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Chapter 1

Motivation: Jamming of 2D
Foams

Jamming aims to describe the transition from freely flowing to rigid phases
of a wide range of soft materials including foams, emulsions, suspensions
and granular media [1, 2]. Over the last decade, a surge of interest in
jamming has led to much progress on the theoretical understanding of the
jamming transition, with a strong focus on numerical simulations [1]. While
various models have been studied in simulations, most work has focused on
a simple model of soft, frictionless spheres, which is thought to be a good
model for foams and emulsions.

The details of the jamming scenario for these models will be reviewed
in Chapter 2. For foams (and emulsions), the essence of the jamming sce-
nario is as follows. The crucial parameter is the packing density, which
for foams is measured by its gas fraction, the amount of volume taken up
by the bubbles in their bounded area. Foams close to the jamming point
have a low gas fraction and are said to be “wet”, whereas foams that are
compressed are “dry”, due to a larger gas fraction in this regime. In sim-
ulations, the jamming point corresponds to the packing density at which
all bubbles/particles in the packing come into contact with one another.
Below this critical point, the packing is loose, with no bubbles in contact.
Above the critical point the bubbles, due to their soft characteristics, are
deformed. A major goal of this thesis is to probe how this scenario plays
out in realistic foams.

Experimentally, foams can be studied in two different settings: in 3D
and in 2D. In 3D, foams are opaque and moreover, suffer from drainage, the
effect that gravity sucks the fluid out of the top layers of the foam, making
it hard to maintain 3D wet foams stable in a gravitational field (recently
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CHAPTER 1. MOTIVATION: JAMMING OF 2D FOAMS

Figure 1.1 – Different bubble geometries used in two-dimensional rheology ex-
periments: a) bubble raft, b) Hele-Shaw, c) bubble monolayer trapped between
liquid surface and glass plate. Images courtesy of [6].

Isert et al. [3] managed to keep a 3D foam stable without drainage in a
strong magnetic field). 2D foams do not suffer from such problems: they
can be imaged easily and their packing fraction can be controlled well; in
particular they can be taken close to jamming [4, 5].

These foams, monolayers of bubbles, are relatively easy to work with
and recent experiments have used many different geometries, like bubble
rafts [7] (no top plate bounding the packing from above, see Fig.1.1a)) and
Hele-Shaw [8] (bubbles trapped between two glass plates, see Fig. 1.1 b)),
as well as bubbles floating on a soap solution bounded from above by a
glass plate [4, 5, 9, 10], see Fig. 1.1 c). This latter geometry will be used
throughout this Thesis. In this configuration, the bubbles experience no
appreciable attraction and interact through repulsive contact forces. There
is no static friction in the system, and to avoid crystallization we use bidis-
perse bubbles.

In this Thesis, we probe two aspects of the mechanics of foams near the
jamming transition. In Chapter 2, we introduce the concept of jamming
and briefly review recent work on foams. In Chapters 3 and 4 we probe the
elasticity response of foams near the jamming transition. We find that the
presence of a weak symmetry breaking field, due to the residual gravity,
alters the jamming scenario in an important manner; it prevents us from
reaching a fully jammed state. Nevertheless, we are able to establish that
near jamming, the bulk modulus is much larger than the shear modulus,
which is one of the most striking theoretical predictions. In Chapter 5
we probe the plastic response of foams by submitting them to large shear

2



CHAPTER 1. MOTIVATION: JAMMING OF 2D FOAMS

deformations. We recover that the well-known plastic “T1” events domi-
nate plastic response far away from jamming. However, closer to jamming,
these T1 events give way to less strongly localized rearrangements that have
not been discussed in literature, suggesting that plasticity near jamming is
governed by qualitatively different and new physics.

3
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Chapter 2

Introduction

Many everyday materials such as sand, toothpaste, mayonnaise and shaving
foam exhibit an intriguing mix of liquid-like and solid-like behaviors, some
familiar, some surprising but often poorly understood. These materials
all have in common a consistency of disordered collections of macroscopic
constituent particles: sand is a dense packing of solid grains (Fig. 2.1 a)),
toothpaste is a dense packing of (colloidal) particles in fluid (Fig. 2.1 b)),
mayonnaise is an emulsion consisting of a dense packing of (oil) droplets
in an immiscible fluid (Fig. 2.1 c)), and shaving foam is a dense packing of
gas bubbles in fluid (Fig. 2.1 d)).

Dense is the keyword here – these materials obtain finite rigidity once
their constituent particles are brought into contact. Nevertheless, all these
materials can be made to flow by the application of relatively small stresses
– in fact their utility often stems from precisely this combination of liquid-
like and solid-like behavior. By varying thermodynamic (temperature or
density) and mechanical (applied stress) variables, one can bring about
a transition from a freely flowing to a jammed state in these and many
other disordered media. For instance an increase in density causes colloidal
suspensions to turn glassy. Similarly, flowing foams can be made static
by decreasing the applied stress to below the yield stress. In 1998, Liu
and Nagel presented a novel way of organizing the physics underlying these
phenomena through a jamming diagram (Fig. 2.1e)), and proposed to probe
various transitions to rigidity [1].

This Chapter aims at giving a basic introduction to our current under-
standing of the following two questions: What is the nature of the jammed
state? And what is the nature of the jamming transition? We will illus-
trate the main features of these systems by idealized pictures illustrating
our current understanding rather than “real” experimental and numerical
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CHAPTER 2. INTRODUCTION

data. For a more elaborate introduction, the reader is referred to two more
detailed review papers and references therein [11, 12].

Figure 2.1 – (a-d) Examples of everyday disordered media in a jammed state. a)
Granular media. b) Toothpaste. c) Mayonnaise. d) Shaving foam. e) Jamming
diagram as proposed by Liu, Nagel and coworkers [1, 13]. The diagram illustrates
that many disordered materials are in a jammed state at low temperature, low load
and large density, but can yield and become unjammed when these parameters are
varied. In this Chapter we will focus on the zero temperature, zero load axis. For
frictionless soft spheres, there is a well-defined jamming transition indicated by
point “J” on the inverse density axis, which exhibits similarities to an (unusual)
critical phase transition.

We will deal only with zero temperature packings of frictionless soft
spheres that interact through purely repulsive contact forces. “Soft” in
this case means that the individual particles can be deformed under relevant
loads – deformations are key. We review the geometrical and mechanical
properties of these systems as a function of the distance to jamming.
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CHAPTER 2. INTRODUCTION

Figure 2.2 – The interaction potential V for pairs of interacting soft frictionless
spheres is a simple function of the particles overlap, δ, only.

2.1 Jamming in a Simple Model

Over the last decade, tremendous progress has been made in our under-
standing of what might be considered the “Ising model” for jamming: static
packings of soft, frictionless spheres that act through purely repulsive con-
tact forces. The beauty of such systems is that they allow for a precise study
of a jamming transition. In this section we introduce this model, discuss
some aspects of its jamming transition and discuss its main parameters.

2.1.1 Model

The most studied and best understood model for jamming consists of soft
spherical particles that only interact when in contact, with the interaction
forces set by the amount of virtual overlap (similar to deformations for
real particles or bubbles) between two particles in contact. Moreover, the
contact forces are purely repulsive. No frictional forces, and no attraction
is included.

Denoting the undeformed radii of particles in contact as Ri and Rj and
the center-to-center distance as rij , it is convenient to define a dimensionless
overlap parameter δij as

δij := 1− rij
Ri +Rj

, (2.1)

7



CHAPTER 2. INTRODUCTION

so that particles are in contact only if δij ≥ 0. Since we only will study static
properties here, there is no need for specifying a dissipative mechanism.

Power law interaction potentials take on the form (see Fig. 2):

Vij = δαij δij ≥ 0 ,

Vij = 0 δij ≤ 0 . (2.2)

For harmonic interactions, α = 2, while Hertzian interactions (the non-
linear contact laws for elastic spheres in 3D) correspond to α = 5/2. By
varying the exponent α the nature and robustness of various scaling laws
can be probed.

Figure 2.3 – Top: examples of repulsive soft particles below, at and above the
jamming transition. The jamming point for frictionless soft spheres is referred to
as point J. The packing density φ controls the transition here, and the jamming
transition occurs at the critical value φc. The distance to jamming is given by the
excess density ∆φ. Bottom: when the particles have simple harmonic interactions
(when they overlap), the pressure grows linearly with excess density.

2.1.2 The Jamming Point

What is the jamming transition for this simple system? The main features
are illustrated in Fig. 2.3. As the packing density of the particles, φ, is
increased, the jamming transition occurs when essentially all particles start
to touch but still are at zero pressure – this is called point J. Here φc, the
critical packing fraction, is the point at which the particles start touching.

8



CHAPTER 2. INTRODUCTION

The distance to the jamming point can be measured as ∆φ = φ − φc, see
Fig. 2.3 [13].

An alternative measure of the distance to jamming is the pressure in the
system. If the particles are not in contact, the contact forces between the
particles are zero, and so is the pressure. Once particles start to overlap,
contact forces arise, and the pressure becomes non-zero, see Fig. 2.3. In
fact, one can show that the pressure and the contact forces scale similarly
– P ∼ 〈f〉, where brackets denote the average over the system. For the
simple interactions used here, and in the absence of gravity, there cannot
be a finite force in part of the system, while other parts of the system are
at zero pressure. Hence, for finite pressure, the vast majority of particles
experience finite contact forces (typically a few percent of the particles are
rattlers, particles that have only zero contact forces).

Once the pressure is non-zero, the system is jammed. With this we
mean that, first, the system has finite elastic moduli, so that applying
infinitesimally small forces to the system leads to a proportional and re-
versible deformation. Second, the system has a finite yielding threshold:
if we force the system so much that irreversible deformations arise, the
amount of force is finite [13].

There are two important things to note: First, for finite systems, the
jamming density φc varies between realizations – this is why one measures
the distance to jamming by ∆φ and not with φ. A disadvantage of using
the excess density is that one must first obtain a value for φc. For simu-
lations this can be done by starting with a jammed system and deflating
the particles until the system is not rigid anymore [13]. This step is not
necessary when the pressure is a control parameter, since at point J, P = 0.

Figure 2.4 – Any function F of the excess packing density ∆φ can be translated
to a function of the pressure P – for power law interactions of the form Eq. 2.2,
P ∼ (∆φ)α−1.

9



CHAPTER 2. INTRODUCTION

To relate ∆φ and P , we note that the typical particle overlap δ scales
as ∆φ. To relate the pressure and the typical particle overlap, we note that
P ∼ f , and that the force is just f = −∇Vij . For power law interactions
of the form Eq. 2.2 the potential is a function of the overlap, and hence we
can relate ∆φ and P as follows:

P ∼ f =
dVij
dδ
∼ δα−1 ∼ (∆φ)α−1. (2.3)

As is illustrated in Fig. 2.4, quantities measured as function of ∆φ and as
function of P can be directly translated.

Secondly, for infinite systems, φc tends to a well-defined value, directly
related to Random Close Packing of hard (undeformed) spheres. Random
close packing is a notoriously tricky concept, since it is not always clear
what random means. An attempt to model RCP based on experimental
systems has only recently found some success [14]. In three dimensions, the
densest possible packing is the regular FCC packing (similar to how oranges
are packed in your grocery store), which reaches a packing density of 74%.
What is now the densest random packing? For example, packings consist-
ing of large FCC clusters that are irregularly stacked can attain densities
arbitrarily close to the FCC density but still be called random. However,
in the absence of any appreciable order, the densest random packings have
φRCP ≈ 0.64 (in three dimensions – in two dimensions φRCP ≈ 0.84).
Probing the jamming transition with a specific protocol may be seen as
defining the RCP density [13]. It is important to note here that monodis-
perse systems in 2D tend to crystallize easily. To avoid such crystallization,
bidisperse or polydisperse systems are often used [4, 5, 15].

2.2 Jammed Materials are Not Ordinary Solids

Superficially, the jamming transition appears similar to a liquid-solid like
transition such as freezing. Is the jammed phase simply a solid? In this
section we will show that packings at or near jamming are very different
from ordinary, crystalline solids. We will focus on the elastic and geomet-
ric properties of soft spheres near jamming. To highlight the anomalous
behavior of jammed solids, we will first explicitly state what we think the
simplest prediction for these properties would be. The simple predictions
are essentially based on pictures where one ignores the disorder, so called
“effective medium” pictures, which work well for ordered materials. One
often assumes deformations of the material to be affine, i.e., the local de-
formations follow trivially from the global.

10
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But such affine / effective medium predictions fail to describe disor-
dered media, and the failure becomes increasingly pronounced when one
approaches the jamming transition. Of course, this approach may appear
like setting up a straw man, yet we feel it is a useful strategy to stress a
surprising aspect of the jamming transition.

Figure 2.5 – An affine compression of a packing is equivalent to fixing the parti-
cles’ positions and then inflating their radii.

2.2.1 Contact Number

A key parameter of a packing is its contact number, z, defined as the aver-
age number of contacts per particle. To estimate z as function of packing
fraction, we start with a low density situation where no particles touch.
The simplest estimate of what happens when we compress such a packing
is to assume that the local motion of the particles simply follows the glob-
ally applied deformation – for compression this is equivalent to inflating all
particle radii while keeping their position fixed (Fig. 2.5). More precisely,
this uniform compression is an example of an affine deformation. A strict
definition of affine transformations states that three collinear particles re-
main collinear and that the ratio of their distances is preserved, and affine
transformations are, apart from rotations and translations, composed of
uniform shear and compression or dilatation.

11



CHAPTER 2. INTRODUCTION

Figure 2.6 – The contact number as a function of the excess packing fraction.
a) In the simplest model, the contact number grows linearly with the packing
fraction. b) A more realistic model takes into account a minimal contact number
(the so-called isostatic value) to begin with, a contact number that at jamming
jumps from 0 to 2d. c) In numerical simulations the contact number grows as the
square root of the excess packing fraction above point J.

If the distribution of separations between the initial particles is regular,
i.e. all separations occur with similar probability, the contact number grows
smoothly from zero under affine compression (Fig. 2.6 a)). This simple
model does not balance forces in the packing to make it stable, and as
a consequence, the prediction for the growth of the contact number with
packing density is far from the numerically observed growth (Fig. 2.6 c)).

Stable packings can only exist once the contact number is above a min-
imum value, the so-called isostatic value, ziso [16, 17]. Suppose we have N
soft frictionless spheres in d dimensions. The contact number equals z. The
total amount of contacts in the packing is then Nz/2, since each contact
is shared by two particles. For a packing to be stable, we require that it
should not include floppy modes (which cost zero energy in lowest order,
see Fig. 2.7 a)). It can be shown that this is equivalent to demanding that
the Nz/2 contact forces balance on all particles. For every particle we have
d force constraints (force balance in x-direction, y-direction and so forth),
so force balance yields Nd constraints on Nz/2 force degrees of freedom.
One generally expects solutions to such equations only when z ≥ 2d. The
isostatic contact number equals ziso = 2d.

At point J, the pressure is zero, so the particles are undeformed. The
distance between two particles is therefore exactly the sum of their radii,
giving Nz/2 constraints for the Nd positional degrees of freedom. The
only trivial solutions are when z ≤ 2d. Combining these two inequalities
yields that at jamming, the contact number for frictionless spheres equals
precisely 2d.

We are now able to make another guess at how z should scale with
∆φ. If we were to incorporate the balance of forces in our model, we would

12



CHAPTER 2. INTRODUCTION

imagine that at point J, z would jump from 0 to 4 and then grow linearly
for ∆φ ≥ 0, as in Fig. 2.6 b). So what happens in simulations?

In 1997, Durian found that the contact number for a 2D system ap-
proaches z = 4 near jamming and that z−4 scales non-trivially as the square
root of the excess packing fraction above point J [13, 18], ∆z ∼

√
(∆φ),

as seen in Fig. 2.6 c). Most surprisingly, subsequent studies found that this
relation is independent of the interaction potential and dimension.

Hence, the contact number already shows highly nontrivial behavior:
first, it reaches a well-defined value at the jamming point, and secondly, it
grows as a nontrivial power law above jamming. Most mechanical prop-
erties depend sensitively on z, and so we can already anticipate that the
scaling of these will be surprising too.

Figure 2.7 – a) For low contact numbers, these packing can be deformed without
deforming the particles – this is a (simple) example of a floppy mode. b) For
sufficiently large contact numbers, there are no zero energy deformations of this
packing possible – apart from trivial translations and rotations. Of course, we
could move particles away from one another without energy cost. To make the
counting more rigorous, one should consider packings with well-defined boundary
conditions.

2.2.2 Elastic Moduli

The elastic moduli of disordered packings show peculiar scaling with dis-
tance to the jamming point. When dealing with disordered media, the
problem of how to take the disorder into account always arises. Ignoring
disorder is an option, but then one can only describe ordered packings. A
more subtle approach is provided by the Effective Medium Theory (EMT).

13
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EMT assumes: (i) Macroscopic, averaged quantities can be obtained by a
simple coarse graining procedure over the individual contacts. (ii) Applying
a global deformation trivially translates to changes in the local deforma-
tion. For example, a 1% strain on the entire sample will deform all the
contacts between particles by 1%. This second assumption is the “affine
assumption” [19].

Before confronting the predictions from EMT with direct numerical sim-
ulations, we have to discuss briefly the elasticity of individual contacts in
disordered packings. Under small deformations, a packing of soft, friction-
less spheres is equivalent to a spring network, where each contact represents
a spring. For a harmonic interaction potential, the spring constant is in-
dependent of the force; the spring constant of all contacts has the same
value. For anharmonic potentials, such as the Hertzian and Hernian inter-
actions discussed above, this is not true. When we start from an already
compressed packing, and thus compressed contacts, and want to quantify
the effect of additional small perturbations. The spring constant, k, is then
given by

k =
d2V

dδ2
, (2.4)

where V is the potential, which typically is a power law function of the
compression of the springs. Indeed we find for harmonic interactions (V ∼
δ2), the spring constant is independent of the particles’ deformation, and
that for general power law interactions (V ∼ δα), the spring constant scales
as k ∼ δα−2 ∼ (∆φ)α−2.

2.2.2.1 Compression Modulus

The compression modulus (or bulk modulus), K, determines the resistance
of a disordered packing against homogenous compression. Under the affine
assumption, for a global strain εglobal applied, this translates directly to
the local strain εlocal felt by all particles. The changes in contact force then
scale as kεlocal ∼ kεglobal, which tells us the elastic modulus is of order k:
the elastic moduli follow the typical stiffness of the contacts. Therefore,
K ∼ (∆φ)α−2 [13, 20, 21].

Numerical simulations on disordered packings are consistent with this:
the affine assumption works well for compression, although this is a lucky
coincidence [21]. Of course the elastic moduli are zero in unjammed pack-
ings, and there is, for α ≤ 2, a discontinuous jump of K in simulations, see
Fig. 2.8.
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Figure 2.8 – The bulk modulus for packings with harmonic interactions, as a
function of the excess packing fraction ∆φ in the Effective Medium Theory picture
a) and for simulations b). In both cases, slight variations in the modulus with ∆φ
are expected due to an increase of the density of contacts with compression, but
this does not influence the scaling behavior near ∆φ = 0.

2.2.2.2 Shear Modulus

The shear modulus, G, determines the resistance of a disordered packing
against pure shear. Following arguments similar to those for the compres-
sion case, EMT predicts that the shear modulus scales as G ∼ (∆φ)α−2

[13, 19, 20, 21].
Numerical simulations on disordered packings show a different scaling,

however: the actual shear modulus scales as G ∼ (∆φ)α−3/2 [13, 19, 20, 21],
see Fig. 2.9.

Figure 2.9 – The shear modulus for packings with harmonic interactions, as
a function of the excess packing fraction ∆φ in the Effective Medium Theory
picture a) and for simulations b). For shear, the affine assumption breaks down
spectacularly.

Hence, close to jamming, the system is much softer to shear deforma-
tions than to compressive deformations, and the ratio of G/K goes to zero,
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independent of interaction potential. In fact, making use of the scaling of
∆z ∼

√
∆φ one can write this ratio as G/K ∼ ∆z.

2.3 Beyond Effective Medium Theory

In the previous section we have seen that the contact number and the
elastic properties signal the unique nature of materials near the jamming
transition. In this section we briefly sketch why these materials behave so
differently. We in particular stress the breakdown of the affine assumption.

2.3.1 Nonaffine Deformations

The anomalous scaling of the elastic moduli is related to the nonaffine
nature of the deformations of weakly jammed packings, although the precise
connection is rather subtle. We will discuss our current understanding
below.

An instructive way to illustrate the role of these nonaffine deformations
is first, to force the particle displacements to be affine and then let them
relax, while measuring the changes in the elastic energy (governed by the
elastic moduli) in both cases.

O’Hern and coworkers found that the elastic moduli associated with the
affine deformations scale precisely as predicted by effective medium theory.
However, the forced system can lower its elastic energy by additional non-
affine motion of the particles. These nonaffine deformations are particularly
effective for shear deformations, as they are found to change the scaling of
the shear modulus [13].

