation. Second, the system has a finite yielding threshold:
if we force the system so much that irreversible deformations arise, the
amount of force is finite [13].

There are two important things to note: First, for finite systems, the
jamming density φc varies between realizations – this is why one measures
the distance to jamming by ∆φ and not with φ. A disadvantage of using
the excess density is that one must first obtain a value for φc. For simu-
lations this can be done by starting with a jammed system and deflating
the particles until the system is not rigid anymore [13]. This step is not
necessary when the pressure is a control parameter, since at point J, P = 0.

Figure 2.4 – Any function F of the excess packing density ∆φ can be translated
to a function of the pressure P – for power law interactions of the form Eq. 2.2,
P ∼ (∆φ)α−1.
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To relate ∆φ and P , we note that the typical particle overlap δ scales
as ∆φ. To relate the pressure and the typical particle overlap, we note that
P ∼ f , and that the force is just f = −∇Vij . For power law interactions
of the form Eq. 2.2 the potential is a function of the overlap, and hence we
can relate ∆φ and P as follows:

P ∼ f =
dVij
dδ
∼ δα−1 ∼ (∆φ)α−1. (2.3)

As is illustrated in Fig. 2.4, quantities measured as function of ∆φ and as
function of P can be directly translated.

Secondly, for infinite systems, φc tends to a well-defined value, directly
related to Random Close Packing of hard (undeformed) spheres. Random
close packing is a notoriously tricky concept, since it is not always clear
what random means. An attempt to model RCP based on experimental
systems has only recently found some success [14]. In three dimensions, the
densest possible packing is the regular FCC packing (similar to how oranges
are packed in your grocery store), which reaches a packing density of 74%.
What is now the densest random packing? For example, packings consist-
ing of large FCC clusters that are irregularly stacked can attain densities
arbitrarily close to the FCC density but still be called random. However,
in the absence of any appreciable order, the densest random packings have
φRCP ≈ 0.64 (in three dimensions – in two dimensions φRCP ≈ 0.84).
Probing the jamming transition with a specific protocol may be seen as
defining the RCP density [13]. It is important to note here that monodis-
perse systems in 2D tend to crystallize easily. To avoid such crystallization,
bidisperse or polydisperse systems are often used [4, 5, 15].

2.2 Jammed Materials are Not Ordinary Solids

Superficially, the jamming transition appears similar to a liquid-solid like
transition such as freezing. Is the jammed phase simply a solid? In this
section we will show that packings at or near jamming are very different
from ordinary, crystalline solids. We will focus on the elastic and geomet-
ric properties of soft spheres near jamming. To highlight the anomalous
behavior of jammed solids, we will first explicitly state what we think the
simplest prediction for these properties would be. The simple predictions
are essentially based on pictures where one ignores the disorder, so called
“effective medium” pictures, which work well for ordered materials. One
often assumes deformations of the material to be affine, i.e., the local de-
formations follow trivially from the global.
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But such affine / effective medium predictions fail to describe disor-
dered media, and the failure becomes increasingly pronounced when one
approaches the jamming transition. Of course, this approach may appear
like setting up a straw man, yet we feel it is a useful strategy to stress a
surprising aspect of the jamming transition.

Figure 2.5 – An affine compression of a packing is equivalent to fixing the parti-
cles’ positions and then inflating their radii.

2.2.1 Contact Number

A key parameter of a packing is its contact number, z, defined as the aver-
age number of contacts per particle. To estimate z as function of packing
fraction, we start with a low density situation where no particles touch.
The simplest estimate of what happens when we compress such a packing
is to assume that the local motion of the particles simply follows the glob-
ally applied deformation – for compression this is equivalent to inflating all
particle radii while keeping their position fixed (Fig. 2.5). More precisely,
this uniform compression is an example of an affine deformation. A strict
definition of affine transformations states that three collinear particles re-
main collinear and that the ratio of their distances is preserved, and affine
transformations are, apart from rotations and translations, composed of
uniform shear and compression or dilatation.
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Figure 2.6 – The contact number as a function of the excess packing fraction.
a) In the simplest model, the contact number grows linearly with the packing
fraction. b) A more realistic model takes into account a minimal contact number
(the so-called isostatic value) to begin with, a contact number that at jamming
jumps from 0 to 2d. c) In numerical simulations the contact number grows as the
square root of the excess packing fraction above point J.

If the distribution of separations between the initial particles is regular,
i.e. all separations occur with similar probability, the contact number grows
smoothly from zero under affine compression (Fig. 2.6 a)). This simple
model does not balance forces in the packing to make it stable, and as
a consequence, the prediction for the growth of the contact number with
packing density is far from the numerically observed growth (Fig. 2.6 c)).