It is tempting to conclude that the nonaffinity is stronger for shear defor-
mations than for compressive deformations. However, subsequent studies
have found that for both shear and compression the nonaffine deformations
are large, and in fact diverge near jamming [20]. To characterize the local
deformations, note that changes in elastic energy depend on the relative
motion of pairs of contacting particles as

∆E =
1

2

∑
i,j

kij

(
u2
||,ij −

δij
α− 1

u2
⊥,ij

)
, (2.5)

here u‖ and u⊥ are relative motions of particles parallel and perpendicular
to each other, respectively (see Fig. 2.10). Note that u does not refer to flow,
but to small, quasi-static displacements in response to external forcing. The
u⊥ arises from applying Pythagoras theorem, and using Eq. 2.4 to related
k and δ, see [12].
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Figure 2.10 – Definition of the relative motion uij of two particles that each move
by ui and uj respectively, and the corresponding u‖ and u⊥.

We now need a parameter to capture the degree of nonaffinity, some-
thing that dictates how the system on a local scale responds to an imposed
shear or compression as compared to an expected affine response. The
probability distribution, P (α), does just this. Ellenbroek and coworkers
introduced the displacement angle αij [20]. Here αij denotes the angle
between uij and rij (see Fig. 2.10), or,

tanαij =
u⊥,ij
u‖,ij

. (2.6)

Affine compression corresponds to a uniform shrinking of the bond vector
between two particles, i.e. u⊥,ij = 0 and u||,ij = −εrij ≤ 0, where ε is
the magnitude of the applied strain on the system. In this scenario, P (α)
exhibits a delta-function peak at α = π. For affine shear, the effect depends
on the bond vectors orientation, and for isotropic random packings, P (α)
is flat.

In numerical simulations one finds that for large pressures, P (α) is not
too different from the affine prediction, but that closer to point J, P (α) de-
velops a substantial peak around π/2. These correspond to contacts where
u⊥ � u‖ – in other words, to contacts, where the particles in essence slide
past each other. Surprisingly, this peak develops and appears to diverge
both for shear and compressive deformations [21, 22].

In addition one can investigate the scaling of u‖ and u⊥ as well. The
typical values of u‖ under a deformation are directly connected to the cor-
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responding elastic modulus: for compression, u‖ is essentially independent

of the distance to jamming (u‖ ∼ ε), while for shear, u‖ ∼ ε ∆φ1/4, where
ε is the magnitude of the strain [21, 22].

The scaling for u⊥, the amount by which particles in contact slide past
each other, is more subtle. Numerically, one observes that for shear defor-
mations, u⊥ ∼ ε δ−1/4. The two terms ∝ u|| and ∝ u⊥ become compa-
rable here, and the amount of sideways sliding under a shear deformation
diverges near jamming [20, 21, 22]. For compression there is no simple
scaling. Knowing that ∆z ∼

√
∆φ, the above expressions for u‖ and u⊥,

and guessing that in this case the two terms in Eq. 2.6 would balance, one
might have expected u⊥ ∼ ε δ−1/2. However, the data suggests a weaker
divergence, close to ∆φ−0.3. Nevertheless, both under shear and compres-
sion, the sliding, sideways motion of contacting particles dominates and
diverges near jamming.

The preceding findings illustrate the strange nature of linear response
close to the jamming transition.

2.4 Experimental Review

We have seen that soft frictionless spheres near the jamming transition
exhibit a wealth of nontrivial and unexpected behavior, that the response
is strongly nonaffine and the elastic moduli are anomalous. However, the
approach we have taken above is strictly theoretical and it is helpful to get
a good overview of elasticity experiments on jamming to the present date
as well.

Experiments on 3D foam and emulsions were performed in the 1980’s,
focusing on cone-plate and Taylor-Couette geometries [23, 24, 25, 26, 27,
28, 29, 30]. First estimates of the scaling of the shear modulus with re-
spect to the packing fraction were obtained by Princen and Kiss [28] us-
ing polydisperse oil-in-water emulsions. This work was followed in the
1990’s by Mason et al. [30], who suggested the variation versus the pack-
ing fraction for monodisperse emulsions. They found a linear dependence:
G ∼ φ(φ − φc), where φc ≈ 0.64 is the critical packing fraction in three-
dimensional, monodisperse packings. Mason et al. found that the osmotic
pressure scaled similar to the shear modulus with φ, which means that the
bulk modulus, being the derivative of the pressure, has to differ significantly
from the shear modulus at φc, although the data is noisy. They also did
not observe that the ratio G/K goes to zero at the jamming point. Mason
did, however, also stress the importance of the nonaffine motion in their
emulsions, if they were sheared close to the critical point. He hypothesized
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that these motions arose from localized relaxations of the droplet positions.
This was later confirmed by O’Hern et al. in simulations [13].

In all these studies, however, a real relation between bulk rheology and
the behavior at the single particle level was never established. What actu-
ally happens on the bubble-bubble scale under a continuous shear strain,
for example? For small applied strain, the bubbles are deformed minutely,
yet still want to restore their equilibrium surface area. They respond elas-
tically, the way a solid would [31]. If the strain is increased further, the
foam relaxes through bubble rearrangements [23]. With a large enough
strain the system starts to flow irreversibly and there are continuous re-
arrangements [24, 32]. This type of behavior is of course dependent on
how far from the critical point the system is. In dry foams, far from φc,
[33, 34, 35] found that rearrangements in the form of so-called T1 events,
where two nearest-neighbor particles become next-nearest neighbors, (dis-
cussed in greater detail in Chapter 5) negate the build-up of stress. No
experimental studies have focused on plasticity in wet foams close to φc as
of yet.

The structure of these elastic systems was also carefully examined close
to the jamming point. Imaging of 3D packings of foams and emulsions to
look at static structures needs some sophisticated imaging techniques to
peer through the opaque samples, such as DWS [36], x-ray tomography
[37] and confocal microscopy [14, 38, 39]. In 2D, Bolton [40] found that
the critical packing fraction for a system of disordered discs was φc = 0.842
and that two-dimensional, disordered systems [41] do not exhibit a linear
increase of G near φc in 2D, contrary to results for 3D systems used by
Mason, although the osmotic pressure did increase quadratically near φc.

The study of flow in bubble packings was studied extensively by [4, 5],
where the packing fraction is controlled precisely. In this work, Katgert et
al. showed how great control of a two-dimensional foam can yield inter-
esting behavior of the shear modulus. By controlling the packing fraction,
they were able to show the square-root scaling of the packing fraction with
the contact number with correct prefactors, as well as velocity profiles of
bubbles in a packing under shear.

A different approach to what has been seen so far was taken by Cheng
[15], who used the swelling of confined tapioca particles to go through
the jamming transition to observe the nonaffine behavior there. In this
seminal work, Cheng found the classic signature of the jamming transition
by observing the tell-tale first (and second) peak in the pair-correlation
function. Furthermore, by looking at the displacement fields, he found that
a static length scale in the system reached the system size at φc. Further
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work probing the jamming transition, using hydrogel particles, which are
polymers that swell when introduced to salty water, is being performed by
the van Hecke group, as well as the Behringer group.
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Chapter 3

2D Foams in a Wedge
Geometry: Set-up

In this Chapter we describe the experimental setup that we have developed
for probing the jamming transition in 2D foams. We use a bidisperse 2D
foam packing consisting of bubbles sitting under a glass plate, like in [4,
5, 9, 10]; the glass plate helps to stabilize the foam, and eliminates the
capillary attractions that arise for freely floating bubbles, thus allowing us
to probe very wet foams and approach the jamming transition closely.

In our set-up, we confine our foam into a wedge geometry, which consists
of two fixed and one freely rotating wall, forming a “pizza-slice” geometry.
The rotating wall is connected to a rheometer, which allows us to control
the imposed strain on the foam. In particular, it allows us to both compress
and shear the foam. At the same time, this rheometer also allows us to
probe the resulting torques, which directly translate into the pressure in the
foam. We also image the foam from above, using a standard CCD camera,
thus tracking the rearrangements and motion in the bulk.

There should be no doubt that this is a challenging experiment. 2D
foams are really soft and, particularly when close to unjamming, very frag-
ile. We therefore have to resolve very small forces, which motivates our use
of a rheometer to measure these. Moreover, these fragile foams have a slug-
gish response, necessitating long experiments, which in turn require a good
long term stability of the experiment; in particular, we have to stabilize the
temperature, and make sure that coalescence and coarsening, intrinsic to
foams, are minimized.

This chapter gives a detailed description of the experimental set-up that
we developed. In Sec. 3.1 we first explain the rheometer geometry, how we
make the foam, control the temperature and image the set-up. In Sec. 3.2,

21



CHAPTER 3. 2D FOAMS IN A WEDGE GEOMETRY: SET-UP

we show how we adjust the tilt of the glass plate, and experiments on
drifting bubbles, which give us important information of how the packing
will behave under certain tilts we will impose to collect our data. Finally,
in Sec. 3.3, we describe the protocols with which we compress the foam
packing, and how the system behaves with varying compression and sit
times.

3.1 Experimental Set-up

In this section we describe the set-up that we constructed to probe the
jamming transition in two-dimensional foams. The main idea is illustrated
in Fig. 3.1: a two-dimensional foam, consisting of a single layer of bubbles,
floating on a surfactant solution and trapped below a glass plate, is kept
in a wedge shaped area. Two side walls of the wedge are fixed, the third
is mounted on a central axis, and acts as a wiper. By rotating the central
axis, we can compress or decompress the foam. The axis is coupled to a
rheometer, allowing accurate mechanical measurements of the foam. In
parallel to these mechanical measurements, we image the foam from above,
allowing us to follow and characterize the motion of the bubbles under
compression.

The foam bubbles we use are between 2 − 4 mm in diameter and even
for compressions between about 10−7 m and 10−4 m, the bubbles have a
effective spring constant of 0.02Nm−1 and 0.075Nm−1, respectively [42].
This means they are very soft, and that the forces involved in compressing
our two-dimensional foams are tiny. We therefore control the rotating of the
wiper by a rheometer, allowing us to measure torques as small as 0.5µNm
with an angular resolution better than 1 µrad. By rotating the wiper we
can thus both compress and measure the elastic response of the foam.
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Figure 3.1 – A top view schematic of the compression dish with black aluminum
frame. The wiper is the third and only moveable wall of the wedge-shaped area
the bubbles are confined to under the glass plate. A shaft connects the rheometer
(sitting out of the plane) and the wiper, which imposes strain steps to compress
the foam.

Since we wish to approach the jamming transition in these two-dimens-
ional foams as close as possible, there are numerous experimental issues that
need to be resolved, including stability of the foam, temperature control,
and leveling. The outline of this section is as follows. We will first describe
the set-up’s components and how they are put together to create the wedge
in which the foam is kept in Sec. 3.1.1. In Sec. 3.1.2 we describe the process
of making the soap solution and how the bubbles are made. Additionally,
we describe the way in which the foam is loaded into the experiment. In
Sec. 3.1.3 we explain how the set-up is kept at a constant temperature
during the course of an experiment. Then, in Sec. 3.1.4 we describe how
we image the foam packing from above. Additionally, we highlight imaging
techniques applied before analysis can be done.
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3.1.1 Set-up

Figure 3.2 – A side view of the bulk compression experiment. The rheometer
shaft is attached to a wiper which can compress the bubbles under the glass plate.
Leveling can be done with the tilt platform. A close-up of the dish which contains
the foam solution and bubbles is presented in Fig. 3.3.

The set-up, Fig. 3.2, is composed of the main “dish”, which holds the foam
solution, the glass plate and the bubbles. The dish is circular, 300 mm in
diameter with an inner diameter of 250 mm and 40 mm deep, cut from a
block of PMMA, see Fig. 3.3(D). An anodized piece of aluminum creates
the boundaries of the sample cell and sits submerged in the cut-out area of
the dish, as seen in Fig. 3.3(C) and Fig.3.1. An anodized “wiper” comprises
the compressing face of a wedge shaped area the bubbles are trapped in
and is attached to the rheometer by a shaft, which sits out of plane of the
set-up, Fig. 3.4. We use an Anton Paar DSR 301 rheometer, which can
be used in stress controlled mode and by a feedback mechanism, in strain
controlled mode.

The wiper is 107.5mm long and has an effective edge length of 97mm
to enclose the foam. There is a gap of 1 mm between the tip of the wiper
and the anodized aluminum frame, which is small enough to ensure that
no bubbles can escape the wedge area under compression.
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Figure 3.3 – Schematic of the dish and other components. From top to bottom:
the glass plate (A) with the anodized wiper (B), the anodized aluminum frame
which creates the boundary of where the foam sits (C) and the PMMA dish that
holds the soap solution (D). The bubbles sit under the glass plate, confined by the
aluminum frame (C). The wiper’s shaft is connected to a rheometer, which rotates
the wiper, as is shown in Fig. 3.1. The dish (D) contains the soap solution and
has an outside reservoir (shown as a blue-colored ring) from which solution can
be extracted to enable the loading of bubbles through the perimeter hole on the
glass plate, as described in Sec. 3.1.2.

The dish sits on a tilt platform that can be lowered to allow the sample
to be replaced, as described in Sec. 3.1.2 and Sec. 3.2. The tilt platform is
comprised of a Newport M-37 Tilt and Rotation platform mounted on a
Newport 281 High Load Lab Jack.

Additionally, the experiment is isolated from vibrations of the ground,
by being placed on an optical table.

The glass plate under which the bubbles sit is made from 10mm thick
plain window glass and is 260mm in diameter. This window glass was first
ground and then polished by a manufacturer, accurate to about 0.02 mm
/300 mm (14 arcsec), see Fig. 3.5 a). We use this specially milled glass
plate since normal glass panes are not flat enough and lead to drift of the
bubbles sitting under it because of the “sagging” of the glass plate, as well
as holes in the packing, as can be seen in Fig.3.5b). The flatness is required
so that the bubbles do not get “pinned” in place by impurities on the glass
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surface. In Sec. 3.2.1 we test whether the polished plate is indeed flat. We
find that it is very flat and that there is hardly any pinning left.

Figure 3.4 – Top view schematic of the anodized, aluminum wiper. The effective
edge of length 97 mm compresses the bubbles under the glass plate. The wiper
creates the third wall of the wedge-shaped area the bubbles are confined to under
the glass plate. A shaft connects the wiper to the rheometer, which sits out of the
page.

The plate has two holes of 17 mm diameter, one around the edge and
one in the center through which the wiper shaft is placed. The plate is
placed on top of the aluminum frame and thus encloses the entire foam,
as seen in Fig. 3.3. Once all pieces are placed together, the foam solution
is poured into the dish. During this process, air bubbles become trapped
under the glass plate and are removed by rotating the plate in such a way
that the hole at the perimeter provides the escape.

Once all excess air bubbles are removed, a bidisperse foam can be loaded
into the cell.
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Figure 3.5 – a) A schematic of the glass plate. The plate is made from 10 mm
window glass, yet one side under which the bubbles sit is machine polished to
achieve a flatness of roughly 14 arcsec. The holes have a diameter of 17mm. In b)
we see how a packing is effected due to unevenness of a non-polished glass plate
(before it was ground and polished): the glass plate “sags”, causing the packing
to drift away from these areas.

3.1.2 Foam

To approach the jamming transition by compression we must ensure that
the sample does not crystallize. Especially in two-dimensional systems,
this will occur readily in monodisperse systems. We therefore follow a well-
known protocol used in numerical simulations [13] and use bubbles of two
different sizes. The bubbles are about 2 and 4 mm in diameter, measured
by image analysis.

The foam solution is made according to the recipe in [43]. It is created
in a two step process: first, a solution with total surfactant concentration
of 10% consisting of 6.6 wt% anionic surfactant sodium lauryl esther sul-
phate (SLES) and 3.4wt% zwitterionic surfactant cocamidopropyl betaine
(CAPB) is added to 540mL demineralized water and stirred on a stir plate
without heat. This is stirred until the SLES is completely dissolved, since
it has a very viscous, wax-like texture. At the same time a stock mixture
of 6.84 L of demineralized water and 4.56 L glycerol solution is made and
shaken violently by hand to ensure that the glycerol has mixed properly
with the water. The two solutions are mixed together by carefully pour-
ing the high concentration surfactant mixture into the water/glycerol mix,
since any shaking causes a lot of foaming. The water/glycerol phase dilutes
the surfactant solution 20 times. Batches of 12L are made at a time in this
way, and about 1.5 L is used for any given experiment.

The final soapy solution is comprised of 0.33 wt% SLES and 0.17 wt%
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CAPB and has a glycerol concentration of 38 wt%. The density of the
solution is measured by pouring a known amount into a beaker on a scale.
We find ρ = 1094± 2 kg m−3.

We measure the dynamic viscosity η of the bulk solution with a Cannon
Ubbelohde viscometer and find η = 3.87±0.01mPa.s. The surface tension,
σ, was measured using the pendent drop method: a droplet of solution is
suspended from an 18G (0.84mm inner diameter) syringe and the curvature
is measured, according to [44]. From this the surface tension is extracted.
We find σ = 26.5± 0.3mN.m−1.

The foam is made separately in a petri dish by blowing N2 gas at a con-
stant rate through a needle submerged 20 mm deep in the solution. The
base pressure of the gas is 3.5bar, but decreased and tuned to useable levels
using valves. To control the two different bubble sizes, we use two differ-
ent gauge needles, 21G and 25G (0.51 mm and 0.26 mm inner diameters,
respectively). We create about 50% big bubbles and 50% smaller bubbles
by number.

The foam is then ladled with a spoon into the hole at the perimeter
of the glass plate, which can be seen in Fig. 3.5. By extracting solution
around the open, outer ring of the dish, see Fig. 3.3, an under pressure
is created, which allows the bubbles to be “sucked” under the glass plate.
The level of the solution never drops below the bottom of the glass plate.
During this process, many small, unwanted bubbles are created, as seen
in Fig. 3.6 a). The small bubbles cause problems during an experimental
run in that they create slip-planes along which rearrangements can happen
in a sample that would be otherwise in equilibrium. Additionally, these
“satellite” bubbles under high compression coalesce with other bubbles in
the packing, further bringing the packing out of its equilibrium state. They
are removed by use of a bent syringe, which is fed in through the hole along
the perimeter of the glass plate. This is also an effective means of ensuring,
by eye, one last time that the packing does not have any crystalline patches
or an overabundance of big or small bubbles before we enclose the set-up,
see Sec.3.1.3. Part of a “clean” packing without unwanted satellite bubbles
or crystalline patches is shown in Fig. 3.6 b).
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Figure 3.6 – a) A zoom in of a packing of bubbles showing many small, unwanted
“satellite” bubbles created when loading the compression cell. These small bubbles
can sit in the Plateau boarders of larger bubbles and in the course of an experiment
be the sources of slip-planes, which lead to rearrangements when there would
normally have been none. Additionally, if the compression is high enough, these
small bubbles can coalesce with others, further disrupting a packing in equilibrium.
b) Part of a clean packing without satellite bubbles. The small bubbles are removed
with a bent syringe needle.

Newly loaded samples are stable for about one to two days, meaning the
likelihood of coalescence events, even under high compression, is rather low.
However, after this time the foams rapidly lose their usefulness, since coa-
lescence dominates their behavior. Coalescence means two bubbles which
are pushed together merge into one big bubble due to the rupture of the
film separating them. These merging events can be observed in the torque
signal of the rheometer, mostly at low compressions, since the change in
area causes the wiper to measure a torque different than before. In Fig. 3.7
we see how the torque measured by a coalescence event changes. There is
a sharp spike due to the actual event before the system relaxes to a new
equilibrium.

It is easy to identify two bubbles merging as shown in Fig. 3.7. When
two bubbles of the same radius R merge, the area increases by a factor
of 22/3. The subsequent rearrangements in the sample and drop in torque
signal can be explained by a voronoi-type argument: it is the change in the
number of neighbors before and after the coalescence event that determines
the change in torque signal. As shown in Fig. 3.7, the peak in the torque
signal is due to the actual creation of the larger bubble, but the noticeable
drop in the torque signal comes from the number of neighbors changing
with the new bubbles. The system must rearrange itself to keep a stable
configuration. This chain of events can lead to the packing not being stable
for many hundreds of seconds, effecting even the next compression step from
reaching an equilibrium. Coalescence events are certainly identifiable, yet
also rare in our bubble packings.
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Figure 3.7 – A coalescence event in the bulk of the packing and the corresponding
change in the torque signal measured by the rheometer. The two consecutive
images (top, left to right) show a coalescence event highlighted by the red circle.
Two bubbles merge to become one due to rupture. Such events become more
common the older the sample is. Note how after the event the relaxation profile
(bottom) equilibrates to a lower torque than it was originally going to. This is
due to the system rearranging itself to compensate for the newly created bubble.

At higher compressions the coalescence events are not picked up in the
signal. However, we do know they occur occasionally by image analysis.

3.1.3 Temperature Control

Over the course of an experiment, which lasts several hours, the ambient
temperature in the experimenting room varies depending on the outside
weather. Direct sunlight coming through the windows in the summer or
strong cooling over a winter night are main concerns. The fluctuation of
the lab temperature can be as much as 5 oC over the course of a day.
Since the bubbles are made of N2 gas, they are not impervious to these
temperature fluctuations and will expand or contract depending on the
ambient temperature.

By Charles’s law
V1

T1
=
V2

T2
(3.1)

where V1 is the volume of the bubble, T1 the starting temperature, T2 the
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new temperature and V2 the new volume of the bubble due to the variation
in temperature. If the temperature changes by 5K, as the lab temperature
does on a hot, sunny summer day, ∆V = 1.6%.

However, to study the jamming transition, we need a precise control
over the packing fraction, which necessitates accurate temperature control.

To help do this, the whole experiment sits inside a white polystyrene
box of 100 cm × 80 cm × 80 cm. Its walls are 10 cm thick. The box is
suspended from the ceiling of the lab and can be hoisted up and down
over the experiment to enclose it completely. Fig. 3.8 b) shows the exper-
iment enclosed by the polystyrene box. Additionally, a 3 cm thick piece
of polystyrene is used to isolate the set-up as much as possible from the
steel plate that makes up the optical table top on which the set-up rests,
see Fig. 3.8 a). The polystyrene is EPS 100-SE and was chosen because of
its low conductivity of ∼ 0.036 Wm−1K−1. This way we insure that over
longer periods of heating the better part of the heat created stays inside
the box.

Figure 3.8 – The experimental set-up. In a), the 3 cm thick piece of polystyrene
the set-up sits over is shown. This piece helps to thermally isolate the set-up from
the metal table it sits on. In b), one can see the entire polystyrene box that is
hoisted over the set-up to help maintain a constant temperature. The walls of the
box are 10 cm thick.

To heat the inside of the box we use two 5W heating elements connected
in series, driven at 30 V . The heaters are connected to a Solid State Relay
so that they can be switched on and off by a 5 V signal controlled by a
computer. Additionally, two large fans of diameter 10 cm are placed inside
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the box to circulate the air. One extra, smaller fan is placed in such a
way that it blows over the LED lights (see Sec. 3.1.4) beneath the dish to
ensure no heat is trapped under the set-up. It is imperative that no heat
is trapped directly under the dish, since convection currents in the soap
solution occur as a result of the heat. This in return effects the stability of
the foam packing.

We control the temperature inside the box by way of a Product, Integral,
Differential (PID) feedback loop. A PT-100 resistor (100 Ω resistance at
0 ◦C, ideally) at 10 V , 20mA, wired in a Wheatstone bridge circuit is used
to read in a voltage, VB, measured across the two channels of the bridge,
see Fig. 3.9. This measured voltage (the “process variable”) corresponds
to the measured air temperature inside the box.

Figure 3.9 – The Wheatstone bridge used for reading the bridge voltage in the
circuit, VB . This bridge voltage is called the process variable and is used in a
LabVIEW code to measure the temperature inside the box. When the temperature
changes, the PT resistor changes its resistance, changing the process variable.

This process variable is fed over a switchboard to a National Instruments
PCI-6221 card to a LabVIEW code. The code then converts the voltage
signal and determines the duty cycle of the heaters by way of the Solid
State Relay so that a set-point temperature can be reached.

We set the set-point temperature close to 27.5 ◦C, above the ambient
room temperature, since we can only heat the set-up. The precise tem-
perature reached has to do with calibration of the PID loop and is not
important, as long as it is above the ambient room temperature and is
stable over long periods of time. The only temperature loss is due to the
walls, which is very slow. The LabVIEW program ensures that if the tem-
perature exceeds the set-point, the heaters are turned off and the system
waits until the process variable sinks. However, the settings of the heaters
that are controlled from the program are not strictly on/off. By use of
the feedback, the program constantly reads the process variable and de-
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termines a duty cycle: how much voltage the heaters need at any time to
reach the set-point. The amount of time on or off is constantly updated
until the set-point temperature is reached. By tuning the PID gain param-
eters, the program can approach the set-point faster or slower, with more
or less overshoot or undershoot. We have managed to tune the parameters
so that there is hardly any overshoot or undershoot, as seen in Fig. 3.10 a).

Figure 3.10 – a) The process variable as a function of the time when heating the
box. The set point is around 27.5 ◦C and the temperature quickly climbs to this
value before fluctuating around it. The temperature reaches its set point without
any major undershoot or overshoot. b) The temperature as a function of time
for a full experimental run. The set point temperature is roughly 27.5 C. Here
the temperature control ran for 27 hours without any major fluctuations from the
set point, showing how well the temperature can be controlled by way of the PID
loop.

It takes over an hour to bring the temperature inside of the box to the
set-point of 27.5 C. During the long heat-up time, all components inside
the box must also reach the set-point. Before this no measurement can be
made on the foam. The temperature will then start to fluctuate around
the set point temperature. The oscillations in Fig. 3.10 b) come from the
PID constantly updating itself to fluctuations of the ambient temperature
of the lab outside the box. If the temperature changes slowly, for instance
when the evening cools down, the PID can account for these changes in the
lab temperature.

The stability of the temperature is constant over long times, not varying
by more than ±30 mK around the set-point, as is shown in Fig. 3.10 b).
We can now see that, using Eq. 3.1, with the temperature varying no more
than ±30 mK, ∆V = 0.01%. This volume change is small enough that it
can be ignored. It allows us to carry out our experiments sufficiently close
to the jamming transition without having to worry about variations of the
bubble volume over time.

One problem that arises when having such a “high” temperature inside
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the box with air always circulating, is evaporation. Older experiments left
the outer ring of the dish open to the air, as depicted in Fig. 3.3. Over the
course of long experiments, the solution would evaporate from these parts
and the level would sink. We would lose up to 30mL of solution this way
per day. Not only do we lose solution, we also change the concentration
of the surfactant in the solution. The lighter fluid, in this case the water,
evaporates away, leaving behind more glycerol. This can lead to changes
in the behavior of the foam. To address this problem, we place a petri
dish with 100 mL de-ionized water inside the box to keep the air humid.
In addition, we place a circular rubber sheet over the exposed area on
the perimeter of the pan. This way evaporation is reduced to a less than
measurable amount.

3.1.4 Imaging

To observe the dynamics of our system under compression we film the set-
up from above. The torque signal output by the rheometer can now be
matched with rearrangements as well as coalescence events. The proper
lighting of the foam is also crucial, since only with the light striking the
Plateau borders at the right angle do the bubbles appear as discs when
viewed from above.

The foam is lit from below at a slight angle by a strip of flexible LED
(Silikon LED Flexstrip from SLV Elektronik GmbH) lights that sit directly
under the dish, as seen in Fig. 3.11. The strip is bent into a circular shape
and thus lights the entire dish from below. Imaging is done using a CCD
camera (Basler A622f with 1280× 1024 pixel resolution), equipped with a
Sigma EXDG telephoto zoom lens. The leveling platform on which the dish
sits is black, to enhance contrast, as in Fig. 3.11. The camera is triggered
from a LabVIEW code and the frame rate is fixed at 0.1 Hz or 0.033 Hz,
depending on the compression protocol. The camera points along the x-axis
onto a tilted mirror to film the set-up.

Due to the way the camera is filming the experiment we need to correct
the images. The camera and mirror set-up do not image the bubbles exactly
from above due to how they are placed inside the polystyrene box. From
the front of the image to the back of the set-up is designated the y-axis, as
shown in Fig. 3.16 b).
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Figure 3.11 – The camera (right) and mirror (left) placement above the tilt
platform where the LED light strip lights the dish (not shown) from below. The
lights are placed at a slight angle underneath the place where the foam packing
will ultimately sit. The leveling platform is black to enhance contrast. Due to the
tilt of the mirror over the dish and the alignment of the camera the images are
skewed and will be corrected.

Similarly, the x-axis runs from left to right. The image is taken at a
slight angle to normal, leading to the images being skewed. This means
that a bubble seemingly becomes larger when it moves “closer” to the front
of the image and shrinks when it moves towards the back. Parallel lines
do not appear parallel, but splayed. To add to this, the direction of the x-
and y-axis is not aligned with the image, since the camera does not point
“exactly” along the x-axis.

We use a calibration image to correct the images as follows. The cal-
ibration image has a coordinate axis drawn on it that is aligned with the
actual axis of the set-up. From this template grid, we map the correct
coordinates on to any image of the bubble packing obtained by the camera
using two IDL routines, POLYWARP and POLY 2D.
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Figure 3.12 – Cartoon of how POLYWARP and POLY 2D correct an image that
is skewed. The black grid points are a guide to how the picture is corrected after
the transformation.

POLYWARP determines rotation coefficients by performing polynomial
spatial warping using tie points on the template grid to map to new coor-
dinates on the rotated, skewed image, as illustrated in Fig. 3.12.

POLYWARP determines the polynomial coefficients kxi,j and kyi,j needed
for image transformations from the polynomial functions:

xi =
∑
i,j

kxi,jx
j
0y
i
0

yi =
∑
i,j

kyi,jx
j
0y
i
0

The coefficients kxi,j and kyi,j are the inputs to the POLY 2D routine.
The coordinates xi and yi are chosen from an image and correspond to some
set of points (x0, y0), set in advance from a calibration grid. Fig. 3.13 a)
shows a calibration grid image from which (x0, y0) and (xi, yi) are extracted.

Next, we use POLY 2D, which performs the actual geometrical warping
of the image with the rotation coefficients from POLYWARP above. The
warping coordinates (x′, y′) are determined as

x′ =
N∑
i=0

N∑
j=0

kxi,jx
jyi

y′ =

N∑
i=0

N∑
j=0

kyi,jx
jyi

Fig. 3.13b) shows the calibration grid image corrected after the POLY 2D
routine has preformed the warping, using the coefficient inputs kxi,j and
kyi,j , determined by POLYWARP.
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Since some pixels in the rotated image need to be padded due to the
transformation, the POLY 2D routine performs an additional bilinear in-
terpolation to decrease pixel noise. We could do this up to arbitrary order
but use only linear order. Higher order means using more reference points,
which is not necessary for our experiment. This method of image correction
is used on all data sets before image analysis is preformed.

Figure 3.13 – The calibration grid before, a), and after, b), the transformation
done using two IDL routines, POLYWARP and POLY 2D. Shown is ruled, 1mm
paper. Note how in a) parallel lines are splayed due to the skew of the camera’s
imaging. In b), one observes that the borders of the new image are stretched due
to the transformation process. Only the inner part of the image showing the grid
is of interest.

3.2 Leveling

While running the compression experiments, a leveling of the system presents
itself as a very important issue. We have already tried to solve this by use
of a polished glass plate. The leveling is fundamentally important in run-
ning any set of experiments since the motion of the bubble packing is very
sensitive to the tilt of the glass plate with respect to gravity.

From jamming theory we have an idea of what our ideal scenario would
be: the packing, under compression, should behave as a loose collection of
bubbles in Fig. 3.14 a). That is, the bubbles initially sit under the glass
plate, which in this scenario is mathematically perfectly flat, and are not
touching. As we increase the packing fraction by decreasing the area they
occupy, as we are doing in our compression experiments, they come to-
gether, touch and then pack together and deform. By this process one
cleanly goes through the J-point, and measuring the elastic response would
be an easy task.

However, this ideal scenario is a far cry from the actual situation when
we preform experiments. It is impossible to (i) have a perfectly flat glass
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plate and leveled system and (ii) create a packing of bubbles that sits in
an initial configuration where no bubbles are touching.

We face the following problem: any experiment starts with a tilt that is
not perfectly level. As a result, all bubbles in a packing are fully in contact.
This means that the system starts out with a built-in stress due to the
buoyancy of the bubbles pushing the packing into some configuration, due
to tilt. The experiment is subject to continuous off-tilt of the glass plate
in compressing our packing through the J-point. However, as outlined in
points (i) and (ii) above, this is a Sisyphean task.

Figure 3.14 – A comparison of theory and experimental approaches to foams. In
a), a packing of bubbles goes through the jamming transition from an umjammed
to a jammed state. In our experiments, as depicted in b), we start in a “gravity
jammed” configuration with a hole between the packing and the wiper and com-
press until we are in the “boundary jammed” regime. Here the wiper has now
closed the hole and is fully compressing the foam.

To counter these problems, we use the reality – that we can never per-
fectly level the system – to our advantage by purposely biasing the tilt.
The bubbles now sit, due to our imposed tilt, in the wedge-shaped area.
Furthermore, to draw parallels to the ideal scenario of going through the
jamming transition, we tilt the bubbles into a configuration where a hole is
created between the packing and the wiper, as in Fig.3.15. During compres-
sion, this hole is closed and the packing is said to undergo a transition from
a “gravity jammed” (still weakly jammed due to the buoyancy gradient) to
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a “boundary jammed” state, as shown in Fig.3.14b). We expect the torque
signal to mark a clear difference between these two regimes, since in the
gravity jammed scenario, the wiper is not fully compressing the system and
thus not measuring the actual bulk modulus of the packing. Once the hole
is closed and the packing is fully enclosed, the boundary jammed regime,
we are measuring the compressibility of the foam.

Thus we have now a real world analog to the ideal, theoretical case of
compressing a soft system. The results of using this approach are outlined
in detail in Sec. 4.3.

Figure 3.15 – A cartoon of a number of different hole configurations used. Initial
experiments with a biased tilt creating a hole in the packing were done, leading
to versions a) and b). These experiments were improved upon once we saw that
a cleaner signal was obtained by using hole configuration c), a hole running the
length of the wiper axis.

The main dish holding the foam solution sits on top of a specially created
leveling stage described in Sec. 3.1.1. The tilt platform uses two screws
to adjust the tilt in the x- and y-direction. The screw is subtended into
50 “ticks”. One full rotation is 0.5 mm. Thus, each tick changes the
travel of the screw by 1/100 mm. The screws sit a distance of 89 mm
apart, which means that one full rotation tilts the platform by 5.61mrad.
Therefore, 1 tick = 0.11mrad. A schematic of the tilt platform is illustrated
in Fig. 3.16 a).

Since the tilt can now be set very finely, we use a master orientation
which tells us where the bubbles will move when we adjust the tilt screws.
The convention uses the way the whole set-up sits on the optical table: from
the front of the table to the back, going through the experiment if sitting
in front of it, runs the y-axis. Again, sitting in front of the experiment,
going left to right is the x-axis, as in Fig. 3.16b). The screws can obviously
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be turned clockwise or counter, so a convention needed to be created to
distinguish the tilt. Turning either the x-axis or y-axis tilt screw to the left
(clockwise if viewed from above) moves the side of the set-up closest to you
down. A counter clockwise rotation would tilt the experiment up, as seen
in Fig. 3.16 a).

Now that the orientation is established, we determine how bubbles move
when changing the tilt up or down. In order to do that, we want to level the
system as much as possible and determine the deviation from being flat. In
Sec. 3.2.1 we check how flat the glass plate is, whether there is any pinning
due to roughness and if the bubbles move smoothly in one direction, and
that there is no deviations to a straight line due to sagging of the glass
plate. We compare our estimates to a theoretical prediction established by
Bretherton and others [45, 46, 47, 48] in Sec. 3.2.2.

Figure 3.16 – Schematics of the screw platform used for leveling the system, as
well as the table top where the set-up sits on. a) A top view schematic of the tilt
platform screw layout. A counter clockwise turn (seen from above) of either the
X or Y screw turns the platform up. Clockwise turns it down. The dish with the
bubbles is mounted on top of the tilt platform. b) Top view of the table. The tilt
platform schematic and its actual orientation as seen when sitting in front of the
set-up.

3.2.1 Protocol to Level

We create a protocol with which we probe different tilts on a single bubble
under the glass plate. By looking at the motion we can then determine
the direction of the bubble, if it moves in a straight line or deviates due
to unevenness of the glass, and its velocity. We systematically change the
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angle to create a velocity vector field of the bubble. The point where the
velocity approaches zero gives us the best estimate where the tilt is minimal.

We start the experiment with a single bubble under the glass plate.
This bubble is roughly 5mm in diameter, larger than the largest bubble we
use in our bidisperse packings for the bulk compression experiments. The
larger the bubble, the more sensitive it is to changes in the tilt. The bubble
is not allowed to touch the boundaries of the cell, since we are interested
in its free movement due to the tilt.

To start, some initial tilt settings for the axis were chosen around which
we change the tilt. These are:

X : 6.5mm+ 20/50mm

Y : 7.5mm+ 49/50mm

Here the notation XX/50mm means that the tilt is at the XX’th tick
out of 50 of the screw. These values are the fine-tuned adjustments we
make to the tilt of the set-up.

Figure 3.17 – A grid showing the tilt coordinates probed as red stars. The center
of the grid is the arbitrarily chosen initial tilt position. Moving along the positive
x- or y-axis is up. Going into the negative ranges of the axis is down when turning
the tilt screws. The numbers next to each star show in which order we changed
the tilt. All points along the x-axis were done separately. This protocol produced
Fig. 3.19.

We proceed by systematically changing the tilt according to a grid, see
Fig. 3.17. Here we probe the tilt in steps of three ticks (0.33 mrad) in
either x- or y-direction. Three ticks are chosen since this causes the bubble
to move enough in the 10 minutes we record the movement with the camera.
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Once the time is up, we change the tilt to the next position on the grid and
start filming again.

Figure 3.18 – A superposition of images to show a bubble moving in a straight
line under the glass plate. The bubble is roughly 5 mm in diameter. The whole
track movement is 1780sec long, 80sec between each white ring seen in the figure.

We ensure that the bubble does in fact move in a straight line, that the
glass plate is without unevenness or local rough patches due to the grinding
and polishing process described in Sec. 3.1.1, unlike what could be seen in
Fig. 3.5 b). By analyzing the tracks (a track being the bubble movement
due to an imposed tilt) of the bubble through the video images, we can
convince ourselves that the bubble always moves in a straight line from the
beginning of the imposed tilt until we change the tilt, as in Fig. 3.18.

Once all points on the grid have been covered we use ImageJ to piece
together the tracks the bubble has traced out under the glass plate to
measure the velocity. This can be seen in Fig. 3.19 and Fig. 3.20. We
notice that several smaller bubbles in the set-up become pinned and do not
trace out the full track, the way the big bubble does. The fact that most
of the satellite bubbles do follow the same track shows us that the plate is
very smooth.
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Figure 3.19 – A superposition of the first 16 points in the grid of Fig. 3.17. The
time between each ring is 100 seconds. The bubble is roughly 5mm in diameter.
The image has been corrected for skew. By chance this ribbon-like bubble path
was created. The start is the top right position, the end is the top left position.

Figure 3.20 – A superposition of three bubbles under the glass plate. The time
between each ring is 10 seconds. The two larger bubbles at the top are roughly
5 mm in diameter. The image has been corrected for skew. The start of the
imposed tilt is at the top. The bubbles end up at the bottom. The smoothness of
the glass plate is again highlighted by the much smaller bubbles also following the
tilt motion of the glass plate.
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3.2.2 Equilibrium Coordinates

We take the first and last image for any straight section of a track at a fixed
tilt and find the center-point coordinate of the bubble. Knowing the time
for each track and the coordinates, we can calculate the x- and y-velocity
components for all points in Fig. 3.17, (vx, vy). The result is shown in
Fig. 3.21. The arrows show the magnitude and direction of the velocity of
the bubble drift. The value of the velocity for each tilt as a function of the
tilt is plotted in Fig. 3.22. In this case, the length of the arrows is increased
by 100× to show their direction.

Figure 3.21 – The velocity profile of the bubble at different tilt positions given
by Fig. 3.17. As expected, the velocity is larger when the tilt is greater.

From the figure we note that our initial tilt settings are fairly good
estimates of where zero tilt is, since all velocity vectors seem to originate
at our initial setting. They are, however, not quite emanating from (0, 0).
We want to determine their origin position, (x0, y0), as the tilt coordinates
should be for a completely level system.

We define the directional vector from our to-be-determined origin where
the tilt is zero, r̂, to the coordinates that correspond to points picked for
each tilt in Fig. 3.17. Here

r̂ =

(
x−x0
y−y0

)√
(x− x0)2 + (y − y0)2

(3.2)
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where the denominator is the length of the vector from (x0, y0) to (x, y)
and can be seen as an angle between the origin and (x, y).

The drag force (per unit length) on a bubble under a glass plate is re-

lated to its velocity by Bretherton’s law as set forth in [47] F = 4.70σ(Ca?)
2
3 ,

where (Ca?) = ηv
σ is the bubble-wall capillary number. Equating this with

the buoyancy force a bubble of radius R feels under an inclined plane of
tilt angle θ, F = 4

3πR
3ρg× sin θ, we can get the velocity of the bubble as a

function of the tilt of our glass plate. Note that the force in the buoyancy
equation is linearly proportional to the angle of tilt. If we now dot the
velocity vector for every tilt, −→v = (vx, vy) in to r̂, and plot this versus the
angle, we can vary our estimated coordinates of (x0, y0) to collapse all the
data as much as possible.