Stable packings can only exist once the contact number is above a min-
imum value, the so-called isostatic value, ziso [16, 17]. Suppose we have N
soft frictionless spheres in d dimensions. The contact number equals z. The
total amount of contacts in the packing is then Nz/2, since each contact
is shared by two particles. For a packing to be stable, we require that it
should not include floppy modes (which cost zero energy in lowest order,
see Fig. 2.7 a)). It can be shown that this is equivalent to demanding that
the Nz/2 contact forces balance on all particles. For every particle we have
d force constraints (force balance in x-direction, y-direction and so forth),
so force balance yields Nd constraints on Nz/2 force degrees of freedom.
One generally expects solutions to such equations only when z ≥ 2d. The
isostatic contact number equals ziso = 2d.

At point J, the pressure is zero, so the particles are undeformed. The
distance between two particles is therefore exactly the sum of their radii,
giving Nz/2 constraints for the Nd positional degrees of freedom. The
only trivial solutions are when z ≤ 2d. Combining these two inequalities
yields that at jamming, the contact number for frictionless spheres equals
precisely 2d.

We are now able to make another guess at how z should scale with
∆φ. If we were to incorporate the balance of forces in our model, we would
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imagine that at point J, z would jump from 0 to 4 and then grow linearly
for ∆φ ≥ 0, as in Fig. 2.6 b). So what happens in simulations?

In 1997, Durian found that the contact number for a 2D system ap-
proaches z = 4 near jamming and that z−4 scales non-trivially as the square
root of the excess packing fraction above point J [13, 18], ∆z ∼

√
(∆φ),

as seen in Fig. 2.6 c). Most surprisingly, subsequent studies found that this
relation is independent of the interaction potential and dimension.

Hence, the contact number already shows highly nontrivial behavior:
first, it reaches a well-defined value at the jamming point, and secondly, it
grows as a nontrivial power law above jamming. Most mechanical prop-
erties depend sensitively on z, and so we can already anticipate that the
scaling of these will be surprising too.

Figure 2.7 – a) For low contact numbers, these packing can be deformed without
deforming the particles – this is a (simple) example of a floppy mode. b) For
sufficiently large contact numbers, there are no zero energy deformations of this
packing possible – apart from trivial translations and rotations. Of course, we
could move particles away from one another without energy cost. To make the
counting more rigorous, one should consider packings with well-defined boundary
conditions.

2.2.2 Elastic Moduli

The elastic moduli of disordered packings show peculiar scaling with dis-
tance to the jamming point. When dealing with disordered media, the
problem of how to take the disorder into account always arises. Ignoring
disorder is an option, but then one can only describe ordered packings. A
more subtle approach is provided by the Effective Medium Theory (EMT).
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EMT assumes: (i) Macroscopic, averaged quantities can be obtained by a
simple coarse graining procedure over the individual contacts. (ii) Applying
a global deformation trivially translates to changes in the local deforma-
tion. For example, a 1% strain on the entire sample will deform all the
contacts between particles by 1%. This second assumption is the “affine
assumption” [19].

Before confronting the predictions from EMT with direct numerical sim-
ulations, we have to discuss briefly the elasticity of individual contacts in
disordered packings. Under small deformations, a packing of soft, friction-
less spheres is equivalent to a spring network, where each contact represents
a spring. For a harmonic interaction potential, the spring constant is in-
dependent of the force; the spring constant of all contacts has the same
value. For anharmonic potentials, such as the Hertzian and Hernian inter-
actions discussed above, this is not true. When we start from an already
compressed packing, and thus compressed contacts, and want to quantify
the effect of additional small perturbations. The spring constant, k, is then
given by

k =
d2V

dδ2
, (2.4)

where V is the potential, which typically is a power law function of the
compression of the springs. Indeed we find for harmonic interactions (V ∼
δ2), the spring constant is independent of the particles’ deformation, and
that for general power law interactions (V ∼ δα), the spring constant scales
as k ∼ δα−2 ∼ (∆φ)α−2.

2.2.2.1 Compression Modulus

The compression modulus (or bulk modulus), K, determines the resistance
of a disordered packing against homogenous compression. Under the affine
assumption, for a global strain εglobal applied, this translates directly to
the local strain εlocal felt by all particles. The changes in contact force then
scale as kεlocal ∼ kεglobal, which tells us the elastic modulus is of order k:
the elastic moduli follow the typical stiffness of the contacts. Therefore,
K ∼ (∆φ)α−2 [13, 20, 21].