Figure 3.22 – The velocity of a bubble moving under the glass plate versus the
tilt. The line of best fit is in red.

If we calculate numerically the relation between the velocity as a func-
tion of the tilt, as described above, we get

v = 0.065ms−1 × θ1.5 (3.3)

The line of best fit in Fig. 3.22 is v = 0.07ms−1 × θ1.5, in excellent agree-
ment. By only knowing the buoyant force and the velocity of a bubble
under our glass plate, Fig. 3.22 shows that our bubbles are behaving like
the ideal case proposed by Bretherton [45] of a bubble sitting under a flat
plate.

45



CHAPTER 3. 2D FOAMS IN A WEDGE GEOMETRY: SET-UP

3.3 Compression Protocols

In this section we describe the compression protocols we use to probe the
jamming transition in our two-dimensional foam packing. The main idea
is to compress the foam, trapped in the wedge of our set-up, by small,
incremental strain steps and to measure its elastic response. The steps
can be anywhere between 0.5− 12mrad, which for typical wedge openings
in the order of 1 rad corresponds to strains between 5 × 10−4 and 10−2.
As we will see in Fig. 3.26, the stress responds on a timescale of several
minutes, and we choose relaxation times of the system between these steps
from 400 − 1200 seconds. We will show which combinations of step size
and relaxation time give a well equilibrated response and thus allow us to
measure the elastic moduli of the foam.

In Sec. 3.3.1, we show the difference between the angle measured by the
rheometer and the open angle, measured by image analysis. Sec. 3.3.2 dis-
cusses the dynamics of the system and how by controlling the compression
and sit times of the experiment, we ensure that the system is equilibrated.
In Sec. 3.3.3 we give a detailed description of the different compression
protocols used.

3.3.1 Deflection Angle vs. Open Angle

For all experiments, the open angle of the wedge and the deflection angle
imposed by the wiper on the packing are of great importance. However,
there are differences in obtaining and also in using these two in the data
analysis.

The deflection angle, θ, is the angle that the rheometer tells the wiper
to move and change between protocols, as shown in Sec.3.3.3. The starting
point is arbitrarily set by the rheometer, meaning wherever the wiper sits
at the start of any experiment is the designated reference point. Each
subsequent step is measured from that reference point. For the protocols
outlined below, only this deflection angle is used to compress the foam.

The open angle of the wedge geometry, θ0, is measured using ImageJ.
By using the images of the foam after each compression step, we measure
the angle between the static wall and the wiper. This allows us to calculate
the area of the wedge during the entire run, which will be of use in the next
chapter.
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3.3.2 Dynamics of Different Protocols

These steps are characterized by three quantities: the change in angle be-
tween steps, ∆θ, the change time between steps, tc, and the sit time at
an angle, ts. In all protocols, the wiper sits at one imposed angle before
moving to the next one at a finite rate, as shown in Fig. 3.23. The change
in angle, ∆θ, and tc are the same for all protocols outlined below, only
ts is changed between different protocols. In our experiments, we use the
rheometer in strain controlled mode, and during the step-wise compression,
the torque from the bubbles on the wiper is measured.

Figure 3.23 – Sketch of the deflection angle versus time. The wiper moves linearly
by a change in angle ∆θ over time tc to the new angle, where it sits for time ts.

We choose tc = 120 seconds. The corresponding finite rate of change in
angle prevents dynamic effects to dominate, such as the creation of little
satellite bubbles in Fig. 3.6 a). Moreover, this rate is slow enough for the
system to quasi statically move to be compressed; shorter tc disturbs the
packing too much and in that case it takes the system far longer to reach
an equilibrium during the sit time.

To allow the system to equilibrate after each compression step, we keep
the wiper fixed for a duration ts. Typical equilibration times, seen from
the torque signal, range from several minutes for low compressions, like in
Fig. 3.24 a), to tens of seconds for higher compressions, as in Fig. 3.24 b).
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Figure 3.24 – a) At lower torques, equilibration times can be several minutes.
b) At higher compressions, equilibration happens much faster, over several tens of
seconds.

For low compressions, rearrangements become more frequent, and de-
pending on protocol, we take ts anywhere from 400 to 1200 seconds, allow-
ing the system to equilibrate.

3.3.3 Stress vs Strain Control

The wiper, which makes up the third edge of the wedge in which the foam
packing sits, see Fig.3.1, is attached to a shaft which is rotated by a rheome-
ter. As mentioned in Sec. 3.1.1, the rheometer can be used in strain and
stress controlled mode. We only use strain controlled mode, since the sys-
tem relaxes faster than when using stress controlled protocols. Fig. 3.25
shows the difference between equilibration times for strain and stress con-
trolled protocols. The difference between the two modes is astonishing:
packings compressed using the strain controlled mode of the rheometer
equilibrate within minutes (or even faster if very compressed), see Sec.3.3.2
above, whereas for stress controlled mode, as in Fig. 3.25 b), the packings
sometimes do not equilibrate at all.
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Figure 3.25 – a) A zoom-in of a well equilibrated compression protocol using the
strain controlled mode of the rheometer. b) A signal of the wiper compressing
a sample in stress controlled mode over 15 hours. The rheometer measures the
change in angle when a constant torque is imposed. Note how the system never
equilibrates over the course of the imposed stress.

3.3.4 Protocols

We have explored three different strategies for leveling the system. Initially,
we aimed at leveling the top plate to the best of our abilities: we call this
the ”flat” protocol. Then, we added a tiny but controlled tilt to the system,
and oriented the tilt such that a hole formed in the foam close to a corner
of the system: the ”corner-hole” protocol. Finally, we settled on a protocol
where the tilt is oriented such that gravity is approximately perpendicular
to the wipers orientation, leading to a long stretched-out hole near the
wiper: “slice-hole” protocol. Most data presented in the following chapter
are obtained in the slice-hole protocol.

3.3.4.1 Flat Protocol

The first problem one encounters in experiments on 2D foams below a top
plate is the strong sensitivity on the residual tilt of this plate. The most
natural approach is thus to level this top plate as well as possible, thereby
reducing to the minimum the effect of buoyancy, which leads to drift of
free bubbles. However, once one approaches the (un)jamming transition,
a hole spontaneously forms somewhere near the boundaries. The hole’s
precise location is set by the orientation of the residual tilt. This hinders
the interpretation of the jamming behavior in our foams. Nevertheless, for
more strongly compressed foams such problems do not arise, and below, we
describe the outcome of some of these explorations.
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In Fig. 3.26 we used the flat protocol and probed almost two decades in
torque, carefully staying away from the very low compression regime. Once
the cell was loaded with bubbles, we lightly compressed the packing with a
low torque of about 2−3µNm to make sure all bubbles were in the wedge-
shaped area. We turned off the torque and let the system relax and set the
deflection angle of the wiper to constant, once we visually determined the
packing to be stable and the torque signal to be sufficiently low. At this
point we started the compression. The imposed deflection angle went (in
mrad):

0, 0.5, 1, 2, 3, 4, 5, 6, 7

and then in steps of root two. After each step of root two, which we call
the compression step, there was a “measurement” step, which is 1 mrad
more compressed, see Fig. 3.26.
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Figure 3.26 – A compression step followed by its measurement step, which is
1 mrad more compressed, used in the “flat protocol”. The sit time for each step
is 900 seconds.

The final deflection angle was 190 mrad from the start point. The sit
time at every angle was 900 seconds and the wiper changed angle linearly
to the new angle in 120 seconds. The total strain range for this experiment
was 24%, which for this system corresponded to a range of torque probed
between . 0.5 µNm to 75 µNm. Fig. 3.26 shows full equilibration.

Although successful, we abandoned this flat protocol because it did not
not allow us to get very close to jamming. For the lowest torques, a hole
would open up in the foam packing, and the interpretation of the results
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was somewhat opaque; in particular, it was now unclear where precisely
the jamming transition takes place.

3.3.4.2 Corner Hole Protocol

To control the location where the hole appeared when uncompressing the
foam, we tuned the top plate so that it deviated from the horizontal by an
angle of order 0.33mrad, and orientated this residual tilt so that the hole
in the foam opened up in a corner of the foam, see Fig. 3.15 b).

While this protocol allowed us to control the location of the hole, its
location was such that a relatively large change in the wipers location was
necessary to open or close the hole. Moreover, we observed that there was
bridging in the foam right before the hole closed. The bubbles would move
to close the hole. Before it could be enclosed completely by the wiper, the
remaining bubbles at this point created a bridge, leading to higher than
normal torque signals until the bridge disappeared due to a rearrangement
only many steps later.

In Fig. 3.27 we show an example of such a run, performed for compres-
sion steps of 1 mrad and sit time 400 seconds. We compressed a system
with this type of hole for four different tilts of the glass plate, each time
increasing the tilt by 3 ticks (0.33 mrad), tilting the glass plate a total of
1.32mrad. The bridge can be seen in Fig. 3.27.

Figure 3.27 – A pentagon arrangement of bubbles at the tip of the wiper during
the “corner hole” protocol. This bridging happened repeatedly and with too many
bubbles being in contact with the wiper at the start of an experiment led to us to
abandon this protocol for the “slice hole” protocol.
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We were thus not compressing the system fully, just measuring the
response of the bridge. Also, the shorter sit time we used for this protocol
showed that we were not letting the system relax long enough: the trend
of the signal showed many times that the foam had not reached a relaxed
state.

3.3.4.3 Slice Hole Protocol

This protocol also uses a controlled tilt, now orientated so that the wiper
lies parallel to the packing when a hole is formed; the slice hole ensures
that there is no initial contact between the packing and the wiper. Ideally,
the wiper closes the hole and makes contact with the sample at the same
time along the length of the wiper; in practice we have limited control
over the precise orientation of the tilt (as the absolute tilt angle is already
very small), but we can orientate the tilt sufficiently well so that bridging
is essentially absent. An example of the final configuration of the hole is
shown in Fig.3.15c). This protocol yielded the clearest difference in torque
signal between the gravity and the boundary jammed regions, and will be
used in the following chapter.
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Chapter 4

Jamming of a 2D Foam

In this Chapter, we probe which aspects of the jamming transition can be
observed in 2D foams. We do this by measuring the torque and occupied
area as function of the opening angle of the wedge geometry, and image the
organization in the foam. At the jamming point the material is singularly
fragile, and the tiniest effects, unavoidable in experiment, may affect the
behavior observed. In particular, prior simulations on the jamming of soft
particles [12] have focused on (i) absence of bulk forcing (like gravity) (ii)
large systems with periodic boundary conditions, and (iii) strictly linear
response. Our experimental system deviates from these idealizations in
important aspects.

First and foremost, any symmetry-breaking field, such as a residual
gravitational pull, will strongly disturb the unjammed state. What conse-
quences does this have for the nature of the transition that we can observe
in experiments? In our 2D experiments, any tilt of the top plate will lead
to drift of the bubbles, which will continue until they reach a boundary.
It is impossible to create an initial packing configuration where no bub-
ble touches its neighbor. Therefore, the classical picture of the unjammed
state of separated particles is not reachable in experiment. The tilt in our
system is unavoidable, and we cannot go ”through” the jamming transition
as in Fig. 2.3 in Sec. 2.1. However, a carefully study of the effect of a weak
tilt reveals that we can observe a transition between an extremely weak,
gravity jammed state, and a more strongly compressed boundary jammed
state.

Secondly, our systems are not infinite and have real boundaries. These
play an important role in confining the foam, and stopping the drifting
motion of the bubbles due to the residual tilt. As we will see, they also
may lead to the formation of arches: local configurations of bubbles that
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can carry a load, despite the presence of a hole in the foam nearby.
Thirdly, we cannot guarantee linear response. Can we extract mean-

ingful response data from our system near the transition? Most of the
theoretical work on jamming has focused on linear response, this being ei-
ther calculated in strict linear order (by linearizing the equations of motion
and using objects like the dynamical matrix to calculate the response of a
jammed system to external, infinitesimal forcing), or by using tiny deforma-
tions. Deformations in the order of 10−8 are not unheard of, yet these are
completely inaccessible in our experiments. Recent work [49, 50] shows that
the range of validity of linear response vanishes near the jamming point,
or for large systems. Both are intuitive: near jamming, the system “falls
apart” so the smallest forcing may drive the system towards nonlinear, irre-
versible events. And the larger the system, the greater the probability that
somewhere, the system is about to fail locally, again leading to nonlinear,
irreversible events. We therefore should be very cautious in interpreting
our experimental data, in particular close to the critical point.

The data we will present here shows that the experimental issues do
not overwhelm our signal; temperature drift is small, coalescence events
sparse and easily identifiable in our data. Moreover, our measurements are
sensitive enough to access essentially linear response. The most important
issues have to do with the tilt and the presence of boundaries.

It is helpful to define the wedge area here before continuing. Using the
open angle, θ0, obtained through image analysis (see Sec. 3.3.1), the area
of the wedge geometry over the course of any given experiment is then just
AW = θ0

2 r
2, where r is the length of the wiper.

As we will detail below, for densely packed systems (small AW ), the
torque T systematically grows when AW is lowered, while for very loose sys-
tems (largeAW ), the torque T becomes essentially constant at a small value.
However, this is not yet evidence for the classical, sharp (un)jamming tran-
sition. When we try to unjam the system by gradually increasing the area
available for the foam (by increasing the open angle θ0, or conversely, the
wedge area), instead of losing contact, the bubbles will simply drift to one
part of the system, creating a “hole” at one side of the bubble packing –
we say that the system then goes from a boundary jammed to a gravity
jammed state, as was introduced in Sec. 3.2. As a consequence, we will find
that T (AW ) often does not show a sharp transition, and even if it does, it
may not coincide with the “closing of the hole” in the foam.

To further understand what is going on, we also measured the area occu-
pied in the wedge by the hole, AH (introduced more formally in Sec. 4.2.2)
and the foam, where AF = AW − AH . When we then plot T (AF ), we
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do find a clear and sharp transition, providing strong evidence that the
bulk modulus discontinuously jumps from a finite value to zero when going
through the (un)jamming transition.

While we do not have direct access to the shear modulus, we do find
that if we deform the foam where AW is large and there is a large hole in
the foam, this does not cost any measurable energy. In such a case, the
foam area remains constant, so that the deformations are shear-like. The
system is then still very weakly jammed (by gravity), but the absence of a
significant response suggests that the shear modulus is close to zero. This
suggests that when approaching the transition from boundary to gravity
jammed, the ratio G/K is very small.

This chapter is organized as follows. In Sec. 4.1 we discuss the elastic
response in a wedge, and show that the elastic constant we can measure is
equal to G + K. In Sec. 4.2 we extract the values of the torque to which
the system equilibrates after each wiper step. We also introduce how we
measure AW , AH and finally AF . Lastly, in Sec. 4.3, we study in detail the
relation between T and AF and find clear evidence of a sharp transition
between boundary jammed and gravity jammed states. Experiments with
higher tilts are also investigated, as is the affine response of the foam under
high compression in the boundary jammed regime in Sec. 4.4.

4.1 Elastic Response in a Wedge

To interpret our experimental data, we need to consider the elastic response
of a linear bulk material in a wedge geometry first, and in this section we
derive this response from a purely theoretical perspective. Since the set-up
uses a rather un-classical way to compress an elastic system (arguably a
more classical case would be a square under compression), we need to un-
derstand what kind of forces are acting on the foam in the wedge. After
obtaining the general result, we then translate it to our specific experimen-
tal geometry.

It is easiest to consider the stresses and strains in the compression set-up
using polar coordinates (r, θ).

The stress strain relations then are as follows [51]:

γrr =
1

E
(τrr − ντθθ),

γθθ =
1

E
(τθθ − ντrr), (4.1)
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where ν is Poisson’s ratio and E the Young’s modulus of our foam. We have
also introduced the stress components τrr and τθθ acting in the radial and
θ-direction, respectively. All off-diagonal components of the strain matrix,
γrθ and γθr, are 0.

Figure 4.1 – The strain and stress for an elastic material with Young’s modulus
E and Poisson’s ratio ν acting on an area element in the wedge.

Assuming a homogeneous deformation (which is a good assumption at
large enough scales), we find that γrr = 0. Hence

γrr = 0 =
1

E
(τrr − ντθθ)

⇒ τrr = ντθθ (4.2)

γθθ =
1

E
(τθθ − ντrr)

⇒ γθθ =
1− ν2

E
(τθθ). (4.3)

We find the following identity:

τθθ
γθθ

=
E

1− ν2
(4.4)

We now use the well known relations between ν and E on the one hand,
and the shear (G) and bulk (K) modulus in 2D [52]:
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G =
E

2(1 + ν)

and

K =
E

2(1− ν)

We notice that, by using a linear combination of the two moduli, we
get from Eq. 4.4

τθθ
γθθ

=
E

1− ν2
=

E

2(1 + ν)
+

E

2(1− ν)
= G+K (4.5)

This equation tells us that we are not only purely compressing our foam
sample, but that there is a shear component in our geometry as well. This
is typical for the sort of uniaxial compression we do, and for this specific
geometry, Eq. 4.5 gives the precise relation. For further reference, we will
refer to the combination G+K as the wedge modulus, W .

Figure 4.2 – a) Schematic of a small compression ∆θ from some start angle, like
is defined in Fig.3.23. The angular displacement, uθ is shown along the open angle
θ0. In b) a schematic of the wiper dimensions is shown.

We now need to relate our experimental accessible quantities to the
wedge modulus W . To do so, we will calculate the stress and strain, τθθ and
γθθ, given the torque, geometrical parameters ri, ro and θ0 and the change
in angle ∆θ, see Fig. 4.2, where we consider an infinitesimal compression
∆θ of our compression geometry. The angular displacement component is
(the radial component being 0):

uθ(r, θ) = −r∆θ θ
θ0

(4.6)

57



CHAPTER 4. JAMMING OF A 2D FOAM

From elasticity theory we consider the definition for γθθ according to
[52],

γθθ(r, θ) =
1

r

∂uθ
∂θ

=
−∆θ

θ0
(4.7)

The wiper in the set-up has an effective length, (ro − ri), where ro is
the outer radius of the wiper, from center of rotation to the tip, and ri is
the inner radius by its fulcrum, as seen in Fig. 4.2 b). The normal stress
τθθ due to the compression of the wiper can easily be related to the torque
as

T =

r0ˆ

ri

−τθθrdr = −1

2
τθθ(r

2
o − r2

i ) (4.8)

Rearranging Eq. 4.8 and making use of Eq. 4.7, we get

τθθ
γθθ

=
2∆Tθ0

∆θ(r2
o − r2

i )
= G+K = W , (4.9)

which gives the wedge modulus for our geometry and where ro = 1.75 cm
and ri = 10.75 cm. We note here that this relation assumes that the strain
fields are of the forms given by Eq. 4.7, which is only true in the boundary
jammed regime.

4.2 From Gravity to Boundary Jammed States

In order to probe the nature of the jamming transition, we will first probe
the variation of the torque T as function of the wedge area, AW . As we have
already discussed above, the appearance of holes in the foam necessitates
us to also measure the area of the hole, through image analysis.

In Sec. 4.2.1 we show how we extract the torque value to which the
system equilibrates after each step of the wiper. Additionally, we define
the wedge, hole and foam areas for our experiments in Sec. 4.2.2, and how
we measure these experimentally, before applying them in the next section.

4.2.1 Determining T (τ2)

Here we show how we extract the torque value to which the system equili-
brates after a deflection angle step in θ has been done – this is not trivial
as the foam slowly relaxes.

Controlling the steps in deflection angle with the protocol discussed in
Sec. 3.3.3, a typical torque signal as function of time for an entire run is
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shown in Fig. 4.3 a). Clearly, once the wiper has moved to compress the
foam sample (recall the time to move into a new angle is tc = 120 seconds
and the sit time is ts = 1200 seconds), the torque overshoots and then
relaxes to its ultimate equilibrium value, as seen in Fig. 4.3.

We believe that the overshoot partially comes from the wiper initially
pushing against the drag of the bubbles with the top plate.

Figure 4.3 – a) A typical torque vs. time profile output by the rheometer using
the slice hole protocol. b) A zoom of the same signal (red box in a)) highlights
the overshoot and equilibration after compression steps θ, which are sketched in
blue.

The relaxation of the signal can be complicated. This can already be
seen in Fig. 4.3. Sometimes, the torque signal becomes essentially flat after
the initial overshoot, but often we observe a slow drift. We say that the
sample is drifting if it does not seem to equilibrate. In some cases, rear-
rangements occur. Moreover, as seen in Sec. 3.1.2, the packing can have
coalescence events, especially under high compression, or if the sample is
old, which adds to the drift. In Fig. 4.4 a coalescence event is the culprit.

These occasional “glitches” create scatter in the data and prevent the
system from coming to an equilibrium during ts. These data points are
usually included anyway in the analysis because they are scarce and not
always easy to identify in an objective manner.

59



CHAPTER 4. JAMMING OF A 2D FOAM

Figure 4.4 – A coalescence event causes a “glitch” in the data, which is taken
from the orange box in Fig. 4.3 a). Glitches create scatter in the data.

All these complex effects necessitate a careful handling of the T (t) data.
The first step in analyzing the torque profile, T (t), is to extract the best
estimate for the value to which the packing equilibrates after the compres-
sion step. To capture both the plateau and the drift in T (t), we perform
linear fits to T (t). We disregard the first 12% of data points in the fit to
avoid having to fit a combination of an exponential and linear curve to
the profile. We choose 12% since in this amount of time, the majority of
relaxation occurs after the wiper has compressed the sample to the new
angle. We are most interested in the relaxed, plateau portion of the torque
signal (as can be seen in Fig.4.3b)), since it tells us whether that particular
step has reached an equilibrium after the compression. We define torque
values at the start-point of the fits as τ1 and at the end-point as τ2. These
definitions will be used later.

We use the least-square curve fitting routine in IDL called MPFIT-
EXPR. This routine needs a set of inputs in the form of starting points
in the parameter space. Additionally, it needs a model type equation, to
which these parameters can be fit. We use a simple linear fit of the torque
with an offset such as T = a+bt, where a is the offset, b is the slope and t is
the time. With an estimate of starting point values, MPFITEXPR makes
a linear fit to the relaxation profile and gives the torque value at the initial
and final point of the fit curve, as well as the slope over the step time, see
Fig. 4.5.
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Figure 4.5 – a) Definitions of ways to calculate the change in torque between
compression steps. The fit’s start and end points, τ i1 and τ i2 respectively, are used
to extract ∆T for a series of compression steps. i ∈ [0, 50] is the number of the
compression step. b) A set of linear fits with the same data as used in a) made
in IDL by using the MPFITEXPR routine. Shown above each fit, from top to
bottom, is the data point at the start of the fit and the last point of the fit (in
[µNm]), and finally the slope of the fit-segment (in [µNm/hr]).

The slope value, b, provides valuable information on whether that step
is well equilibrated. The closer the value to 0, the flatter the relaxation
profile and thus the more equilibrated that step.

We extract the change in torque between steps by making a linear fit to
the relaxation profile. We compare the last point of the fit, τ2, in one step
to the first point of the fit, τ1, in the next compression step. This gives us
the change in torque, ∆T21, defined in Fig. 4.5 a). But why choose ∆T21

and not ∆T11 or ∆T22?
Choosing ∆T21 gives less noise than the other choices because we sup-

press the drift. If we chose ∆T11, the entire profile of τ1
1 to τ1

2 could be
drifting, and thus comparing τ1

1 to τ2
1 would incorporate this drift. Simi-

larly, with ∆T22 we would incorporate the drift, since we would be taking
τ1

2 to τ2
2 , which could include the possibly not-equilibrated step of τ2

1 to
τ2

2 . It becomes clear that even if there is drift during a step, ∆T21 just
compares the last point of the fit to the first point and excludes any effects
due to drift.

The purpose of the end-point torque values from the fits, discussed in
Sec. 4.2.1, T (τ2), will become clear in Sec. 4.3.
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4.2.2 Determining the Foam Area

In parallel to the torque measurement, we also measure the size of the hole
at the end of the sit time, ts, right before the next step in θ0 is applied.
Each experimental run has a different-sized hole.

We image the packing from above (see Sec. 3.1.4) at 0.033Hz, starting
the filming right when the experiment starts. For each image at the end of
ts, we use ImageJ to outline the edge of the foam, like in Fig. 4.6.

Figure 4.6 – An ImageJ snapshot showing how we draw the outline (yellow) of
the hole to calculate the area of the hole.

The idea is that the hole size should go to zero once the sidewall touches
the bubbles everywhere, hence we should not count the little areas in be-
tween bubbles as “hole”. The measurement of hole area, AH , is done until
the hole is closed, at which point we say, by definition, that AH = 0. The
curve (yellow) shown in Fig. 4.6 connects the “tops” of the bubbles, and
the hole area will thus vanish when all the bubbles contact the sidewall.
In Fig. 4.7 we show an example of the evolution of the hole area with θ0.
Even though there is some subjective judgment in these measurements, we
believe the data shows that the hole areas thus obtained are sufficiently
accurate.
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Figure 4.7 – The deflection angle, hole area and foam area, AW , AH , AF , re-
spectively, as a function of wedge area.

The evolution of the wedge area, AW , versus the deflection angle, θ0, is
obviously linear as shown in Fig. 4.7. In subsequent sections, we will use
AW instead of θ0. Fig.4.7 shows that AH slowly decreases as θ0 is decreased
until it vanishes once the angle has become sufficiently small. We finally
introduce the foam area as AF = AW −AH .

4.3 Results

With the experimental procedure explained above, we can now analyze the
equilibrated values of the torque, T (τ2) (which will be abbreviated to just
T ), and the corresponding values of AH and AF . In Fig. 4.8 we show the
evolution of T , AH and AF as a function of AW , for a run with tc = 120
seconds, ts = 1200 seconds and a controlled tilt of 0.66mrad such that we
are in the “slice hole” protocol.
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Figure 4.8 – a) Example of torque versus wedge area, AW . The torque values
plotted here are the equilibrium values T (τ2) to which the signal relaxes after each
compression step. b) The hole area versus the wedge area for the same data set
as in a). c) The foam area versus AW .

The plot of T versus AW in Fig. 4.8 a) shows a distinct kink for 3.12×
10−3 m2. For smaller wedge areas, the torque grows approximately linear,
while for larger wedge areas, the torque levels off at a small value.

This kink would lead one to believe that this is the point at which the
hole closes and the system jams. However, as Fig. 4.8 b) shows, the hole in
the foam does not close at the same value of AW . The fact that the system
is under finite compression (T > 0) whilst forming a hole is surprising. It
can be argued that substantial holes are exceedingly rare in packings of
frictionless particles; in simulations, such holes are never observed [13]. So
what happens here?

A clear inspection of the dependence of the hole areas, AH and AF
(= AW − AH), shown in Fig. 4.8 b) and Fig. 4.8 c), in the experimentally
controlled wedge area, AW , shows that one can distinguish three regimes.
First, for small AW (here, AW < 3.05 × 10−3 m2) the hole is fully closed,
and the system is clearly compressed. We refer to this as the “boundary
jammed” state, informally introduced in Sec. 3.2 above.

Secondly, for large AW (here, AW > 3.12 × 10−3 m2), the hole area
grows rapidly with AW . In this regime the foam area, AF , stays roughly
constant, so that AH grows proportional to AW . The fact that the location
of the hole is controlled by the unavoidable tilt of the set-up, we argue
that the resultant residual gravitational forces here govern the motion of
the bubbles to one side of the system, causing a hole on the opposite side,
here close to the wiper. Based on submerged bubble chains in a tube under
tilt [42], prepared in the same surfactant solution, we believe attraction
between the bubbles (an alternate explanation for the hole formation) to be
small. Hence, in this regime the system is not unjammed, but rather weakly
jammed by gravitational forces. We refer to this as “gravity jammed”.
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Thirdly, in between these two regimes we find a mixed regime. Here a
hole has opened up, but it does not grow proportional to AH . Hence, both
gravity and boundaries serve to jam the system, and we refer to this as the
“mixed state”. Indeed, we see in Fig. 4.8 a) that the torque is finite and
varies with AW in this regime. Typical hole sizes in this regime are small.
We do not fully understand how the stresses are maintained near the hole
area, but we suggest that arching plays an important role here.

Taken together, the data in Fig. 4.8 conclusively show that the kink in
T does not correspond to the closing of the hole, and is not sufficient to
conclude that the system undergoes a sharp transition.

In addition, for many runs, the kink in T is not as distinct as depicted
in Fig. 4.8. In several cases, the kink is more “smeared out”, meaning
the increase of the torque signal is more gradual and not discontinuous, as
shown in Fig. 4.9.

Figure 4.9 – a) The torque versus wedge area for a run with a “smeared out”
kink. Compared to Fig. 4.8 a), there is no discontinuous jump in the torque signal.
b) The hole area as a function of the wedge area for the same data as in a). c)
The foam area versus AW .

4.3.1 Using AF as Control Parameter

The data shown in the previous section suggest that instead of using AW ,
we should use AF to characterize the state of the foam. After all, the foam
area tells us directly how much the packing is compressed.

Plotting T as a function of AF , we get Fig. 4.10. This figure shows that
the underlying physics in the mixed and boundary jammed regimes are
similar: the torque simply increases because the foam area decreases. As
the slope of T vs AF appears constant in these regimes, it appears that the
wedge modulus is approximately constant, all the way down to low values
of T , i.e., close to the jamming point.

The figure also shows that in the gravity jammed regime, the foam area
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stays essentially constant, while the torque approaches zero. The foam is
still deformed here between steps, and due to the constant foam area, these
deformations are shear-like. As the torque is very low, the shear modulus
in this weakly jammed regime must be low too.

Figure 4.10 – The torque as a function of the foam area. The three regimes
outlined in Sec. 3.2 become more apparent: the blue cluster of points at higher
foam area correspond to the gravity jammed regime, the purple points are the
mixed state and the red points the boundary jammed regime.

Plotting T versus AF therefore marks a clear transition from a strongly
jammed regime where torque increases when AF is lowered, to a gravity
jammed regime where AF is approximately constant minimum, and T ≈ 0.
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Figure 4.11 – The torque as a function of the foam area for seven runs. Each
run has a different range of torque and foam area, yet is performed with the same
tilt and ts and tc.

In Fig 4.11 we plot T versus AF for seven experimental runs. We notice
that each run has a different range of foam areas and torque, yet all torques
rise similarly with AF . To gain insight on all data sets, we need to rescale
the data in a useful manner to collapse all curves.

To obtain a non-dimensional measure of the foam area, we define first,
for each run, the maximum foam area AMax

F , and secondly, the ratio φ
φc

=
AMax

F
AF

, where φ and φc are the packing fraction and critical packing fraction
of the foam.

The “traditional” measure of compression, ∆φ (see Chapter 2), can be
rewritten as follows:

∆φ = φ− φc = φc

(
AMax
F

AF
− 1

)
≈ 0.842×

(
AMax
F

AF
− 1

)
(4.10)

Note that the prefactor φc is not crucial, but makes comparison to
numerics easier.

Even though our values for AMax
F do not vary more than ∼ 10%, we

rescale the torque by AMax
F . T/AMax

F has dimensions of force per unit
length, which is the correct dimensions for a two-dimensional elastic con-
stant.
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Figure 4.12 – The rescaled torque and rescaled foam area of all runs normalized
by their maximum area, AMax

F .

In Fig. 4.12, the same experimental runs as above are plotted using the
rescaled quantities. The curves now all collapse. At the origin, there is the
typical cluster of points corresponding to the gravity jammed regime. More
importantly, however, is how the rescaled torque rises with a similar slope
in the boundary jammed regime for all runs. The similarity of the slope
indicates that each packing responds to the wiper’s step-wise compression
in a similar way.

All data can be fitted with a polynomial function like

T

AMax
F

= λ(∆φ) +
µ

2
(∆φ)2 + T0, (4.11)

where AMax
F is the maximum foam area per run, λ and µ are fitting param-

eters to be extracted and T0 is the y-axis offset per run. Fig. 4.13 displays
a single best fit to all the data using Eq. 4.11, where we see that a single
fit captures the data well.
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Figure 4.13 – A polynomial fit like Eq.4.11 on all data without the cluster points
at the origin. Here T0 = 296 µN/m, λ ≈ 0.032N/m, µ ≈ 0.3N/m.

With Eq. 4.11 we make a simple estimation of the scaling of G+K by
using

G+K =
d
(

T
AMax

F

)
d(∆φ)

∼ λ+ µ(∆φ) (4.12)

We see that the slope, λ, from Eq. 4.11 is the value of G + K near
jamming. The jump in the data points from the cluster to the increasing
signal in torque seen in Fig. 4.10 highlights the most important feature
from our data: we are actually observing the discontinuity of the jamming
transition in the compression signal going from the gravity to the boundary
jammed regime.

4.3.2 G+K: A Comparison

In this section, we compare our measurements for the wedge modulus for the
slice hole data presented in Sec. 4.3.1 with simulations of two-dimensional
foam packings at different pressures. We find that the experimental data
shows a remarkable similarity to the simulations, and in particular, both
experiments and simulations capture the same discontinuity of the wedge
modulus at the jamming transition.

Since the entire foam is under compression in the boundary jammed
regime, we are interested in the scaling of the wedge modulus there. We
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start by rewriting Eq.4.9 in Sec.4.1 and use the foam area AF to determine
the strain. Therefore, the equation now becomes

W = G+K =
2∆TAF

∆AF (r2
o − r2

i )
. (4.13)

Fig. 4.14 shows W versus ∆φ for all experimental runs using the slice hole
protocol. We see that the wedge modulus increases with ∆φ and also
exhibits a finite intercept at ∆φ = 0, in agreement with what we found
from Eq. 4.12.

Figure 4.14 – Wedge modulus versus ∆φ for all experimental runs.

We now compare our results to simulations of 512 shear stabilized, two-
dimensional bubbles in a periodic boundary cell at different pressures, rang-
ing from 10−7 to 10−1 performed by [53]. The packing fraction is calculated
as the area of the bubbles divided by the area of the cell. This is slightly
different to our definition of the packing fraction determined in Eq. 4.10,
since in the simulations the overlaps in the bubble contacts is included in
φ [4]. The excess packing fraction is then ∆φ = φ − φc, where φc = 0.842
as in Eq. 4.10. We choose 512 bubbles in order to compare system sizes
as much as possible between our experiments and the simulations. Like in
many simulations, the interaction potential of the bubbles is normalized
in such a way so that the spring constant, as in Eq. 2.2, is one. To give
the pressure and elastic moduli of the packings the same dimensions as our
experimental parameters, we change the effective spring constant in the
simulations to match the range of those found by Miedema for a chain of
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bubbles under compression [42], that is, keff = 6× 10−2 Nm−1.

Figure 4.15 – a) P vs ∆φ for a simulated bubble packing with keff = 6 ×
10−2Nm−1. b) G+K vs ∆φ. The intercept and range of G+K and ∆φ is similar
to that seen in Fig. 4.14 for the experimental data.

Fig. 4.15 a) shows the pressure versus ∆φ for a simulated packing. The
range of P and ∆φ is consistent with Fig.4.13 for the slice hole experiments.

In Fig. 4.15 b) we show G + K versus ∆φ. The data clearly shows a
finite intercept with a similar value as we found in Fig. 4.14 of roughly
∼ 0.02Nm−1, which is quite remarkable. Additionally, the simulation data
indicates that as ∆φ increases, so does G + K, in agreement with theory
[13]. This is also observed in Fig. 4.14.

4.3.3 Residual Torque

We have seen in Fig. 4.8 a) and Fig. 4.9 a) that the torque has a finite value
when the hole is clearly open, i.e. in the gravity jammed regime. In these
two examples, the “kink” in the signal is also markedly different, one being
very sharp, the other being “smeared out”. In both cases, the finite value
of the torque in the gravity jammed regime, which we call the “residual
torque”, comes from the buoyancy of the foams still in contact with the
wiper. For all experiments, the wiper will be in contact with at least a
few bubbles at the fulcrum. The residual torque will be higher the more
bubbles are in contact with the wiper at the start of a run.

We calculate the residual torque of the slice hole protocol and show that
by estimating the pressure gradient in the foam packing due to the tilt of
the glass plate, we capture the initial torque as measured by the rheometer.

In Fig. 4.16 we start by subtending our wedge geometry into slices of
increasing pressure, going from P0, P1, · · · , P4, where P0 < P1 < · · · < P4,
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Figure 4.16 – A top view schematic of the wedge geometry to measure the residual
torque felt by the wiper. The glass plate is tilted by an angle θ and the directional
vector z points along the direction of the effective gravity.

with the assumption that due to hydrostatic pressure, the pressure at the
free surface (i.e. at the hole) is P0 = 0.

Our directional vector, z, is parallel to the effective gravity, and opposite
in direction to the gradient of pressure ∇P , as seen in Fig. 4.16. The
buoyancy of a single bubble under the glass plate, which is tilted by angle
θ, is given by Fb,1 = 4

3πr
3∆ρgθ, where r is the radius of a bubble, ∆ρ is the

density of our soap solution given in Sec. 3.1.2 and g is the acceleration due
to gravity. In a small rectangular area element dxdz, as shown in Fig. 4.16,
we calculate the total buoyancy as

Fb,tot = Fb,1
dxdz

πr2
φ =

4

3
r∆ρgθφdxdz,

where φ is the 2D packing fraction of φ ≈ 0.84. To measure the pressure
across our element dxdz, we note that the rectangular element is bounded
by slices at different pressures, P1 and P2, where P2 > P1. The force
difference across the element is then
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dx(P2 − P1) =
4

3
r∆ρgθφdxdz ⇒

P2 − P1

dz
=

4

3
r∆ρgθφ⇒

∇P =
4

3
r∆ρgθφ, (4.14)

which is a general expression for the pressure gradient in the bubble packing
going from the hole to the static wall, as seen in Fig. 4.16.

To estimate the torque measured along the wiper, we note that the
hole has an open angle between the bubbles and the wiper, Ψ, and that
the wiper makes contact with the bubbles a distance `′ from the fulcrum,
where `′ ≤ `. If Ψ = 0 or `′ = `, then the hole is closed. The pressure
change along the wiper axis, x, is given by

dP

dx
= ∇P sin Ψ,where


P (x = `′) = 0,

P (x = 0) = `′∇P sin Ψ,

P (x < `′) = (`′ − x)∇P sin Ψ.

The torque along the wiper, where x < `′, is

T =

`′ˆ

0

dx(`′ − x)x∇P sin Ψ

=
4

3
r∆ρgθφ sin Ψ

`′ˆ

0

dx(`′ − x)x (4.15)

Evaluating the integral and taking `′ = 0.08m, θ = 0.66mrad,Ψ = 10◦

for a typical slice hole experiment, the residual torque is T ≈ 0.25 µNm,
which is a very good comparison to the torque measured in the gravity
jammed regime in Fig. 4.8 a) and Fig. 4.9 a).

4.3.4 High Tilt Compressions

The data shown in the previous section were all taken at a tilt angle of
0.66 mrad. How sensitive are our results to this tilt angle? To probe this
we have performed additional experiments for larger tilt angles of approxi-
mately 1.0, 1.3, 1.8, 2.9mrad, corresponding to 3, 5, 10, 20 ticks, see Sec.3.2.
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Figure 4.17 – The wedge area versus the foam area (red), the torque (black) and
the hole area (blue) for a run with 2.9mrad tilt.

For each tilt we perform two compression runs, keeping the same timing
parameters as before (tc = 120 seconds, ts = 1200 seconds).

Fig.4.17 plots T , AF , and AH versus AW for a run with a tilt of 2.9mrad,
the highest tilt probed. We see that the kink in the torque is strongly
smeared out, implying that the mixed regime has grown in comparison
to the low-tilt runs in the previous section. Additionally, Fig. 4.17 shows
that the hole closes much later in these runs, compared to the low-tilt runs
shown in Fig. 4.8 b). The system is only in the boundary jammed regime
towards the end of the experiment (for AW < 3.9× 10−3 m2).

To further investigate the smeared out kink of the torque signal and the
late closing of the hole, we look at how the foam area changes as a function
of tilt. We normalize AF with the maximum wedge area, AMax

W , for each
run to collapse the data onto one graph. We expect that the buoyancy
causes the late closure of the hole as the tilt is increased. For un-tilted runs
in the previous section, we notice that AF stays roughly constant before
ultimately decreasing continuously, as can be seen in Fig. 4.8 c). In this
case the bubbles are being pushed less due to buoyancy into the wedge and
are therefore freer to fill the hole as AW decreases.
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Figure 4.18 – The foam area and wedge area normalized for the four tilts probed.
For low tilts (ticks), AF /A

Max
W is constant at first, whereas for high tilts (ticks),

AF /A
Max
W decreases.

Fig. 4.18 shows that as we increase the tilt from 1.9mrad to 2.9mrad,
the foam area goes from a roughly constant signal to a steadily decreasing
one. These “plateaus” show that the tilt has an influence of how the hole
is being closed: an increase in tilt means a higher buoyancy force on the
bubbles. Where for un-tilted and small tilts we observe this AF remains
flat, meaning that the foam can readily accommodate the decreasing AW ,
the data for higher tilts show that gravity prevents the bubbles from filling
the hole.

How does the torque change as a function of the foam area? Like in
Sec. 4.3.1, we rescale AF by the maximum foam area of each run, AMax

F

to collapse the data, and also since T/AMax
F has dimensions of force per

unit length, which is the correct dimensions for a two-dimensional elastic
constant.
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Figure 4.19 – The torque normalized by the maximum area, AMax
F for the three

highest tilts. As the tilt is increased, so does the slope.