Numerical simulations on disordered packings are consistent with this:
the affine assumption works well for compression, although this is a lucky
coincidence [21]. Of course the elastic moduli are zero in unjammed pack-
ings, and there is, for α ≤ 2, a discontinuous jump of K in simulations, see
Fig. 2.8.
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Figure 2.8 – The bulk modulus for packings with harmonic interactions, as a
function of the excess packing fraction ∆φ in the Effective Medium Theory picture
a) and for simulations b). In both cases, slight variations in the modulus with ∆φ
are expected due to an increase of the density of contacts with compression, but
this does not influence the scaling behavior near ∆φ = 0.

2.2.2.2 Shear Modulus

The shear modulus, G, determines the resistance of a disordered packing
against pure shear. Following arguments similar to those for the compres-
sion case, EMT predicts that the shear modulus scales as G ∼ (∆φ)α−2

[13, 19, 20, 21].
Numerical simulations on disordered packings show a different scaling,

however: the actual shear modulus scales as G ∼ (∆φ)α−3/2 [13, 19, 20, 21],
see Fig. 2.9.

Figure 2.9 – The shear modulus for packings with harmonic interactions, as
a function of the excess packing fraction ∆φ in the Effective Medium Theory
picture a) and for simulations b). For shear, the affine assumption breaks down
spectacularly.

Hence, close to jamming, the system is much softer to shear deforma-
tions than to compressive deformations, and the ratio of G/K goes to zero,
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independent of interaction potential. In fact, making use of the scaling of
∆z ∼

√
∆φ one can write this ratio as G/K ∼ ∆z.

2.3 Beyond Effective Medium Theory

In the previous section we have seen that the contact number and the
elastic properties signal the unique nature of materials near the jamming
transition. In this section we briefly sketch why these materials behave so
differently. We in particular stress the breakdown of the affine assumption.

2.3.1 Nonaffine Deformations

The anomalous scaling of the elastic moduli is related to the nonaffine
nature of the deformations of weakly jammed packings, although the precise
connection is rather subtle. We will discuss our current understanding
below.

An instructive way to illustrate the role of these nonaffine deformations
is first, to force the particle displacements to be affine and then let them
relax, while measuring the changes in the elastic energy (governed by the
elastic moduli) in both cases.

O’Hern and coworkers found that the elastic moduli associated with the
affine deformations scale precisely as predicted by effective medium theory.
However, the forced system can lower its elastic energy by additional non-
affine motion of the particles. These nonaffine deformations are particularly
effective for shear deformations, as they are found to change the scaling of
the shear modulus [13].

It is tempting to conclude that the nonaffinity is stronger for shear defor-
mations than for compressive deformations. However, subsequent studies
have found that for both shear and compression the nonaffine deformations
are large, and in fact diverge near jamming [20]. To characterize the local
deformations, note that changes in elastic energy depend on the relative
motion of pairs of contacting particles as

∆E =
1

2

∑
i,j

kij

(
u2
||,ij −

δij
α− 1

u2
⊥,ij

)
, (2.5)

here u‖ and u⊥ are relative motions of particles parallel and perpendicular
to each other, respectively (see Fig. 2.10). Note that u does not refer to flow,
but to small, quasi-static displacements in response to external forcing. The
u⊥ arises from applying Pythagoras theorem, and using Eq. 2.4 to related
k and δ, see [12].
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Figure 2.10 – Definition of the relative motion uij of two particles that each move
by ui and uj respectively, and the corresponding u‖ and u⊥.

We now need a parameter to capture the degree of nonaffinity, some-
thing that dictates how the system on a local scale responds to an imposed
shear or compression as compared to an expected affine response. The
probability distribution, P (α), does just this. Ellenbroek and coworkers
introduced the displacement angle αij [20]. Here αij denotes the angle
between uij and rij (see Fig. 2.10), or,

tanαij =
u⊥,ij
u‖,ij

. (2.6)

Affine compression corresponds to a uniform shrinking of the bond vector
between two particles, i.e. u⊥,ij = 0 and u||,ij = −εrij ≤ 0, where ε is
the magnitude of the applied strain on the system. In this scenario, P (α)
exhibits a delta-function peak at α = π. For affine shear, the effect depends
on the bond vectors orientation, and for isotropic random packings, P (α)
is flat.

In numerical simulations one finds that for large pressures, P (α) is not
too different from the affine prediction, but that closer to point J, P (α) de-
velops a substantial peak around π/2. These correspond to contacts where
u⊥ � u‖ – in other words, to contacts, where the particles in essence slide
past each other. Surprisingly, this peak develops and appears to diverge
both for shear and compressive deformations [21, 22].

In addition one can investigate the scaling of u‖ and u⊥ as well. The
typical values of u‖ under a deformation are directly connected to the cor-
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responding elastic modulus: for compression, u‖ is essentially independent

of the distance to jamming (u‖ ∼ ε), while for shear, u‖ ∼ ε ∆φ1/4, where
ε is the magnitude of the strain [21, 22].