In Fig.4.19 the three highest tilts probed are shown. We see that as the
tilt is increased, the slope increases, indicating that the torque grows more
rapidly under compression for higher tilt. This makes sense, since there is
a large initial stress in the system due to the tilt.

4.4 Nonaffinity Near Jamming

In the previous sections we have relied solely on the torque signal to pro-
vide information of the system’s response to compression. The aim of this
section is to highlight the changes in behavior as we close the hole, by an-
alyzing changes in the spatial organization of the foam during and after a
compression step. In order to do so we analyze the affine and nonaffine
character of the foam bubbles through image analysis. We expect that
close and far from the jamming point, the system will respond differently
to the deformation imparted by the wiper’s compression step. According
to [21, 22], a simulated foam packing under compression exhibits much
stronger nonaffine linear response close to the jamming transition than far
from it. Do we also observe this in our experimental system, where we may
be outside the regime of linear response? To probe the spatial organization,
we compare the actual response to an affine prediction by subtracting the
actual image from this prediction, squaring all resulting pixel differences
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and averaging over the image area.

Figure 4.20 – Deformations in our system. Elastic events are best probed using
images at early times in ts, whereas rearrangements are best seen using images at
later times in ts.

The resulting variance gives a straightforward way to quantify changes
in the spatial organization of the foam. We make such comparisons for
each compression step during our runs. Here, we highlight two results.
First, we show that the short time response of the foam does not show
plastic behavior, and moreover, is more affine in the compressed, boundary
jammed regime. Approaching the jamming point, the variance increases
and becomes noisy, indicating more nonaffine motion close to jamming, in
accordance with simulations [21, 22]. Secondly, the images show that there
often are motions and rearrangements at late times during the sit time ts,
which are often not registered in the torque signal. In other words, even
though the torque signal and this macroscopic response may appear rather
clean, microscopically the system is plastic and driven outside of linear
response, see Fig. 4.20.

Several image analysis steps need to be addressed before we can extract
useful information, which will be outlined below. In Sec. 4.4.1 we outline
how the images are warped to predict the affine of the foam. Sec. 4.4.2
explains how the variance is calculated and applied to the many compres-
sion steps which make up a run. In Sec. 4.4.3 the variance profile of a step
is used as an indicator of motion in the system. Finally, in Sec. 4.4.4 we
show that there is large nonaffine response in the gravity jammed region
and the system responds increasingly affinely under large compression in
the boundary jammed regime.

4.4.1 Nonaffine Deformation

In all runs presented here, over the course of the change time, tc (see
Fig. 3.23), the wiper moves 1 mrad in 120 seconds before sitting at the
new, fixed angle for time ts = 1200 seconds. The frame rate of the images
is 0.033Hz, meaning that during tc four frames are captured and that dur-
ing ts, 40 frames are captured, see Fig. 4.21. We see that for any step, at
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image I0, the wiper starts its compression and ends this at image I4, having
moved 1/4mrad between each frame (recall the wiper moves at a constant
rate to the new angle, see Sec. 3.3.2). The next 40 images recorded are the
wiper fixed at its new position.

Figure 4.21 – The images captured during one compression step and subsequent
relaxation: four images during tc and 40 during ts.

In order to examine the response of the foam packing between I0 and
subsequently right before the next tc, at I43, see Fig. 4.22, we compare
the actual images to their respective affine predictions, based on affinely
deforming image I0. We do this “affine correction”, since if we were to
compare the two images without adjusting for wiper motion, we would
measure how the foam responds to the compression, yet also be adding
in the change in the position of the wiper between the two images to the
variance signal. This would ensure that there is always a change happening
between the two images, whereas the foam might not have rearranged at
all under the compression step.
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Figure 4.22 – A torque versus time plot indicating which images are used for
comparison to calculate the variance over that compression step.

We use the two IDL routines, POLYWARP and POLY 2D, first en-
countered in Sec. 3.1.4, to affinely deform the image I0 so as to determine
the affine prediction for the deformation at a later time labeled with the
integer i. To determine the affine deformation, we first determine a set
of coordinates along the perimeter of the wedge geometry, which define
the position of the fixed wall and moving wiper. From these positions we
determine the origin (where the wall and wiper would intersect).

Figure 4.23 – Coordinates to determine the affine prediction for the deformation
field.

In polar coordinates (r, θ), the wiper is then determined by its angle
θw and the fixed wall by a larger angle θf , and deformations arise if the
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wiper moves over an angle ∆θ, see Fig. 4.23. The affine prediction for the
deformation field is then given by a linear relation between θ′ (the angular
coordinate after deformation) and θ as:

θ′ = θf + (θ − θf )

[
θw − θf

θw + ∆θ − θf

]
. (4.16)

Since we know the angle ∆θ as a function of i (see Fig. 4.21), we can thus
determine the affine prediction of the foam configuration at each step i by
appropriately deforming I0 using the POLYWARP and POLY 2D routines
in IDL; we refer to this affine prediction as Īi.

Using this affine prediction allows us to focus on the nonaffine motion
of the foam and suppress the trivial wiper motion. In Fig.4.24, we compare
I43 - I0 and I43 - ¯I43, and see that the compression step adds a visible signal
in I43 - I0, which is absent when using the affine prediction.

Figure 4.24 – Difference of images of bubbles and the wiper highlight the motion
of the wiper after a compression step a) without correction and b) with correction.
In a), we simply compare I43 with I0. Note that the wiper outline can be seen
clearly without the affine correction. In b), we compare I43 to ¯I43. The wiper
outline is gone and the signal is smoother.

4.4.2 Variance in Compression Runs

Once we have affinely corrected the images in each step, the variance lets
us characterize the changes in pixel values between the compared images.
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By looking at the variance over the course of our runs, we observe the
dynamics of the system in the gravity and the boundary jammed regime.

The variance is defined in the following way:

V ar[i] :=

∑
i

[Ii − Īi]2

no. of pixels
, (4.17)

in arbitrary units. Since images are taken at regular time intervals, the
variance compares how the system changes between two points in time.
The change in the pixels between these two points will give information
about whether the foam has undergone any nonaffine deformations.

4.4.3 Foam Motion Signal

For each step in the slice hole protocol, the torque signal measured by the
rheometer can be compared to the variance signal extracted through the
image analysis. We are interested in seeing whether the torque is sensitive
to plastic events.

In Sec. 4.2.1 we encountered torque signals that were not well equili-
brated in some steps, leading us to believe there was motion happening in
the system, which we show now to be true. We also show, in addition, that
in some cases, even for seemingly well equilibrated steps, there are rear-
rangements in the system. Note that although we can determine whether
the bubbles are moving, we are not able to say from the variance alone how
many bubbles or where in the wedge they are moving. For this we need
to inspect the images. The magnitude of the variance signal offers insight
into the magnitude of events: the higher value, the more motion. We can,
however, tell from the variance if a rearrangement has stopped or is still
occurring by the end of the step. Since we measure the variance for each Īi
in the step, an increasing signal means the motion is persisting; a constant
variance signal means no more motion is happening.
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Figure 4.25 – T and V ar[i] vs time. a) A well equilibrated step in torque and
corresponding variance signal. b) A step where for the first few hundred seconds a
rearrangement is occurring, as can be seen in the variance signal. Note the change
in scale with respect to a).

Fig. 4.25 shows T and V ar[i] versus time for two different steps in a
run. In Fig. 4.25 a) the torque signal is well equilibrated, and so is the
variance: the signal is constant, indicating no long time or large motion
by the bubbles. However, in Fig. 4.25 b) the torque is not equilibrating
for over 600 seconds, before finally reaching a steady state. The variance
shows this initial unease: for the first 600 seconds the signal grows rapidly
to a very high value, indicating a large rearrangement in the bulk (compare
this large signal to that of Fig. 4.25a)). Fig. 4.26 depicts the rearrangement
that led to the high variance signal in Fig. 4.25 b).

By analyzing the variance signal for all images in a step, over the course
of a run, we get an indication of when rearrangements start to happen dur-
ing the sit time ts, as well as over how many steps they occur. Comparing
different V ar[i] in a step, the evolution of rearrangements in the boundary
jammed regime and nonaffine behavior at the jamming transition becomes
apparent. Fig. 4.27 shows the variance for a run with 40 steps, where the
hole closes at step 17.
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Figure 4.26 – A difference of images showing the rearrangement in the wedge
from Fig. 4.25 b).

In Fig. 4.27 a), the evolution of elastic deformations in the system at
five different images, V ar[2], V ar[4], V ar[6], V ar[8], V ar[10], in all 40 steps
is plotted. We notice that the signal increases as V ar[i] increases, meaning
that over time for a step, there is more motion apparent. This reinforces
the notion from Fig. 4.20 that for long times (late images in a step), plastic
events become more visible, as Fig. 4.27 b) shows. Note that in Fig. 4.27 a),
at image V ar[2] (black), the variance is lowest since here the wiper has
only just started to move and not much motion in the packing has been
recorded. The overall variance signal for all images also decreases for higher
steps, most markedly after step 17, when the hole closes. This feature un-
derlines the transition from initially very nonaffine to more affine response
as the system goes from the gravity to the boundary jammed regime. This
decrease of the variance will be shown more in-depth in the following sec-
tion.
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Figure 4.27 – The variance at different images for all steps in a run.
The hole closes at step 17. a) The variance for a run at images
V ar[2], V ar[4], V ar[6], V ar[8], V ar[10]. The variance increases as Īi increases. b)
The variance for the same run at images V ar[4] (red), V ar[20] (black) and V ar[40]
(blue).

We start to get an indication of the amount of plastic deformations in
the packing using later images, like in Fig. 4.27 b). The black and blue
variance curves of Fig. 4.27 b), images V ar[20] and V ar[40] respectively,
highlight that in many cases there is persistent motion in the foam, long
after the wiper motion has ceased.

In the run shown in Fig. 4.27, the hole is closed after step 17. We no-
tice, first, that before the hole closes, i.e., in the weakly jammed, gravity
jammed regime, the foam motion persists, in almost all cases, over long
times, whereas the boundary jammed case shows a mix of “quiet” steps
where the nonaffine deformations are small and do not grow with time. The
boundary jammed regime also shows that rearrangements, where the non-
affine deformations are large, do grow with time. Notably, rearrangements
seem to occur over several steps. Recalling from Sec. 3.3 that ts = 1200
seconds, our data indicates that many rearrangements, like those at step
29, persist for over 40 minutes.
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Figure 4.28 – V ar[4] versus T . The decrease of the variance with increased
compression starts to highlight the affine response of the foam.

Our data thus suggest the following scenario, shown schematically in
Fig. 4.20. The deformations can be elastic in nature (small deformations,
short time relaxation) or plastic (larger nonaffine motion, long time behav-
ior).

We now first turn our attention to the short time behavior of the foam,
and in particular focus on V ar[4] (although V ar[i] for i = 1, 2, 3 shows very
similar behavior). In Fig.4.28 we plot V ar[4] versus the torque, T . Clearly,
the early time variance exhibits a systematic trend with torque, decreasing
with torque and apparently diverging as T → 0. Identifying the early time
behavior of the foam with the elastic linear response, this trend appears to
be qualitatively consistent with previous numerical predictions [20, 21, 22].

4.4.4 Comparing Torque and Variance Signals

We already have shown before, in Fig.4.28, that in several cases we can find
a clear correlation between the time evolution of the torque and variance
signals. How strong is this correlation? To get insight into this question,
we characterize the torque signal by the drift at later times (see Fig. 4.5 in
Sec. 4.2.1), as τ2−τ1

∆tfit
, where ∆tfit is the time interval over which we make

a fit in ts. The closer the slope to 0, the more equilibrated the step. We
characterize the nonaffine nature of the deformation field by V ar[43].
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Figure 4.29 – a) V ar[43] versus the slope of a run. b) The step corresponding
to the red point in a). The slope of the red line fit is 0.0069µNm/hr. Some steps
indicate that despite small slopes, rearrangements are still occurring.

Fig. 4.29 a) shows a scatter plot of V ar[43] versus the fitted slope to
the measured T signal for all the steps in an entire run. We see that the
late time variance and slope are correlated: when the slope is large, the
variance is high. However, the correlation is not very strong; as the red
point indicates in Fig. 4.29 a), there are also steps when the torque signal
looks very well equilibrated, while there is significant motion in the foam
as detected by V ar[43], and shown in Fig. 4.29 b).

We conclude that the torque signal itself is a poor indicator of whether
or not the microscopic response is elastic; in the regime close to jamming
that we probe here, plastic behavior is the norm, not the exception. The
mechanical response, as probed by the torque signal, is rather insensitive
to these rearrangements, allowing us to characterize the mechanics without
too much attention to the microscopic rearrangements.
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Chapter 5

Rearrangement of Foams:
Effects of Distance to

Jamming

Under large deformations, any material will exhibit plastic behavior. In
ordered systems, such plastic behavior is associated with the motion of
defects, and defects are easily identified [7]. In contrast, for disordered
systems, such as the foams we are studying here, but also emulsions,
suspensions and granular media, there is no obvious local order, which
means that the whole concept of defects does not apply. Nevertheless,
these systems will undergo plastic deformations under large enough ap-
plied strains, as anyone who has ever used or played with shaving foam can
attest. What happens microscopically during such plastic deformations, is
that the constituent particles (grains, bubbles) experience rearrangements
[21, 32, 33, 34, 35, 54, 55, 56, 57].

A wealth of work on plastic deformations in disordered media have re-
vealed that in many cases, these rearrangements are build up from localized
events, where one or more particles swap neighbors [56, 57]. For example,
in the well-studied case of dry 2D foams, such localized events take the
form of so-called T1 events, as shown in Fig. 5.1.
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Figure 5.1 – An example of a T1 event in very dry foams. Bubbles in contact
are shaded gray.

In that case, the T1 events cause most of the dissipation [57] and can
organize spatially [33, 34, 55]. As a matter of fact, many other particulate
systems also are believed to be dominated by T1 events (see Fig. 5.2), or by
less well defined shear transformation zones [56] which are not completely
localized but nevertheless have a similar quadrupolar nature.

Here we probe what happens with the nature of rearrangements in 2D
foams when we start to approach the jamming point, i.e., go from the dry to
the wet limit of foams. There are several reasons to expect the nature of the
rearrangements to change. First, almost any property we probe seems to
change dramatically when approaching jamming. In particular, the spatial
organization of the elastic response changes from nearly affine in dry foams
to strongly nonaffine in wet foams and the magnitude of the nonaffine
bubble motion grows near jamming (see Sec. 5.3). In linear response, there
are diverging length scales near jamming (see Sec. 2.3.1). A priori there is
thus little reason to expect rearrangements to be insensitive to the distance
to jamming.

Figure 5.2 – An example of a T1 observed in many particulate systems: nearest
neighbors become next-nearest neighbors.

To study rearrangements in 2D foams close and far from jamming, we
will subject our foams to pure shear deformations in a so-called biaxial
cell. The outline of this chapter is as follows. In Sec. 5.1 we briefly review
previous work on deformations in (dry) foams. In Sec. 5.2 we describe
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our experimental setup in detail. In Sec. 5.3 we describe our experiments,
and show substantial qualitative trends in the nature of rearrangements
as function of the J-point. We close this chapter in Sec. 5.4 with a brief
discussion and suggestions for further work.

5.1 Previous Work

Studying the spatial organization (and later, rearrangements) of foams in
2D has a rich history. In 1947 Bragg et al. used bubbles floating on a
free fluid surface, the so-called bubble raft, as a model for plastic failures
in atomic crystalline structures such as metals [7]. By creating perfectly
monodisperse bubble rafts, Bragg showed the types of dislocations and
defects that arise in these structures of monodisperse bubbles. Feynman
[58] noted that the slippage of a whole layer of these crystal structures in a
plane does not happen in one fell swoop; rather one atom at a time moves
along the slip plane. This is because it costs the system far less energy to
move one particle at a time than the entire row. The same phenomenon
was observed by Bragg for dislocation in the bubble rafts. Monodisperse
bubble rafts thus form a simple model to probe plasticity in crystals. What
about plasticity in amorphous materials?

To characterize the organization and subsequent rearrangement of bub-
bles in amorphous packings under small shear deformations, Argon et al.
[54] used bidisperse bubble rafts. By labeling each bubble by hand, Argon
could identify the number of bubbles partaking in a rearrangement and the
free area change during this process. He found that dislocations due to the
shear never moved the bubbles by more than 1-3 bubble diameters and that
during rearrangements, these events were very localized, leaving the rest of
the packing unaffected. Hence, the microscopics associated with plasticity
are strongly influenced by disorder, and this work was the first indication of
very localized behavior in two-dimensional foams for high packing fractions.

The 1990’s saw an uptake of interest in dry foams under shear, [41, 57,
59]. An important goal was to connect the phenomenology of rearrange-
ments to the mechanical response, i.e. stress, and to understand the role
of simple shear, for instance in avalanches etc. In particular, by measur-
ing the change in energy of their simulated bubble packing, Terwari et al.
[57] observed that for dry foams there was a well-defined quasistatic limit
at low enough shear rates where localized rearrangements, of T1-type, oc-
curred at a constant rate per unit strain. Moreover, the stress response
exhibited sharp downward steps whenever a rearrangement occurred. This
was found to hold independent of system size. They also showed that for
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wetter foams, the event size distribution broadened into a power-law that
is limited by the system size. Terwari’s work marked the distinctive no-
tion that the type of rearrangements in wet and dry foams is inherently
different in nature, with a more global motion occurring in wet foams and
the already observed localized behavior as seen in the work of Argon being
typical for dry foams [54]. [60] researched a model where the drops in stress
due to a rearrangement for varying packing fractions are linked throughout
a packing of bubbles, although the results are still inconclusive.

Past experimental work [32, 34, 35, 55] with bubble rafts focused on
rearrangements in wet and dry foams under shear. Like the work of Terwari,
Dennin’s group found that the initial response of the foam is elastic and
above the yield stress, it would flow. The flow in all cases consisted of
irregular intervals of a build-up of stress before a sudden stress drop due to
rearrangements. Simulations of these stress drops due to rearrangements in
bubble rafts [61] were found to be in good agreement with the predictions
of the bubble model of [55]. Furthermore, [33] found a clear correlation
between the rate of T1 events and the strain rate.

5.2 Biaxial Set-up

In this section we describe the setup that we constructed in order to probe
the nature of rearrangements in two-dimensional foams as function of the
distance to jamming. The central part of the experiment is a biaxial cell,
illustrated in Fig. 5.3. We keep our two-dimensional bidisperse foam in the
central rectangular area of this cell, and an arrangement of three sliding
and one fixed walls allows us to set the two dimensions, Lx and Ly, of this
cell independently. Such a biaxial setup allows for a wide range of deforma-
tion experiments to be performed. In particular, by enlarging or shrinking
Lx and Ly simultaneously, we can (de)compress the foam, controlling its
distance to the (un)jamming point, whereas by increasing Lx whilst de-
creasing Ly (or vice-versa) such that the area LxLy stays constant, we can
apply a pure shear to the foam. We note here that we will only probe the
spatial structure of the bubble displacements and rearrangements that take
place in the foam under pure shear by imaging, and in contrast to previous
chapters, will not measure the stresses arising in the foam.
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Figure 5.3 – A top view schematic of the shear cell that contains the foam packing.
Wall (A) is stationary; wall (B) moves only up and down on a track connected to
(A); wall (C) is connected by tracks to wall (B) and (D) and can move up/down
and left/right; wall (D) can only move left and right on a track connected to (A).
Walls (B) and (D) are driven by motors.

We first describe the set-up’s main components and how they are put
together to create the biaxial cell in Sec. 5.2.1. Sec. 5.2.2 discusses how we
move the walls in order to apply a pure shear. In Sec. 5.2.3 we describe our
experimental protocols, and in Sec. 5.2.4 and Sec. 5.2.5 we detail our image
analysis technique.
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5.2.1 Set-up

Figure 5.4 – A side view of the biaxial set-up. Two motors control the movement
of the walls of a rectangular cell inside the container. The walls sit under a glass
plate and bound a packing of foam bubbles confined to the cell.

Fig.5.4 and 5.5 show side and top views of our experiment. The main square
container (220 mm × 220 mm × 65 mm) houses the soap solution and the
bubbles. As before, our foam consists of a single layer of bubbles floating
on a surfactant solution and trapped below a glass plate, and the main
container is partially covered by a glass plate (8 mm thick plain window
glass, square of 100mm× 100mm in dimension).

For the foam we use the same soap solutions as before (glycerol, SLES
and CAPB, for details see Sec. 3.1.2). To reduce excessive use of soap
solution, PMMA blocks are placed in “unused” parts of the main container,
as shown in gray in Fig. 5.5. These blocks also act as barriers to decrease
the thermally driven circulation of fluid in the container that is driven
by heating from the lighting. We prevent evaporation of the solution by
covering the top of the container not covered by the glass plate with a clear
plastic square.