The scaling for u⊥, the amount by which particles in contact slide past
each other, is more subtle. Numerically, one observes that for shear defor-
mations, u⊥ ∼ ε δ−1/4. The two terms ∝ u|| and ∝ u⊥ become compa-
rable here, and the amount of sideways sliding under a shear deformation
diverges near jamming [20, 21, 22]. For compression there is no simple
scaling. Knowing that ∆z ∼

√
∆φ, the above expressions for u‖ and u⊥,

and guessing that in this case the two terms in Eq. 2.6 would balance, one
might have expected u⊥ ∼ ε δ−1/2. However, the data suggests a weaker
divergence, close to ∆φ−0.3. Nevertheless, both under shear and compres-
sion, the sliding, sideways motion of contacting particles dominates and
diverges near jamming.

The preceding findings illustrate the strange nature of linear response
close to the jamming transition.

2.4 Experimental Review

We have seen that soft frictionless spheres near the jamming transition
exhibit a wealth of nontrivial and unexpected behavior, that the response
is strongly nonaffine and the elastic moduli are anomalous. However, the
approach we have taken above is strictly theoretical and it is helpful to get
a good overview of elasticity experiments on jamming to the present date
as well.

Experiments on 3D foam and emulsions were performed in the 1980’s,
focusing on cone-plate and Taylor-Couette geometries [23, 24, 25, 26, 27,
28, 29, 30]. First estimates of the scaling of the shear modulus with re-
spect to the packing fraction were obtained by Princen and Kiss [28] us-
ing polydisperse oil-in-water emulsions. This work was followed in the
1990’s by Mason et al. [30], who suggested the variation versus the pack-
ing fraction for monodisperse emulsions. They found a linear dependence:
G ∼ φ(φ − φc), where φc ≈ 0.64 is the critical packing fraction in three-
dimensional, monodisperse packings. Mason et al. found that the osmotic
pressure scaled similar to the shear modulus with φ, which means that the
bulk modulus, being the derivative of the pressure, has to differ significantly
from the shear modulus at φc, although the data is noisy. They also did
not observe that the ratio G/K goes to zero at the jamming point. Mason
did, however, also stress the importance of the nonaffine motion in their
emulsions, if they were sheared close to the critical point. He hypothesized
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that these motions arose from localized relaxations of the droplet positions.
This was later confirmed by O’Hern et al. in simulations [13].

In all these studies, however, a real relation between bulk rheology and
the behavior at the single particle level was never established. What actu-
ally happens on the bubble-bubble scale under a continuous shear strain,
for example? For small applied strain, the bubbles are deformed minutely,
yet still want to restore their equilibrium surface area. They respond elas-
tically, the way a solid would [31]. If the strain is increased further, the
foam relaxes through bubble rearrangements [23]. With a large enough
strain the system starts to flow irreversibly and there are continuous re-
arrangements [24, 32]. This type of behavior is of course dependent on
how far from the critical point the system is. In dry foams, far from φc,
[33, 34, 35] found that rearrangements in the form of so-called T1 events,
where two nearest-neighbor particles become next-nearest neighbors, (dis-
cussed in greater detail in Chapter 5) negate the build-up of stress. No
experimental studies have focused on plasticity in wet foams close to φc as
of yet.

The structure of these elastic systems was also carefully examined close
to the jamming point. Imaging of 3D packings of foams and emulsions to
look at static structures needs some sophisticated imaging techniques to
peer through the opaque samples, such as DWS [36], x-ray tomography
[37] and confocal microscopy [14, 38, 39]. In 2D, Bolton [40] found that
the critical packing fraction for a system of disordered discs was φc = 0.842
and that two-dimensional, disordered systems [41] do not exhibit a linear
increase of G near φc in 2D, contrary to results for 3D systems used by
Mason, although the osmotic pressure did increase quadratically near φc.

The study of flow in bubble packings was studied extensively by [4, 5],
where the packing fraction is controlled precisely. In this work, Katgert et
al. showed how great control of a two-dimensional foam can yield inter-
esting behavior of the shear modulus. By controlling the packing fraction,
they were able to show the square-root scaling of the packing fraction with
the contact number with correct prefactors, as well as velocity profiles of
bubbles in a packing under shear.

A different approach to what has been seen so far was taken by Cheng
[15], who used the swelling of confined tapioca particles to go through
the jamming transition to observe the nonaffine behavior there. In this
seminal work, Cheng found the classic signature of the jamming transition
by observing the tell-tale first (and second) peak in the pair-correlation
function. Furthermore, by looking at the displacement fields, he found that
a static length scale in the system reached the system size at φc. Further
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work probing the jamming transition, using hydrogel particles, which are
polymers that swell when introduced to salty water, is being performed by
the van Hecke group, as well as the Behringer group.
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