The shearing walls inside the container slide under the glass plate. The
gap between the walls and the plate is 0.5mm to allow the smooth motion
of the walls yet still keep the packing trapped in the rectangular cell. The
container sits atop a Newport M-37 Tilt and Rotation platform, which is
used for leveling the system, similar as described in Sec. 3.2. The whole
set-up sits on a metal framed table on which a camera is mounted. The
frame is enshrouded in black cardboard to keep out the ambient light of
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the room.
The lighting of the foam is crucial, since the light must strike the Plateau

borders at an angle to obtain optimal contrast. The walls of the main
container are made of 5 mm thick, transparent PMMA, allowing light to
enter the main box, and a flexible LED light-strip (Silikon LED Flexstrip
from SLV Elektronik GmbH) is placed around the outside of the main
container to illuminate the bubble packing inside, as shown in Fig. 5.4.
The container has an anodized, black aluminum bottom plate to optimize
contrast in the images.

To observe the rearrangements in the biaxial set-up, we image the foam
from above with a CCD camera (Basler A101f camera with 1300 × 1030
pixel resolution) hung above the cell, equipped with a Cosmicar/Pentax
TV lens. As the camera is straight above the center of the shear cell, we do
not need to correct for skew. The camera is triggered and the images are
stored using a LabVIEW code. The frame rate is fixed at 0.5Hz. Distances
in the image, for example to extract bubble diameters, are calibrated using
1mm spaced markings etched into the top of the shear walls as a reference
length, as seen in Fig. 5.13.

Figure 5.5 – A top view schematic of the biaxial set-up. The motor shafts are
sticking out of the container.

The center of our setup are a set of moveable walls on the inside of the
container that enclose the foam packing and form a biaxial cell. These walls
are made of elongated, transparent PMMA rectangles, 8 mm by 100 mm
long, which themselves are mounted on hard black, PMMA frames. These
hard black frames slide perpendicular to each other by way of interlocking,
swallow-tail slides and are driven by motors. A detailed view of the frames
and their tracks can be seen in Fig.5.6. Of the four bounding walls, two are
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driven by the motors and three actually move. This is shown in Fig. 5.7 a).
Two of the PMMA walls have cut-outs in them to allow access to the biaxial
cell containing the bubbles with syringe needles, shown in Fig. 5.7 b).

The motion of the walls is controlled by stepper motors, placed outside
the fluid container, that are connected to the movable wall via rods that
slide through two holes in the side walls of the container (Fig. 5.4). These
holes are sealed with two rubber o-rings, one on the inside and one on
the outside of the container, shown in Fig. 5.5. The o-rings create a tight
fit around the motor shafts and ensure that no solution leaks out. Some
tuning is in order to optimize the tightness of the fit: a too-tight fit creates
stick-slip motion when the motors are driving the shafts, causing the inside
walls to vibrate, while too loose fits lead to leakage. We have been able to
machine the o-rings such that the container remains sealed whilst allowing
the shafts to move smoothly when driven. In addition, we have carefully
aligned the motor shafts so as to avoid stick slip motion to occur.

Figure 5.6 – A detailed schematic of the frames that are driven by the motors.
The four foam-bounding, clear PMMA walls are mounted on these frames, which
slide on swallow-tail tracks.

The motors that drive the frames (and therefore the walls) are step-
per motors from Haydon Switch & Instrument Inc. A threaded shaft is
translated by the rotation of the internal rotors, where each full rotation
translates the shaft 0.6mm. The actual control is done using a “Step Motor
Ministep Driver” (model SMD41B3 by JVL Industri Elektronik ) driver.
This driver enables us to subtend each step into 3200 ministeps every time
it receives a signal greater than 5 V . One step in this mode corresponds to
a 186 nm shift in the walls. Each motor is controlled separately by its own
driver, which is provided by a 5V square wave signal made with a function
generator (TTi TG1010A). The function generator is connected by GPIB
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cable to a computer running a LabVIEW code from which we set the drive
frequency of the signal and thus adjust the step-rate and amount by which
the walls move.

Figure 5.7 – a) A schematic of the walls and their motion, indicated by the red
arrows. The walls are mounted on black, PMMA frames which are connected to
the motor shafts. Only one of the four walls does not move at all. b) A side view
schematic of one of the two walls and the hole through which the syringe needle
to make the foam packing is placed.

The foam is made directly in the cell by placing a syringe needle through
one of the cut-outs in the moveable walls. We blow N2 gas at a constant rate
through a needle submerged 2cm deep in the solution. The base pressure of
the gas is 3.5bar, but decreased and tuned to useable levels using valves. To
control the two different bubble sizes, we use two different gauge needles,
25G and 30G (0.26 mm and 0.16 mm inner diameters, respectively). We
create about 50% big bubbles and 50% smaller bubbles by number. The
foam bubbles we use are between 1.8− 2.7mm in diameter, determined by
image analysis. Using a bent syringe needle, as described in Sec. 3.1.2, we
remove the satellite bubbles and mix the packing to ensure the bidisperse
foam does not have significant crystalline patches.
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Figure 5.8 – Top view of the shear cell. The black frame holds the glass plate
under which the bubbles are trapped. The motor shafts, which can not be seen,
enter the set-up from the top and the right in the image. The three screws holding
the frame in place are just out of the image.

5.2.2 Shear and Strain

Under shear deformations, the foam area is conserved and the foam thus
remains at a similar distance to the jamming point, making shear defor-
mations ideally suited for studies of rearrangements at controlled packing
fraction. In simple shear, a single wall moves in parallel to its opposite
wall, but it is hard to change or control the packing fraction. We therefore
opt for using a biaxial cell. To shear foams in such a cell, we need to apply
pure shear, where two boundaries move, compressing and expanding the
foams in perpendicular directions as illustrated in Fig. 5.9.
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Figure 5.9 – Pure shear of a rectangle. The area under this type of shear is
conserved. The rectangle starts the shear at 1 and ends in a configuration like in
2.

An experimental difficulty is that this necessitates one sidewall getting
shorter, while a perpendicular wall gets longer. We resolve this by having
sliding walls. Recall that in our experiment the motion of the sidewalls, and
hence Lx and Ly, are controlled by the frequency of the pulse signal sent
to the stepper motors. In order to keep the area LxLy constant, we have
to continuously update these driving frequencies. We will now derive the
equations that dictate the speed at which the motors must move, starting
from some initial position.

Consider the starting length of our X and Y walls to be Lx(0) and
Ly(0), respectively, like in Fig. 5.9. In our experiment we drive the Y wall
at a constant frequency, fy, leading to a constant speed of the Y wall, vy:
Ly(t) = LY (0)+vy t. Now, requiring that the area remains constant implies

Lx(t) =
Lx(0)Ly(0)

Ly(0) + vyt
. (5.1)

which upon differentiating, using Lx(t) = Lx(0) + vx(t) (we thus define
outward motion for vx as positive) and vx,y = afx,y, where a = 186 nm,
yields that

fx(t) =
Lx(0)Ly(0)fy

(Ly(0) + afyt)2
(5.2)

We use LabVIEW to send this continuously varying drive frequency to the
stepper motor which controls the X wall. An example of the updating
signal is shown in Fig. 5.10
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Figure 5.10 – The change of the X wall frequency, fx, over the course of the a)
continuous shear protocol and b) the “start/stop” shear protocol, where tc = 8
seconds and ts = 400 seconds.

We have checked that with this protocol the area under shear is indeed
constant. We use ImageJ to calculate the area of the cell every 125 seconds
over the course of an experiment. In Fig. 5.11 we note that even over long
periods of time, the area remains constant, with very little fluctuation.
The motors are thus correctly driving the system. Small deviations from a
uniform area signal over the course of a run in Fig. 5.11 come from the way
we manually measure the area using ImageJ.

The strain under pure shear in the biax set-up is determined by first
defining a deformation e = Lx(t)−Lx(0)

Lx(0) . The lengths of the walls are there-
fore

Lx(t) = (1 + e)Lx(0)

and

Ly(t) = (
1

1 + e
)Ly(0),

which guarantees that Lx(t)Lx(t) = Lx(0)Ly(0). We describe the initial

configuration of the rectangle with the vectors ~L1 = (Lx(0), 0) and ~L2 =
(0, Ly(0)). After a deformation e, the new values of ~L1 and ~L2 are given

by ~Li =
←→
F ~Li, where i = 1, 2 and

←→
F is the “deformation gradient”,

←→
F =

(
1 + e 0

0 1
1+e

)
.

We use the Green strain tensor [62]
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Figure 5.11 – The area of the cell as a function of time for two continuous shear
runs, outlined in Sec. 5.2.3. The area remains constant over long periods of time,
which is the essence of pure shear. The inset figures show how the cell looks like
at t = 0 and t = 2000 seconds.

←→
E =

1

2
(
←→
F T
←→
F −~1),

where ~1 is the identity matrix. Expanding and keeping only leading
order terms in e, the strain, γ, becomes

γ =

(
e 0
0 −e

)
,

which is the familiar expression for a simple pure shear strain in linear
response.

5.2.3 Protocols

In this section we describe the pure shear protocols we use to probe the
motion and rearrangements of bubbles in our two-dimensional foam pack-
ing. The main idea is to shear the foam either continuously or by using
a start/stop-type shear. The packing fraction of the foam can be set by
adjusting the dimensions of the cell, and a wet or a dry foam is created
by making the cell larger or smaller, respectively. Experiments can be re-
peated many times, since the walls can be driven back to the same initial
position after each run.
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Packing Fraction – Since we shear at constant area, the foam will be
completely bounded at all times in the biaxial set-up, counter to what
we saw in Chapter 3. We estimate the packing fraction in our system by
slowly driving one wall outwards while keeping the other three fixed until
the packing falls apart.. Taking Fig. 5.9 as a reference, we drive only the
X wall at a very low speeds, typically around 4.65 × 10−6 ms−1. The low
drive speed is needed to ensure the system responds quasi-statically to the
change in area and that the bubbles keep up with the movement of the
wall, since they are retarded by the drag with the glass plate. We make an
estimate as to how far from the jamming point our foam packings are. The
area of the undeformed bubbles is A0. If the packing in the rectangle has a
starting area A, then its packing fraction is φ = A0/A. We say the bubble
packing falls apart at area A′, so its packing fraction is φ′ = A0/A

′ = φc,
the critical packing fraction. Putting these two equalities together, we get
the starting packing fraction of the foam as φ = φc

A′

A . The distance to the
jamming point is thus found to be

∆φ = φ− φc = φc

(
A′

A
− 1

)
. (5.3)

Additionally, it must be noted that there is a non-trivial upper limit to
the packing fraction we can achieve in the shear set-up. Starting at packing
fractions of around ∆φ & 0.55, the bubbles buckle out of plain and start
creating bilayer patches of bubbles, as seen in Fig. 5.12. This happens to
mainly smaller bubbles in the packing, when they are forced downward by
two neighboring larger bubbles.
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Figure 5.12 – An top view example of a highly compressed foam with bubbles
that have buckled out of plane, creating a bilayer in some areas.

This upper limit of ∆φ is therefore the driest possible achievable foam
packing.

5.2.3.1 Continuous Shear Protocol

We shear the foam continuously from some initial configuration to a final
position, like in Fig. 5.13. For these runs we set vy = 9.3 × 10−6 ms−1

(“fast”) or at vy = 9.3 × 10−7 ms−1 (“slow”) and the packing fraction for
every run. We only shear the system in one direction. These continuous
shear protocols take around 30 minutes to 4 hours to perform, which means
they can be repeated many times if necessary.

5.2.3.2 Start/Stop Protocol

The second protocol is similar to the continuous protocol in that we set vy
and ∆φ for each run. However, instead of shearing continuously, we start
and stop the shear. We call this the “start/stop” protocol. By changing
the output signal the motors receive, we drive the walls for a time tc at
vy = 9.3 × 10−6 ms−1 and then stop them, allowing the system to sit still
for time ts. Fig. 5.10 b) highlights how fx changes over the course of a
start/stop protocol. The change in the start value of fx seen in Fig. 5.10
comparing the continuous and start/stop protocol, or between any run for

101



CHAPTER 5. REARRANGEMENT OF FOAMS

Figure 5.13 – A top view of the start and end images of a packing using the
continuous shear protocol. The millimeter markings on the walls are clearly seen.

that matter, comes from the fact that there is a size dependence of the
initial size of the cell in Eq. 5.2.

This cycle of starting and stopping the walls is repeated more than 50
times. The most commonly used change times were tc = 2, 8, 20 seconds and
sit times of ts = 200, 400 seconds. The sit times are obviously a lot longer
than the change time to let the foam relax after the shear and allow us
to capture the motion. For wet foams, the rearrangement times are longer
than for dry foams, necessitating these long sit periods. For a tc = 20
seconds, ts = 400 seconds is needed to ensure the system is fully relaxed.
For the majority of experiments we used the combination of tc = 8 s and
ts = 200 s.

5.2.4 Affine Deformation and Variance

In order to understand what type of rearrangement is present in the pack-
ing, we analyze the images of the packing taken from above. By comparing
sets of images to each other, we get a variance signal whose features tells
us the changes taking place in the packing with pixel accuracy. To extract
a variance signal from the images in the continuous protocol case, we first
need to subtract the affine motion of the moving walls between frames, sim-
ilar to what was done in Sec. 4.4.1 with the compression experiment. The
bubbles at the boundary of the cell are the ones that feel the continuous
motion of the walls the most and will thus show a greater change in motion
between images. The rearrangements which occur in the packing will also
be washed out by the motion of the walls when comparing two images. We
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Figure 5.14 – a) In the uncorrected image, the motion of the wall’s influence
on the bubbles can clearly be seen during the shearing between two frames. b)
The affine corrected image suppresses the motion of the walls, allowing to clearly
observe details from affine motion.

correct for this in this section.
This correction process will not have to be done with the “start/stop”

protocol, as we observe the rearrangements in the packing during time ts as
a response to the the walls having just sheared the packing for time tc. In
ts we are observing how the system relaxes and accommodates the induced
shear.

To remove the motion of the walls, we use the same IDL routines from
Sec. 3.1.4 and Sec. 4.4.1, POLYWARP and POLY 2D. For the biaxial set-
up, we first define the four coordinates of the vertices in the first image
(xj , yj), where j = 1, 2, 3, 4, of the cell containing the foam. We image the
pure shear of the cell with a fixed frame rate of 0.5 Hz, and knowing the
velocity of the Y and that the X wall speed goes like vx = a × fx, where
fx is given by Eq. 5.2, this gives us the new coordinates (x′j , y

′
j) of the cell

for each frame in the recording. The original coordinates are input into
POLYWARP to extract warping coefficients. The routine POLY 2D then
affinely deforms an image Ii to the affine predicted deformation at a shifted
time Ii+sh. We refer to this affine prediction as Īi.

The rearrangements are more exposed in this manner, as can be seen
in Fig. 5.14 a), where we compare two images, one corrected for the affine
motion of the walls, the other not.

The variance is defined similarly to Eq. 4.17, so
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V ar[sh] :=

∑
i

[Ii − Īi]2

no. of pixels
,

in arbitrary units, and where a value of zero means no change has happened
between images, and the larger the value, the more has changed. Because
we have the coordinates of the vertices of the cell in each frame, we measure
the variance only within these coordinates for each frame. Recall that the
area of the cell does not change over the course of the experiment (as can be
seen in Fig.5.11), so the variance signal will not grow due to change in area
of the cell, only due to the rearrangements. When comparing the corrected
to the uncorrected image in Fig.5.14, the variance signal will overall be less
noisy and therefore lower with the corrected image.

5.2.5 Stick-slip in the Set-up

In the biaxial set-up, the walls of the cell exhibit stick-slip motion due
to friction between the motor shafts passing through the o-rings (seen in
Fig.5.5). As the shafts are pushed/pulled during a run, the stick-slip causes
the walls to periodically jump forward or backward, following the overall
direction of the wall’s motion.

In difference images such as Fig. 5.15 a), this jump is noticeable at
the boundaries of the cell. Fig. 5.15 b) shows the next difference image,
directly after the jump, where no motion at the boundaries is seen. Note
that both images are “corrected” for the affine, continuous motion of the
walls; the sudden jumps can not be accounted for, as their occurrence is
not controlled.
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Figure 5.15 – a) The stick-slip motion of the walls causes a noticeable signal
at the boundaries of the cell. b) One image later than a), the jump is not seen
anymore. The stick-slip is periodic.

Because of these periodic kicks registered at the boundaries in the image
analysis, the variance signal exhibits small, periodic peaks, as seen by the
black data points in Fig.5.16. These peaks mask the underlying motion and
phenomenology of the variance signal and need to be corrected for. The
algorithm that we use to detect unwanted peaks in the signal is illustrated
in Fig. 5.17. For simplicity, let’s denote the data by V ar[i]. We then define
a “smoothed” signal sm, as

sm[i] :=
V ar[i− 1] + V ar[i+ 1]

2
.

As we sample the data at a high rate, we do not expect very rapid, and
isolated, changes in the data. However, the stick-slip motion precisely
leads to signal points being systematically larger than their neighbors, i.e.
V ar[i]� sm[i].

To identify the peaks only due to the walls’ jumping (and spare the rest
of the peaks corresponding to actual rearrangements from the averaging),
we say that if V ar[i] > 1.2×sm[i], we have detected “bad” points, indicated
by the blue vertical lines in Fig. 5.16. The factor 1.2 is chosen so as to
suppress “real peaks” as little as possible while detecting the “false” peaks.
With the “bad” point due to the wall jump identified, we replace V ar[i] by
its neighbors average sm[i], see Fig. 5.17 b). The result is the red curve in
Fig. 5.16, which captures the data very well, removes the periodic stick-slip
motion and shows that rearrangements (at frame 220 and 280, for example)
have not been removed by this procedure.
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Figure 5.16 – A plot of V ar[2] versus frame for a run with ∆φ = 0.118. The
black points are the original data, with the periodic jumps due to the wall motion.
The red curve is a processed data set using a peak detection technique. The
blue vertical lines indicate where peaks were detected and data points have been
replaced by the average of their neighbors.

Figure 5.17 – a) Schematic of the variance signal with a high valued, “bad”
point due to the stick-slip of the wall motion. The signal is averaged over three
consecutive points at a time, resulting in a smoother signal as in b).
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5.3 Results

Employing both continuous and start/stop protocols (with emphasis on the
former), we will characterize the spatial structure of the rearrangements in
our two-dimensional foams as a function of the packing fraction φ. In par-
ticular, we will employ the variance signal (see Eq. 4.17), spatial snapshots
as well as the inverse partition ratio to capture the trends with φ. We find
that in dry foam, rearrangements tend to be relatively short and intense.
These are classical T1 events, marked by the quadrupolar nature of the
deformation field during rearrangements, see Fig. 5.18. Such T1 events be-
come less well-defined when we move away from the very dry limit. Below
∆φ ≈ 0.1 they are almost irrelevant. In that regime, rearrangements are
more smeared out in both space and time. In addition, for wet foams we
observe that during shear “rattlers” are generated – loose particles, that
with little interaction with their neighbors move in their cage.

Figure 5.18 – A zoom-in of T1 event as seen in difference of images. The time
between frames is 2 seconds. Note the quadrupolar nature of the deformation field.

In Sec. 5.3.1 and Sec. 5.3.2 we show the behavior of dry and wet foams
under continuous and start/stop shear, respectively.

5.3.1 Continuous Shear

Using continuous driving, we shear the foam at vy = 9.3×10−7ms−1 for five
different packing fractions of ∆φ = 0.025, 0.12, 0.30, 0.54, 0.59. In Fig. 5.20
we show the traces of the variance (where we now denote V ar := V ar[1]) of
these runs, after filtering out the stick-slip motion and performing the affine
corrections described in Sec. 5.2.4. The dry foams show short and sharp
bursts of motion, the wetter foams at ∆φ . 0.3 show increasingly smeared
out behavior. Hand in hand with this, the maximal values of the variance
decrease for wetter foams. Snapshots of the deformation fields shown in
Fig. 5.19 show that the rearrangements for wet foams become more spread
out, but also much slower; this explains the lowering of the peaks in V ar.
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Figure 5.19 – a) A dry foam, mid T1 rearrangement with ∆φ = 0.594. b) A
global rearrangement in a wet foam with ∆φ = 0.025.

Figure 5.20 – V ar versus frame number for five runs, each offset by 102 from one
another.

A zoom of this data shown in Fig.5.21 clarifies the remarkable differences
as we go from a dry to a wet foam. Clearly, runs at low ∆φ (blue and light
blue) show a low variance signal and deformation events that are drawn
out over hundreds of frames. There are fewer sharp peaks in the signal and
the system is rarely quiet. This is reminiscent of the nonaffine response
seen for systems close to jamming under shear [21, 22]. Increasing the
packing fraction to a medium wet foam (∆φ = 0.30 (purple)), the behavior
starts to change somewhat, with the data showing a mix of sharp peaks
and broad ones. The narrowing of the peaks are an indication of the onset
of localized rearrangements in the packing, occurring over shorter periods
of time. There are still a few global events marked by broad, drawn out
rearrangements over tens of frames. The dry foams (red and orange curves
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in Fig. 5.21) show only sharp peaks which happen over short periods of
time paired with long periods where the system shows no deviations from
an affine response.

Figure 5.21 – A zoom of the same data in Fig. 5.20, where the packing fractions
are ∆φ = 0.59 (orange), ∆φ = 0.54 (red), ∆φ = 0.30 (purple), ∆φ = 0.12 (blue)
and ∆φ = 0.025 (light blue).

As Fig. 5.21 suggests, a clear distinction between wet and dry foams
can be made by looking at the timescales in the variance. To probe this
timescale, we have calculated the autocorrelation signal of V ar. As the
variance, when plotted on a linear scale, is dominated by huge peaks, we
focus on the autocorrelation of the log of V ar, which we define as:

A(∆f) := 〈(logA(i+ ∆f)− 〈logA〉)(logA(i)− 〈logA〉)〉 (5.4)

where the average runs over the frame number i and ∆f is the change
in frame. The result is shown in Fig. 5.22. The autocorrelation thus re-
veals a systematic lengthening of a characteristic timescale when ∆φ→ 0.
Whether this scale is a strain-scale (i.e. independent of the deformation
rate) or is rate dependent is left for further work.
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Figure 5.22 – Autocorrelation of log(V ar) versus the change in frame, ∆f , for
the same five packing fractions shown in Fig. 5.20 and Fig. 5.21.

More quantitative information can be obtained by characterizing the
spatial extend of the deformations. To do so, we start from the spatial
distribution of the square of the image differences, A2, see Fig. 5.23.

We then perform some coarse-graining to obtain a 25 × 25 grid that
represents the sum of A2 over rectangular boxes of a size similar to the
bubble size (see right-most image in Fig. 5.23). Denoting these sums as
Bij , we define the inverse participation ratio, Iipr, as

Iipr :=
N
∑

ij B
2
ij(∑

ij Bij

)2 , (5.5)

in arbitrary units, where N is the number of boxes (here 625). To interpret
the inverse participation ratio, notice that for a homogeneous field where
all Bij have the same value, Iipr approaches 1. For an extremely inhomo-
geneous field, where all but one Bij is zero, Iipr = N . Hence, Iipr gives a
quantitative measure of the spatial spread of events.

In Fig. 5.24, we show traces and a zoom of Iipr for the five continuous
runs we have performed. Similar to the variance signal in Fig. 5.20 and
Fig. 5.21, there are more sharp peaks for dry foams than for wet foams,
although somewhat surprisingly, the maximal inverse participation ratios
in both cases are of order 100.

To clearly distinguish these signals, we now focus on all the local max-
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Figure 5.23 – a) Dry foam with ∆φ = 0.54. From left to right: difference of
images, A2 and sum of A2 divided over 625 boxes. b) Wet foam with ∆φ = 0.12.

imum of Iipr. These represent the most localized deformation scales that
arise during a deformation.

Figure 5.25 – The local maxima of Iipr for two foams with ∆φ = 0.54 (red) and
∆φ = 0.12 (blue).
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Figure 5.24 – a) Iipr versus frame number for five runs, each offset by 102 from
one another. b) A zoom of the same data.

Fig.5.25 shows the traces of Iipr for a wet and dry case, with the maxima
marked. A close inspection reveals a qualitative difference between the
two: for the dry case, there is an abundance of peaks in Iipr close to the
maximum, whereas for the wet case, a wide distribution of local maxima
of Iipr can be observed.

Figure 5.26 – Histogram of log IMax
ipr , where IMax

ipr are the maxima points identi-
fied in Fig. 5.25.

In Fig. 5.26, we show the histogram of the maxima of Iipr, which shows
the systematic change from a single to a double-humped distribution as
the packing fraction ∆φ is increased. We interpret the second peak for the
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Figure 5.27 – V ar (red) and fx (blue) versus time for a start/stop run with
∆φ ≈ 0.25 and tc = 8 s, ts = 200 s. The peaks in the variance show that the walls
are moving.

dry foams as corresponding to T1 events, and the loss of this peak again
illustrates the loss of relevance of such localized rearrangements closer to
jamming.

5.3.2 Start/stop Shear

Using the start/stop protocol, we have explored the variance in order to
probe the temporal evolution of the system during the sit time, ts. In
particular, we are interested in how the system relaxes the internal stress
by rearrangement due to the shear.

Fig. 5.27 shows V ar and driving rate fx versus time for a medium wet
foam of ∆φ ≈ 0.25 for a start/stop run with tc = 8 s, ts = 200 s. The walls
move only a short time, yet enough for a noticeable variance signal to be
detected. The steps in fx as seen in Fig.5.27 thus create periodically-spaced
peaks.

In Fig. 5.28, V ar versus time for three different packing fractions of
∆φ ≈ 0.15, 0.25, 0.45 is shown over ts = 200 s. In all three examples,
deformations are taking place during the sit time. For the dry case in
Fig. 5.28 a), rearrangement events occurs over a relatively short period
of time, as expected, yet the variance signal is not as strongly peaked, in
contrast to Fig.5.21 in Sec.5.3.1, where T1 events in a dry foam were marked
by sharp peaks. We note that in the continuous shear case, T1 events were
of much shorter duration, which partially explains this difference. As we
approach the wet foam in Fig. 5.28 b) and c), V ar increases in magnitude
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and the events take longer to subside. The larger variance signal indicates
more bubbles partaking in motion. This larger variance is, however, in
contrast to the wet foam behavior seen in continuous shear, where the wet
foams exhibited low variance signals(see Fig. 5.21).

Figure 5.28 – V ar versus time for a) ∆φ ≈ 0.45, b) ∆φ ≈ 0.25, and c) ∆φ ≈ 0.15
with tc = 8 s, ts = 200 s.

V ar in Fig. 5.28 c) also highlights the continuity of motion in wet foams
in that separate rearrangement events seemed to be linked. Between 2360
and 2400 seconds, the motion starts with only a few bubbles partaking, as
shown by the low variance. The variance signal then grows rapidly, before
eventually relaxing completely. This behavior is an indicator of avalanches
in wet foams, meaning one event can “trigger” a further deformation in the
packing.

Figure 5.29 – Iipr versus time for a) ∆φ ≈ 0.45, b) ∆φ ≈ 0.25, and c) ∆φ ≈ 0.15
with tc = 8 s, ts = 200 s.

To understand the change in behavior between continuous and start/stop
shear, we show the Iipr versus time for the three packing fractions in
Fig. 5.29. The T1 event identified in Fig. 5.28 a) for the dry foam shows a
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relatively low value in the inverse participation ratio in Fig. 5.29 a) com-
pared to the wetter foams. This is due in part to the signal noise from the
periods when the foam is not deforming overwhelming the T1 signal in Iipr,
see Fig. 5.30 a). As ∆φ→ 0 in Fig. 5.29 b) and c), the Iipr signals broaden
similar to Fig. 5.26, indicating a departure from localized behavior to more
global deformations in the foam. This is further illustrated in Fig. 5.30,
where the difference of images correspond to the circled peaks in Fig. 5.29.

Figure 5.30 – Difference of images of the red-circled peaks from Fig. 5.29 with
a) ∆φ ≈ 0.45, b) ∆φ ≈ 0.25, and c) ∆φ ≈ 0.15. The two peaks in c) show at first
localized behavior and then more broad, global deformations.

5.4 Conclusions and Outlook

We have shown that a two-dimensional foam under pure shear exhibits
markedly different behavior in the wet and dry case, both spatially and
temporally. First, the autocorrelation shown in Fig. 5.22 reveals a system-
atic lengthening of a characteristic timescale when ∆φ → 0. Secondly,
histograms of the inverse participation ratio (Fig.5.26) show that only very
dry foams show localized T1 events via a peak in the histogram for large
values of Iipr. The loss of this peak when ∆φ → 0 illustrates the loss of
localized behavior as we approach jamming.

What remains to be investigated is what is driving the rearrangements
in the foam. Does one rearrangement necessarily trigger another? What is
the role of coalescence events and coarsening? What causes rearrangements
long after driving has ceased?

Moreover, the lengthening of the timescale observed as a foam becomes
wetter in Fig. 5.22 remains to be investigated further. The question of
whether there is a rate (in)dependence of the rearrangements on the shear
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rate was touched upon briefly in [33, 63]. If the shear rate is decreased
(increased), it is yet unclear whether the rate of rearrangement will also
slow (speed up). For fast events, as in dry foams, we expect the shear rate
to be inconsequential; we believe events to appear similarly for fast and slow
shear rates. For intrinsically slow deformations, as in wet foams where the
motion is more global, we expect the shear rate to play an important role
for the rearrangement.
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Many materials we encounter on a daily basis behave very strangely when we
poke, tap, squeeze or rub them. The majority of these are so-called amorphous
materials, composed of many deformable particles, bubbles or droplets, interacting
together in some way. Once we compress or shear these materials, a whole host of
interesting and often counter-intuitive phenomena come to light, such as plastic
and elastic deformations.

Many materials behave predictably under compression and shear. Stand on a
hard table and it will support you (hopefully); rub your hand over its top and you
will feel its rough surface. Stand on the beach, and the sand will support you. But
watch how the wind carries those same sand particles even with the slightest gust.
Systems composed of many hard particles exhibit this strange behavior where they
can transition from a solid state to one that is fluid-like. It all depends on how
you interact with them.

This transition from solid to fluid-like becomes even more complicated and less
predictable the moment we deal with deformable particles, instead of hard ones.
Foams are a prime example of a many-bodied system of soft, deformable particles.

Compressing wet foams should be a relatively simple process: collect the foam
bubbles into a confining container and then squeeze the walls. If we limit ourselves
to two dimensions, we can observe the bubbles in the system and are not hampered
by their opaqueness encountered if we were to look at a three-dimensional foam,
like beer froth or shaving foam. To place foams into the “jamming” context, we
can observe the transition from freely flowing to rigid phases of a wide range of
soft materials, when we wedge the foam bubbles in between a soap solution and
a glass plate. This way we can control the amount of bubbles in our container
before we compress.

Extracting useful information about a foam’s behavior under these circum-
stance should be straightforward: just by observing the foam, a lot of trivial
properties should become clear very fast. For example, to compensate for the
change in area under squeezing, the bubbles will deform and rearrange.

This all sounds simple enough to achieve, yet this ideal system of bubbles in a
container is a far cry from a real experimental system. Just like the air bubble in
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a bottle of water, the foam trapped under the glass is subject to buoyancy forces.
If the plate is not perfectly leveled, the foam will drift into some corner of our
container. Also, performing this experiment in a room with large temperature
fluctuations will cause the foam to go through the jamming point under compres-
sion: since foam is a gas, it will expand and contract depending on the ambient
temperature.

The challenge when working with foam is being able to control the system
enough, in a predictable manner, to drive it through the jamming point by com-
pression.

In Chapter 1, we give a brief overview of topics and issues encountered in this
Thesis. We start by introducing the reader to the concepts of jamming in Chapter
2 and ask two fundamental questions: what is the nature of the jammed state and
what is the nature of the jamming transition? We present an idealized picture,
illustrating the current understanding, by introducing a simple model. We further
highlight that materials in a jammed state do not behave like ordinary solids.
Many models do not account for this and therefore fail to describe soft systems.
The chapter also shows that there is a difference in the scaling of the bulk and the
shear modulus as a function of the distance to the jamming point. We end this
review chapter by examining past experimental work, as well as introducing some
basic concepts of nonaffine motion in jammed systems, which will play a central
role in Chapters 4 and 5.

In this thesis, we have experimentally explored the behavior and scaling of a
foam under compression and shear by confining it in two dimensions. In Chapter 3,
we describe a new experimental set-up, whose complete manipulation and control
allows us to probe how a foam packing behaves under compression. We trap a
single disordered, horizontal layer of foam between the surface of a soap solution
and a glass plate; the sidewalls confine this quasi two-dimensional foam in a wedge
geometry. Realizing that even by trapping the foam under a ground and polished
flat glass plate will not allow us to probe the jamming transition precisely, we
control the tilt of the set-up to bias the positions of the bubbles that sit in the
wedge. By using a rheometer in strain controlled mode, we can delicately compress
the foam and measure its stress response. We film the set-up from above and have
to apply image correction techniques to make the images useful for further analysis.

The foams’ response to compression is investigated in detail in Chapter 4. We
establish that with the system under tilt, there are two regimes: the gravity and
the boundary jammed regime. In the gravity jammed regime, there is a gap in the
foam between the moving sidewall that compresses the foam – the wiper – and the
foam packing. By incrementally closing the gap, we go into the regime where the
foam is fully bounded by its sidewalls. As the gap is closed, the torque that the
foam exerts on the wiper starts to increase. Surprisingly, the onset of a finite torque
and the closing of the gap do not always coincide, due to residual gravitational
forces. This leads us to distinguish between a weakly “gravity jammed” regime,
and a strongly “boundary jammed” regime. This allows us to obtain the elastic
moduli in the boundary jammed regime, while in the gravity jammed region we
find that even though the system is still weakly jammed, it exhibits no elastic
response to deformation, indicating that the shear modulus is zero.
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In addition, we find a strong increase in the nonaffine fluctuations if we ap-
proach the (un)jamming point.

In Chapter 5 we again trap a bidisperse foam layer between a soap solution
and a glass plate, yet let the system undergo a controlled pure shear. We confine
the foam in a rectangular cell (under the glass plate) that keeps its area constant
as the walls are sheared. By imaging from above and determining the difference
between images, we can characterize the motion occurring in the system. We can
match the variance and inverse participation ratio to the type of rearrangements
that occur in the system, and find that if the foam is very compressed (dry foam),
there is only one type of rearrangement, known as the T1 rearrangement. This
rearrangement is spatially localized and occurs over a relatively short time scale.
If we decrease the packing fraction even only slightly, the T1 rearrangement is
no longer the sole type, and the system now starts to exhibit more global motion,
with many bubbles taking part. The time scale of the motion also increases. As we
approach the jamming transition, the motion in the system is completely extended.
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Samenvatting

Het is opmerkelijk hoe veel materialen die we in ons dagelijkse leven tegenkomen,
zich heel vreemd gedragen als we ze indrukken, knijpen of wrijven. De meeste
ervan zijn zogenaamde amorfe materialen, samengesteld uit vele deeltjes, bellen
of druppeltjes, die met elkaar samen op de een of andere bijzondere manier wis-
selwerken. Zodra we deze materialen samendrukken of verschuiven, komt allerlei
interessant en vaak tegen-intuitief gedrag aan het licht.

Veel materialen gedragen zich voorspelbaar onder compressie en verschuiving.
Als je op een tafel staat zal deze je (hopelijk) houden. Sta op het strand, en
het zand zal je ondersteunen. Maar kijk hoe de geringste windvlaag diezelfde
zanddeeltjes wegblaast. Systemen opgebouwd uit een groot aantal van dergelijke
deeltjes vertonen dit bijzondere gedrag waar ze kunnen overgaan van een vaste
naar een vloeibare toestand. Het hangt er allemaal van af hoe je met ze omgaat.
Deze overgang van vast naar vloeibaar wordt nog ingewikkelder op het moment
dat we te maken hebben met vervormbare deeltjes in plaats van met harde deelt-
jes. Schuimen zijn een goed voorbeeld van een veel-deeltjes systeem van zachte,
vervormbare deeltjes.

Het samendrukken van nat schuim lijkt een relatief eenvoudig proces: verzamel
de schuimbellen in een container, en druk dan de wanden samen. Als we ons
beperken tot een twee-dimensionaal systeem van bellen kunnen we de bellen in het
systeem direct waarnemen; de ondoorzichtigheid die optreedt wanneer we kijken
naar een drie-dimensionaal schuim, zoals bierschuim of scheerschuim, speelt ons
dan geen parten. Om schuim te plaatsen in de “jamming” context - de overgang
van een vrij-stromende naar een starre fase van een grote reeks zachte materialen -
plaatsen we de schuimbelletjes tussen een zeepoplossing en een glasplaat. Op deze
manier kunnen we de hoeveelheid belletjes in onze container controleren voordat we
comprimeren. Onder deze omstandigheden is het vrij eenvoudig nuttige informatie
over het gedrag van een schuim te verkrijgen: door te kijken naar het schuim
worden veel belangrijke eigenschappen snel duidelijk. Bijvoorbeeld, onder druk
zullen de belletjes vervormen en zich opnieuw ordenen.

Toch is dit ideale systeem van belletjes in een container iets heel anders dan
een echt experimenteel systeem. Net als een luchtbel in water is schuim, gevan-
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gen onder een glasplaat, onderhevig aan opwaartse krachten. Als de plaat niet
perfect waterpas staat, drijft het schuim naar een hoek van onze container. Ook
ontstaan er problemen als de temperatuur schommelt. Omdat schuimbellen uit
gas bestaan, zullen zij uitzetten en krimpen, afhankelijk van de omgevingstemper-
atuur. De uitdaging bij het werken met schuim is dus om het systeem voldoende
te controleren, om het door het jamming punt te laten gaan.

In dit proefschrift geven we een kort overzicht van de onderwerpen die wor-
den behandeld in hoofdstuk 1. We beginnen met de invoering van jamming con-
cepten in hoofdstuk 2 en stellen twee fundamentele vragen: wat is de aard van de
“jammed” toestand, en wat is de aard van de jamming overgang? We presenteren
een gëıdealiseerd beeld, met behulp van een eenvoudig model. Verder benadrukken
we dat materialen in een gejammede toestand zich niet als gewone, vaste stoffen
gedragen. In het hoofdstuk wordt ook besproken dat het schaalgedrag van de
bulk en shear moduli als functie van de afstand tot het jamming punt verschillend
is. We eindigen dit hoofdstuk met een bespreking van eerder experimenteel werk,
alsmede de introductie van een aantal basisbegrippen van nonaffine beweging in
“jammed” systemen, die een centrale rol in de hoofdstukken 4 en 5 zullen spelen.

In hoofdstuk 3 beschrijven we een nieuw experiment, waar volledige manipu-
latie en controle ons in staat stelt om te meten hoe een schuim zich onder com-
pressie gedraagt. We houden een enkele laag schuimbellen tussen de oppervlakte
van een zeepoplossing en een glasplaat, in een wigvormige geometrie. Maar zelfs
wanneer schuim onder een geslepen en gepolijste vlakke glazen plaat gevangen is,
kunnen wij de jamming overgang niet precies bepalen, omdat de glasplaat nooit
perfect horizontaal ligt. We kantelen de experimentele opstelling een beetje, en zo
bëınvloeden wij de positie van de belletjes die in de wig zitten. Door het gebruik
van een rheometer in strain gecontroleerde modus kunnen we het schuim subtiel
comprimeren en de stress respons ervan meten. We filmen de opstelling van boven
en gebruiken beeldcorrectie technieken om de opnamen bruikbaar te maken voor
verdere analyse.

De reactie van het schuim op compressie wordt in hoofdstuk 4 in detail on-
derzocht. Ten gevolge van de kanteling van het systeem zijn er twee regimes: een
regime gedomineerd door zwaartekracht en een regime gedomineerd door de zi-
jwanden. In het zwaartekracht gedomineerde regime is er tussen het schuim en
de compressie genererende wisser een kloof. Door het stapsgewijs sluiten van de
kloof gaan we naar het regime waar het schuim volledig wordt begrensd door de
zijwanden. Het sluiten van de kloof valt niet altijd samen met het toenemen van
het torsie signaal. Door een onderscheid tussen “boundary jammed” en “grav-
ity jammed” in te voeren, kunnen we de elastische moduli toch bepalen . In
het zwaartekracht gedomineerde regime vinden we dat, hoewel het systeem nog
steeds zwak “gejammed” is, het geen elastische reactie op vervorming vertoont,
wat aangeeft dat de afschuifmodulus (shear) nul is. Tenslotte zien we een sterk
nonaffine reactie van het schuim dicht bij het jamming punt.

In hoofdstuk 5 sluiten we een bidisperse schuimlaag tussen een zeepoplossing
en een glasplaat in, maar onderwerpen het systeem aan een gecontroleerde, zuivere
afschuif spanning. We sluiten het schuim in een rechthoekige container op (onder
een glasplaat), waardoor het oppervlak constant blijft terwijl de wanden worden
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geschoven. We filmen het systeem van boven en door het berekenen van het verschil
tussen de opnamen kunnen we de bewegingen die in het systeem optreden karak-
teriseren. We vinden dat wanneer het schuim sterk gecomprimeerd (droog schuim)
is, er slechts een type herschikking is, de T1 herschikking. Deze herschikking is
ruimtelijk gelokaliseerd en treedt op gedurende een relatief korte tijdsperiode. Als
we de dichtheid slechts in geringe mate verlagen is de T1 herschikking niet langer
de enige soort en het systeem begint nu meer globale beweging te vertonen, met
vele bellen die bewegen. De tijdsperiode van de beweging neemt ook toe. Als
we bij de jamming overgang aankomen, is de beweging in het systeem volledig
geglobaliseerd.
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